WO2021097863A1 - 一种旋流池半逆作法施工方法 - Google Patents

一种旋流池半逆作法施工方法 Download PDF

Info

Publication number
WO2021097863A1
WO2021097863A1 PCT/CN2019/120678 CN2019120678W WO2021097863A1 WO 2021097863 A1 WO2021097863 A1 WO 2021097863A1 CN 2019120678 W CN2019120678 W CN 2019120678W WO 2021097863 A1 WO2021097863 A1 WO 2021097863A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
construction
formwork
wall
pouring
Prior art date
Application number
PCT/CN2019/120678
Other languages
English (en)
French (fr)
Inventor
牟晓亮
宋茂祥
张振
彭恩雄
Original Assignee
上海宝冶集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海宝冶集团有限公司 filed Critical 上海宝冶集团有限公司
Publication of WO2021097863A1 publication Critical patent/WO2021097863A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H7/00Construction or assembling of bulk storage containers employing civil engineering techniques in situ or off the site
    • E04H7/02Containers for fluids or gases; Supports therefor
    • E04H7/18Containers for fluids or gases; Supports therefor mainly of concrete, e.g. reinforced concrete, or other stone-like material

Definitions

  • the invention relates to a foundation pit excavation and concrete construction, in particular to a semi-reverse construction method for a swirl pool.
  • the full-open construction method is to excavate the earth and stone from the lower part to the upper part.
  • the working area should be enlarged by a circle of more than 30m, and the excavated earth and stone should be increased by about 20,000m3, which will affect and damage other factory facilities around and cause some factories to stop production.
  • the caisson construction method is to construct the bottom structure project on the ground first, and then adopt the sub-section construction, and then the sub-section to sink, which is greatly affected by the geological conditions. For example, when the geology is stonework, it cannot be lowered normally, such as the geology is silt. Or when the groundwater is abundant, drift or tilt will occur during settlement.
  • the top-down construction method has many structural joints, which is easy to cause water leakage in the cylinder wall, and requires high precision of the formwork support and enclosure structure.
  • the purpose of the present invention is to provide a safe and reliable construction method of the cyclone pool with semi-reverse construction.
  • a semi-reverse construction method for a swirl pool which is characterized in that it comprises the following steps:
  • Swirl pool wall cylinder is constructed in the same way, and the swirl pool wall cylinder is constructed from ⁇ 0m to -11.0m, including the following steps:
  • the first stage of construction (1) Set the line, determine the layout of the construction site control network based on the review of the control point or control network provided by the owner, and the survey team introduces coordinates and level points, and sets up control piles to control Pile protection
  • the release agent before the template is used to strictly control the size of the plate joints to prevent uneven joints, height differences, and grout leakage; before pouring the lower section of the inner lining structural concrete, construct the joints along the inner lining
  • the lower part is equipped with an expanded rubber water stop strip, which is set in a long length; the diameter of the cyclone pool wall is controlled by a 50m steel tape measure, and the deviation is found to be adjusted in time; the order of demoulding is the second support first, the first support then the first , Remove the non-load-bearing formwork first, and then remove the load-bearing formwork; after the lining wall is poured, the concrete strength reaches 70%, and the formwork and scaffolding should be removed in time;
  • the concrete is poured by a cantilever pump truck, where the concrete enters the formwork, and each formwork is equipped with 2 plug-in vibrators, which must be continuously closed for pouring; the concrete should be poured in layers, and the thickness of each layer should not be greater than 500mm. It is strictly forbidden to enter the air in the concrete receiving hopper to prevent the formation of pipe blockage;
  • the second stage of construction lashing -11m to -8m shaft wall steel bars, platform reserved steel bars, supporting -11m to -8m formwork, pouring -11m to -8m concrete, and curing the concrete;
  • the third stage of construction lashing -8m to -4m shaft wall steel bars, platform reserved steel bars, supporting -8m to -4m formwork, pouring -8m to -4m concrete, and curing the concrete;
