WO2021096113A1 - Organic compound-based lithium secondary battery, and method for producing same - Google Patents

Organic compound-based lithium secondary battery, and method for producing same Download PDF

Info

Publication number
WO2021096113A1
WO2021096113A1 PCT/KR2020/014818 KR2020014818W WO2021096113A1 WO 2021096113 A1 WO2021096113 A1 WO 2021096113A1 KR 2020014818 W KR2020014818 W KR 2020014818W WO 2021096113 A1 WO2021096113 A1 WO 2021096113A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
organic compound
secondary battery
conductive material
Prior art date
Application number
PCT/KR2020/014818
Other languages
French (fr)
Korean (ko)
Inventor
송재용
신호선
박선화
박지혜
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190143662A external-priority patent/KR20210057272A/en
Priority claimed from KR1020190143663A external-priority patent/KR102280793B1/en
Priority claimed from KR1020190143664A external-priority patent/KR20210056782A/en
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2021096113A1 publication Critical patent/WO2021096113A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the technical idea of the present invention relates to an organic compound-based lithium secondary battery and a method of manufacturing the same, and more particularly, to a lithium secondary battery including an organic compound-based positive electrode active material and a method of manufacturing the same.
  • the technical problem to be achieved by the technical idea of the present invention is to provide a manufacturing method for forming an organic compound-based anode electrode having excellent electrochemical properties, excellent cycle characteristics, and high energy density.
  • Another technical problem to be achieved by the technical idea of the present invention is to provide a lithium secondary battery including an organic compound-based positive electrode having excellent electrochemical properties, excellent cycle characteristics, and high energy density.
  • An organic compound-based lithium secondary battery for achieving the above technical problem includes: a positive electrode; Electrolyte; And a negative electrode, wherein the positive electrode includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur, and 30 to 50 based on the total weight of the positive electrode.
  • a positive electrode active material in the range of% by weight; Carbon nanotubes in the range of 5 to 20% by weight based on the total weight of the positive electrode; Conductive material; And a binder.
  • the organic compound is dimethylphenazine, perylenetetracarboxylic anhydride, tetraethyl thiuram disulfide, TEMPO (2,2,6,6-tetramethylpiperidinyloxy), PEDOT (poly(3,4- ethylenedioxythiophene)), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and flavanthrone.
  • the organic compound includes dimethylphenazine, and when charging the lithium secondary battery by using a lithium metal as the negative electrode, the positive electrode is a first plateau ( plateau), and a second plateau at 3.6 to 3.8 V.
  • the carbon nanotubes may include at least one of single-walled carbon nanotubes, multi-walled carbon nanotubes, and bundle-type carbon nanotubes (nanotube rope).
  • the carbon nanotubes may have a purity of 90% to 99.99%.
  • the anode electrode may further include less than 1% by weight of metal atoms attached to both ends of the carbon nanotube in the length direction.
  • the metal atom is copper (Cu), nickel (Ni), cobalt (Co), silver (Ag), titanium (Ti), aluminum (Al), tungsten (W), and molybdenum (Mo ) May include at least one of.
  • the binder may include polytetrafluoroethylene (PTFE) in the form of beads, and the binder may range from 10 to 30% based on the total weight of the positive electrode.
  • PTFE polytetrafluoroethylene
  • the conductive material may include at least one of super P, carbon black, Ketjen black, and acetylene black.
  • the conductive material may range from 30 to 50% based on the total weight of the positive electrode.
  • the positive electrode may have a density of 0.50 g/cm 3 to 1.2 g/cm 3.
  • a method of manufacturing a lithium secondary battery based on an organic compound according to the technical idea of the present invention for achieving the above technical problem includes forming a positive electrode.
  • a positive electrode active material 30 to 50% by weight of a positive electrode active material, 5 to 20% by weight of carbon nanotubes, 30 to 50% by weight of a conductive material, and 10 to 30% by weight of a binder are mixed in a solid state to prepare a preliminary step.
  • the carbon nanotubes have a purity of 90% to 99.99%, and less than 1% by weight of metal atoms attached to the surface of the carbon nanotubes may be further included.
  • the step of compressing the preliminary anode electrode so that the anode electrode has a density of 0.50 g/cm 3 to 1.2 g/cm 3 may be performed a plurality of times.
  • the positive electrode active material has a first particle size
  • the conductive material has a second particle size
  • the binder has a third particle size larger than the first particle size and the second particle size. I can have it.
  • the first particle size may be 500 nanometers to 60 micrometers
  • the second particle size may be 10 to 100 nanometers
  • the third particle size may be 1 to 5 millimeters.
  • the positive electrode may be formed in a free standing type that does not include a positive electrode current collector.
  • the step of forming the anode electrode may be performed in an all solid-state without adding an organic solvent.
  • carbon nanotubes in the range of 5 to 20% by weight may serve to provide an electrical path between the positive electrode active material and the conductive material even if the organic compound-based positive electrode active material is eluted into the electrolyte as the number of cycles increases. . Accordingly, as the number of cycles increases, the positive electrode active material is eluted from the positive electrode to prevent an increase in the overall resistance of the positive electrode, and a lithium secondary battery including such a positive electrode may have excellent cycle characteristics.
  • the positive electrode may be used as a free standing type without a positive electrode current collector such as a conventional aluminum foil, a lithium secondary battery including the positive electrode may have a high energy density.
  • An organic compound-based lithium secondary battery for achieving the above technical problem includes: a positive electrode; Electrolyte; And a negative electrode, wherein the positive electrode includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur, and 30 to 50 based on the total weight of the positive electrode.
  • a positive electrode active material in the range of% by weight; 30 to 50% by weight of a conductive material based on the total weight of the positive electrode; And a binder, and the positive electrode has a density of 0.50 g/cm 3 to 1.2 g/cm 3.
  • the organic compound includes at least one selected from the group consisting of a polymer having redox activity, an organic sulfur compound, and a carbonyl group-containing compound.
  • the organic compound is dimethylphenazine, perylenetetracarboxylic anhydride, tetraethyl thiuram disulfide, TEMPO (2,2,6,6-tetramethylpiperidinyloxy), PEDOT (poly(3,4- ethylenedioxythiophene)), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and flavantron (flavanthrone).
  • the positive electrode when charging the secondary battery using lithium metal as the negative electrode, the positive electrode exhibits a first plateau at 3.0 to 3.2 V, and a second plateau at 3.6 to 3.8 V. It can represent a plateau.
  • the binder includes PTFE in the form of a bead, and the binder may range from 10 to 30% based on the total weight of the positive electrode.
  • the conductive material may include at least one of super P, carbon black, Ketjen black, and acetylene black.
  • the weight of the positive electrode active material included in the positive electrode may be greater than the weight of the conductive material included in the positive electrode.
  • the positive active material may have an average particle size of 500 nanometers to 60 micrometers.
  • the positive electrode may be a free standing type that does not include a positive electrode current collector.
  • a method of manufacturing a lithium secondary battery based on an organic compound according to the technical idea of the present invention for achieving the above technical problem includes forming a positive electrode.
  • the forming of the positive electrode may include forming a first preliminary positive electrode by solid-phase mixing 30 to 50% by weight of a positive electrode active material and 30 to 50% by weight of a conductive material; Forming a second preliminary anode electrode by solid-phase mixing the first preliminary anode electrode and 10 to 30% by weight of a binder; And compressing the second preliminary positive electrode by a roll press; wherein the positive electrode active material includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur. .
  • the step of compressing the second preliminary anode electrode may be performed a plurality of times.
  • the pressing of the second preliminary anode electrode may be performed a plurality of times so that the anode electrode has a density of 0.50 g/cm3 to 1.2 g/cm3.
  • the positive electrode active material has a first particle size
  • the conductive material has a second particle size
  • the binder has a third particle size larger than the first particle size and the second particle size. I can have it.
  • the first particle size may be 500 nanometers to 60 micrometers
  • the second particle size may be 10 to 100 nanometers
  • the third particle size may be 1 to 5 millimeters.
  • the positive electrode may be formed in a free standing type that does not include a positive electrode current collector.
  • the step of forming the anode electrode may be performed in an all solid-state without adding an organic solvent.
  • a lithium secondary battery including such a positive electrode has excellent electrochemical properties.
  • the positive electrode may be used as a free standing type without a positive electrode current collector such as a conventional aluminum foil, a lithium secondary battery including the positive electrode may have a high energy density.
  • An organic compound-based lithium secondary battery for achieving the above technical problem includes: a positive electrode; Electrolyte; And a negative electrode, wherein the positive electrode includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur, and 30 to 50 based on the total weight of the positive electrode.
  • a positive electrode active material in the range of% by weight; A conductive material in the range of 30 to 50% by weight based on the total weight of the positive electrode; And a binder in the range of 10 to 30% by weight based on the total weight of the positive electrode, the conductive material does not decompose at 1.5V to 4.0V, and the conductive material has a BET specific surface area of 500 to 2000 m 2 /g. Have.
  • the conductive material may have a pore volume of about 1.0 to 5.0 cm 3 /g.
  • the organic compound is dimethylphenazine (DMPZ), perylenetetracarboxylic anhydride (PTCDA), tetraethyl thiuram disulfide (TETD), TEMPO (2,2,6,6-tetramethylpiperidinyloxy). , PEDOT (poly(3,4-ethylenedioxythiophene)), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and at least one selected from the group consisting of flavantrons.
  • DMPZ dimethylphenazine
  • PTCDA perylenetetracarboxylic anhydride
  • TETD tetraethyl thiuram disulfide
  • TEMPO 2,2,6,6-tetramethylpiperidinyloxy
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • the organic compound may include dimethylphenazine, and when charging the lithium secondary battery using lithium metal as the negative electrode, the positive electrode is the first plate at 3.0 to 3.2 V. It represents a plateau and can represent a second plateau at 3.6 to 3.8 V.
  • the conductive material may be Ketjenblack®.
  • the binder may include polytetrafluoroethylene (PTFE) in the form of beads, and the binder may range from 10 to 30% based on the total weight of the positive electrode.
  • PTFE polytetrafluoroethylene
  • the positive electrode active material may have an average particle size of 500 nanometers to 60 micrometers, and the conductive material may have an average particle size of 10 to 100 nanometers.
  • the positive electrode may be a free standing type that does not include a positive electrode current collector.
  • the positive electrode may have a density of 0.50 g/cm 3 to 1.2 g/cm 3.
  • a method of manufacturing a lithium secondary battery based on an organic compound according to the technical idea of the present invention for achieving the above technical problem includes forming a positive electrode.
  • the forming of the positive electrode may include forming a preliminary positive electrode by solid-phase mixing 30 to 50% by weight of a positive electrode active material, 30 to 50% by weight of a conductive material, and 10 to 30% by weight of a binder; Comprising the preliminary positive electrode by a roll press; Including, the positive electrode active material includes an organic compound containing a carbon double bond and a functional group containing at least one of nitrogen, oxygen, and sulfur, the conductive
  • the material includes Ketjen Black, and the conductive material has a BET specific surface area of 500 to 2000 m 2 /g.
  • the step of compressing the preliminary anode electrode may be performed a plurality of times.
  • the step of compressing the preliminary anode electrode so that the anode electrode has a density of 0.50 g/cm 3 to 1.2 g/cm 3 may be performed a plurality of times.
  • the positive electrode active material has a first particle size
  • the conductive material has a second particle size
  • the binder has a third particle size larger than the first particle size and the second particle size. I can have it.
  • the first particle size may be 500 nanometers to 60 micrometers
  • the second particle size may be 10 to 100 nanometers
  • the third particle size may be 1 to 5 millimeters.
  • the conductive material may have a pore volume of about 1.0 to 5.0 cm 3 /g.
  • the positive electrode may be formed in a free standing type that does not include a positive electrode current collector.
  • the step of forming the anode electrode may be performed in an all solid-state without adding an organic solvent.
  • the conductive material may have a BET specific surface area of 500 to 2000 m 2 /g.
  • a conductive material not only serves to provide an electrical connection between the positive electrode active materials, but also has a large specific surface area, and thus acts like a capacitor electrode to exhibit capacity due to capacitance.
  • a lithium secondary battery including such a positive electrode may have excellent electrochemical properties.
  • the positive electrode since the positive electrode is formed in a solid state without the addition of an organic solvent, chemical and thermal damage to the positive electrode active material by the organic solvent can be prevented.
  • the positive electrode since the positive electrode may be used as a free standing type without a positive electrode current collector such as a conventional aluminum foil, a lithium secondary battery including the positive electrode may have a high energy density.
  • the lithium secondary battery based on the organic compound according to the present invention may have excellent cycle characteristics and excellent electrochemical characteristics.
  • the positive electrode since the positive electrode may be used as a free standing type without a positive electrode current collector such as a conventional aluminum foil, a lithium secondary battery including the positive electrode may have a high energy density.
  • FIG. 1 is a cross-sectional view schematically illustrating an organic compound-based lithium secondary battery according to exemplary embodiments.
  • FIG. 2 is a schematic diagram illustrating an anode electrode according to exemplary embodiments.
  • FIG. 3 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
  • SEM scanning electron microscope
  • 5 and 6 are graphs showing voltage profiles of an anode electrode according to exemplary embodiments.
  • 7 and 8 are graphs showing charging and discharging profiles according to an increase in the number of cycles for Comparative Examples and Examples.
  • FIGS. 10 are graphs showing internal resistance of an anode electrode according to exemplary embodiments.
  • FIG. 11 is a schematic diagram illustrating an anode electrode according to other exemplary embodiments.
  • FIG. 12 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
  • SEM 13 is a scanning electron microscope (SEM) image of an organic compound-based anode electrode according to exemplary embodiments.
  • FIG. 14 is a graph showing a voltage profile of an anode electrode according to example embodiments.
  • 15 and 16 are graphs showing cycle characteristics of an anode electrode according to exemplary embodiments.
  • FIG 17 are graphs showing internal resistance of an anode electrode according to exemplary embodiments.
  • FIGS. 18 are graphs showing voltage profiles of anode electrodes having various densities according to exemplary embodiments.
  • 20 and 21 are graphs showing cycle characteristics according to a density of an anode electrode according to exemplary embodiments.
  • FIG. 23 is a graph showing a voltage profile of an anode electrode according to example embodiments.
  • 24 is a graph showing cycle characteristics of an anode electrode according to exemplary embodiments.
  • 25 is a schematic diagram illustrating an anode electrode according to other exemplary embodiments.
  • 26 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
  • 27 is a graph showing a voltage profile of an anode electrode according to example embodiments.
  • 28 and 29 are graphs showing cycle characteristics of an anode electrode according to exemplary embodiments.
  • 30 and 31 are graphs showing voltage profiles and cycle characteristics of an anode electrode according to exemplary embodiments.
  • FIG. 32 is a graph showing a discharge capacity based on a mass of a positive electrode active material and a discharge capacity based on a mass of a positive electrode according to the amount of the positive electrode active material.
  • Example 34 is a graph showing a voltage profile of an anode electrode according to Example 4 (EX4) and Comparative Example (CO1).
  • 35 is a graph showing discharge capacity (mAh/g) and Coulomb efficiency (%) according to an increase in the number of cycles of the positive electrode according to Example 4 (EX4) and Comparative Example (CO1).
  • Example 36 are graphs showing internal resistance of a positive electrode according to Example 4 (EX4) and Comparative Example (CO1).
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms may be used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
  • FIG. 1 is a cross-sectional view schematically illustrating an organic compound-based lithium secondary battery 1 according to exemplary embodiments.
  • an organic compound-based lithium secondary battery 1 includes a negative electrode 20, a positive electrode 30, a separator 50, an electrolyte solution 60, a case 72, 74), and a sealing member 76.
  • the organic compound-based lithium secondary battery 1 may be a lithium secondary battery using lithium as a charge transfer medium.
  • the positive electrode 30 may be attached to the positive electrode current collector 40, and the separator 50 may be interposed between the positive electrode 30 and the negative electrode 20.
  • the cathode electrode 20, the anode electrode 30, and the separator 50 may be accommodated in the cases 72 and 74 while being soaked in the electrolyte solution 60.
  • the lower case 72 and the upper case 74 may be fixed by the sealing member 76 so as not to be electrically connected to each other.
  • the anode electrode 30 is electrically connected to the lower case 72, and the cathode electrode 20 is electrically connected to the upper case 74, so that the upper case 74 and the lower case 72 are each organic compound-based. It can act as electrical terminals of the rechargeable lithium battery 1.
  • the negative electrode 20 may include lithium metal, graphite, a silicon-based material, a tin-based material, a mixture thereof, and the like. When the negative electrode 20 includes lithium metal, it may be configured as a single layer as shown in FIG. 1. However, when the negative electrode 20 includes graphite, a silicon-based material, a tin-based material, or a mixture thereof, the negative electrode 20 is a negative electrode current collector (not shown) composed of, for example, copper foil. ) Can also be attached.
  • the positive electrode 30 may include positive electrode active material particles based on an organic compound.
  • the positive electrode 30 may be a free standing type, and thus may not be attached to the positive electrode current collector.
  • the positive electrode 30 is attached to the positive electrode current collector of aluminum foil or nickel foil, or the positive electrode current collector is disposed under the positive electrode 30 to support the positive electrode 30. May be.
  • the anode electrode 30 will be described in detail with reference to FIG. 2 below.
  • the separator 50 may have porosity, and may be composed of a single layer or a multilayer of two or more layers.
  • the separator 50 may include a polymer material, and may include at least one of a polyethylene-based, polypropylene-based, polyvinylidene fluoride-based, and polyolefin-based polymer.
  • the electrolyte solution 60 may include a non-aqueous solvent and an electrolyte salt.
  • the non-aqueous solvent is not particularly limited as long as it is used as a non-aqueous solvent for a conventional non-aqueous electrolyte, and for example, a carbonate-based solvent, an ester-based solvent, an ether-based solvent, a ketone-based solvent, an alcohol-based solvent or aprotic It may contain a solvent.
  • the non-aqueous solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more mixtures may be appropriately adjusted according to the desired battery performance.
  • the electrolyte salt is not particularly limited as long as it is used as a conventional electrolyte salt for a non-aqueous electrolyte, and may be, for example, a salt having a structural formula of A + B -.
  • a + may be an ion including an alkali metal cation such as Li + , Na + , K +, or a combination thereof. Also.
  • B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, ASF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, It may be an ion including an anion such as C(CF 2 SO 2 ) 3 -or a combination thereof.
  • the electrolyte salt may be a lithium-based salt, for example LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiN(SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F2 y+1 SO 2 ) (where , x and y are natural numbers), LiCl, LiI, and LiB(C 2 O 4 ) 2 It may include one or more selected from the group consisting of. These electrolyte salts may be used alone or in combination of two or more.
  • the organic compound-based lithium secondary battery 1 may be a cylindrical battery in which a positive electrode and a negative electrode are spirally wound inside a cylindrical case, or a rectangular case. It may be a prismatic battery accommodated in a state in which the positive electrode and the negative electrode are wound. Alternatively, it may be a polymer battery accommodated in a vinyl pouch in a state in which a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked.
  • FIG. 2 is a schematic diagram illustrating an anode electrode 30 according to exemplary embodiments.
  • the positive electrode 30 may include a positive electrode active material 32, a conductive material 34, a binder 36, and a carbon nanotube 38.
  • the positive electrode 30 includes about 30 to 50% by weight of the positive electrode active material 32 based on the total weight of the positive electrode 30, and about 30 to 50% by weight based on the total weight of the positive electrode 30. Containing a conductive material 34, a binder 36 of 10 to 30% by weight of the total weight of the positive electrode 30, and about 5 to about 20% by weight of carbon nanotubes based on the total weight of the positive electrode 30 can do.
  • the positive electrode active material may include an organic compound having a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur.
  • a carbon double bond included in the organic compound or a functional group including at least one of nitrogen, oxygen, and sulfur may serve as an active region for a reversible oxidation or reduction reaction with lithium ions.
  • the organic compound may include at least one selected from the group consisting of a polymer (or radical polymer) having redox activity, an organo sulfide compound, and a carbonyl compound.
  • the radical polymer may have a discharge capacity of approximately 200 mAh/g or less, an average discharge potential of approximately 3.0 to 4.0 V (based on Li metal), and an energy density of approximately 800 Wh/kg -1 or less.
  • the organosulfur compound has a discharge capacity of approximately 100 to 800 mAh/g, an average discharge potential of approximately 1.5 to 3.0 V (based on Li metal), and an energy density of approximately 400 to 1500 Wh/kg -1.
  • the carbonyl group-containing compound may have a discharge capacity of approximately 100 to 300 mAh/g, an average discharge potential of approximately 1.5 to 3.0 V (based on Li metal), and an energy density of approximately 1000 Wh/kg -1 or less. have.
  • the positive electrode active material is dimethylphenazine (DMPZ), perylenetetracarboxylic dianhydride (PTCDA), tetraethyl thiuramdisulfide (TETD), TEMPO (2,2). ,6,6-tetramethylpiperidinyloxy), PEDOT (poly(3,4-ethylenedioxythiophene)), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and flavantron (flavanthrone).
  • DMPZ dimethylphenazine
  • PTCDA perylenetetracarboxylic dianhydride
  • TETD tetraethyl thiuramdisulfide
  • TEMPO 2,2 ,6,6-tetramethylpiperidinyloxy
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • the positive electrode active material includes dimethylphenazine or a derivative thereof, it may be represented by a compound of Formula 1 or Formula 2 below.
  • the positive electrode active material according to Formula 1 may be dimethyl phenazine (5,10-dihydro-5,10-dimethylphenazine).
  • R and R' are each independently a C1 ⁇ C5 alkyl group; C2-C5 alkenyl group; Alkynyl group of C2 ⁇ C5; C3-C30 aliphatic cyclic group; C6-C30 aromatic cyclic group; And a heterocyclic group including at least one heteroatom of oxygen (O), nitrogen (N), and sulfur (S). It may be any one or more selected from the group consisting of.
  • the conductive material 34 may further provide conductivity to the positive electrode 30 and may be a conductive material that does not cause chemical changes in the organic compound-based lithium secondary battery 1.
  • the conductive material may include, for example, a carbon-based material such as Super P, carbon black, Ketjen black (eg, Ketjenblack 600JD®, Ketjenblack 700JD®), and acetylene black.
  • the conductive material 34 may be contained less than the amount of the positive electrode active material 32 based on the total weight of the positive electrode 30.
  • the positive active material 32 may be included in the positive electrode 30 in a first amount
  • the conductive material 34 may be included in the positive electrode 30 in a second amount less than the first amount.
  • the binder 36 serves to attach the particles of the positive active material 32 to each other or to attach the particles of the positive active material 32 to the conductive material 34.
  • the binder 36 prevents the particles of the positive active material 32 from being separated or separated from the surface of the positive electrode 30, so that the positive electrode 30 is mechanically attached to the positive electrode 30 so that the positive electrode 30 can be maintained in a free standing type. Can provide strength.
  • the binder 36 may be a polymer, for example, polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinylchloride, carboxylate.
  • the binder 36 may be a bead type of polytetrafluoroethylene (PTFE).
  • the carbon nanotubes 38 are attached to the surface of the particles of the positive electrode active material 32 and the conductive material 34 so that the positive electrode active material 32 particles or the conductive material 34 particles are attached to the positive electrode 30 ) May serve as a support for preventing separation from the positive electrode active material 32, or may serve to provide an electrical path between the positive electrode active material 32 and the conductive material 34 even if particles of the positive electrode active material 32 are eluted into the electrolyte.
  • the carbon nanotube 38 may have a nano-sized rod shape or a fiber shape extending in the longitudinal direction.
  • the length or weight of the carbon nanotube 38 may be variously selected.
  • the carbon nanotube 38 includes at least one of a single wall carbon nanotube, a multi-wall carbon nanotube, a carbon nanotube rope, and a carbon fiber. It can be, but is not limited thereto.
  • the carbon nanotubes 38 may include a mixture of single-walled carbon nanotubes and multi-walled carbon nanotubes.
  • a trace amount of metal atoms for example, less than 1% by weight of metal atoms may be attached to the carbon nanotubes 38.
  • the metal atom may include copper (Cu), nickel (Ni), cobalt (Co), silver (Ag), titanium (Ti), aluminum (Al), tungsten (W), molybdenum (Mo), and the like.
  • the type of the trace amount of metal atoms attached to the carbon nanotubes 38 may vary depending on the method of manufacturing the carbon nanotubes 38, and the content of the trace amounts of metal atoms also includes the method and purity of the carbon nanotubes 38 ( purity).
  • tungsten carbide when tungsten carbide is used as a catalyst in the process of synthesizing the carbon nanotubes 38, a trace amount of tungsten atoms may be attached to the surface of the carbon nanotubes 38.
  • the carbon nanotube 38 may have a purity of about 90 to 99.99%, and as the purity of the carbon nanotube 38 increases, the amount of metal atoms added may be reduced.
  • the carbon nanotubes 38 may be included in an amount of about 5 to 20% by weight based on the total weight of the positive electrode 30.
  • the content of the carbon nanotubes 38 is less than about 5% by weight, the effect of preventing an increase in electrode resistance due to the elution of the positive electrode active material may be insignificant, and the content of the carbon nanotubes 38 is about 20% by weight.
  • the discharge capacity may be reduced.
  • the anode electrode 30 has a relatively high discharge capacity, while preventing an increase in electrode resistance due to the elution of the organic compound to an electrolyte solution, thereby providing an excellent cycle. Can show characteristics.
  • the positive electrode 30 when charging the lithium secondary battery 1 based on an organic compound using lithium metal as the negative electrode 20, the positive electrode 30 is the first plateau at about 3.0 V to about 3.2 V. (plateau) and a second plateau at about 3.6 V to about 3.8 V.
  • the positive electrode active material 32 contains dimethylphenazine (DMPZ)
  • DMPZ dimethylphenazine
  • the first plateau is formed by an oxidation reaction in which one of the two nitrogen atoms shown in Formula 1 is ionized to a nitrogen cation. Appears, and the second plateau may appear by an oxidation reaction in which the other nitrogen atom of the two nitrogen atoms is ionized into a nitrogen cation.
  • the positive electrode active material 32 includes perylenetetracarboxylic anhydride (PTCDA)
  • the positive electrode 30 may exhibit a single plateau at about 2.52 V to about 2.7 V.
  • the positive active material 32 may have an average particle size of about 500 nanometers (nm) to about 60 micrometers ( ⁇ m), but is not limited thereto.
  • the average particle size of the positive electrode active material 32 is smaller than about 500 nm, the surface area of the positive electrode active material 32 is relatively increased, so that the positive electrode active material 32 is eluted in the electrolyte solution, and thus the lithium secondary battery 1
  • the cycle characteristics of may be deteriorated, and when the average particle size of the positive electrode active material 32 is larger than about 60 ⁇ m, it is difficult to effectively transfer lithium ions to the inside of the positive electrode active material 32. high rate) characteristics may be deteriorated.
  • the anode electrode 30 may have a thickness T1 of about 20 to 200 micrometers, and the anode electrode 30 may have a density of 0.50 g/cm 3 to 1.2 g/cm 3. I can.
  • the density of the positive electrode 30 may be the density of the free-standing type positive electrode 30 itself, which does not include a positive electrode current collector.
  • the voltage range of the first plateau and the second plateau in the initial cycle A first plateau and a second plateau may appear in a similar voltage range.
  • the voltage profile may be deformed and the plateau may not be observed as the number of cycles increases, but in the case of the embodiment including the carbon nanotubes 38 Even if the number of cycles increases, the voltage profile is not modified and the first and second plateaus can be observed in a voltage range similar to that in the initial cycle.
  • the positive electrode 30 may be manufactured according to a method of manufacturing an organic compound-based secondary battery including a solid-phase mixing method described with reference to FIG. 3.
  • This solid-phase mixing method can prevent chemical and thermal damage to the positive electrode active material of the positive electrode 30 and allow the positive electrode 30 to be formed in a free standing type.
  • the energy density of the compound-based lithium secondary battery 1 can be remarkably increased.
  • FIG. 3 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
  • a positive electrode active material, a conductive material, a binder, and a carbon nanotube are prepared (step S10).
  • the positive electrode active material, the conductive material, the binder, and the carbon nanotube may be provided in a solid state.
  • the positive electrode active material has a first particle size of about 500 nanometers to about 60 micrometers
  • the conductive material has a second particle size of about 10 to 100 nanometers
  • the binder has a third particle size of about 1 to 5 millimeters. It can have a particle size.
  • the carbon nanotube may be at least one of a single wall carbon nanotube, a multi-wall carbon nanotube, a carbon nanotube rope, and a carbon fiber.
  • the carbon nanotube 38 may have a purity of about 90 to 99.99%, and a trace amount of metal atoms, for example, less than 1% by weight of metal atoms may be attached to the surface of the carbon nanotube 38 to be provided.
  • At least one of the positive electrode active material, the conductive material, the binder, and the carbon nanotubes is put in a vacuum oven for several tens of minutes to several hours. Can be dried.
  • a positive electrode active material, a conductive material, a binder, and a carbon nanotube are mixed in a mixing container, and a positive electrode active material, a conductive material, a binder, and a carbon nanotube are solidly mixed to form a preliminary positive electrode (step S20).
  • the positive electrode active material, the conductive material, the binder, and the carbon nanotubes may be mixed without adding a liquid solvent or the like in the mixing container.
  • the positive electrode active material, the conductive material, the binder, and the carbon nanotube are each in a solid state, and a mixing rod such as a mortar is used for the positive electrode active material, the conductive material, the binder, and the carbon nanotube.
  • a mixing rod such as a mortar
  • the positive electrode active material, the conductive material, and the binder pieces may be aggregated and attached to each other by mechanical shearing force by the mixing rod.
  • the carbon nanotubes may be uniformly mixed with the positive electrode active material, the conductive material, and the binder, and in particular, may be formed by being attached to the surfaces of the positive electrode active material and the conductive material particles.
  • the carbon nanotubes may be included in a length relatively longer than the positive electrode active material particle size, and thus, one carbon nanotube may be disposed in a manner attached to the surfaces of the plurality of positive electrode active material particles and the plurality of conductive material particles.
  • a solid mass formed by relatively uniformly mixing a positive electrode active material, a conductive material, a binder, and a carbon nanotube may be referred to as a preliminary positive electrode.
  • the preliminary anode electrode may be formed in a lump shape having a relatively high viscosity that is substantially solid.
  • step S30 the preliminary anode electrode is roll pressed to form an anode electrode
  • the roll pressing step may be performed once. In other embodiments, the roll pressing step may be performed two or more times. In some examples, the roll pressing step may be performed multiple times until the anode electrode has a target thickness, followed by a waiting time of several minutes to tens of minutes after one roll pressing step, and then one roll pressing Steps can be performed.
  • a step of drying the anode electrode before or after the roll pressing step may be further performed.
  • the step of cutting the anode electrode may be additionally performed.
  • a liquid mixing method using an organic solvent may be used to form an electrode material based on a conventional inorganic material.
  • particles of an inorganic active material are mixed in an organic solvent such as NMP (N-methyl-2-pyrrolidone) and mixed to prepare a slurry for an electrode.
  • an electrode material is prepared by applying the electrode slurry on the current collector and performing a baking process for volatilizing the organic solvent.
  • the organic compound-based positive electrode active material is easily dissolved and chemically transformed by an organic solvent such as NMP.
  • the organic compound-based positive electrode active material may be deformed due to heat applied in the baking process for volatilizing the organic solvent, and in this case, the function as the positive electrode active material may not be performed or performance may be degraded. Therefore, there is a need to develop a method for manufacturing a homogeneous electrode while minimizing chemical and thermal damage to an organic active material-based positive electrode active material.
  • a positive electrode may be formed by mixing a positive electrode active material, a conductive material, a binder, and a carbon nanotube in an all solid-state state.
  • the organic solvent is not used in the mixing step of the active material, chemical and thermal damage to the positive electrode active material by the organic solvent and the organic solvent removal process can be prevented.
  • the positive electrode active material and the conductive material are uniformly dispersed in the positive electrode, and a sufficient electrical connection path between the positive electrode active material and the conductive material may be provided through the carbon nanotubes. Therefore, the anode electrode formed by this manufacturing method can exhibit excellent electrical properties.
  • DMPZ (5,10-dihydro-5,10-dimethylphenazine), ketjen black®, and PTFE (polytetrafluoroethylene) were used as a positive electrode active material, a conductive material, and a binder, respectively.
  • carbon nanotubes low-purity multi-walled carbon nanotubes, high-purity multi-walled carbon nanotubes, and high-purity single-walled carbon nanotubes were included in each positive electrode sample.
  • the positive electrode active material, the conductive material, the binder, and the carbon nanotube were mixed using a mortar at a mass ratio of 4:3.5:1.5:0.5, respectively.
  • a positive electrode active material, a conductive material, a binder, and a carbon nanotube were mixed in the mortar and mixed in a solid state.
  • the uniformly mixed positive electrode was pressed using a roll press, and then the positive electrodes were cut to a size of 1*1 cm 2.
  • the positive electrode according to the comparative example did not contain a carbon nanotube, and a positive electrode active material, a conductive material, and a binder were mixed in a mass ratio of 4:3.5:1.5, respectively.
  • a 2032 type coin cell was assembled using positive electrodes. Lithium foil was used as the negative electrode. Glass fiber filter paper (GF/F) was used as a separator, and a 1.8 M LiTFSI/TEGDME solution was added to each coin cell by 90 ⁇ L as an electrolyte. The assembled coin cell was subjected to charging and discharging experiments in the range of 2.5-4.0 V.
  • SEM scanning electron microscope
  • the positive electrode active material, the conductive material, the binder, and the positive electrode in which the carbon nanotubes are uniformly mixed can be maintained in shape so that the positive electrode can be used as a free standing type.
  • the positive electrode may have sufficient structural stability to the extent that it can be handled in the manufacturing process of a commercial lithium secondary battery.
  • FIGS. 4B and 4C are images showing the surface of the positive electrode, and it can be seen that the positive electrode active material particles and conductive material particles of approximately spherical or elliptical shape are bonded to each other by a binder to have a relatively smooth surface morphology. have. In addition, it can be seen that the positive electrode active material particles have a relatively uniform particle size, and a relatively long carbon nanotube is attached to and disposed on the surfaces of the plurality of positive electrode active material particles and the plurality of conductive material particles.
  • FIG. 5 and 6 are graphs showing voltage profiles of an anode electrode according to exemplary embodiments.
  • FIG. 5 shows the voltage and capacity in one charge and one discharge in Comparative Example (CO1)
  • FIG. 6 shows the voltage in one charge and one discharge in Examples 1 to 3 (EX1, EX2, EX3).
  • Comparative Example (CO1) is an anode electrode without carbon nanotubes
  • Example 1 (EX1) is an anode electrode including low-purity multi-walled carbon nanotubes
  • Example 2 (EX2) is a high-purity multi-walled carbon nanotube.
  • Example 3 (EX3) is an anode electrode including a high-purity single-walled carbon nanotube.
  • low purity refers to a purity of about 90%
  • high purity refers to a purity of about 98%.
  • Examples 1 to 3 (EX1, EX2, EX3) and Comparative Example (CO1) all show a first plateau at about 3.0 V to about 3.2 V, and about 3.6 V. It can be seen that the second plateau is represented at about 3.8 V.
  • the first plateau appears by an oxidation reaction in which one nitrogen atom of two nitrogen atoms contained in DMPZ is ionized to a nitrogen cation, and the other nitrogen atom of the two nitrogen atoms is ionized to a nitrogen cation.
  • the second plateau may appear by reaction.
  • Example 1 (EX1) showed a discharge capacity of about 160 mAh/g, whereas Comparative Example (CO1) showed a discharge capacity of about 185 mAh/g. This may be understood as a decrease in capacity due to a decrease in the content of the positive electrode active material included in the positive electrode of the same mass, as the carbon nanotubes were not included in the comparative example (CO1). In addition, it can be seen that the carbon nanotubes do not function as active regions for oxidation and reduction reactions for storage of lithium ions.
  • Examples 2 and 3 exhibit a discharge capacity of about 145 mAh/g. Since Example 2 (EX2) including multi-walled carbon nanotubes and Example 3 (EX3) including single-walled carbon nanotubes exhibit similar voltage profiles and discharge capacity, significant differences according to the type of carbon nanotubes It can be confirmed that does not exist.
  • FIG. 7 and 8 are graphs showing charging and discharging profiles according to an increase in the number of cycles for Comparative Examples and Examples.
  • 7 shows the charging and discharging profiles in the first, fifth, and tenth cycles of Comparative Example (CO1)
  • FIG. 8 is the first, fifth, and fifth cycles of Example 1 (EX1). The charging and discharging profiles in the 10th cycle are shown.
  • Example 1 slightly decreased in the 5th and 10th cycles compared to the discharge capacity in the first cycle, but exhibited a relatively high discharge capacity.
  • Example 1 Comparative Example (CO1), the first plateau at about 3.0 to about 3.2 V was observed in the first cycle, whereas the first plateau was not clearly observed in the fifth cycle and the tenth cycle.
  • Example 1 EX1
  • the positive electrode of the comparative example that does not contain carbon nanotubes does not show a plateau as the cycle progresses because the positive electrode active material is eluted into the electrolyte and the positive electrode active material is separated from the positive electrode, or the positive electrode active material eluted into the electrolyte. This may be because the electrical path between the positive electrode active material and the conductive material is cut off, thereby increasing the resistance of the entire positive electrode.
  • the positive electrode of the embodiment including the carbon nanotubes exhibits a similar plateau even if the cycle proceeds, as the carbon nanotubes are attached to the surfaces of the positive electrode active material and the conductive material, so that the positive electrode active material particles or conductive material particles are removed from the positive electrode. It can be understood because it serves as a support to prevent separation.
  • the carbon nanotubes provide an electrical path between the positive electrode active material and the conductive material, even if a part of the positive electrode active material is eluted into the electrolyte and separated from the positive electrode as charging and discharging of the positive electrode is performed, the remaining positive active material and carbon It can be understood that this is because the electrical path between the nanotubes is secured and thus the resistance of the entire anode electrode does not increase.
