WO2021097605A1 - 一种无线通信方法、终端及网络设备 - Google Patents

一种无线通信方法、终端及网络设备 Download PDF

Info

Publication number
WO2021097605A1
WO2021097605A1 PCT/CN2019/119162 CN2019119162W WO2021097605A1 WO 2021097605 A1 WO2021097605 A1 WO 2021097605A1 CN 2019119162 W CN2019119162 W CN 2019119162W WO 2021097605 A1 WO2021097605 A1 WO 2021097605A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
offset
time domain
terminal
pucch
Prior art date
Application number
PCT/CN2019/119162
Other languages
English (en)
French (fr)
Inventor
胡丹
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/119162 priority Critical patent/WO2021097605A1/zh
Publication of WO2021097605A1 publication Critical patent/WO2021097605A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • This application relates to the field of communication technology, and in particular to a wireless communication method, terminal and network device.
  • the network device sends the downlink data carried by the physical downlink shared channel (PDSCH) to the terminal. After receiving it, the terminal needs to send a hybrid automatic repeat request (HARQ) of the PDSCH to the network device to inform the network device whether the downlink data is received correctly.
  • HARQ feedback information is carried on physical uplink control channel (PUCCH) resources. Before sending the HARQ feedback information, the terminal needs to determine the PUCCH time domain resource used to send the HARQ feedback information.
  • PUCCH physical uplink control channel
  • the PUCCH resource determined by the existing PUCCH resource allocation method is mainly used for unicast transmission, that is, the network device transmits data to a terminal, and the downlink control information (PDCCH) carried on a physical downlink control channel ( Downlink control information (DCI) can only determine one PUCCH time domain resource.
  • Broadcast/multicast/multicast transmission is a scenario where network equipment transmits data to multiple UEs, which may cause terminals receiving the same broadcast/multicast/multicast transmission to send PUCCH carrying HARQ feedback information on the same time domain resource. , Causing the network device to receive an excessive amount of data on the time domain resource, causing the system load to be too large and the system performance degraded.
  • the embodiments of this application provide a wireless communication method, terminal and network equipment, which are used to reasonably allocate PUCCH resources for the terminal under broadcast/multicast/multicast transmission, so as to reduce the system load and improve the system.
  • the specific plan is as follows.
  • an embodiment of the present application provides a wireless communication method, including: firstly, the terminal receives indication information, the indication information is used to indicate the time domain offset; secondly, the terminal receives the physical downlink control channel PDCCH, which is used for PDCCH For scheduling the physical downlink shared channel PDSCH, the physical uplink control channel PUCCH is used to carry the hybrid automatic repeat request HARQ-ACK corresponding to the PDSCH; finally, the terminal determines the PUCCH time domain according to the first parameter, the second parameter and the time domain offset Resources, where the first parameter is the offset between the time unit of the PDSCH and the time unit that carries the HARQ-ACK, and the second parameter is the PUCCH resource indication information carried in the PDCCH.
  • the first parameter is carried in DCI, or the first parameter is carried in radio resource control RRC signaling.
  • the indication information is used to indicate the time domain offset
  • the time domain offset is used to determine the PUCCH time domain resource.
  • the time domain offset of the terminal All are dedicated, independently configured, and do not affect each other. Therefore, the terminal determines the PUCCH time domain resource according to the time domain offset, the first parameter and the second parameter, which can make the PUCCH time domain resource of the terminal be non-independent in the time domain. All overlapping and staggered PUCCHs can reduce the number of PUCCHs transmitted by the terminal at the same time, thereby reducing system load and improving system performance.
  • the above-mentioned second parameter is PUCCH resource indication information. It can be understood that the second parameter is indicated by PUCCH resource indication information, or the second parameter is obtained according to PUCCH resource indication information, or the second parameter Refers to the high-level parameters configured by RRC signaling mapped on the PUCCH resource indication field.
  • the above-mentioned time-domain offset may be an offset corresponding to the first parameter.
  • the first parameter is K1, which represents the offset between the time unit where the PDSCH is located and the time unit where the PUCCH carrying HARQ-ACK is located.
  • K1 can be carried in the DCI, or K1 can also be configured by higher layer signaling.
  • the offset corresponding to K1 may be carried in RRC signaling or DCI.
  • the above-mentioned time-domain offset may be an offset corresponding to the second parameter.
  • the offset corresponding to the second parameter may also be carried in RRC signaling or DCI.
  • the offset corresponding to the second parameter may be carried in the DCI where the second parameter is located.
  • the second parameter is indicated by the PUCCH resource indication field in the DCI, and the offset corresponding to the second parameter is also in the DCI.
  • the PUCCH resource indicator field indicates.
  • the PDCCH satisfies at least one of the following: the PDCCH is scrambled by the group radio network temporary identification G-RNTI, the PDCCH is detected in the common search space, and the terminal is based on the first The parameter, the second parameter and the time domain offset determine the PUCCH time domain resource.
  • the PDSCH scheduled by the PDCCH is broadcast/multicast/multicast transmission.
  • G-RNTI is used to identify broadcast/multicast/multicast services.
  • the detection of the PDCCH in the common search space can be understood as meaning that UEs receiving the same broadcast/multicast/multicast transmission can detect the PDCCH in the same search space.
  • the above method further includes: if the PDCCH is scrambled by the terminal dedicated wireless network temporary identification RNTI, the terminal does not determine the PUCCH time domain resource according to the time domain offset.
  • the terminal determines the PUCCH time domain resource according to the first parameter and the second parameter. Specifically, the terminal determines the HARQ-ACK time unit according to the first parameter, and further determines the PUCCH time domain resource in the PUCCH resource set according to the second parameter, where the PUCCH resource set may be the HARQ-ACK information that the terminal needs to transmit The load size is selected.
  • the terminal-specific radio network temporary identifier may include: cell-radio network temporary identifier (C-RNTI), and configured scheduling radio network temporary identifier (configured scheduling- radio network temporary identifier, CS-RNTI), and modulation and coding scheme cell radio network temporary identifier (MCS-C-RNTI).
  • C-RNTI cell-radio network temporary identifier
  • CS-RNTI configured scheduling radio network temporary identifier
  • MCS-C-RNTI modulation and coding scheme cell radio network temporary identifier
  • the time domain offset is terminal-specific, and the indication information is carried in the terminal-specific radio resource control RRC signaling.
  • the time domain offset may be associated with the terminal identifier UE ID, and one time domain offset corresponds to the UE ID of a terminal receiving broadcast/multicast/multicast transmission.
  • the time domain offset characterizes at least one time unit, and the time unit includes: a time slot, a sub-slot, a mini-slot, or an orthogonal frequency division multiplexing symbol.
  • the time domain offset is determined by the terminal identifier UE ID. There is a correspondence between the UE ID and the time domain offset, and the UE ID can obtain the time domain offset through the correspondence. For example, the time domain offset can be obtained by modulo or remainder of the UE ID.
  • an embodiment of the present application provides a wireless communication method, including: first, the network device sends indication information, the indication information is used to indicate the time domain offset; second, the network device sends the physical downlink control channel PDCCH, PDCCH Used to schedule the physical downlink shared channel PDSCH, the physical uplink control channel PUCCH is used to carry the hybrid automatic repeat request HARQ-ACK corresponding to the PDSCH; finally, the network device determines the PUCCH according to the first parameter, the second parameter and the time domain offset Time domain resources, where the first parameter is the offset between the time unit of the PDSCH and the time unit carrying the HARQ-ACK, and the second parameter is the PUCCH resource indication information.
  • the first parameter is carried in DCI, or the first parameter is carried in RRC signaling.
  • the network device configures a time domain offset for the terminal, and the time domain offset is used to determine the PUCCH time domain resource.
  • the network device configures the time domain offset for each terminal.
  • the time domain offsets are all dedicated, independently configured, and do not affect each other. Therefore, the network device determines the PUCCH transmission resource according to the time domain offset, the first parameter and the second parameter, which can make the terminal's UCCH time domain resources It is not completely overlapped and staggered in the time domain, which can reduce the number of PUCCHs transmitted by the terminal at the same time, thereby reducing system load and improving system performance.
  • the above-mentioned second parameter is PUCCH resource indication information. It can be understood that the second parameter is indicated by PUCCH resource indication information, or the second parameter is obtained according to PUCCH resource indication information, or the second parameter is Refers to the high-level parameters configured by RRC signaling mapped on the PUCCH resource indication field.
  • the time domain offset is an offset corresponding to the first parameter.
  • the time domain offset is an offset corresponding to the second parameter.
  • the PDCCH satisfies at least one of the following: the PDCCH is scrambled by the group radio network temporary identification G-RNTI, and the PDCCH is detected in the common search space.
  • the network device determines the PUCCH time domain resource according to the first parameter, the second parameter, and the time domain offset.
  • the PDSCH scheduled by the PDCCH is broadcast/multicast/multicast transmission.
  • G-RNTI is used to identify broadcast/multicast/multicast services.
  • the detection of the PDCCH in the common search space can be understood as meaning that UEs receiving the same broadcast/multicast/multicast transmission can detect the PDCCH in the same search space.
  • the above method further includes: if the PDCCH is scrambled by the terminal dedicated wireless network temporary identification RNTI, the network device does not determine the PUCCH time domain resource according to the time domain offset.
  • the network device determines the PUCCH time domain resource according to the first parameter and the second parameter. Specifically, the network device determines the time unit of the HARQ-ACK corresponding to the PDCCH according to the first parameter, and further the network device determines the time domain resource of the PUCCH according to the second parameter.
  • the terminal-specific RNTI may include: cell radio network temporary identifier C-RNTI, configuration scheduling radio network temporary identifier CS-RNTI, and modulation and coding mode cell radio network temporary identifier MCS-C-RNTI.
  • the time domain offset is terminal-specific; the indication information is carried in terminal-specific radio resource control RRC signaling.
  • the time domain offset may be associated with the terminal identifier UE ID, and one time domain offset corresponds to the UE ID of a terminal receiving broadcast/multicast/multicast transmission.
  • the time domain offset characterizes at least one time unit, and the time unit includes: a time slot, a sub-slot, a mini-slot, or an orthogonal frequency division multiplexing symbol.
  • the domain offset is determined by the terminal identifier UE ID.
  • the UE ID can obtain the time domain offset through the correspondence.
  • the time domain offset can be obtained by modulo or remainder of the UE ID.
  • the various possible implementations of the second aspect correspond to the various possible implementations of the above-mentioned first aspect.
  • any one of the possible implementations of the second aspect please refer to the above-mentioned first aspect.
  • the related description in the corresponding implementation manner will not be repeated here.
  • an embodiment of the present application provides a terminal, including: a receiving module, configured to receive indication information, the indication information is used to indicate a time domain offset; and a physical downlink control channel PDCCH, which is used for scheduling The physical downlink shared channel PDSCH, the physical uplink control channel PUCCH is used to carry the hybrid automatic repeat request HARQ-ACK corresponding to the PDSCH; the processing module is used to determine the PUCCH according to the first parameter, the second parameter and the time domain offset Time domain resources, where the first parameter is the offset between the time unit of the PDSCH and the time unit that carries the HARQ-ACK, and the second parameter is the PUCCH resource indication information.
  • beneficial effects corresponding to the terminal in the third aspect described above can be referred to the beneficial effects in the wireless communication method in the first aspect described above, which will not be repeated here.
  • an embodiment of the present application provides a network device, including: a sending module and a processing module, where the sending module is used to: send indication information, the indication information is used to indicate a time domain offset; and, to send a physical downlink The control channel PDCCH, PDCCH is used to schedule the physical downlink shared channel PDSCH, and the physical uplink control channel PUCCH is used to carry the hybrid automatic repeat request HARQ-ACK corresponding to the PDSCH; the processing module is used to: according to the first parameter, the second parameter and the time domain The offset determines the PUCCH time domain resources, where the first parameter is the offset between the time unit of the PDSCH and the time unit that carries the HARQ-ACK, and the second parameter is the PUCCH resource indication information.
  • All operations of the network device in the wireless communication method in the above second aspect can be performed by the component modules (transmitting module and processing module) of the network device in the fourth aspect; for the specific description, please refer to the possible implementation in the above second aspect The related description of, will not repeat it here.
  • an embodiment of the present application provides a computer storage medium, and the computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the method described in the first aspect.
  • embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method described in the second aspect.
  • an embodiment of the present application also provides a communication device.
  • the communication device may include entities such as a terminal or a chip.
  • the communication device includes: a processor and a memory; the memory is used to store instructions; the processing The device is used to execute the instructions in the memory, so that the communication device executes the method described in the foregoing first aspect.
  • an embodiment of the present application also provides a communication device.
  • the communication device may include entities such as network equipment or a chip.
  • the communication device includes a processor and a memory; the memory is used to store instructions;
  • the processor is configured to execute the instructions in the memory, so that the communication device executes the method described in the foregoing second aspect.
  • FIG. 1 is a schematic diagram of an architecture of a communication system provided in an embodiment of this application;
  • FIG. 2 is a schematic diagram of an embodiment of a wireless communication method provided in an embodiment of this application.
  • FIG. 3 is a schematic diagram of an embodiment of a terminal provided in an embodiment of the application.
  • FIG. 4 is a schematic diagram of an embodiment of a network device provided in an embodiment of the application.
  • FIG. 5 is a schematic diagram of another embodiment of a terminal provided in an embodiment of this application.
  • Fig. 6 is a schematic diagram of another embodiment of a network device provided in an embodiment of the application.
  • the embodiments of this application provide a method for determining PUCCH resources, a terminal, and a network device.
  • the method is mainly applicable to the reasonable allocation of PUCCH resources for the terminal in broadcast/multicast/multicast transmission, so as to reduce system load and improve system performance.
  • Technical purpose is mainly applicable to the reasonable allocation of PUCCH resources for the terminal in broadcast/multicast/multicast transmission, so as to reduce system load and improve system performance.
  • the offset or offset described in the embodiments of this application all refer to time domain offsets; the resources described in the embodiments of this application all refer to time domain resources. Unless otherwise specified, the resources described in the embodiments of this application refer to time domain resources. In other words, “resources” and “time domain resources” in this application can be interchanged.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • system can be used interchangeably with "network”.
  • the CDMA system can implement wireless technologies such as universal terrestrial radio access (UTRA) and CDMA2000.
  • UTRA can include wideband CDMA (wideband CDMA, WCDMA) technology and other CDMA variants.
  • CDMA2000 can cover the interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement wireless technologies such as the global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • OFDMA system can realize such as evolved universal wireless terrestrial access (evolved UTRA, E-UTRA), ultra mobile broadband (ultra mobile broadband, UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • 3GPP is a new version of UMTS that uses E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • 5G fifth generation
  • 5G new radio