  • the fourth stage of construction binding -4m to ⁇ 0m shaft wall steel bars, platform reserved steel bars, supporting -4m to ⁇ 0m formwork, pouring -4m to ring beam concrete, and curing the concrete;
  • the fifth stage of construction the second layer is broken -14 ⁇ -11m, the soil wall is cleaned, the floor cushion, the -14 ⁇ -11m shaft wall reinforcement is tied, the formwork is supported, the concrete is poured, and the concrete is maintained;
  • the third layer is cut -17 ⁇ -14m, clean the soil wall, the bottom plate cushion, tie the -14 ⁇ -17m shaft wall steel bar, support the formwork, pour the concrete, and maintain the concrete;
  • the fourth layer is cut -17 ⁇ -21.5m, clean the soil wall, the bottom layer, lash the -21.5 ⁇ -16.52m of the entire swirl pool bottom plate steel bar, support the formwork, pour concrete, and maintain the concrete;
  • Construction of the eighth section construction of the second ring beam of the inner tube: lashing of -6.52 ⁇ -14.5m steel bars, supporting formwork, pouring concrete, and curing the concrete;
  • the ninth stage of construction lashing -14.5 ⁇ -11m steel bars, supporting formwork, pouring concrete, and curing concrete;
  • Construction of the tenth section tying -11m ⁇ -8m steel bars, supporting formwork, pouring concrete, and curing concrete;
  • Construction of the eleventh section tying -8 ⁇ -4m steel bars, supporting formwork, pouring concrete, and curing the concrete;
  • the semi-reverse construction method of the cyclone pool of the present invention can also be further realized by adopting the following technical measures.
  • the S-shaped brace is arranged in a plum blossom pattern of ⁇ 10@100mm.
  • the bottom plate adopts ⁇ 16mm braces, braces and upper and lower two layers of steel bars to bind firmly to ensure the integrity of the steel frame.
  • the flatness and verticality of the first ring beam formwork are controlled by a wire hammer, the maximum verticality is controlled within 5mm for each section, and the verticality of the entire outer shaft wall is controlled within 20mm.
  • the semi-reverse construction method of the cyclone pool of the present invention has the following advantages:
  • the outer cylinder of this process cyclone tank adopts a semi-reverse construction method from the middle to the bottom, which is divided into sections, which breaks through the traditional full-reverse construction method and has the characteristics of novelty;
  • the outer cylinder pool wall is made in sections from the middle to the bottom, so that various resources tend to be balanced, facilitate organization and coordination, help improve construction efficiency, and promote construction progress.
  • Fig. 1 is a schematic diagram of the structure and segmented operation of a cyclone pool according to an embodiment of the present invention.
  • the semi-reverse construction method of the cyclone pool of the present invention includes the following steps:
  • Swirl pool wall cylinder is constructed in the same way, and the swirl pool wall cylinder is constructed from ⁇ 0m to -11.0m, including the following steps:
  • the first stage of construction (1) Set the line, determine the layout of the construction site control network based on the review of the control point or control network provided by the owner, and the survey team introduces coordinates and level points, and sets up control piles to control Pile protection.
  • Support ring beam A and ring beam A steel reinforcement construction in which the vertical steel reinforcement is tied according to the axis position and wall width, and the steel fixed support is set to ensure its position is accurate.
  • S-shaped braces are arranged between the inner and outer layers of the lining of the swirl pool, which are arranged in a ⁇ 10@100mm plum blossom pattern; the bottom plate is made of ⁇ 16mm braces, and the braces are bound firmly with the upper and lower two layers of steel bars to ensure the integrity of the steel frame and the ring
  • the beam has a width of 1m and a depth of 1m.
  • the lower part of the seam is provided with an expanded rubber water stop strip, and the expanded rubber water stop strip is set in a full length, and the overlap length is ⁇ 15cm.
  • the flatness and verticality of the template are controlled by a wire hammer.
  • the maximum verticality is controlled within 5mm for each section, and the verticality of the entire outer shaft wall is controlled within 20mm.
  • the diameter of the shaft wall is controlled with a 50m steel tape measure.
  • Eight symmetrical direction lines are marked with an ink line on the inner shaft wall of each section.