  • Examples 2 and 3 (EX2, EX3) also showed similar cycle characteristics to Example 1 (EX1), and accordingly, electricity of the anode electrode according to the type of carbon nanotubes. It can be seen that there is no significant difference in chemical performance.
  • Example 1 shows a lower initial discharge capacity than Comparative Example (CO1), but shows a discharge capacity of approximately 120mAh/g even after 10 cycles, so it can be seen that it shows a capacity retention rate of approximately 75%. .
  • Comparative Example (CO1) exhibits a Coulomb efficiency of about 70% after 10 cycles
  • Example 1 (EX1) shows a remarkably high Coulomb efficiency of about 90% after 10 cycles.
  • the carbon nanotubes added to the exemplary embodiments serve to provide an electrical path between the positive electrode active material and the conductive material even if the positive electrode active material is eluted into the electrolyte.
  • FIG. 10 are graphs showing internal resistance of an anode electrode according to exemplary embodiments.
  • Nyquist plots obtained from the impedance analysis method of Comparative Example (CO1), Example 1 (EX1), and Example 2 (EX2) are shown.
  • the impedance graph of Example 1 (EX1) has a semicircle of a smaller radius than the impedance graph of Comparative Example (CO1).
  • the smaller the radius of the semicircle the smaller the resistance value. Accordingly, it can be seen that the anode electrode of Example 1 (EX1) has a smaller internal resistance value than that of the anode electrode of Comparative Example (CO1).
  • Example 1 (EX1) including low-purity multi-walled carbon nanotubes has a remarkably low resistance value. This appears to be smaller than the resistance value of Example 2 (EX2) including high-purity multi-walled carbon nanotubes. It can be assumed that this is a difference due to a trace amount of metal atoms attached to the carbon nanotubes.
  • a trace amount of metal atoms originating from a metal catalyst may be attached to the surface of the low-purity carbon nanotube (for example, at both ends of the carbon nanotube in the longitudinal direction).
  • the content of metal atoms attached to the low-purity carbon nanotubes may be greater than the content of metal atoms attached to the high-purity carbon nanotubes. Therefore, it is believed that Example 1 (EX1) including low-purity carbon nanotubes can have a smaller electrode internal resistance compared to Comparative Examples (CO1) and Example 2 (EX2) due to trace metal atoms present therein. Can be understood.
  • FIG. 11 is a schematic diagram illustrating an anode electrode 30A according to other exemplary embodiments.
  • the positive electrode 30A may include a positive electrode active material 32, a conductive material 34, and a binder 36.
  • the positive electrode 30A includes about 30 to 50% by weight of the positive active material 32 based on the total weight of the positive electrode, and about 30 to 50% by weight based on the total weight of the positive electrode 30A.
  • a conductive material 34 and a binder 36 of 10 to 30% by weight of the total weight of the positive electrode 30A may be included.
  • the positive electrode active material may include an organic compound having a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur.
  • a carbon double bond included in the organic compound or a functional group including at least one of nitrogen, oxygen, and sulfur may serve as an active region for a reversible oxidation or reduction reaction with lithium ions.
  • the organic compound may include at least one selected from the group consisting of a polymer (or radical polymer) having redox activity, an organo sulfide compound, and a carbonyl compound.
  • the radical polymer may have a discharge capacity of approximately 200 mAh/g or less, an average discharge potential of approximately 3.0 to 4.0 V (based on Li metal), and an energy density of approximately 800 Wh/kg -1 or less.
  • the organosulfur compound has a discharge capacity of approximately 100 to 800 mAh/g, an average discharge potential of approximately 1.5 to 3.0 V (based on Li metal), and an energy density of approximately 400 to 1500 Wh/kg -1.
  • the carbonyl group-containing compound has a discharge capacity of approximately 100 to 300 mAh/g, an average discharge potential of approximately 1.5 to 3.0 V (based on Li metal), and an energy density of approximately 1000 Wh/kg -1 or less. I can.
  • the positive electrode active material is dimethylphenazine (DMPZ), perylenetetracarboxylic dianhydride (PTCDA), tetraethyl thiuramdisulfide (TETD), TEMPO (2,2). ,6,6-tetramethylpiperidinyloxy), PEDOT (poly(3,4-ethylenedioxythiophene)), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and flavantron (flavanthrone).
  • DMPZ dimethylphenazine
  • PTCDA perylenetetracarboxylic dianhydride
  • TETD tetraethyl thiuramdisulfide
  • TEMPO 2,2 ,6,6-tetramethylpiperidinyloxy
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • the positive electrode active material includes dimethylphenazine or a derivative thereof, it may be represented by a compound of Formula 1 or Formula 2 below.
  • the positive electrode active material according to Formula 1 may be dimethyl phenazine (5,10-dihydro-5,10-dimethylphenazine).
  • R and R' are each independently a C1 ⁇ C5 alkyl group; C2-C5 alkenyl group; Alkynyl group of C2 ⁇ C5; C3-C30 aliphatic cyclic group; C6-C30 aromatic cyclic group; And a heterocyclic group including at least one heteroatom of oxygen (O), nitrogen (N), and sulfur (S). It may be any one or more selected from the group consisting of.
  • the conductive material 34 may further provide conductivity to the positive electrode 30A, and may be a conductive material that does not cause chemical changes in the lithium secondary battery 1 based on an organic compound.
  • the conductive material may include, for example, a carbon-based material such as Super P, carbon black, Ketjen black (eg, Ketjenblack 600JD®, Ketjenblack 700JD®), and acetylene black.
  • the conductive material 34 may be contained less than the amount of the positive electrode active material 32 based on the total weight of the positive electrode 30A.
  • the positive active material 32 may be included in the positive electrode 30A in a first amount
  • the conductive material 34 may be included in the positive electrode 30A in a second amount less than the first amount.
  • the binder 36 serves to attach the particles of the positive active material 32 to each other or to attach the particles of the positive active material 32 to the conductive material 34.
  • the binder 36 prevents the particles of the positive electrode active material 32 from being separated or separated from the surface of the positive electrode 30, so that the positive electrode 30A is mechanically attached to the positive electrode 30A so that the positive electrode 30A can be maintained in a free standing type. Can provide strength.
  • the binder 36 may be a polymer, for example, polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinylchloride, carboxylate.
  • the binder 36 may be a bead type of polytetrafluoroethylene (PTFE).
  • the positive electrode 30 when charging the lithium secondary battery 1 based on an organic compound using lithium metal as the negative electrode 20, the positive electrode 30 is the first plateau at about 3.0 V to about 3.2 V. (plateau) and a second plateau at about 3.6 V to about 3.8 V.
  • the positive electrode active material 32 contains dimethylphenazine (DMPZ)
  • DMPZ dimethylphenazine
  • the first plateau is formed by an oxidation reaction in which one of the two nitrogen atoms shown in Formula 1 is ionized to a nitrogen cation. Appears, and the second plateau may appear by an oxidation reaction in which the other nitrogen atom of the two nitrogen atoms is ionized into a nitrogen cation.
  • the positive active material 32 may have an average particle size of about 500 nanometers to about 60 micrometers, but is not limited thereto.
  • the average particle size of the positive electrode active material 32 is smaller than about 500 nanometers, the surface area of the positive electrode active material 32 is relatively increased, so that the positive electrode active material 32 is eluted in the electrolyte solution, and the lithium secondary battery 1 ) Cycle characteristics may be deteriorated, and when the average particle size of the positive electrode active material 32 is larger than about 6 micrometers, it is difficult to effectively transfer lithium ions to the inside of the positive electrode active material 32. High rate characteristics may be degraded.
  • the anode electrode 30A may have a thickness T1 of about 20 to 200 micrometers, and the anode electrode 30A may have a density of 0.50 g/cm 3 to 1.2 g/cm 3. I can.
  • the density of the positive electrode 30A may be the density of the free standing type positive electrode 30A that does not include a positive electrode current collector.
  • the positive electrode active material 32 relative to the volume of the positive electrode 30A It may refer to a ratio of the total weight of the conductive material 34 and the binder 36.
  • the anode electrode 30A has a density of 0.50 g/cm 3 to 1.2 g/cm 3 , while exhibiting excellent Coulomb efficiency, it may exhibit relatively high cycle characteristics.
  • the anode electrode 30A may have a relatively small electrode resistance as it has a density of 0.50 g/cm 3 to 1.2 g/cm 3.
  • the initial discharge capacity may be relatively low (eg, about 3.0 V to The first plateau slightly appears at about 3.2 V and the second plateau may not be observed at about 3.6 V to about 3.8 V, which may mean that the redox reaction in Formula 3 does not reversibly occur. ).
  • the initial discharge capacity is excellent, and excellent coulomb efficiency of 70% or more for 10 cycles and excellent cycle characteristics may be exhibited.
  • the Coulomb efficiency decreases to 50% or less for 10 cycles, and the cycle characteristics are not excellent. I can.
  • the anode electrode having a density of 0.50 g/cm 3 to 1.2 g/cm 3 was less than 0.50 g/cm 3 or greater than 1.2 g/cm 3. It can represent a smaller electrode resistance value. This is, for example, in the positive electrode having a density smaller than 0.50 g/cm 3 , sufficient contact and electrical path between the positive electrode active material and the conductive material are not provided, so that the resistance value of the entire positive electrode increases, and is less than 1.2 g/cm 3.
  • the electrolyte and lithium ions through the same are not sufficiently provided to penetrate and move into the positive electrode, thereby increasing the resistance value of the entire positive electrode.
  • the electrochemical characteristics according to the density of the anode electrode 30A will be described again with reference to FIGS. 18 to 22.
  • the positive electrode 30A may be manufactured according to a method of manufacturing an organic compound-based secondary battery including a two-step solid-phase mixing method described with reference to FIG. 12.
  • This two-step solid-phase mixing method can prevent chemical and thermal damage to the positive electrode active material of the positive electrode 30A, and allow the positive electrode 30A to be formed in a free standing type, thereby forming the positive electrode 30A.
  • the energy density of the organic compound-based lithium secondary battery 1 to be employed can be remarkably increased.
  • the anode electrode manufactured by using the two-stage solid-phase mixing method has a further increased initial discharge capacity, an increased coulomb efficiency, and better cycle characteristics.
  • the positive electrode prepared using the mixing method according to the comparative example the positive electrode prepared using the two-step solid-phase mixing method may exhibit a smaller electrode resistance value as a result of impedance measurement. Therefore, it is understood that the active material and the conductive material can be more evenly mixed by the two-step solid-phase mixing method, whereby the anode electrode 30A exhibits a further increased initial discharge capacity, increased coulomb efficiency, and more excellent cycle characteristics. Can be.
  • the electrochemical properties of the anode electrode using this two-step mixing method will be described again with reference to FIGS. 14 to 17.
  • FIG. 12 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
  • a positive electrode active material, a conductive material, and a binder are prepared (step S10).
  • the positive electrode active material, the conductive material, and the binder may be provided in a solid state.
  • the positive electrode active material, the conductive material, and the binder may be put in a vacuum oven and dried for several tens of minutes to several hours.
  • step S20 Thereafter, the positive electrode active material and the conductive material are mixed in the mixing container, and the positive electrode active material and the conductive material are solidly mixed to form a first preliminary positive electrode (step S20).
  • the positive electrode active material and the conductive material may be mixed without adding a liquid solvent or the like.
  • the positive electrode active material and the conductor are in a solid state, and mechanical shearing force is applied to the positive electrode active material and the conductive material by using a mixing rod such as a mortar, so that the positive electrode active material and the conductive material are uniformly separated from each other.
  • a mixing rod such as a mortar
  • the positive electrode active material and the conductive material are uniformly separated from each other.
  • the mixing rod collapses each of the positive electrode active material and the conductive material in a solid lump state into small pieces
  • the positive electrode active material pieces and the conductive material pieces may be aggregated and attached to each other by mechanical shearing force by the mixing rod.
  • a solid mass formed by relatively uniformly mixing the positive electrode active material and the conductive material may be referred to as a first preliminary positive electrode.
  • the first preliminary positive electrode may be formed in a lump shape having a relatively high viscosity in a substantially solid state in which the positive electrode active material and conductive material particles are uniformly dispersed therein.
  • a binder is mixed in the mixing container, and the first preliminary anode electrode and the binder are solidly mixed to form a second preliminary anode electrode (step S30).
  • the binder may be mixed without the addition of a liquid solvent or the like in the mixing container.
  • the first preliminary anode electrode and the binder are in a solid state, respectively, and as a mechanical shear force is applied to the first preliminary anode electrode and the binder by using a mixing rod, the first preliminary anode electrode and the binder are uniformly formed from each other.
  • the mixing rod disintegrates the first preliminary anode electrode in a solid mass state into small pieces of anode electrode masses, while these positive electrode masses are uniformly mixed with the binder so that they can be attached to each other.
  • a solid mass formed by relatively uniformly mixing a positive electrode active material, a conductive material, and a binder may be referred to as a second preliminary positive electrode.
  • the second preliminary positive electrode may be formed in a lump shape having a relatively high viscosity in a substantially solid state in which the positive electrode active material, the conductive material, and the binder particles are uniformly dispersed therein.
  • the positive electrode active material and the conductive material may have a smaller particle size than that of the binder.
  • the positive electrode active material has a first particle size of about 500 nanometers to 60 micrometers
  • the conductive material has a second particle size of about 10 to 100 nanometers
  • the binder may have a third particle size of about 1 to 5 millimeters. have.
  • the positive electrode active material and the conductive material may be uniformly mixed and dispersed in the second preliminary positive electrode by mixing the positive electrode active material and the conductive material in a solid state and then mixing the mixture in a solid state with a binder having a larger particle size.
  • step S40 the second preliminary anode electrode is roll pressed to form an anode electrode
  • the roll pressing step may be performed once. In other embodiments, the roll pressing step may be performed two or more times. In some examples, the roll pressing step may be performed multiple times until the anode electrode has a target thickness, followed by a waiting time of several minutes to tens of minutes after one roll pressing step, and then one roll pressing Steps can be performed.
  • the anode electrode may have a density of 0.50 g/cm 3 to 1.2 g/cm 3.
  • a step of drying the anode electrode before or after the roll pressing step may be further performed.
  • the step of cutting the anode electrode may be additionally performed.
  • a liquid mixing method using an organic solvent may be used to form an electrode material based on a conventional inorganic material.
  • particles of an inorganic active material are mixed in an organic solvent such as NMP (N-methyl-2-pyrrolidone) and mixed to prepare a slurry for an electrode.
  • an electrode material is prepared by applying the electrode slurry on the current collector and performing a baking process for volatilizing the organic solvent.
  • the organic compound-based positive electrode active material is easily dissolved and chemically transformed by an organic solvent such as NMP.
  • the organic compound-based positive electrode active material may be deformed due to heat applied in the baking process for volatilizing the organic solvent, and in this case, the function as the positive electrode active material may not be performed or performance may be degraded. Therefore, there is a need to develop a method for manufacturing a homogeneous electrode while minimizing chemical and thermal damage to an organic active material-based positive electrode active material.
  • all solid state is performed by sequentially performing the first solid-phase mixing step of the positive electrode active material and the conductive material, the second solid-phase mixing step with the subsequent binder, and roll pressing.
  • the anode electrode can be formed through the -state) manufacturing method.
  • the organic solvent is not used in the mixing step of the active material, chemical and thermal damage to the positive electrode active material by the organic solvent and the organic solvent removal process can be prevented.
  • the positive electrode active material and the conductive material may be uniformly dispersed and mixed in the positive electrode even by the whole solid-state manufacturing method.
  • by forming the solid anode electrode by roll pressing it may be easy to control the thickness and/or the density of the anode electrode.
  • DMPZ (5,10-dihydro-5,10-dimethylphenazine) and PTCDA were used as positive electrode active materials, respectively.
  • a conductive material and a binder ketjen black® and PTFE (polytetrafluoroethylene) were used, respectively.
  • the positive electrode active material, the conductive material, and the binder were each mixed in a 4:4:2 mass ratio using a mortar. In the mortar, the positive electrode active material and the conductive material were first mixed and mixed in a first solid phase, and then a binder was mixed and mixed in a second solid phase. Electrodes having various electrode densities were manufactured using a roll press for the uniformly mixed positive electrode. The anode electrodes were cut to a size of 1*1 cm 2. Meanwhile, in the positive electrode according to the comparative example, a positive electrode active material, a conductive material, and a binder were simultaneously mixed in a mortar and mixed in a solid phase.
  • a 2032 type coin cell was assembled using positive electrodes. Lithium foil was used as the negative electrode. Glass fiber filter paper (GF/F) was used as a separator, and a 1.8 M LiTFSI/TEGDME solution was added to each coin cell by 90 ⁇ L as an electrolyte. The assembled coin cell was subjected to charging and discharging experiments in the range of 2.5-4.0 V.
  • SEM 13 is a scanning electron microscope (SEM) image of an organic compound-based anode electrode according to exemplary embodiments.
  • 13A shows the anode electrode cut in a free standing type. Even without a separate current collector, the shape can be maintained so that a positive electrode in which a positive electrode active material including DMPZ, a conductive material, and a binder are uniformly mixed can be used as a free standing type.
  • the positive electrode may have sufficient structural stability to the extent that it can be handled in the manufacturing process of a commercial lithium secondary battery.
  • 13B and 13C are images showing the surface of the positive electrode, and it can be seen that the positive electrode active material particles and conductive material particles of approximately spherical or elliptical shape are bonded to each other by a binder to have a relatively smooth surface morphology. have. In addition, it can be seen that the positive electrode active material particles have a relatively uniform particle size.
  • FIG. 14 is a graph showing a voltage profile of an anode electrode according to example embodiments.
  • Example 1 (EX1) is an anode electrode including DMPZ manufactured by a two-step solid-phase mixing method
  • Comparative Example (CO1) is an anode electrode manufactured by simultaneously mixing anode electrode materials.
  • both Example (EX1) and Comparative Example (CO1) exhibited a first plateau at about 3.0 V to about 3.2 V, and a second plateau at about 3.6 V to about 3.8 V.
  • the first plateau appears by an oxidation reaction in which one nitrogen atom of two nitrogen atoms contained in DMPZ is ionized to a nitrogen cation, and the other nitrogen atom of the two nitrogen atoms is ionized to a nitrogen cation.
  • the second plateau may appear by reaction.
  • Example 1 (EX1) showed a discharge capacity of about 235 mAh/g, whereas Comparative Example (CO1) showed a discharge capacity of about 202 mAh/g. It can be seen that Example 1 (EX1) prepared by the two-step solid-phase mixing method exhibits superior initial discharge capacity compared to Comparative Example (CO1).
  • FIG. 15 and 16 are graphs showing cycle characteristics of an anode electrode according to exemplary embodiments. Specifically, FIG. 15 shows the discharge capacity (mAh/g) according to the number of cycles, and FIG. 16 shows the Coulomb efficiency (%) according to the number of cycles. Coulomb efficiency (%) refers to the ratio of the discharge capacity to the charge capacity in each cycle.
  • Example 1 (EX1) exhibits a discharge capacity of about 172mAh/g and a Coulomb efficiency of about 79% even after 10 cycles. That is, Example 1 (EX1) exhibits a capacity retention characteristic of about 73% after 10 cycles.
  • Comparative Example (CO1) exhibits a discharge capacity of about 130mAh/g and a Coulomb efficiency of about 64% even after 10 cycles. That is, Comparative Example (CO1) exhibits a capacity retention characteristic of about 64% after 10 cycles. That is, it can be seen that Example 1 (EX1) prepared by the two-step solid-phase mixing method exhibits excellent cycle characteristics compared to Comparative Example (CO1).
  • Example 1 (EX1) and Comparative Example (CO1) cycles for three cut anode electrodes for each of Example 1 (EX1) and Comparative Example (CO1).
  • the discharge capacity according to was tested.
  • the average value and standard deviation of the three anode electrodes are shown. It is confirmed that the standard deviation of the discharge capacity in Example 1 (EX1) is smaller than the standard deviation of the discharge capacity in Comparative Example (CO1), and in particular, the standard deviation of the discharge capacity is smaller as the number of cycles increases.
  • Example 1 (EX1) prepared by the two-step solid-phase mixing method exhibits excellent electrode uniformity and reproducibility.
  • FIG. 17 are graphs showing internal resistance of an anode electrode according to exemplary embodiments.
  • Nyquist plots obtained from the impedance analysis method of Example 1 (EX1) and Comparative Example (CO1) are shown.
  • the impedance graph of Example 1 (EX1) has a semicircle of a smaller radius than the impedance graph of Comparative Example (CO1).
  • the smaller the radius of the semicircle the smaller the resistance value. Accordingly, it can be seen that the anode electrode of Example 1 (EX1) has a smaller internal resistance value than that of the anode electrode of Comparative Example (CO1).
  • Example 1 (EX1) prepared by the two-step solid-phase mixing method was uniformly dispersed and mixed with the positive electrode active material, the conductive material, and the binder, so that the electrode internal resistance may be smaller than that of the comparative example (CO1). Can be understood.
  • Experimental Examples 21 to 26 included DMPZ, and were prepared to have a density of 0.42, 0.44, 0.45, 0.57, 0.96, and 1.22 g/cm 3, respectively.
  • FIG. 18 are graphs showing voltage profiles of anode electrodes having various densities according to exemplary embodiments
  • FIG. 19 is graphs showing one-time charge capacity and one-time discharge capacity.
  • Example 21 (EX21) having a density of 0.42 g/cm 3 shows a relatively low charging capacity and a discharge capacity (for example, a discharge capacity of about 110 mAh/g), It can be seen that the 1 plateau is insignificantly observed and the second plateau is not observed.
  • Examples 22 to 26 (EX22 to EX26) exhibited both the first plateau and the second plateau, and exhibited high charging capacity and discharge capacity (discharge capacity of approximately 200 mAh/g or more). .
  • FIG. 20 and 21 are graphs showing cycle characteristics according to a density of an anode electrode according to exemplary embodiments. Specifically, FIG. 20 shows the discharge capacity (mAh/g) according to the number of cycles, and FIG. 21 shows the Coulomb efficiency (%) according to the number of cycles. Coulomb efficiency (%) refers to the ratio of the discharge capacity to the charge capacity in each cycle.
  • Examples 21 to 25 (EX21 to EX25) exhibited about 70% or more Coulomb efficiency after 10 cycles, whereas Example (EX26) was about 47 after 10 cycles. Represents the coulombic efficiency in %.
  • Examples 21 to 25 (EX21 to EX25) exhibited a discharge capacity of about 70% or more compared to the initial capacity after 10 cycles, whereas Example 26 (EX26) showed a discharge capacity of about 53% after 10 cycles. Show. According to this, it can be seen that Example 26 (EX26) having a density of 1.22 g/cm 3 has a high initial discharge capacity, but the discharge capacity rapidly decreases as the number of cycles increases.
  • FIG. 22 are graphs showing internal resistance of an anode electrode according to exemplary embodiments.
  • Nyquist plots obtained from the impedance analysis method of Examples 21, 24, 25, and 26 (EX21, EX24, EX25, EX26) are shown.
  • the impedance graphs of Examples 24 and 25 have a semicircle of a smaller radius than the impedance graphs of Examples 21 and 26 (EX21 and EX26).
  • the smaller the radius of the semicircle the smaller the resistance value. Accordingly, it can be seen that the anode electrodes of Examples 24 and 25 (EX24 and EX25) have a smaller internal resistance value than that of the anode electrodes of Examples 21 and 26 (EX21 and EX26).
  • the initial discharge capacity may be relatively low, and the density of the anode electrode is 1.2 g/cm If it is greater than 3 (for example, Example 26 (EX26), about 1.22 g/cm 3 ), the Coulomb efficiency is reduced to 50% or less for 10 cycles, and the cycle characteristics may not be excellent.
  • the density of the positive electrode is 0.50 g/cm 3 to 1.2 g/cm 3 (for example, Examples 22 to 25 (EX22, EX23, EX24, EX25)
  • the initial discharge capacity was excellent, and 70 for 10 cycles. It can show excellent coulomb efficiency of% or more and excellent cycle characteristics.
  • FIG. 23 is a graph showing a voltage profile of an anode electrode according to example embodiments.
  • Example 3 (EX3) is a positive electrode containing PTCDA manufactured by a two-step solid-phase mixing method. In the charging step, it can be seen that Example 3 (EX3) exhibits a single plateau at about 2.52 V to about 2.7 V. This plateau may be a plateau expressed by a chemical reaction expressed in Equation (4) below.
  • Example 3 (EX3) showed a discharge capacity of about 230 mAh/g, which can be seen to be a high value similar to the discharge capacity of Example 1 (EX1) including DMPZ described with reference to FIG. 14.
  • 24 is a graph showing cycle characteristics of an anode electrode according to exemplary embodiments.
  • Example 3 (EX3) shows an initial discharge capacity of about 230 mAh/g, a maximum discharge capacity of about 245 mAh/g in 5 cycles, and a high of about 220 mAh/g even after 40 cycles. Indicates the discharge capacity. That is, it can be seen that Example 3 (EX3) exhibits excellent capacity retention characteristics of about 90% compared to the maximum capacity even after 40 cycles.
  • 25 is a schematic diagram illustrating an anode electrode 30B according to other exemplary embodiments.
  • the positive electrode 30B may include a positive electrode active material 32, a conductive material 34, and a binder 36.
  • the positive electrode 30B includes about 30 to 50% by weight of the positive active material 32 based on the total weight of the positive electrode, and about 30 to 50% by weight based on the total weight of the positive electrode 30B.
  • a conductive material 34 and a binder 36 of 10 to 30% by weight of the total weight of the positive electrode 30 may be included.
  • the positive electrode active material 32 may be similar to the positive electrode active material 32 described with reference to FIG. 11, and a detailed description thereof will be omitted.
  • the conductive material 34 may further provide conductivity to the positive electrode 30 and may be a conductive material that does not cause chemical changes in the organic compound-based lithium secondary battery 1.
  • the conductive material 34 may include a stable material that does not decompose at about 1.5 V to 4.0 V.
  • the conductive material may include, for example, a carbon-based material such as Super P, carbon black, Ketjen black (eg, Ketjenblack 600JD®, Ketjenblack 700JD®), and acetylene black.
  • the conductive material 34 may have an average particle size of about 10 to 100 nanometers.
  • the conductive material 34 may have a BET specific surface area of 500 to 2000 m 2 /g. In addition, the conductive material 34 may have a pore volume of about 1.0 to 5.0 cm 3 /g. The conductive material 34 may have a relatively large surface area, and accordingly, a relatively large surface of the conductive material 34 functions as an electrode of the capacitor in the charging and discharging step of the anode electrode 30, and the capacity due to capacitance Can contribute to For example, the conductive material 34 may include Ketjen Black, but is not limited thereto.
  • the binder 36 serves to attach the particles of the positive active material 32 to each other or to attach the particles of the positive active material 32 to the conductive material 34. Since the detailed description of the binder 36 has been described with reference to FIG. 11, it will be omitted here.
  • the positive electrode 30B when charging the lithium secondary battery 1 based on an organic compound using lithium metal as the negative electrode 20, the positive electrode 30B is the first plateau at about 3.0 V to about 3.2 V. (plateau) and a second plateau at about 3.6 V to about 3.8 V.
  • the positive electrode active material 32 contains dimethylphenazine (DMPZ)
  • DMPZ dimethylphenazine
  • the first plateau is formed by an oxidation reaction in which one of the two nitrogen atoms shown in Formula 1 is ionized to a nitrogen cation. Appears, and the second plateau may appear by an oxidation reaction in which the other nitrogen atom of the two nitrogen atoms is ionized into a nitrogen cation.
  • the positive electrode 30B may exhibit a single plateau at about 2.52 V to about 2.7 V.
  • the positive active material 32 may have an average particle size of about 500 nanometers (nm) to about 60 micrometers ( ⁇ m), but is not limited thereto.
  • the average particle size of the positive electrode active material 32 is smaller than about 500 nm, the surface area of the positive electrode active material 32 is relatively increased, so that the positive electrode active material 32 is eluted in the electrolyte solution, and thus the lithium secondary battery 1
  • the cycle characteristics of may be deteriorated, and when the average particle size of the positive electrode active material 32 is larger than about 60 ⁇ m, it is difficult to effectively transfer lithium ions to the inside of the positive electrode active material 32. high rate) characteristics may be deteriorated.
  • the anode electrode 30B may have a thickness T1 of about 20 to 200 micrometers, and the anode electrode 30B has a density of 0.50 g/cm 3 to 1.2 g/cm 3. I can.
  • the density of the positive electrode 30B may be the density of the free standing type positive electrode 30B that does not include a positive electrode current collector.
  • the positive electrode active material 32 relative to the volume of the positive electrode 30B It may refer to a ratio of the total weight of the conductive material 34 and the binder 36.
  • charging capacity and discharging capacity may be obtained by the conductive material 34 as well as the positive electrode active material 32 included in the positive electrode 30B.
  • the conductive material 34 contains Ketjen Black, and the total of the positive electrode active material 32 and the conductive material 34 is 60 to 90% by weight based on the total weight of the positive electrode 30, the positive electrode 30 ) May exhibit excellent initial discharge capacity, excellent coulomb efficiency, and excellent cycle characteristics.
  • the content of the cathode active material 32 is 30 to 50% by weight
  • the content of the conductive material 34 is 30 to 50% by weight
  • the sum of the content of the cathode active material 32 and the content of the conductive material 34 is In the case of 80% by weight, the anode electrode 30B exhibits excellent initial discharge capacity, excellent Coulomb efficiency, and excellent cycle characteristics.
  • the content of the positive active material 32 may be 30 to 50% by weight, and may be included in the positive electrode 30B.
  • the discharge capacity may decrease as the content of the active material for reversible oxidation and reduction reactions during charging and discharging decreases.
  • the content of the positive electrode active material 32 is greater than 50% by weight, the content of the conductive material 34 decreases, a sufficient electrical path to the positive electrode active material 32 may not be provided, and the internal resistance of the positive electrode 30 Can increase.
  • the content of the conductive material 34 may be 30 to 50% by weight, and may be included in the positive electrode 30B. When the content of the conductive material 34 is less than 30%, a sufficient electrical path to the positive electrode active material 32 may not be provided, and the internal resistance of the positive electrode 30B may increase. When the content of the conductive material 34 is greater than 50%, the content of the cathode active material 32 included in the anode electrode 30B may be reduced, and accordingly, the content of the active material for reversible oxidation and reduction reactions during charging and discharging As this decreases, the discharge capacity may decrease.
  • the initial discharge capacity of the positive electrode 30B is approximately 70 To 90 mAh/g.
  • the fact that the initial discharge capacity is maintained within an approximately certain range even when the content of the positive electrode active material 32 is decreased, means that the conductive material 34 together with the positive electrode active material 32 contribute to a certain portion of the discharge capacity. I can. Additional features contributing to the electrochemical capacity of the conductive material 34 will be described again later with reference to FIGS. 30 to 32.
  • the positive electrode 30B may be manufactured according to a method of manufacturing an organic compound-based secondary battery including a solid-phase mixing method described with reference to FIG. 26.
  • This solid-phase mixing method can prevent chemical and thermal damage to the positive electrode active material of the positive electrode 30B and allow the positive electrode 30B to be formed in a free standing type, and accordingly, an organic method employing the positive electrode 30B.
  • the energy density of the compound-based lithium secondary battery 1 can be remarkably increased.
  • 26 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
  • a positive active material, a conductive material, and a binder are prepared (step S10).
  • the positive electrode active material, the conductive material, and the binder may be provided in a solid state.
  • the positive electrode active material has a first particle size of about 500 nanometers to 60 micrometers
  • the conductive material has a second particle size of about 10 to 100 nanometers
  • the binder is about 1 to 5 millimeters of third particles It can have a size.
  • the positive electrode active material, the conductive material, and the binder may be put in a vacuum oven and dried for several tens of minutes to several hours.
  • step S20 Thereafter, the positive electrode active material, the conductive material, and the binder are mixed in the mixing container, and the positive electrode active material, the conductive material, and the binder are solidly mixed to form a preliminary positive electrode (step S20).
  • the positive electrode active material, the conductive material, and the binder may be mixed without adding a liquid solvent or the like.
  • the positive electrode active material, the conductive material, and the binder are each in a solid state, and the positive electrode active material is applied to the positive electrode active material, the conductive material, and the binder by applying a mechanical shear force to the positive electrode active material, the conductive material, and the binder using a mixing rod such as a mortar.
  • the conductive material, and the binder may be uniformly mixed with each other.
  • the mixing rod collapses each of the positive electrode active material, the conductive material, and the binder in a solid lump state into small pieces, while the positive electrode active material, the conductive material, and the binder pieces are aggregated and attached to each other by the mechanical shear force by the mixing rod.
  • a solid mass formed by relatively uniformly mixing a positive electrode active material, a conductive material, and a binder may be referred to as a preliminary positive electrode.
  • the preliminary anode electrode may be formed in a lump shape having a relatively high viscosity that is substantially solid.
  • the conductive material may have a BET specific surface area of about 500 to 2000 m 2 /g and a pore volume of about 1.0 to 5.0 cm 3 /g.
  • the conductive material may have a relatively high surface area compared to the general conductive material material, and thus the positive electrode active material, the conductive material, and the binder may be more evenly dispersed and mixed.
  • step S30 the preliminary anode electrode is roll pressed to form an anode electrode
  • the roll pressing step may be performed once. In other embodiments, the roll pressing step may be performed two or more times. In some examples, the roll pressing step may be performed multiple times until the anode electrode has a target thickness, followed by a waiting time of several minutes to tens of minutes after one roll pressing step, and then one roll pressing Steps can be performed.
  • the anode electrode may have a density of 0.50 g/cm 3 to 1.2 g/cm 3.
  • a step of drying the anode electrode before or after the roll pressing step may be further performed.
  • the step of cutting the anode electrode may be additionally performed.
  • a liquid mixing method using an organic solvent may be used to form an electrode material based on a conventional inorganic material.
  • particles of an inorganic active material are mixed in an organic solvent such as NMP (N-methyl-2-pyrrolidone) and mixed to prepare a slurry for an electrode.
  • an electrode material is prepared by applying the electrode slurry on the current collector and performing a baking process for volatilizing the organic solvent.
  • the organic compound-based positive electrode active material is easily dissolved and chemically transformed by an organic solvent such as NMP.
  • the organic compound-based positive electrode active material may be deformed due to heat applied in the baking process for volatilizing the organic solvent, and in this case, the function as the positive electrode active material may not be performed or performance may be degraded. Therefore, there is a need to develop a method for manufacturing a homogeneous electrode while minimizing chemical and thermal damage to an organic active material-based positive electrode active material.
  • a positive electrode may be formed by mixing a positive electrode active material, a conductive material, and a binder in an all solid-state.
  • the organic solvent is not used in the mixing step of the active material, chemical and thermal damage to the positive electrode active material by the organic solvent and the organic solvent removal process can be prevented.
  • the solid anode electrode by roll pressing, it may be easy to control the thickness and/or the density of the anode electrode.
  • DMPZ (5,10-dihydro-5,10-dimethylphenazine), Ketjenblack®, and PTFE (polytetrafluoroethylene) were used as the positive electrode active material, conductive material, and binder of Examples 1 to 7 (EX1 to EX7), respectively.
  • the positive electrode active material, the conductive material, and the binder were mixed using a mortar at the mass ratio shown in Table 1 below.
  • a positive electrode active material, a conductive material, and a binder were mixed in the mortar and mixed in a solid state. Electrodes having various electrode densities were manufactured using a roll press for the uniformly mixed positive electrode. The anode electrodes were cut to a size of 1*1 cm 2.
  • the positive electrode according to the comparative example was prepared using Super P as a conductive material and a mass ratio of the positive active material, the conductive material, and the binder of 4:4:2.
  • Example 1 Positive electrode active material (% by weight) Conductive material (% by weight) Binder (% by weight) Example 1 (EX1) 70 10 20 Example 2 (EX2) 50 30 20 Example 3 (EX3) 45 35 20 Example 4 (EX4) 40 40 20 Example 5 (EX5) 35 45 20 Example 6 (EX6) 30 50 20 Example 7 (EX7) 10 70 20
  • a 2032 type coin cell was assembled using positive electrodes. Lithium foil was used as the negative electrode. Glass fiber filter paper (GF/F) was used as a separator, and a 1.8 M LiTFSI/TEGDME solution was added to each coin cell by 90 ⁇ L as an electrolyte. The assembled coin cell was subjected to charging and discharging experiments in the range of 2.5-4.0 V.
  • FIG. 27 is a graph showing a voltage profile of an anode electrode according to example embodiments. In Fig. 27, the voltage and capacity in one charge and one discharge of Examples 1 to 7 (EX1 to EX7) are shown. FIG. 27 is a graph showing the charge capacity and discharge capacity obtained in the charge/discharge test calculated based on the total mass of the positive electrode, where the total mass of the positive electrode means the sum of the weights of the positive electrode active material, the conductive material, and the binder. do.
  • Example 1 (EX1) the first plateau clearly appears in the discharging stage, but the second plateau does not appear, and exhibits a considerably steep voltage-capacitance profile from 4.0 V to 3.3 V.
  • Example 1 (EX1) includes 70% by weight of a positive electrode active material and 10% by weight of a conductive material. Therefore, it is assumed that this is because the content of the conductive material included in Example 1 (EX1) is too small to increase the internal resistance of the positive electrode, and it is difficult to develop the second plateau due to a relatively large overpotential of the positive electrode. Can be.
  • Example 1 (EX1) shows a rather low initial discharge capacity (about 65 mAh/g).
  • Example 2 (EX2) to Example 6 (EX6) it can be seen that the first plateau and the second plateau appear in both the charging step and the discharging step.
  • Example 2 (EX2) contains 50% by weight of a positive electrode active material and 30% by weight of a conductive material
  • Example 3 (EX3) contains 45% by weight of a positive electrode active material and 35% by weight of a conductive material
  • Example 4 (EX4) Contains 40% by weight of a positive active material and 40% by weight of a conductive material
  • Example 5 (EX5) contains 35% by weight of a positive electrode active material and 45% by weight of a conductive material
  • Example 6 (EX6) contains 30% by weight of a positive electrode active material And 50% by weight of a conductive material.
