WO2021097738A1 - 基于改进型Smith预估器的航空发动机H∞控制方法 - Google Patents

基于改进型Smith预估器的航空发动机H∞控制方法 Download PDF

Info

Publication number
WO2021097738A1
WO2021097738A1 PCT/CN2019/119831 CN2019119831W WO2021097738A1 WO 2021097738 A1 WO2021097738 A1 WO 2021097738A1 CN 2019119831 W CN2019119831 W CN 2019119831W WO 2021097738 A1 WO2021097738 A1 WO 2021097738A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
model
controller
engine
controlled object
Prior art date
Application number
PCT/CN2019/119831
Other languages
English (en)
French (fr)
Inventor
孙希明
杜宪
马艳华
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2019/119831 priority Critical patent/WO2021097738A1/zh
Priority to US17/252,545 priority patent/US20210364388A1/en
Publication of WO2021097738A1 publication Critical patent/WO2021097738A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]

Definitions

  • the invention provides an aeroengine H ⁇ control method based on an improved Smith predictor, which belongs to the technical field of aeroengine control and simulation.
  • the present invention relies on the compensation and control of a distributed network time-delay system with a non-linear component-level mathematical model of a certain type of dual-shaft turbofan engine in the background.
  • the aeroengine is a complex multi-variable control system with strong time-varying and strong nonlinearity.
  • the reliability and efficiency of its work are essential to the safe flight of the aircraft.
  • the centralized control architecture is difficult to meet the complex control requirements.
  • the application of distributed engine control architecture is becoming more and more extensive.
  • the introduction of a network in the aero-engine distributed control system will inevitably cause a communication delay between the sensor/actuator and the controller. It is a network control system.
  • the application of network communication technology in control systems has many advantages, but it also brings a series of special problems that need to be studied and solved urgently.
  • Time delay has a great impact on the stability and performance of the control system, and in severe cases it may even lead to system instability. Therefore, the research of time delay compensation strategy and control method in aero-engine distributed control system is of great significance.
  • the present invention proposes an aero engine H ⁇ control method based on an improved Smith predictor.
  • the aeroengine H ⁇ control method based on the improved Smith predictor.
  • the closed loop of the control system used in the aeroengine H ⁇ control method includes two parts.
  • the first part is the controller designed by the H ⁇ control strategy. , It mainly completes the tracking control of the controlled variable of the aero engine;
  • the second part is to adopt the time delay compensation strategy of the improved Smith predictor to solve the problem of insufficient adaptability to the time delay phenomenon of the aero engine controller designed based on the H ⁇ control strategy The problem;
  • the H ⁇ control method of aeroengine based on the improved Smith predictor includes the following steps:
  • the engine model is the basis of the control system design.
  • a reasonable linear model needs to be established for the aeroengine nonlinear model; based on the multi-variable control objective, the high-pressure rotor speed and drop pressure ratio are selected as the controlled variables, and the control variables corresponding to the controlled variables Respectively the area of fuel and tail nozzle; the small deviation linear model of an aero engine under a certain working condition is expressed by the following state space equation:
  • ⁇ W f represents the fuel increase output by the controller
  • ⁇ A 8 represents the increase of the tail nozzle area
  • ⁇ N 2 and ⁇ PiT represent the high-pressure rotor speed and drop pressure ratio respectively
  • A, B, C, D are the parameter matrix of the engine linear model
  • use the system identification tool provided by Matlab The box identifies the nonlinear model of a certain type of twin-shaft turbofan engine to obtain the linear model of the engine with small deviations.
  • multivariable H ⁇ controller select appropriate performance index weighted function parameters, solve the H ⁇ output feedback controller, adjust the parameters to meet the control requirements; conduct multivariable nonlinear controller testing, and fine-tune each parameter to ensure turbofan engine The overall effect of the turbofan engine to enhance the robustness of the multi-variable control system of the turbofan engine;
  • A, B 1 , B 2 , C 1 , C 2 , D 11 , D 12 , D 21 , and D 22 are the model parameter matrix of the augmented controlled object, and u is the control action amount (the controlled object input ), w is external interference, y is the system measurement output signal, and z is the evaluation signal, which usually includes tracking error, adjustment error and actuator output.
  • the augmented accused object can be expressed as:
  • P is the augmented controlled object
  • G is the original controlled object
  • W s , W R and W T are the performance weighting function, the controller output weighting function, and the robust weighting function, respectively.
  • T zw (s) is the closed-loop transfer function of the system from the external input w to the controlled output z; ⁇ 0 , ⁇ are the given values and ⁇ >min
  • the Smith predictor controller with an improved structure is designed to form a composite controller.
  • the exponential term of the network delay that affects the stability of the system is changed from The closed-loop characteristic equation of the system is eliminated to realize the estimated compensation of the system network-induced delay, which enhances the stability of the system and does not require online measurement of the system delay; the estimated model and parameters of the controlled object are compared with the real model The parameters have large deviations.
  • Y(s) is the system measurement output signal
  • R(s) is the reference input signal
  • K(s) is the controller
  • G(s) is the controlled object
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control And the network delay from the controller to the actuator.
  • the present invention provides a new and more effective control idea for the network delay compensation and control of the aero-engine distributed control system. It combines the H ⁇ control method and the Smith predictive compensation method to meet the requirements of aero-engine Based on the steady-state control requirements, tracking control requirements and anti-jamming performance requirements, an improved Smith predictor is established to reduce the impact of time delay and ensure that the aero engine can still achieve better stability under a certain range of random time delays. State performance and dynamic performance.