  • the steel ruler is used to measure, and the deviation is found to be adjusted in time.
  • the upper part of the concrete pouring slot load-bearing formwork (beam, slab bottom formwork) shall be dismantled in accordance with the requirements of the specification.
  • the order of demoulding is the following: dismantling after supporting, dismantling first, dismantling non-load-bearing formwork first, then dismantling load-bearing formwork.
  • the formwork and scaffolding are removed in time. After the formwork is removed, it is lifted out of the pool with a crane and then cleaned up. The board surface is coated with release agent and stacked neatly according to specifications.
  • the concrete is poured by a cantilever pump truck, and the free fall height of the concrete falling from the discharge port shall not exceed 2m. If it exceeds 2m, tandem cylinders or other measures to prevent concrete segregation must be adopted.
  • Each place where the concrete enters the mold is equipped with 2 plug-in vibrators. The vibrating is fast insertion and slow extraction. The vibration time is subject to no bubbles, and the insertion depth is 5cm into the lower concrete.
  • a hook rod is used to send the vibrating rod in place for vibrating.
  • a hook rod is used to send the vibrating rod in place for vibrating. Must be continuously closed pouring.
  • the second stage of construction lashing -11m to -8m shaft wall steel bars, platform reserved steel bars, supporting -11m to -8m formwork, pouring -11m to -8m concrete, and curing the concrete.
  • the third stage of construction lashing -8m to -4m shaft wall steel bars, platform reserved steel bars, supporting -8m to -4m formwork, pouring -8m to -4m concrete, and curing the concrete.
  • the fourth stage of construction lashing -4m to ⁇ 0m shaft wall steel bars, platform reserved steel bars, supporting -4m to ⁇ 0m formwork, pouring -4m to ring beam concrete, and curing the concrete.
  • FIG. 1 is a schematic diagram of the structure and segmented operation of a cyclone pool according to an embodiment of the present invention.
  • the fifth stage of construction the second layer is broken -14 ⁇ -11m, the soil wall is cleaned, the floor cushion, the -14 ⁇ -11m shaft wall reinforcement is tied, the formwork is supported, the concrete is poured, and the concrete is maintained.
  • the third layer is cut -17 ⁇ -14m, the soil wall is cleaned, the bottom layer cushion, the -14 ⁇ -17m shaft wall reinforcement is tied, the formwork is supported, the concrete is poured, and the concrete is maintained.
  • the fourth layer is cut -17 ⁇ -21.5m, the soil wall is cleaned, the bottom cushion layer, the entire swirl pool bottom plate steel bar of -21.5 ⁇ -16.52m is tied, the formwork is supported, the concrete is poured, and the concrete is maintained.
  • Construction of the eighth section construction of the second ring beam of the inner cylinder: tying the steel bars of -6.52 to -14.5m, supporting the formwork, pouring the concrete, and curing the concrete.
  • the ninth stage of construction lashing -14.5 ⁇ -11m steel bars, supporting formwork, pouring concrete, and curing the concrete.
  • Construction of the tenth section tying -11m ⁇ -8m steel bars, supporting formwork, pouring concrete, and curing the concrete.
  • Construction of the eleventh section lashing -8 ⁇ -4m steel bars, supporting formwork, pouring concrete, and curing the concrete.
  • the present invention has substantial features and significant technological progress.
  • the semi-reverse construction method of the cyclone pool of the present invention reduces the impact of large excavation on the surrounding equipment foundation and steel structure installation, effectively shortens the total construction period of the project; reduces Disturbance of the land reduces the amount of earth excavation and backfilling, thereby reducing construction costs.
  • the semi-reverse construction method of the swirling pool of the present invention is used in the steelmaking and steelmaking and continuous casting project of the Malaysia United Iron and Steel Project, and the effect is remarkable.
  • the steelmaking and continuous casting project is a key project of the "One Belt and One Road”.
  • the diameter of the swirling pool is 15m, and the bottom elevation is 15m. -21.6m.
  • the bottom plate is 1700mm thick, and the outer wall plate is 800mm thick.
  • the semi-reverse construction method was adopted and the project was successfully completed, providing a successful example for similar projects in the future.