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the system architecture and business scenarios described in the embodiments of this application are intended to more clearly illustrate the technical solutions of the embodiments of this application, and do not constitute a limitation on the technical solutions provided in the embodiments of this application. Those of ordinary skill in the art will know that with the network With the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system provided in an embodiment of this application.
  • the mobile communication system includes: a core network device 101, a wireless access network device 102, and at least one terminal.
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or it can integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or it can be a physical device. It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
  • the terminal can be a fixed location, or it can be movable. It should be noted that FIG.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1.
  • the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminals included in the mobile communication system.
  • a network device is an entity on the network side that is used to send and/or receive signals, such as gNB.
  • the network device in the embodiment of the present application may be any device with a wireless transceiver function, or a chip set in a device with a specific wireless transceiver function.
  • Network equipment includes but is not limited to: base stations (such as base station BS, base station NodeB, evolved base station eNodeB or eNB, base station gNodeB or gNB in the fifth generation 5G communication system, base station in future communication system, and access node in WiFi system , Wireless relay node, wireless backhaul node), etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc. Multiple base stations can support networks of one or more of the aforementioned technologies, or future evolution networks.
  • the network device may also be a wireless controller, a centralized unit (CU), or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the network equipment may include a centralized unit (CU) node, or a distributed unit (DU) node, or a radio access network (RAN) that includes a CU node and a DU node. )equipment.
  • a terminal is an entity on the user side that is used to receive and/or send signals, such as a mobile phone terminal.
  • the terminal is also called user equipment (UE), mobile station (MS), mobile terminal (MT), terminal, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • It is a device that provides users with voice and/or data connectivity , Or, a chip set in the device, for example, a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • some examples of terminals are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality.
  • MID mobile internet devices
  • VR virtual reality
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Wireless access network equipment and terminals can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on the water; they can also be deployed on airborne aircraft, drones, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of wireless access network equipment and terminals.
  • FIG. 2 is the PUCCH resource determination provided in the embodiments of this application. Schematic diagram of an embodiment of the method.
  • an embodiment of the wireless communication method provided in the embodiment of the present application includes:
  • a network device sends instruction information to a terminal, where the instruction information is used to indicate a time domain offset.
  • the time domain offset is used to determine the PUCCH time domain resource.
  • the PUCCH is used to carry feedback information corresponding to the PDSCH, and the PDSCH is scheduled by the PDCCH.
  • the feedback information corresponding to the PDSCH may be the hybrid automatic request HARQ-ACK, or other information carried on the PUCCH.
  • the time domain offset is an offset based on the first parameter or the second parameter.
  • the time domain offset is the offset corresponding to the first parameter, where the first parameter is the offset between the time unit occupied by the PDSCH and the time unit carrying the hybrid automatic repeat request HARQ-ACK, generally In other words, HARQ-ACK is carried by PUCCH.
  • the time domain offset is the offset corresponding to the second parameter, where the second parameter is the PUCCH resource indication information, in other words, the second parameter is indicated by the PUCCH resource indication information, or the second parameter is determined by PUCCH resource indication information.
  • the indication information may only indicate the offset corresponding to the first parameter or the offset corresponding to the second parameter; the indication information may also indicate the offset corresponding to the first parameter and the second parameter at the same time.
  • the corresponding offset does not impose any restrictions on this application.
  • time domain offset as the offset corresponding to the first parameter and the offset corresponding to the second parameter. It should be understood that the time domain offset can also be combined with the two or combined with the two. Other forms of indication enable the UE to determine the resource, which is not limited here.
  • the first parameter may be expressed as K1.
  • K1 can be carried in DCI, for example, in the PDSCH-to-HARQ_feedback timing indicator information field of the PDSCH-to-HARQ_feedback timing indicator carried in DCI, this field can also be referred to as the K1 field; or, K1 can also be configured through high-level signaling
  • the high-level signaling of the K1 is configured as dl-DataToUL-ACK.
  • the offset corresponding to the first parameter can be expressed as offset-K1, and offset-K1 can be carried in terminal-specific RRC signaling; or, offset-K1 can also be carried in high-layer parameters, optionally, the high-layer parameter is PUCCH -format X indicates the parameter, where X can be 0, 1, 2, 3, 4, etc.; or, offset-K1 can also be carried in the DCI domain where the first parameter on the PDCCH is located, or offset-K1 can also be carried In the newly added DCI field on the PDCCH.
  • PUCCH format X is a different PUCCH format, in which PUCCH time-frequency resources configured for different PUCCH formats are different, and the type of uplink control information carried by PUCCH format 0-4 and the load range of the uplink control information are also different.
  • the value of X can be 0, 1, 2, 3, 4.
  • PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, and PUCCH format 4 indicate when the high-level parameters corresponding to the corresponding PUCCH format are mapped respectively. Frequency resources.
  • PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, and PUCCH format 4 have different time-frequency resources corresponding to high-level parameters with the same parameter value.
  • the DCI described in the embodiments of the application may be a fallback DCI or a non-fallback DCI.
  • the format of the fallback DCI is 1_0, that is, DCI format 1_0.
  • the non-fallback DCI is 1_1, that is, DCI format 1_1, and the DCI format identifier for DCI formats information field in the DCI is used to identify the DCI format.
  • the wireless network temporary identifier RNTI used to scramble the DCI format 1_0 includes: page-radio network temporary identifier (page-radio network temporary identifier, P-RNTI), random access-radio network temporary identifier (RA-RNTI), system information-radio network temporary identifier (SI-RNTI), temporary cell wireless network Temporal cell-radio network temporary identifier (TC-RNTI), cell radio network temporary identifier C-RNTI, configuration scheduling radio network temporary identifier CS-RNTI, and modulation and coding mode cell radio network temporary identifier MCS-C-RNTI.
  • DCI format 1_0 can be used to schedule PDSCH carrying paging information, initial access response information, and system messages.
  • DCI format 1_1 is non-fallback DCI, which is used to schedule PDSCH in the connected state.
  • DCI format 1_1 carries more control information, which can include: carrier indication, partial carrier bandwidth (bandwidth part, BWP) indicator, physical resource block (physical resource block, PRB) bundling size indicator, Rate matching indicator, zero-power channel state information reference signal (CSI-RS) trigger, sounding reference signal (SRS) request, antenna port, and transmission configuration indicator.
  • BWP bandwidth part
  • PRB physical resource block
  • CSI-RS zero-power channel state information reference signal
  • SRS sounding reference signal
  • the offset corresponding to the first parameter is carried in the K1 field, and the K1 field can be extended to carry the offset corresponding to the first parameter.
  • the extension method of the K1 field may be: adding a new field to the K1 field, so that the newly added field indicates the offset corresponding to the first parameter.
  • the K1 field is expanded from a bits to (a+b*c) bits, where a can be one of 0, 1, 2, and 3, and c is the reception of the broadcast/multicast/multicast PDCCH
  • the number of terminals, b is the number of bits indicating the offset corresponding to the first parameter of a terminal
  • the newly added (b*c) bits can indicate the offset corresponding to the first parameter of the corresponding terminal in a preset order
  • the preset order can be ascending order by terminal identification, or descending order by terminal identification, or it can be indicated by a preset mapping table, where the mapping table is the newly added (b*c) bits and terminal identification Correspondence between the two to indicate which bits each terminal corresponds to.
  • the K1 field is expanded from 3 bits to (3+2*5) bits.
  • the expanded K1 field can indicate the first of the two terminals.
  • the offset corresponding to the parameter, and the offset corresponding to each first parameter can be indicated by using 5 bits.
  • the first 5 bits of the newly added 10 bits are used to indicate the offset corresponding to the first parameter in the first terminal, and the last 5 bits are used to indicate the offset corresponding to the first parameter in the second terminal the amount.
  • the second parameter can be carried in the DCI.
  • the second parameter can be passed through the PUCCH resource indicator (PUCCH resource indicator) of the DCI.
  • the state indicated by the bit indicated by the indicator, PRI) field is mapped, and the second parameter may be expressed as PRI.
  • the PRI field can be 3 bits, representing 8 states, which respectively correspond to the PUCCH time domain resources in the resource list (reourceList) indicated by the high-level signaling (pucch-ResourceId).
  • the offset corresponding to the second parameter can be expressed as offset-PRI.
  • the offset-PRI can be carried in terminal-specific RRC signaling, or the offset-PRI can also be carried in the PRI domain where the second parameter on the PDCCH is located.
  • the ACK/NACK resource indication field or the offset-PRI can also be carried in the newly added DCI field on the PDCCH. It should be noted that, similar to the offset of the first parameter described above, the offset of the second parameter may also be carried in the high-level parameter.
  • the PRI domain can be Expand to carry the offset corresponding to the second parameter.
  • the PRI domain extension method please refer to the aforementioned K1 domain extension method, which will not be repeated here.
  • the above-mentioned different bearing modes of the time domain offset correspond to different sending modes of the indication information. If the time domain offset is carried in the high-level signaling, the network device sends the corresponding indication information through the high-level signaling; if the time domain offset is carried in the high-level parameter, the network equipment sends the corresponding indication information through the high-level parameter; The domain offset is carried in the DCI domain where the first parameter or the second parameter is located, and the network device sends corresponding indication information through the PDCCH.
  • the sending method of the instruction information may include but not limited to the following sending methods:
  • the first way of sending indication information the network device sends indication information to the terminal through high-level signaling.
  • the network device sends indication information to the terminal through high-level signaling, and the indication information is used to configure the time domain offset.
  • the higher layer signaling is RRC signaling.
  • the network device sends an RRC signaling to the terminal.
  • the RRC signaling includes multiple cells, and each cell includes a time domain offset and is only associated with one terminal identifier UE ID, so that each terminal Only the configuration information related to the self-identification is interpreted, and the configuration information related to other terminals in the above-mentioned RRC signaling is not interpreted.
  • the RRC signaling is UE-dedicated RRC signaling dedicated to the terminal.
  • the network device sends a UE-dedicated RRC signaling to the terminal, and the UE-dedicated RRC signaling includes only one cell associated with itself, so that the terminal can only receive the configuration of the bearer offset related to itself Information, the bearer offset configuration information related to other UEs cannot be received.
  • the sending of indication information by the network device through high-level parameters is similar to the first sending way of indication information.
  • the related description in the first sending way of indication information please refer to the related description in the first sending way of indication information, which will not be repeated here.
  • the second way of sending indication information the network device sends indication information to the terminal through the PDCCH.
  • the network device can extend the field of the DCI domain by sending indication information to the terminal through the PDCCH, so that the expanded field is indication information, which is used to indicate the time domain offset.
  • the fields of the extended DCI field may include, but are not limited to, the following extension modes: DCI field extension mode 1: Add a new information field to the DCI to indicate the time domain offset.
  • n is the number of terminals receiving broadcast/multicast/multicast PDCCH.
  • Each sub-information in the first information field carries the offset corresponding to the first parameter and is only associated with one UE ID; the second information field carries the offset corresponding to the second parameter and is only associated with one UE ID Associated.
  • the above-mentioned extension method one includes the following three cases: only add the first information field to the DCI of broadcast/multicast/multicast PDCCH, and only add the second information to the DCI of broadcast/multicast/multicast PDCCH Domain, and adding a first information domain and a second information domain to the DCI of the broadcast/multicast/multicast PDCCH.
  • the first two cases are described in detail below, the last case is similar to the first two cases, please refer to the related description.
  • the DCI field of the broadcast/multicast/multicast PDCCH includes the first information field
  • the broadcast/multicast/multicast PDCCH is used by the network device to send the same information to multiple terminals, the first information field of the PDCCH is received.
  • a terminal can obtain the first offset from the first sub-information field in the first information field for determining the time domain resource of the first PUCCH
  • the second terminal receiving the PDCCH can obtain the first offset from the first information field in the first information field.
  • the second offset is acquired in the second sub-information field and used to determine the second PUCCH time domain resource.
  • the first offset and the second offset are respectively the offsets corresponding to the first parameters dedicated to the first terminal and the second terminal.
  • the first offset and the second offset are irrelevant, so the first The time domain resources of the first PUCCH and the second PUCCH respectively determined by the first terminal and the second terminal are different.
  • the DCI field of the broadcast/multicast/multicast PDCCH includes the second information field
  • the broadcast/multicast/multicast PDCCH is used by the network device to send the same information to multiple terminals, the first information field of the PDCCH is received.
  • the three terminals can obtain the third offset from the third sub-information field in the second information field to determine the time-domain resource of the third PUCCH
  • the fourth terminal receiving the PDCCH can obtain the third offset from the fourth sub-information field
  • the fourth offset is used to determine the fourth PUCCH time domain resource.
  • the third offset and the fourth offset are respectively the offsets corresponding to the second parameters dedicated to the third terminal and the fourth terminal.
  • the third offset and the fourth offset are irrelevant, so the first The time domain resources of the third PUCCH and the fourth PUCCH respectively determined by the three terminals and the fourth terminal are different.
  • DCI domain extension method 2 Add a field to the existing information domain in the DCI to indicate the time domain offset.
  • the information domain where the first parameter and the second parameter are located is extended to indicate the corresponding time domain offset. Specifically, if the time domain offset is the offset corresponding to the first parameter, a new field is added to the information domain where the first parameter is located, and the newly added field is used to indicate c fields, and each field includes b One bit, one field indicates the offset corresponding to one first parameter. If the time domain offset is the offset corresponding to the second parameter, a new field is added to the information field where the second parameter is located. The newly added field is used to indicate c fields, and each field includes b bits. One field indicates the offset corresponding to one second parameter. Wherein, similarly, c is the number of terminals receiving the broadcast/multicast/multicast PDCCH, and b is the number of bits indicating the offset corresponding to the first parameter or the second parameter to a terminal.
  • the specific expansion method of the K1 domain is as described in step 201 above.
  • the expansion method of the PRI domain is similar to that of the K1 domain.
  • d is the number of bits in the existing PRI field, similar to the extension of the K1 field above, and c is to receive the broadcast/multicast/multicast
  • the number of PDCCH terminals, b is the number of bits indicating the offset corresponding to the second parameter to one terminal.
  • the PRI field is expanded from 4 bits to (4+3*4) bits, and the expanded PRI field can indicate the second parameters of 3 terminals
  • the corresponding offset, and the offset corresponding to each second parameter is indicated by using 4 bits.