  • All of Examples 2 to 6 (EX2 to EX6) exhibit a relatively large initial discharge capacity corresponding to approximately 70 to 85 mAh/g.
  • Example 7 In Example 7 (EX7), the first plateau and the second plateau do not clearly appear in the discharging step. It represents the voltage-capacity profile of a sloped curve with a relatively weak shoulder section rather than a plateau from 4.0 V to 2.5 V.
  • Example 7 (EX7) includes 10% by weight of a positive electrode active material and 70% by weight of a conductive material.
  • Example 7 (EX7) shows a relatively low initial discharge capacity of approximately 40 mAh/g.
  • Examples 2 to 6 (EX2 to EX6) contain about 30 to 50% by weight of a positive electrode active material and about 30 to 50% by weight of a conductive material, and have a stable voltage capacity in a charge/discharge test. While showing the profile, it can be seen that it shows a relatively high initial discharge capacity.
  • FIG. 28 and 29 are graphs showing cycle characteristics of an anode electrode according to exemplary embodiments. Specifically, FIG. 28 shows the discharge capacity (mAh/g) according to the number of cycles, and FIG. 29 shows the Coulomb efficiency (%) according to the number of cycles. Coulomb efficiency (%) refers to the ratio of the discharge capacity to the charge capacity in each cycle. 28 and 29 are graphs showing the discharging capacity obtained in the cycle test based on the total mass of the positive electrode, wherein the total mass of the positive electrode means the sum of the weights of the positive electrode active material, the conductive material, and the binder.
  • Examples 2 to 6 exhibit relatively excellent discharge capacity and Coulomb efficiency.
  • Examples 1 to 3 exhibit excellent Coulomb efficiency of about 85% or more even after 15 cycles.
  • Example 7 shows a low initial capacity of about 40 mAh/g, and shows a low discharge capacity of about 25 mAh/g even after 15 cycles.
  • Example 1 exhibits an unstable voltage profile such as that the second plateau in the high voltage region is not developed, and thus shows a relatively low initial discharge capacity.
  • Example 7 shows a voltage profile of a steep slope curve having shoulder regions instead of the first and second plateaus, and thus shows a lower initial discharge capacity than that of Example 1 (EX1).
  • Examples 2 to 6 exhibit excellent initial discharge capacity and excellent cycle characteristics.
  • the first plateau and the second plateau are stably observed in the charging and discharging stages.
  • the positive electrode including about 30 to 50% by weight of a positive electrode active material and about 30 to 50% by weight of a conductive material (that is, Examples 2 to 6 (EX1 to EX6)) is excellent. It can be seen that it has electrochemical performance and cycle characteristics.
  • FIGS. 30 and 31 are graphs showing voltage profiles and cycle characteristics of an anode electrode according to exemplary embodiments.
  • voltage and capacity in one charge and one discharge of Examples 1 to 7 (EX1 to EX7) are calculated based on the mass of the positive electrode active material.
  • the discharge capacity according to the number of cycles of Examples 1 to 7 (EX1 to EX7) is calculated based on the mass of the positive electrode active material (for reference, in FIGS. 27 to 29, the discharge capacity is the entire positive electrode. It was calculated and displayed based on the mass of, and the total mass of the positive electrode means the total weight of the positive electrode active material, the conductive material, and the binder).
  • Example 1 (EX1) has an initial discharge capacity of about 65 mAh/g based on the mass of the positive electrode (see FIG. 27), while about 90 based on the mass of the positive electrode active material. It has an initial discharge capacity of mAh/g (see Fig. 30). That is, since Example 1 (EX1) contains about 70% of the positive electrode active material with respect to the total mass of the positive electrode, such a difference in discharge capacity occurs.
  • Example 4 has an initial discharge capacity of about 75 mAh/g based on the mass of the positive electrode electrode (see Fig. 27), while having an initial discharge capacity of about 185 mAh/g based on the mass of the positive electrode active material ( See Fig. 30).
  • Example 6 has an initial discharge capacity of about 78 mAh/g (see Fig. 30) and an initial discharge capacity of about 255 mAh/g based on the mass of the positive electrode active material (see Fig. 30).
  • Examples 2 to 6 showing approximately similar discharge capacity corresponding to approximately 70 to 85 mAh/g based on the positive electrode, there are other factors contributing to the discharge capacity in addition to the positive electrode active material. It can mean doing. For example, when the content of the positive electrode active material increases from 30% by weight to 50% by weight, the discharge capacity does not increase in proportion to the content of the positive electrode active material. I can guess.
  • FIG. 32 is a graph showing a discharge capacity based on a mass of a positive electrode active material and a discharge capacity based on a mass of a positive electrode according to the amount of the positive electrode active material.
  • the discharge capacity based on the mass of the positive electrode active material decreases as the positive electrode active material content increases.
  • the discharge capacity based on the mass of the anode electrode rapidly increased in Example 2 (EX2) having 30% by weight and had a maximum value in Example 4 (EX4) having 40% by weight, and then began to decrease.
  • EX2 to EX6 it may have a relatively excellent discharge capacity of 70 mAh/g.
  • Example 7 (EX7) has a slightly low content of the positive electrode active material of 10% by weight, it can be seen that a remarkably high discharge capacity of 380 mAh/g based on the mass of the positive electrode active material. This can be presumed to be because a part of the conductive material included in Example 7 (EX7) can act as an electrode of a capacitor through a large specific surface area, and thus contribute to charging and discharging capacity due to capacitance.
  • FIG. 33 are graphs showing internal resistance of an anode electrode according to example embodiments.
  • Nyquist plots obtained from the impedance analysis method of Example 2 (EX2), Example 4 (EX4), and Example 6 (EX6) are shown.
  • the impedance graph of Example 4 has a semicircle of a smaller radius compared to the impedance graphs of Example 2 (EX2) and Example 6 (EX6).
  • the smaller the radius of the semicircle the smaller the resistance value. Accordingly, it can be seen that the anode electrode of Example 4 (EX4) has a smaller internal resistance value than that of the anode electrodes of Example 2 (EX2) and Example 6 (EX6).
  • Example 4 (EX4) has the smallest internal resistance and the highest discharge capacity based on the mass of the positive electrode. Therefore, it can be confirmed that the positive electrode of Example 4 (EX4) including 40% by weight of the positive electrode active material, 40% by weight of the conductive material, and the binder has the smallest internal resistance, and thus shows the best electrochemical properties. have.
  • 34 is a graph showing a voltage profile of an anode electrode according to Example 4 (EX4) and Comparative Example (CO1).
  • 35 is a graph showing discharge capacity (mAh/g) and Coulomb efficiency (%) according to an increase in the number of cycles of the positive electrode according to Example 4 (EX4) and Comparative Example (CO1).
  • 36 are graphs showing internal resistance of a positive electrode according to Example 4 (EX4) and Comparative Example (CO1).
  • Comparative Example (CO1) including Super P as a conductive material exhibits a discharge capacity of about 140 mAh/g
  • Example 4 (EX4) including Ketjen Black as a conductive material It can be seen that the discharge capacity is about 185 mAh/g. Meanwhile, it can be seen that Example 4 (EX4) shows a discharge capacity of approximately 65% after 10 cycles, and Comparative Example (CO1) shows a discharge capacity of approximately 55% after 10 cycles. However, in the case of the internal resistance measured in the Nyquist plot, it can be seen that Example 4 (EX4) and Comparative Example (CO1) show approximately similar values.
  • the discharge capacity may be significantly increased.
  • this increase in capacity can be assumed to be a contribution of the discharge capacity due to Ketjen Black. That is, in example embodiments, it can be assumed that Ketjen Black contained in an amount of 30 to 50% by weight acts as an electrode of a capacitor.
  • Super P (CO1) exhibits a low adsorption amount over the entire range of relative pressure
  • Ketjen Black (EX21) exhibits a high adsorption amount over the entire range of relative pressure, as well as adsorption due to increase in relative pressure It can be seen that the amount increase (or the slope in the graph of FIG. 16) is remarkably high.
  • the amount of nitrogen gas physically adsorbed on the surface of the porous material can be measured according to a change in the relative pressure (P/P 0 ).
  • the relative pressure (P/P 0 ) is plotted on the x-axis and the amount of adsorbed nitrogen gas is plotted on the y-axis. From the slope of the gas adsorption amount with respect to such relative pressure (P/P 0 ), the BET specific surface area and pore volume can be calculated using the following Langmuir theory (multilayer model).
  • Ketjen Black EX21 acts as an electrode of the capacitor due to the relatively large surface area of Ketjen Black EX21, contributing to the charging and discharging capacity in the charging and discharging steps of the anode electrode. .

Abstract

This organic compound-based lithium secondary battery includes: a positive electrode, an electrolytic solution, and a negative electrode. The positive electrode includes: 30-50 wt% of a positive electrode active material with respect to the total weight of the positive electrode; 5-20 wt% of carbon nanotubes with respect to the total weight of the positive electrode; a conductive material; and a binder. The positive electrode active material includes an organic compound comprising: a carbon double bond; and a functional group containing at least one among nitrogen, oxygen, and sulfur.

Description

유기 화합물 기반의 리튬 이차 전지 및 그 제조 방법Organic compound-based lithium secondary battery and manufacturing method thereof
본 발명의 기술적 사상은 유기 화합물 기반의 리튬 이차 전지 및 그 제조 방법에 관한 것으로서, 더욱 상세하게는, 유기 화합물 기반의 양극 활물질을 포함하는 리튬 이차 전지와 그 제조 방법에 관한 것이다.The technical idea of the present invention relates to an organic compound-based lithium secondary battery and a method of manufacturing the same, and more particularly, to a lithium secondary battery including an organic compound-based positive electrode active material and a method of manufacturing the same.
최근 소형 모바일 기기, 전기 자동차 등 다양한 응용 분야에 리튬 이온 전지를 사용하기 위한 요구가 증가함에 따라, 다양한 응용 분야를 위한 다양한 요구 조건에 따라 리튬 이온 전지의 성능을 최적화할 필요성이 대두되고 있다. 특히 대용량 및 큰 에너지 밀도를 갖는 동시에 저가이며 친환경적인 새로운 양극 활물질 후보 물질에 대한 연구가 활발하게 진행되고 있다. 리튬 코발트 산화물 또는 리튬 니켈코발트망간 산화물 등과 같은 종래에 사용되는 전이 금속 산화물 기반의 양극 활물질은 대용량화에 한계를 갖는다. 또한 이러한 물질의 생산 및 재활용 과정에서 환경 오염을 유발하는 문제가 있어 대안의 물질에 대한 연구가 필요하다. 이와 같은 문제점을 해결하기 위하여 페나진 유도체를 포함하는 유기 화합물 기반의 양극 활물질을 사용한 이차 전지가 제안되었으나, 상용 이차 전지의 양극 전극으로 채용 가능한 수준으로 사이클 특성 등의 전기화학적 성능을 개선할 필요가 있다. Recently, as the demand for using lithium ion batteries in various applications such as small mobile devices and electric vehicles has increased, there is a need to optimize the performance of lithium ion batteries according to various requirements for various applications. In particular, research on a new cathode active material candidate material that has a large capacity and a large energy density and is inexpensive and eco-friendly is being actively conducted. Conventionally used transition metal oxide-based positive electrode active materials, such as lithium cobalt oxide or lithium nickel cobalt manganese oxide, have limitations in increasing their capacity. In addition, there is a problem that causes environmental pollution during the production and recycling of these materials, so research on alternative materials is required. To solve this problem, a secondary battery using a positive electrode active material based on an organic compound containing a phenazine derivative has been proposed, but it is necessary to improve the electrochemical performance such as cycle characteristics to a level that can be adopted as a positive electrode of a commercial secondary battery. have.
본 발명의 기술적 사상이 이루고자 하는 기술적 과제는 우수한 전기 화학적 특성, 우수한 사이클 특성과 높은 에너지 밀도를 갖는 유기 화합물 기반의 양극 전극을 형성하기 위한 제조 방법을 제공하는 것이다. The technical problem to be achieved by the technical idea of the present invention is to provide a manufacturing method for forming an organic compound-based anode electrode having excellent electrochemical properties, excellent cycle characteristics, and high energy density.
본 발명의 기술적 사상이 이루고자 하는 다른 기술적 과제는 우수한 전기 화학적 특성, 우수한 사이클 특성과 높은 에너지 밀도를 갖는 유기 화합물 기반의 양극 전극을 포함하는 리튬 이차 전지를 제공하는 것이다. Another technical problem to be achieved by the technical idea of the present invention is to provide a lithium secondary battery including an organic compound-based positive electrode having excellent electrochemical properties, excellent cycle characteristics, and high energy density.
상기 기술적 과제를 달성하기 위한 본 발명의 기술적 사상에 따른 유기 화합물 기반의 리튬 이차 전지는, 양극 전극; 전해액; 및 음극 전극을 포함하며, 상기 양극 전극은, 탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함하며, 상기 양극 전극의 총 중량에 대하여 30 내지 50 중량%의 범위인 양극 활물질; 상기 양극 전극의 총 중량에 대하여 5 내지 20 중량% 범위인 카본 나노 튜브; 도전재; 및 바인더를 포함한다.An organic compound-based lithium secondary battery according to the technical idea of the present invention for achieving the above technical problem includes: a positive electrode; Electrolyte; And a negative electrode, wherein the positive electrode includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur, and 30 to 50 based on the total weight of the positive electrode. A positive electrode active material in the range of% by weight; Carbon nanotubes in the range of 5 to 20% by weight based on the total weight of the positive electrode; Conductive material; And a binder.
예시적인 실시예들에서, 상기 유기 화합물은 디메틸페나진, 페릴렌테트라카르복실산 무수물, 테트라에틸 티우람 디설파이드, TEMPO(2,2,6,6-tetramethylpiperidinyloxy), PEDOT(poly(3,4-ethylenedioxythiophene)), DD-TCNQ(7,7,8,8-tetracyanoquinodimethane), 및 플라반트론(flavanthrone)으로 구성된 군으로부터 선택된 적어도 하나를 포함할 수 있다.In exemplary embodiments, the organic compound is dimethylphenazine, perylenetetracarboxylic anhydride, tetraethyl thiuram disulfide, TEMPO (2,2,6,6-tetramethylpiperidinyloxy), PEDOT (poly(3,4- ethylenedioxythiophene)), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and flavanthrone.
예시적인 실시예들에서, 상기 유기 화합물은 디메틸페나진을 포함하고, 리튬 금속을 상기 음극 전극으로 사용하여 상기 리튬 이차 전지를 충전할 때, 상기 양극 전극은 3.0 내지 3.2 V에서 제1 플래토(plateau)를 나타내고, 3.6 내지 3.8 V에서 제2 플래토를 나타낼 수 있다. In exemplary embodiments, the organic compound includes dimethylphenazine, and when charging the lithium secondary battery by using a lithium metal as the negative electrode, the positive electrode is a first plateau ( plateau), and a second plateau at 3.6 to 3.8 V.
예시적인 실시예들에서, 상기 카본 나노 튜브는 단일벽 카본 나노 튜브, 다중벽 카본 나노 튜브, 다발형 카본 나노 튜브(nanotube rope) 중 적어도 하나를 포함할 수 있다.In example embodiments, the carbon nanotubes may include at least one of single-walled carbon nanotubes, multi-walled carbon nanotubes, and bundle-type carbon nanotubes (nanotube rope).
예시적인 실시예들에서, 상기 카본 나노 튜브는 90% 내지 99.99%의 순도를 가질 수 있다.In exemplary embodiments, the carbon nanotubes may have a purity of 90% to 99.99%.
예시적인 실시예들에서, 상기 양극 전극은, 상기 카본 나노 튜브의 길이 방향 양 단부에 부착된 1 중량% 미만의 금속 원자를 더 포함할 수 있다.In example embodiments, the anode electrode may further include less than 1% by weight of metal atoms attached to both ends of the carbon nanotube in the length direction.
예시적인 실시예들에서, 상기 금속 원자는 구리(Cu), 니켈(Ni), 코발트(Co), 은(Ag), 티타늄(Ti), 알루미늄(Al), 텅스텐(W), 및 몰리브덴(Mo) 중 적어도 하나를 포함할 수 있다.In exemplary embodiments, the metal atom is copper (Cu), nickel (Ni), cobalt (Co), silver (Ag), titanium (Ti), aluminum (Al), tungsten (W), and molybdenum (Mo ) May include at least one of.
예시적인 실시예들에서, 상기 바인더는 비드 형태의 폴리테트라플루오로에틸렌(PTFE)를 포함하고, 상기 바인더는 상기 양극 전극의 총 중량에 대하여 10 내지 30%의 범위일 수 있다.In exemplary embodiments, the binder may include polytetrafluoroethylene (PTFE) in the form of beads, and the binder may range from 10 to 30% based on the total weight of the positive electrode.
예시적인 실시예들에서, 상기 도전재는 슈퍼P(super P), 카본 블랙, 케첸 블랙, 아세틸렌 블랙 중 적어도 하나를 포함할 수 있다.In example embodiments, the conductive material may include at least one of super P, carbon black, Ketjen black, and acetylene black.
예시적인 실시예들에서, 상기 도전재는 상기 양극 전극의 총 중량에 대하여 30 내지 50%의 범위일 수 있다.In example embodiments, the conductive material may range from 30 to 50% based on the total weight of the positive electrode.
예시적인 실시예들에서, 상기 양극 전극은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 가질 수 있다.In example embodiments, the positive electrode may have a density of 0.50 g/cm 3 to 1.2 g/cm 3.
상기 기술적 과제를 달성하기 위한 본 발명의 기술적 사상에 따른 유기 화합물 기반의 리튬 이차 전지의 제조 방법은 양극 전극을 형성하는 단계를 포함한다. 상기 양극 전극을 형성하는 단계는, 30 내지 50 중량%의 양극 활물질, 5 내지 20 중량%의 카본 나노 튜브, 30 내지 50 중량%의 도전재, 및 10 내지 30 중량%의 바인더를 고상 혼합하여 예비 양극 전극을 형성하는 단계; 및 상기 예비 양극 전극을 롤 프레스에 의해 압착하는 단계;를 포함하고, 상기 양극 활물질은 탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함한다.A method of manufacturing a lithium secondary battery based on an organic compound according to the technical idea of the present invention for achieving the above technical problem includes forming a positive electrode. In the forming of the positive electrode, 30 to 50% by weight of a positive electrode active material, 5 to 20% by weight of carbon nanotubes, 30 to 50% by weight of a conductive material, and 10 to 30% by weight of a binder are mixed in a solid state to prepare a preliminary step. Forming an anode electrode; And compressing the preliminary positive electrode by a roll press, wherein the positive electrode active material includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur.
예시적인 실시예들에서, 상기 카본 나노 튜브는 90% 내지 99.99%의 순도를 가지며, 상기 카본 나노 튜브의 표면에 부착된 1 중량% 미만의 금속 원자가 더 포함될 수 있다.In example embodiments, the carbon nanotubes have a purity of 90% to 99.99%, and less than 1% by weight of metal atoms attached to the surface of the carbon nanotubes may be further included.
예시적인 실시예들에서, 상기 양극 전극이 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 갖도록 상기 예비 양극 전극을 압착하는 단계가 복수 회 수행될 수 있다.In example embodiments, the step of compressing the preliminary anode electrode so that the anode electrode has a density of 0.50 g/cm 3 to 1.2 g/cm 3 may be performed a plurality of times.
예시적인 실시예들에서, 상기 양극 활물질은 제1 입자 사이즈를 가지며, 상기 도전재는 제2 입자 사이즈를 가지며, 상기 바인더는 상기 제1 입자 사이즈 및 상기 제2 입자 사이즈보다 더 큰 제3 입자 사이즈를 가질 수 있다.In example embodiments, the positive electrode active material has a first particle size, the conductive material has a second particle size, and the binder has a third particle size larger than the first particle size and the second particle size. I can have it.
예시적인 실시예들에서, 상기 제1 입자 사이즈는 500 나노미터 내지 60 마이크로미터이며, 상기 제2 입자 사이즈는 10 내지 100 나노미터이며, 상기 제3 입자 사이즈는 1 내지 5 밀리미터일 수 있다.In example embodiments, the first particle size may be 500 nanometers to 60 micrometers, the second particle size may be 10 to 100 nanometers, and the third particle size may be 1 to 5 millimeters.
예시적인 실시예들에서, 상기 압착하는 단계에 의해, 상기 양극 전극은 양극 집전체를 포함하지 않는 프리 스탠딩(free standing) 타입으로 형성될 수 있다.In example embodiments, by the pressing step, the positive electrode may be formed in a free standing type that does not include a positive electrode current collector.
예시적인 실시예들에서, 상기 양극 전극을 형성하는 단계는 유기 용매의 첨가 없이 전 고체 상태에서(all solid-state) 수행될 수 있다.In example embodiments, the step of forming the anode electrode may be performed in an all solid-state without adding an organic solvent.
본 발명에 따르면, 5 내지 20 중량% 범위의 카본 나노 튜브는 사이클 횟수의 증가에 따라 유기 화합물 기반의 양극 활물질이 전해액 내로 용출되더라도 양극 활물질과 도전재 사이의 전기적 경로를 제공하는 작용을 할 수 있다. 따라서 사이클 횟수의 증가에 따라 양극 전극으로부터 양극 활물질이 용출되어 양극 전극 전체의 저항이 증가하는 것이 방지될 수 있고, 이러한 양극 전극을 포함하는 리튬 이차 전지는 우수한 사이클 특성을 가질 수 있다. 또한 양극 전극은 종래의 알루미늄 호일과 같은 양극 집전체가 없이도 프리 스탠딩 타입으로 사용될 수 있으므로, 상기 양극 전극을 포함하는 리튬 이차 전지는 높은 에너지 밀도를 가질 수 있다. According to the present invention, carbon nanotubes in the range of 5 to 20% by weight may serve to provide an electrical path between the positive electrode active material and the conductive material even if the organic compound-based positive electrode active material is eluted into the electrolyte as the number of cycles increases. . Accordingly, as the number of cycles increases, the positive electrode active material is eluted from the positive electrode to prevent an increase in the overall resistance of the positive electrode, and a lithium secondary battery including such a positive electrode may have excellent cycle characteristics. In addition, since the positive electrode may be used as a free standing type without a positive electrode current collector such as a conventional aluminum foil, a lithium secondary battery including the positive electrode may have a high energy density.
상기 기술적 과제를 달성하기 위한 본 발명의 기술적 사상에 따른 유기 화합물 기반의 리튬 이차 전지는, 양극 전극; 전해액; 및 음극 전극을 포함하며, 상기 양극 전극은, 탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함하며, 상기 양극 전극의 총 중량에 대하여 30 내지 50 중량%의 범위인 양극 활물질; 상기 양극 전극의 총 중량에 대하여 30 내지 50 중량%의 도전재; 및 바인더를 포함하며, 상기 양극 전극은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 갖는다.An organic compound-based lithium secondary battery according to the technical idea of the present invention for achieving the above technical problem includes: a positive electrode; Electrolyte; And a negative electrode, wherein the positive electrode includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur, and 30 to 50 based on the total weight of the positive electrode. A positive electrode active material in the range of% by weight; 30 to 50% by weight of a conductive material based on the total weight of the positive electrode; And a binder, and the positive electrode has a density of 0.50 g/cm 3 to 1.2 g/cm 3.
예시적인 실시예들에서, 상기 유기 화합물은 레독스 활성을 갖는 폴리머, 유기 황 화합물, 및 카르보닐기 함유 화합물로 구성된 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.In exemplary embodiments, the organic compound includes at least one selected from the group consisting of a polymer having redox activity, an organic sulfur compound, and a carbonyl group-containing compound.
예시적인 실시예들에서, 상기 유기 화합물은 디메틸페나진, 페릴렌테트라카르복실산 무수물, 테트라에틸 티우람 디설파이드, TEMPO(2,2,6,6-tetramethylpiperidinyloxy), PEDOT(poly(3,4-ethylenedioxythiophene)), DD-TCNQ(7,7,8,8-tetracyanoquinodimethane), 및 플라반트론(flavanthrone)으로 구성된 군으로부터 선택된 적어도 하나를 포함한다.In exemplary embodiments, the organic compound is dimethylphenazine, perylenetetracarboxylic anhydride, tetraethyl thiuram disulfide, TEMPO (2,2,6,6-tetramethylpiperidinyloxy), PEDOT (poly(3,4- ethylenedioxythiophene)), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and flavantron (flavanthrone).
예시적인 실시예들에서, 리튬 금속을 상기 음극 전극으로 사용하여 상기 이차 전지를 충전할 때, 상기 양극 전극은 3.0 내지 3.2 V에서 제1 플래토(plateau)를 나타내고, 3.6 내지 3.8 V에서 제2 플래토를 나타낼 수 있다.In exemplary embodiments, when charging the secondary battery using lithium metal as the negative electrode, the positive electrode exhibits a first plateau at 3.0 to 3.2 V, and a second plateau at 3.6 to 3.8 V. It can represent a plateau.
예시적인 실시예들에서, 상기 바인더는 비드 형태의 PTFE를 포함하고, 상기 바인더는 상기 양극 전극의 총 중량에 대하여 10 내지 30%의 범위일 수 있다.In example embodiments, the binder includes PTFE in the form of a bead, and the binder may range from 10 to 30% based on the total weight of the positive electrode.
예시적인 실시예들에서, 상기 도전재는 super P, 카본 블랙, 케첸 블랙, 아세틸렌 블랙 중 적어도 하나를 포함할 수 있다.In example embodiments, the conductive material may include at least one of super P, carbon black, Ketjen black, and acetylene black.
예시적인 실시예들에서, 상기 양극 전극 내에 포함된 상기 양극 활물질의 중량이 상기 양극 전극 내에 포함된 상기 도전재의 중량보다 더 클 수 있다.In example embodiments, the weight of the positive electrode active material included in the positive electrode may be greater than the weight of the conductive material included in the positive electrode.
예시적인 실시예들에서, 상기 양극 활물질은 500 나노미터 내지 60 마이크로미터의 평균 입자 사이즈를 가질 수 있다.In example embodiments, the positive active material may have an average particle size of 500 nanometers to 60 micrometers.
예시적인 실시예들에서, 상기 양극 전극은 양극 집전체를 포함하지 않는 프리 스탠딩(free standing) 타입일 수 있다.In example embodiments, the positive electrode may be a free standing type that does not include a positive electrode current collector.
상기 기술적 과제를 달성하기 위한 본 발명의 기술적 사상에 따른 유기 화합물 기반의 리튬 이차 전지의 제조 방법은 양극 전극을 형성하는 단계를 포함한다. 상기 양극 전극을 형성하는 단계는, 30 내지 50 중량%의 양극 활물질 및 30 내지 50 중량%의 도전재를 고상 혼합하여 제1 예비 양극 전극을 형성하는 단계; 상기 제1 예비 양극 전극과 10 내지 30 중량%의 바인더를 고상 혼합하여 제2 예비 양극 전극을 형성하는 단계; 및 상기 제2 예비 양극 전극을 롤 프레스에 의해 압착하는 단계;를 포함하고, 상기 양극 활물질은 탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함한다.A method of manufacturing a lithium secondary battery based on an organic compound according to the technical idea of the present invention for achieving the above technical problem includes forming a positive electrode. The forming of the positive electrode may include forming a first preliminary positive electrode by solid-phase mixing 30 to 50% by weight of a positive electrode active material and 30 to 50% by weight of a conductive material; Forming a second preliminary anode electrode by solid-phase mixing the first preliminary anode electrode and 10 to 30% by weight of a binder; And compressing the second preliminary positive electrode by a roll press; wherein the positive electrode active material includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur. .
예시적인 실시예들에서, 상기 제2 예비 양극 전극을 압착하는 단계는 복수 회 수행될 수 있다.In example embodiments, the step of compressing the second preliminary anode electrode may be performed a plurality of times.
예시적인 실시예들에서, 상기 양극 전극이 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 갖도록 상기 제2 예비 양극 전극을 압착하는 단계가 복수 회 수행될 수 있다.In example embodiments, the pressing of the second preliminary anode electrode may be performed a plurality of times so that the anode electrode has a density of 0.50 g/cm3 to 1.2 g/cm3.
예시적인 실시예들에서, 상기 양극 활물질은 제1 입자 사이즈를 가지며, 상기 도전재는 제2 입자 사이즈를 가지며, 상기 바인더는 상기 제1 입자 사이즈 및 상기 제2 입자 사이즈보다 더 큰 제3 입자 사이즈를 가질 수 있다.In example embodiments, the positive electrode active material has a first particle size, the conductive material has a second particle size, and the binder has a third particle size larger than the first particle size and the second particle size. I can have it.
예시적인 실시예들에서, 상기 제1 입자 사이즈는 500 나노미터 내지 60 마이크로미터이며, 상기 제2 입자 사이즈는 10 내지 100 나노미터이며, 상기 제3 입자 사이즈는 1 내지 5 밀리미터일 수 있다.In example embodiments, the first particle size may be 500 nanometers to 60 micrometers, the second particle size may be 10 to 100 nanometers, and the third particle size may be 1 to 5 millimeters.
예시적인 실시예들에서, 상기 압착하는 단계에 의해, 상기 양극 전극은 양극 집전체를 포함하지 않는 프리 스탠딩(free standing) 타입으로 형성될 수 있다.In example embodiments, by the pressing step, the positive electrode may be formed in a free standing type that does not include a positive electrode current collector.
예시적인 실시예들에서, 상기 양극 전극을 형성하는 단계는 유기 용매의 첨가 없이 전 고체 상태에서(all solid-state) 수행될 수 있다.In example embodiments, the step of forming the anode electrode may be performed in an all solid-state without adding an organic solvent.
본 발명에 따르면, 전 고체 상태에서 수행되는 유기 화합물 기반의 양극 활물질의 제조 방법에 의해, 유기 화합물의 화학적 및 열적 손상이 방지될 수 있고, 이러한 양극 전극을 포함하는 리튬 이차 전지는 우수한 전기 화학적 특성을 가질 수 있다. 또한 양극 전극은 종래의 알루미늄 호일과 같은 양극 집전체가 없이도 프리 스탠딩 타입으로 사용될 수 있으므로, 상기 양극 전극을 포함하는 리튬 이차 전지는 높은 에너지 밀도를 가질 수 있다. According to the present invention, chemical and thermal damage to the organic compound can be prevented by the method of manufacturing a positive electrode active material based on an organic compound performed in a solid state, and a lithium secondary battery including such a positive electrode has excellent electrochemical properties. Can have. In addition, since the positive electrode may be used as a free standing type without a positive electrode current collector such as a conventional aluminum foil, a lithium secondary battery including the positive electrode may have a high energy density.
상기 기술적 과제를 달성하기 위한 본 발명의 기술적 사상에 따른 유기 화합물 기반의 리튬 이차 전지는, 양극 전극; 전해액; 및 음극 전극을 포함하며, 상기 양극 전극은, 탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함하며, 상기 양극 전극의 총 중량에 대하여 30 내지 50 중량%의 범위인 양극 활물질; 상기 양극 전극의 총 중량에 대하여 30 내지 50 중량%의 범위인 도전재; 및 상기 양극 전극의 총 중량에 대하여 10 내지 30 중량%의 범위인 바인더를 포함하며, 상기 도전재는 1.5V 내지 4.0V에서 분해되지 않으며, 상기 도전재는 500 내지 2000 m2/g의 BET 비표면적을 갖는다.An organic compound-based lithium secondary battery according to the technical idea of the present invention for achieving the above technical problem includes: a positive electrode; Electrolyte; And a negative electrode, wherein the positive electrode includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur, and 30 to 50 based on the total weight of the positive electrode. A positive electrode active material in the range of% by weight; A conductive material in the range of 30 to 50% by weight based on the total weight of the positive electrode; And a binder in the range of 10 to 30% by weight based on the total weight of the positive electrode, the conductive material does not decompose at 1.5V to 4.0V, and the conductive material has a BET specific surface area of 500 to 2000 m 2 /g. Have.
예시적인 실시예들에서, 상기 도전재는 약 1.0 내지 5.0 cm3/g의 포어 볼륨을 가질 수 있다.In example embodiments, the conductive material may have a pore volume of about 1.0 to 5.0 cm 3 /g.
예시적인 실시예들에서, 상기 유기 화합물은 디메틸페나진(DMPZ), 페릴렌테트라카르복실산 무수물(PTCDA), 테트라에틸 티우람 디설파이드(TETD), TEMPO(2,2,6,6-tetramethylpiperidinyloxy), PEDOT(poly(3,4-ethylenedioxythiophene)), DD-TCNQ(7,7,8,8-tetracyanoquinodimethane), 및 플라반트론(flavanthrone)으로 구성된 군으로부터 선택된 적어도 하나를 포함할 수 있다.In exemplary embodiments, the organic compound is dimethylphenazine (DMPZ), perylenetetracarboxylic anhydride (PTCDA), tetraethyl thiuram disulfide (TETD), TEMPO (2,2,6,6-tetramethylpiperidinyloxy). , PEDOT (poly(3,4-ethylenedioxythiophene)), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and at least one selected from the group consisting of flavantrons.
예시적인 실시예들에서, 상기 유기 화합물은 디메틸페나진을 포함할 수 있고, 리튬 금속을 상기 음극 전극으로 사용하여 상기 리튬 이차 전지를 충전할 때, 상기 양극 전극은 3.0 내지 3.2 V에서 제1 플래토(plateau)를 나타내고, 3.6 내지 3.8 V에서 제2 플래토를 나타낼 수 있다.In exemplary embodiments, the organic compound may include dimethylphenazine, and when charging the lithium secondary battery using lithium metal as the negative electrode, the positive electrode is the first plate at 3.0 to 3.2 V. It represents a plateau and can represent a second plateau at 3.6 to 3.8 V.
예시적인 실시예들에서, 상기 도전재는 케첸 블랙(Ketjenblack®)일 수 있다.In example embodiments, the conductive material may be Ketjenblack®.
예시적인 실시예들에서, 상기 바인더는 비드 형태의 폴리테트라플루오로에틸렌(PTFE)를 포함하고, 상기 바인더는 상기 양극 전극의 총 중량에 대하여 10 내지 30%의 범위일 수 있다.In exemplary embodiments, the binder may include polytetrafluoroethylene (PTFE) in the form of beads, and the binder may range from 10 to 30% based on the total weight of the positive electrode.
예시적인 실시예들에서, 상기 양극 활물질은 500 나노미터 내지 60 마이크로미터의 평균 입자 사이즈를 갖고, 상기 도전재는 10 내지 100 나노미터의 평균 입자 사이즈를 가질 수 있다.In example embodiments, the positive electrode active material may have an average particle size of 500 nanometers to 60 micrometers, and the conductive material may have an average particle size of 10 to 100 nanometers.
예시적인 실시예들에서, 상기 양극 전극은 양극 집전체를 포함하지 않는 프리 스탠딩(free standing) 타입일 수 있다.In example embodiments, the positive electrode may be a free standing type that does not include a positive electrode current collector.
예시적인 실시예들에서, 상기 양극 전극은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 가질 수 있다. In example embodiments, the positive electrode may have a density of 0.50 g/cm 3 to 1.2 g/cm 3.
상기 기술적 과제를 달성하기 위한 본 발명의 기술적 사상에 따른 유기 화합물 기반의 리튬 이차 전지의 제조 방법은, 양극 전극을 형성하는 단계를 포함한다. 상기 양극 전극을 형성하는 단계는, 30 내지 50 중량%의 양극 활물질, 30 내지 50 중량%의 도전재, 및 10 내지 30 중량%의 바인더를 고상 혼합하여 예비 양극 전극을 형성하는 단계; 상기 예비 양극 전극을 롤 프레스에 의해 압착하는 단계;를 포함하고, 상기 양극 활물질은 탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함하고, 상기 도전재는 케첸 블랙을 포함하고 상기 도전재는 500 내지 2000 m2/g의 BET 비표면적을 갖는다.A method of manufacturing a lithium secondary battery based on an organic compound according to the technical idea of the present invention for achieving the above technical problem includes forming a positive electrode. The forming of the positive electrode may include forming a preliminary positive electrode by solid-phase mixing 30 to 50% by weight of a positive electrode active material, 30 to 50% by weight of a conductive material, and 10 to 30% by weight of a binder; Comprising the preliminary positive electrode by a roll press; Including, the positive electrode active material includes an organic compound containing a carbon double bond and a functional group containing at least one of nitrogen, oxygen, and sulfur, the conductive The material includes Ketjen Black, and the conductive material has a BET specific surface area of 500 to 2000 m 2 /g.
예시적인 실시예들에서, 상기 예비 양극 전극을 압착하는 단계는 복수 회 수행될 수 있다.In example embodiments, the step of compressing the preliminary anode electrode may be performed a plurality of times.
예시적인 실시예들에서, 상기 양극 전극이 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 갖도록 상기 예비 양극 전극을 압착하는 단계가 복수 회 수행될 수 있다.In example embodiments, the step of compressing the preliminary anode electrode so that the anode electrode has a density of 0.50 g/cm 3 to 1.2 g/cm 3 may be performed a plurality of times.
예시적인 실시예들에서, 상기 양극 활물질은 제1 입자 사이즈를 가지며, 상기 도전재는 제2 입자 사이즈를 가지며, 상기 바인더는 상기 제1 입자 사이즈 및 상기 제2 입자 사이즈보다 더 큰 제3 입자 사이즈를 가질 수 있다.In example embodiments, the positive electrode active material has a first particle size, the conductive material has a second particle size, and the binder has a third particle size larger than the first particle size and the second particle size. I can have it.
예시적인 실시예들에서, 상기 제1 입자 사이즈는 500 나노미터 내지 60 마이크로미터이며, 상기 제2 입자 사이즈는 10 내지 100 나노미터이며, 상기 제3 입자 사이즈는 1 내지 5 밀리미터일 수 있다.In example embodiments, the first particle size may be 500 nanometers to 60 micrometers, the second particle size may be 10 to 100 nanometers, and the third particle size may be 1 to 5 millimeters.