Abstract

一种旋流池半逆作法施工方法,其特征在于包括以下步骤:a、旋流池壁筒体进行顺作法施工,旋流池壁筒体作自±0米至-11.0米段施工,b、旋流池壁筒体进行逆作法施工,先进行-11~-14m的破凿,破凿完成后进行混凝土的施工,待强度达到75%后再转入-14至-17m处井壁施工段,施工完成后进行-17~-21.6m筒壁及底板的施工。本发明具有突破传统全逆法施工方法的新颖性,挡土、支护、防水截渗效果好,池壁自身强度高、刚度大和抗渗性能好,施工速度快,外筒池壁分节从中往下进行达到各种资源趋于均衡,便于组织协调,施工工效提高,促进施工进度,每节施工工作量大致均衡和材料、机具、人员、工期较好协调的优点。

Description

一种旋流池半逆作法施工方法 技术领域
本发明涉及一种基坑开挖及混凝土施工,具体地说,是一种旋流池半逆作法施工方法。
背景技术
旋流池工程施工方法有三种:全开口式施工方法、沉井式施工方法、逆作法施工方法。全开口式施工方法为大开挖土石方后,从下部往上部施工,其作业面要增大30m以上的圆环,增加开挖土石方约20000m3,影响和破坏四周其它工厂设施,引起部分厂区停产,同时无法实现周边热轧系统工程按期施工,加之后期的回填等处理方案,费用要增大好几倍。沉井式施工方法为在地面先施工底部结构工程,采取分节施工,然后,分节往下沉,其受地质情况影响较大,如地质为石方时,无法正常下降,如地质为淤泥或地下水丰富时,沉降时会产生飘移或倾斜。逆作法施工方法的构接头较多,容易导致筒壁漏水,而且对模板支护及围护结构精度要求很高。
因此已知的全开口式施工方法、沉井式施工方法、逆作法施工方法均存在着上述种种不便和问题。
发明内容
本发明的目的,在于提出一种安全可靠的旋流池半逆作法施工方法。
为实现上述目的,本发明的技术解决方案是:
一种旋流池半逆作法施工方法,其特征在于包括以下步骤:
a、旋流池壁筒体进行顺作法施工,旋流池壁筒体作自±0米至-11.0米段施工,包括以下步骤:
第一段施工:(1)放线,在复核业主提供的控制点或控制网的 基础上,确定施工现场控制网布置方案,测量队引进座标、水准点,并设置控制桩,做好控制桩保护;
(2)土方开挖,用大开挖至-2.20米,及第1环梁底部位置;
(3)支设环梁A钢筋,环梁A钢筋施工,其中竖向钢筋绑扎按轴线位置及墙宽设置钢筋固定支架定位,旋流池内衬内、外两层钢筋之间设置S形拉筋;
(4)第1环梁A模板,模板使用前刷脱模剂,严格控制板缝尺寸,杜绝拼缝不齐、高差、漏浆现象;浇筑下段内衬结构混凝土前,沿内衬施工缝下部设置膨胀橡胶止水条,膨胀橡胶止水条通长设置;旋流池壁筒壁直径控制使用50m钢卷尺测量,发现偏差及时进行调整;拆模顺序为后支先拆,先支后拆,先拆非承重模板,后拆承重模板;内衬墙浇筑完毕,混凝土强度达到70%,及时拆除模板和脚手架;
(5)浇筑砼,混凝土采用悬臂泵车浇筑,混凝土入模板处,每一模板处配备2台插入式振捣器,必须连续封闭浇筑;混凝土要分层浇筑,每层浇筑厚度不大于500mm,混凝土的受料斗内严禁进入空气,以防止形成堵管;
(6)养护混凝土,混凝土浇筑12小时后进行浇水养护;
(7)土方开挖,由于工作空间限制,采用挖机和破凿机共同作业,外筒壁预留20cm进行人工凿除,第一段土方开挖时,在地面上撒出筒外壁轮廓线,预留20cm的土人工破凿以保证其井壁的圆度;
第二段施工:绑扎-11m至-8m井壁钢筋、平台预留钢筋,支设-11m至-8m模板,浇筑-11m至-8m砼,养护砼;
第三段施工:绑扎-8m至-4m井壁钢筋、平台预留钢筋,支设-8m至-4m模板,浇筑-8m至-4m砼,养护砼;
第四段施工:绑扎-4m至±0m井壁钢筋、平台预留钢筋,支设-4m至±0m模板,浇筑-4m至环梁砼,养护砼;