  • the K1 field and the PRI field can also be extended at the same time to indicate the offset corresponding to the first parameter and the offset corresponding to the second parameter at the same time through DCI, where the K1 field and the PRI The extension of the domain is as described above.
  • the number of sub-information fields in the extended first information field, the number of sub-information fields in the second information field, the number of new fields in the K1 field, and the number of fields in the PRI field can be less than or equal to c. It is easy to understand that when c terminals may have the same offset corresponding to the first parameter, there may also be a case where the offset corresponding to the second parameter is the same. In this case, a sub-information field or a newly added field may be used to indicate two or more terminals with the same offset corresponding to the first parameter or the second parameter.
  • the offset corresponding to the first parameter is obtained by modulo 2 of the terminal identifier UE ID, and the c sub-information fields can be used to indicate the offset corresponding to the first parameter in the c terminals. For example, if there are 10 terminals, there are 10 offsets at most. If the modulo 2 is taken, there are 5 offsets.
  • the time domain offset includes at least one time unit, and the unit of the time unit may be: a time slot, a sub-slot, a mini-slot, or an orthogonal frequency division multiplexing symbol, etc., It can also be other units of measurement.
  • the time domain offset can be used to characterize the offset of the time domain length of the time slot, sub-slot, mini-slot, or symbol level as the basic unit. In one embodiment, it can also be a relative unit. Offset.
  • the network device sends instruction information to the terminal through high-level signaling, the network device also needs to perform the following step 202. If the network device sends instruction information to the terminal through the PDCCH, the network device may not repeat the following Step 202.
  • the network device determines a time domain offset.
  • the time domain offset is obtained from the terminal identification.
  • the time domain offset dedicated to each terminal is obtained from the terminal identifier corresponding to each terminal.
  • the time domain offset is obtained by modulo the terminal identifier.
  • the terminal identifier is 1, 3, 5, 7, 9; the time domain offset obtained after modulo 4 is the terminal identifier: 1, 3, 1, 3, 1.
  • the calculation method of the time-domain offset calculated from the terminal identifier includes but is not limited to modulo operation, and other similar calculation methods (such as remainder operation) or corresponding relationships can also be used. This application does not do this Any restrictions.
  • the network device sends a PDCCH to the terminal, where the PDCCH is used to schedule the physical downlink shared channel PDSCH.
  • the PDCCH includes a K1 field, and the K1 field is used to indicate the first parameter.
  • the PDCCH includes a PRI field, and the PRI field carries the second parameter, or the PRI field is used to indicate the second parameter. It should be noted that if the K1 domain is not included in the PDCCH, the network device also needs to configure the first parameter for the terminal through high-level signaling or high-level parameters. For example, the network device configures the first parameter for the terminal through RRC signaling.
  • the PDCCH may also include indication information, such as a time domain offset. If the PDCCH does not include the time domain offset, the network device sends indication information to the terminal through high-level signaling; for details, please refer to the description of the first indication mode in step 201 above. It should be noted that when the time domain offset is carried in the PDCCH, the PDCCH can indicate the time domain offset through the above-mentioned first information field or the second information field, or the information field in the existing PDCCH can be reused. It is also possible to add a new field in the information field of the existing PDCCH specifically to indicate the determination of the time domain offset of the PUCCH resource, and there is no restriction in this application.
  • indication information such as a time domain offset
  • the PDCCH is used for broadcast/multicast/multicast transmission.
  • the UE determines the PUCCH time domain resource carrying the feedback information HARQ according to the first parameter, the second parameter, and the offset, so that the PDCCH corresponding to the PUCCH received by the UE meets the requirement that the PDCCH is detected by the terminal in the common search space. , Or, satisfies that the PDCCH is scrambled by the group radio network temporary identification G-RNTI.
  • the terminal determines the time unit of PUCCH according to the first parameter, namely the value of the K1 field, and determines the PUCCH time domain according to the second parameter, the value of the PRI field and its offset-PRI Resource; or, the terminal determines the time unit where the PUCCH is located according to the first parameter, that is, the value of the K1 field and its offset-K1, and determines the PUCCH time domain resource according to the second parameter, that is, the value of the PRI field.
  • the terminal if the PDCCH is used for unicast transmission. Specifically, the PDCCH is scrambled by the terminal's dedicated wireless network temporary identification RNTI.
  • the terminal-specific RNTI may include but is not limited to: C-RNTI, CS-RNTI, and MCS-C-RNTI.
  • the terminal does not determine the PUCCH time domain resource according to the time domain offset. Specifically, the terminal determines the time unit where the PUCCH is located according to the value of the K1 field, and determines the PUCCH time domain resource according to the value of the PRI field.
  • the terminal determining the time unit where the PUCCH is located according to the first parameter and its offset may be the association between the state indicated by the terminal according to the bit corresponding to the first parameter and the parameter value of the first parameter The relationship determines the parameter value of the first parameter. Similarly, the terminal may determine that the first parameter corresponds according to the association relationship between the bit state corresponding to the offset corresponding to the first parameter and the parameter value of the offset corresponding to the first parameter. The parameter value of the offset. Furthermore, the terminal determines the time unit where the PUCCH is located according to the first parameter and the corresponding offset of the first parameter.
  • Table 1 the relationship between the state indicated by the bit of the first parameter and the parameter value is shown in Table 2, which is the state and parameter value indicated by the bit of the offset corresponding to the first parameter.
  • Tables 1 and 2 the first parameter and the offset corresponding to the first parameter are all described by using 3 bits as an example.
  • the number of bits of the first parameter and the offset corresponding to the first parameter are indicated.
  • the number of bits of the shift amount can be the same or different.
  • the terminal determining the time unit where the PUCCH is located according to the first parameter and the corresponding offset of the first parameter may include: the terminal directly determining the time unit where the PUCCH is located according to the first parameter and the corresponding offset of the first parameter, or The terminal first performs conversion according to at least one parameter value in the first parameter and the offset corresponding to the first parameter, and determines the time unit where the PUCCH is located based on the conversion result.
  • the terminal determines that the first parameter is 8, and the offset corresponding to the first parameter is The shift amount is 2. If the time unit corresponding to the first parameter is a time slot, and the time unit corresponding to the first parameter is a sub-slot, the terminal may determine sub-slot 2 in time slot 8 as the time domain resource where the PUCCH is located. If the time units corresponding to the first parameter and its offset are all time slots or sub-slots, at this time, the terminal may also determine time slot 10 or sub-slot 10 as the time unit where the PUCCH is located. It is easy to understand that the bit state described in this application has the same meaning as a logical value, and a logical value corresponds to a bit state.
  • the terminal determines that the first parameter is 8, and the terminal determines the first parameter The corresponding offset is 2, and the offset corresponding to the first parameter is modulo 2 to obtain a modulo result of 0.
  • the terminal can determine sub-slot 0 in time slot 8 as PUCCH It is easy to understand where the time domain resource is located, and sub-slot 0 can represent the first sub-slot in a time slot. If the time units corresponding to the first parameter and its offset are all time slots or sub-slots, at this time, the terminal may also determine time slot 8 or sub-slot 8 as the time domain resource where the PUCCH is located.
  • the terminal determining the time unit of the PUCCH according to the second parameter and its offset may be the difference between the state indicated by the terminal according to the bit corresponding to the second parameter and the parameter value of the second parameter.
  • the association relationship between the second parameter determines the parameter value of the second parameter.
  • the terminal may determine the second parameter according to the association relationship between the bit state corresponding to the offset corresponding to the second parameter and the parameter value of the offset corresponding to the second parameter.
  • the parameter value of the offset corresponding to the second parameter determines the PUCCH time domain resource according to the second parameter and the offset corresponding to the second parameter. It should be noted that, here, the terminal determines the PUCCH time domain resource according to the offset corresponding to the second parameter and the second parameter and determines the time unit where the PUCCH is located according to the offset corresponding to the first parameter and the first parameter.
  • the terminal determining the PUCCH time domain resource according to the second parameter and its offset may include: the terminal adds the logical value of the bit corresponding to the second parameter and the logical value of the bit corresponding to the offset to obtain the PUCCH time domain resource; Or, the terminal converts and adds the logical value of the bit corresponding to the second parameter and the logical value of the bit corresponding to the offset to obtain the PUCCH time domain resource. For example, the logical value is converted from binary to decimal and then q Take the modulus or take the remainder to obtain the PUCCH time domain resource, where q is a positive integer.
  • the terminal can determine the PUCCH according to the sum of the two logical values (2+1)
  • the time domain resource or, the terminal may also determine the PUCCH time domain resource based on the value 1 obtained by modulating 2 after converting the two logical values into a decimal system.
  • the network device sends the PDSCH scheduled by the PDCCH to the terminal.
  • the PDCCH also carries the time domain information of the PDSCH sent by the network equipment: the offset between the time unit where the PDCCH is located and the time unit where the PDSCH is located, where the time unit can be a time slot, sub-slot, mini-slot, or orthogonal frequency division multiplexing Symbols, subframes.
  • the terminal determines the PUCCH time domain resource according to the first parameter, the second parameter, and the time domain offset.
  • a PUCCH resource determination method If the time domain offset corresponds to the first parameter, the terminal determines the PUCCH time domain resource, and the following steps 1 to 3 can be performed.
  • Step 1 The terminal determines, according to the first parameter and the offset corresponding to the first parameter, the time unit where the PUCCH for sending the feedback information (such as HARQ-ACK) corresponding to the PDSCH is located.
  • the time unit corresponding to the first parameter and its offset is a time slot as an example
  • the PDCCH instructs the terminal to send PDSCH on time slot n
  • the first parameter is k. If the time domain offset corresponding to the first parameter is m, m, and n are integers, the terminal determines that the time unit of the PUCCH for sending HARQ-ACK is a time slot (n+k+m); if the time domain offset corresponding to the first parameter is i, the terminal determines to send The time unit of the HARQ-ACK PUCCH is the time slot (n+k+i).
  • time unit is a sub-slot as an example, and the above-mentioned step one may specifically be:
  • the terminal determines the sub-slot where the PUCCH for transmitting HARQ is located through the value of the K1 field in the DCI or the K1 value configured by RRC signaling.
  • the K1 field is used to indicate the offset from the sub-slot where the PDSCH is located to the sub-slot where HARQ is located. shift.
  • the terminal obtains the offset of the first parameter, that is, the offset of K1 according to the newly added sub-information field or field; finally, the terminal determines the PUCCH time domain resource according to the value of the K1 field and the offset of K1.
  • the UE detects that the PDCCH schedules PDSCH to be transmitted in sub-slot n, if the value of the K1 field in the DCI is 1, and the offset of K1 is 1, the UE determines to transmit in sub-slot (n+1+1) The PUCCH that carries the feedback information HARQ-ACK; but if the DCI does not contain the K1 field, the terminal obtains the first parameter through the high-level parameter.
  • the high-level parameter is dl-DataToUL-ACK, in the sub-slot (n+k In +1), a PUCCH carrying feedback information HARQ-ACK is sent, where k is configured by a higher layer parameter.
  • Step 2 The terminal selects the PUCCH resource set.
  • the terminal selects the PUCCH resource set according to the payload of the HARQ-ACK information to be transmitted.
  • the above-mentioned step 2 may specifically include: the terminal selects the PUCCH resource set according to the load size O UCI of the HARQ-ACK information that needs to be transmitted in the time slot.
  • a terminal can configure up to 4 PUCCH resource sets.
  • the first PUCCH resource set supports a maximum of 32 PUCCH resources, and the remaining PUCCH resource sets support a maximum of 8 PUCCH resources.
  • Step 3 The terminal determines a PUCCH resource in the PUCCH resource set determined in step 2 to send HARQ-ACK information according to the second parameter.
  • the above step 3 may specifically include: the terminal obtains the value of the second parameter from the PRI field, the value of the second parameter corresponds to a PUCCH resource index, and each index corresponds to a PUCCH resource, and the PUCCH resource is pre-configured by high-level parameters; the terminal According to the value of the second parameter, the corresponding PUCCH time domain resource is determined from the PUCCH resource set determined in step 2 above.
  • the value of the second parameter obtained by the terminal is 0, and the PUCCH resource set determined in step 2 above is the first PUCCH resource set supporting 32 PUCCH resources, and the terminal determines that the PUCCH resource used to send feedback information is the first PUCCH resource set.
  • the terminal determines the PUCCH time domain resource, and the following steps 4 to 6 can be performed.
  • Step 4 The terminal determines, according to the first parameter, the time unit where the PUCCH for sending the feedback information (such as HARQ-ACK) corresponding to the PDSCH is located.
  • the PUCCH for sending the feedback information such as HARQ-ACK
  • the time unit corresponding to the first parameter and its offset is taken as an example
  • the PDCCH instructs the terminal to send the PDSCH on the time slot n
  • the first parameter is k
  • the terminal determines the time when the PUCCH for HARQ-ACK is sent
  • the unit is a time slot (n+k).
  • the time unit corresponding to the first parameter and its offset is taken as an example of a sub-slot.
  • the above-mentioned step 4 may specifically be: PDCCH instructs the terminal to send PDSCH on sub-slot n, and the terminal passes the K1 field in the DCI Or the K1 value configured by RRC signaling determines that the value of the first parameter is k, where the K1 field is used to indicate the offset from the sub-slot where the PDSCH is located to the sub-slot where the HARQ is located; and the terminal determines the sub-time where the PUCCH for sending HARQ is located
  • the slot is a sub-slot (n+k).
  • Step 5 The terminal selects a PUCCH resource set according to the payload of the HARQ-ACK information to be transmitted.
  • Step five is similar to the above step two, and its related description can refer to the related description in the above step two, which will not be repeated here.
  • Step 6 The terminal determines the PUCCH time domain resource according to the second parameter and the offset corresponding to the second parameter.
  • the above step 6 may specifically be: the terminal obtains the value of the second parameter according to the PRI field, and obtains the offset of the second parameter according to the newly added sub-information domain or the newly added PRI field; and the terminal according to The value of the second parameter and the offset of the second parameter are determined to determine the corresponding PUCCH time domain resource in the PUCCH resource set determined in step five.
  • the value of the second parameter acquired by the terminal is 0, the offset of the second parameter is j, and the PUCCH resource set determined in step 2 above is the first PUCCH resource set that supports 32 PUCCH resources, the terminal determines to use
  • the PUCCH resource used to send the feedback information is the (0+j+1)th PUCCH resource in the first PUCCH resource set.
  • Another PUCCH resource determination method in the embodiment of the present application may be: the terminal determines the PUCCH resource according to the first parameter and the offset corresponding to the first parameter, and the second parameter and the offset corresponding to the second parameter. Specifically, in this case, the terminal can perform step 1, step 2, and step 6 in sequence, which will not be repeated here.
  • the terminal receives the indication information sent by the network device.
  • the indication information is used to indicate the time domain offset.
  • the time domain offset is used by the terminal to determine the PUCCH time domain resource. It should be understood that for any terminal, In other words, the time domain offset of each terminal is dedicated, independently configured, and does not affect each other, rather than common to all terminals. Therefore, each terminal is based on the time domain offset, the first parameter, and the second parameter.