  • This method is also suitable for the design of control systems for gas turbines with similar structures and internal combustion engines with similar working principles, and has a wide range of applications.
  • Figure 1 is a schematic diagram of the closed-loop control system structure of an aero-engine with time delay.
  • Figure 2 is a design flow chart of the aero-engine H ⁇ control method based on the improved Smith predictor.
  • Figure 3 is a flow chart for obtaining a linear model of an aeroengine.
  • Figure 4 is a flow chart of the H ⁇ controller design.
  • Figure 5 is a two-terminal block diagram of the augmented system of the H ⁇ controller.
  • Figure 6 is the design flow chart of the improved Smith predictive compensator.
  • Figure 7 is a composite control structure diagram of the improved Smith predictor and H ⁇ control law.
  • Figure 8 is a composite control structure diagram of the improved Smith predictor and H ⁇ control law using dual controllers.
  • Figure 9(a) is the effect diagram of aero engine speed tracking control under the condition of 0.5s time delay.
  • Figure 9(b) is the effect diagram of aero engine speed tracking control under the condition of 0.7s time delay.
  • Figure 10(a) is the effect diagram of the tracking control effect of the aero-engine drop-pressure ratio under the condition of 0.5s time delay.
  • Figure 10(b) is the effect diagram of the tracking control effect of the aero-engine drop-pressure ratio under the condition of 0.7s time delay.
  • Figure 11 is the anti-disturbance effect diagram of aero engine speed.
  • Figure 12 is the anti-disturbance effect diagram of the aero engine drop pressure ratio.
  • the backing background of the present invention is the compensation and control of the time delay system of a certain type of dual-shaft turbofan engine.
  • the structure of the network time delay system is shown in FIG. 1.
  • Engine model is the basis of control system design. First of all, it is necessary to establish a reasonable linear model for the aero-engine nonlinear model. Based on the multi-variable control target, the high-pressure rotor speed and drop pressure ratio are selected as the controlled variables, and the controlled variables corresponding to the controlled variables are the fuel and the nozzle area respectively.
  • the small deviation linear model of an aero engine under a certain operating condition can be expressed by the following state space equation:
  • ⁇ W f represents the fuel increase output by the controller
  • ⁇ A 8 represents the increase of the tail nozzle area
  • ⁇ N 2 , ⁇ PiT represent the high-pressure rotor speed and drop pressure ratio respectively
  • A, B, C, D are the parameter matrix of the engine linear model.
  • H ⁇ controller select appropriate performance index weighting function parameters, solve the H ⁇ output feedback controller, and adjust the parameters to basically meet the control requirements.
  • Carry out multi-variable nonlinear controller test fine-tune each parameter to ensure the overall effect of the turbofan engine, so as to enhance the robustness of the turbofan engine's multi-variable control system.
  • the Smith predictor controller with an improved structure is designed to form a composite controller.
  • the exponential term of the network delay that affects the stability of the system is changed from Elimination of the closed-loop characteristic equation of the system can realize the estimated compensation of the system network-induced delay, enhance the stability of the system and do not require online measurement of the system delay; the estimated model and parameters of the controlled object and its real model There is a large deviation from the parameters.
  • a controller for stabilizing the controlled object is added to the control system, and the model gain is adaptively corrected by comparing the controlled object with the model output signal, thereby further enhancing the robustness of the system Sex.
  • A, B 1 , B 2 , C 1 , C 2 , D 11 , D 12 , D 21 , and D 22 are the model parameter matrix of the augmented controlled object, and u is the control action amount (the controlled object input ), w is the external interference signal, y is the system measurement output signal, and z is the evaluation signal, which usually includes tracking error, adjustment error and actuator output.
  • the augmented accused object can be expressed as:
  • P is the augmented controlled object
  • G is the original controlled object
  • W s , W R and W T are the performance weighting function, the controller output weighting function, and the robust weighting function, respectively.
  • the controller After constructing the augmented controlled object, the controller is solved to obtain the H ⁇ mixed sensitivity controller.
  • the performance index to satisfy the H ⁇ mixed sensitivity control problem is:
  • T zw (s) is the closed-loop transfer function of the system from the external input w to the controlled output z; ⁇ 0 , ⁇ are given values and ⁇ >min
  • Y(s) is the system measurement output signal
  • R(s) is the reference input signal
  • K(s) is the controller
  • G(s) is the controlled object
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control
  • ⁇ ca and ⁇ sc respectively represent the signal from the sensor to the control
  • G m (s) is the prediction model of the original controlled object G (s).
  • the control effect of the aero-engine H ⁇ control method based on the improved Smith predictor is shown in Figure 9 and Figure 10. It can be seen from the simulation results that in the presence of different time delays, the aeroengine H ⁇ control method based on the improved Smith predictor can significantly improve the steady-state performance and dynamic performance of the system, and improve the robustness of the system.
  • the sampling period of the system is set to 25ms.
  • the overshoot is 1.3% and the steady-state control accuracy is 0.04% when the speed of the control system of the improved Smith predictor with dual controllers increases.
  • the overshoot during deceleration is 2.45%, and the steady-state control accuracy is 0.11%.
  • the speed overshoot is 0.08% during the afterburner process
  • the adjustment time is about 11.4 seconds
  • the drop pressure ratio overshoot is 1.6%
  • the adjustment time is about 14.4 seconds
  • the speed exceeds
  • the adjustment amount is 0.03%
  • the adjustment time is about 12.3 seconds
  • the drop pressure ratio overshoot is 1.8%
  • the adjustment time is about 16.2 seconds.
  • the H ⁇ control method for aeroengines based on the improved Smith predictor proposed by the present invention is effective and feasible, and can meet the time delay compensation and control requirements in the aeroengine distributed control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)