b、旋流池壁筒体进行逆作法施工,先进行-11~-14m的破凿,破凿完成后进行混凝土的施工,待强度达到75%后再转入-14至-17m处井壁施工段,施工完成后进行-17~-21.6m筒壁及底板的施工,包括以下步骤:
第五段施工:第二层破凿-14~-11m,清理土壁,底板垫层,绑扎-14~-11m井壁钢筋,支设模板,浇筑砼,养护砼;
第六段施工:第三层破凿-17~-14m,清理土壁,底板垫层,绑扎-14~-17m井壁钢筋,支设模板,浇筑砼,养护砼;
第七段施工:第四层破凿-17~-21.5m,清理土壁,底板垫层,绑扎-21.5~-16.52m的整个旋流池底板钢筋,支设模板,浇筑砼,养护砼;
第八段施工:内筒第2环梁施工:绑扎-16.52~-14.5m钢筋,支设模板,浇筑砼,养护砼;
第九段施工:绑扎-14.5~-11m钢筋,支设模板,浇筑砼,养护砼;
第十段施工:绑扎-11m~-8m钢筋,支设模板,浇筑砼,养护砼;
第十一段施工:绑扎-8~-4m钢筋,支设模板,浇筑砼,养护砼;
第十二段施工:绑扎-4~﹢1.2m钢筋,支设模板,浇筑砼,养护砼。
本发明的旋流池半逆作法施工方法还可以采用以下的技术措施来进一步实现。
前述的方法,其中所述S形拉筋,采用φ10@100mm梅花型排列。
前述的方法,其中所述底板采用φ16mm拉筋、拉筋与上下两层钢筋绑扎牢固,保证钢筋骨架整体性。
前述的方法,其中所述第1环梁宽度≥1m,深≥1m。
前述的方法,其中所述第1环梁模板的平整度、垂直度使用线锤进行控制,最大垂直度每段控制在5mm以内,整个外井壁的垂直度控制在20mm以内。
采用上述技术方案后,本发明的旋流池半逆作法施工方法具有以下优点:
1、本工艺旋流池外筒采用从中往下,分节分段的半逆作法施工方法,突破了传统的全逆法施工方法,具有新颖性的特点;
2、挡土、支护、防水截渗效果好。充分利用了池壁具有自身强度高、刚度大和抗渗性能好的特点;
3、施工速度快。外筒池壁分节从中往下进行制作,从而达到各种资源趋于均衡,便于组织协调,有助于施工工效的提高,促进了施工进度。
4.协调性好。每节施工工艺,工作量大致均衡,材料、机具、人员、工期能较好地协调。
附图说明
图1为本发明实施例的旋流池的结构及分段操作示意图。
具体实施方式
以下结合实施例及其附图对本发明作更进一步说明。
实施例1
本发明的旋流池半逆作法施工方法,包括以下步骤:
a、旋流池壁筒体进行顺作法施工,旋流池壁筒体作自±0米至-11.0米段施工,包括以下步骤:
第一段施工:(1)放线,在复核业主提供的控制点或控制网的基础上,确定施工现场控制网布置方案,测量队引进座标、水准点,并设置控制桩,做好控制桩保护。
(2)土方开挖,用大开挖至-2.20米,及环梁A底部位置。
(3)支设环梁A,环梁A钢筋施工,其中竖向钢筋绑扎按轴线位置及墙宽设置钢筋固定支架定位,以保证其位置准确。旋流池内衬内、外两层钢筋之间设置S形拉筋,采用φ10@100mm梅花型排列;底板采用φ16mm拉筋、拉筋与上下两层钢筋绑扎牢固,保证钢筋骨架整体性,环梁宽度1m,深1m。
(4)支设环梁A模板,模板使用前刷脱模剂,严格控制板缝尺寸,杜绝拼缝不齐、高差、漏浆等现象;浇筑下段内衬结构混凝土前,沿内衬施工缝下部设置膨胀橡胶止水条,膨胀橡胶止水条通长设置,搭接长度≥15cm。模板的平整度、垂直度使用线锤进行控制,最大垂直度每段控制在5mm以内,整个外井壁的垂直度控制在20mm以内。井壁直径控制使用50m钢卷尺测量,在每段内井壁上用墨线标出八个对称的方向线,支完模后使用钢尺测量,发现偏差及时进行调整。逆作法段内模施工时上部留设混凝土浇筑漏槽承重模板(梁、板底模)的拆除时间应符合规范要求。拆模顺序为后支先拆,先支后拆,先拆非承重模板,后拆承重模板。拆除跨度较大的梁底模时,应先从跨中开始,分别向两端进行。拆模时不要用力过猛,拆下的材料要及时运走。内衬墙浇筑完毕,混凝土强度达到70%,及时拆除模板和脚手架,模板拆下来后使用吊车吊出池外随即清理干净,板面涂刷隔离剂,按规格分类堆放整齐。