예시적인 실시예들에서, 상기 도전재는 약 1.0 내지 5.0 cm3/g의 포어 볼륨을 가질 수 있다.In example embodiments, the conductive material may have a pore volume of about 1.0 to 5.0 cm 3 /g.
예시적인 실시예들에서, 상기 압착하는 단계에 의해, 상기 양극 전극은 양극 집전체를 포함하지 않는 프리 스탠딩(free standing) 타입으로 형성될 수 있다.In example embodiments, by the pressing step, the positive electrode may be formed in a free standing type that does not include a positive electrode current collector.
예시적인 실시예들에서, 상기 양극 전극을 형성하는 단계는 유기 용매의 첨가 없이 전 고체 상태에서(all solid-state) 수행될 수 있다. In example embodiments, the step of forming the anode electrode may be performed in an all solid-state without adding an organic solvent.
본 발명에 따르면, 도전재는 500 내지 2000 m2/g의 BET 비표면적을 가질 수 있다. 이러한 도전재는 양극 활물질 사이의 전기적 연결을 제공하는 역할을 할 뿐만 아니라 넓은 비표면적을 가지므로 커패시터 전극과 같이 작용하여 커패시턴스에 의한 용량을 나타낼 수 있다. 이러한 양극 전극을 포함하는 리튬 이차 전지는 우수한 전기 화학적 특성을 가질 수 있다. 또한 양극 전극은 유기 용매의 첨가 없이 전 고체 상태에서 형성됨에 따라 유기 용매에 의한 양극 활물질의 화학적 및 열적 손상이 방지될 수 있다. 또한 양극 전극은 종래의 알루미늄 호일과 같은 양극 집전체가 없이도 프리 스탠딩 타입으로 사용될 수 있으므로, 상기 양극 전극을 포함하는 리튬 이차 전지는 높은 에너지 밀도를 가질 수 있다. According to the present invention, the conductive material may have a BET specific surface area of 500 to 2000 m 2 /g. Such a conductive material not only serves to provide an electrical connection between the positive electrode active materials, but also has a large specific surface area, and thus acts like a capacitor electrode to exhibit capacity due to capacitance. A lithium secondary battery including such a positive electrode may have excellent electrochemical properties. In addition, since the positive electrode is formed in a solid state without the addition of an organic solvent, chemical and thermal damage to the positive electrode active material by the organic solvent can be prevented. In addition, since the positive electrode may be used as a free standing type without a positive electrode current collector such as a conventional aluminum foil, a lithium secondary battery including the positive electrode may have a high energy density.
본 발명에 따른 유기 화합물 기반의 리튬 이차 전지는 우수한 사이클 특성, 우수한 전기 화학적 특성을 가질 수 있다. 또한 양극 전극은 종래의 알루미늄 호일과 같은 양극 집전체가 없이도 프리 스탠딩 타입으로 사용될 수 있으므로, 상기 양극 전극을 포함하는 리튬 이차 전지는 높은 에너지 밀도를 가질 수 있다. The lithium secondary battery based on the organic compound according to the present invention may have excellent cycle characteristics and excellent electrochemical characteristics. In addition, since the positive electrode may be used as a free standing type without a positive electrode current collector such as a conventional aluminum foil, a lithium secondary battery including the positive electrode may have a high energy density.
도 1은 예시적인 실시예들에 따른 유기화합물 기반의 리튬 이차 전지를 개략적으로 나타내는 단면도이다.1 is a cross-sectional view schematically illustrating an organic compound-based lithium secondary battery according to exemplary embodiments.
도 2는 예시적인 실시예들에 따른 양극 전극을 나타내는 개략도이다. 2 is a schematic diagram illustrating an anode electrode according to exemplary embodiments.
도 3은 예시적인 실시예들에 따른 유기 화합물 기반의 리튬 이차 전지의 제조 방법을 나타내는 플로우차트이다.3 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
도 4는 예시적인 실시예들에 따른 유기 화합물 기반의 양극 전극의 주사 전자 현미경(scanning microscopy, SEM) 이미지이다.4 is a scanning electron microscope (SEM) image of an organic compound-based anode electrode according to exemplary embodiments.
도 5 및 도 6은 예시적인 실시예들에 따른 양극 전극의 전압 프로파일을 나타내는 그래프들이다. 5 and 6 are graphs showing voltage profiles of an anode electrode according to exemplary embodiments.
도 7 및 도 8은 비교예와 실시예에 대하여 사이클 횟수 증가에 따른 충전 및 방전 프로파일을 나타내는 그래프들이다. 7 and 8 are graphs showing charging and discharging profiles according to an increase in the number of cycles for Comparative Examples and Examples.
도 9는 비교예와 실시예에 대하여 사이클 횟수 증가에 따른 방전 용량(mAh/g) 및 쿨롱 효율(%)을 나타내는 그래프들이다. 9 are graphs showing discharge capacity (mAh/g) and Coulomb efficiency (%) according to an increase in the number of cycles for Comparative Examples and Examples.
도 10은 예시적인 실시예들에 따른 양극 전극의 내부 저항을 나타내는 그래프들이다. 10 are graphs showing internal resistance of an anode electrode according to exemplary embodiments.
도 11은 다른 예시적인 실시예들에 따른 양극 전극을 나타내는 개략도이다. 11 is a schematic diagram illustrating an anode electrode according to other exemplary embodiments.
도 12는 예시적인 실시예들에 따른 유기 화합물 기반의 리튬 이차 전지의 제조 방법을 나타내는 플로우차트이다.12 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
도 13은 예시적인 실시예들에 따른 유기 화합물 기반의 양극 전극의 주사 전자 현미경(scanning microscopy, SEM) 이미지이다.13 is a scanning electron microscope (SEM) image of an organic compound-based anode electrode according to exemplary embodiments.
도 14는 예시적인 실시예들에 따른 양극 전극의 전압 프로파일을 나타내는 그래프이다. 14 is a graph showing a voltage profile of an anode electrode according to example embodiments.
도 15 및 도 16은 예시적인 실시예들에 따른 양극 전극의 사이클 특성을 나타내는 그래프들이다. 15 and 16 are graphs showing cycle characteristics of an anode electrode according to exemplary embodiments.
도 17은 예시적인 실시예들에 따른 양극 전극의 내부 저항을 나타내는 그래프들이다. 17 are graphs showing internal resistance of an anode electrode according to exemplary embodiments.
도 18은 예시적인 실시예들에 따른 다양한 밀도를 갖는 양극 전극의 전압 프로파일을 나타내는 그래프들이다. 18 are graphs showing voltage profiles of anode electrodes having various densities according to exemplary embodiments.
도 19는 1회 충전 용량과 1회 방전 용량을 나타내는 그래프들이다. 19 are graphs showing one-time charge capacity and one-time discharge capacity.
도 20 및 도 21은 예시적인 실시예들에 따른 양극 전극의 밀도에 따른 사이클 특성을 나타내는 그래프이다. 20 and 21 are graphs showing cycle characteristics according to a density of an anode electrode according to exemplary embodiments.
도 22는 예시적인 실시예들에 따른 양극 전극의 내부 저항을 나타내는 그래프들이다. 22 are graphs showing internal resistance of an anode electrode according to exemplary embodiments.
도 23은 예시적인 실시예들에 따른 양극 전극의 전압 프로파일을 나타내는 그래프이다. 23 is a graph showing a voltage profile of an anode electrode according to example embodiments.
도 24는 예시적인 실시예들에 따른 양극 전극의 사이클 특성을 나타내는 그래프이다. 24 is a graph showing cycle characteristics of an anode electrode according to exemplary embodiments.
도 25는 다른 예시적인 실시예들에 따른 양극 전극을 나타내는 개략도이다. 25 is a schematic diagram illustrating an anode electrode according to other exemplary embodiments.
도 26은 예시적인 실시예들에 따른 유기 화합물 기반의 리튬 이차 전지의 제조 방법을 나타내는 플로우차트이다.26 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
도 27은 예시적인 실시예들에 따른 양극 전극의 전압 프로파일을 나타내는 그래프이다. 27 is a graph showing a voltage profile of an anode electrode according to example embodiments.
도 28 및 도 29은 예시적인 실시예들에 따른 양극 전극의 사이클 특성을 나타내는 그래프이다. 28 and 29 are graphs showing cycle characteristics of an anode electrode according to exemplary embodiments.
도 30 및 도 31은 예시적인 실시예들에 따른 양극 전극의 전압 프로파일과 사이클 특성을 나타내는 그래프이다.30 and 31 are graphs showing voltage profiles and cycle characteristics of an anode electrode according to exemplary embodiments.
도 32는 양극 활물질 함량에 따른 양극 활물질 질량 기준의 방전 용량과, 양극 전극 질량 기준의 방전 용량을 도시한 그래프이다. FIG. 32 is a graph showing a discharge capacity based on a mass of a positive electrode active material and a discharge capacity based on a mass of a positive electrode according to the amount of the positive electrode active material.
도 33은 예시적인 실시예들에 따른 양극 전극의 내부 저항을 나타내는 그래프들이다. 33 are graphs showing internal resistance of an anode electrode according to example embodiments.
도 34는 실시예 4(EX4)와 비교예(CO1)에 따른 양극 전극의 전압 프로파일을 나타내는 그래프이다. 34 is a graph showing a voltage profile of an anode electrode according to Example 4 (EX4) and Comparative Example (CO1).
도 35는 실시예 4(EX4)와 비교예(CO1)에 따른 양극 전극의 사이클 횟수 증가에 따른 방전 용량(mAh/g)과 쿨롱 효율(%)을 나타내는 그래프이다. 35 is a graph showing discharge capacity (mAh/g) and Coulomb efficiency (%) according to an increase in the number of cycles of the positive electrode according to Example 4 (EX4) and Comparative Example (CO1).
도 36은 실시예 4(EX4)와 비교예(CO1)에 따른 양극 전극의 내부 저항을 나타내는 그래프들이다.36 are graphs showing internal resistance of a positive electrode according to Example 4 (EX4) and Comparative Example (CO1).
도 37은 케첸 블랙(EX21)과 슈퍼 P(CO21)의 BET 비표면적 측정을 위한 흡착량을 나타내는 그래프이다. 37 is a graph showing the adsorption amount for BET specific surface area measurement of Ketjen Black (EX21) and Super P (CO21).
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라, 여러 가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예들에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성 요소들은 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성 요소의 비율은 과장되거나 축소될 수 있다. In order to fully understand the configuration and effects of the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms and various changes may be added. However, the description of the embodiments is provided to complete the disclosure of the present invention, and to fully inform the scope of the invention to those of ordinary skill in the art to which the present invention pertains. In the accompanying drawings, the size of the constituent elements is enlarged from the actual size for convenience of description, and the ratio of each constituent element may be exaggerated or reduced.
어떤 구성 요소가 다른 구성 요소에 "상에" 있다거나 "접하여" 있다고 기재된 경우, 다른 구성 요소에 상에 직접 맞닿아 있거나 또는 연결되어 있을 수 있지만, 중간에 또 다른 구성 요소가 존재할 수 있다고 이해되어야 할 것이다. 반면, 어떤 구성 요소가 다른 구성 요소의 "바로 위에" 있다거나 "직접 접하여" 있다고 기재된 경우에는, 중간에 또 다른 구성 요소가 존재하지 않는 것으로 이해될 수 있다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 예를 들면, "~사이에"와 "직접 ~사이에" 등도 마찬가지로 해석될 수 있다. When a component is described as being "on" or "adjacent" to another component, it should be understood that it may be directly in contact with or connected to another component, but another component may exist in the middle. something to do. On the other hand, when a component is described as being "directly above" or "directly" of another component, it may be understood that another component does not exist in the middle. Other expressions describing the relationship between components, such as "between" and "directly," can be interpreted as well.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms may be used only for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. "포함한다" 또는 "가진다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하기 위한 것으로, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들이 부가될 수 있는 것으로 해석될 수 있다. Singular expressions include plural expressions, unless the context clearly indicates otherwise. Terms such as "comprises" or "have" are used to designate the presence of features, numbers, steps, actions, components, parts, or a combination thereof described in the specification, and one or more other features or numbers, It may be interpreted that steps, actions, components, parts, or combinations thereof may be added.
본 발명의 실시예들에서 사용되는 용어들은 다르게 정의되지 않는 한, 해당 기술 분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.Terms used in the embodiments of the present invention may be interpreted as meanings commonly known to those of ordinary skill in the art, unless otherwise defined.
이하, 첨부한 도면을 참조하여 본 발명의 예시적인 실시예를 설명한다. Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 예시적인 실시예들에 따른 유기화합물 기반의 리튬 이차 전지(1)를 개략적으로 나타내는 단면도이다.1 is a cross-sectional view schematically illustrating an organic compound-based lithium secondary battery 1 according to exemplary embodiments.
도 1을 참조하면, 유기화합물 기반의 리튬 이차 전지(1)는 음극 전극(anode electrode)(20), 양극 전극(30), 분리막(separator)(50), 전해액(60), 케이스(72, 74), 및 밀봉 부재(76)를 포함할 수 있다. 유기화합물 기반의 리튬 이차 전지(1)는 리튬을 전하 전달 매체로 사용하는 리튬 이차 전지일 수 있다. 양극 집전체(40) 상에 양극 전극(30)이 부착될 수 있고, 양극 전극(30)과 음극 전극(20) 사이에 분리막(50)이 개재될 수 있다. 음극 전극(20), 양극 전극(30), 및 분리막(50)은 전해액(60)에 적셔진 채 케이스(72, 74) 내부에 수용될 수 있다. 하부 케이스(72)와 상부 케이스(74)는 서로 전기적으로 연결되지 않도록 밀봉 부재(76)에 의해 고정될 수 있다. 양극 전극(30)은 하부 케이스(72)와 전기적으로 연결되고, 음극 전극(20)은 상부 케이스(74)와 전기적으로 연결되어 상부 케이스(74)와 하부 케이스(72)가 각각 유기화합물 기반의 리튬 이차 전지(1)의 전기적 단자들로 작용할 수 있다. Referring to FIG. 1, an organic compound-based lithium secondary battery 1 includes a negative electrode 20, a positive electrode 30, a separator 50, an electrolyte solution 60, a case 72, 74), and a sealing member 76. The organic compound-based lithium secondary battery 1 may be a lithium secondary battery using lithium as a charge transfer medium. The positive electrode 30 may be attached to the positive electrode current collector 40, and the separator 50 may be interposed between the positive electrode 30 and the negative electrode 20. The cathode electrode 20, the anode electrode 30, and the separator 50 may be accommodated in the cases 72 and 74 while being soaked in the electrolyte solution 60. The lower case 72 and the upper case 74 may be fixed by the sealing member 76 so as not to be electrically connected to each other. The anode electrode 30 is electrically connected to the lower case 72, and the cathode electrode 20 is electrically connected to the upper case 74, so that the upper case 74 and the lower case 72 are each organic compound-based. It can act as electrical terminals of the rechargeable lithium battery 1.
음극 전극(20)은 리튬 금속, 흑연, 실리콘-계 물질, 주석-계 물질, 이들의 혼합물 등을 포함할 수 있다. 음극 전극(20)이 리튬 금속을 포함하는 경우, 도 1에 도시된 것과 같이 단일층으로 구성될 수 있다. 그러나, 음극 전극(20)이 흑연, 실리콘-계 물질, 주석-계 물질, 이들의 혼합물 등을 포함하는 경우, 음극 전극(20)은 예를 들어 구리 호일 등으로 구성되는 음극 집전체(도시 생략) 상에 부착될 수도 있다.The negative electrode 20 may include lithium metal, graphite, a silicon-based material, a tin-based material, a mixture thereof, and the like. When the negative electrode 20 includes lithium metal, it may be configured as a single layer as shown in FIG. 1. However, when the negative electrode 20 includes graphite, a silicon-based material, a tin-based material, or a mixture thereof, the negative electrode 20 is a negative electrode current collector (not shown) composed of, for example, copper foil. ) Can also be attached.
양극 전극(30)은 유기 화합물 기반의 양극 활물질 입자들을 포함할 수 있다. 양극 전극(30)은 프리 스탠딩 타입일 수 있고, 따라서 양극 집전체에 부착되지 않을 수 있다. 그러나 다른 실시예들에서, 양극 전극(30)이 알루미늄 호일, 또는 니켈 호일의 양극 집전체 상에 부착되거나, 양극 전극(30)을 지지하기 위하여 양극 집전체가 양극 전극(30) 하부에 배치될 수도 있다. 양극 전극(30)에 대하여, 아래 도 2를 참조로 상세히 설명하도록 한다.The positive electrode 30 may include positive electrode active material particles based on an organic compound. The positive electrode 30 may be a free standing type, and thus may not be attached to the positive electrode current collector. However, in other embodiments, the positive electrode 30 is attached to the positive electrode current collector of aluminum foil or nickel foil, or the positive electrode current collector is disposed under the positive electrode 30 to support the positive electrode 30. May be. The anode electrode 30 will be described in detail with reference to FIG. 2 below.
분리막(50)은 다공성을 가질 수 있고, 단일막 또는 2층 이상의 다중막으로 구성될 수 있다. 분리막(50)은 폴리머 물질을 포함할 수 있고, 예를 들어 폴리에틸렌계, 폴리프로필렌계, 폴리비닐리덴 플루오라이드계, 폴리올레핀계 폴리머 등의 적어도 하나를 포함할 수 있다.The separator 50 may have porosity, and may be composed of a single layer or a multilayer of two or more layers. The separator 50 may include a polymer material, and may include at least one of a polyethylene-based, polypropylene-based, polyvinylidene fluoride-based, and polyolefin-based polymer.
전해액(60)은 비수성 용매(non-aqueous solvent)와 전해질 염을 포함할 수 있다. 상기 비수성 용매는 통상적인 비수성 전해액용 비수성 용매로 사용하고 있는 것이면 특별히 제한하지 않으며, 예를 들어 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매 또는 비양성자성 용매를 포함할 수 있다. 상기 비수성 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다.The electrolyte solution 60 may include a non-aqueous solvent and an electrolyte salt. The non-aqueous solvent is not particularly limited as long as it is used as a non-aqueous solvent for a conventional non-aqueous electrolyte, and for example, a carbonate-based solvent, an ester-based solvent, an ether-based solvent, a ketone-based solvent, an alcohol-based solvent or aprotic It may contain a solvent. The non-aqueous solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more mixtures may be appropriately adjusted according to the desired battery performance.
상기 전해질 염은 통상적인 비수 전해액용 전해질 염으로 사용하고 있는 것이면 특별히 제한하지 않으며, 예를 들어 A+B- 의 구조식을 가지는 염일 수 있다. 여기에서, A+는 Li+, Na+, K+ 등의 알칼리 금속 양이온 또는 이들의 조합을 포함하는 이온일 수 있다. 또한. B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, ASF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 - 등과 같은 음이온 또는 이들의 조합을 포함하는 이온일 수 있다. 예를 들어, 상기 전해질 염은 리튬계염일 수 있고, 예를 들어 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, LiI 및 LiB(C2O4)2 로 이루어진 군에서 선택되는 하나 또는 둘 이상을 포함할 수 있다. 이러한 전해질 염은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.The electrolyte salt is not particularly limited as long as it is used as a conventional electrolyte salt for a non-aqueous electrolyte, and may be, for example, a salt having a structural formula of A + B -. Here, A + may be an ion including an alkali metal cation such as Li + , Na + , K +, or a combination thereof. Also. B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, ASF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, It may be an ion including an anion such as C(CF 2 SO 2 ) 3 -or a combination thereof. For example, the electrolyte salt may be a lithium-based salt, for example LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiN(SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F2 y+1 SO 2 ) (where , x and y are natural numbers), LiCl, LiI, and LiB(C 2 O 4 ) 2 It may include one or more selected from the group consisting of. These electrolyte salts may be used alone or in combination of two or more.
도 1에는 유기화합물 기반의 리튬 이차 전지(1)으로서 코인 타입의 전지를 예시적으로 도시하였으나, 본 발명의 기술적 사상이 이에 한정되는 것은 아니다. 도 1에 도시된 것과는 달리, 유기화합물 기반의 리튬 이차 전지(1)는 실린더 형상의 케이스 내부에 양극 전극과 음극 전극이 나선형으로 권취된 상태로 수용되는 원통형 전지일 수도 있고, 직사각형 형상의 케이스 내부에 양극 전극과 음극 전극이 권취된 상태로 수용되는 각형 전지일 수도 있다. 이와는 달리, 복수의 양극 전극과 복수의 음극 전극들이 교대하여 스택된 상태로 비닐 파우치 내부에 수용되는 폴리머 전지일 수도 있다. 1 illustrates a coin-type battery as an organic compound-based lithium secondary battery 1 as an example, but the technical idea of the present invention is not limited thereto. Unlike that shown in FIG. 1, the organic compound-based lithium secondary battery 1 may be a cylindrical battery in which a positive electrode and a negative electrode are spirally wound inside a cylindrical case, or a rectangular case. It may be a prismatic battery accommodated in a state in which the positive electrode and the negative electrode are wound. Alternatively, it may be a polymer battery accommodated in a vinyl pouch in a state in which a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked.
도 2는 예시적인 실시예들에 따른 양극 전극(30)을 나타내는 개략도이다. 2 is a schematic diagram illustrating an anode electrode 30 according to exemplary embodiments.
도 2를 참조하면, 양극 전극(30)은 양극 활물질(32), 도전재(34), 바인더(36), 및 카본 나노 튜브(38)를 포함할 수 있다. Referring to FIG. 2, the positive electrode 30 may include a positive electrode active material 32, a conductive material 34, a binder 36, and a carbon nanotube 38.
예시적인 실시예들에서, 양극 전극(30)은 양극 전극의 총 중량에 대하여 약 30 내지 50 중량%의 양극 활물질(32), 양극 전극(30)의 총 중량에 대하여 약 30 내지 50 중량%의 도전재(34), 양극 전극(30)의 총 중량의 10 내지 30 중량%의 바인더(36), 및 양극 전극(30)의 총 중량에 대하여 약 5 내지 약 20 중량%의 카본 나노 튜브를 포함할 수 있다. In exemplary embodiments, the positive electrode 30 includes about 30 to 50% by weight of the positive electrode active material 32 based on the total weight of the positive electrode 30, and about 30 to 50% by weight based on the total weight of the positive electrode 30. Containing a conductive material 34, a binder 36 of 10 to 30% by weight of the total weight of the positive electrode 30, and about 5 to about 20% by weight of carbon nanotubes based on the total weight of the positive electrode 30 can do.
예시적인 실시예들에서, 양극 활물질은 탄소 이중 결합과, 질소, 산소 및 황 중에서 적어도 하나를 포함하는 작용기를 갖는 유기 화합물을 포함할 수 있다. 예를 들어, 상기 유기 화합물에 포함되는 탄소 이중 결합 또는 질소, 산소 및 황 중에서 적어도 하나를 포함하는 작용기가 리튬 이온과의 가역적인 산화 반응 또는 환원 반응의 활성 영역으로 작용할 수 있다. In example embodiments, the positive electrode active material may include an organic compound having a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur. For example, a carbon double bond included in the organic compound or a functional group including at least one of nitrogen, oxygen, and sulfur may serve as an active region for a reversible oxidation or reduction reaction with lithium ions.
예시적인 실시예들에서, 상기 유기 화합물은 레독스 활성을 갖는 폴리머(또는 래디컬 폴리머), 유기 황 화합물(organo sulfide compound), 및 카르보닐기 함유 화합물(carbonyl compound)로 구성된 군으로부터 선택된 적어도 하나를 포함할 수 있다. 예를 들어, 상기 래디컬 폴리머는 대략 200 mAh/g 이하의 방전 용량, 대략 3.0 내지 4.0 V의 평균 방전 포텐셜(Li 메탈 기준), 및 대략 800 Wh/kg-1 이하의 에너지 밀도를 가질 수 있다. 예를 들어, 상기 유기 황 화합물은 대략 100 내지 800 mAh/g의 방전 용량, 대략 1.5 내지 3.0 V의 평균 방전 포텐셜(Li 메탈 기준), 및 대략 400 내지 1500 Wh/kg-1의 에너지 밀도를 가질 수 있다. 예를 들어, 상기 카르보닐기 함유 화합물은 대략 100 내지 300 mAh/g의 방전 용량, 대략 1.5 내지 3.0 V의 평균 방전 포텐셜(Li 메탈 기준), 및 대략 1000 Wh/kg-1 이하의 에너지 밀도를 가질 수 있다.In exemplary embodiments, the organic compound may include at least one selected from the group consisting of a polymer (or radical polymer) having redox activity, an organo sulfide compound, and a carbonyl compound. I can. For example, the radical polymer may have a discharge capacity of approximately 200 mAh/g or less, an average discharge potential of approximately 3.0 to 4.0 V (based on Li metal), and an energy density of approximately 800 Wh/kg -1 or less. For example, the organosulfur compound has a discharge capacity of approximately 100 to 800 mAh/g, an average discharge potential of approximately 1.5 to 3.0 V (based on Li metal), and an energy density of approximately 400 to 1500 Wh/kg -1. I can. For example, the carbonyl group-containing compound may have a discharge capacity of approximately 100 to 300 mAh/g, an average discharge potential of approximately 1.5 to 3.0 V (based on Li metal), and an energy density of approximately 1000 Wh/kg -1 or less. have.
예시적인 실시예들에서, 상기 양극 활물질은 디메틸페나진(dimethylphenazine, DMPZ), 페릴렌테트라카르복실산 무수물 (perylenetetracarboxylic dianhydride, PTCDA), 테트라에틸 티우람 디설파이드(tetrathiuramdisulfide, TETD), TEMPO(2,2,6,6-tetramethylpiperidinyloxy), PEDOT(poly(3,4-ethylenedioxythiophene)), DD-TCNQ(7,7,8,8-tetracyanoquinodimethane), 플라반트론(flavanthrone) 중 적어도 하나를 포함할 수 있다. In exemplary embodiments, the positive electrode active material is dimethylphenazine (DMPZ), perylenetetracarboxylic dianhydride (PTCDA), tetraethyl thiuramdisulfide (TETD), TEMPO (2,2). ,6,6-tetramethylpiperidinyloxy), PEDOT (poly(3,4-ethylenedioxythiophene)), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and flavantron (flavanthrone).
예를 들어, 상기 양극 활물질이 디메틸페나진 또는 그 유도체를 포함하는 경우, 아래의 화학식 1 또는 화학식 2의 화합물로 표현될 수 있다.For example, when the positive electrode active material includes dimethylphenazine or a derivative thereof, it may be represented by a compound of Formula 1 or Formula 2 below.
[화학식 1] [Formula 1]
Figure PCTKR2020014818-appb-I000001
Figure PCTKR2020014818-appb-I000001
예를 들어, 화학식 1에 따른 상기 양극 활물질은 디메틸 페나진(5,10-dihydro-5,10-dimethylphenazine) 일 수 있다. For example, the positive electrode active material according to Formula 1 may be dimethyl phenazine (5,10-dihydro-5,10-dimethylphenazine).
[화학식 2] [Formula 2]
Figure PCTKR2020014818-appb-I000002
Figure PCTKR2020014818-appb-I000002
예를 들어, 화학식 2에 따른 상기 양극 활물질에서, R 및 R'는 서로 독립적으로 C1~C5의 알킬기; C2~C5의 알켄일기; C2~C5의 알킨일기; C3~C30의 지방족 고리기; C6~C30의 방향족 고리기; 및 산소(O), 질소(N) 및 황(S) 중 적어도 하나의 헤테로원자를 포함하는 헤테로고리기;로 이루어진 군에서 선택된 어느 하나 이상일 수 있다. For example, in the positive electrode active material according to Formula 2, R and R'are each independently a C1~C5 alkyl group; C2-C5 alkenyl group; Alkynyl group of C2~C5; C3-C30 aliphatic cyclic group; C6-C30 aromatic cyclic group; And a heterocyclic group including at least one heteroatom of oxygen (O), nitrogen (N), and sulfur (S). It may be any one or more selected from the group consisting of.
예시적인 실시예들에서, 도전재(34)는 양극 전극(30)에 전도성을 더 제공할 수 있고, 유기 화합물 기반의 리튬 이차 전지(1)에 화학 변화를 야기하지 않는 전도성 재료일 수 있다. 상기 도전재는 예를 들어 슈퍼 P, 카본 블랙, 케첸 블랙(예를 들어, Ketjenblack 600JD®, Ketjenblack 700JD®), 아세틸렌 블랙 등의 탄소계 물질을 포함할 수 있다. 도전재(34)는 양극 전극(30)의 총 중량 기준으로 양극 활물질(32)의 함량보다 더 적게 함유될 수 있다. 예를 들어, 양극 활물질(32)이 양극 전극(30) 내에 제1 함량으로 포함되고 도전재(34)는 양극 전극(30) 내에 제1 함량보다 더 적은 제2 함량으로 포함될 수 있다.In example embodiments, the conductive material 34 may further provide conductivity to the positive electrode 30 and may be a conductive material that does not cause chemical changes in the organic compound-based lithium secondary battery 1. The conductive material may include, for example, a carbon-based material such as Super P, carbon black, Ketjen black (eg, Ketjenblack 600JD®, Ketjenblack 700JD®), and acetylene black. The conductive material 34 may be contained less than the amount of the positive electrode active material 32 based on the total weight of the positive electrode 30. For example, the positive active material 32 may be included in the positive electrode 30 in a first amount, and the conductive material 34 may be included in the positive electrode 30 in a second amount less than the first amount.
예시적인 실시예들에서, 바인더(36)는 양극 활물질(32) 입자들이 서로에 대하여 부착되거나 양극 활물질(32) 입자들을 도전재(34)에 부착시키는 역할을 한다. 또한 바인더(36)는 양극 활물질(32) 입자들이 양극 전극(30)의 표면으로부터 이탈되거나 분리되는 것을 방지하여, 양극 전극(30)이 프리 스탠딩 타입으로 유지될 수 있도록 양극 전극(30)에 기계적 강도를 제공할 수 있다. In exemplary embodiments, the binder 36 serves to attach the particles of the positive active material 32 to each other or to attach the particles of the positive active material 32 to the conductive material 34. In addition, the binder 36 prevents the particles of the positive active material 32 from being separated or separated from the surface of the positive electrode 30, so that the positive electrode 30 is mechanically attached to the positive electrode 30 so that the positive electrode 30 can be maintained in a free standing type. Can provide strength.
예시적인 실시예들에서, 바인더(36)는 폴리머일 수 있고, 예를 들어 폴리이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔, 아크릴레이티드 스티렌-부타디엔, 에폭시 수지 등일 수 있다. 예시적인 실시예들에서, 바인더(36)는 비드(bead) 타입의 폴리테트라플루오로에틸렌(PTFE)일 수 있다.In exemplary embodiments, the binder 36 may be a polymer, for example, polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinylchloride, carboxylate. Polyvinyl chloride, polyvinylfluoride, ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene, acrylated styrene- It may be a butadiene, an epoxy resin, and the like. In exemplary embodiments, the binder 36 may be a bead type of polytetrafluoroethylene (PTFE).
예시적인 실시예들에서, 카본 나노 튜브(38)는 양극 활물질(32)과 도전재(34)의 입자 표면에 부착되어 양극 활물질(32) 입자들 또는 도전재(34) 입자들이 양극 전극(30)으로부터 이탈되는 것을 방지하는 지지체 역할을 하거나 양극 활물질(32) 입자들이 전해액 내로 용출되더라도 양극 활물질(32)과 도전재(34) 사이의 전기적 경로를 제공하는 역할을 할 수 있다. In exemplary embodiments, the carbon nanotubes 38 are attached to the surface of the particles of the positive electrode active material 32 and the conductive material 34 so that the positive electrode active material 32 particles or the conductive material 34 particles are attached to the positive electrode 30 ) May serve as a support for preventing separation from the positive electrode active material 32, or may serve to provide an electrical path between the positive electrode active material 32 and the conductive material 34 even if particles of the positive electrode active material 32 are eluted into the electrolyte.
예를 들어, 카본 나노 튜브(38)은 길이 방향으로 연장되는 나노 사이즈의 로드(rod) 형상 또는 파이버(fiber) 형상을 가질 수 있다. 카본 나노 튜브(38)의 길이 또는 중량은 다양하게 선택될 수 있다. 카본 나노 튜브(38)는 단일벽 카본 나노 튜브(single wall carbon nanotube), 다중벽 카본 나노 튜브(multi-wall carbon nanotube), 다발형 카본 나노 튜브(carbon nanotube rope), 카본 파이버 중 적어도 하나를 포함할 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 카본 나노 튜브(38)는 단일벽 카본 나노 튜브와 다중벽 카본 나노 튜브의 혼합물을 포함할 수 있다.For example, the carbon nanotube 38 may have a nano-sized rod shape or a fiber shape extending in the longitudinal direction. The length or weight of the carbon nanotube 38 may be variously selected. The carbon nanotube 38 includes at least one of a single wall carbon nanotube, a multi-wall carbon nanotube, a carbon nanotube rope, and a carbon fiber. It can be, but is not limited thereto. For example, the carbon nanotubes 38 may include a mixture of single-walled carbon nanotubes and multi-walled carbon nanotubes.
예시적인 실시예들에서, 카본 나노 튜브(38)에 미량의 금속 원자, 예를 들어 1 중량% 미만의 금속 원자가 부착될 수 있다. 예를 들어, 금속 원자는 구리(Cu), 니켈(Ni), 코발트(Co), 은(Ag), 티타늄(Ti), 알루미늄(Al), 텅스텐(W), 몰리브덴(Mo) 등을 포함할 수 있으나 이에 한정되는 것은 아니다. 카본 나노 튜브(38)에 부착된 미량의 금속 원자의 종류는 카본 나노 튜브(38)의 제조 방법에 따라 달라질 수 있고, 미량의 금속 원자의 함량 또한 카본 나노 튜브(38)의 제조 방법 및 순도(purity)에 따라 달라질 수 있다. 예를 들어, 카본 나노 튜브(38)의 합성 과정에서 탄화 텅스텐이 촉매로 사용되는 경우 미량의 텅스텐 원자가 카본 나노 튜브(38)의 표면에 부착될 수 있다. 예를 들어, 카본 나노 튜브(38)는 약 90 내지 99.99%의 순도를 가질 수 있고, 카본 나노 튜브(38)의 순도가 높을수록 미량의 금속 원자의 첨가량이 감소될 수 있다.In example embodiments, a trace amount of metal atoms, for example, less than 1% by weight of metal atoms may be attached to the carbon nanotubes 38. For example, the metal atom may include copper (Cu), nickel (Ni), cobalt (Co), silver (Ag), titanium (Ti), aluminum (Al), tungsten (W), molybdenum (Mo), and the like. However, it is not limited thereto. The type of the trace amount of metal atoms attached to the carbon nanotubes 38 may vary depending on the method of manufacturing the carbon nanotubes 38, and the content of the trace amounts of metal atoms also includes the method and purity of the carbon nanotubes 38 ( purity). For example, when tungsten carbide is used as a catalyst in the process of synthesizing the carbon nanotubes 38, a trace amount of tungsten atoms may be attached to the surface of the carbon nanotubes 38. For example, the carbon nanotube 38 may have a purity of about 90 to 99.99%, and as the purity of the carbon nanotube 38 increases, the amount of metal atoms added may be reduced.
예시적인 실시예들에서, 카본 나노 튜브(38)는 양극 전극(30)의 총 중량에 대하여 약 5 내지 20 중량%의 함량으로 포함될 수 있다. 카본 나노 튜브(38)의 함량이 약 5 중량%보다 더 작게 포함되는 경우, 양극 활물질의 전해액 용출에 의한 전극 저항 증가 방지 효과가 미미할 수 있고, 카본 나노 튜브(38)의 함량이 약 20 중량%보다 더 크게 포함되는 경우, 양극 전극(30) 내의 리튬 이온의 산화 환원을 위한 액티브 물질(즉, 양극 활물질)의 비율이 감소되므로 방전 용량이 감소될 수 있다. 카본 나노 튜브(38)가 약 5 내지 20 중량%로 포함됨에 따라, 양극 전극(30)은 상대적으로 높은 방전 용량을 갖는 한편, 유기 화합물의 전해액 용출에 의하여 전극 저항이 증가되는 것을 방지하여 우수한 사이클 특성을 나타낼 수 있다. In example embodiments, the carbon nanotubes 38 may be included in an amount of about 5 to 20% by weight based on the total weight of the positive electrode 30. When the content of the carbon nanotubes 38 is less than about 5% by weight, the effect of preventing an increase in electrode resistance due to the elution of the positive electrode active material may be insignificant, and the content of the carbon nanotubes 38 is about 20% by weight. When a larger amount is included, since the ratio of the active material (ie, the positive electrode active material) for redox of lithium ions in the positive electrode 30 is reduced, the discharge capacity may be reduced. As the carbon nanotubes 38 are contained in an amount of about 5 to 20% by weight, the anode electrode 30 has a relatively high discharge capacity, while preventing an increase in electrode resistance due to the elution of the organic compound to an electrolyte solution, thereby providing an excellent cycle. Can show characteristics.
예시적인 실시예들에서, 리튬 금속을 음극 전극(20)으로 사용하여 유기 화합물 기반의 리튬 이차 전지(1)를 충전할 때 양극 전극(30)은 약 3.0 V 내지 약 3.2 V에서 제1 플래토(plateau)를 나타내고, 약 3.6 V 내지 약 3.8 V에서 제2 플래토를 나타낼 수 있다. 예를 들어, 양극 활물질(32)이 디메틸페나진(DMPZ)을 포함할 때, 화학식 1에서 도시된 2개의 질소 원자 중 하나의 질소 원자가 질소 양이온으로 이온화되는 산화 반응에 의해 상기 제1 플래토가 나타나고, 2개의 질소 원자 중 다른 하나의 질소 원자가 질소 양이온으로 이온화되는 산화 반응에 의해 상기 제2 플래토가 나타날 수 있다. In exemplary embodiments, when charging the lithium secondary battery 1 based on an organic compound using lithium metal as the negative electrode 20, the positive electrode 30 is the first plateau at about 3.0 V to about 3.2 V. (plateau) and a second plateau at about 3.6 V to about 3.8 V. For example, when the positive electrode active material 32 contains dimethylphenazine (DMPZ), the first plateau is formed by an oxidation reaction in which one of the two nitrogen atoms shown in Formula 1 is ionized to a nitrogen cation. Appears, and the second plateau may appear by an oxidation reaction in which the other nitrogen atom of the two nitrogen atoms is ionized into a nitrogen cation.