Abstract

一种基于改进型Smith预估器的航空发动机H 控制方法,针对航空发动机非线性模型建立合理的小偏差线性模型,并选择某工况的状态空间模型数据作为控制器设计的被控对象;选取合适的性能指标加权函数参数,求解出H 输出反馈控制器,调节参数至基本达到控制要求;基于采用H 控制律设计的闭环反馈控制系统,设计改进结构的Smith预估补偿器,构成复合控制器,针对被控对象的预估模型和参数与其真实模型和参数存在较大偏差,在控制系统中增加一个采用PID控制律设计的偏差矫正控制器,用于镇定被控对象,利用被控对象与模型输出信号的比较来做出适应性修正,从而进一步增强系统的鲁棒性。

Description

基于改进型Smith预估器的航空发动机H∞控制方法 技术领域
本发明提供了基于改进型Smith预估器的航空发动机H∞控制方法,属于航空发动机控制与仿真技术领域。
背景技术
本发明依托背景为某型双轴涡扇发动机非线性部件级数学模型的分布式网络时滞系统的补偿与控制。
航空发动机是一个复杂的多变量控制系统,具有强时变性与强非线性,其工作的可靠性与高效性对飞机的安全飞行至关重要。随着航空发动机控制系统设计要求的不断提高,集中式控制架构难以满足复杂的控制要求。为了进一步提高系统的可靠性、减重以及降低成本,发动机分布式控制架构的应用越来越广泛。航空发动机分布式控制系统中引入了网络,不可避免的会在传感器/执行机构和控制器间引起通信时延,它是一种网络控制系统。相对传统控制系统而言,网络通信技术在控制系统中的应用具有很多优点,但同时也带来了一系列亟待研究和解决的特殊问题,其中网络诱导时延就是系统中存在的最主要的问题之一。时延对控制系统的稳定性和性能有着极大的影响,严重情况下甚至会导致系统的失稳。因此,对航空发动机分布式控制系统中时延补偿策略与控制方法的研究具有重要意义。
目前,国内外对于网络控制系统的分析研究理论严重滞后于其实际应用现状,尤其是网络控制系统的时延补偿与稳定控制等方面。根据现有的文献,国内外研究者针对随机、时变和不确定的网络时延,从多种角度提出了控制方法与解决方案:一是改变控制策略,把网络时延看成广义被控对象的参数,采用智能控制算法,如模糊、神经网络等,但是先进控制算法较为复杂,过多占用 网络控制系统中的节点资源,难以在实际应用中实施;二是通过改进通信协议来降低网络时延对系统稳定性的影响,但是,通信协议的制定以及获得国际标准化组织的认可周期很长,难以在短期内得到应用;三是利用现代测控技术,在线测量、估计或辨识网络时延,从而实现对时延的补偿与控制,但是时延预测、估计或辨识数学模型因网络时延的复杂性难以准确建立,无法满足传统Smith预估器的时延条件。目前为止,没有专利公开改进型Smith预估器与H∞控制律相结合构成复合控制的航空发动机分布式网络时滞系统补偿与控制方法。
发明内容
为了保证航空发动机控制系统的稳定性,以及针对网络控制系统中传感器/执行机构和控制器间的通信时延问题,本发明提出基于改进型Smith预估器的航空发动机H∞控制方法。
本发明的技术方案:
基于改进型Smith预估器的航空发动机H∞控制方法,该航空发动机H∞控制方法中采用的控制系统闭环回路中控制器部分包含两个部分,第一部分是采用H∞控制策略设计的控制器,主要完成对航空发动机被控变量的跟踪控制;第二部分是采用改进型Smith预估器的时延补偿策略,解决依据H∞控制策略设计出的航空发动机控制器对时延现象适应能力不足的问题;
基于改进型Smith预估器的航空发动机H∞控制方法,包括以下步骤:
S1.航空发动机某工况下线性模型的获取
发动机模型是控制系统设计的基础,首先需要对航空发动机非线性模型建立合理的线性模型;基于多变量控制目标,选择高压转子转速和落压比作为被控变量,与被控变量对应的控制量分别为燃油和尾喷管面积;航空发动机在某工况下的小偏差线性模型用以下状态空间方程表示:
Figure PCTCN2019119831-appb-000001
其中,Δx=[Δx 1 Δx 2] T为状态变量,
Figure PCTCN2019119831-appb-000002
为对应的状态变量的导数;Δu=[ΔW f ΔA 8] T为控制作用量(被控对象输入量),ΔW f表示控制器输出的燃油增量,ΔA 8表示尾喷管面积的增量;Δ y=[ΔN 2 ΔPiT] T为系统输出量,ΔN 2、ΔPiT分别表示高压转子转速和落压比;A,B,C,D为发动机线性模型参数矩阵;利用Matlab提供的系统辨识工具箱对某型双轴涡扇发动机非线性模型进行辨识,以获取发动机的小偏离线性模型。
S2.设计针对航空发动机非线性模型的多变量H∞控制器
根据多变量H∞控制器设计原理,选取合适的性能指标加权函数参数,求解H∞输出反馈控制器,调节参数至达到控制要求;进行多变量非线性控制器测试,微调各参数保证涡扇发动机的整体效果,以增强涡扇发动机的多变量控制系统的鲁棒性;
S2.1.选取通过系统辨识获取的小偏差线性模型作为标称模型,飞行包线内其他各点的模型看作是相对于标称模型的摄动;
S2.2.根据发动机控制指标的稳态控制要求、动态控制要求以及鲁棒性要求,选取合适的加权函数,加权函数与控制设计指标的关系描述为如下形式:
Figure PCTCN2019119831-appb-000003
Figure PCTCN2019119831-appb-000004
Figure PCTCN2019119831-appb-000005
其中,
Figure PCTCN2019119831-appb-000006
为控制系统的灵敏度函数;
Figure PCTCN2019119831-appb-000007