  • the parameters determine the PUCCH time domain resources, which can make the PUCCH time domain resources of each terminal staggered in the time domain, and can reduce the number of PUCCHs transmitted by the terminal at the same time, thereby reducing system load and improving system performance.
  • offset#0, offset#1, offset#2, and offset#3 in the following scenarios respectively represent the offset values PUCCH#1 corresponding to UE#1, UE#2, UE#3, and UE#4, PUCCH#2, PUCCH#3, and PUCCH#4 respectively represent the first to fourth PUCCH resources in a PUCCH resource set.
  • the time domain offset is the offset corresponding to the first parameter.
  • the offset values of K1 configured by the network equipment for UE#1, UE#2, UE#3, and UE#4 are offset#0, offset#1, offset#2, and offset#3, respectively.
  • UE#1, UE#2, UE#3, and UE#4 receive the second PDCCH of the same multicast transmission.
  • UE#1, UE#2, UE#3, and UE#4 all determine the PUCCH transmission in the first sub-slot according to the PDSCH carried on the second PDCCH to the HARQ feedback timing indicator field, and UE#1 according to the K1 offset value If it is 0, it is determined that the first sub-slot is the sub-slot where UE#1 PUCCH is located; UE#2 determines that the second sub-slot is the sub-slot where UE#1 PUCCH is located according to the K1 offset value; UE#3 is based on The K1 offset value is 2, and the third sub-slot is determined to be the sub-slot where UE#1 PUCCH is located; UE#4 determines that the fourth sub-slot is the sub-slot where UE#1 PUCCH is located according to the K1 offset value of 3.
  • UE#1, UE#2, UE#3, and UE#4 determine the corresponding PUCCH resource set as the first PUCCH resource set according to the size of the feedback information load.
  • UE#1, UE#2, UE#3, and UE#4 determine PUCCH#1 to transmit the feedback information HARQ corresponding to the PDSCH scheduled by the PDCCH for UE#1 according to the PRI field carried on the first PDCCH and the high-layer signaling/parameter configuration.
  • PUCCH Since there is no offset corresponding to the second parameter, UE#1, UE#2, UE#3, and UE#4 all set PUCCH#1 to UE#1 and UE according to the offset corresponding to the second parameter as offset#0. #1, UE#2, UE#3, and UE#4 transmit the feedback information HARQ PUCCH corresponding to the PDSCH scheduled by the PDCCH.
  • UE#1, UE#2, UE#3, and UE#4 are respectively on the PUCCH#1 resource on the first subslot and PUCCH#1 on the second subslot.
  • the feedback information corresponding to the PDSCH is sent on the resource, the PUCCH#1 resource on the third subslot, and the PUCCH#1 resource on the fourth subslot.
  • the feedback information corresponding to the PDSCH sent by UE#1, UE#2, UE#3, and UE#4 that receive the second PDCCH of the same multicast transmission is sent in different sub-slots, so that the PUCCH Staggering in the time domain reduces system load and improves system performance.
  • the time domain offset is the offset corresponding to the second parameter.
  • the network equipment respectively configures the offsets corresponding to the second parameters for UE#1, UE#2, UE#3, and UE#4 as offset#0, offset#1, offset#2, and offset#3, respectively.
  • UE#1, UE#2, UE#3, and UE#4 receive the first PDCCH for scheduling multicast transmission. Among them, UE#1, UE#2, UE#3, and UE#4 all determine that the PUCCH is transmitted in the first sub-slot according to the PDSCH to HARQ feedback timing indication field carried on the first PDCCH.
  • UE#1, UE#2, UE#3, and UE#4 determine the corresponding PUCCH resource set as the first PUCCH resource set according to the size of the feedback information load.
  • UE#1, UE#2, UE#3, and UE#4 determine PUCCH#1 to transmit the feedback information HARQ corresponding to the PDSCH scheduled by the PDCCH for UE#1 according to the PRI field carried on the first PDCCH and the high-layer signaling/parameter configuration. PUCCH.
  • UE#1 determines PUCCH#1 as the PUCCH corresponding to the feedback information HARQ corresponding to the PDSCH scheduled by UE#1 according to the offset corresponding to the second parameter as offset#0; UE#2 determines the offset corresponding to the second parameter according to the HARQ The PUCCH#1 determined by offset#1 and the PRI field determines that PUCCH#2 is the PUCCH of HARQ for UE#2 to transmit the feedback information corresponding to the PDSCH scheduled by the PDCCH; UE#3 according to the offset corresponding to the second parameter offset#2 and PRI field The determined PUCCH#2 determines that PUCCH#3 transmits the feedback information HARQ PUCCH corresponding to the PDSCH scheduled by the PDCCH for UE#3; UE#4 is determined according to the offset corresponding to the second parameter offset#3 and PUCCH#3 determined by the PRI field PUCCH#4 is the PUCCH of HARQ that UE#4 transmits the feedback information HARQ
  • UE#1, UE#2, UE#3, and UE#4 After receiving the PDSCH sent by the network device, UE#1, UE#2, UE#3, and UE#4 respectively have PUCCH#1 resources, PUCCH#2 resources, PUCCH#3 resources, and PUCCH#3 resources on the first subslot.
  • the feedback information corresponding to the PDSCH is sent on the PUCCH#4 resource.
  • the feedback information corresponding to the PDSCH sent by UE#1, UE#2, UE#3, and UE#4 that receive the first PDCCH of the same multicast transmission is on different PUCCH resources in the same subslot Send, make the PUCCH staggered in the time domain, reduce the system load, and improve the system performance.
  • the time domain offset can be obtained including: the offset corresponding to the first parameter, and the application scenario of the offset corresponding to the second parameter.
  • the time domain offset may be obtained from the terminal identification, and its specific operation mode may be modulo operation, remainder operation, and so on.
  • the offset corresponding to the first parameter is obtained by modulo the UE ID. If the UE ID is modulo 2 to obtain the offset corresponding to the first parameter of the corresponding terminal, UE#1 and The offset corresponding to the first parameter of UE#3 is the same as offset#1; the offset corresponding to the first parameter of UE#2 and UE#4 is offset#0, in this case, UE# 1 and UE#3 finally determined the same sub-slot for sending feedback information corresponding to the PDSCH.
  • UE#2 and UE#4 finally determined the same sub-slot for sending feedback information corresponding to the PDSCH, so
  • the sub-slots corresponding to the PDCCH of some terminals of UE#1, UE#2, UE#3, and UE#4 can be staggered, which reduces system load and improves system performance.
  • the offset corresponding to the second parameter is obtained by modulo the UE ID. If the UE ID is modulo 2 to obtain the offset corresponding to the second parameter of the corresponding terminal, UE#1 The offset corresponding to the second parameter of UE#3 is the same as 1; the offset corresponding to the second parameter of UE#2 and UE#4 is offset#0. In this case, UE#1 and The PUCCH that UE#3 finally determines to send the feedback information corresponding to the PDSCH is the same.
  • the PUCCH that UE#2 and UE#4 finally determine to send the feedback information corresponding to the PDSCH is the same, so that UE#1,
  • the PUCCHs of some terminals in UE#2, UE#3, and UE#4 are staggered in the same sub-slot, which reduces system load and improves system performance.
  • PUCCH#1, PUCCH#2, PUCCH#3, and PUCCH#4 have different frequency domain or code domain (time domain orthogonal cover codes, cyclic shift) configurations.
  • FIG. 3 is a schematic diagram of a composition structure of a terminal provided in an embodiment of this application.
  • the terminal 300 includes: a receiving module 301 and a processing module 302; the receiving module 301 is used to receive indication information, the indication information is used to indicate the time domain offset; and, to receive the physical downlink control channel PDCCH,
  • the PDCCH is used to schedule the physical downlink shared channel PDSCH, and the physical uplink control channel PUCCH is used to carry the hybrid automatic repeat request HARQ-ACK corresponding to the PDSCH;
  • the processing module 302 is used to schedule the physical downlink shared channel PDSCH according to the first parameter, the second parameter and the
  • the time domain offset determines the PUCCH time domain resource, the first parameter is the offset between the time unit of the PDSCH and the time unit carrying the hybrid automatic repeat request HARQ-ACK, and the second parameter is PUCCH resource indication information .
  • the terminal 300 may further include a sending module 303.
  • the time domain offset is the offset corresponding to the first parameter.
  • the time domain offset is the offset corresponding to the second parameter.
  • the PDCCH satisfies at least one of the following: the PDCCH is scrambled by the group radio network temporary identification G-RNTI, and the PDCCH is detected in a common search space.
  • the processing module 302 is further configured to: if the PDCCH is scrambled by the terminal dedicated wireless network temporary identification RNTI, determine the PUCCH time domain resources.
  • the time domain offset is dedicated to the terminal; the indication information is carried in radio resource control RRC signaling dedicated to the terminal.
  • the time domain offset characterizes at least one time unit, and the time unit includes: a time slot, a sub-slot, a mini-slot, or an orthogonal frequency division multiplexing symbol.
  • terminal 300 in the embodiment of the present application can perform all operations performed by the terminal in the method embodiment corresponding to FIG. 2, and details are not described herein again.
  • FIG. 4 is a schematic diagram of a composition structure of a network device provided in an embodiment of this application.
  • the network device 400 includes: a sending module 401 and a processing module 402, wherein the sending module 401 is used to send indication information, the indication information is used to indicate a time domain offset; and, to send a physical downlink control channel PDCCH, the PDCCH is used to schedule the physical downlink shared channel PDSCH, and the physical uplink control channel PUCCH is used to carry the hybrid automatic repeat request HARQ-ACK corresponding to the PDSCH; the processing module 402 is used to according to the first parameter and the second parameter And the time domain offset, determine the PUCCH time domain resource, the first parameter is the offset of the time unit of the PDSCH and the time unit of the HARQ-ACK bearing hybrid automatic repeat request, and the second parameter is the PUCCH resource Instructions.
  • the network device 400 may further include a receiving module 403.
  • the time domain offset is the offset corresponding to the first parameter
  • the first parameter is the time unit of the PDSCH and the time for carrying the HARQ-ACK of the hybrid automatic repeat request.
  • the offset of the unit is the offset corresponding to the first parameter
  • the time domain offset is an offset corresponding to a second parameter
  • the second parameter is PUCCH resource indication information
  • the PDCCH satisfies at least one of the following: the PDCCH is scrambled by the group radio network temporary identification G-RNTI, and the PDCCH is detected in a common search space.
  • the method further includes: if the PDCCH is scrambled by the terminal dedicated wireless network temporary identification RNTI, the processing module 402 does not determine the PUCCH time domain based on the time domain offset Resources. For example, the processing module 402 determines the PUCCH time domain resource according to the first parameter and the second parameter.
  • the time domain offset is dedicated to the terminal; the indication information is carried in radio resource control RRC signaling dedicated to the terminal.
  • the time domain offset characterizes at least one time unit, and the time unit includes: a time slot, a sub-slot, a mini-slot, or an orthogonal frequency division multiplexing symbol.
  • the processing module 402 in the embodiment of the present application controls the sending module 401 or the receiving module 403 to perform the operation in any one of the foregoing implementation manners by invoking a corresponding instruction.
  • the network device 400 in the embodiment of the present application can perform all operations performed by the network device in the method embodiment corresponding to FIG. 2 above, and details are not described herein again.
  • the terminal and the network device in the embodiments of the present application may also be described in other modular ways.
  • the terminal and the network device may include units or modules corresponding to each function or step or operation in the above method.
  • the unit or module may be realized by software, or by hardware, or by the combination of hardware and software, so as to support the terminal and network device to execute or realize the technical solution of this embodiment, which will not be repeated in the embodiment of this application.
  • the terminal 500 includes:
  • the receiver 501, the transmitter 502, the processor 503, and the memory 504 (the number of the processors 503 in the terminal 500 may be one or more, and one processor is taken as an example in FIG. 5).
  • the receiver 501, the transmitter 502, the processor 503, and the memory 504 may be connected by a bus or in other ways. In FIG. 5, a bus connection is taken as an example.
  • the memory 504 may include a read-only memory and a random access memory, and provides instructions and data to the processor 503. A part of the memory 504 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 504 stores an operating system and operating instructions, executable modules or data structures, or a subset of them, or an extended set of them.
  • the operating instructions may include various operating instructions for implementing various operations.
  • the operating system may include various system programs for implementing various basic services and processing hardware-based tasks.
  • the processor 503 controls the operation of the terminal, and the processor 503 may also be referred to as a central processing unit (CPU).
  • the various components of the terminal are coupled together through a bus system.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • various buses are referred to as bus systems in the figure.
  • the method disclosed in the foregoing embodiments of the present application may be applied to the processor 503 or implemented by the processor 503.
  • the processor 503 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 503 or instructions in the form of software.
  • the aforementioned processor 503 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 504, and the processor 503 reads the information in the memory 504, and completes the steps of the foregoing method in combination with its hardware.
  • the receiver 501 can be used to receive input digital or character information, and to generate signal input related to the terminal's related settings and function control.
  • the transmitter 502 can include display devices such as a display screen.
  • the transmitter 502 can be used to output digital or character information through an external interface. Character information.
  • the processor 503 is configured to execute the aforementioned terminal execution wireless communication method.
  • the network device 600 includes:
  • the receiver 601, the transmitter 602, the processor 603, and the memory 604 (the number of the processors 603 in the network device 600 may be one or more, and one processor is taken as an example in FIG. 6).
  • the receiver 601, the transmitter 602, the processor 603, and the memory 604 may be connected by a bus or in other ways, where the bus connection is taken as an example in FIG. 6.
  • the memory 604 may include a read-only memory and a random access memory, and provides instructions and data to the processor 603. A part of the memory 604 may also include NVRAM.
  • the memory 604 stores an operating system and operating instructions, executable modules or data structures, or a subset of them, or an extended set of them.
  • the operating instructions may include various operating instructions for implementing various operations.
  • the operating system may include various system programs for implementing various basic services and processing hardware-based tasks.
  • the processor 603 controls the operation of the network device, and the processor 603 may also be referred to as a CPU.
  • the various components of the network device are coupled together through a bus system.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • various buses are referred to as bus systems in the figure.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 603 or implemented by the processor 603.
  • the processor 603 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 603 or instructions in the form of software.
  • the aforementioned processor 603 may be a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 604, and the processor 603 reads the information in the memory 604, and completes the steps of the foregoing method in combination with its hardware.
  • the processor 603 is configured to execute the aforementioned wireless communication method executed by the network device.
  • the chip includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute the computer-executable instructions stored in the storage unit, so that the chip in the terminal executes the information transmission method of any one of the foregoing first aspect.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit in the terminal located outside the chip, such as a read-only memory (read-only memory).
  • read-only memory read-only memory
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above may be a general-purpose central processing unit, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the program of the method in the first aspect.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separate.
  • the physical unit can be located in one place or distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines.
  • this application can be implemented by means of software plus necessary general hardware.
  • it can also be implemented by dedicated hardware including dedicated integrated circuits, dedicated CPUs, dedicated memory, Dedicated components and so on to achieve.
  • all functions completed by computer programs can be easily implemented with corresponding hardware.
  • the specific hardware structures used to achieve the same function can also be diverse, such as analog circuits, digital circuits or special-purpose circuits. Circuit etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a computer floppy disk. , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute the methods described in each embodiment of this application .
  • a computer device which can be a personal computer, server, or network device, etc.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种无线通信、终端及网络设备,适用于广播/多播/组播传输中为终端合理分配PUCCH资源,降低系统负载,提高系统性能。该方法包括:终端接收指示信息,该指示信息用于指示时域偏移量;终端接收物理下行控制信道PDCCH,PDCCH用于调度物理下行共享信道PDSCH,PDSCH对应的混合自动重传请求HARQ-ACK被承载于物理上行控制信道PUCCH中;终端根据第一参数、第二参数和时域偏移量,确定PUCCH时域资源,第一参数为PDSCH的时间单元与承载HARQ-ACK的时间单元的偏移,第二参数是PDCCH中承载的PUCCH资源指示信息。