(5)浇筑砼,混凝土采用悬臂泵车浇筑,混凝土自出料口下落的自由倾落高度不得超过2m,如超过2m时必须采用串筒或其他防止混凝土离析的措施。混凝土入模处,每处配备2台插入式振捣器,振捣是快插慢拔,振动时间以不冒气泡为准,插入深度为进入下层混凝土5cm。井外壁处使用钩竿将振动棒送到位进行振捣。井外壁处使用钩竿将振动棒送到位进行振捣。必须连续封闭浇筑。混凝土浇筑时派专人观察模板钢筋、预留孔洞、预埋件、 插筋等有无位移变形情况,发现问题应立即停止浇筑,并在混凝土初凝前修整完毕。混凝土要分层浇筑,每层浇筑厚度不大于500mm,混凝土的受料斗内严禁进入空气,以防止形成堵管。
(6)养护混凝土,混凝土浇筑12小时后进行浇水养护。
(7)土方开挖,由于工作空间限制,采用120的挖机和破凿机一台共同作业外井壁预留20cm进行人工凿除,挖出的土方及破凿的碎石用25t吊车吊运至地面,然后经土方车运至指定堆场。挖机和破凿机使用150T履带吊吊入和吊出旋流池。第一段土方开挖时,在地面上撒出井外壁轮廓线,预留20cm的土人工破凿以保证其井壁的圆度,其垂直度使用线锤进行控制。其下部每段的圆度和垂直度均使用线锤进行控制,从已施工完的上段内井壁往下吊线锤,用钢尺进行测量。
第二段施工:绑扎-11m至-8m井壁钢筋、平台预留钢筋,支设-11m至-8m模板,浇筑-11m至-8m砼,养护砼。
第三段施工:绑扎-8m至-4m井壁钢筋、平台预留钢筋,支设-8m至-4m模板,浇筑-8m至-4m砼,养护砼。
第四段施工:绑扎-4m至±0m井壁钢筋、平台预留钢筋,支设-4m至±0m模板,浇筑-4m至环梁砼,养护砼。
现请参阅图1,图1为本发明实施例的旋流池的结构及分段操作示意图。
b、旋流池壁筒体进行逆作法施工,先进行-11~-14m的破凿,破凿完成后进行混凝土的施工,待强度达到75%后再转入-14至-17m处井壁施工段,施工完成后进行-17~-21.6m筒壁及底板的施工,包括以下步骤:
第五段施工:第二层破凿-14~-11m,清理土壁,底板垫层,绑扎-14~-11m井壁钢筋,支设模板,浇筑砼,养护砼。
第六段施工:第三层破凿-17~-14m,清理土壁,底板垫层,绑扎-14~-17m井壁钢筋,支设模板,浇筑砼,养护砼。
第七段施工:第四层破凿-17~-21.5m,清理土壁,底板垫层,绑扎-21.5~-16.52m的整个旋流池底板钢筋,支设模板,浇筑砼,养护砼。
第八段施工:内筒第2环梁施工:绑扎-16.52~-14.5m钢筋,支设模板,浇筑砼,养护砼。
第九段施工:绑扎-14.5~-11m钢筋,支设模板,浇筑砼,养护砼。
第十段施工:绑扎-11m~-8m钢筋,支设模板,浇筑砼,养护砼。
第十一段施工:绑扎-8~-4m钢筋,支设模板,浇筑砼,养护砼。
第十二段施工:绑扎-4~﹢1.2m钢筋,支设模板,浇筑砼,养护砼。
本发明具有实质性特点和显著的技术进步,本发明的旋流池半逆作法施工方法减少了因为大开挖对周边设备基础及钢结构安装的影响,有效缩短了工程总工期;减少了对土地的扰动,减少了土方开挖及回填量,从而降低了施工成本。
本发明的旋流池半逆作法施工方法在马来西亚联合钢铁项目炼钢炼钢连铸工程中运用,效果显著,炼钢连铸工程是“一带一路”重点项目,旋流池直径15m,底标高-21.6m。底板1700mm厚,外墙板800mm厚。采用半逆作法施工,工程顺利完成,为今后类似工程提供了成功范例。
以上实施例仅供说明本发明之用,而非对本发明的限制,有关技术领域的技术人员,在不脱离本发明的精神和范围的情况下,还可以作出各种变换或变化。因此,所有等同的技术方案也应该 属于本发明的范畴,应由各权利要求限定。