为系统的补灵敏度函数;
Figure PCTCN2019119831-appb-000008
通常用||R(s)|| 来衡量系统的加性不确定性; W s(s)为性能加权函数;W R(s)为控制器输出加权函数;W T(s)为鲁棒加权函数;G(s)为原被控对象,K(s)为控制器;
S2.3.建立如下形式的增广被控对象:
Figure PCTCN2019119831-appb-000009
y=C 1x+D 11w+D 12u       (5)
z=C 2x+D 21w+D 22u
式中,A,B 1,B 2,C 1,C 2,D 11,D 12,D 21,D 22为增广被控对象的模型参数矩阵,u为控制作用量(被控对象输入量),w为外部干扰,y为系统量测输出信号,z为评价信号,通常包括跟踪误差、调节误差和执行机构输出。
增广被控对象可以表示为:
Figure PCTCN2019119831-appb-000010
其中,P为增广被控对象,G为原被控对象;W s、W R和W T分别为性能加权函数、控制器输出加权函数、鲁棒加权函数。
S2.4.构成增广被控对象后,根据控制系统指标要求选取合适的参数,进行控制器的求解,得到H∞混合灵敏度控制器;满足H∞混合灵敏度控制问题的性能指标为:
min||T zw(s)|| <γ 0(H 混合灵敏度最优控制问题)     (7)
||T zw(s)|| <γ(H 混合灵敏度次优控制问题)     (8)
式中:T zw(s)为系统从外部输入w到被控输出z的闭环传递函数;γ 0,γ为给定值且γ>min||T zw(s)||
把非1的γ归入到各权函数中,则将航空发动机H∞控制器转化为标准H∞控制:
Figure PCTCN2019119831-appb-000011
S2.5.搭建基于发动机线性模型的控制系统仿真,调节性能指标加权函数的 参数至基本达到控制指标要求,使系统闭环稳定;
S2.6.进行多变量非线性控制器测试,微调各参数保证涡扇发动机的整体效果,以增强涡扇发动机的多变量控制系统的鲁棒性;
S3.设计改进结构的Smith预估器
根据Smith预估器的基本原理,基于采用H∞控制律设计的闭环反馈控制系统,设计改进结构的Smith预估控制器,构成复合控制器,将影响系统稳定性的网络时延的指数项从系统的闭环特征方程中消除,实现对系统网络诱导时延的预估补偿,增强系统的稳定性且不需要对系统时延进行在线测量;针对被控对象的预估模型和参数与其真实模型和参数存在较大偏差,在控制系统中增加一个用于镇定被控对象的控制器,利用被控对象与模型输出信号的比较做出适应性修正,从而进一步增强系统的鲁棒性;
S3.1.根据航空发动机分布式控制系统的典型结构,分析闭环反馈系统的传递函数,进一步分析其闭环特征方程;
闭环传递函数:
Figure PCTCN2019119831-appb-000012
闭环特征方程:
Figure PCTCN2019119831-appb-000013
其中,Y(s)为系统测量输出信号,R(s)为参考输入信号;K(s)为控制器,G(s)为被控对象;τ ca和τ sc分别表示信号从传感器到控制器和从控制器到执行器的网络时延。
S3.2.针对随机、不确定的网络时延预估模型的不准确,在不同位置上增加一些并联或串联的环节进行补偿,在一定条件下,使得其闭环特征方程中不再包含网络时延的指数项;
S3.3.针对被控对象的预估模型和参数与其真实模型和参数存在较大偏差,把被控对象和模型之间的差别看作是增益的误差,利用被控对象与模型输出信号的比较来对模型增益做出适应性修正,设计现场偏差矫正控制器,用于镇定 被控对象,从而改善控制性能质量;
S3.4.进行航空发动机时延系统的复合控制器测试,微调各参数保证发动机的转速跟踪控制效果,以增强发动机的多变量控制系统的鲁棒性以及针对时延的补偿的有效性。
航空发动机某工况下线性模型的获取的步骤如下:
S1.将某型双轴涡扇发动机在闭环控制作用下得到的燃油流量、尾喷管面积数据以及相对应的高压转子转速、落压比数据进行保存;
S2.将保存的燃油流量和尾喷管面积数据作为发动机非线性部件级仿真模型的输入,同时给定阶跃信号作为激励信号,得到发动机的输出,相关输出参数经过数据处理后作为系统辨识的输入输出数据;
S3.基于Matlab系统辨识工具箱,导入输入输出数据,设置数据名称、开始时间和采样间隔,然后去除均值、选择有效输入输出数据范围,选择模型以及辨识方法对目标系统进行辨识;
S4.分析系统辨识误差并验证所获取的模型,并选出最符合系统特性的模型。
本发明的有益效果:
(1)本发明为航空发动机分布式控制系统的网络时延补偿与控制提供了一种新的更为有效的控制思路,将H∞控制方法和Smith预估补偿方法相融合,在满足航空发动机的稳态控制要求、跟踪控制要求和抗干扰性能要求的基础上,建立改进型Smith预估器,减小时延影响,保证航空发动机在一定范围内的随机时延下仍能达到较好的稳态性能及动态性能。
(2)本发明提出的基于改进型Smith预估器的航空发动机H∞控制方法,闭环反馈控制系统中没有出现网络时延的预估补偿模型,可以保证系统满足改进型Smith预估补偿的时延条件,免除了对随机、时变和不确定性网络时延的测量、估计或辨识,并且,采用双控制器的改进型Smith预估补偿方案,可以增强系统的鲁棒性与抗干扰能力。
(3)本方法也适用于具有相似结构的燃气轮机以及相似工作原理的内燃机的控制系统的设计,应用范围广泛。
附图说明
图1为存在时延的航空发动机闭环控制系统结构示意图。
图2为基于改进型Smith预估器的航空发动机H∞控制方法设计流程图。