Description

一种无线通信方法、终端及网络设备 技术领域
本申请涉及通信技术领域,尤其涉及一种无线通信方法、终端和网络设备。
背景技术
网络设备将物理下行共享信道(physical downlink shared channel,PDSCH)承载的下行数据发送至终端。终端收到后,需要向网络设备发送PDSCH的混合自动重传请求(hybrid automatic repeat request,HARQ),以告知网络设备下行数据是否接收正确。HARQ反馈信息承载于物理上行控制信道(physical uplink control channel,PUCCH)资源上。在发送HARQ反馈信息之前,终端需要先确定用于发送HARQ反馈信息的PUCCH时域资源。
目前采用现有的PUCCH资源分配方式确定的PUCCH资源主要用于单播传输,即网络设备向一个终端做数据传输,一个物理下行控制信道(physical downlink control channel,PDCCH)上承载的下行控制信息(downlink control information,DCI)只能确定一个PUCCH时域资源。而广播/多播/组播传输是由网络设备向多个UE做数据传输场景下,可能造成接收同一广播/多播/组播传输的终端在相同时域资源上发送承载HARQ反馈信息的PUCCH,导致网络设备在该时域资源上接收到过大的数据量,引起系统负载过大,系统性能降低。
发明内容
为了解决上述技术问题,本申请实施例中提供了一种无线通信方法、终端和网络设备,用于广播/多播/组播传输下为终端合理分配PUCCH资源,以达到降低系统负载,提高系统性能的技术目的。具体方案如下。
第一方面,本申请实施例中提供了一种无线通信方法,包括:首先,终端接收指示信息,该指示信息用于指示时域偏移量;其次,终端接收物理下行控制信道PDCCH,PDCCH用于调度物理下行共享信道PDSCH,物理上行控制信道PUCCH用于承载PDSCH对应的混合自动重传请求HARQ-ACK;最终,终端根据第一参数、第二参数和时域偏移量,确定PUCCH时域资源,其中第一参数为PDSCH的时间单元与承载HARQ-ACK的时间单元的偏移,第二参数是PDCCH中承载的PUCCH资源指示信息。可选地,第一参数承载于DCI中,或者第一参数承载于无线资源控制RRC信令中。
在上述第一方面的技术方案中,该指示信息用于指示时域偏移量,该时域偏移量用于确定PUCCH时域资源,对于任意一个终端而言,终端的时域偏移量均是专用的,独立配置的,互不影响的,因此,终端根据时域偏移量、第一参数和第二参数确定PUCCH时域资源,可以使得终端的PUCCH时域资源在时域上是非全部重叠的、错开的,可以减少同一时刻终端传输的PUCCH数量,从而降低系统负载,提高系统性能。
需要说明的是,上述的第二参数为PUCCH资源指示信息,可以理解为,第二参数是PUCCH资源指示信息指示的,或,第二参数是由根据PUCCH资源指示信息得到的,或者第二参数是指映射在PUCCH资源指示域上的由RRC信令配置的高层参数。
在第一方面的一种可能的实现方式中,上述的时域偏移量可以是第一参数对应的偏移量。具体地,第一参数为K1,表示PDSCH所在的时间单元与承载HARQ-ACK的PUCCH所在的时 间单元的偏移,K1可以承载于DCI中,或,K1也可以是高层信令配置的。可选地,K1对应的偏移量可以承载于RRC信令、或DCI中。
在第一方面的另一种可能的实现方式中,上述的时域偏移量可以是第二参数对应的偏移量。具体地,第二参数对应的偏移量也可以承载于RRC信令、或DCI中。可选地,第二参数对应的偏移量可以承载于第二参数所在的DCI中,例如,第二参数由DCI中的PUCCH资源指示域指示,第二参数对应的偏移量也由DCI中的PUCCH资源指示域指示。
在第一方面的一种可能的实现方式中,若PDCCH满足以下至少一项:PDCCH是由组无线网络临时标识G-RNTI加扰的、PDCCH是在公共搜索空间中检测的,终端根据第一参数、第二参数和时域偏移量,确定PUCCH时域资源。PDCCH调度的PDSCH为广播/多播/组播传输。G-RNTI用于标识广播/多播/组播业务。PDCCH在公共搜索空间中检测可以理解为,接收同一广播/多播/组播传输的UE可以在同一搜索空间检测该PDCCH。
在第一方面的一种可能的实现方式中,上述方法还包括:若PDCCH是由终端专用无线网络临时标识RNTI加扰的,终端不根据时域偏移量,确定PUCCH时域资源。终端根据第一参数和第二参数确定PUCCH时域资源。具体地,终端根据第一参数确定HARQ-ACK所在时间单元,进一步终端根据第二参数在PUCCH资源集合中确定PUCCH的时域资源,其中PUCCH资源集合可以是终端根据需要传输的HARQ-ACK信息的负载大小选取的。
可选地,终端专用的无线网络临时标识(radio network temporary identifier,RNTI)可以包括:小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)、配置调度无线网络临时标识(configured scheduling-radio network temporary identifier,CS-RNTI)、和调制编码方式小区无线网络临时标识(modulation and coding scheme-cell-radio network temporary identifier,MCS-C-RNTI)。
在第一方面的一种可能的实现方式中,时域偏移量是终端专用的,指示信息承载于终端专用的无线资源控制RRC信令中。可选地,时域偏移量可以与终端标识UE ID相关联,一个时域偏移量对应一个接收广播/多播/组播传输的终端的UE ID。
在第一方面的一种可能的实现方式中,时域偏移量表征至少一个时间单元,时间单元包括:时隙、子时隙、微时隙、或正交频分复用符号。
在第一方面的一种可能的实现方式中,时域偏移量是由终端标识UE ID确定的。UE ID和时域偏移量之间具有对应关系,UE ID可以通过对应关系得到时域偏移量。例如,时域偏移量可以是由UE ID取模或取余得到的。
第二方面,本申请实施例中提供了一种无线通信方法,包括:首先,网络设备发送指示信息,指示信息用于指示时域偏移量;其次,网络设备发送物理下行控制信道PDCCH,PDCCH用于调度物理下行共享信道PDSCH,物理上行控制信道PUCCH用于承载PDSCH对应的混合自动重传请求HARQ-ACK;最后,网络设备根据第一参数、第二参数以及时域偏移量,确定PUCCH时域资源,其中第一参数为PDSCH的时间单元与承载HARQ-ACK时间单元的偏移,第二参数是PUCCH资源指示信息。可选地,第一参数承载于DCI中,或第一参数承载于RRC信令中。
在上述第二方面的技术方案中,网络设备为终端配置时域偏移量,该时域偏移量用于确定PUCCH时域资源,对于任意一个终端而言,网络设备为每个终端配置的时域偏移量均是 专用的,独立配置的,互不影响的,因此,网络设备根据时域偏移量、第一参数和第二参数确定PUCCH传输资源,可以使得终端的UCCH时域资源在时域上是非全部重叠的、错开的,可以减少同一时刻终端传输的PUCCH数量,从而降低系统负载,提高系统性能。
需要说明的是,上述的第二参数为PUCCH资源指示信息,可以理解为,第二参数是PUCCH资源指示信息指示的,或,第二参数是根据PUCCH资源指示信息得到的,或者第二参数是指映射在PUCCH资源指示域上的由RRC信令配置的高层参数。
在第二方面的一种可能的实现方式中,时域偏移量为第一参数对应的偏移量。
在第二方面的一种可能的实现方式中,时域偏移量为第二参数对应的偏移量。
上述第二方面中关于第一参数和第二参数的详细描述,可参阅上述第一方面中对第一参数和第二参数的其他相关描述,此处不再赘述。
在第二方面的一种可能的实现方式中,PDCCH满足以下至少一项:PDCCH是由组无线网络临时标识G-RNTI加扰的、PDCCH是在公共搜索空间中检测的。网络设备根据第一参数、第二参数和时域偏移量,确定PUCCH时域资源。PDCCH调度的PDSCH为广播/多播/组播传输。G-RNTI用于标识广播/多播/组播业务。PDCCH在公共搜索空间中检测可以理解为,接收同一广播/多播/组播传输的UE可以在同一搜索空间检测该PDCCH。
在第二方面的一种可能的实现方式中,上述方法还包括:若PDCCH是由终端专用无线网络临时标识RNTI加扰的,网络设备不根据时域偏移量,确定PUCCH时域资源。网络设备根据第一参数和第二参数确定PUCCH时域资源。具体地,网络设备根据第一参数确定PDCCH对应的HARQ-ACK所在的时间单元,进一步网络设备根据第二参数确定PUCCH的时域资源。
可选地,终端专用的RNTI可以包括:小区无线网络临时标识C-RNTI、配置调度无线网络临时标识CS-RNTI、和调制编码方式小区无线网络临时标识MCS-C-RNTI。
在第二方面的一种可能的实现方式中,时域偏移量是终端专用的;指示信息承载于终端专用的无线资源控制RRC信令。可选地,时域偏移量可以与终端标识UE ID相关联,一个时域偏移量对应一个接收广播/多播/组播传输的终端的UE ID。
在第二方面的一种可能的实现方式中,时域偏移量表征至少一个时间单元,时间单元包括:时隙、子时隙、微时隙、或正交频分复用符号。
在第二方面的一种可能的实现方式中,域偏移量是由终端标识UE ID确定的。UE ID和时域偏移量之间具有对应关系,UE ID可以通过对应关系得到时域偏移量。例如,时域偏移量可以是由UE ID取模或取余得到的。
在第二方面的各种可能的实现方式中与上述第一方面中各种可能的实现方式相对应,关于第二方面种任意一种可能的实现方式的相关描述,可参阅上述第一方面中对应的实现方式中的相关描述,此处不再赘述。
第三方面,本申请实施例中提供了一种终端,包括:接收模块,用于接收指示信息,指示信息用于指示时域偏移量;以及,接收物理下行控制信道PDCCH,PDCCH用于调度物理下行共享信道PDSCH,物理上行控制信道PUCCH用于承载所述PDSCH对应的混合自动重传请求HARQ-ACK;处理模块,用于根据第一参数、第二参数和时域偏移量,确定PUCCH时域资源,其中第一参数为PDSCH的时间单元与承载HARQ-ACK的时间单元的偏移,第二参数是PUCCH资 源指示信息。
需要说明的是,上述第三方面中终端对应的有益效果可参阅上述第一方面中无线通信方法中的有益效果,此处不再赘述。
上述第一方面中无线通信方法中终端的所有操作均可以由第三方面中终端的组成模块(接收模块、处理模块)执行,其具体描述可参阅上述第一方面中可能的实现方式中的相关描述,此处不再赘述。
第四方面,本申请实施例中提供了一种网络设备,包括:发送模块和处理模块,其中发送模块用于:发送指示信息,指示信息用于指示时域偏移量;以及,发送物理下行控制信道PDCCH,PDCCH用于调度物理下行共享信道PDSCH,物理上行控制信道PUCCH用于承载PDSCH对应的混合自动重传请求HARQ-ACK;处理模块用于:根据第一参数、第二参数和时域偏移量确定PUCCH时域资源,其中第一参数为PDSCH的时间单元与承载HARQ-ACK的时间单元的偏移,第二参数是PUCCH资源指示信息。
需要说明的是,上述第四方面中网络设备对应的有益效果可参阅上述第二方面中无线通信方法中的有益效果,此处不再赘述。
上述第二方面中无线通信方法中网络设备的所有操作均可以由第四方面中网络设备的组成模块(发送模块和处理模块)执行;其具体描述可参阅上述第二方面中可能的实现方式中的相关描述,此处不再赘述。
第五方面,本申请实施例中提供了一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第七方面,本申请实施例中还提供了一种通信装置,该通信装置可以包括终端或者芯片等实体,所述通信装置包括:处理器、存储器;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,使得所述通信装置执行如前述第一方面所述的方法。
第八方面,本申请实施例中还提供了一种通信装置,该通信装置可以包括网络设备或者芯片等实体,所述通信装置包括:处理器、存储器;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,使得所述通信装置执行如前述第二方面所述的方法。
附图说明
图1为本申请实施例中提供的通信系统的一个架构示意图;
图2为本申请实施例中提供的无线通信方法的一个实施例示意图;
图3为本申请实施例中提供的终端的一个实施例示意图;
图4为本申请实施例中提供的网络设备的一个实施例示意图;
图5为本申请实施例中提供的终端的另一个实施例示意图;
图6为本申请实施例中提供的网络设备的另一个实施例示意图。
具体实施方式
本申请实施例中提供了一种PUCCH资源确定方法、终端和网络设备,该方法主要适用 于广播/多播/组播传输中为终端合理分配PUCCH资源,以达到降低系统负载,提高系统性能的技术目的。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。本申请实施例中所述的偏移、或偏移量均是指代时域偏移;本申请实施例中所述的资源均是指时域资源。本申请实施例中所述的资源若无特殊说明均是指时域资源,换言之本申请中的“资源”和“时域资源”可以互换。
本申请实施例的技术方案可以应用于各种通信系统,例如:例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。第五代(5Generation,简称:“5G”)通信系统、新空口(new radio,NR)是正在研究当中的下一代通信系统。此外,所述通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参阅图1所示,为本申请实施例中提供的一个移动通信系统的架构示意图。
如图1所示,该移动通信系统包括:核心网设备101、无线接入网设备102和至少一个终端,图1中仅示出了终端103和终端104。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑 功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端可以是固定位置的,也可以是可移动的。需要说明的是,图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端的数量不做限定。
网络设备是网络侧的一种用于发送和/或接收信号的实体,如gNB。本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备,或,设置于具体无线收发功能的设备内的芯片。网络设备包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)或者分布单元(distributed unit,DU)等。网络设备还可以是服务器,可穿戴设备,或车载设备等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的无线接入网(radio access network,RAN)设备。
终端是用户侧的一种用于接收和/或发送信号的实体,如手机终端。终端又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备,或,设置于该设备内的芯片,例如,具有无线连接功允许的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
无线接入网设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、无人机、气球和卫星上。本申请的实施例对无线接入网设备和终端的应用场景不做限定。
为了便于描述本申请的技术方案,下面对本申请实施例中所涉及的英文缩写、英文全称以及中文进行说明。
Figure PCTCN2019119162-appb-000001
为了便于理解本申请实施例中所述的无线通信方法,下面将结合具体的实施例对本申请实施例中的技术方案进行详细说明,请参阅图2,为本申请实施例中提供的PUCCH资源确定方法的一个实施例示意图。
如图2所示,本申请实施例中提供的无线通信方法的一个实施例,包括:
201、网络设备向终端发送指示信息,该指示信息用于指示时域偏移量。
举例说明,时域偏移量用于确定PUCCH时域资源。PUCCH用于承载PDSCH对应的反馈信息,PDSCH被PDCCH调度。可选地,PDSCH对应的反馈信息可以为混合自动请求HARQ-ACK,还可以是PUCCH上承载的其他信息。
时域偏移量是基于第一参数或第二参数的偏移量。具体来说,一方面,时域偏移量为第一参数对应的偏移量,其中第一参数是PDSCH占用的时间单元与承载混合自动重传请求HARQ-ACK的时间单元的偏移,一般来说,HARQ-ACK是由PUCCH承载的。另一方面,时域偏移量为第二参数对应的偏移量,其中第二参数是PUCCH资源指示信息,换言之,第二参数是PUCCH资源指示信息指示的,或,第二参数是由根据PUCCH资源指示信息得到的。在本申请实施例中,指示信息可以只指示第一参数对应的偏移量,或第二参数对应的偏移量;指示信息还可以同时指示第一参数对应的偏移量,和第二参数对应的偏移量,对此本申请不做任何限制。
下面将就时域偏移量分别为第一参数对应的偏移量和第二参数对应的偏移量做出示例性的说明,应理解,时域偏移量也可以与两者结合或以其它形式指示以使得UE确定资源,再此不做限定。
在一些可能的实施例方式中,若时域偏移量为第一参数对应的偏移量,第一参数可以表示为K1。K1可以承载于DCI中,如承载于DCI中的PDSCH到HARQ反馈定时指示器PDSCH-to-HARQ_feedback timing indicator信息域中,该域亦可称为K1域;或,K1也可以通过高层信令配置的,可选地,配置该K1的高层信令为dl-DataToUL-ACK。第一参数对应的偏移量可以表示为offset-K1,offset-K1可以承载于终端专用的RRC信令中;或,offset-K1还可以承载于高层参数中,可选地,高层参数为PUCCH-format X指示的参数,其中X可以是0,1,2,3,4等;或,offset-K1也可以承载于PDCCH上第一参数所在的DCI域中,或,offset-K1也可以承载于PDCCH上新增加的DCI域中。需要说明的是,上述的PUCCH format X是不同的PUCCH格式,其中不同的PUCCH格式配置的PUCCH时频资源不同,PUCCH format 0-4承载的上行控制信息类型和上行控制信息的负载范围也不同。具体 来说,X的取值可以为0,1,2,3,4,PUCCH format 0、PUCCH format 1、PUCCH format2、PUCCH format 3和PUCCH format 4指示的高层参数分别映射相应PUCCH格式对应的时频资源。PUCCH format 0、PUCCH format 1、PUCCH format 2、PUCCH format 3和PUCCH format4中参数值相同的高层参数分别对应的时频资源均不相同。
接下来对本申请实施例中所述的DCI进行说明,本申请实施例中所述的DCI可以为回退DCI,也可以为非回退DCI,其中回退DCI的格式为1_0即DCI format 1_0,非回退DCI为1_1即DCI format 1_1,DCI中的DCI格式标识identifier for DCI formats信息域用于标识DCI格式。