Claims (5)

  1. 一种旋流池半逆作法施工方法,其特征在于包括以下步骤:
    a、旋流池壁筒体进行顺作法施工,旋流池壁筒体作自±0米至-11.0米段施工,包括以下步骤:
    第一段施工:(1)放线,在复核业主提供的控制点或控制网的基础上,确定施工现场控制网布置方案,测量队引进座标、水准点,并设置控制桩,做好控制桩保护;
    (2)土方开挖,用大开挖至-2.20米,及第1环梁底部位置;
    (3)支设环梁A钢筋,环梁钢筋A竖向钢筋绑扎按轴线位置及墙宽设置钢筋固定支架定位,旋流池内衬内、外两层钢筋之间设置S形拉筋;
    (4)支设第1环梁模板,模板使用前刷脱模剂,严格控制板缝尺寸,杜绝拼缝不齐、高差、漏浆现象;浇筑下段内衬结构混凝土前,沿内衬施工缝下部设置膨胀橡胶止水条,膨胀橡胶止水条通长设置;旋流池壁筒壁直径控制使用50m钢卷尺测量,发现偏差及时进行调整;拆模顺序为后支先拆,先支后拆,先拆非承重模板,后拆承重模板;内衬墙浇筑完毕,混凝土强度达到70%,及时拆除模板和脚手架;
    (5)浇筑砼,混凝土采用悬臂泵车浇筑,混凝土入模板处,每一模板处配备2台插入式振捣器,必须连续封闭浇筑;混凝土要分层浇筑,每层浇筑厚度不大于500mm,混凝土的受料斗内严禁进入空气,以防止形成堵管;
    (6)养护混凝土,混凝土浇筑12小时后进行浇水养护;
    (7)土方开挖,由于工作空间限制,采用挖机和破凿机共同作业,外筒壁预留20cm进行人工凿除,第一段土方开挖时,在地面上撒出筒外壁轮廓线,预留20cm的土人工破凿以保证其井壁的圆度;
    第二段施工:绑扎-11m至-8m井壁钢筋、平台预留钢筋,支设-11m至-8m模板,浇筑-11m至-8m砼,养护砼;
    第三段施工:绑扎-8m至-4m井壁钢筋、平台预留钢筋,支设-8m至-4m模板,浇筑-8m至-4m砼,养护砼;
    第四段施工:绑扎-4m至±0m井壁钢筋、平台预留钢筋,支设-4m至±0m模板,浇筑-4m至环梁砼,养护砼;
    b、旋流池壁筒体进行逆作法施工,先进行-11~-14m的破凿,破凿完成后进行混凝土的施工,待强度达到75%后再转入-14至-17m处井壁施工段,施工完成后进行-17~-21.6m筒壁及底板的施工,包括以下步骤:
    第五段施工:第二层破凿-14~-11m,清理土壁,底板垫层,绑扎-14~-11m井壁钢筋,支设模板,浇筑砼,养护砼;
    第六段施工:第三层破凿-17~-14m,清理土壁,底板垫层,绑扎-14~-17m井壁钢筋,支设模板,浇筑砼,养护砼;
    第七段施工:第四层破凿-17~-21.5m,清理土壁,底板垫层,绑扎-21.5~-16.52m的整个旋流池底板钢筋,支设模板,浇筑砼,养护砼;
    第八段施工:内筒第2环梁施工:绑扎-16.52~-14.5m钢筋,支设模板,浇筑砼,养护砼;
    第九段施工:绑扎-14.5~-11m钢筋,支设模板,浇筑砼,养护砼;
    第十段施工:绑扎-11m~-8m钢筋,支设模板,浇筑砼,养护砼;
    第十一段施工:绑扎-8~-4m钢筋,支设模板,浇筑砼,养护砼;
    第十二段施工:绑扎-4~﹢1.2m钢筋,支设模板,浇筑砼,养护砼。
  2. 如权利要求1所述的旋流池半逆作法施工方法,其特征在于,所述S形拉筋,采用φ10@100mm梅花型排列。
  3. 如权利要求1所述的旋流池半逆作法施工方法,其特征在于, 所述底板采用φ16mm拉筋、拉筋与上下两层钢筋绑扎牢固,保证钢筋骨架整体性。
  4. 如权利要求1所述的旋流池半逆作法施工方法,其特征在于,所述第1环梁宽度≥1m,深≥1m。
  5. 如权利要求1所述的旋流池半逆作法施工方法,其特征在于,所述第1环梁模板的平整度、垂直度使用线锤进行控制,最大垂直度每段控制在5mm以内,整个外井壁的垂直度控制在20mm以内。
PCT/CN2019/120678 2019-11-22 2019-11-25 一种旋流池半逆作法施工方法 WO2021097863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911153674.4A CN110939303B (zh) 2019-11-22 2019-11-22 一种旋流池半逆作法施工方法
CN201911153674.4 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021097863A1 true WO2021097863A1 (zh) 2021-05-27

Family

ID=69908039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120678 WO2021097863A1 (zh) 2019-11-22 2019-11-25 一种旋流池半逆作法施工方法

Country Status (2)