图3为航空发动机线性模型获取流程图。
图4为H∞控制器设计流程图。
图5为H∞控制器的增广系统双端子结构框图。
图6为改进型Smith预估补偿器的设计流程图。
图7为改进型Smith预估器与H∞控制律复合控制结构图。
图8为采用双控制器的改进型Smith预估器与H∞控制律复合控制结构图。
图9(a)为0.5s时延条件下航空发动机转速跟踪控制效果图。
图9(b)为0.7s时延条件下航空发动机转速跟踪控制效果图。
图10(a)为0.5s时延条件下航空发动机落压比跟踪控制效果图。
图10(b)为0.7s时延条件下航空发动机落压比跟踪控制效果图。
图11为航空发动机转速抗扰效果图。
图12为航空发动机落压比抗扰效果图。
具体实施方式
下面结合附图和技术方案,进一步说明本发明的具体实施方式。本发明的依托背景为某型双轴涡扇发动机时延系统的补偿与控制,网络时滞系统的结构如图1所示。
如图2所示,基于改进型Smith预估器的航空发动机H∞控制方法,具体详细设计步骤如下:
S1.航空发动机某工况下线性模型的获取
发动机模型是控制系统设计的基础,首先需要对航空发动机非线性模型建立合理的线性模型。基于多变量控制目标,选择高压转子转速和落压比作为被控变量,与被控变量对应的控制量分别为燃油和尾喷管面积。航空发动机在某工况下的小偏差线性模型可用以下状态空间方程表示:
Figure PCTCN2019119831-appb-000014
其中,Δx=[Δx 1 Δx 2] T为状态变量,
Figure PCTCN2019119831-appb-000015
为对应的状态变量的导数;Δu=[ΔW f ΔA 8] T为控制作用量(被控对象输入量),ΔW f表示控制器输出的燃油增量,ΔA 8表示尾喷管面积的增量;Δy=[ΔN 2 ΔPiT] T为系统输出量,ΔN 2、ΔPiT分别表示高压转子转速和落压比;A,B,C,D为发动机线性模型参数矩阵。利用Matlab提供的系统辨识工具箱对某型双轴涡扇发动机非线性模型进行辨识,以获取发动机的小偏离线性模型。
S2.设计针对航空发动机非线性模型的多变量H∞控制器
根据H∞控制器设计原理,选取合适的性能指标加权函数参数,求解H∞输出反馈控制器,调节参数至基本达到控制要求。进行多变量非线性控制器测试,微调各参数保证涡扇发动机的整体效果,以增强涡扇发动机的多变量控制系统的鲁棒性。
S3.设计改进结构的Smith预估器
根据Smith预估器的基本原理,基于采用H∞控制律设计的闭环反馈控制系统,设计改进结构的Smith预估控制器,构成复合控制器,将影响系统稳定性的网络时延的指数项从系统的闭环特征方程中消除,可实现对系统网络诱导时延的预估补偿,增强系统的稳定性且不需要对系统时延进行在线测量;针对被控对象的预估模型和参数与其真实模型和参数存在较大偏差,在控制系统中增加一个用于镇定被控对象的控制器,利用被控对象与模型输出信号的比较来对模 型增益做出适应性修正,从而进一步增强系统的鲁棒性。
如图3所示,航空发动机某工况下线性模型的获取的具体步骤如下:
S1.将某型双轴涡扇发动机在闭环控制作用下得到的燃油流量、尾喷管面积数据以及相对应的高压转子转速、落压比等相关数据保存。
S2.将保存的燃油流量和尾喷管面积数据作为发动机非线性部件级仿真模型的输入,同时给定一定的阶跃信号作为激励信号,燃油输入端的阶跃信号幅值设置为1000,尾喷管面积输入端的阶跃信号变化量设置为100,保存发动机的输出数据。对相关输出参数进行数据处理,去除设计点的稳态参数,获得相对于稳态点数据的偏差数据,可以作为系统辨识的输入输出数据;
S3.基于Matlab系统辨识工具箱,导入输入输出数据,设置数据名称、开始时间、采样间隔设置为0.025s,然后进行数据预处理,由于激励信号是在某一时刻T才起作用的,将[0,T]时刻内的输入数据删除掉,只保留T时刻以后的有效输入输出数据作为模型辨识数据源。选择状态空间模型辨识,并指定状态空间阶数为2,采用子空间辨识方法对目标系统进行辨识;
S4.分析系统辨识误差并验证所获取的模型,将S1保存的燃油流量以及尾喷管面积数据分别作为发动机非线性模型以及辨识得到的发动机小偏差线性模型的输入,对比分析模型的输出高压转子转速和落压比响应曲线的吻合度,并选出最符合系统特性的模型。
如图4所示,设计针对航空发动机非线性模型的多变量H∞控制器的具体步骤如下:
S1.选取通过系统辨识获取的小偏差线性模型作为标称模型,飞行包线内其他各点的模型看作是相对于标称模型的摄动;
S2.根据发动机控制指标的稳态控制要求、动态控制要求以及鲁棒性要求,选取合适的加权函数,加权函数与控制设计指标的关系可描述为如下形式:
Figure PCTCN2019119831-appb-000016
Figure PCTCN2019119831-appb-000017
Figure PCTCN2019119831-appb-000018
Figure PCTCN2019119831-appb-000019
其中,
Figure PCTCN2019119831-appb-000020
为控制系统的灵敏度函数;
Figure PCTCN2019119831-appb-000021
为系统的补灵敏度函数;
Figure PCTCN2019119831-appb-000022
通常用||R(s)|| 来衡量系统的加性不确定性;W s(s)为性能加权函数;W R(s)为控制器输出加权函数;W T(s)为鲁棒加权函数;G(s)为原被控对象,K(s)为控制器。
分析加权函数的奇异值曲线,最终选取满足性能指标设计要求的加权函数为:
Figure PCTCN2019119831-appb-000023
Figure PCTCN2019119831-appb-000024
Figure PCTCN2019119831-appb-000025
S3.建立如下形式的增广被控对象(图5):
Figure PCTCN2019119831-appb-000026
式中,A,B 1,B 2,C 1,C 2,D 11,D 12,D 21,D 22为增广被控对象的模型参数矩阵,u为控制作用量(被控对象输入量),w为外部干扰信号,y为系统量测输出信号,z为评价信号,通常包括跟踪误差、调节误差和执行机构输出。
增广被控对象可以表示为:
Figure PCTCN2019119831-appb-000027
其中,P为增广被控对象,G为原被控对象;W s、W R和W T分别为性能加权函数、控制器输出加权函数、鲁棒加权函数。
S4.构成增广被控对象后,进行控制器的求解,得到H∞混合灵敏度控制器。满足H∞混合灵敏度控制问题的性能指标为:
min||T zw(s)|| <γ 0(H 混合灵敏度最优控制问题)    (10)
||T zw(s)|| <γ(H 混合灵敏度次优控制问题)      (11)
式中:T zw(s)为系统从外部输入w到被控输出z的闭环传递函数;γ 0,γ为给定值且γ>min||T zw(s)||
把非1的γ归入到各权函数中,则将航空发动机H∞控制器转化为标准H∞控制:
Figure PCTCN2019119831-appb-000028
根据控制系统指标要求选取合适的参数,合理设置H∞控制器求解函数hinfsyn()的输入参数,精度设置为0.001,性能指标γ范围为(0.5,20);
S5.搭建基于发动机线性模型建立的控制系统仿真,调节性能指标加权函数的参数至基本达到控制指标要求,使系统闭环稳定;
S6.进行多变量非线性控制器测试,微调各参数保证涡扇发动机的整体效果,以增强涡扇发动机的多变量控制系统的鲁棒性。
如图6所示,设计改进结构的Smith预估器的具体步骤如下:
S1.根据航空发动机分布式控制系统的典型结构,分析闭环反馈系统的传递函数,进一步分析其闭环特征方程;
闭环传递函数:
Figure PCTCN2019119831-appb-000029
闭环特征方程:
Figure PCTCN2019119831-appb-000030
其中,Y(s)为系统测量输出信号,R(s)为参考输入信号;K(s)为控制器,G(s)为被控对象;τ ca和τ sc分别表示信号从传感器到控制器和从控制器到执行器的网络时延。Smith预估补偿的基本原理就是,就是在航空发动机闭环反馈控制系统中引入一个预估补偿环节,使得系统闭环特征方程中不含有时延项,改善整个系统的控制性能品质。
S2.针对随机、不确定的网络时延预估模型的不准确,改进型的Smith预估器与H∞控制律复合控制结构如图7所示,在控制器以及被控对象环节的位置上增加一些补偿环节,补偿后的系统闭环传递函数为:
Figure PCTCN2019119831-appb-000031
其中,G m(s)为原被控对象G(s)的预估模型。
由上式可以看出,当被控对象预估模型等价于实际模型时,闭环特征方程中不再包含网络时延的指数项;
S3.针对被控对象的预估模型和参数与其真实模型和参数存在较大偏差,把被控对象和模型之间的差别看作是增益的误差,利用被控对象与模型输出信号的比较来做出适应性修正,采用双控制器的改进型Smith预估器与H∞控制律复合控制结构如图8所示。采用PID控制律设计现场偏差矫正控制器,用于镇定被控对象,从而改善控制性能质量;
S4.进行航空发动机时延系统的复合控制器测试,微调各参数保证发动机的转速跟踪控制效果,以增强发动机的多变量控制系统的鲁棒性以及针对时延的补偿的有效性。
为了进一步说明本实施例中基于改进型Smith预估器的航空发动机H∞控制方法的效果,通过两组仿真实验,来验证本发明中方法的有效性。
(1)不同时延条件下控制效果
设计完成后基于改进型Smith预估器的航空发动机H∞控制方法的控制效果如图9和图10所示。由仿真结果可以看出,存在不同时延的情况下,基于改进型Smith预估器的航空发动机H∞控制方法可以明显的改善系统的稳态性能与动态性能,提高系统的鲁棒性。仿真实验中,系统的采样周期设置为25ms。如图9(a)所示,在500ms的时延条件下,采用双控制器的改进型Smith预估器的控制系统转速上升过程中,超调量为1.3%,稳态控制精度为0.04%,减速过程中超调量为2.45%,稳态控制精度为0.11%。如图10(a)所示,在500ms的时延条件下,采用双控制器的改进型Smith预估器的控制系统落压比上升过程中,超调量为0,稳态控制精度为0.2%,落压比下降过程中,超调量为12.8%,稳态控制精度为0.27%。
(2)抗扰性能测试
运行基于改进型Smith预估器的航空发动机H∞控制系统,使得发动机达到额定工况,在控制系统稳定运行后,在不改变控制器参数的条件下施加幅值为1000kg/h的加力燃油,观测并分析该扰动对控制系统性能的影响。仿真结果如图11和图12所示,系统稳定运行后施加扰动,持续35秒后扰动撤销。由图可以看出,加力过程中转速超调量为0.08%,调节时间约为11.4秒,落压比超调量为1.6%,调节时间约为14.4秒;撤销加力过程中,转速超调量0.03%,调节时间约为12.3秒,落压比超调量为1.8%,调节时间约为16.2秒。
综上,本发明提出的基于改进型Smith预估器的航空发动机H∞控制方法是有效的、可行的,能够达到航空发动机分布式控制系统中对时延的补偿与控制要求。