其中,回退DCI是指在初始化接入状态时或小区切换时传输的DCI,用于加扰DCI format 1_0的无线网络临时标识RNTI包括:寻呼无线网络临时标识(page-radio network temporary identifier,P-RNTI)、随机接入无线网络临时标识(random access-radio network temporary identifier,RA-RNTI)、系统消息无线网络临时标识(system information-radio network temporary identifier,SI-RNTI)、临时小区无线网络临时标识(temporal cell-radio network temporary identifier,TC-RNTI)以及小区无线网络临时标识C-RNTI、配置调度无线网络临时标识CS-RNTI、和调制编码方式小区无线网络临时标识MCS-C-RNTI。DCI format 1_0可用于调度承载寻呼信息,初始接入响应信息、系统消息的PDSCH。
另一方面,DCI format 1_1为非回退DCI,用于连接态下调度PDSCH。相比于DCI format1_0,DCI format 1_1承载的控制信息更丰富,可以包括:载波指示、部分载波带宽(bandwidth part,BWP)指示器、物理资源块(physical resource block,PRB)绑定尺寸指示器、速率匹配指示器、零功率信道状态信息参考信号(channel state information reference signal,CSI-RS)触发器、探测参考信号(sounding reference signal,SRS)请求、天线端口、和传输配置指示器。
如上文所述,第一参数对应的偏移量承载于K1域中,则可以通过扩展K1域以承载第一参数对应的偏移量。具体地,K1域的扩展方式可以是:在K1域中新增字段,以使得新增字段指示第一参数对应的偏移量。具体地,将K1域由a个比特扩展为(a+b*c)个比特,其中a可以为0,1,2,3中的一个,c为接收所述广播/多播/组播PDCCH的终端数量,b为指示给一个终端的第一参数对应的偏移量的比特数,新增的(b*c)个比特可以按照预设顺序指示相应终端的第一参数对应的偏移量,其中预设顺序可以是按终端标识升序,也可以是按终端标识降序,还可以是通过预设的映射表进行指示,其中,映射表为新增的(b*c)个比特与终端标识之间的对应关系,以指示每个终端对应哪些个比特位。
例如,a、b、c的取值分别为3、2、5,则K1域由3个比特扩展为(3+2*5)个比特,扩展后的K1域可以指示2个终端的第一参数对应的偏移量,并且,每个第一参数对应的偏移量可以使用5个比特进行指示。新增的10个比特中的前5个比特用于指示第一个终端中的第一参数对应的偏移量,后5个比特用于指示第二个终端中的第一参数对应的偏移量。
在一些可能的实施例方式中,若时域偏移量为第二参数对应的偏移量,其中第二参数可以承载于DCI中,如第二参数可以通过DCI的PUCCH资源指示器(PUCCH resource  indicator,PRI)域指示的比特位表示的状态映射得到,第二参数可以表示为PRI。PRI域可以是3个比特,表征8个状态,这8个状态分别对应高层信令(pucch-ResourceId)表示的资源列表(reourceList)中的PUCCH时域资源。相应地,第二参数对应的偏移量可以表示为offset-PRI,offset-PRI可以承载于终端专用的RRC信令中,或offset-PRI也可以承载于PDCCH上第二参数所在的PRI域、ACK/NACK资源指示域中,或offset-PRI也可以承载于PDCCH上新增加的DCI域中。需要说明的是,与上述第一参数的偏移量类似,第二参数的偏移量也可以承载于高层参数中。
具体地,若第二参数对应的偏移量承载于第二参数所在的PRI域中,与上述的第一参数对应的偏移量承载于第一参数所在的DCI域中类似,可以对PRI域进行扩展以承载第二参数对应的偏移量。其具体的PRI域扩展方式可参阅上述K1域的扩展方式,此处不再赘述。
上述的时域偏移量的不同承载方式对应不同的指示信息发送方式。若时域偏移量承载于高层信令中,网络设备通过高层信令发送对应的指示信息;若时域偏移量承载于高层参数中,网络设备通过高层参数发送对应的指示信息;若时域偏移量承载于第一参数或第二参数所在的DCI域中,网络设备通过PDCCH发送对应的指示信息。
下面对指示信息发送方式进行详细说明,指示信息发送方式可以包括但不限于以下发送方式:
第一种指示信息发送方式:网络设备通过高层信令向终端发送指示信息。
网络设备通过高层信令向终端发送指示信息,该指示信息用于配置时域偏移量。可选地,高层信令为RRC信令。例如,网络设备向终端发送一个RRC信令,该RRC信令中包括多个信元,每个信元中包括一个时域偏移量并且只与一个终端标识UE ID相关联,使得每个终端只解读与自己标识相关的配置信息,不解读上述RRC信令中与其他终端相关联的配置信息。进一步可选地,RRC信令为终端专用的UE-dedicated RRC信令。例如,网络设备向终端发送一个UE-dedicated RRC信令,该UE-dedicated RRC信令中只包括一个与自身相关联的信元,使得终端只能接收到与自身相关的承载偏移量的配置信息,无法接收到与其他UE相关的承载偏移量的配置信息。
需要说明的是,网络设备通过高层参数发送指示信息与上述第一种指示信息发送方式类似,其具体描述可参阅第一种指示信息发送方式中的相关描述,此处不再赘述。
第二种指示信息发送方式:网络设备通过PDCCH向终端发送指示信息。
在上述第二种指示信息发送方式中,网络设备通过PDCCH向终端发送指示信息可以扩展DCI域的字段,使得扩展后的字段为指示信息,用于指示时域偏移量。扩展DCI域的字段可以包括但不限于以下扩展方式:DCI域扩展方式一:在DCI中增加新的信息域,以指示时域偏移量。
举例说明,在广播/多播/组播PDCCH的DCI中新增加以下至少一种信息域:第一信息域、第二信息域;其中第一信息域和第二信息域中均包括n个子信息域,n为接收广播/多播/组播PDCCH的终端数量。第一信息域中的每一个子信息中中携带第一参数对应的偏移量且只与一个UE ID相关联;第二信息域中携带第二参数对应的偏移量且只与一个UE ID相 关联。
上述的扩展方式一中包括以下三种情况:只在广播/多播/组播PDCCH的DCI中新增第一信息域,只在广播/多播/组播PDCCH的DCI中新增第二信息域,以及在广播/多播/组播PDCCH的DCI中新增同时新增加第一信息域、第二信息域。下面分别对前面两种情况进行详细说明,最后一种情况与前两种情况类似,可参阅相关描述。
在广播/多播/组播PDCCH的DCI域中包括第一信息域的情况下,由于广播/多播/组播PDCCH用于网络设备向多个终端发送相同的信息,则接收该PDCCH的第一终端可从第一信息域中的第一子信息域中获取第一偏移量,用于确定第一PUCCH的时域资源,以及接收该PDCCH的第二终端可从第一信息域中的第二子信息域中获取第二偏移量,用于确定第二PUCCH时域资源。第一偏移量和第二偏移量分别为第一终端和第二终端各自专用的第一参数对应的偏移量,第一偏移量和第二偏移量是不相关的,因此第一终端和第二终端分别确定的第一PUCCH和第二PUCCH的时域资源不同。
在若广播/多播/组播PDCCH的DCI域中包括第二信息域情况下,由于广播/多播/组播PDCCH用于网络设备向多个终端发送相同的信息,则接收该PDCCH的第三终端可从第二信息域中的第三子信息域中获取第三偏移量,用于确定第三PUCCH的时域资源,接收该PDCCH的第四终端可从第四子信息域中获取第四偏移量,用于确定第四PUCCH时域资源。第三偏移量和第四偏移量分别为第三终端和第四终端各自专用的第二参数对应的偏移量,第三偏移量和第四偏移量是不相关的,因此第三终端和第四终端分别确定的第三PUCCH和第四PUCCH的时域资源不同。
DCI域扩展方式二:对DCI中的现有信息域新增字段,以指示时域偏移量。
在广播/多播/组播PDCCH中对第一参数、第二参数所在在信息域进行扩展,以指示相应的时域偏移量。具体地,若时域偏移量为第一参数对应的偏移量,则在第一参数所在的信息域中新增加字段,新增加的字段用于指示c个字段,每一个字段中包括b个比特,一个字段指示一个第一参数对应的偏移量。若时域偏移量为第二参数对应的偏移量,则在第二参数所在的信息域中新增加字段,新增加的字段用于指示c个字段,每一个字段中包括b个比特,一个字段指示一个第二参数对应的偏移量。其中,类似地,c为接收所述广播/多播/组播PDCCH的终端数量,b为指示给一个终端的第一参数或第二参数对应的偏移量的比特数。
可选地,按照上述方式对K1域、PRI域中至少一个信息域进行扩展,K1域的具体扩展方式如上述步骤201中所述,PRI域的扩展方式与K1域的扩展方式类似,具体来说:将PRI域由d个比特扩展为(d+b*c),其中d为现有PRI域的比特数,与上述K1域扩展中类似,c为接收所述广播/多播/组播PDCCH的终端数量,b为指示给一个终端的第二参数对应的偏移量的比特数。例如,d,b,C的取值为4、3、4,则PRI域由4个比特扩展为(4+3*4)个比特,扩展后的PRI域可以指示3个终端的第二参数对应的偏移量,并且每个第二参数对应的偏移量使用4个比特进行指示。需要说明的是,本申请实施例中还可以同时对K1域和PRI域进行扩展,以通过DCI同时指示第一参数对应的偏移量和第二参数对应的偏移量,其中K1域和PRI域的扩展方式如上所述。
在上述两种DCI域扩展方式中需要说明的是,扩展的第一信息域中的子信息域数目、第二信息域中的子信息域数目、K1域中新增的字段数目、PRI域中新增加的字段数目可以小于或等于c个,容易理解,当c个终端中可能存在第一参数对应的偏移量是相同的情况,也可能存在第二参数对应的偏移量是相同的情况,此时可以用一个子信息域或一个新增字段指示第一参数或第二参数对应的偏移量相同的两个或多个终端。例如,第一参数对应的偏移量是由终端标识UE ID对2取模得到的,则c个子信息域便可以是实现对c个终端中第一参数对应的偏移量的指示。比如有10个终端,最多有10个偏移量,如果对2取模,则有5个偏移量就可以了。
在本申请的一些实施例中,时域偏移量中包括至少一个时间单元,该时间单元的单位可以是:时隙、子时隙、微时隙、或正交频分复用符号等,也可以是其它度量单位。可选地,时域偏移量可以用于表征对时隙、子时隙、微时隙、或符号级别的时域长度为基本单位的偏移,一个实施例中,也可以是相对单位的偏移。
需要说明的是,若网络设备通过高层信令向终端发送指示信息,则网络设备还需执行下面的步骤202,若网络设备通过PDCCH向终端发送指示信息,则网络设备可以不再重复执行下面的步骤202。
可选地,在步骤201之前还可以包括:网络设备确定时域偏移量。在一种可能的确定时域偏移量的方式中,时域偏移量是由终端标识得到的。具体的,每个终端专用的时域偏移量均由每个终端对应的终端标识得到的。可选地,时域偏移量是由终端标识取模得到。例如,终端标识为1,3,5,7,9;对终端标识对4取模后得到的时域偏移量依次是:1,3,1,3,1。需要说明的是,由终端标识计算得到时域偏移量的计算方式包括但不限于取模运算,还可以使用其他类似的计算方式(如取余运算)或对应关系,对此本申请不做任何限制。
202、网络设备向终端发送PDCCH,该PDCCH用于调度物理下行共享信道PDSCH。
作为一个示例,PDCCH中包括K1域,该K1域用于指示第一参数。作为又一个示例,PDCCH中包括PRI域,该PRI域中携带有第二参数,或,该PRI域用于指示第二参数。需要说明的是,如果PDCCH中不包括K1域,则网络设备还需要通过高层信令或高层参数为终端配置第一参数。例如,网络设备通过RRC信令为终端配置第一参数。
在本申请的一些实施例中,如上所述,PDCCH中还可以包括指示信息,例如时域偏移量。若PDCCH没有包括时域偏移量,则网络设备通过高层信令向终端发送指示信息;具体的可参阅上述步骤201中的第一种指示方式中的描述。需要说明的是,当PDCCH中携带时域偏移量时,PDCCH可以通过上述的第一信息域或第二信息域进行指示时域偏移量,也可以复用现有PDCCH中的信息域,还可以在现有PDCCH中的信息域中新增加字段专门用于指示确定PUCCH资源的时域偏移量,对此本申请中不做任何限制。
本申请实施例中,PDCCH是用于广播/多播/组播传输的。具体来说,UE根据第一参数、第二参数和偏移量确定承载反馈信息HARQ的PUCCH时域资源,可以使得UE接收的与PUCCH对应的PDCCH满足PDCCH是终端在公共搜索空间中检测得到的,或,满足PDCCH是由组无线网络临时标识G-RNTI加扰的。在广播/多播/组播传输中,终端根据第一参数即K1域的 值确定PUCCH所在的时间单元,并根据第二参数即PRI域的值及其偏移量offset-PRI确定PUCCH时域资源;或者,终端根据第一参数即K1域的值及其偏移量offset-K1确定PUCCH所在的时间单元,并根据第二参数即PRI域的值确定PUCCH时域资源。
本申请实施例中,若PDCCH是用于单播传输的。具体来说,PDCCH是由终端专用的无线网络临时标识RNTI加扰的。可选的,终端专用的RNTI可以包括但不限于:C-RNTI、CS-RNTI和MCS-C-RNTI。在单播传输中,终端不根据时域偏移量确定PUCCH时域资源。具体地,终端根据K1域的值确定PUCCH所在的时间单元,并根据PRI域的值确定PUCCH时域资源。
在一些可能的实施例方式中,终端根据第一参数及其偏移量确定PUCCH所在的时间单元可以是终端根据第一参数对应的比特位指示的状态与第一参数的参数值之间的关联关系确定第一参数的参数值,同样地,终端可以根据第一参数对应的偏移量对应的比特位状态与第一参数对应的偏移量的参数值之间的关联关系确定第一参数对应的偏移量的参数值。进而,终端根据第一参数和第一参数对应偏移量确定PUCCH所在的时间单元。
示例性地,如表1所示,第一参数的比特位指示的状态与参数值之间关联关系,表2所示,为第一参数对应的偏移量的比特位指示的状态与参数值之间关联关系。在表1和2中第一参数以及第一参数对应的偏移量均以3比特为例进行说明,在本申请实施例中指示第一参数的比特位数目、以及指示第一参数对应的偏移量的比特位数目之间可以相同,也可以不相同。
表1
指示第一参数的比特位状态 第一参数的值
000 8
001 9
010 10
011 11
100 12
101 13
110 14
111 15
表2
指示第一参数对应的偏移量的比特位状态 第一参数对应的偏移量的值
000 1
001 2
010 3
011 4
100 5
101 6
110 7
111 8
上述实施例方式中,终端根据第一参数和第一参数对应偏移量确定PUCCH所在的时间 单元可以包括:终端直接根据第一参数和第一参数对应偏移量确定PUCCH所在的时间单元,或,终端先根据第一参数和第一参数对应偏移量中至少一个参数值进行换算并基于换算结果确定PUCCH所在的时间单元。
举例说明,以上述表1和2为例。在一种示例中,若指示第一参数的比特位状态为000,指示第一参数对应的偏移量的比特位状态为001,则终端分别确定第一参数为8,第一参数对应的偏移量为2。若第一参数对应的时间单元为时隙,第一参数对应的时间单元为子时隙,此时,终端可以将时隙8中的子时隙2确定为PUCCH所在的时域资源。若第一参数及其偏移量对应的时间单元均为时隙或子时隙,此时,终端也可以将时隙10,或子时隙10确定为PUCCH所在的时间单元。容易理解,本申请中所述的比特位状态与逻辑值含义相同,一个逻辑值对应一种比特位状态。
在另一种示例中,若指示第一参数的比特位状态为000,指示第一参数对应的偏移量的比特位状态为001,则终端分别确定第一参数为8,终端确定第一参数对应的偏移量为2,并对第一参数对应的偏移量对2取模得到取模结果为0。类似的,若第一参数对应的时间单元为时隙,第一参数对应的偏移量对应的时间单元为子时隙,此时,终端可以将时隙8中的子时隙0确定为PUCCH所在的时域资源,容易理解,子时隙0可以表示一个时隙中的第一个子时隙。若第一参数及其偏移量对应的时间单元均为时隙或子时隙,此时,终端也可以将时隙8,或子时隙8确定为PUCCH所在的时域资源。
在一些可能的实施例方式中,类似地,终端根据第二参数及其偏移量确定PUCCH所在的时间单元可以是终端根据第二参数对应的比特位指示的状态与第二参数的参数值之间的关联关系确定第二参数的参数值,同样地,终端可以根据第二参数对应的偏移量对应的比特位状态与第二参数对应的偏移量的参数值之间的关联关系确定第二参数对应的偏移量的参数值。进而,终端根据第二参数和第二参数对应偏移量确定PUCCH时域资源。需要说明的是,此处终端根据第二参数和第二参数对应的偏移量确定PUCCH时域资源与上述根据第一参数和第一参数对应的偏移量确定PUCCH所在的时间单元。
终端根据第二参数及其偏移量确定PUCCH时域资源,可以包括:终端将第二参数对应的比特位的逻辑值与偏移量对应的比特位的逻辑值相加得到PUCCH时域资源;或,终端将第二参数对应的比特位的逻辑值和偏移量对应的比特位的逻辑值进行换算后相加得到PUCCH时域资源,如对逻辑值从二进制转换为10进制后对q取模或取余得到PUCCH时域资源,其中q为正整数。例如,第二参数对应的比特位的逻辑值为2,第二参数对应的偏移量对应的比特位的逻辑值为1,则终端可以根据两个逻辑值的和(2+1)确定PUCCH时域资源,或,终端也可以根据两个逻辑值转换为10进制后对2取模得到的值1,确定PUCCH时域资源。
在本申请的一些实施例中,终端接收调度多播传输的PDCCH之后,网络设备向终端发送PDCCH调度的PDSCH。PDCCH中还携带由网络设备发送PDSCH的时域信息:PDCCH所在的时间单元与PDSCH所在时间单元的偏移,其中时间单元可以为时隙、子时隙、微时隙、正交频分复用符号、子帧。
203、终端根据第一参数、第二参数和时域偏移量,确定PUCCH时域资源。
下面将分别就基于第一参数、第二参数和时域偏移量确定PUCCH时域资源的两种具体方式进行详细说明。
一种PUCCH资源确定方式,若时域偏移量与第一参数对应,则终端确定PUCCH时域资源,可以执行以下步骤一至步骤三。
步骤一、终端根据第一参数和第一参数对应的偏移量确定发送PDSCH对应的反馈信息(如HARQ-ACK)的PUCCH所在的时间单元。
例如,第一参数及其偏移量对应的时间单元均以时隙为例,PDCCH指示终端在时隙n上发送PDSCH,第一参数为k,若第一参数对应的时域偏移量为m,m和n为整数,则终端确定发送HARQ-ACK的PUCCH所在的时间单元为时隙(n+k+m);若第一参数对应的时域偏移量为i,则终端确定发送HARQ-ACK的PUCCH所在的时间单元为时隙(n+k+i)。
示例性地,时间单元以子时隙为例,上述的步骤一具体可以是:
首先,终端通过DCI中的K1域的值或者RRC信令配置的K1值确定发送HARQ的PUCCH所在的子时隙,其中K1域用于指示PDSCH所在的子时隙到HARQ所在子时隙的偏移。其次,终端根据新增的子信息域或字段中获取第一参数的偏移量即K1的偏移量;最终,终端根据K1域的值和K1的偏移量确定PUCCH时域资源。例如,如果UE检测到PDCCH调度PDSCH在子时隙n发送,若DCI中K1域的值为1,K1的偏移量为1,则UE确定在子时隙(n+1+1)中发送承载反馈信息HARQ-ACK的PUCCH;但若该DCI中不含K1域,则终端通过高层参数获取第一参数,可选地,高层参数为dl-DataToUL-ACK,在子时隙(n+k+1)中发送承载反馈信息HARQ-ACK的PUCCH,其中k是由高层参数配置的。