Country Link
CN (1) CN110939303B (zh)
WO (1) WO2021097863A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112431225A (zh) * 2020-10-16 2021-03-02 中国化学工程第十四建设有限公司 顶管砖砌工作井逆作法施工方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113047447B (zh) * 2021-05-17 2022-06-07 中建八局第四建设有限公司 一种错层钢结构建筑半逆作施工方法
CN113802885A (zh) * 2021-08-31 2021-12-17 上海宝冶集团有限公司 一种旋流池施工方法
CN114941463B (zh) * 2022-05-05 2024-02-20 上海宝冶集团有限公司 一种旋流池顶盖的分段模块化施工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119038A (en) * 1980-02-27 1981-09-18 Toshiba Corp Construction of underground floor of building for atomic power generation plant
JP4377780B2 (ja) * 2004-09-03 2009-12-02 株式会社東芝 ライニング容器の施工方法及びライニング容器
CN100587211C (zh) * 2008-10-20 2010-02-03 中冶实久建设有限公司 逆作法施工热轧旋流池结构工程的方法
CN101372873B (zh) * 2008-10-20 2010-12-08 中冶实久建设有限公司 逆作法施工热轧旋流池施工缝的处理方法
CN101949226A (zh) * 2010-09-14 2011-01-19 中国华冶科工集团有限公司 大型池体的交叉施工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249295A (ja) * 1999-03-04 2000-09-12 Ishikawajima Harima Heavy Ind Co Ltd タンク建設工法
CN100510281C (zh) * 2008-06-25 2009-07-08 江苏江都建设工程有限公司 超大直径、超埋深度调蓄池的半逆作施工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119038A (en) * 1980-02-27 1981-09-18 Toshiba Corp Construction of underground floor of building for atomic power generation plant
JP4377780B2 (ja) * 2004-09-03 2009-12-02 株式会社東芝 ライニング容器の施工方法及びライニング容器
CN100587211C (zh) * 2008-10-20 2010-02-03 中冶实久建设有限公司 逆作法施工热轧旋流池结构工程的方法
CN101372873B (zh) * 2008-10-20 2010-12-08 中冶实久建设有限公司 逆作法施工热轧旋流池施工缝的处理方法
CN101949226A (zh) * 2010-09-14 2011-01-19 中国华冶科工集团有限公司 大型池体的交叉施工方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112431225A (zh) * 2020-10-16 2021-03-02 中国化学工程第十四建设有限公司 顶管砖砌工作井逆作法施工方法

Also Published As

Publication number Publication date
CN110939303A (zh) 2020-03-31
CN110939303B (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2021097863A1 (zh) 一种旋流池半逆作法施工方法
CN101672041B (zh) 大型地下构筑物外壁逆作施工方法
CN105951711A (zh) 海边电站地下连续墙围护施工方法
CN207777770U (zh) 一种预制拼接管件顶进系统
CN106049505A (zh) 一种深基坑支撑支护体系的施工方法
CN101245602A (zh) 坑中坑支护体系的施工工艺
CN111577334B (zh) 运营隧道仰拱修复方法
CN107859145A (zh) 一种排水管水下接驳施工方法
CN105350526B (zh) 钢平台的搭设方法
CN113266392B (zh) 一种穿越既有锚索群的顶管施工方法
CN104895083A (zh) 一种水中承台基坑导向架及其围堰支护施工方法
CN109706952A (zh) 大型沉井施工方法
CN112609690A (zh) 一种填海地质复杂区域旋挖钻孔灌注桩的施工方法
CN211144503U (zh) 一种高陡地形桥隧相接段明洞接长结构
CN203160254U (zh) 一种基坑围护结构
WO2023077552A1 (zh) 一种基坑围护及土方开挖的施工方法
CN101994314A (zh) 深孔矩形联排抗滑桩不跳桩开挖施工
CN105862897A (zh) 砂质泥岩地基浅基础原槽浇筑施工工法
CN113216215A (zh) 一种复杂环境下深沟槽支护逆作施工方法
CN104963348A (zh) 一种软土地区塔吊基础施工支护结构及其施工方法
CN104499489B (zh) 一种基坑施工方法
CN110258600B (zh) 一种适用于深水水域的立式围堰施工工法
CN105332382B (zh) 邻河基坑筑岛围堰粘土止水施工方法
CN110055973B (zh) 施工空间受限时的高铁桥下基坑围护结构与止水方法
CN204919566U (zh) 一种软土地区塔吊基础施工支护结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952992

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19952992

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13.12.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19952992

Country of ref document: EP

Kind code of ref document: A1