Claims (2)

  1. 一种基于改进型Smith预估器的航空发动机H∞控制方法,该航空发动机H∞控制方法中采用的控制系统闭环回路中控制器部分包含两个部分,第一部分是采用H∞控制策略设计的控制器,主要完成对航空发动机被控变量的跟踪控制;第二部分是采用改进型Smith预估器的时延补偿策略,解决依据H∞控制策略设计出的航空发动机控制器对时延现象适应能力不足的问题;
    其特征在于,步骤如下:
    S1.航空发动机某工况下线性模型的获取
    发动机模型是控制系统设计的基础,首先对航空发动机非线性模型建立合理的线性模型;基于多变量控制目标,选择高压转子转速和落压比作为被控变量,与被控变量对应的控制量分别为燃油和尾喷管面积;航空发动机在某工况下的小偏差线性模型用以下状态空间方程表示:
    Figure PCTCN2019119831-appb-100001
    其中,△x=[△x 1 △x 2] T为状态变量,
    Figure PCTCN2019119831-appb-100002
    为对应的状态变量的导数;△u=[△W f △A 8] T为控制作用量,△W f表示控制器输出的燃油增量,△A 8表示尾喷管面积的增量;△y=[△N 2 △PiT] T为系统输出量,△N 2、△PiT分别表示高压转子转速和落压比;A,B,C,D为发动机线性模型参数矩阵;利用Matlab提供的系统辨识工具箱对双轴涡扇发动机非线性模型进行辨识,以获取发动机的小偏离线性模型;
    S2.设计针对航空发动机非线性模型的多变量H∞控制器
    根据多变量H∞控制器设计原理,选取合适的性能指标加权函数参数,求解H∞输出反馈控制器,调节参数至达到控制要求;进行多变量非线性控制器测试,微调各参数保证涡扇发动机的整体效果,以增强涡扇发动机的多变量控制系统的鲁棒性;
    S2.1.选取通过系统辨识获取的小偏差线性模型作为标称模型,飞行包线内其他各点的模型看作是相对于标称模型的摄动;
    S2.2.根据发动机控制指标的稳态控制要求、动态控制要求以及鲁棒性要求,选取合适的加权函数,加权函数与控制设计指标的关系描述为如下形式:
    Figure PCTCN2019119831-appb-100003
    Figure PCTCN2019119831-appb-100004
    Figure PCTCN2019119831-appb-100005
    Figure PCTCN2019119831-appb-100006
    其中,
    Figure PCTCN2019119831-appb-100007
    为控制系统的灵敏度函数;
    Figure PCTCN2019119831-appb-100008
    为系统的补灵敏度函数;
    Figure PCTCN2019119831-appb-100009
    用||R(s)|| 来衡量系统的加性不确定性;W s(s)为性能加权函数;W R(s)为控制器输出加权函数;W T(s)为鲁棒加权函数;G(s)为原被控对象,K(s)为控制器;
    S2.3.建立如下形式的增广被控对象:
    Figure PCTCN2019119831-appb-100010
    式中,A,B 1,B 2,C 1,C 2,D 11,D 12,D 21,D 22为增广被控对象的模型参数矩阵,u为控制作用量,w为外部干扰,y为系统量测输出信号,z为评价信号,包括跟踪误差、调节误差和执行机构输出;
    增广被控对象表示为:
    Figure PCTCN2019119831-appb-100011
    其中,P为增广被控对象,G为原被控对象;W s、W R和W T分别为性能加权函数、控制器输出加权函数、鲁棒加权函数;
    S2.4.构成增广被控对象后,根据控制系统指标要求选取合适的参数,进行控制器的求解,得到H∞混合灵敏度控制器;满足H∞混合灵敏度控制问题的性能指标为:
    min||T zw(s)|| 0(H 混合灵敏度最优控制问题)            (7)
    ||T zw(s)|| <γ(H 混合灵敏度次优控制问题)         (8)
    式中:T zw(s)为系统从外部输入w到被控输出z的闭环传递函数;γ 0,γ为给定值且γ>min||T zw(s)||
    把非1的γ归入到各权函数中,则将航空发动机H∞控制器转化为标准H∞控制:
    Figure PCTCN2019119831-appb-100012
    S2.5.搭建基于发动机线性模型的控制系统仿真,调节性能指标加权函数的参数至基本达到控制指标要求,使系统闭环稳定;
    S2.6.进行多变量非线性控制器测试,微调各参数保证涡扇发动机的整体效果,以增强涡扇发动机的多变量控制系统的鲁棒性;
    S3.设计改进结构的Smith预估器
    根据Smith预估器的基本原理,基于采用H∞控制律设计的闭环反馈控制系统,设计改进结构的Smith预估控制器,构成复合控制器,将影响系统稳定性的网络时延的指数项从系统的闭环特征方程中消除,实现对系统网络诱导时延的预估补偿,增强系统的稳定性且不需要对系统时延进行在线测量;针对被控对象的预估模型和参数与其真实模型和参数存在较大偏差,在控制系统中增加一个用于镇定被控对象的控制器,利用被控对象与模型输出信号的比较做出适应性修正,从而进一步增强系统的鲁棒性;
    S3.1.根据航空发动机分布式控制系统的典型结构,分析闭环反馈系统的传递函数,进一步分析其闭环特征方程;
    闭环传递函数:
    Figure PCTCN2019119831-appb-100013
    闭环特征方程:
    Figure PCTCN2019119831-appb-100014
    其中,Y(s)为系统测量输出信号,R(s)为参考输入信号;K(s)为控制器,G(s)为被控对象;τ ca和τ sc分别表示信号从传感器到控制器和从控制器到执行器的网络时延;
    S3.2.针对随机、不确定的网络时延预估模型的不准确,在不同位置上增加一些并联或串联的环节进行补偿,在一定条件下,使得其闭环特征方程中不再包含网络时延的指数项;
    S3.3.针对被控对象的预估模型和参数与其真实模型和参数存在较大偏差,把被控对象和模型之间的差别看作是增益的误差,利用被控对象与模型输出信号的比较来对模型增益做出适应性修正,设计现场偏差矫正控制器,用于镇定被控对象,从而改善控制性能质量;
    S3.4.进行航空发动机时延系统的复合控制器测试,微调各参数保证发动机的转速跟踪控制效果,以增强发动机的多变量控制系统的鲁棒性以及针对时延的补偿的有效性。
  2. 根据权利要求1所述的基于改进型Smith预估器的航空发动机H∞控制方法,其特征在于,航空发动机某工况下线性模型的获取的步骤如下:
    S1.1.将某型双轴涡扇发动机在闭环控制作用下得到的燃油流量、尾喷管面积数据以及相对应的高压转子转速、落压比数据进行保存;
    S1.2.将保存的燃油流量和尾喷管面积作为发动机非线性部件级仿真模型的输入,同时给定阶跃信号作为激励信号,得到发动机的输出,相关输出参数经过数据处理后作为系统辨识的输入输出数据;
    S1.3.基于Matlab系统辨识工具箱,导入输入输出数据,设置数据名称、开始时间和采样间隔,然后去除均值、选择有效输入输出数据范围,选择模型以及辨识方法对目标系统进行辨识;
    S1.4.分析系统辨识误差并验证所获取的模型,并选出最符合系统特性的模型。
PCT/CN2019/119831 2019-11-21 2019-11-21 基于改进型Smith预估器的航空发动机H∞控制方法 WO2021097738A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/119831 WO2021097738A1 (zh) 2019-11-21 2019-11-21 基于改进型Smith预估器的航空发动机H∞控制方法
US17/252,545 US20210364388A1 (en) 2019-11-21 2019-11-21 Improved Smith Predictive Controller-Based Aero-engine H-Infinity Algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119831 WO2021097738A1 (zh) 2019-11-21 2019-11-21 基于改进型Smith预估器的航空发动机H∞控制方法