步骤二、终端选择PUCCH资源集合。一个实施例中,终端根据需要传输的HARQ-ACK信息的负载大小(payload)选择PUCCH资源集合。
示例性地,上述的步骤二具体可以包括:终端根据时隙中需要传输的HARQ-ACK信息的负载大小O UCI选择PUCCH资源集合。一个终端最多可以配置4个PUCCH资源集合。其中第一个PUCCH资源集合中最多支持32个PUCCH资源,其余的PUCCH资源集合最多支持8个PUCCH资源。如果O UCI≤2,则选择第一个PUCCH资源集合,pucch-ResourceSetId=0;如果2<O UCI≤N 2,UE选择第二个PUCCH资源集合,pucch-ResourceSetId=1,其中N 2为高层参数配置的,如果高层参数没有配置,则N 2值为1706;如果N 2<O UCI≤N 3,UE选择第三个PUCCH资源集合,pucch-ResourceSetId=2,其中N 3为高层参数配置的,如果高层参数没有配置,则N 3值为1706;如果N 3<O UCI≤1706,UE选择第四个PUCCH资源集合,pucch-ResourceSetId=3,其中N 3为高层参数配置的,如果高层参数没有配置,则N 3值为1706。
步骤三、终端根据第二参数在步骤二确定的PUCCH资源集合中确定一个PUCCH资源用于发送HARQ-ACK信息。
示例性地,上述步骤三具体可以包括:终端从PRI域中获取第二参数的值,第二参数的值对应PUCCH资源索引,每个索引对应一个PUCCH资源,PUCCH资源由高层参数预先配置;终端根据第二参数的值从上述步骤二确定的PUCCH资源集合中确定相应的PUCCH时域资源。例如,终端获取的第二参数的值为0,上述步骤二中确定的PUCCH资源集合为支持 32个PUCCH资源的第一个PUCCH资源集合,则终端确定用于发送反馈信息的PUCCH资源为第一个PUCCH资源集合中的第一个PUCCH资源。
另一种PUCCH资源确定方式,若时域偏移量与第二参数对应,则终端确定PUCCH时域资源,可以执行以下步骤四至步骤六。
步骤四、终端根据第一参数确定发送PDSCH对应的反馈信息(如HARQ-ACK)的PUCCH所在的时间单元。
例如,第一参数及其偏移量对应的时间单元均以时隙为例,PDCCH指示终端在时隙n上发送PDSCH,第一参数为k,则终端确定发送HARQ-ACK的PUCCH所在的时间单元为时隙(n+k)。
又如,第一参数及其偏移量对应的时间单元均以子时隙为例,上述的步骤四具体可以是:PDCCH指示终端在子时隙n上发送PDSCH,终端通过DCI中的K1域或者RRC信令配置的K1值确定第一参数的值为k,其中K1域用于指示PDSCH所在的子时隙到HARQ所在子时隙的偏移;进而终端确定发送HARQ的PUCCH所在的子时隙为子时隙(n+k)。
步骤五、终端根据需要传输的HARQ-ACK信息的负载大小(payload)选择PUCCH资源集合。
步骤五与上述步骤二类似,其相关描述可参阅上述步骤二中的相关描述,此处不再赘述。
步骤六、终端根据第二参数和第二参数对应的偏移量确定PUCCH时域资源。
示例性地,上述步骤六具体可以是:终端根据PRI域中获取第二参数的值,以及根据新增的子信息域或新增的PRI字段中获取第二参数的偏移量;进而终端根据第二参数的值,和第二参数的偏移量确定在步骤五种确定的PUCCH资源集合中确定相应的PUCCH时域资源。例如,终端获取的第二参数的值为0,第二参数的偏移量为j,上述步骤二中确定的PUCCH资源集合为支持32个PUCCH资源的第一个PUCCH资源集合,则终端确定用于发送反馈信息的PUCCH资源为第一个PUCCH资源集合中的第(0+j+1)个PUCCH资源。
在本申请实施例中的又一种PUCCH资源确定方式可以是:终端根据第一参数以及第一参数对应的偏移量、第二参数以及第二参数对应的偏移量确定PUCCH资源。具体来说,此种情况下,终端可以依次执行步骤一、步骤二和步骤六,此处不再赘述。
本申请实施例中,终端接收网络设备发送的指示信息,该指示信息用于指示时域偏移量,该时域偏移量用于终端确定PUCCH时域资源,应理解,对于任意一个终端而言,每个终端的时域偏移量均是专用的,独立配置的,互不影响的,而不是所有终端公用的,因此,每个终端根据时域偏移量、第一参数和第二参数确定PUCCH时域资源,可以使得每个终端的PUCCH时域资源在时域上是错开的,可以减少同一时刻终端传输的PUCCH数量,从而降低系统负载,提高系统性能。
为了进一步理解本申请实施例的技术方案,下面以四个终端UE#1、UE#2、UE#3和UE#4为例,结合具体的应用场景进行详细说明。需要说明的是,以下场景中的offset#0,offset#1,offset#2,offset#3分别表示UE#1、UE#2、UE#3、UE#4对应的偏移值PUCCH#1, PUCCH#2,PUCCH#3,PUCCH#4分别表示一个PUCCH资源集合中第一个至第四个PUCCH资源。
场景一、时域偏移量为第一参数对应的偏移量。
网络设备为UE#1、UE#2、UE#3和UE#4分别配置的的K1的偏移值分别为offset#0、offset#1,offset#2,offset#3。UE#1、UE#2、UE#3和UE#4接收同一多播传输的第二PDCCH。其中UE#1、UE#2、UE#3和UE#4均根据第二PDCCH上承载的PDSCH到HARQ反馈定时指示域确定PUCCH在第一个子时隙传输,UE#1根据K1偏移值为0,确定第一子时隙为UE#1PUCCH所在的子时隙;UE#2根据K1偏移值为1,确定第二个子时隙为UE#1PUCCH所在的子时隙;UE#3根据K1偏移值为2,确定第三个子时隙为UE#1PUCCH所在的子时隙;UE#4根据K1偏移值为3,确定第四个子时隙为UE#1PUCCH所在的子时隙。
UE#1、UE#2、UE#3和UE#4根据反馈信息负载大小确定对应的PUCCH资源集合为第一个PUCCH资源集合。UE#1、UE#2、UE#3和UE#4根据第一PDCCH上承载的PRI域和高层信令/参数配置确定PUCCH#1为UE#1传输PDCCH调度的PDSCH对应的反馈信息HARQ的PUCCH。由于没有第二参数对应的偏移量,UE#1、UE#2、UE#3和UE#4均根据第二参数对应的偏移量为offset#0将PUCCH#1为UE#1、UE#1、UE#2、UE#3和UE#4传输PDCCH调度的PDSCH对应的反馈信息HARQ的PUCCH。
在接收到网络设备发送的PDSCH之后,UE#1、UE#2、UE#3和UE#4分别在第一个子时隙上的PUCCH#1资源、第二个子时隙上的PUCCH#1资源、第三个子时隙上的PUCCH#1资源、第四个子时隙上的PUCCH#1资源上发送PDSCH对应的反馈信息。
在上述场景一中,接收同一多播传输的第二PDCCH的UE#1、UE#2、UE#3和UE#4发送的PDSCH对应的反馈信息在不同的子时隙中发送,使得PUCCH在时域上错开,减小了系统负载,提高了系统性能。
场景二、时域偏移量为第二参数对应的偏移量。
网络设备为UE#1、UE#2、UE#3和UE#4分别配置第二参数对应的偏移量分别为offset#0、offset#1,offset#2,offset#3。UE#1、UE#2、UE#3和UE#4接收用于调度多播传输的第一PDCCH。其中UE#1、UE#2、UE#3和UE#4均根据第一PDCCH上承载的PDSCH到HARQ反馈定时指示域确定PUCCH在第一个子时隙传输。UE#1、UE#2、UE#3和UE#4根据反馈信息负载大小确定对应的PUCCH资源集合为第一个PUCCH资源集合。UE#1、UE#2、UE#3和UE#4根据第一PDCCH上承载的PRI域和高层信令/参数配置确定PUCCH#1为UE#1传输PDCCH调度的PDSCH对应的反馈信息HARQ的PUCCH。UE#1根据第二参数对应的偏移量为offset#0将PUCCH#1确定为UE#1传输PDCCH调度的PDSCH对应的反馈信息HARQ的PUCCH;UE#2根据第二参数对应的偏移量offset#1和PRI域确定的PUCCH#1确定PUCCH#2为UE#2传输PDCCH调度的PDSCH对应的反馈信息HARQ的PUCCH;UE#3根据第二参数对应的偏移量offset#2和PRI域确定的PUCCH#2确定PUCCH#3为UE#3传输PDCCH调度的PDSCH对应的反馈信息HARQ的PUCCH;UE#4根据第二参数对应的偏移量offset#3和PRI域确定的PUCCH#3确定PUCCH#4为UE#4传输PDCCH调度的PDSCH对应的反馈信息HARQ的PUCCH。在接收到网络设备发送的PDSCH之后,UE#1、UE#2、UE#3和UE#4分别在第一个子时隙上的PUCCH#1 资源、PUCCH#2资源、PUCCH#3资源和PUCCH#4资源上发送PDSCH对应的反馈信息。
在上述场景二中,接收同一多播传输的第一PDCCH的UE#1、UE#2、UE#3和UE#4发送的PDSCH对应的反馈信息在同一个子时隙中不同的PUCCH资源上发送,使得PUCCH在时域上错开,减小了系统负载,提高了系统性能。
应理解,结合上述场景一和场景二,可以得到时域偏移量包括:第一参数对应的的偏移量,和,第二参数对应的偏移量的应用场景。
在一些可能的实施例中,时域偏移量可是由终端标识得到的,其具体运算方式可以是取模运算、取余运算等。
例如,在上述场景一中第一参数对应的偏移量是由UE ID取模得到的,如对UE ID进行模2运算得到相应终端的第一参数对应的偏移量,则UE#1和UE#3的第一参数对应的偏移量相同都为为offset#1;UE#2和UE#4的第一参数对应的偏移量为为offset#0,在此种情况下,UE#1和UE#3最终确定的发送PDSCH对应的反馈信息的子时隙是一样的,同样的,UE#2和UE#4最终确定的发送PDSCH对应的反馈信息的子时隙是一样的,从而可以将UE#1、UE#2、UE#3和UE#4部分终端的PDCCH对应的子时隙部分错开,减小了系统负载,提高了系统性能。
又如,在上述场景二中第二参数对应的偏移量是由UE ID取模得到的,如对UE ID进行模2运算得到相应终端的第二参数对应的偏移量,则UE#1和UE#3的第二参数对应的偏移量相同都为1;UE#2和UE#4的第二参数对应的偏移量为为offset#0,在此种情况下,UE#1和UE#3最终确定的发送PDSCH对应的反馈信息的PUCCH是一样的,同样,UE#2和UE#4最终确定的发送PDSCH对应的反馈信息的PUCCH是一样的,从而可以实现将UE#1、UE#2、UE#3和UE#4中部分终端的PUCCH在同一个子时隙中错开,减小了系统负载,提高了系统性能。
需要说明的是,上述的PUCCH#1、PUCCH#2、PUCCH#3和PUCCH#4有不同的频域或者码域(时域正交覆盖码、循环位移)配置。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例中所涉及的动作和模块并不一定是本申请所必须的。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅如图3所示,为本申请实施例中提供的终端的一种组成结构示意图。
如图3所示,终端300包括:接收模块301和处理模块302;接收模块301,用于接收指示信息,所述指示信息用于指示时域偏移量;以及,接收物理下行控制信道PDCCH,所述PDCCH用于调度物理下行共享信道PDSCH,物理上行控制信道PUCCH用于承载所述PDSCH对应的混合自动重传请求HARQ-ACK;处理模块302,用于根据第一参数、第二参数和所述时域偏移量, 确定PUCCH时域资源,所述第一参数为PDSCH的时间单元与承载混合自动重传请求HARQ-ACK的时间单元的偏移,所述第二参数是PUCCH资源指示信息。可选地,终端300还可以包括发送模块303。
在本申请实施例的一些实施方式中,所述时域偏移量为第一参数对应的偏移量。
在本申请实施例的一些实施方式中,所述时域偏移量为第二参数对应的偏移量。
在本申请实施例的一些实施方式中,所述PDCCH满足以下至少一项:所述PDCCH是由组无线网络临时标识G-RNTI加扰的、所述PDCCH是在公共搜索空间中检测的。
在本申请实施例的一些实施方式中,所述处理模块302还用于:若所述PDCCH是由终端专用无线网络临时标识RNTI加扰的,不根据所述时域偏移量,确定所述PUCCH时域资源。
在本申请实施例的一些实施方式中,所述时域偏移量是所述终端专用的;所述指示信息承载于终端专用的无线资源控制RRC信令。
在本申请实施例的一些实施方式中,所述时域偏移量表征至少一个时间单元,所述时间单元包括:时隙、子时隙、微时隙、或正交频分复用符号。
需要说明的是,本申请实施例中终端300可以执行上述图2对应的方法实施例中终端所执行的所有操作,此处不再赘述。
请参阅如图4所示,为本申请实施例中提供的网络设备的一种组成结构示意图。
如图4所示,网络设备400包括:发送模块401和处理模块402,其中发送模块401,用于发送指示信息,所述指示信息用于指示时域偏移量;以及,发送物理下行控制信道PDCCH,所述PDCCH用于调度物理下行共享信道PDSCH,物理上行控制信道PUCCH用于承载所述PDSCH对应的混合自动重传请求HARQ-ACK;处理模块402,用于根据第一参数、第二参数和所述时域偏移量,确定PUCCH时域资源,所述第一参数为PDSCH的时间单元与承载混合自动重传请求HARQ-ACK的时间单元的偏移,所述第二参数是PUCCH资源指示信息。可选地,网络设备400还可以包括接收模块403。
在本申请实施例的一些实施方式中,所述时域偏移量为第一参数对应的偏移量,所述第一参数为PDSCH的时间单元与承载混合自动重传请求HARQ-ACK的时间单元的偏移。
在本申请实施例的一些实施方式中,所述时域偏移量为第二参数对应的偏移量,所述第二参数是PUCCH资源指示信息。
在本申请实施例的一些实施方式中,所述PDCCH满足以下至少一项:所述PDCCH是由组无线网络临时标识G-RNTI加扰的、所述PDCCH是在公共搜索空间中检测的。
在本申请实施例的一些实施方式中,所述方法还包括:若所述PDCCH是由终端专用无线网络临时标识RNTI加扰的,处理模块402不根据所述时域偏移量确定PUCCH时域资源。例如,处理模块402根据第一参数和第二参数确定PUCCH时域资源。
在本申请实施例的一些实施方式中,所述时域偏移量是所述终端专用的;所述指示信息承载于终端专用的无线资源控制RRC信令。
在本申请实施例的一些实施方式中,所述时域偏移量表征至少一个时间单元,所述时间单元包括:时隙、子时隙、微时隙、或正交频分复用符号。
需要说明的是,本申请实施例中处理模块402通过调用相应的指令以控制发送模块401或接收模块403执行上述任意一种实施方式中的操作。本申请实施例中网络设备400可以执行上述图2对应的方法实施例中网络设备所执行的所有操作,此处不再赘述。
此外,本申请实施例中的终端和网络设备还可以采用其他模块方式划分方式进行描述,比如,终端和网络设备可以包括实现上述方法中的各个功能或步骤或操作相对应的单元或模块,这些单元或模块可以是软件实现,或硬件实现,或者是硬件结合软件实现,以支持终端和网络设备执行或实现本实施例的技术方案,对此本申请实施例中不再赘述。需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
接下来介绍本申请实施例提供的另一种终端,请参阅图5所示,终端500包括:
接收器501、发射器502、处理器503和存储器504(其中终端500中的处理器503的数量可以一个或多个,图5中以一个处理器为例)。在本申请的一些实施例中,接收器501、发射器502、处理器503和存储器504可通过总线或其它方式连接,其中,图5中以通过总线连接为例。
存储器504可以包括只读存储器和随机存取存储器,并向处理器503提供指令和数据。存储器504的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。存储器504存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器503控制终端的操作,处理器503还可以称为中央处理单元(central processing unit,CPU)。具体的应用中,终端的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器503中,或者由处理器503实现。处理器503可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器503中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器503可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器504,处理器503读取存储器504中的信息,结合其硬件完成上述方法的步骤。
接收器501可用于接收输入的数字或字符信息,以及产生与终端的相关设置以及功能控制有关的信号输入,发射器502可包括显示屏等显示设备,发射器502可用于通过外接接口输出数字或字符信息。
本申请实施例中,处理器503,用于执行前述的终端执行无线通信方法。
接下来介绍本申请实施例提供的另一种网络设备,请参阅图6所示,网络设备600包括:
接收器601、发射器602、处理器603和存储器604(其中网络设备600中的处理器603的数量可以一个或多个,图6中以一个处理器为例)。在本申请的一些实施例中,接收器601、发射器602、处理器603和存储器604可通过总线或其它方式连接,其中,图6中以通过总线连接为例。
存储器604可以包括只读存储器和随机存取存储器,并向处理器603提供指令和数据。存储器604的一部分还可以包括NVRAM。存储器604存储有操作系统和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器603控制网络设备的操作,处理器603还可以称为CPU。具体的应用中,网络设备的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器603中,或者由处理器603实现。处理器603可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器603中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器603可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器604,处理器603读取存储器604中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中,处理器603,用于执行前述由网络设备执行的无线通信方法。
在另一种可能的设计中,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的信息传输方法。
可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory, ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,ASIC,或一个或多个用于控制上述第一方面方法的程序执行的集成电路。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。