DMPZ → DMPZ 2+ + 2e- -(3) DMPZ → DMPZ 2+ + 2e - - (3)
다른 실시예들에서, 양극 활물질(32)이 페릴렌테트라카르복실산 무수물 (PTCDA)을 포함할 때, 양극 전극(30)은 약 2.52 V 내지 약 2.7 V에서 단일 플래토를 나타낼 수 있다.In other embodiments, when the positive electrode active material 32 includes perylenetetracarboxylic anhydride (PTCDA), the positive electrode 30 may exhibit a single plateau at about 2.52 V to about 2.7 V.
예시적인 실시예들에서, 양극 활물질(32)은 약 500 나노미터(nm) 내지 약 60 마이크로미터(㎛)의 평균 입자 사이즈를 가질 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 양극 활물질(32)의 평균 입자 사이즈가 약 500 nm보다 더 작을 때, 양극 활물질(32)의 표면적이 상대적으로 증가하여 전해액 내에 양극 활물질(32)이 용출되어 리튬 이차 전지(1)의 사이클 특성이 저하될 수 있고, 양극 활물질(32)의 평균 입자 사이즈가 약 60 ㎛보다 더 클 때, 양극 활물질(32) 내부까지 리튬 이온이 효과적으로 전달되기 어려워 리튬 이차 전지(1)의 고율(high rate) 특성이 저하될 수 있다. In example embodiments, the positive active material 32 may have an average particle size of about 500 nanometers (nm) to about 60 micrometers (µm), but is not limited thereto. For example, when the average particle size of the positive electrode active material 32 is smaller than about 500 nm, the surface area of the positive electrode active material 32 is relatively increased, so that the positive electrode active material 32 is eluted in the electrolyte solution, and thus the lithium secondary battery 1 The cycle characteristics of may be deteriorated, and when the average particle size of the positive electrode active material 32 is larger than about 60 μm, it is difficult to effectively transfer lithium ions to the inside of the positive electrode active material 32. high rate) characteristics may be deteriorated.
예시적인 실시예들에서, 양극 전극(30)은 약 20 내지 200 마이크로미터의 두께(T1)를 가질 수 있고, 양극 전극(30)은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 가질 수 있다. 양극 전극(30)의 밀도는 양극 집전체를 포함하지 않는 프리 스탠딩 타입의 양극 전극(30) 자체의 밀도일 수 있고, 예를 들어, 양극 전극(30)의 부피에 대한 양극 활물질(32), 도전재(34), 바인더(36), 및 카본 나노 튜브(38)의 총 중량의 비를 가리킬 수 있다. In exemplary embodiments, the anode electrode 30 may have a thickness T1 of about 20 to 200 micrometers, and the anode electrode 30 may have a density of 0.50 g/cm 3 to 1.2 g/cm 3. I can. The density of the positive electrode 30 may be the density of the free-standing type positive electrode 30 itself, which does not include a positive electrode current collector. For example, the positive electrode active material 32 relative to the volume of the positive electrode 30, It may refer to the ratio of the total weight of the conductive material 34, the binder 36, and the carbon nanotubes 38.
예시적인 실시예들에서, 양극 전극(30)이 카본 나노 튜브(38)를 5 내지 20 중량% 포함함에 따라, 사이클 횟수가 증가하더라도 초기 사이클에서의 제1 플래토 및 제2 플래토의 전압 범위와 유사한 전압 범위에서 제1 플래토와 제2 플래토가 나타날 수 있다. 예를 들어, 카본 나노 튜브(38)가 포함되지 않은 비교예의 경우에 사이클 횟수가 증가함에 따라 전압 프로파일이 변형되고 플래토들이 관찰되지 않을 수 있으나, 카본 나노 튜브(38)가 포함된 실시예의 경우 사이클 횟수가 증가하더라도 전압 프로파일이 변형되지 않고 제1 및 제2 플래토가 초기 사이클에서와 유사한 전압 범위에서 관찰될 수 있다. 카본 나노 튜브(38)와 전기화학적 특성에 대한 상세한 설명은 도 5a 내지 도 8을 참조로 설명하도록 한다.In example embodiments, as the anode electrode 30 contains 5 to 20% by weight of the carbon nanotubes 38, even if the number of cycles increases, the voltage range of the first plateau and the second plateau in the initial cycle A first plateau and a second plateau may appear in a similar voltage range. For example, in the case of the comparative example in which the carbon nanotubes 38 are not included, the voltage profile may be deformed and the plateau may not be observed as the number of cycles increases, but in the case of the embodiment including the carbon nanotubes 38 Even if the number of cycles increases, the voltage profile is not modified and the first and second plateaus can be observed in a voltage range similar to that in the initial cycle. A detailed description of the carbon nanotube 38 and its electrochemical properties will be described with reference to FIGS. 5A to 8.
예시적인 실시예들에서, 양극 전극(30)은 도 3을 참조로 설명할 고상 혼합 방법을 포함하는 유기 화합물 기반의 이차 전지의 제조 방법에 따라 제조될 수 있다. 이러한 고상 혼합 방법은 양극 전극(30)의 양극 활물질의 화학적 및 열적 손상을 방지하고 양극 전극(30)이 프리 스탠딩 타입으로 형성될 수 있게 할 수 있고, 이에 따라 양극 전극(30)을 채용하는 유기 화합물 기반의 리튬 이차 전지(1)의 에너지 밀도를 현저하게 상승시킬 수 있다. In example embodiments, the positive electrode 30 may be manufactured according to a method of manufacturing an organic compound-based secondary battery including a solid-phase mixing method described with reference to FIG. 3. This solid-phase mixing method can prevent chemical and thermal damage to the positive electrode active material of the positive electrode 30 and allow the positive electrode 30 to be formed in a free standing type. The energy density of the compound-based lithium secondary battery 1 can be remarkably increased.
도 3은 예시적인 실시예들에 따른 유기 화합물 기반의 리튬 이차 전지의 제조 방법을 나타내는 플로우차트이다.3 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
도 3을 참조하면, 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브를 준비한다(S10 단계).3, a positive electrode active material, a conductive material, a binder, and a carbon nanotube are prepared (step S10).
예시적인 실시예들에서, 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브는 고체 상태로 제공될 수 있다. 예를 들어, 양극 활물질은 약 500 나노미터 내지 약 60 마이크로미터의 제1 입자 사이즈를 가지고, 도전재는 약 10 내지 100 나노미터의 제2 입자 사이즈를 가지며, 바인더는 약 1 내지 5 밀리미터인 제3 입자 사이즈를 가질 수 있다. 카본 나노 튜브는 단일벽 카본 나노 튜브(single wall carbon nanotube), 다중벽 카본 나노 튜브(multi-wall carbon nanotube), 다발형 카본 나노 튜브(carbon nanotube rope), 카본 파이버 중 적어도 하나일 수 있다. 카본 나노 튜브(38)는 약 90 내지 99.99%의 순도를 가질 수 있고, 카본 나노 튜브(38) 표면에 미량의 금속 원자, 예를 들어 1 중량% 미만의 금속 원자가 부착되어 제공될 수도 있다.In example embodiments, the positive electrode active material, the conductive material, the binder, and the carbon nanotube may be provided in a solid state. For example, the positive electrode active material has a first particle size of about 500 nanometers to about 60 micrometers, the conductive material has a second particle size of about 10 to 100 nanometers, and the binder has a third particle size of about 1 to 5 millimeters. It can have a particle size. The carbon nanotube may be at least one of a single wall carbon nanotube, a multi-wall carbon nanotube, a carbon nanotube rope, and a carbon fiber. The carbon nanotube 38 may have a purity of about 90 to 99.99%, and a trace amount of metal atoms, for example, less than 1% by weight of metal atoms may be attached to the surface of the carbon nanotube 38 to be provided.
선택적으로, 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브 내에 존재할 수 있는 수분을 제거하기 위하여 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브 중 적어도 하나를 진공 오븐에 넣어 수십 분 내지 수 시간 동안 건조시킬 수 있다. Optionally, in order to remove moisture that may exist in the positive electrode active material, the conductive material, the binder, and the carbon nanotubes, at least one of the positive electrode active material, the conductive material, the binder, and the carbon nanotubes is put in a vacuum oven for several tens of minutes to several hours. Can be dried.
이후, 혼합 용기 내에 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브를 혼입하고, 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브를 고상 혼합하여 예비 양극 전극을 형성한다(S20 단계). Thereafter, a positive electrode active material, a conductive material, a binder, and a carbon nanotube are mixed in a mixing container, and a positive electrode active material, a conductive material, a binder, and a carbon nanotube are solidly mixed to form a preliminary positive electrode (step S20).
예시적인 실시예들에서, 혼합 용기 내에서 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브는 액체 용매 등의 첨가 없이 혼합될 수 있다. 상기 고상 혼합의 전체 과정에서 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브는 각각 고체 상태이며, 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브에 막자 등의 혼합 로드(mixing rod)를 사용하여 기계적 전단력을 부여함에 따라 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브는 서로 균일하게 혼합될 수 있다. In exemplary embodiments, the positive electrode active material, the conductive material, the binder, and the carbon nanotubes may be mixed without adding a liquid solvent or the like in the mixing container. In the entire process of mixing the solid phase, the positive electrode active material, the conductive material, the binder, and the carbon nanotube are each in a solid state, and a mixing rod such as a mortar is used for the positive electrode active material, the conductive material, the binder, and the carbon nanotube By applying a mechanical shear force, the positive electrode active material, the conductive material, the binder, and the carbon nanotubes may be uniformly mixed with each other.
예를 들어 혼합 로드가 고체 덩어리 상태인 양극 활물질, 도전재 및 바인더 각각을 작은 조각으로 붕괴시키는 한편 혼합 로드에 의한 기계적 전단력에 의해 양극 활물질, 도전재 및 바인더 조각들이 뭉쳐 서로에게 부착될 수 있다. 상기 혼합 과정에서 카본 나노 튜브가 양극 활물질, 도전재 및 바인더와 균일하게 혼합될 수 있고, 특히 양극 활물질 및 도전재 입자의 표면에 부착되어 형성될 수 있다. 카본 나노 튜브는 양극 활물질 입자 크기보다 상대적으로 긴 길이로 포함될 수 있고, 이에 따라 하나의 카본 나노 튜브가 다수의 양극 활물질 입자들과 다수의 도전재 입자들의 표면에 부착되는 방식으로 배치될 수 있다. For example, while the mixing rod collapses each of the positive electrode active material, the conductive material, and the binder in a solid lump state into small pieces, the positive electrode active material, the conductive material, and the binder pieces may be aggregated and attached to each other by mechanical shearing force by the mixing rod. In the mixing process, the carbon nanotubes may be uniformly mixed with the positive electrode active material, the conductive material, and the binder, and in particular, may be formed by being attached to the surfaces of the positive electrode active material and the conductive material particles. The carbon nanotubes may be included in a length relatively longer than the positive electrode active material particle size, and thus, one carbon nanotube may be disposed in a manner attached to the surfaces of the plurality of positive electrode active material particles and the plurality of conductive material particles.
양극 활물질, 도전재, 바인더, 및 카본 나노 튜브가 상대적으로 균일하게 혼합되어 형성된 고체 덩어리를 예비 양극 전극으로 지칭할 수 있다. 예비 양극 전극은 실질적으로 고체 상태인 상대적으로 높은 점도를 갖는 덩어리 형상으로 형성될 수 있다.A solid mass formed by relatively uniformly mixing a positive electrode active material, a conductive material, a binder, and a carbon nanotube may be referred to as a preliminary positive electrode. The preliminary anode electrode may be formed in a lump shape having a relatively high viscosity that is substantially solid.
이후 예비 양극 전극을 롤 프레싱하여 양극 전극을 형성한다(S30 단계). Thereafter, the preliminary anode electrode is roll pressed to form an anode electrode (step S30).
예시적인 실시예들에서, 상기 롤 프레싱 단계는 1회 수행될 수 있다. 다른 실시예들에서, 상기 롤 프레싱 단계는 2회 이상 수행될 수 있다. 일부 예시에서, 상기 롤 프레싱 단계는 양극 전극이 타겟 두께를 가질 때까지 복수 회 수행될 수 있고, 1회의 롤 프레싱 단계 이후에 수 분 내지 수십 분의 대기 시간이 뒤따르고 그 이후에 1회의 롤 프레싱 단계가 수행될 수 있다. In exemplary embodiments, the roll pressing step may be performed once. In other embodiments, the roll pressing step may be performed two or more times. In some examples, the roll pressing step may be performed multiple times until the anode electrode has a target thickness, followed by a waiting time of several minutes to tens of minutes after one roll pressing step, and then one roll pressing Steps can be performed.
선택적으로, 상기 롤 프레싱 단계 이전에 또는 이후에 양극 전극을 건조하는 단계가 더 수행될 수도 있다. 양극 전극을 형성한 후에 양극 전극을 컷팅하는 단계가 추가적으로 수행될 수 있다.Optionally, a step of drying the anode electrode before or after the roll pressing step may be further performed. After forming the anode electrode, the step of cutting the anode electrode may be additionally performed.
일반적으로 통상의 무기 물질 기반의 전극 물질을 형성하기 위하여 유기 용매를 사용한 액상 혼합 방법이 사용될 수 있다. 특히 NMP(N-methyl-2-pyrrolidone)와 같은 유기 용매 내에 무기 활물질의 입자들을 혼입하고 이를 혼합하여 전극용 슬러리를 제작한다. 이후 전극용 슬러리를 집전체 상에 도포하고 유기 용매를 휘발시키기 위한 베이킹 공정을 수행하여 전극 물질이 제조된다. 그런데 유기 화합물 기반의 양극 활물질은 NMP와 같은 유기 용매에 의해 쉽게 용해되고 화학적 변형이 일어난다. 또한 유기 용매를 휘발시키기 위한 베이킹 공정에서 가해지는 열에 의해 유기 화합물 기반의 양극 활물질에 변형이 일어날 수 있고, 이러한 경우에 양극 활물질로서의 기능을 수행하지 못하거나 성능이 저하될 수 있다. 따라서 유기 활물질 기반의 양극 활물질의 화학적 및 열적 손상을 최소화하는 한편 균질한 전극을 제조할 수 있는 방법의 개발이 요구된다.In general, a liquid mixing method using an organic solvent may be used to form an electrode material based on a conventional inorganic material. Particularly, particles of an inorganic active material are mixed in an organic solvent such as NMP (N-methyl-2-pyrrolidone) and mixed to prepare a slurry for an electrode. Thereafter, an electrode material is prepared by applying the electrode slurry on the current collector and performing a baking process for volatilizing the organic solvent. However, the organic compound-based positive electrode active material is easily dissolved and chemically transformed by an organic solvent such as NMP. In addition, the organic compound-based positive electrode active material may be deformed due to heat applied in the baking process for volatilizing the organic solvent, and in this case, the function as the positive electrode active material may not be performed or performance may be degraded. Therefore, there is a need to develop a method for manufacturing a homogeneous electrode while minimizing chemical and thermal damage to an organic active material-based positive electrode active material.
전술한 예시적인 실시예들에 따른 제조 방법에서는 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브를 전 고체 상태(all solid-state) 혼합함에 의해 양극 전극을 형성할 수 있다. 특히 활물질의 혼합 단계에서 유기 용매가 사용되지 않으므로, 유기 용매에 의한 그리고 유기 용매 제거 공정에 의한 양극 활물질의 화학적 및 열적 손상이 방지될 수 있다. 또한 양극 전극 내에 양극 활물질과 도전재가 균일하게 분산될 뿐만 아니라, 카본 나노 튜브를 통해 양극 활물질과 도전재 사이에 충분한 전기적 연결 경로가 제공될 수 있다. 따라서 이러한 제조 방법에 의해 형성된 양극 전극은 우수한 전기적 특성을 나타낼 수 있다.In the manufacturing method according to the above-described exemplary embodiments, a positive electrode may be formed by mixing a positive electrode active material, a conductive material, a binder, and a carbon nanotube in an all solid-state state. In particular, since the organic solvent is not used in the mixing step of the active material, chemical and thermal damage to the positive electrode active material by the organic solvent and the organic solvent removal process can be prevented. In addition, the positive electrode active material and the conductive material are uniformly dispersed in the positive electrode, and a sufficient electrical connection path between the positive electrode active material and the conductive material may be provided through the carbon nanotubes. Therefore, the anode electrode formed by this manufacturing method can exhibit excellent electrical properties.
또한 일반적으로 유기 용매에 혼합된 슬러리를 집전체에 도포하여 형성하는 경우 집전체에 의한 이차 전지의 중량 증가가 불가피하다. 그러나 예시적인 실시예들에 따르면, 전 고체 상태의 제조 방법을 통해 프리 스탠딩 타입의 양극 전극을 형성하고 불필요한 집전체를 생략할 수 있으므로, 리튬 이차 전지의 중량이 감소되고 중량 에너지 밀도가 현저히 향상될 수 있다. In addition, in general, when a slurry mixed with an organic solvent is applied to a current collector and formed, an increase in the weight of the secondary battery by the current collector is inevitable. However, according to exemplary embodiments, since a free-standing type positive electrode can be formed and unnecessary current collectors can be omitted through the manufacturing method in an all-solid state, the weight of the lithium secondary battery is reduced and the weight energy density is remarkably improved. I can.
아래의 도 4 내지 도 10에서는, 도 3을 참조로 설명한 예시적인 실시예들에 따른 양극 전극(30)을 포함하는 유기 화합물 기반의 리튬 이차 전지의 전기 화학적 성능을 설명하도록 한다. In FIGS. 4 to 10 below, electrochemical performance of an organic compound-based lithium secondary battery including the positive electrode 30 according to exemplary embodiments described with reference to FIG. 3 will be described.
실험예Experimental example
1) 양극 전극의 제조1) Preparation of anode electrode
양극 활물질, 도전재, 및 바인더로서 각각 DMPZ(5,10-dihydro-5,10-dimethylphenazine), ketjen black®, PTFE(polytetrafluoroethylene)가 사용되었다. 카본 나노 튜브로서 저순도 다중벽 카본 나노 튜브, 고순도 다중벽 카본 나노 튜브, 고순도 단일벽 카본 나노 튜브가 각각의 양극 전극 샘플 내에 포함되었다. 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브는 각각 4:3.5:1.5:0.5의 질량비로 막자사발을 이용하여 혼합되었다. 유발 내에 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브가 혼입되고 고상 혼합되었다. 균일하게 혼합된 양극 전극을 롤 프레스를 이용하여 압착하고, 이후 양극 전극들은 1*1 cm2의 크기로 컷팅되었다. 한편 비교예에 따른 양극 전극은 카본 나노 튜브를 포함하지 않고 양극 활물질, 도전재, 및 바인더를 각각 4:3.5:1.5의 질량비로 혼합하였다. DMPZ (5,10-dihydro-5,10-dimethylphenazine), ketjen black®, and PTFE (polytetrafluoroethylene) were used as a positive electrode active material, a conductive material, and a binder, respectively. As carbon nanotubes, low-purity multi-walled carbon nanotubes, high-purity multi-walled carbon nanotubes, and high-purity single-walled carbon nanotubes were included in each positive electrode sample. The positive electrode active material, the conductive material, the binder, and the carbon nanotube were mixed using a mortar at a mass ratio of 4:3.5:1.5:0.5, respectively. A positive electrode active material, a conductive material, a binder, and a carbon nanotube were mixed in the mortar and mixed in a solid state. The uniformly mixed positive electrode was pressed using a roll press, and then the positive electrodes were cut to a size of 1*1 cm 2. Meanwhile, the positive electrode according to the comparative example did not contain a carbon nanotube, and a positive electrode active material, a conductive material, and a binder were mixed in a mass ratio of 4:3.5:1.5, respectively.
2) 리튬 이차 전지의 제조 2) Manufacture of lithium secondary battery
양극 전극들을 사용하여 2032 타입의 코인셀이 조립되었다. 음극으로서 리튬 호일이 사용되었다. 유리섬유 여과지(GF/F)가 분리막으로 사용되고, 전해질로서 1.8 M LiTFSI/TEGDME 용액이 각 코인 셀 내에 90 μL씩 첨가되었다. 조립된 코인 셀은 2.5 - 4.0 V 범위에서 충방전 실험이 수행되었다. A 2032 type coin cell was assembled using positive electrodes. Lithium foil was used as the negative electrode. Glass fiber filter paper (GF/F) was used as a separator, and a 1.8 M LiTFSI/TEGDME solution was added to each coin cell by 90 μL as an electrolyte. The assembled coin cell was subjected to charging and discharging experiments in the range of 2.5-4.0 V.
도 4는 예시적인 실시예들에 따른 유기 화합물 기반의 양극 전극의 주사 전자 현미경(scanning microscopy, SEM) 이미지이다.4 is a scanning electron microscope (SEM) image of an organic compound-based anode electrode according to exemplary embodiments.
도 4의 (a)는 프리 스탠딩 타입으로 컷팅된 상태의 양극 전극을 나타낸다. 별도의 집전체 없이도 양극 활물질, 도전재, 바인더, 및 카본 나노 튜브가 균일하게 혼합된 양극 전극이 프리 스탠딩 타입으로 사용될 수 있도록 형태를 유지할 수 있다. 양극 전극은 상용 리튬 이차 전지의 제조 공정에서 취급이 가능한 정도의 충분한 구조적 안정성을 가질 수 있다. 4A shows the anode electrode cut in a free standing type. Even without a separate current collector, the positive electrode active material, the conductive material, the binder, and the positive electrode in which the carbon nanotubes are uniformly mixed can be maintained in shape so that the positive electrode can be used as a free standing type. The positive electrode may have sufficient structural stability to the extent that it can be handled in the manufacturing process of a commercial lithium secondary battery.
도 4의 (b) 및 (c)는 양극 전극의 표면을 나타내는 이미지이며, 대략 구형 또는 타원형의 양극 활물질 입자들과 도전재 입자들이 바인더에 의해 서로 결합되어 상대적으로 매끄러운 표면 모폴로지를 갖는 것을 확인할 수 있다. 또한 양극 활물질 입자들은 상대적으로 균일한 분포의 입자 사이즈를 가지며, 상대적으로 길이가 긴 카본 나노 튜브가 복수의 양극 활물질 입자들 및 복수의 도전재 입자들의 표면에 부착되어 배치되는 것을 확인할 수 있다. 4B and 4C are images showing the surface of the positive electrode, and it can be seen that the positive electrode active material particles and conductive material particles of approximately spherical or elliptical shape are bonded to each other by a binder to have a relatively smooth surface morphology. have. In addition, it can be seen that the positive electrode active material particles have a relatively uniform particle size, and a relatively long carbon nanotube is attached to and disposed on the surfaces of the plurality of positive electrode active material particles and the plurality of conductive material particles.
도 5 및 도 6은 예시적인 실시예들에 따른 양극 전극의 전압 프로파일을 나타내는 그래프들이다. 도 5에는 비교예(CO1)의 1회 충전 및 1회 방전에서의 전압과 용량이 도시되고 도 6에는 실시예 1 내지 3(EX1, EX2, EX3)의 1회 충전 및 1회 방전에서의 전압과 용량이 도시된다. 비교예(CO1)는 카본 나노 튜브가 포함되지 않은 양극 전극이고, 실시예 1(EX1)은 저순도 다중벽 카본 나노 튜브가 포함된 양극 전극이고, 실시예 2(EX2)는 고순도 다중벽 카본 나노 튜브가 포함된 양극 전극이며, 실시예 3(EX3)은 고순도 단일벽 카본 나노 튜브가 포함된 양극 전극이다. 여기에서 저순도는 약 90%의 순도를 가리키고, 고순도는 약 98%의 순도를 가리킨다. 5 and 6 are graphs showing voltage profiles of an anode electrode according to exemplary embodiments. FIG. 5 shows the voltage and capacity in one charge and one discharge in Comparative Example (CO1), and FIG. 6 shows the voltage in one charge and one discharge in Examples 1 to 3 (EX1, EX2, EX3). And doses are shown. Comparative Example (CO1) is an anode electrode without carbon nanotubes, Example 1 (EX1) is an anode electrode including low-purity multi-walled carbon nanotubes, and Example 2 (EX2) is a high-purity multi-walled carbon nanotube. An anode electrode including a tube, and Example 3 (EX3) is an anode electrode including a high-purity single-walled carbon nanotube. Here, low purity refers to a purity of about 90%, and high purity refers to a purity of about 98%.
도 5 및 도 6을 참조하면, 충전 단계에서, 실시예 1 내지 3(EX1, EX2, EX3) 및 비교예(CO1) 모두 약 3.0 V 내지 약 3.2 V에서 제1 플래토를 나타내고, 약 3.6 V 내지 약 3.8 V에서 제2 플래토를 나타냄을 확인할 수 있다. 예를 들어, DMPZ에 포함된 2개의 질소 원자 중 하나의 질소 원자가 질소 양이온으로 이온화되는 산화 반응에 의해 상기 제1 플래토가 나타나고, 2개의 질소 원자 중 다른 하나의 질소 원자가 질소 양이온으로 이온화되는 산화 반응에 의해 상기 제2 플래토가 나타날 수 있다. 5 and 6, in the charging step, Examples 1 to 3 (EX1, EX2, EX3) and Comparative Example (CO1) all show a first plateau at about 3.0 V to about 3.2 V, and about 3.6 V. It can be seen that the second plateau is represented at about 3.8 V. For example, the first plateau appears by an oxidation reaction in which one nitrogen atom of two nitrogen atoms contained in DMPZ is ionized to a nitrogen cation, and the other nitrogen atom of the two nitrogen atoms is ionized to a nitrogen cation. The second plateau may appear by reaction.
DMPZ → DMPZ 2+ + 2e- -(3) DMPZ → DMPZ 2+ + 2e - - (3)
실시예 1(EX1)은 약 160 mAh/g의 방전 용량을 보인 반면 비교예(CO1)는 약 185 mAh/g의 방전 용량을 보인다. 이는 비교예(CO1)에 카본 나노 튜브가 포함되지 않음에 따라, 동일한 질량의 양극 전극 내에 포함된 양극 활물질의 함유량 감소에 기인한 용량 감소인 것으로 이해될 수 있다. 또한 카본 나노 튜브는 리튬 이온의 저장을 위한 산화 및 환원 반응의 액티브 영역으로 기능하지 않음을 확인할 수 있다. Example 1 (EX1) showed a discharge capacity of about 160 mAh/g, whereas Comparative Example (CO1) showed a discharge capacity of about 185 mAh/g. This may be understood as a decrease in capacity due to a decrease in the content of the positive electrode active material included in the positive electrode of the same mass, as the carbon nanotubes were not included in the comparative example (CO1). In addition, it can be seen that the carbon nanotubes do not function as active regions for oxidation and reduction reactions for storage of lithium ions.
실시예 2 및 3(EX2, EX3)은 약 145 mAh/g의 방전 용량을 나타냄을 확인할 수 있다. 다중벽 카본 나노 튜브를 포함하는 실시예 2(EX2)와 단일벽 카본 나노 튜브를 포함하는 실시예 3(EX3)이 서로 유사한 전압 프로파일과 방전 용량을 나타내므로, 카본 나노 튜브의 종류에 따라 유의미한 차이가 존재하지 않음을 확인할 수 있다. It can be seen that Examples 2 and 3 (EX2, EX3) exhibit a discharge capacity of about 145 mAh/g. Since Example 2 (EX2) including multi-walled carbon nanotubes and Example 3 (EX3) including single-walled carbon nanotubes exhibit similar voltage profiles and discharge capacity, significant differences according to the type of carbon nanotubes It can be confirmed that does not exist.
도 7 및 도 8은 비교예와 실시예에 대하여 사이클 횟수 증가에 따른 충전 및 방전 프로파일을 나타내는 그래프들이다. 도 7은 비교예(CO1)의 제1회, 제5회, 및 제10회 사이클에서의 충전 및 방전 프로파일을 나타내고, 도 8은 실시예 1(EX1)의 제1회, 제5회, 및 제10회 사이클에서의 충전 및 방전 프로파일을 나타낸다. 7 and 8 are graphs showing charging and discharging profiles according to an increase in the number of cycles for Comparative Examples and Examples. 7 shows the charging and discharging profiles in the first, fifth, and tenth cycles of Comparative Example (CO1), and FIG. 8 is the first, fifth, and fifth cycles of Example 1 (EX1). The charging and discharging profiles in the 10th cycle are shown.
도 7 및 도 8을 참조하면, 비교예(CO1)는 제1회 사이클에서의 방전 용량과 대비하여, 제5회 및 제10회 사이클에서 방전 용량의 현저한 감소가 관찰된다. 반면, 실시예 1(EX1)은 제1회 사이클에서의 방전 용량과 대비하여, 제5회 및 제10회 사이클에서 다소 감소되었으나 상대적으로 높은 방전 용량을 나타냄이 관찰된다. 7 and 8, in Comparative Example CO1, a significant decrease in discharge capacity was observed in the fifth and tenth cycles compared to the discharge capacity in the first cycle. On the other hand, it is observed that Example 1 (EX1) slightly decreased in the 5th and 10th cycles compared to the discharge capacity in the first cycle, but exhibited a relatively high discharge capacity.
또한 비교예(CO1)는 제1회 사이클에서 약 3.0 내지 약 3.2 V에서의 제1 플래토가 관찰되는 반면 제5회 사이클과 제10회 사이클에서는 제1 플래토가 명확하게 관찰되지 않는다. 반면, 실시예 1(EX1)은 제1회, 제5회, 및 제10회 사이클 모두에서 약 3.0 V 내지 약 3.2 V에서의 제1 플래토가 명확하게 관찰될 수 있다. 즉, 카본 나노 튜브를 포함한 예시적인 실시예들에 따른 양극 전극은 카본 나노 튜브가 포함되지 않는 양극 전극에 비하여 현저히 향상된 사이클 특성을 나타냄을 확인할 수 있다. In addition, in Comparative Example (CO1), the first plateau at about 3.0 to about 3.2 V was observed in the first cycle, whereas the first plateau was not clearly observed in the fifth cycle and the tenth cycle. On the other hand, in Example 1 (EX1), the first plateau at about 3.0 V to about 3.2 V can be clearly observed in all of the first, fifth, and tenth cycles. That is, it can be seen that the anode electrode according to exemplary embodiments including the carbon nanotubes exhibits significantly improved cycle characteristics compared to the anode electrode without the carbon nanotubes.
카본 나노 튜브를 포함하지 않는 비교예의 양극 전극이 사이클 진행에 따라 플래토를 나타내지 않는 것은, 양극 활물질이 전해액 내로 용출되어 양극 활물질의 양극 전극으로부터의 이탈이 발생하기 때문이거나, 전해액 내로 용출된 양극 활물질에 의해 양극 활물질과 도전재 사이의 전기적 경로가 단절되어 양극 전극 전체의 저항이 증가하기 때문일 수 있다.The reason that the positive electrode of the comparative example that does not contain carbon nanotubes does not show a plateau as the cycle progresses because the positive electrode active material is eluted into the electrolyte and the positive electrode active material is separated from the positive electrode, or the positive electrode active material eluted into the electrolyte. This may be because the electrical path between the positive electrode active material and the conductive material is cut off, thereby increasing the resistance of the entire positive electrode.
반면, 카본 나노 튜브를 포함하는 실시예의 양극 전극이 사이클이 진행되더라도 유사한 플래토를 나타내는 것은, 카본 나노 튜브가 양극 활물질과 도전재의 입자 표면에 부착되어 양극 활물질 입자들 또는 도전재 입자들이 양극 전극으로부터 이탈되는 것을 방지하는 지지체 역할을 하기 때문으로 이해될 수 있다. 또한, 카본 나노 튜브가 양극 활물질과 도전재 사이의 전기적 경로를 제공하므로, 양극 전극의 충전 및 방전이 수행됨에 따라 양극 활물질의 일부분이 전해액 내로 용출되어 양극 전극으로부터 이탈되더라도, 잔류하는 양극 활물질과 카본 나노 튜브 사이의 전기적 경로가 확보되고 이에 의해 양극 전극 전체의 저항이 증가하지 않기 때문인 것으로 이해될 수 있다. On the other hand, the positive electrode of the embodiment including the carbon nanotubes exhibits a similar plateau even if the cycle proceeds, as the carbon nanotubes are attached to the surfaces of the positive electrode active material and the conductive material, so that the positive electrode active material particles or conductive material particles are removed from the positive electrode. It can be understood because it serves as a support to prevent separation. In addition, since the carbon nanotubes provide an electrical path between the positive electrode active material and the conductive material, even if a part of the positive electrode active material is eluted into the electrolyte and separated from the positive electrode as charging and discharging of the positive electrode is performed, the remaining positive active material and carbon It can be understood that this is because the electrical path between the nanotubes is secured and thus the resistance of the entire anode electrode does not increase.
또한 도 7 및 도 8에 도시되지는 않았으나, 실시예 2 및 3(EX2, EX3)도 실시예 1(EX1)과 유사한 사이클 특성을 보였으며, 이에 따라 카본 나노 튜브의 종류에 따라 양극 전극의 전기화학적 성능에 유의미한 차이가 존재하지 않음을 확인할 수 있다.In addition, although not shown in Figs. 7 and 8, Examples 2 and 3 (EX2, EX3) also showed similar cycle characteristics to Example 1 (EX1), and accordingly, electricity of the anode electrode according to the type of carbon nanotubes. It can be seen that there is no significant difference in chemical performance.
도 9는 비교예와 실시예에 대하여 사이클 횟수 증가에 따른 방전 용량(mAh/g) 및 쿨롱 효율(%)을 나타내는 그래프들이다. 9 are graphs showing discharge capacity (mAh/g) and Coulomb efficiency (%) according to an increase in the number of cycles for Comparative Examples and Examples.
도 9를 참조하면, 비교예(CO1)는 상대적으로 높은 초기 방전 용량을 보이는 반면 10회 사이클 이후에 방전 용량의 상당한 감소가 관찰된다. 반면 실시예 1(EX1)은 비교예(CO1)에 비하여 낮은 초기 방전 용량을 보이기는 하나, 10회 사이클 이후에도 대략 120mAh/g의 방전 용량을 보이므로 약 75%의 용량 유지율을 나타냄을 확인할 수 있다.Referring to FIG. 9, the comparative example CO1 shows a relatively high initial discharge capacity, while a significant decrease in discharge capacity is observed after 10 cycles. On the other hand, Example 1 (EX1) shows a lower initial discharge capacity than Comparative Example (CO1), but shows a discharge capacity of approximately 120mAh/g even after 10 cycles, so it can be seen that it shows a capacity retention rate of approximately 75%. .
또한 비교예(CO1)는 10회 사이클 이후에 약 70%의 쿨롱 효율을 나타내는 반면 실시예 1(EX1)은 10회 사이클 이후에 약 90%의 현저히 높은 쿨롱 효율을 나타낸다. 이는 전술한 바와 같이, 예시적인 실시예들에 첨가된 카본 나노 튜브가 양극 활물질이 전해액 내로 용출되더라도 양극 활물질과 도전재 사이의 전기적 경로를 제공하는 작용을 하기 때문인 것으로 추측할 수 있다.In addition, Comparative Example (CO1) exhibits a Coulomb efficiency of about 70% after 10 cycles, whereas Example 1 (EX1) shows a remarkably high Coulomb efficiency of about 90% after 10 cycles. As described above, it can be assumed that the carbon nanotubes added to the exemplary embodiments serve to provide an electrical path between the positive electrode active material and the conductive material even if the positive electrode active material is eluted into the electrolyte.
도 10은 예시적인 실시예들에 따른 양극 전극의 내부 저항을 나타내는 그래프들이다. 도 10에서는 비교예(CO1), 실시예 1(EX1) 및 실시예 2(EX2)의 임피던스 분석법으로부터 얻어진 Nyquist plot을 도시하였다. 10 are graphs showing internal resistance of an anode electrode according to exemplary embodiments. In FIG. 10, Nyquist plots obtained from the impedance analysis method of Comparative Example (CO1), Example 1 (EX1), and Example 2 (EX2) are shown.
도 10을 참조하면, 실시예 1(EX1)의 임피던스 그래프는 비교예(CO1)의 임피던스 그래프에 비하여 더 작은 반경의 반원형을 갖는다. 일반적으로 임피던스 분석법의 Nyquist plot에서 반원의 반경이 작을수록 작은 저항값을 갖는다. 따라서, 실시예 1(EX1)의 양극 전극은 비교예(CO1)의 양극 전극에 비하여 더욱 작은 내부 저항 값을 가짐을 확인할 수 있다.Referring to FIG. 10, the impedance graph of Example 1 (EX1) has a semicircle of a smaller radius than the impedance graph of Comparative Example (CO1). In general, in the Nyquist plot of the impedance analysis method, the smaller the radius of the semicircle, the smaller the resistance value. Accordingly, it can be seen that the anode electrode of Example 1 (EX1) has a smaller internal resistance value than that of the anode electrode of Comparative Example (CO1).