Publications (1)

Publication Number Publication Date
WO2021097738A1 true WO2021097738A1 (zh) 2021-05-27

Family

ID=75980249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119831 WO2021097738A1 (zh) 2019-11-21 2019-11-21 基于改进型Smith预估器的航空发动机H∞控制方法

Country Status (2)

Country Link
US (1) US20210364388A1 (zh)
WO (1) WO2021097738A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114065672A (zh) * 2021-10-28 2022-02-18 航天科工火箭技术有限公司 一种液体运载火箭增压输送系统管路变形补偿量计算方法
CN114278423A (zh) * 2021-06-28 2022-04-05 天津大学 一种基于预测性扩张状态观测器的冷却液温度预测控制算法
CN114326616A (zh) * 2021-12-22 2022-04-12 大唐东北电力试验研究院有限公司 基于多元负荷改进动态矩阵预测算法的工业过程控制方法
CN115128966A (zh) * 2022-04-11 2022-09-30 厦门大学 一种涡扇发动机全包线控制器的设计方法与仿真方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741170B (zh) * 2021-08-17 2023-04-04 南京航空航天大学 一种基于深度神经网络的航空发动机直接推力逆控制方法
CN114153174B (zh) * 2021-12-16 2024-08-27 北京邮电大学 主从式控制系统的控制方法以及装置、存储介质
CN114734440B (zh) * 2022-04-15 2023-09-05 同济大学 一种混联双臂搬运机器人运动学参数精准标定方法
CN115114785B (zh) * 2022-06-28 2024-01-23 北京理工大学 一种发动机性能指标参数化快速预测方法
CN115685956B (zh) * 2022-09-29 2024-08-16 西安交通大学 一种线性网络控制系统的稳定性分析方法及系统
CN116822325B (zh) * 2023-04-29 2023-12-26 中国人民解放军63963部队 一种总体构型约束下的柴油机性能优化设计方法及系统
CN116500898B (zh) * 2023-05-11 2024-03-19 华电国际电力股份有限公司莱城发电厂 基于特征流量辨识的火电机组agc负荷控制系统
CN117742155B (zh) * 2023-12-26 2024-08-23 兰州理工大学 一种鲁棒分散控制器的设计方法及系统
CN117740384B (zh) * 2024-02-07 2024-04-16 中国航发四川燃气涡轮研究院 一种燃烧性能敏感性评估方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030074171A1 (en) * 2001-09-26 2003-04-17 Desai Mihir C. Adaptive aero-thermodynamic engine model
CN106647253A (zh) * 2016-09-28 2017-05-10 南京航空航天大学 航空发动机分布式控制系统多性能鲁棒跟踪控制方法
CN109164709A (zh) * 2018-11-15 2019-01-08 中国科学院光电技术研究所 一种基于改进型Smith预估器的光电跟踪系统控制方法
CN109184913A (zh) * 2018-10-08 2019-01-11 南京航空航天大学 基于稳定性估计与预测的航空发动机气动稳定性主动复合控制方法
CN109344510A (zh) * 2018-10-08 2019-02-15 南京航空航天大学 一种基于航空发动机稳定裕度估计的主动稳定性控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030074171A1 (en) * 2001-09-26 2003-04-17 Desai Mihir C. Adaptive aero-thermodynamic engine model
CN106647253A (zh) * 2016-09-28 2017-05-10 南京航空航天大学 航空发动机分布式控制系统多性能鲁棒跟踪控制方法
CN109184913A (zh) * 2018-10-08 2019-01-11 南京航空航天大学 基于稳定性估计与预测的航空发动机气动稳定性主动复合控制方法
CN109344510A (zh) * 2018-10-08 2019-02-15 南京航空航天大学 一种基于航空发动机稳定裕度估计的主动稳定性控制方法
CN109164709A (zh) * 2018-11-15 2019-01-08 中国科学院光电技术研究所 一种基于改进型Smith预估器的光电跟踪系统控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOZAK STEFAN: "State-of-the-art in control engineering", JOURNAL OF ELECTRICAL SYSTEMS AND INFORMATION TECHNOLOGY, vol. 1, no. 1, 12 March 2014 (2014-03-12), pages 1 - 9, XP055813608, DOI: 10.1016/j.jesit.2014.03.002 *
LYU LIANG, YUNFENG HU, XUN GONG, JINLONG HONG, HONG CHEN: "Smith Predictive Quantitative Feedback Engine Speed Control", TRANSACTIONS OF THE CHINESE SOCIETY FOR AGRICULTURAL MACHINERY, vol. 48, no. 2, 1 February 2017 (2017-02-01), pages 348 - 377, XP055813614, DOI: 10.6041 /j.issn.1000-1298.2017.02.047 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114278423A (zh) * 2021-06-28 2022-04-05 天津大学 一种基于预测性扩张状态观测器的冷却液温度预测控制算法
CN114278423B (zh) * 2021-06-28 2023-10-13 天津大学 一种基于预测性扩张状态观测器的冷却液温度预测控制方法
CN114065672A (zh) * 2021-10-28 2022-02-18 航天科工火箭技术有限公司 一种液体运载火箭增压输送系统管路变形补偿量计算方法
CN114326616A (zh) * 2021-12-22 2022-04-12 大唐东北电力试验研究院有限公司 基于多元负荷改进动态矩阵预测算法的工业过程控制方法
CN114326616B (zh) * 2021-12-22 2023-09-19 大唐东北电力试验研究院有限公司 基于多元负荷改进动态矩阵预测算法的工业过程控制方法
CN115128966A (zh) * 2022-04-11 2022-09-30 厦门大学 一种涡扇发动机全包线控制器的设计方法与仿真方法

Also Published As

Publication number Publication date
US20210364388A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2021097738A1 (zh) 基于改进型Smith预估器的航空发动机H∞控制方法
CN110850740B (zh) 基于改进型Smith预估器的航空发动机H∞控制方法
CN103195599B (zh) 一种hcci燃烧基于模型的解耦及抗扰控制方法
CN110579962B (zh) 基于神经网络的涡扇发动机推力预测方法及控制器
CN107357176B (zh) 一种航空发动机试车数据建模方法
CN108361683B (zh) 一种全负荷段再热气温智能控制系统
CN110687792B (zh) 一种用于化学吸附燃烧后二氧化碳捕集系统的抗烟气扰动模糊控制方法
DE102015205195A1 (de) Regel-/Steuervorrichtung
CN105676915A (zh) 基于自抗扰技术的生产线喷涂烘干过程的温度控制方法
CN113031565A (zh) 一种火电机组一次调频功率响应性能预测方法及系统
CN109519957B (zh) 一种超超临界锅炉闭环燃烧优化控制方法
CN108333933A (zh) 一种一阶纯延迟系统闭环辨识方法
CN105700357B (zh) 基于多变量pid-pfc的锅炉燃烧系统控制方法
US9098078B2 (en) Control algorithm based on modeling a controlled object
CN113835342B (zh) 一种过热汽温系统的抗扰预测控制方法
CN208365520U (zh) 一种全负荷段再热气温智能控制装置
CN105955030A (zh) 一种基于改进输入加权预测控制器的机炉协调控制方法
CN117170236A (zh) 基于逆强化学习的工业调速系统执行器故障智能自愈方法
CN110985216B (zh) 一种含在线修正的航空发动机智能多变量控制方法
CN117145642A (zh) 基于自适应带宽的增压lp-egr发动机空燃比预测抗扰控制方法
CN108803342B (zh) 一种单元机组负荷快速响应预测控制方法
Xia Exploration on the Construction of Experimental System of Heating Furnace Based on Advanced Control Algorithm
CN115562004A (zh) 一种弱稳态下能量守恒的燃煤锅炉热值校正方法及装置
Zhang Modified Smith prediction compensation control method for temperature control of deformation test equipment
CN111459030B (zh) 一种用于锅炉闭环燃烧优化的自适应建模方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953654

Country of ref document: EP

Kind code of ref document: A1