Claims (30)

  1. 一种无线通信方法,其特征在于,包括:
    终端接收指示信息,所述指示信息用于指示时域偏移量;
    所述终端接收物理下行控制信道PDCCH,所述PDCCH用于调度物理下行共享信道PDSCH,所述PDSCH对应的混合自动重传请求HARQ-ACK被承载于物理上行控制信道PUCCH中;
    所述终端根据第一参数、第二参数和所述时域偏移量,确定PUCCH时域资源,所述第一参数为PDSCH的时间单元与承载所述HARQ-ACK的时间单元的偏移,所述第二参数是所述
    PDCCH中承载的PUCCH资源指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述时域偏移量为第一参数对应的偏移量。
  3. 根据权利要求1所述的方法,其特征在于,所述时域偏移量为第二参数对应的偏移量。
  4. 根据权利要求1-3所述的方法,其特征在于,所述PDCCH满足以下至少一项:所述PDCCH是由组无线网络临时标识G-RNTI加扰的、所述PDCCH是在公共搜索空间中检测的。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    若所述PDCCH是由终端专用无线网络临时标识RNTI加扰的,所述终端不根据所述时域偏移量,确定所述PUCCH时域资源。
  6. 根据权利要求1-5所述的方法,其特征在于,所述时域偏移量是所述终端专用的;所述指示信息承载于终端专用的无线资源控制RRC信令。
  7. 根据权利要求1-6所述的方法,其特征在于,所述时域偏移量表征至少一个时间单元,所述时间单元包括:时隙、子时隙、微时隙、或正交频分复用符号。
  8. 一种无线通信方法,其特征在于,包括:
    网络设备发送指示信息,所述指示信息用于指示时域偏移量;
    所述网络设备发送物理下行控制信道PDCCH,所述PDCCH用于调度物理下行共享信道PDSCH,所述PDSCH对应的混合自动重传请求HARQ-ACK被承载于物理上行控制信道PUCCH;
    所述网络设备根据第一参数、第二参数和所述时域偏移量,确定PUCCH时域资源,所述第一参数为PDSCH的时间单元与承载所述HARQ-ACK的时间单元的偏移,所述第二参数是所述PDCCH中承载的PUCCH资源指示信息。
  9. 根据权利要求8所述的方法,其特征在于,所述时域偏移量为第一参数对应的偏移量。
  10. 根据权利要求8所述的方法,其特征在于,所述时域偏移量为第二参数对应的偏移量。
  11. 根据权利要求8-10所述的方法,其特征在于,所述PDCCH满足以下至少一项:所述PDCCH是由组无线网络临时标识G-RNTI加扰的、所述PDCCH是在公共搜索空间中检测的。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    若所述PDCCH是由终端专用无线网络临时标识RNTI加扰的,所述网络设备不根据所述时域偏移量确定所述PUCCH时域资源。
  13. 根据权利要求8-12所述的方法,其特征在于,所述时域偏移量是所述终端专用的;所述指示信息承载于终端专用的无线资源控制RRC信令。
  14. 根据权利要求8-13所述的方法,其特征在于,所述时域偏移量表征至少一个时间单元,所述时间单元包括:时隙、子时隙、微时隙、或正交频分复用符号。
  15. 一种终端,其特征在于,包括:
    接收模块,用于接收指示信息,所述指示信息用于指示时域偏移量;以及,接收物理下行控制信道PDCCH,所述PDCCH用于调度物理下行共享信道PDSCH,用于承载所述PDSCH对应的混合自动重传请求HARQ-ACK被承载于物理上行控制信道PUCCH中;
    处理模块,用于根据第一参数、第二参数和所述时域偏移量,确定PUCCH时域资源,所述第一参数为PDSCH的时间单元与承载所述HARQ-ACK的时间单元的偏移,所述第二参数是所述PDCCH中承载的PUCCH资源指示信息。
  16. 根据权利要求15所述的终端,其特征在于,所述时域偏移量为第一参数对应的偏移量。
  17. 根据权利要求15所述的终端,其特征在于,所述时域偏移量为第二参数对应的偏移量。
  18. 根据权利要求15-17所述的终端,其特征在于,所述PDCCH满足以下至少一项:所述PDCCH是由组无线网络临时标识G-RNTI加扰的、所述PDCCH是在公共搜索空间中检测的。
  19. 根据权利要求18所述的终端,其特征在于,所述处理模块还用于:
    若所述PDCCH是由终端专用无线网络临时标识RNTI加扰的,不根据所述时域偏移量,确定所述PUCCH时域资源。
  20. 根据权利要求15-19所述的终端,其特征在于,所述时域偏移量是所述终端专用的;所述指示信息承载于终端专用的无线资源控制RRC信令。
  21. 根据权利要求15-20所述的终端,其特征在于,所述时域偏移量表征至少一个时间单元,所述时间单元包括:时隙、子时隙、微时隙、或正交频分复用符号。
  22. 一种网络设备,其特征在于,包括:
    发送模块,用于发送指示信息,所述指示信息用于指示时域偏移量;以及,发送物理下行控制信道PDCCH,所述PDCCH用于调度物理下行共享信道PDSCH,所述PDSCH对应的混合自动重传请求HARQ-ACK被承载于物理上行控制信道PUCCH;
    处理模块,用于根据第一参数、第二参数和所述时域偏移量,确定PUCCH时域资源,所述第一参数为PDSCH的时间单元与承载所述HARQ-ACK的时间单元的偏移,所述第二参数是所述PDCCH中承载的PUCCH资源指示信息。
  23. 根据权利要求22所述的设备,其特征在于,所述时域偏移量为第一参数对应的偏移量。
  24. 根据权利要求22所述的设备,其特征在于,所述时域偏移量为第二参数对应的偏移量。
  25. 根据权利要求22-24所述的设备,其特征在于,所述PDCCH满足以下至少一项:所述PDCCH是由组无线网络临时标识G-RNTI加扰的、所述PDCCH是在公共搜索空间中检测的。
  26. 根据权利要求25所述的设备,其特征在于,所述处理模块还用于:
    若所述PDCCH是由终端专用无线网络临时标识RNTI加扰的,不根据所述时域偏移量确定所述PUCCH时域资源。
  27. 根据权利要求22-26所述的设备,其特征在于,所述时域偏移量是所述终端专用的;所述指示信息承载于终端专用的无线资源控制RRC信令。
  28. 根据权利要求22-27所述的设备,其特征在于,所述时域偏移量表征至少一个时间单元,所述时间单元包括:时隙、子时隙、微时隙、或正交频分复用符号。
  29. 一种终端,其特征在于,包括:
    处理器和存储器,所述存储器用于存储指令;
    所述处理器,用于通过调用所述指令以执行上述权利要求1-7中任意一项所述的方法。
  30. 一种网络设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储指令;
    所述处理器,用于通过调用所述指令以执行上述权利要求8-14中任意一项所述的方法。
PCT/CN2019/119162 2019-11-18 2019-11-18 一种无线通信方法、终端及网络设备 WO2021097605A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119162 WO2021097605A1 (zh) 2019-11-18 2019-11-18 一种无线通信方法、终端及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119162 WO2021097605A1 (zh) 2019-11-18 2019-11-18 一种无线通信方法、终端及网络设备

Publications (1)

Publication Number Publication Date
WO2021097605A1 true WO2021097605A1 (zh) 2021-05-27

Family

ID=75979928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119162 WO2021097605A1 (zh) 2019-11-18 2019-11-18 一种无线通信方法、终端及网络设备

Country Status (1)

Country Link
WO (1) WO2021097605A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476120A (zh) * 2012-06-07 2013-12-25 中兴通讯股份有限公司 物理上行控制信道的发送、处理方法及装置
US20180145796A1 (en) * 2015-05-15 2018-05-24 Zte Corporation Method and apparatus for sending uplink control information
CN109787734A (zh) * 2017-11-15 2019-05-21 中国移动通信有限公司研究院 Ack/nack的资源配置及发送方法、基站、终端
CN110224796A (zh) * 2018-03-02 2019-09-10 华为技术有限公司 上行控制信息的发送、接收方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476120A (zh) * 2012-06-07 2013-12-25 中兴通讯股份有限公司 物理上行控制信道的发送、处理方法及装置
US20180145796A1 (en) * 2015-05-15 2018-05-24 Zte Corporation Method and apparatus for sending uplink control information
CN109787734A (zh) * 2017-11-15 2019-05-21 中国移动通信有限公司研究院 Ack/nack的资源配置及发送方法、基站、终端
CN110224796A (zh) * 2018-03-02 2019-09-10 华为技术有限公司 上行控制信息的发送、接收方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, ZTE MICROELECTRONICS: "NR PUCCH resource allocation", 3GPP DRAFT; R1-1704375 NR PUCCH RESOURCE ALLOCATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051242523 *

Similar Documents

Publication Publication Date Title
WO2021043010A1 (zh) 信息增强方法、装置、设备和存储介质
US20210250159A1 (en) Resource configuration method and apparatus
EP3897053A1 (en) Method for transmitting uplink information, and communication device
US20210274494A1 (en) Uplink control information transmission method and apparatus
WO2020200162A1 (zh) 确定反馈信息的方法和通信装置
WO2017025066A1 (zh) 一种数据传输方法及装置
US20200059947A1 (en) Communication method and communications apparatus
WO2021032015A1 (zh) 反馈信息传输方法及通信装置
US20210266912A1 (en) Data transmission method and communications apparatus
WO2020238992A1 (zh) 一种通信方法及装置
WO2018082043A1 (zh) 通信方法、终端和网络设备
WO2020169063A1 (zh) 一种数据传输方法及通信装置
EP4061076A1 (en) Communication method and related apparatus, and devices
WO2020015623A1 (zh) 一种pdcch发送、盲检测方法及装置
JP7402327B2 (ja) 情報表示方法及び装置
WO2021072909A1 (zh) 一种信息处理方法和终端设备以及网络设备
WO2019158039A1 (zh) 通信方法和通信装置
WO2020220253A1 (zh) 一种信息传输方法和通信设备
WO2020125409A1 (zh) 一种时隙调度的方法、设备及介质
WO2022078270A1 (zh) 信息确定方法、装置、设备和存储介质
WO2017024565A1 (zh) 数据传输方法、装置及系统
WO2020143813A1 (zh) 传输信息的方法和装置
CN112088507B (zh) 一种信息传输方法和通信设备以及网络设备
WO2020029229A1 (en) Method and apparatus for indicating slot format information
WO2021097605A1 (zh) 一种无线通信方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953362

Country of ref document: EP

Kind code of ref document: A1