특히 저순도 다중벽 카본 나노 튜브를 포함하는 실시예 1(EX1)은 현저히 낮은 저항 값을 갖는 것으로 나타났다. 이는 고순도 다중벽 카본 나노 튜브를 포함하는 실시예 2(EX2)의 저항 값보다 더 작은 것으로 보인다. 이는 카본 나노 튜브에 부착되는 미량의 금속 원자에 의한 차이인 것으로 추측될 수 있다. 예를 들어, 저순도 카본 나노 튜브의 표면에(예를 들어 카본 나노 튜브의 길이 방향 양 단부에) 금속 촉매로부터 기인하는 미량의 금속 원자가 부착될 수 있다. 특히 저순도 카본 나노 튜브에 부착된 금속 원자의 함량이 고순도 카본 나노 튜브에 부착된 금속 원자의 함량보다 더 클 수 있다. 따라서 저순도 카본 나노 튜브를 포함하는 실시예 1(EX1)이 그 내부에 존재하는 미량 금속 원자에 의해 비교예(CO1) 및 실시예 2(EX2)에 비하여 더욱 작은 전극 내부 저항을 가질 수 있는 것으로 이해될 수 있다. In particular, it was found that Example 1 (EX1) including low-purity multi-walled carbon nanotubes has a remarkably low resistance value. This appears to be smaller than the resistance value of Example 2 (EX2) including high-purity multi-walled carbon nanotubes. It can be assumed that this is a difference due to a trace amount of metal atoms attached to the carbon nanotubes. For example, a trace amount of metal atoms originating from a metal catalyst may be attached to the surface of the low-purity carbon nanotube (for example, at both ends of the carbon nanotube in the longitudinal direction). In particular, the content of metal atoms attached to the low-purity carbon nanotubes may be greater than the content of metal atoms attached to the high-purity carbon nanotubes. Therefore, it is believed that Example 1 (EX1) including low-purity carbon nanotubes can have a smaller electrode internal resistance compared to Comparative Examples (CO1) and Example 2 (EX2) due to trace metal atoms present therein. Can be understood.
도 11은 다른 예시적인 실시예들에 따른 양극 전극(30A)을 나타내는 개략도이다. 11 is a schematic diagram illustrating an anode electrode 30A according to other exemplary embodiments.
도 11을 참조하면, 양극 전극(30A)은 양극 활물질(32), 도전재(34) 및 바인더(36)를 포함할 수 있다. Referring to FIG. 11, the positive electrode 30A may include a positive electrode active material 32, a conductive material 34, and a binder 36.
예시적인 실시예들에서, 양극 전극(30A)은 양극 전극의 총 중량에 대하여 약 30 내지 50 중량%의 양극 활물질(32), 양극 전극(30A)의 총 중량에 대하여 약 30 내지 50 중량%의 도전재(34), 및 양극 전극(30A)의 총 중량의 10 내지 30 중량%의 바인더(36)를 포함할 수 있다. In exemplary embodiments, the positive electrode 30A includes about 30 to 50% by weight of the positive active material 32 based on the total weight of the positive electrode, and about 30 to 50% by weight based on the total weight of the positive electrode 30A. A conductive material 34 and a binder 36 of 10 to 30% by weight of the total weight of the positive electrode 30A may be included.
예시적인 실시예들에서, 양극 활물질은 탄소 이중 결합과, 질소, 산소 및 황 중에서 적어도 하나를 포함하는 작용기를 갖는 유기 화합물을 포함할 수 있다. 예를 들어, 상기 유기 화합물에 포함되는 탄소 이중 결합 또는 질소, 산소 및 황 중에서 적어도 하나를 포함하는 작용기가 리튬 이온과의 가역적인 산화 반응 또는 환원 반응의 활성 영역으로 작용할 수 있다. In example embodiments, the positive electrode active material may include an organic compound having a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur. For example, a carbon double bond included in the organic compound or a functional group including at least one of nitrogen, oxygen, and sulfur may serve as an active region for a reversible oxidation or reduction reaction with lithium ions.
예시적인 실시예들에서, 상기 유기 화합물은 레독스 활성을 갖는 폴리머(또는 래디컬 폴리머), 유기 황 화합물(organo sulfide compound), 및 카르보닐기 함유 화합물(carbonyl compound)로 구성된 군으로부터 선택된 적어도 하나를 포함할 수 있다. 예를 들어, 상기 래디컬 폴리머는 대략 200 mAh/g 이하의 방전 용량, 대략 3.0 내지 4.0 V의 평균 방전 포텐셜(Li 메탈 기준), 및 대략 800 Wh/kg-1 이하의 에너지 밀도를 가질 수 있다. 예를 들어, 상기 유기 황 화합물은 대략 100 내지 800 mAh/g의 방전 용량, 대략 1.5 내지 3.0 V의 평균 방전 포텐셜(Li 메탈 기준), 및 대략 400 내지 1500 Wh/kg-1의 에너지 밀도를 가질 수 있다. 예를 들어, 상기 카르보닐기 함유 화합물은 대략 100 내지 300 mAh/g의 방전 용량, 대략 1.5 내지 3.0 V의 평균 방전 포텐셜(Li 메탈 기준), 및 대략 1000 Wh/kg-1 이하의 에너지 밀도를 을 가질 수 있다.In exemplary embodiments, the organic compound may include at least one selected from the group consisting of a polymer (or radical polymer) having redox activity, an organo sulfide compound, and a carbonyl compound. I can. For example, the radical polymer may have a discharge capacity of approximately 200 mAh/g or less, an average discharge potential of approximately 3.0 to 4.0 V (based on Li metal), and an energy density of approximately 800 Wh/kg -1 or less. For example, the organosulfur compound has a discharge capacity of approximately 100 to 800 mAh/g, an average discharge potential of approximately 1.5 to 3.0 V (based on Li metal), and an energy density of approximately 400 to 1500 Wh/kg -1. I can. For example, the carbonyl group-containing compound has a discharge capacity of approximately 100 to 300 mAh/g, an average discharge potential of approximately 1.5 to 3.0 V (based on Li metal), and an energy density of approximately 1000 Wh/kg -1 or less. I can.
예시적인 실시예들에서, 상기 양극 활물질은 디메틸페나진(dimethylphenazine, DMPZ), 페릴렌테트라카르복실산 무수물 (perylenetetracarboxylic dianhydride, PTCDA), 테트라에틸 티우람 디설파이드(tetrathiuramdisulfide, TETD), TEMPO(2,2,6,6-tetramethylpiperidinyloxy), PEDOT(poly(3,4-ethylenedioxythiophene)), DD-TCNQ(7,7,8,8-tetracyanoquinodimethane), 플라반트론(flavanthrone) 중 적어도 하나를 포함할 수 있다. In exemplary embodiments, the positive electrode active material is dimethylphenazine (DMPZ), perylenetetracarboxylic dianhydride (PTCDA), tetraethyl thiuramdisulfide (TETD), TEMPO (2,2). ,6,6-tetramethylpiperidinyloxy), PEDOT (poly(3,4-ethylenedioxythiophene)), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and flavantron (flavanthrone).
예를 들어, 상기 양극 활물질이 디메틸페나진 또는 그 유도체를 포함하는 경우, 아래의 화학식 1 또는 화학식 2의 화합물로 표현될 수 있다.For example, when the positive electrode active material includes dimethylphenazine or a derivative thereof, it may be represented by a compound of Formula 1 or Formula 2 below.
[화학식 1] [Formula 1]
Figure PCTKR2020014818-appb-I000003
Figure PCTKR2020014818-appb-I000003
예를 들어, 화학식 1에 따른 상기 양극 활물질은 디메틸 페나진(5,10-dihydro-5,10-dimethylphenazine) 일 수 있다. For example, the positive electrode active material according to Formula 1 may be dimethyl phenazine (5,10-dihydro-5,10-dimethylphenazine).
[화학식 2] [Formula 2]
Figure PCTKR2020014818-appb-I000004
Figure PCTKR2020014818-appb-I000004
예를 들어, 화학식 2에 따른 상기 양극 활물질에서, R 및 R'는 서로 독립적으로 C1~C5의 알킬기; C2~C5의 알켄일기; C2~C5의 알킨일기; C3~C30의 지방족 고리기; C6~C30의 방향족 고리기; 및 산소(O), 질소(N) 및 황(S) 중 적어도 하나의 헤테로원자를 포함하는 헤테로고리기;로 이루어진 군에서 선택된 어느 하나 이상일 수 있다. For example, in the positive electrode active material according to Formula 2, R and R'are each independently a C1~C5 alkyl group; C2-C5 alkenyl group; Alkynyl group of C2~C5; C3-C30 aliphatic cyclic group; C6-C30 aromatic cyclic group; And a heterocyclic group including at least one heteroatom of oxygen (O), nitrogen (N), and sulfur (S). It may be any one or more selected from the group consisting of.
예시적인 실시예들에서, 도전재(34)는 양극 전극(30A)에 전도성을 더 제공할 수 있고, 유기 화합물 기반의 리튬 이차 전지(1)에 화학 변화를 야기하지 않는 전도성 재료일 수 있다. 상기 도전재는 예를 들어 슈퍼 P, 카본 블랙, 케첸 블랙(예를 들어, Ketjenblack 600JD®, Ketjenblack 700JD®), 아세틸렌 블랙 등의 탄소계 물질을 포함할 수 있다. 도전재(34)는 양극 전극(30A)의 총 중량 기준으로 양극 활물질(32)의 함량보다 더 적게 함유될 수 있다. 예를 들어, 양극 활물질(32)이 양극 전극(30A) 내에 제1 함량으로 포함되고 도전재(34)는 양극 전극(30A) 내에 제1 함량보다 더 적은 제2 함량으로 포함될 수 있다.In example embodiments, the conductive material 34 may further provide conductivity to the positive electrode 30A, and may be a conductive material that does not cause chemical changes in the lithium secondary battery 1 based on an organic compound. The conductive material may include, for example, a carbon-based material such as Super P, carbon black, Ketjen black (eg, Ketjenblack 600JD®, Ketjenblack 700JD®), and acetylene black. The conductive material 34 may be contained less than the amount of the positive electrode active material 32 based on the total weight of the positive electrode 30A. For example, the positive active material 32 may be included in the positive electrode 30A in a first amount, and the conductive material 34 may be included in the positive electrode 30A in a second amount less than the first amount.
예시적인 실시예들에서, 바인더(36)는 양극 활물질(32) 입자들이 서로에 대하여 부착되거나 양극 활물질(32) 입자들을 도전재(34)에 부착시키는 역할을 한다. 또한 바인더(36)는 양극 활물질(32) 입자들이 양극 전극(30)의 표면으로부터 이탈되거나 분리되는 것을 방지하여, 양극 전극(30A)이 프리 스탠딩 타입으로 유지될 수 있도록 양극 전극(30A)에 기계적 강도를 제공할 수 있다. In exemplary embodiments, the binder 36 serves to attach the particles of the positive active material 32 to each other or to attach the particles of the positive active material 32 to the conductive material 34. In addition, the binder 36 prevents the particles of the positive electrode active material 32 from being separated or separated from the surface of the positive electrode 30, so that the positive electrode 30A is mechanically attached to the positive electrode 30A so that the positive electrode 30A can be maintained in a free standing type. Can provide strength.
예시적인 실시예들에서, 바인더(36)는 폴리머일 수 있고, 예를 들어 폴리이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔, 아크릴레이티드 스티렌-부타디엔, 에폭시 수지 등일 수 있다. 예시적인 실시예들에서, 바인더(36)는 비드(bead) 타입의 폴리테트라플루오로에틸렌(PTFE)일 수 있다.In exemplary embodiments, the binder 36 may be a polymer, for example, polyimide, polyamideimide, polybenzimidazole, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinylchloride, carboxylate. Polyvinyl chloride, polyvinylfluoride, ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene, acrylated styrene- It may be a butadiene, an epoxy resin, and the like. In exemplary embodiments, the binder 36 may be a bead type of polytetrafluoroethylene (PTFE).
예시적인 실시예들에서, 리튬 금속을 음극 전극(20)으로 사용하여 유기 화합물 기반의 리튬 이차 전지(1)를 충전할 때 양극 전극(30)은 약 3.0 V 내지 약 3.2 V에서 제1 플래토(plateau)를 나타내고, 약 3.6 V 내지 약 3.8 V에서 제2 플래토를 나타낼 수 있다. 예를 들어, 양극 활물질(32)이 디메틸페나진(DMPZ)을 포함할 때, 화학식 1에서 도시된 2개의 질소 원자 중 하나의 질소 원자가 질소 양이온으로 이온화되는 산화 반응에 의해 상기 제1 플래토가 나타나고, 2개의 질소 원자 중 다른 하나의 질소 원자가 질소 양이온으로 이온화되는 산화 반응에 의해 상기 제2 플래토가 나타날 수 있다. In exemplary embodiments, when charging the lithium secondary battery 1 based on an organic compound using lithium metal as the negative electrode 20, the positive electrode 30 is the first plateau at about 3.0 V to about 3.2 V. (plateau) and a second plateau at about 3.6 V to about 3.8 V. For example, when the positive electrode active material 32 contains dimethylphenazine (DMPZ), the first plateau is formed by an oxidation reaction in which one of the two nitrogen atoms shown in Formula 1 is ionized to a nitrogen cation. Appears, and the second plateau may appear by an oxidation reaction in which the other nitrogen atom of the two nitrogen atoms is ionized into a nitrogen cation.
DMPZ → DMPZ 2+ + 2e- -(3) DMPZ → DMPZ 2+ + 2e - - (3)
예시적인 실시예들에서, 양극 활물질(32)은 약 500 나노미터 내지 약 60 마이크로미터의 평균 입자 사이즈를 가질 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 양극 활물질(32)의 평균 입자 사이즈가 약 500 나노미터보다 더 작을 때, 양극 활물질(32)의 표면적이 상대적으로 증가하여 전해액 내에 양극 활물질(32)이 용출되어 리튬 이차 전지(1)의 사이클 특성이 저하될 수 있고, 양극 활물질(32)의 평균 입자 사이즈가 약 6 마이크로미터 보다 더 클 때, 양극 활물질(32) 내부까지 리튬 이온이 효과적으로 전달되기 어려워 리튬 이차 전지(1)의 고율(high rate) 특성이 저하될 수 있다. In example embodiments, the positive active material 32 may have an average particle size of about 500 nanometers to about 60 micrometers, but is not limited thereto. For example, when the average particle size of the positive electrode active material 32 is smaller than about 500 nanometers, the surface area of the positive electrode active material 32 is relatively increased, so that the positive electrode active material 32 is eluted in the electrolyte solution, and the lithium secondary battery 1 ) Cycle characteristics may be deteriorated, and when the average particle size of the positive electrode active material 32 is larger than about 6 micrometers, it is difficult to effectively transfer lithium ions to the inside of the positive electrode active material 32. High rate characteristics may be degraded.
예시적인 실시예들에서, 양극 전극(30A)은 약 20 내지 200 마이크로미터의 두께(T1)를 가질 수 있고, 양극 전극(30A)은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 가질 수 있다. 양극 전극(30A)의 밀도는 양극 집전체를 포함하지 않는 프리 스탠딩 타입의 양극 전극(30A) 자체의 밀도일 수 있고, 예를 들어, 양극 전극(30A)의 부피에 대한 양극 활물질(32), 도전재(34), 및 바인더(36)의 총 중량의 비를 가리킬 수 있다. In exemplary embodiments, the anode electrode 30A may have a thickness T1 of about 20 to 200 micrometers, and the anode electrode 30A may have a density of 0.50 g/cm 3 to 1.2 g/cm 3. I can. The density of the positive electrode 30A may be the density of the free standing type positive electrode 30A that does not include a positive electrode current collector. For example, the positive electrode active material 32 relative to the volume of the positive electrode 30A, It may refer to a ratio of the total weight of the conductive material 34 and the binder 36.
예시적인 실시예들에서, 양극 전극(30A)은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 가짐에 따라 우수한 쿨롱 효율을 나타내는 한편, 상대적으로 높은 사이클 특성을 나타낼 수 있다. 또한 양극 전극(30A)은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 가짐에 따라 상대적으로 작은 전극 저항을 가질 수 있다. In example embodiments, as the anode electrode 30A has a density of 0.50 g/cm 3 to 1.2 g/cm 3 , while exhibiting excellent Coulomb efficiency, it may exhibit relatively high cycle characteristics. In addition, the anode electrode 30A may have a relatively small electrode resistance as it has a density of 0.50 g/cm 3 to 1.2 g/cm 3.
예를 들어, 양극 전극(30A)의 밀도가 0.50 g/cm3보다 작은 경우(예를 들어, 약 0.42 g/cm3) 초기 방전 용량이 상대적으로 낮을 수 있다(예를 들어, 약 3.0 V 내지 약 3.2 V에서 제1 플래토가 미미하게 나타나고 약 3.6 V 내지 약 3.8 V에서 제2 플래토가 관찰되지 않을 수 있고, 이는 화학식 3에서의 산화 환원 반응이 가역적으로 발생하지 않음을 의미할 수 있다). 양극 전극(30A)의 밀도가 0.50 g/cm3 내지 1.2 g/cm3인 경우 초기 방전 용량이 우수하고, 10회 사이클 동안 70% 이상의 우수한 쿨롱 효율과 우수한 사이클 특성을 나타낼 수 있다. 한편, 양극 전극(30)의 밀도가 1.2 g/cm3보다 큰 경우(예를 들어, 약 1.22 g/cm3) 10회 사이클 동안 쿨롱 효율이 50% 이하로 감소되며, 사이클 특성도 우수하지 못할 수 있다. For example, when the density of the anode electrode 30A is less than 0.50 g/cm 3 (eg, about 0.42 g/cm 3 ), the initial discharge capacity may be relatively low (eg, about 3.0 V to The first plateau slightly appears at about 3.2 V and the second plateau may not be observed at about 3.6 V to about 3.8 V, which may mean that the redox reaction in Formula 3 does not reversibly occur. ). When the density of the anode electrode 30A is 0.50 g/cm 3 to 1.2 g/cm 3 , the initial discharge capacity is excellent, and excellent coulomb efficiency of 70% or more for 10 cycles and excellent cycle characteristics may be exhibited. On the other hand, when the density of the anode electrode 30 is greater than 1.2 g/cm 3 (for example, about 1.22 g/cm 3 ), the Coulomb efficiency decreases to 50% or less for 10 cycles, and the cycle characteristics are not excellent. I can.
예를 들어, 양극 전극에 대한 임피던스 측정 결과에서, 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 갖는 양극 전극은 0.50 g/cm3보다 더 작거나 1.2 g/cm3보다 큰 경우에 비하여 더 작은 전극 저항 값을 나타낼 수 있다. 이는, 예를 들어 0.50 g/cm3보다 더 작은 밀도의 양극 전극에서는 양극 활물질과 도전재 사이의 충분한 접촉 및 전기적 경로가 제공되지 않아 양극 전극 전체의 저항값이 증가하고, 1.2 g/cm3보다 큰 밀도의 양극 전극에서는 전해액 및 이를 통한 리튬 이온의 양극 전극 내로의 침투 및 이동 경로가 충분하게 제공되지 않아 양극 전극 전체의 저항값이 증가하는 것으로 이해될 수 있다. 이러한 양극 전극(30A)의 밀도에 따른 전기화학적 특성은 도 18 내지 도 22를 참조로 다시 설명하도록 한다.For example, in the impedance measurement results for the anode electrode, the anode electrode having a density of 0.50 g/cm 3 to 1.2 g/cm 3 was less than 0.50 g/cm 3 or greater than 1.2 g/cm 3. It can represent a smaller electrode resistance value. This is, for example, in the positive electrode having a density smaller than 0.50 g/cm 3 , sufficient contact and electrical path between the positive electrode active material and the conductive material are not provided, so that the resistance value of the entire positive electrode increases, and is less than 1.2 g/cm 3. In the positive electrode having a high density, it can be understood that the electrolyte and lithium ions through the same are not sufficiently provided to penetrate and move into the positive electrode, thereby increasing the resistance value of the entire positive electrode. The electrochemical characteristics according to the density of the anode electrode 30A will be described again with reference to FIGS. 18 to 22.
예시적인 실시예들에서, 양극 전극(30A)은 도 12를 참조로 설명할 2-단계 고상 혼합 방법을 포함하는 유기 화합물 기반의 이차 전지의 제조 방법에 따라 제조될 수 있다. 이러한 2-단계 고상 혼합 방법은 양극 전극(30A)의 양극 활물질의 화학적 및 열적 손상을 방지하고 양극 전극(30A)이 프리 스탠딩 타입으로 형성될 수 있게 할 수 있고, 이에 따라 양극 전극(30A)을 채용하는 유기 화합물 기반의 리튬 이차 전지(1)의 에너지 밀도를 현저하게 상승시킬 수 있다. In example embodiments, the positive electrode 30A may be manufactured according to a method of manufacturing an organic compound-based secondary battery including a two-step solid-phase mixing method described with reference to FIG. 12. This two-step solid-phase mixing method can prevent chemical and thermal damage to the positive electrode active material of the positive electrode 30A, and allow the positive electrode 30A to be formed in a free standing type, thereby forming the positive electrode 30A. The energy density of the organic compound-based lithium secondary battery 1 to be employed can be remarkably increased.
예를 들어, 비교예에 따른 혼합 방법을 사용하여 제조한 양극 전극에 비하여 2-단계 고상 혼합 방법을 사용하여 제조한 양극 전극은 더욱 증가된 초기 방전 용량, 더욱 증가된 쿨롱 효율과 더욱 우수한 사이클 특성을 나타낼 수 있다. 또한 비교예에 따른 혼합 방법을 사용하여 제조한 양극 전극에 비하여 2-단계 고상 혼합 방법을 사용하여 제조한 양극 전극은 임피던스 측정 결과 더 작은 전극 저항 값을 나타낼 수 있다. 따라서, 2-단계 고상 혼합 방법에 의해 활물질 및 도전재가 더욱 균일하게 혼합될 수 있고 이에 의해 양극 전극(30A)은 더욱 증가된 초기 방전 용량, 더욱 증가된 쿨롱 효율과 더욱 우수한 사이클 특성을 나타내는 것으로 이해될 수 있다. 이러한 2-단계 혼합 방법을 사용한 양극 전극의 전기화학적 특성은 도 14 내지 도 17을 참조로 다시 설명하도록 한다.For example, compared to the anode electrode manufactured by using the mixing method according to the comparative example, the anode electrode manufactured by using the two-stage solid-phase mixing method has a further increased initial discharge capacity, an increased coulomb efficiency, and better cycle characteristics. Can represent. In addition, compared to the positive electrode prepared using the mixing method according to the comparative example, the positive electrode prepared using the two-step solid-phase mixing method may exhibit a smaller electrode resistance value as a result of impedance measurement. Therefore, it is understood that the active material and the conductive material can be more evenly mixed by the two-step solid-phase mixing method, whereby the anode electrode 30A exhibits a further increased initial discharge capacity, increased coulomb efficiency, and more excellent cycle characteristics. Can be. The electrochemical properties of the anode electrode using this two-step mixing method will be described again with reference to FIGS. 14 to 17.
도 12는 예시적인 실시예들에 따른 유기 화합물 기반의 리튬 이차 전지의 제조 방법을 나타내는 플로우차트이다.12 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
도 12를 참조하면, 양극 활물질, 도전재, 및 바인더를 준비한다(S10 단계).Referring to FIG. 12, a positive electrode active material, a conductive material, and a binder are prepared (step S10).
예시적인 실시예들에서, 양극 활물질, 도전재, 및 바인더는 고체 상태로 제공될 수 있다. 선택적으로, 양극 활물질, 도전재, 및 바인더 내에 존재할 수 있는 수분을 제거하기 위하여 양극 활물질, 도전재, 및 바인더를 진공 오븐에 넣어 수십 분 내지 수 시간 동안 건조시킬 수 있다. In example embodiments, the positive electrode active material, the conductive material, and the binder may be provided in a solid state. Optionally, in order to remove moisture that may be present in the positive electrode active material, the conductive material, and the binder, the positive electrode active material, the conductive material, and the binder may be put in a vacuum oven and dried for several tens of minutes to several hours.
이후, 혼합 용기 내에 양극 활물질과 도전재를 혼입하고, 양극 활물질과 도전재를 고상 혼합하여 제1 예비 양극 전극을 형성한다(S20 단계). Thereafter, the positive electrode active material and the conductive material are mixed in the mixing container, and the positive electrode active material and the conductive material are solidly mixed to form a first preliminary positive electrode (step S20).
예시적인 실시예들에서, 혼합 용기 내에서 양극 활물질과 도전재는 액체 용매 등의 첨가 없이 혼합될 수 있다. 상기 고상 혼합의 전체 과정에서 양극 활물질과 도전체는 각각 고체 상태이며, 양극 활물질과 도전재에 막자 등의 혼합 로드(mixing rod)를 사용하여 기계적 전단력을 부여함에 따라 양극 활물질과 도전재는 서로 균일하게 혼합될 수 있다. 예를 들어 혼합 로드가 고체 덩어리 상태인 양극 활물질과 도전재 각각을 작은 조각으로 붕괴시키는 한편 혼합 로드에 의한 기계적 전단력에 의해 양극 활물질 조각과 도전재 조각들이 뭉쳐 서로에게 부착될 수 있다. 양극 활물질과 도전재가 상대적으로 균일하게 혼합되어 형성된 고체 덩어리를 제1 예비 양극 전극으로 지칭할 수 있다. 제1 예비 양극 전극은 그 내부에서 양극 활물질과 도전재 입자들이 균일하게 분산되고 실질적으로 고체 상태인 상대적으로 높은 점도를 갖는 덩어리 형상으로 형성될 수 있다.In example embodiments, in the mixing container, the positive electrode active material and the conductive material may be mixed without adding a liquid solvent or the like. In the entire process of solid-phase mixing, the positive electrode active material and the conductor are in a solid state, and mechanical shearing force is applied to the positive electrode active material and the conductive material by using a mixing rod such as a mortar, so that the positive electrode active material and the conductive material are uniformly separated from each other. Can be mixed. For example, while the mixing rod collapses each of the positive electrode active material and the conductive material in a solid lump state into small pieces, the positive electrode active material pieces and the conductive material pieces may be aggregated and attached to each other by mechanical shearing force by the mixing rod. A solid mass formed by relatively uniformly mixing the positive electrode active material and the conductive material may be referred to as a first preliminary positive electrode. The first preliminary positive electrode may be formed in a lump shape having a relatively high viscosity in a substantially solid state in which the positive electrode active material and conductive material particles are uniformly dispersed therein.
이후, 혼합 용기 내에 바인더를 혼입하여, 제1 예비 양극 전극과 바인더를 고상 혼합하여 제2 예비 양극 전극을 형성한다(S30 단계).Thereafter, a binder is mixed in the mixing container, and the first preliminary anode electrode and the binder are solidly mixed to form a second preliminary anode electrode (step S30).
예시적인 실시예들에서, 혼합 용기 내에서 바인더는 액체 용매 등의 첨가 없이 혼합될 수 있다. 상기 고상 혼합의 전체 과정에서 제1 예비 양극 전극과 바인더는 각각 고체 상태이며, 제1 예비 양극 전극과 바인더에 혼합 로드를 사용하여 기계적 전단력을 부여함에 따라 제1 예비 양극 전극과 바인더는 서로 균일하게 혼합될 수 있다. 예를 들어 혼합 로드가 고체 덩어리 상태인 제1 예비 양극 전극을 작은 조각의 양극 전극 덩어리들로 붕괴시키는 한편 이러한 양극 전극 덩어리들이 바인더와 균일하게 혼합되어 이들이 서로에게 부착될 수 있다. 양극 활물질, 도전재, 및 바인더가 상대적으로 균일하게 혼합되어 형성된 고체 덩어리를 제2 예비 양극 전극으로 지칭할 수 있다. 제2 예비 양극 전극은 그 내부에서 양극 활물질, 도전재, 및 바인더 입자들이 균일하게 분산되고 실질적으로 고체 상태인 상대적으로 높은 점도를 갖는 덩어리 형상으로 형성될 수 있다.In exemplary embodiments, the binder may be mixed without the addition of a liquid solvent or the like in the mixing container. In the whole process of solid-phase mixing, the first preliminary anode electrode and the binder are in a solid state, respectively, and as a mechanical shear force is applied to the first preliminary anode electrode and the binder by using a mixing rod, the first preliminary anode electrode and the binder are uniformly formed from each other. Can be mixed. For example, the mixing rod disintegrates the first preliminary anode electrode in a solid mass state into small pieces of anode electrode masses, while these positive electrode masses are uniformly mixed with the binder so that they can be attached to each other. A solid mass formed by relatively uniformly mixing a positive electrode active material, a conductive material, and a binder may be referred to as a second preliminary positive electrode. The second preliminary positive electrode may be formed in a lump shape having a relatively high viscosity in a substantially solid state in which the positive electrode active material, the conductive material, and the binder particles are uniformly dispersed therein.
예를 들어, 양극 활물질과 도전재는 바인더보다 더 작은 입자 사이즈를 가질 수 있다. 양극 활물질은 약 500 나노미터 내지 60 마이크로미터의 제1 입자 사이즈를 가지고, 도전재는 약 10 내지 100 나노미터의 제2 입자 사이즈를 가지며, 바인더는 약 1 내지 5 밀리미터인 제3 입자 사이즈를 가질 수 있다. 양극 활물질과 도전재를 먼저 고상 혼합한 후 이러한 혼합물을 더 큰 입자 사이즈를 갖는 바인더와 고상 혼합함에 의해 제2 예비 양극 전극 내에서 양극 활물질과 도전재가 균일하게 혼합 분산될 수 있다. For example, the positive electrode active material and the conductive material may have a smaller particle size than that of the binder. The positive electrode active material has a first particle size of about 500 nanometers to 60 micrometers, the conductive material has a second particle size of about 10 to 100 nanometers, and the binder may have a third particle size of about 1 to 5 millimeters. have. The positive electrode active material and the conductive material may be uniformly mixed and dispersed in the second preliminary positive electrode by mixing the positive electrode active material and the conductive material in a solid state and then mixing the mixture in a solid state with a binder having a larger particle size.
이후 제2 예비 양극 전극을 롤 프레싱하여 양극 전극을 형성한다(S40 단계). Thereafter, the second preliminary anode electrode is roll pressed to form an anode electrode (step S40).
예시적인 실시예들에서, 상기 롤 프레싱 단계는 1회 수행될 수 있다. 다른 실시예들에서, 상기 롤 프레싱 단계는 2회 이상 수행될 수 있다. 일부 예시에서, 상기 롤 프레싱 단계는 양극 전극이 타겟 두께를 가질 때까지 복수 회 수행될 수 있고, 1회의 롤 프레싱 단계 이후에 수 분 내지 수십 분의 대기 시간이 뒤따르고 그 이후에 1회의 롤 프레싱 단계가 수행될 수 있다. In exemplary embodiments, the roll pressing step may be performed once. In other embodiments, the roll pressing step may be performed two or more times. In some examples, the roll pressing step may be performed multiple times until the anode electrode has a target thickness, followed by a waiting time of several minutes to tens of minutes after one roll pressing step, and then one roll pressing Steps can be performed.
예시적인 실시예들에서, 제2 예비 양극 전극을 롤 프레싱한 이후에 양극 전극은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 가질 수 있다. In example embodiments, after the second preliminary anode electrode is roll pressed, the anode electrode may have a density of 0.50 g/cm 3 to 1.2 g/cm 3.
선택적으로, 상기 롤 프레싱 단계 이전에 또는 이후에 양극 전극을 건조하는 단계가 더 수행될 수도 있다. 양극 전극을 형성한 후에 양극 전극을 컷팅하는 단계가 추가적으로 수행될 수 있다.Optionally, a step of drying the anode electrode before or after the roll pressing step may be further performed. After forming the anode electrode, the step of cutting the anode electrode may be additionally performed.
일반적으로 통상의 무기 물질 기반의 전극 물질을 형성하기 위하여 유기 용매를 사용한 액상 혼합 방법이 사용될 수 있다. 특히 NMP(N-methyl-2-pyrrolidone)와 같은 유기 용매 내에 무기 활물질의 입자들을 혼입하고 이를 혼합하여 전극용 슬러리를 제작한다. 이후 전극용 슬러리를 집전체 상에 도포하고 유기 용매를 휘발시키기 위한 베이킹 공정을 수행하여 전극 물질이 제조된다. 그런데 유기 화합물 기반의 양극 활물질은 NMP와 같은 유기 용매에 의해 쉽게 용해되고 화학적 변형이 일어난다. 또한 유기 용매를 휘발시키기 위한 베이킹 공정에서 가해지는 열에 의해 유기 화합물 기반의 양극 활물질에 변형이 일어날 수 있고, 이러한 경우에 양극 활물질로서의 기능을 수행하지 못하거나 성능이 저하될 수 있다. 따라서 유기 활물질 기반의 양극 활물질의 화학적 및 열적 손상을 최소화하는 한편 균질한 전극을 제조할 수 있는 방법의 개발이 요구된다.In general, a liquid mixing method using an organic solvent may be used to form an electrode material based on a conventional inorganic material. Particularly, particles of an inorganic active material are mixed in an organic solvent such as NMP (N-methyl-2-pyrrolidone) and mixed to prepare a slurry for an electrode. Thereafter, an electrode material is prepared by applying the electrode slurry on the current collector and performing a baking process for volatilizing the organic solvent. However, the organic compound-based positive electrode active material is easily dissolved and chemically transformed by an organic solvent such as NMP. In addition, the organic compound-based positive electrode active material may be deformed due to heat applied in the baking process for volatilizing the organic solvent, and in this case, the function as the positive electrode active material may not be performed or performance may be degraded. Therefore, there is a need to develop a method for manufacturing a homogeneous electrode while minimizing chemical and thermal damage to an organic active material-based positive electrode active material.
전술한 예시적인 실시예들에 따른 제조 방법에서는 양극 활물질 및 도전재의 제1 고상 혼합 단계와, 뒤따르는 바인더와의 제2 고상 혼합 단계, 그리고 롤 프레싱을 순차적으로 수행함으로써 전 고체 상태의(all solid-state) 제조 방법을 통해 양극 전극을 형성할 수 있다. 특히 활물질의 혼합 단계에서 유기 용매가 사용되지 않으므로, 유기 용매에 의한 그리고 유기 용매 제거 공정에 의한 양극 활물질의 화학적 및 열적 손상이 방지될 수 있다. 또한 제1 고상 혼합과 제2 고상 혼합의 2단계 고상 혼합 방법을 채용함에 따라 전 고체 상태의 제조 방법에 의하더라도 양극 활물질과 도전재가 양극 전극 내부에 균일하게 분산되고 혼합될 수 있다. 또한 고체 상태의 양극 전극을 롤 프레싱에 의해 형성함에 의해 양극 전극의 두께 조절 및/또는 밀도 조절이 용이할 수 있다. In the manufacturing method according to the above-described exemplary embodiments, all solid state (all solid) is performed by sequentially performing the first solid-phase mixing step of the positive electrode active material and the conductive material, the second solid-phase mixing step with the subsequent binder, and roll pressing. The anode electrode can be formed through the -state) manufacturing method. In particular, since the organic solvent is not used in the mixing step of the active material, chemical and thermal damage to the positive electrode active material by the organic solvent and the organic solvent removal process can be prevented. In addition, as a two-stage solid-phase mixing method of first solid-phase mixing and second solid-phase mixing is employed, the positive electrode active material and the conductive material may be uniformly dispersed and mixed in the positive electrode even by the whole solid-state manufacturing method. In addition, by forming the solid anode electrode by roll pressing, it may be easy to control the thickness and/or the density of the anode electrode.
또한 일반적으로 유기 용매에 혼합된 슬러리를 집전체에 도포하여 형성하는 경우 집전체에 의한 이차 전지의 중량 증가가 불가피하다. 그러나 예시적인 실시예들에 따르면, 전 고체 상태의 제조 방법을 통해 프리 스탠딩 타입의 양극 전극을 형성하고 불필요한 집전체를 생략할 수 있으므로, 리튬 이차 전지의 중량이 감소되고 중량 에너지 밀도가 현저히 향상될 수 있다. In addition, in general, when a slurry mixed with an organic solvent is applied to a current collector and formed, an increase in the weight of the secondary battery by the current collector is inevitable. However, according to exemplary embodiments, since a free-standing type positive electrode can be formed and unnecessary current collectors can be omitted through the manufacturing method in an all-solid state, the weight of the lithium secondary battery is reduced and the weight energy density is remarkably improved. I can.
아래의 도 13 내지 도 24에서는, 도 10을 참조로 설명한 예시적인 실시예들에 따른 제조 방법을 사용하여 제조된 양극 전극(30A)을 포함하는 유기 화합물 기반의 리튬 이차 전지의 전기 화학적 성능을 설명하도록 한다. In FIGS. 13 to 24 below, electrochemical performance of an organic compound-based lithium secondary battery including the positive electrode 30A manufactured using the manufacturing method according to exemplary embodiments described with reference to FIG. 10 is described. Do it.
실험예Experimental example
1) 양극 전극의 제조1) Preparation of anode electrode
양극 활물질로서 DMPZ(5,10-dihydro-5,10-dimethylphenazine)와 PTCDA가 각각 사용되었다. 도전재 및 바인더로서 각각 ketjen black®, PTFE(polytetrafluoroethylene)가 사용되었다. 양극 활물질, 도전재, 및 바인더는 각각 4:4:2 질량비로 막자사발을 이용하여 혼합되었다. 유발 내에 양극 활물질과 도전재가 우선 혼입되고 제1 고상 혼합되고, 이후 바인더가 혼입되어 제2 고상 혼합되었다. 균일하게 혼합된 양극 전극에 대하여 롤 프레스를 이용하여 다양한 전극 밀도를 갖는 전극들이 제조되었다. 양극 전극들은 1*1 cm2의 크기로 컷팅되었다. 한편 비교예에 따른 양극 전극은 유발 내에 양극 활물질, 도전재, 및 바인더를 동시에 혼입하고 고상 혼합하였다.DMPZ (5,10-dihydro-5,10-dimethylphenazine) and PTCDA were used as positive electrode active materials, respectively. As a conductive material and a binder, ketjen black® and PTFE (polytetrafluoroethylene) were used, respectively. The positive electrode active material, the conductive material, and the binder were each mixed in a 4:4:2 mass ratio using a mortar. In the mortar, the positive electrode active material and the conductive material were first mixed and mixed in a first solid phase, and then a binder was mixed and mixed in a second solid phase. Electrodes having various electrode densities were manufactured using a roll press for the uniformly mixed positive electrode. The anode electrodes were cut to a size of 1*1 cm 2. Meanwhile, in the positive electrode according to the comparative example, a positive electrode active material, a conductive material, and a binder were simultaneously mixed in a mortar and mixed in a solid phase.
2) 리튬 이차 전지의 제조 2) Manufacture of lithium secondary battery
양극 전극들을 사용하여 2032 타입의 코인셀이 조립되었다. 음극으로서 리튬 호일이 사용되었다. 유리섬유 여과지(GF/F)가 분리막으로 사용되고, 전해질로서 1.8 M LiTFSI/TEGDME 용액이 각 코인 셀 내에 90 μL씩 첨가되었다. 조립된 코인 셀은 2.5 - 4.0 V 범위에서 충방전 실험이 수행되었다. A 2032 type coin cell was assembled using positive electrodes. Lithium foil was used as the negative electrode. Glass fiber filter paper (GF/F) was used as a separator, and a 1.8 M LiTFSI/TEGDME solution was added to each coin cell by 90 μL as an electrolyte. The assembled coin cell was subjected to charging and discharging experiments in the range of 2.5-4.0 V.
도 13은 예시적인 실시예들에 따른 유기 화합물 기반의 양극 전극의 주사 전자 현미경(scanning microscopy, SEM) 이미지이다.13 is a scanning electron microscope (SEM) image of an organic compound-based anode electrode according to exemplary embodiments.
도 13의 (a)는 프리 스탠딩 타입으로 컷팅된 상태의 양극 전극을 나타낸다. 별도의 집전체 없이도 DMPZ를 포함하는 양극 활물질, 도전재 및 바인더가 균일하게 혼합된 양극 전극이 프리 스탠딩 타입으로 사용될 수 있도록 형태를 유지할 수 있다. 양극 전극은 상용 리튬 이차 전지의 제조 공정에서 취급이 가능한 정도의 충분한 구조적 안정성을 가질 수 있다. 13A shows the anode electrode cut in a free standing type. Even without a separate current collector, the shape can be maintained so that a positive electrode in which a positive electrode active material including DMPZ, a conductive material, and a binder are uniformly mixed can be used as a free standing type. The positive electrode may have sufficient structural stability to the extent that it can be handled in the manufacturing process of a commercial lithium secondary battery.
도 13의 (b) 및 (c)는 양극 전극의 표면을 나타내는 이미지이며, 대략 구형 또는 타원형의 양극 활물질 입자들과 도전재 입자들이 바인더에 의해 서로 결합되어 상대적으로 매끄러운 표면 모폴로지를 갖는 것을 확인할 수 있다. 또한 양극 활물질 입자들은 상대적으로 균일한 분포의 입자 사이즈를 갖는 것을 확인할 수 있다. 13B and 13C are images showing the surface of the positive electrode, and it can be seen that the positive electrode active material particles and conductive material particles of approximately spherical or elliptical shape are bonded to each other by a binder to have a relatively smooth surface morphology. have. In addition, it can be seen that the positive electrode active material particles have a relatively uniform particle size.
도 14는 예시적인 실시예들에 따른 양극 전극의 전압 프로파일을 나타내는 그래프이다. 14 is a graph showing a voltage profile of an anode electrode according to example embodiments.
도 14를 참조하면, 실시예 1(EX1)과 비교예(CO1)의 1회 충전 및 1회 방전에서의 전압과 용량이 도시된다. 실시예 1(EX1)은 2단계 고상 혼합 방법에 의해 제조된 DMPZ를 포함하는 양극 전극이고 비교예(CO1)는 양극 전극 물질을 동시에 혼합하는 방식으로 제조된 양극 전극이다. 충전 단계에서, 실시예(EX1) 및 비교예(CO1) 모두 약 3.0 V 내지 약 3.2 V에서 제1 플래토를 나타내고, 약 3.6 V 내지 약 3.8 V에서 제2 플래토를 나타냄을 확인할 수 있다. 예를 들어, DMPZ에 포함된 2개의 질소 원자 중 하나의 질소 원자가 질소 양이온으로 이온화되는 산화 반응에 의해 상기 제1 플래토가 나타나고, 2개의 질소 원자 중 다른 하나의 질소 원자가 질소 양이온으로 이온화되는 산화 반응에 의해 상기 제2 플래토가 나타날 수 있다. Referring to FIG. 14, voltage and capacity in one charge and one discharge of Example 1 (EX1) and Comparative Example (CO1) are shown. Example 1 (EX1) is an anode electrode including DMPZ manufactured by a two-step solid-phase mixing method, and Comparative Example (CO1) is an anode electrode manufactured by simultaneously mixing anode electrode materials. In the charging step, it can be seen that both Example (EX1) and Comparative Example (CO1) exhibited a first plateau at about 3.0 V to about 3.2 V, and a second plateau at about 3.6 V to about 3.8 V. For example, the first plateau appears by an oxidation reaction in which one nitrogen atom of two nitrogen atoms contained in DMPZ is ionized to a nitrogen cation, and the other nitrogen atom of the two nitrogen atoms is ionized to a nitrogen cation. The second plateau may appear by reaction.
DMPZ → DMPZ 2+ + 2e- -(3) DMPZ → DMPZ 2+ + 2e - - (3)
실시예 1(EX1)은 약 235 mAh/g의 방전 용량을 보인 반면 비교예(CO1)는 약 202 mAh/g의 방전 용량을 보였다. 2-단계 고상 혼합 방법에 의해 제조된 실시예 1(EX1)은 비교예(CO1)에 비하여 우수한 초기 방전 용량을 나타냄을 확인할 수 있다.Example 1 (EX1) showed a discharge capacity of about 235 mAh/g, whereas Comparative Example (CO1) showed a discharge capacity of about 202 mAh/g. It can be seen that Example 1 (EX1) prepared by the two-step solid-phase mixing method exhibits superior initial discharge capacity compared to Comparative Example (CO1).
도 15 및 도 16은 예시적인 실시예들에 따른 양극 전극의 사이클 특성을 나타내는 그래프이다. 구체적으로, 도 15는 사이클 횟수에 따른 방전 용량(mAh/g)을 나타내고 도 16은 사이클 횟수에 따른 쿨롱 효율(%)을 나타낸다. 쿨롱 효율(%)은 각 사이클에서의 충전 용량에 대한 방전 용량의 비율을 가리킨다.15 and 16 are graphs showing cycle characteristics of an anode electrode according to exemplary embodiments. Specifically, FIG. 15 shows the discharge capacity (mAh/g) according to the number of cycles, and FIG. 16 shows the Coulomb efficiency (%) according to the number of cycles. Coulomb efficiency (%) refers to the ratio of the discharge capacity to the charge capacity in each cycle.
도 15 및 도 16을 참조하면, 실시예 1(EX1)은 10회 사이클 이후에도 약 172mAh/g의 방전 용량과 약 79%의 쿨롱 효율을 나타낸다. 즉, 실시예 1(EX1)은 10회 사이클 이후에 약 73%의 용량 유지 특성을 나타낸다. 반면, 비교예(CO1)는 10회 사이클 이후에도 약 130mAh/g의 방전 용량과 약 64%의 쿨롱 효율을 나타낸다. 즉, 비교예(CO1)은 10회 사이클 이후에 약 64%의 용량 유지 특성을 나타낸다. 즉 2-단계 고상 혼합 방법에 의해 제조된 실시예 1(EX1)은 비교예(CO1)에 비하여 우수한 사이클 특성을 나타냄을 확인할 수 있다.15 and 16, Example 1 (EX1) exhibits a discharge capacity of about 172mAh/g and a Coulomb efficiency of about 79% even after 10 cycles. That is, Example 1 (EX1) exhibits a capacity retention characteristic of about 73% after 10 cycles. On the other hand, Comparative Example (CO1) exhibits a discharge capacity of about 130mAh/g and a Coulomb efficiency of about 64% even after 10 cycles. That is, Comparative Example (CO1) exhibits a capacity retention characteristic of about 64% after 10 cycles. That is, it can be seen that Example 1 (EX1) prepared by the two-step solid-phase mixing method exhibits excellent cycle characteristics compared to Comparative Example (CO1).
한편, 도 15에서는 2-단계 고상 혼합 방법에 의한 전극 균일성 및 재현성 특성을 더욱 확인하기 위하여 실시예 1(EX1)과 비교예(CO1) 각각에 대하여 3개씩의 컷팅된 양극 전극들에 대하여 사이클에 따른 방전 용량을 테스트하였다. 도 15에서 3개의 양극 전극들의 평균값과 표준 편차를 표시하였다. 실시예 1(EX1)에서의 방전 용량 표준 편차가 비교예(CO1)에서의 방전 용량 표준 편차보다 더 작으며, 특히 사이클 횟수가 증가할수록 더욱 작은 방전 용량 표준 편차를 보임이 확인된다. 이에 의해 2-단계 고상 혼합 방법에 의해 제조된 실시예 1(EX1)은 우수한 전극 균일성 및 재현성을 나타냄을 확인할 수 있다.Meanwhile, in FIG. 15, in order to further confirm electrode uniformity and reproducibility characteristics by the two-step solid-phase mixing method, cycles for three cut anode electrodes for each of Example 1 (EX1) and Comparative Example (CO1). The discharge capacity according to was tested. In FIG. 15, the average value and standard deviation of the three anode electrodes are shown. It is confirmed that the standard deviation of the discharge capacity in Example 1 (EX1) is smaller than the standard deviation of the discharge capacity in Comparative Example (CO1), and in particular, the standard deviation of the discharge capacity is smaller as the number of cycles increases. Thereby, it can be seen that Example 1 (EX1) prepared by the two-step solid-phase mixing method exhibits excellent electrode uniformity and reproducibility.
도 17은 예시적인 실시예들에 따른 양극 전극의 내부 저항을 나타내는 그래프들이다. 도 17에서는 실시예 1(EX1)과 비교예(CO1)의 임피던스 분석법으로부터 얻어진 Nyquist plot을 도시하였다. 17 are graphs showing internal resistance of an anode electrode according to exemplary embodiments. In FIG. 17, Nyquist plots obtained from the impedance analysis method of Example 1 (EX1) and Comparative Example (CO1) are shown.
도 14를 참조하면, 실시예 1(EX1)의 임피던스 그래프는 비교예(CO1)의 임피던스 그래프에 비하여 더 작은 반경의 반원형을 갖는다. 일반적으로 임피던스 분석법의 Nyquist plot에서 반원의 반경이 작을수록 작은 저항값을 갖는다. 따라서, 실시예 1(EX1)의 양극 전극은 비교예(CO1)의 양극 전극에 비하여 더욱 작은 내부 저항 값을 가짐을 확인할 수 있다.Referring to FIG. 14, the impedance graph of Example 1 (EX1) has a semicircle of a smaller radius than the impedance graph of Comparative Example (CO1). In general, in the Nyquist plot of the impedance analysis method, the smaller the radius of the semicircle, the smaller the resistance value. Accordingly, it can be seen that the anode electrode of Example 1 (EX1) has a smaller internal resistance value than that of the anode electrode of Comparative Example (CO1).
2-단계 고상 혼합 방법에 의해 제조된 실시예 1(EX1)은 양극 활물질, 도전재 및 바인더가 균일하게 분산되고 혼합됨에 따라, 비교예(CO1)에 비하여 더욱 작은 전극 내부 저항을 가질 수 있는 것으로 이해될 수 있다. Example 1 (EX1) prepared by the two-step solid-phase mixing method was uniformly dispersed and mixed with the positive electrode active material, the conductive material, and the binder, so that the electrode internal resistance may be smaller than that of the comparative example (CO1). Can be understood.
도 18 내지 도 22에서는 예시적인 실시예들에 따른 양극 전극의 밀도에 대한 전기화학적 성능에 대하여 설명하도록 한다. 실험예 21 내지 26(EX21~EX26)은 DMPZ를 포함하며, 각각 0.42, 0.44, 0.45, 0.57, 0.96, 및 1.22 g/cm3의 밀도를 갖도록 제조되었다. 18 to 22 will be described with respect to the electrochemical performance of the density of the anode electrode according to exemplary embodiments. Experimental Examples 21 to 26 (EX21 to EX26) included DMPZ, and were prepared to have a density of 0.42, 0.44, 0.45, 0.57, 0.96, and 1.22 g/cm 3, respectively.
도 18은 예시적인 실시예들에 따른 다양한 밀도를 갖는 양극 전극의 전압 프로파일을 나타내는 그래프들이고, 도 19는 1회 충전 용량과 1회 방전 용량을 나타내는 그래프들이다. 18 are graphs showing voltage profiles of anode electrodes having various densities according to exemplary embodiments, and FIG. 19 is graphs showing one-time charge capacity and one-time discharge capacity.
도 18 및 도 19를 참조하면, 0.42 g/cm3의 밀도를 갖는 실시예 21(EX21)은 상대적으로 낮은 충전 용량 및 방전 용량(예를 들어 약 110 mAh/g의 방전 용량)을 나타내고, 제1 플래토가 미미하게 관찰되고 제2 플래토가 관찰되지 않음을 확인할 수 있다. 18 and 19, Example 21 (EX21) having a density of 0.42 g/cm 3 shows a relatively low charging capacity and a discharge capacity (for example, a discharge capacity of about 110 mAh/g), It can be seen that the 1 plateau is insignificantly observed and the second plateau is not observed.
반면, 실시예 22 내지 실시예 26(EX22~EX26)은 제1 플래토와 제2 플래토를 모두 나타냈으며 높은 충전 용량 및 방전 용량(대략 200 mAh/g 이상의 방전 용량)을 나타냄을 확인할 수 있다.On the other hand, it can be seen that Examples 22 to 26 (EX22 to EX26) exhibited both the first plateau and the second plateau, and exhibited high charging capacity and discharge capacity (discharge capacity of approximately 200 mAh/g or more). .
도 20 및 도 21은 예시적인 실시예들에 따른 양극 전극의 밀도에 따른 사이클 특성을 나타내는 그래프이다. 구체적으로, 도 20은 사이클 횟수에 따른 방전 용량(mAh/g)을 나타내고 도 21은 사이클 횟수에 따른 쿨롱 효율(%)을 나타낸다. 쿨롱 효율(%)은 각 사이클에서의 충전 용량에 대한 방전 용량의 비율을 가리킨다.20 and 21 are graphs showing cycle characteristics according to a density of an anode electrode according to exemplary embodiments. Specifically, FIG. 20 shows the discharge capacity (mAh/g) according to the number of cycles, and FIG. 21 shows the Coulomb efficiency (%) according to the number of cycles. Coulomb efficiency (%) refers to the ratio of the discharge capacity to the charge capacity in each cycle.
도 20 및 도 21을 참조하면, 실시예 21 내지 실시예 25(EX21~EX25)는 10회 사이클 이후에 대략 70% 이상의 쿨롱 효율을 나타내는 반면, 실시예(EX26)는 10회 사이클 이후에 약 47%의 쿨롱 효율을 나타낸다. 또한 실시예 21 내지 실시예 25(EX21~EX25)는 10회 사이클 이후에 초기 용량 대비 대략 70% 이상의 방전 용량을 나타내는 반면 실시예 26(EX26)는 10회 사이클 이후에 약 53%의 방전 용량을 나타낸다. 이에 따르면 1.22 g/cm3의 밀도를 갖는 실시예 26(EX26)은 초기 방전 용량은 높으나, 사이클 횟수가 증가함에 따라 방전 용량이 급격히 감소함을 확인할 수 있다. 20 and 21, Examples 21 to 25 (EX21 to EX25) exhibited about 70% or more Coulomb efficiency after 10 cycles, whereas Example (EX26) was about 47 after 10 cycles. Represents the coulombic efficiency in %. In addition, Examples 21 to 25 (EX21 to EX25) exhibited a discharge capacity of about 70% or more compared to the initial capacity after 10 cycles, whereas Example 26 (EX26) showed a discharge capacity of about 53% after 10 cycles. Show. According to this, it can be seen that Example 26 (EX26) having a density of 1.22 g/cm 3 has a high initial discharge capacity, but the discharge capacity rapidly decreases as the number of cycles increases.
도 22는 예시적인 실시예들에 따른 양극 전극의 내부 저항을 나타내는 그래프들이다. 도 22에서는 실시예 21, 24, 25, 26(EX21, EX24, EX25, EX26)의 임피던스 분석법으로부터 얻어진 Nyquist plot을 도시하였다. 22 are graphs showing internal resistance of an anode electrode according to exemplary embodiments. In Fig. 22, Nyquist plots obtained from the impedance analysis method of Examples 21, 24, 25, and 26 (EX21, EX24, EX25, EX26) are shown.
도 22를 참조하면, 실시예 24, 25(EX24, EX25)의 임피던스 그래프는 실시예 21, 26(EX21, EX26)의 임피던스 그래프에 비하여 더 작은 반경의 반원형을 갖는다. 일반적으로 임피던스 분석법의 Nyquist plot에서 반원의 반경이 작을수록 작은 저항값을 갖는다. 따라서, 실시예 24, 25(EX24, EX25)의 양극 전극은 실시예 21, 26(EX21, EX26)의 양극 전극에 비하여 더욱 작은 내부 저항 값을 가짐을 확인할 수 있다.Referring to FIG. 22, the impedance graphs of Examples 24 and 25 (EX24 and EX25) have a semicircle of a smaller radius than the impedance graphs of Examples 21 and 26 (EX21 and EX26). In general, in the Nyquist plot of the impedance analysis method, the smaller the radius of the semicircle, the smaller the resistance value. Accordingly, it can be seen that the anode electrodes of Examples 24 and 25 (EX24 and EX25) have a smaller internal resistance value than that of the anode electrodes of Examples 21 and 26 (EX21 and EX26).
도 18 내지 도 22에서의 결과를 함께 분석하면, 예를 들어 0.50 g/cm3보다 더 작은 밀도의 양극 전극에서는 양극 활물질과 도전재 사이의 충분한 접촉 및 전기적 경로가 제공되지 않아 양극 전극 전체의 저항값이 증가하고, 1.2 g/cm3보다 큰 밀도의 양극 전극에서는 전해액 및 이를 통한 리튬 이온의 양극 전극 내로의 침투 및 이동 경로가 충분하게 제공되지 않아 양극 전극 전체의 저항값이 증가하는 것으로 추측할 수 있다. 더욱이 양극 전극의 밀도가 0.50 g/cm3보다 작은 경우(즉, 실시예 21(EX21), 약 0.42 g/cm3) 초기 방전 용량이 상대적으로 낮을 수 있고, 양극 전극의 밀도가 1.2 g/cm3보다 큰 경우(예를 들어, 실시예 26(EX26), 약 1.22 g/cm3) 10회 사이클 동안 쿨롱 효율이 50% 이하로 감소되며, 사이클 특성도 우수하지 못할 수 있다. 양극 전극의 밀도가 0.50 g/cm3 내지 1.2 g/cm3인 경우(예를 들어, 실시예 22 내지 25(EX22, EX23, EX24, EX25)) 초기 방전 용량이 우수하고, 10회 사이클 동안 70% 이상의 우수한 쿨롱 효율과 우수한 사이클 특성을 나타낼 수 있다.Analyzing the results in FIGS. 18 to 22 together, for example, in a positive electrode having a density smaller than 0.50 g/cm 3 , sufficient contact and electrical path between the positive electrode active material and the conductive material were not provided, so the resistance of the entire positive electrode. The value increases, and in the anode electrode with a density greater than 1.2 g/cm 3 , it is assumed that the resistance value of the entire anode electrode increases because the electrolyte solution and lithium ions through it do not sufficiently provide penetration and movement paths into the anode electrode. I can. Moreover, when the density of the anode electrode is less than 0.50 g/cm 3 (ie, Example 21 (EX21), about 0.42 g/cm 3 ), the initial discharge capacity may be relatively low, and the density of the anode electrode is 1.2 g/cm If it is greater than 3 (for example, Example 26 (EX26), about 1.22 g/cm 3 ), the Coulomb efficiency is reduced to 50% or less for 10 cycles, and the cycle characteristics may not be excellent. When the density of the positive electrode is 0.50 g/cm 3 to 1.2 g/cm 3 (for example, Examples 22 to 25 (EX22, EX23, EX24, EX25)), the initial discharge capacity was excellent, and 70 for 10 cycles. It can show excellent coulomb efficiency of% or more and excellent cycle characteristics.
도 23은 예시적인 실시예들에 따른 양극 전극의 전압 프로파일을 나타내는 그래프이다. 23 is a graph showing a voltage profile of an anode electrode according to example embodiments.
도 23을 참조하면, 실시예 3(EX3)의 1회 충전 및 1회 방전에서의 전압과 용량이 도시된다. 실시예 3(EX3)은 2단계 고상 혼합 방법에 의해 제조된 PTCDA를 포함하는 양극 전극이다. 충전 단계에서, 실시예 3(EX3)은 약 2.52 V 내지 약 2.7 V에서 단일 플래토를 나타냄을 확인할 수 있다. 이러한 플래토는 아래 수식 (4)에 표현된 화학 반응에 의해 나타나는 플래토일 수 있다.Referring to FIG. 23, voltage and capacity in one charge and one discharge of Example 3 (EX3) are shown. Example 3 (EX3) is a positive electrode containing PTCDA manufactured by a two-step solid-phase mixing method. In the charging step, it can be seen that Example 3 (EX3) exhibits a single plateau at about 2.52 V to about 2.7 V. This plateau may be a plateau expressed by a chemical reaction expressed in Equation (4) below.
PTCDA → PTCDA+ + e- -(4) PTCDA → PTCDA + + e - - (4)
실시예 3(EX3)은 약 230 mAh/g의 방전 용량을 보였으며, 이는 도 14를 참조로 설명한 DMPZ를 포함하는 실시예 1(EX1)의 방전 용량과 유사하게 높은 수치임을 확인할 수 있다. Example 3 (EX3) showed a discharge capacity of about 230 mAh/g, which can be seen to be a high value similar to the discharge capacity of Example 1 (EX1) including DMPZ described with reference to FIG. 14.
도 24는 예시적인 실시예들에 따른 양극 전극의 사이클 특성을 나타내는 그래프이다. 24 is a graph showing cycle characteristics of an anode electrode according to exemplary embodiments.
도 24를 참조하면, 실시예 3(EX3)은 약 230 mAh/g의 초기 방전 용량, 5회 사이클에서 약 245 mAh/g의 최대 방전 용량을 나타내고, 40회 사이클 이후에도 약 220 mAh/g의 높은 방전 용량을 나타낸다. 즉, 실시예 3(EX3)은 40회 사이클 이후에도 최대 용량 대비 약 90%의 우수한 용량 유지 특성을 나타냄을 확인할 수 있다.Referring to FIG. 24, Example 3 (EX3) shows an initial discharge capacity of about 230 mAh/g, a maximum discharge capacity of about 245 mAh/g in 5 cycles, and a high of about 220 mAh/g even after 40 cycles. Indicates the discharge capacity. That is, it can be seen that Example 3 (EX3) exhibits excellent capacity retention characteristics of about 90% compared to the maximum capacity even after 40 cycles.
도 25는 다른 예시적인 실시예들에 따른 양극 전극(30B)을 나타내는 개략도이다. 25 is a schematic diagram illustrating an anode electrode 30B according to other exemplary embodiments.
도 25를 참조하면, 양극 전극(30B)은 양극 활물질(32), 도전재(34) 및 바인더(36)를 포함할 수 있다. Referring to FIG. 25, the positive electrode 30B may include a positive electrode active material 32, a conductive material 34, and a binder 36.
예시적인 실시예들에서, 양극 전극(30B)은 양극 전극의 총 중량에 대하여 약 30 내지 50 중량%의 양극 활물질(32), 양극 전극(30B)의 총 중량에 대하여 약 30 내지 50 중량%의 도전재(34), 및 양극 전극(30)의 총 중량의 10 내지 30 중량%의 바인더(36)를 포함할 수 있다. In exemplary embodiments, the positive electrode 30B includes about 30 to 50% by weight of the positive active material 32 based on the total weight of the positive electrode, and about 30 to 50% by weight based on the total weight of the positive electrode 30B. A conductive material 34 and a binder 36 of 10 to 30% by weight of the total weight of the positive electrode 30 may be included.
예시적인 실시예들에서, 양극 활물질(32)은 도 11을 참조로 설명한 양극 활물질(32)과 유사할 수 있고, 여기에서 상세한 설명은 생략하도록 한다.In example embodiments, the positive electrode active material 32 may be similar to the positive electrode active material 32 described with reference to FIG. 11, and a detailed description thereof will be omitted.
예시적인 실시예들에서, 도전재(34)는 양극 전극(30)에 전도성을 더 제공할 수 있고, 유기 화합물 기반의 리튬 이차 전지(1)에 화학 변화를 야기하지 않는 전도성 재료일 수 있다. 도전재(34)는 약 1.5 V 내지 4.0 V에서 분해되지 않는 안정한 물질을 포함할 수 있다. 상기 도전재는 예를 들어 슈퍼 P, 카본 블랙, 케첸 블랙(예를 들어, Ketjenblack 600JD®, Ketjenblack 700JD®), 아세틸렌 블랙 등의 탄소계 물질을 포함할 수 있다. 도전재(34)는 약 10 내지 100 나노미터의 평균 입자 사이즈를 가질 수 있다.In example embodiments, the conductive material 34 may further provide conductivity to the positive electrode 30 and may be a conductive material that does not cause chemical changes in the organic compound-based lithium secondary battery 1. The conductive material 34 may include a stable material that does not decompose at about 1.5 V to 4.0 V. The conductive material may include, for example, a carbon-based material such as Super P, carbon black, Ketjen black (eg, Ketjenblack 600JD®, Ketjenblack 700JD®), and acetylene black. The conductive material 34 may have an average particle size of about 10 to 100 nanometers.
예시적인 실시예들에서, 도전재(34)는 500 내지 2000 m2/g의 BET 비표면적을 가질 수 있다. 또한 도전재(34)는 약 1.0 내지 5.0 cm3/g의 포어 볼륨을 가질 수 있다. 도전재(34)는 상대적으로 큰 표면적을 가질 수 있고, 이에 따라 양극 전극(30)의 충전 및 방전 단계에서 도전재(34)의 상대적으로 넓은 표면이 커패시터의 전극으로 기능하여, 커패시턴스에 의한 용량에 기여할 수 있다. 예를 들어, 도전재(34)는 케첸 블랙을 포함할 수 있으나, 이에 한정되는 것은 아니다. In example embodiments, the conductive material 34 may have a BET specific surface area of 500 to 2000 m 2 /g. In addition, the conductive material 34 may have a pore volume of about 1.0 to 5.0 cm 3 /g. The conductive material 34 may have a relatively large surface area, and accordingly, a relatively large surface of the conductive material 34 functions as an electrode of the capacitor in the charging and discharging step of the anode electrode 30, and the capacity due to capacitance Can contribute to For example, the conductive material 34 may include Ketjen Black, but is not limited thereto.
예시적인 실시예들에서, 바인더(36)는 양극 활물질(32) 입자들이 서로에 대하여 부착되거나 양극 활물질(32) 입자들을 도전재(34)에 부착시키는 역할을 한다. 바인더(36)에 대한 상세한 설명은 도 11을 참조로 설명되었으므로, 여기에서 생략하도록 한다.In exemplary embodiments, the binder 36 serves to attach the particles of the positive active material 32 to each other or to attach the particles of the positive active material 32 to the conductive material 34. Since the detailed description of the binder 36 has been described with reference to FIG. 11, it will be omitted here.
예시적인 실시예들에서, 리튬 금속을 음극 전극(20)으로 사용하여 유기 화합물 기반의 리튬 이차 전지(1)를 충전할 때 양극 전극(30B)은 약 3.0 V 내지 약 3.2 V에서 제1 플래토(plateau)를 나타내고, 약 3.6 V 내지 약 3.8 V에서 제2 플래토를 나타낼 수 있다. 예를 들어, 양극 활물질(32)이 디메틸페나진(DMPZ)을 포함할 때, 화학식 1에서 도시된 2개의 질소 원자 중 하나의 질소 원자가 질소 양이온으로 이온화되는 산화 반응에 의해 상기 제1 플래토가 나타나고, 2개의 질소 원자 중 다른 하나의 질소 원자가 질소 양이온으로 이온화되는 산화 반응에 의해 상기 제2 플래토가 나타날 수 있다. In exemplary embodiments, when charging the lithium secondary battery 1 based on an organic compound using lithium metal as the negative electrode 20, the positive electrode 30B is the first plateau at about 3.0 V to about 3.2 V. (plateau) and a second plateau at about 3.6 V to about 3.8 V. For example, when the positive electrode active material 32 contains dimethylphenazine (DMPZ), the first plateau is formed by an oxidation reaction in which one of the two nitrogen atoms shown in Formula 1 is ionized to a nitrogen cation. Appears, and the second plateau may appear by an oxidation reaction in which the other nitrogen atom of the two nitrogen atoms is ionized into a nitrogen cation.
DMPZ → DMPZ 2+ + 2e- -(3) DMPZ → DMPZ 2+ + 2e - - (3)
다른 실시예들에서, 양극 활물질(32)이 페릴렌테트라카르복실산 무수물 (PTCDA)을 포함할 때, 양극 전극(30B)은 약 2.52 V 내지 약 2.7 V에서 단일 플래토를 나타낼 수 있다.In other embodiments, when the positive electrode active material 32 includes perylenetetracarboxylic anhydride (PTCDA), the positive electrode 30B may exhibit a single plateau at about 2.52 V to about 2.7 V.
예시적인 실시예들에서, 양극 활물질(32)은 약 500 나노미터(nm) 내지 약 60 마이크로미터(㎛)의 평균 입자 사이즈를 가질 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 양극 활물질(32)의 평균 입자 사이즈가 약 500 nm보다 더 작을 때, 양극 활물질(32)의 표면적이 상대적으로 증가하여 전해액 내에 양극 활물질(32)이 용출되어 리튬 이차 전지(1)의 사이클 특성이 저하될 수 있고, 양극 활물질(32)의 평균 입자 사이즈가 약 60 ㎛보다 더 클 때, 양극 활물질(32) 내부까지 리튬 이온이 효과적으로 전달되기 어려워 리튬 이차 전지(1)의 고율(high rate) 특성이 저하될 수 있다. In example embodiments, the positive active material 32 may have an average particle size of about 500 nanometers (nm) to about 60 micrometers (µm), but is not limited thereto. For example, when the average particle size of the positive electrode active material 32 is smaller than about 500 nm, the surface area of the positive electrode active material 32 is relatively increased, so that the positive electrode active material 32 is eluted in the electrolyte solution, and thus the lithium secondary battery 1 The cycle characteristics of may be deteriorated, and when the average particle size of the positive electrode active material 32 is larger than about 60 μm, it is difficult to effectively transfer lithium ions to the inside of the positive electrode active material 32. high rate) characteristics may be deteriorated.
예시적인 실시예들에서, 양극 전극(30B)은 약 20 내지 200 마이크로미터의 두께(T1)를 가질 수 있고, 양극 전극(30B)은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 가질 수 있다. 양극 전극(30B)의 밀도는 양극 집전체를 포함하지 않는 프리 스탠딩 타입의 양극 전극(30B) 자체의 밀도일 수 있고, 예를 들어, 양극 전극(30B)의 부피에 대한 양극 활물질(32), 도전재(34), 및 바인더(36)의 총 중량의 비를 가리킬 수 있다. In exemplary embodiments, the anode electrode 30B may have a thickness T1 of about 20 to 200 micrometers, and the anode electrode 30B has a density of 0.50 g/cm 3 to 1.2 g/cm 3. I can. The density of the positive electrode 30B may be the density of the free standing type positive electrode 30B that does not include a positive electrode current collector. For example, the positive electrode active material 32 relative to the volume of the positive electrode 30B, It may refer to a ratio of the total weight of the conductive material 34 and the binder 36.
예시적인 실시예들에서, 양극 전극(30B) 내에 포함된 양극 활물질(32) 뿐만 아니라 도전재(34)에 의해 충전 용량과 방전 용량이 얻어질 수 있다. 특히 도전재(34)가 케첸 블랙을 포함하고, 양극 활물질(32)과 도전재(34)의 총합이 양극 전극(30)의 총 중량에 대하여 60 내지 90 중량%으로 포함될 때, 양극 전극(30)은 우수한 초기 방전 용량, 우수한 쿨롱 효율, 및 우수한 사이클 특성을 나타낼 수 있다. In example embodiments, charging capacity and discharging capacity may be obtained by the conductive material 34 as well as the positive electrode active material 32 included in the positive electrode 30B. In particular, when the conductive material 34 contains Ketjen Black, and the total of the positive electrode active material 32 and the conductive material 34 is 60 to 90% by weight based on the total weight of the positive electrode 30, the positive electrode 30 ) May exhibit excellent initial discharge capacity, excellent coulomb efficiency, and excellent cycle characteristics.
예를 들어, 양극 활물질(32)의 함량이 30 내지 50 중량%이고, 도전재(34)의 함량이 30 내지 50 중량%이며, 양극 활물질(32) 함량과 도전재(34) 함량의 합이 80 중량%인 경우에, 양극 전극(30B)은 우수한 초기 방전 용량, 우수한 쿨롱 효율 및 우수한 사이클 특성을 나타낸다. For example, the content of the cathode active material 32 is 30 to 50% by weight, the content of the conductive material 34 is 30 to 50% by weight, and the sum of the content of the cathode active material 32 and the content of the conductive material 34 is In the case of 80% by weight, the anode electrode 30B exhibits excellent initial discharge capacity, excellent Coulomb efficiency, and excellent cycle characteristics.
우선, 양극 활물질(32)의 함량은 30 내지 50 중량%로 양극 전극(30B) 내에 포함될 수 있다. 양극 활물질(32)의 함량이 30%보다 작은 경우 충방전시 가역적인 산화 및 환원 반응을 위한 액티브 물질의 함유량이 감소함에 따라 방전 용량이 감소할 수 있다. 양극 활물질(32)의 함량이 50 중량%보다 큰 경우 도전재(34)의 함량이 감소하고, 양극 활물질(32)로의 충분한 전기적 경로가 제공되지 못할 수 있고, 양극 전극(30)의 내부 저항이 증가할 수 있다. First, the content of the positive active material 32 may be 30 to 50% by weight, and may be included in the positive electrode 30B. When the content of the positive electrode active material 32 is less than 30%, the discharge capacity may decrease as the content of the active material for reversible oxidation and reduction reactions during charging and discharging decreases. When the content of the positive electrode active material 32 is greater than 50% by weight, the content of the conductive material 34 decreases, a sufficient electrical path to the positive electrode active material 32 may not be provided, and the internal resistance of the positive electrode 30 Can increase.
도전재(34)의 함량은 30 내지 50 중량%로 양극 전극(30B) 내에 포함될 수 있다. 도전재(34)의 함량이 30%보다 작은 경우 양극 활물질(32)로의 충분한 전기적 경로가 제공되지 못할 수 있고, 양극 전극(30B)의 내부 저항이 증가할 수 있다. 도전재(34)의 함량이 50%보다 큰 경우 양극 전극(30B) 내에 포함되는 양극 활물질(32) 함량이 감소할 수 있고, 이에 따라 충방전시 가역적인 산화 및 환원 반응을 위한 액티브 물질의 함유량이 감소함에 따라 방전 용량이 감소할 수 있다.The content of the conductive material 34 may be 30 to 50% by weight, and may be included in the positive electrode 30B. When the content of the conductive material 34 is less than 30%, a sufficient electrical path to the positive electrode active material 32 may not be provided, and the internal resistance of the positive electrode 30B may increase. When the content of the conductive material 34 is greater than 50%, the content of the cathode active material 32 included in the anode electrode 30B may be reduced, and accordingly, the content of the active material for reversible oxidation and reduction reactions during charging and discharging As this decreases, the discharge capacity may decrease.
추가적으로, 양극 활물질(32)의 함량(즉, x 중량%)이 감소하고 도전재(34)의 함량(즉, 80-x 중량%)이 증가하더라도 양극 전극(30B)의 초기 방전 용량은 대략 70 내지 90 mAh/g의 값을 나타낸다. 여기에서 양극 활물질(32)의 함량 감소에도 초기 방전 용량이 대략 일정한 범위 내에 유지된다는 것은, 도전재(34)가 양극 활물질(32)과 함께 방전 용량에 일정 부분 기여한다는 점을 의미하는 것으로 이해될 수 있다. 도전재(34)가 전기화학적 용량에 기여하는 특징은 이후 도 30 내지 도 32를 참조로 다시 설명하도록 한다.Additionally, even if the content of the positive electrode active material 32 (ie, x wt%) decreases and the content of the conductive material 34 (ie, 80-x wt%) increases, the initial discharge capacity of the positive electrode 30B is approximately 70 To 90 mAh/g. Here, it will be understood that the fact that the initial discharge capacity is maintained within an approximately certain range even when the content of the positive electrode active material 32 is decreased, means that the conductive material 34 together with the positive electrode active material 32 contribute to a certain portion of the discharge capacity. I can. Features contributing to the electrochemical capacity of the conductive material 34 will be described again later with reference to FIGS. 30 to 32.
예시적인 실시예들에서, 양극 전극(30B)은 도 26을 참조로 설명할 고상 혼합 방법을 포함하는 유기 화합물 기반의 이차 전지의 제조 방법에 따라 제조될 수 있다. 이러한 고상 혼합 방법은 양극 전극(30B)의 양극 활물질의 화학적 및 열적 손상을 방지하고 양극 전극(30B)이 프리 스탠딩 타입으로 형성될 수 있게 할 수 있고, 이에 따라 양극 전극(30B)을 채용하는 유기 화합물 기반의 리튬 이차 전지(1)의 에너지 밀도를 현저하게 상승시킬 수 있다. In example embodiments, the positive electrode 30B may be manufactured according to a method of manufacturing an organic compound-based secondary battery including a solid-phase mixing method described with reference to FIG. 26. This solid-phase mixing method can prevent chemical and thermal damage to the positive electrode active material of the positive electrode 30B and allow the positive electrode 30B to be formed in a free standing type, and accordingly, an organic method employing the positive electrode 30B. The energy density of the compound-based lithium secondary battery 1 can be remarkably increased.
도 26은 예시적인 실시예들에 따른 유기 화합물 기반의 리튬 이차 전지의 제조 방법을 나타내는 플로우차트이다.26 is a flowchart illustrating a method of manufacturing an organic compound-based lithium secondary battery according to exemplary embodiments.
도 26을 참조하면, 양극 활물질, 도전재, 및 바인더를 준비한다(S10 단계).Referring to FIG. 26, a positive active material, a conductive material, and a binder are prepared (step S10).
예시적인 실시예들에서, 양극 활물질, 도전재, 및 바인더는 고체 상태로 제공될 수 있다. 예를 들어, 양극 활물질은 약 500 나노미터 내지 60 마이크로미터의 제1 입자 사이즈를 가지고, 도전재는 약 10 내지 100 나노미터의 제2 입자 사이즈를 가지며, 바인더는 약 1 내지 5 밀리미터인 제3 입자 사이즈를 가질 수 있다. 선택적으로, 양극 활물질, 도전재, 및 바인더 내에 존재할 수 있는 수분을 제거하기 위하여 양극 활물질, 도전재, 및 바인더를 진공 오븐에 넣어 수십 분 내지 수 시간 동안 건조시킬 수 있다. In example embodiments, the positive electrode active material, the conductive material, and the binder may be provided in a solid state. For example, the positive electrode active material has a first particle size of about 500 nanometers to 60 micrometers, the conductive material has a second particle size of about 10 to 100 nanometers, and the binder is about 1 to 5 millimeters of third particles It can have a size. Optionally, in order to remove moisture that may be present in the positive electrode active material, the conductive material, and the binder, the positive electrode active material, the conductive material, and the binder may be put in a vacuum oven and dried for several tens of minutes to several hours.
이후, 혼합 용기 내에 양극 활물질, 도전재, 및 바인더를 혼입하고, 양극 활물질, 도전재, 및 바인더를 고상 혼합하여 예비 양극 전극을 형성한다(S20 단계). Thereafter, the positive electrode active material, the conductive material, and the binder are mixed in the mixing container, and the positive electrode active material, the conductive material, and the binder are solidly mixed to form a preliminary positive electrode (step S20).
예시적인 실시예들에서, 혼합 용기 내에서 양극 활물질, 도전재, 및 바인더는 액체 용매 등의 첨가 없이 혼합될 수 있다. 상기 고상 혼합의 전체 과정에서 양극 활물질, 도전재, 및 바인더는 각각 고체 상태이며, 양극 활물질, 도전재, 및 바인더에 막자 등의 혼합 로드(mixing rod)를 사용하여 기계적 전단력을 부여함에 따라 양극 활물질, 도전재, 및 바인더는 서로 균일하게 혼합될 수 있다. In example embodiments, in the mixing container, the positive electrode active material, the conductive material, and the binder may be mixed without adding a liquid solvent or the like. In the whole process of solid-phase mixing, the positive electrode active material, the conductive material, and the binder are each in a solid state, and the positive electrode active material is applied to the positive electrode active material, the conductive material, and the binder by applying a mechanical shear force to the positive electrode active material, the conductive material, and the binder using a mixing rod such as a mortar. , The conductive material, and the binder may be uniformly mixed with each other.
예를 들어 혼합 로드가 고체 덩어리 상태인 양극 활물질, 도전재, 및 바인더 각각을 작은 조각으로 붕괴시키는 한편 혼합 로드에 의한 기계적 전단력에 의해 양극 활물질, 도전재, 및 바인더 조각들이 뭉쳐 서로에게 부착될 수 있다. 양극 활물질, 도전재, 및 바인더가 상대적으로 균일하게 혼합되어 형성된 고체 덩어리를 예비 양극 전극으로 지칭할 수 있다. 예비 양극 전극은 실질적으로 고체 상태인 상대적으로 높은 점도를 갖는 덩어리 형상으로 형성될 수 있다.For example, the mixing rod collapses each of the positive electrode active material, the conductive material, and the binder in a solid lump state into small pieces, while the positive electrode active material, the conductive material, and the binder pieces are aggregated and attached to each other by the mechanical shear force by the mixing rod. have. A solid mass formed by relatively uniformly mixing a positive electrode active material, a conductive material, and a binder may be referred to as a preliminary positive electrode. The preliminary anode electrode may be formed in a lump shape having a relatively high viscosity that is substantially solid.
특히 도전재가 약 500 내지 2000 m2/g의 BET 비표면적을 가지고, 약 1.0 내지 5.0 cm3/g의 포어 볼륨을 가질 수 있다. 도전재는 일반적인 도전재 물질에 비하여 상대적으로 높은 표면적을 가질 수 있고, 이에 따라 양극 활물질, 도전재 및 바인더가 더욱 균일하게 분산되고 혼합될 수 있다. In particular, the conductive material may have a BET specific surface area of about 500 to 2000 m 2 /g and a pore volume of about 1.0 to 5.0 cm 3 /g. The conductive material may have a relatively high surface area compared to the general conductive material material, and thus the positive electrode active material, the conductive material, and the binder may be more evenly dispersed and mixed.
이후 예비 양극 전극을 롤 프레싱하여 양극 전극을 형성한다(S30 단계). Thereafter, the preliminary anode electrode is roll pressed to form an anode electrode (step S30).
예시적인 실시예들에서, 상기 롤 프레싱 단계는 1회 수행될 수 있다. 다른 실시예들에서, 상기 롤 프레싱 단계는 2회 이상 수행될 수 있다. 일부 예시에서, 상기 롤 프레싱 단계는 양극 전극이 타겟 두께를 가질 때까지 복수 회 수행될 수 있고, 1회의 롤 프레싱 단계 이후에 수 분 내지 수십 분의 대기 시간이 뒤따르고 그 이후에 1회의 롤 프레싱 단계가 수행될 수 있다. In exemplary embodiments, the roll pressing step may be performed once. In other embodiments, the roll pressing step may be performed two or more times. In some examples, the roll pressing step may be performed multiple times until the anode electrode has a target thickness, followed by a waiting time of several minutes to tens of minutes after one roll pressing step, and then one roll pressing Steps can be performed.
예시적인 실시예들에서, 예비 양극 전극을 롤 프레싱한 이후에 양극 전극은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 가질 수 있다. In example embodiments, after the preliminary anode electrode is roll pressed, the anode electrode may have a density of 0.50 g/cm 3 to 1.2 g/cm 3.
선택적으로, 상기 롤 프레싱 단계 이전에 또는 이후에 양극 전극을 건조하는 단계가 더 수행될 수도 있다. 양극 전극을 형성한 후에 양극 전극을 컷팅하는 단계가 추가적으로 수행될 수 있다.Optionally, a step of drying the anode electrode before or after the roll pressing step may be further performed. After forming the anode electrode, the step of cutting the anode electrode may be additionally performed.
일반적으로 통상의 무기 물질 기반의 전극 물질을 형성하기 위하여 유기 용매를 사용한 액상 혼합 방법이 사용될 수 있다. 특히 NMP(N-methyl-2-pyrrolidone)와 같은 유기 용매 내에 무기 활물질의 입자들을 혼입하고 이를 혼합하여 전극용 슬러리를 제작한다. 이후 전극용 슬러리를 집전체 상에 도포하고 유기 용매를 휘발시키기 위한 베이킹 공정을 수행하여 전극 물질이 제조된다. 그런데 유기 화합물 기반의 양극 활물질은 NMP와 같은 유기 용매에 의해 쉽게 용해되고 화학적 변형이 일어난다. 또한 유기 용매를 휘발시키기 위한 베이킹 공정에서 가해지는 열에 의해 유기 화합물 기반의 양극 활물질에 변형이 일어날 수 있고, 이러한 경우에 양극 활물질로서의 기능을 수행하지 못하거나 성능이 저하될 수 있다. 따라서 유기 활물질 기반의 양극 활물질의 화학적 및 열적 손상을 최소화하는 한편 균질한 전극을 제조할 수 있는 방법의 개발이 요구된다.In general, a liquid mixing method using an organic solvent may be used to form an electrode material based on a conventional inorganic material. Particularly, particles of an inorganic active material are mixed in an organic solvent such as NMP (N-methyl-2-pyrrolidone) and mixed to prepare a slurry for an electrode. Thereafter, an electrode material is prepared by applying the electrode slurry on the current collector and performing a baking process for volatilizing the organic solvent. However, the organic compound-based positive electrode active material is easily dissolved and chemically transformed by an organic solvent such as NMP. In addition, the organic compound-based positive electrode active material may be deformed due to heat applied in the baking process for volatilizing the organic solvent, and in this case, the function as the positive electrode active material may not be performed or performance may be degraded. Therefore, there is a need to develop a method for manufacturing a homogeneous electrode while minimizing chemical and thermal damage to an organic active material-based positive electrode active material.
전술한 예시적인 실시예들에 따른 제조 방법에서는 양극 활물질, 도전재, 및 바인더를 전 고체 상태(all solid-state) 혼합함에 의해 양극 전극을 형성할 수 있다. 특히 활물질의 혼합 단계에서 유기 용매가 사용되지 않으므로, 유기 용매에 의한 그리고 유기 용매 제거 공정에 의한 양극 활물질의 화학적 및 열적 손상이 방지될 수 있다. 또한 고체 상태의 양극 전극을 롤 프레싱에 의해 형성함에 의해 양극 전극의 두께 조절 및/또는 밀도 조절이 용이할 수 있다. In the manufacturing method according to the above-described exemplary embodiments, a positive electrode may be formed by mixing a positive electrode active material, a conductive material, and a binder in an all solid-state. In particular, since the organic solvent is not used in the mixing step of the active material, chemical and thermal damage to the positive electrode active material by the organic solvent and the organic solvent removal process can be prevented. In addition, by forming the solid anode electrode by roll pressing, it may be easy to control the thickness and/or the density of the anode electrode.
또한 일반적으로 유기 용매에 혼합된 슬러리를 집전체에 도포하여 형성하는 경우 집전체에 의한 이차 전지의 중량 증가가 불가피하다. 그러나 예시적인 실시예들에 따르면, 전 고체 상태의 제조 방법을 통해 프리 스탠딩 타입의 양극 전극을 형성하고 불필요한 집전체를 생략할 수 있으므로, 리튬 이차 전지의 중량이 감소되고 중량 에너지 밀도가 현저히 향상될 수 있다. In addition, in general, when a slurry mixed with an organic solvent is applied to a current collector and formed, an increase in the weight of the secondary battery by the current collector is inevitable. However, according to exemplary embodiments, since a free-standing type positive electrode can be formed and unnecessary current collectors can be omitted through the manufacturing method in an all-solid state, the weight of the lithium secondary battery is reduced and the weight energy density is remarkably improved. I can.
아래의 도 27 내지 도 37에서는, 도 25를 참조로 설명한 예시적인 실시예들에 따른 양극 전극(30B)을 포함하는 유기 화합물 기반의 리튬 이차 전지의 전기 화학적 성능을 설명하도록 한다. 27 to 37 below, electrochemical performance of an organic compound-based lithium secondary battery including the positive electrode 30B according to exemplary embodiments described with reference to FIG. 25 will be described.
실험예Experimental example
1) 양극 전극의 제조1) Preparation of anode electrode
실시예 1 내지 7(EX1~EX7)의 양극 활물질, 도전재, 및 바인더로서 각각 DMPZ(5,10-dihydro-5,10-dimethylphenazine), 케첸블랙(Ketjenblack®), PTFE(polytetrafluoroethylene)가 사용되었다. 양극 활물질, 도전재, 및 바인더는 아래 표 1에 기재된 질량비로 막자사발을 이용하여 혼합되었다. 유발 내에 양극 활물질, 도전재, 및 바인더가 혼입되어 고상 혼합되었다. 균일하게 혼합된 양극 전극에 대하여 롤 프레스를 이용하여 다양한 전극 밀도를 갖는 전극들이 제조되었다. 양극 전극들은 1*1 cm2의 크기로 컷팅되었다. 한편 비교예에 따른 양극 전극은 도전재로서 슈퍼 P를 사용하고 양극 활물질, 도전재, 및 바인더의 질량비 4:4:2로서 제조되었다.DMPZ (5,10-dihydro-5,10-dimethylphenazine), Ketjenblack®, and PTFE (polytetrafluoroethylene) were used as the positive electrode active material, conductive material, and binder of Examples 1 to 7 (EX1 to EX7), respectively. . The positive electrode active material, the conductive material, and the binder were mixed using a mortar at the mass ratio shown in Table 1 below. A positive electrode active material, a conductive material, and a binder were mixed in the mortar and mixed in a solid state. Electrodes having various electrode densities were manufactured using a roll press for the uniformly mixed positive electrode. The anode electrodes were cut to a size of 1*1 cm 2. On the other hand, the positive electrode according to the comparative example was prepared using Super P as a conductive material and a mass ratio of the positive active material, the conductive material, and the binder of 4:4:2.
양극 활물질(중량%)Positive electrode active material (% by weight) 도전재(중량%)Conductive material (% by weight) 바인더(중량%)Binder (% by weight)
실시예 1(EX1)Example 1 (EX1) 7070 1010 2020
실시예 2(EX2)Example 2 (EX2) 5050 3030 2020
실시예 3(EX3)Example 3 (EX3) 4545 3535 2020
실시예 4(EX4)Example 4 (EX4) 4040 4040 2020
실시예 5(EX5)Example 5 (EX5) 3535 4545 2020
실시예 6(EX6)Example 6 (EX6) 3030 5050 2020
실시예 7(EX7)Example 7 (EX7) 1010 7070 2020
2) 리튬 이차 전지의 제조 2) Manufacture of lithium secondary battery
양극 전극들을 사용하여 2032 타입의 코인셀이 조립되었다. 음극으로서 리튬 호일이 사용되었다. 유리섬유 여과지(GF/F)가 분리막으로 사용되고, 전해질로서 1.8 M LiTFSI/TEGDME 용액이 각 코인 셀 내에 90 μL씩 첨가되었다. 조립된 코인 셀은 2.5 - 4.0 V 범위에서 충방전 실험이 수행되었다. A 2032 type coin cell was assembled using positive electrodes. Lithium foil was used as the negative electrode. Glass fiber filter paper (GF/F) was used as a separator, and a 1.8 M LiTFSI/TEGDME solution was added to each coin cell by 90 μL as an electrolyte. The assembled coin cell was subjected to charging and discharging experiments in the range of 2.5-4.0 V.
도 27은 예시적인 실시예들에 따른 양극 전극의 전압 프로파일을 나타내는 그래프이다. 도 27에서, 실시예 1 내지 7(EX1~EX7)의 1회 충전 및 1회 방전에서의 전압과 용량이 도시된다. 도 27은 충방전 테스트에서 얻어진 충전 용량 및 방전 용량을 양극 전극 전체의 질량을 기준으로 계산하여 도시한 그래프이며, 여기에서 양극 전극 전체 질량은 양극 활물질, 도전재, 및 바인더의 중량의 총합을 의미한다.27 is a graph showing a voltage profile of an anode electrode according to example embodiments. In Fig. 27, the voltage and capacity in one charge and one discharge of Examples 1 to 7 (EX1 to EX7) are shown. FIG. 27 is a graph showing the charge capacity and discharge capacity obtained in the charge/discharge test calculated based on the total mass of the positive electrode, where the total mass of the positive electrode means the sum of the weights of the positive electrode active material, the conductive material, and the binder. do.
도 27을 참조하면, 실시예 1(EX1)은 방전 단계에서 제1 플래토는 명확하게 나타나지만, 제2 플래토가 나타나지 않으며 4.0 V로부터 3.3 V까지 상당히 가파른 전압-용량 프로파일을 나타낸다. 실시예 1(EX1)은 양극 활물질 70 중량%와 도전재 10 중량%를 포함한다. 따라서 이는 실시예 1(EX1) 내에 포함된 도전재의 함량이 너무 작아 양극 전극의 내부 저항이 증가하고, 양극 전극의 상대적으로 큰 과전압(overpotential)에 의해 제2 플래토가 발현되기 어렵기 때문인 것으로 추측될 수 있다. 제2 플래토의 부재에 의해 실시예 1(EX1)은 다소 낮은 초기 방전 용량(약 65 mAh/g)을 보인다. Referring to FIG. 27, in Example 1 (EX1), the first plateau clearly appears in the discharging stage, but the second plateau does not appear, and exhibits a considerably steep voltage-capacitance profile from 4.0 V to 3.3 V. Example 1 (EX1) includes 70% by weight of a positive electrode active material and 10% by weight of a conductive material. Therefore, it is assumed that this is because the content of the conductive material included in Example 1 (EX1) is too small to increase the internal resistance of the positive electrode, and it is difficult to develop the second plateau due to a relatively large overpotential of the positive electrode. Can be. By the absence of the second plateau, Example 1 (EX1) shows a rather low initial discharge capacity (about 65 mAh/g).
실시예 2(EX2) 내지 실시예 6(EX6)은 충전 단계 및 방전 단계에서 모두 제1 플래토와 제2 플래토가 나타남을 확인할 수 있다. 실시예 2(EX2)는 양극 활물질 50 중량% 및 도전재 30 중량%를 포함하고, 실시예 3(EX3)은 양극 활물질 45 중량% 및 도전재 35 중량%를 포함하고, 실시예 4(EX4)는 양극 활물질 40 중량% 및 도전재 40 중량%를 포함하고, 실시예 5(EX5)는 양극 활물질 35 중량% 및 도전재 45 중량%를 포함하고, 실시예 6(EX6)은 양극 활물질 30 중량% 및 도전재 50 중량%를 포함한다. 실시예 2 내지 6(EX2~EX6) 모두 대략 70 내지 85 mAh/g에 해당하는 상대적으로 큰 초기 방전 용량을 보인다. In Example 2 (EX2) to Example 6 (EX6), it can be seen that the first plateau and the second plateau appear in both the charging step and the discharging step. Example 2 (EX2) contains 50% by weight of a positive electrode active material and 30% by weight of a conductive material, Example 3 (EX3) contains 45% by weight of a positive electrode active material and 35% by weight of a conductive material, Example 4 (EX4) Contains 40% by weight of a positive active material and 40% by weight of a conductive material, Example 5 (EX5) contains 35% by weight of a positive electrode active material and 45% by weight of a conductive material, and Example 6 (EX6) contains 30% by weight of a positive electrode active material And 50% by weight of a conductive material. All of Examples 2 to 6 (EX2 to EX6) exhibit a relatively large initial discharge capacity corresponding to approximately 70 to 85 mAh/g.
실시예 7(EX7)은 방전 단계에서 제1 플래토와 제2 플래토가 명확하게 나타나지 않는다. 4.0 V로부터 2.5 V까지 플래토라기보다는 상대적으로 약한 숄더(shoulder) 구간을 갖는 경사진 곡선의 전압-용량 프로파일을 나타낸다. 실시예 7(EX7)은 양극 활물질 10 중량%와 도전재 70 중량%를 포함한다. 실시예 7(EX7)은 대략 40 mAh/g의 상대적으로 낮은 초기 방전 용량을 보인다. In Example 7 (EX7), the first plateau and the second plateau do not clearly appear in the discharging step. It represents the voltage-capacity profile of a sloped curve with a relatively weak shoulder section rather than a plateau from 4.0 V to 2.5 V. Example 7 (EX7) includes 10% by weight of a positive electrode active material and 70% by weight of a conductive material. Example 7 (EX7) shows a relatively low initial discharge capacity of approximately 40 mAh/g.
예시적인 실시예들에 따르면, 실시예 2 내지 6(EX2~EX6)은 약 30 내지 50 중량%의 양극 활물질과, 약 30 내지 50 중량%의 도전재를 포함하며, 충방전 테스트에서 안정적인 전압 용량 프로파일을 나타내는 한편 상대적으로 높은 초기 방전 용량을 나타냄을 확인할 수 있다.According to exemplary embodiments, Examples 2 to 6 (EX2 to EX6) contain about 30 to 50% by weight of a positive electrode active material and about 30 to 50% by weight of a conductive material, and have a stable voltage capacity in a charge/discharge test. While showing the profile, it can be seen that it shows a relatively high initial discharge capacity.
도 28 및 도 29는 예시적인 실시예들에 따른 양극 전극의 사이클 특성을 나타내는 그래프이다. 구체적으로, 도 28은 사이클 횟수에 따른 방전 용량(mAh/g)을 나타내고 도 29는 사이클 횟수에 따른 쿨롱 효율(%)을 나타낸다. 쿨롱 효율(%)은 각 사이클에서의 충전 용량에 대한 방전 용량의 비율을 가리킨다. 도 28 및 29는 사이클 테스트에서 얻어진 방전 용량을 양극 전극 전체의 질량을 기준으로 계산하여 도시한 그래프이며, 여기에서 양극 전극 전체 질량은 양극 활물질, 도전재, 및 바인더의 중량의 총합을 의미한다.28 and 29 are graphs showing cycle characteristics of an anode electrode according to exemplary embodiments. Specifically, FIG. 28 shows the discharge capacity (mAh/g) according to the number of cycles, and FIG. 29 shows the Coulomb efficiency (%) according to the number of cycles. Coulomb efficiency (%) refers to the ratio of the discharge capacity to the charge capacity in each cycle. 28 and 29 are graphs showing the discharging capacity obtained in the cycle test based on the total mass of the positive electrode, wherein the total mass of the positive electrode means the sum of the weights of the positive electrode active material, the conductive material, and the binder.
도 28 및 도 29를 참조하면, 실시예 2 내지 실시예 6(EX2~EX6)은 상대적으로 우수한 방전 용량과 쿨롱 효율을 나타낸다. 특히 실시예 1 내지 3(EX1~EX3)은 15회 사이클 이후에도 약 85% 이상의 우수한 쿨롱 효율을 나타낸다. 한편, 실시예 7(EX7)은 약 40 mAh/g의 낮은 초기 용량을 보이고, 15회 사이클 이후에도 약 25 mAh/g의 낮은 방전 용량을 나타낸다. 28 and 29, Examples 2 to 6 (EX2 to EX6) exhibit relatively excellent discharge capacity and Coulomb efficiency. In particular, Examples 1 to 3 (EX1 to EX3) exhibit excellent Coulomb efficiency of about 85% or more even after 15 cycles. On the other hand, Example 7 (EX7) shows a low initial capacity of about 40 mAh/g, and shows a low discharge capacity of about 25 mAh/g even after 15 cycles.
결론적으로, 도 27 내지 도 29를 함께 참조하면, 실시예 1(EX1)은 고전압 영역에서의 제2 플래토가 발달되지 않는 등 불안정한 전압 프로파일을 나타내며, 이에 따라 상대적으로 낮은 초기 방전 용량을 보인다. 실시예 7(EX7)은 제1 플래토와 제2 플래토 대신 숄더 영역을 갖는 가파른 경사 곡선의 전압 프로파일을 나타내며, 이에 따라 실시예 1(EX1)보다 더욱 낮은 초기 방전 용량을 보인다. 반면, 실시예 2 내지 6(EX1~EX6)은 우수한 초기 방전 용량 및 우수한 사이클 특성을 나타낸다. 또한 실시예 2 내지 실시예 6(EX2~EX6)은 충전 및 방전 단계에서 제1 플래토와 제2 플래토가 안정적으로 관찰된다. 따라서, 예시적인 실시예들에 따르면, 약 30 내지 50 중량%의 양극 활물질과 약 30 내지 50 중량%의 도전재를 포함하는 양극 전극(즉, 실시예 2 내지 6(EX1~EX6))은 우수한 전기화학적 성능 및 사이클 특성을 가짐을 확인할 수 있다.In conclusion, referring to FIGS. 27 to 29 together, Example 1 (EX1) exhibits an unstable voltage profile such as that the second plateau in the high voltage region is not developed, and thus shows a relatively low initial discharge capacity. Example 7 (EX7) shows a voltage profile of a steep slope curve having shoulder regions instead of the first and second plateaus, and thus shows a lower initial discharge capacity than that of Example 1 (EX1). On the other hand, Examples 2 to 6 (EX1 to EX6) exhibit excellent initial discharge capacity and excellent cycle characteristics. In addition, in Examples 2 to 6 (EX2 to EX6), the first plateau and the second plateau are stably observed in the charging and discharging stages. Therefore, according to exemplary embodiments, the positive electrode including about 30 to 50% by weight of a positive electrode active material and about 30 to 50% by weight of a conductive material (that is, Examples 2 to 6 (EX1 to EX6)) is excellent. It can be seen that it has electrochemical performance and cycle characteristics.
도 30 및 도 31은 예시적인 실시예들에 따른 양극 전극의 전압 프로파일과 사이클 특성을 나타내는 그래프이다. 도 30에서, 실시예 1 내지 7(EX1~EX7)의 1회 충전 및 1회 방전에서의 전압과 용량이 양극 활물질의 질량을 기준으로 계산하여 도시된다. 또한 도 31에서, 실시예 1 내지 7(EX1~EX7)의 사이클 횟수에 따른 방전 용량이 양극 활물질의 질량을 기준으로 계산하여 도시된다(참고로, 도 27 내지 도 29에서 방전 용량은 양극 전극 전체의 질량를 기준으로 계산하여 표시되었으며, 양극 전극 전체 질량은 양극 활물질, 도전재, 및 바인더의 중량의 총합을 의미한다).30 and 31 are graphs showing voltage profiles and cycle characteristics of an anode electrode according to exemplary embodiments. In FIG. 30, voltage and capacity in one charge and one discharge of Examples 1 to 7 (EX1 to EX7) are calculated based on the mass of the positive electrode active material. In addition, in FIG. 31, the discharge capacity according to the number of cycles of Examples 1 to 7 (EX1 to EX7) is calculated based on the mass of the positive electrode active material (for reference, in FIGS. 27 to 29, the discharge capacity is the entire positive electrode. It was calculated and displayed based on the mass of, and the total mass of the positive electrode means the total weight of the positive electrode active material, the conductive material, and the binder).
도 30 및 도 31을 참조하면, 실시예 1 내지 7(EX1~EX7)은 양극 활물질의 함량이 클수록 더 작은 방전 용량을 나타내는 것으로 표시된다. 예를 들어, 도 30을 도 27과 함께 참조하면, 실시예 1(EX1)은 양극 전극 질량 기준으로 약 65 mAh/g의 초기 방전 용량을 갖는 한편(도 27 참조) 양극 활물질 질량 기준으로 약 90 mAh/g의 초기 방전 용량을 갖는다(도 30 참조). 즉, 실시예 1(EX1)은 양극 전극 총 질량에 대하여 양극 활물질이 약 70% 포함되어 있으므로, 이와 같은 방전 용량의 차이가 발생한다.Referring to FIGS. 30 and 31, Examples 1 to 7 (EX1 to EX7) are shown to exhibit a smaller discharge capacity as the content of the positive electrode active material increases. For example, referring to FIG. 30 together with FIG. 27, Example 1 (EX1) has an initial discharge capacity of about 65 mAh/g based on the mass of the positive electrode (see FIG. 27), while about 90 based on the mass of the positive electrode active material. It has an initial discharge capacity of mAh/g (see Fig. 30). That is, since Example 1 (EX1) contains about 70% of the positive electrode active material with respect to the total mass of the positive electrode, such a difference in discharge capacity occurs.
예를 들어, 실시예 4(EX4)는 양극 전극 질량 기준으로 약 75 mAh/g의 초기 방전 용량을 갖는 한편(도 27 참조) 양극 활물질 질량 기준으로 약 185 mAh/g의 초기 방전 용량을 갖는다(도 30 참조). 한편, 실시예 6(EX6)은 약 78 mAh/g의 초기 방전 용량을 갖는 한편(도 30 참조) 양극 활물질 질량 기준으로 약 255 mAh/g의 초기 방전 용량을 갖는다(도 30 참조).For example, Example 4 (EX4) has an initial discharge capacity of about 75 mAh/g based on the mass of the positive electrode electrode (see Fig. 27), while having an initial discharge capacity of about 185 mAh/g based on the mass of the positive electrode active material ( See Fig. 30). On the other hand, Example 6 (EX6) has an initial discharge capacity of about 78 mAh/g (see Fig. 30) and an initial discharge capacity of about 255 mAh/g based on the mass of the positive electrode active material (see Fig. 30).
예를 들어, 실시예 2 내지 6(EX2~EX6)에서 양극 전극 기준으로 대략 70 내지 85 mAh/g에 해당하는 대략 유사한 방전 용량을 나타낸다는 것은, 양극 활물질 이외에 방전 용량에 기여하는 다른 요인이 존재한다는 것을 의미할 수 있다. 예를 들어, 양극 활물질의 함량이 30 중량%에서 50 중량%까지 증가할 때, 방전 용량이 양극 활물질의 함량에 비례하여 증가하지 않으므로 양극 활물질의 함량 증가와 함께 다른 요인이 방전 용량에 작용함을 추측할 수 있다.For example, in Examples 2 to 6 (EX2 to EX6), showing approximately similar discharge capacity corresponding to approximately 70 to 85 mAh/g based on the positive electrode, there are other factors contributing to the discharge capacity in addition to the positive electrode active material. It can mean doing. For example, when the content of the positive electrode active material increases from 30% by weight to 50% by weight, the discharge capacity does not increase in proportion to the content of the positive electrode active material. I can guess.
도 32는 양극 활물질 함량에 따른 양극 활물질 질량 기준의 방전 용량과, 양극 전극 질량 기준의 방전 용량을 도시한 그래프이다. FIG. 32 is a graph showing a discharge capacity based on a mass of a positive electrode active material and a discharge capacity based on a mass of a positive electrode according to the amount of the positive electrode active material.
도 32를 참조하면, 양극 활물질 질량 기준의 방전 용량은 양극 활물질 함량이 증가할수록 감소한다. 반면 양극 전극 질량 기준의 방전 용량은 30 중량%을 갖는 실시예 2(EX2)에서 급격히 증가하여 40 중량%을 갖는 실시예 4(EX4)에서 최대값을 가지며, 이후 감소하기 시작한다. 또한 실시예 2 내지 실시예 6(EX2~EX6)에서 70 mAh/g의 상대적으로 우수한 방전 용량을 가질 수 있다. Referring to FIG. 32, the discharge capacity based on the mass of the positive electrode active material decreases as the positive electrode active material content increases. On the other hand, the discharge capacity based on the mass of the anode electrode rapidly increased in Example 2 (EX2) having 30% by weight and had a maximum value in Example 4 (EX4) having 40% by weight, and then began to decrease. In addition, in Examples 2 to 6 (EX2 to EX6), it may have a relatively excellent discharge capacity of 70 mAh/g.
한편, 실시예 7(EX7)은 10 중량%의 다소 낮은 양극 활물질 함량을 가지지만, 양극 활물질 질량 기준으로 380 mAh/g의 현저히 높은 방전 용량을 나타냄을 확인할 수 있다. 이는 실시예 7(EX7)에 포함된 도전재의 일부 함량이 넓은 비표면적을 통하여 커패시터의 전극으로 작용할 수 있고, 이에 따라 커패시턴스에 의한 충전 및 방전 용량에 기여하기 때문임으로 추측할 수 있다. On the other hand, Example 7 (EX7) has a slightly low content of the positive electrode active material of 10% by weight, it can be seen that a remarkably high discharge capacity of 380 mAh/g based on the mass of the positive electrode active material. This can be presumed to be because a part of the conductive material included in Example 7 (EX7) can act as an electrode of a capacitor through a large specific surface area, and thus contribute to charging and discharging capacity due to capacitance.
도 33은 예시적인 실시예들에 따른 양극 전극의 내부 저항을 나타내는 그래프들이다. 도 33에서는 실시예 2(EX2), 실시예 4(EX4), 및 실시예 6(EX6)의 임피던스 분석법으로부터 얻어진 Nyquist plot을 도시하였다. 33 are graphs showing internal resistance of an anode electrode according to example embodiments. In FIG. 33, Nyquist plots obtained from the impedance analysis method of Example 2 (EX2), Example 4 (EX4), and Example 6 (EX6) are shown.
도 33을 참조하면, 실시예 4(EX4)의 임피던스 그래프는 실시예 2(EX2) 및 실시예 6(EX6)의 임피던스 그래프에 비하여 더 작은 반경의 반원형을 갖는다. 일반적으로 임피던스 분석법의 Nyquist plot에서 반원의 반경이 작을수록 작은 저항값을 갖는다. 따라서, 실시예 4(EX4)의 양극 전극은 실시예 2(EX2) 및 실시예 6(EX6)의 양극 전극에 비하여 더욱 작은 내부 저항 값을 가짐을 확인할 수 있다.Referring to FIG. 33, the impedance graph of Example 4 (EX4) has a semicircle of a smaller radius compared to the impedance graphs of Example 2 (EX2) and Example 6 (EX6). In general, in the Nyquist plot of the impedance analysis method, the smaller the radius of the semicircle, the smaller the resistance value. Accordingly, it can be seen that the anode electrode of Example 4 (EX4) has a smaller internal resistance value than that of the anode electrodes of Example 2 (EX2) and Example 6 (EX6).
이러한 저항 분석 결과는 도 32에 도시된 양극 전극 질량 기준의 방전 용량 결과와도 부합한다. 예를 들어, 실시예 4(EX4)는 가장 작은 내부 저항을 갖는 한편, 양극 전극 질량 기준으로 가장 높은 방전 용량을 보인다. 따라서 40 중량%의 양극 활물질과, 40 중량%의 도전재, 및 바인더를 포함하는 실시예 4(EX4)의 양극 전극은 가장 작은 내부 저항을 가지며, 이에 따라 가장 우수한 전기 화학적 특성을 보임을 확인할 수 있다. This resistance analysis result is also consistent with the result of the discharge capacity based on the mass of the positive electrode shown in FIG. 32. For example, Example 4 (EX4) has the smallest internal resistance and the highest discharge capacity based on the mass of the positive electrode. Therefore, it can be confirmed that the positive electrode of Example 4 (EX4) including 40% by weight of the positive electrode active material, 40% by weight of the conductive material, and the binder has the smallest internal resistance, and thus shows the best electrochemical properties. have.
이하에서는 도전재의 종류에 따른 전기화학적 특성을 도 34 내지 도 36을 참조하여 설명하도록 한다. Hereinafter, electrochemical characteristics according to the type of conductive material will be described with reference to FIGS. 34 to 36.
도 34는 실시예 4(EX4)와 비교예(CO1)에 따른 양극 전극의 전압 프로파일을 나타내는 그래프이다. 도 35는 실시예 4(EX4)와 비교예(CO1)에 따른 양극 전극의 사이클 횟수 증가에 따른 방전 용량(mAh/g)과 쿨롱 효율(%)을 나타내는 그래프이다. 도 36은 실시예 4(EX4)와 비교예(CO1)에 따른 양극 전극의 내부 저항을 나타내는 그래프들이다.34 is a graph showing a voltage profile of an anode electrode according to Example 4 (EX4) and Comparative Example (CO1). 35 is a graph showing discharge capacity (mAh/g) and Coulomb efficiency (%) according to an increase in the number of cycles of the positive electrode according to Example 4 (EX4) and Comparative Example (CO1). 36 are graphs showing internal resistance of a positive electrode according to Example 4 (EX4) and Comparative Example (CO1).
도 34 내지 도 36을 참조하면, 슈퍼P를 도전재로서 포함하는 비교예(CO1)는 약 140 mAh/g의 방전 용량을 나타내는 반면, 케첸 블랙을 도전재로서 포함하는 실시예 4(EX4)는 약 185 mAh/g의 방전 용량을 나타냄을 확인할 수 있다. 한편, 실시예 4(EX4)는 10 사이클 이후에 대략 65%의 방전 용량을 보이고, 비교예(CO1)는 10 사이클 이후에 대략 55%의 방전 용량을 보임을 확인할 수 있다. 그러나 Nyquist plot에서 측정된 내부 저항의 경우, 실시예 4(EX4)와 비교예(CO1)은 대략 유사한 값을 보임을 알 수 있다. 34 to 36, Comparative Example (CO1) including Super P as a conductive material exhibits a discharge capacity of about 140 mAh/g, whereas Example 4 (EX4) including Ketjen Black as a conductive material It can be seen that the discharge capacity is about 185 mAh/g. Meanwhile, it can be seen that Example 4 (EX4) shows a discharge capacity of approximately 65% after 10 cycles, and Comparative Example (CO1) shows a discharge capacity of approximately 55% after 10 cycles. However, in the case of the internal resistance measured in the Nyquist plot, it can be seen that Example 4 (EX4) and Comparative Example (CO1) show approximately similar values.
예시적인 실시예들에 따르면, 도전재로서 케첸 블랙을 사용하므로 현저히 증가된 방전 용량을 가질 수 있다. 특히 케첸 블랙과 슈퍼 P가 양극 전극이 실질적으로 동일한 내부 저항을 가지므로, 이러한 용량 증가는 케첸 블랙에 기인한 방전 용량 기여분이라고 추측할 수 있다. 즉, 예시적인 실시예들에서 30 내지 50 중량%로 포함된 케첸 블랙은 커패시터의 전극으로 작용하는 것으로 추측할 수 있다.According to exemplary embodiments, since Ketjen Black is used as the conductive material, the discharge capacity may be significantly increased. In particular, since the anode electrode of Ketjen Black and Super P has substantially the same internal resistance, this increase in capacity can be assumed to be a contribution of the discharge capacity due to Ketjen Black. That is, in example embodiments, it can be assumed that Ketjen Black contained in an amount of 30 to 50% by weight acts as an electrode of a capacitor.
도 37은 케첸 블랙(EX21)과 슈퍼 P(CO21)의 BET 비표면적 측정을 위한 질소 가스의 흡착량을 나타내는 그래프이다.37 is a graph showing the adsorption amount of nitrogen gas for measuring the BET specific surface area of Ketjen Black (EX21) and Super P (CO21).
도 37을 참조하면, 슈퍼 P(CO1)는 상대 압력의 전체 범위에서 낮은 흡착량을 나타내는 한편, 케첸 블랙(EX21)은 상대 압력의 전체 범위에서 높은 흡착량을 나타낼 뿐만 아니라 상대 압력 증가에 따른 흡착량 증가량(또는 도 16의 그래프에서의 기울기)이 현저히 높음을 확인할 수 있다. Referring to FIG. 37, Super P (CO1) exhibits a low adsorption amount over the entire range of relative pressure, while Ketjen Black (EX21) exhibits a high adsorption amount over the entire range of relative pressure, as well as adsorption due to increase in relative pressure It can be seen that the amount increase (or the slope in the graph of FIG. 16) is remarkably high.
BET 비표면적을 측정하기 위하여, 다공성 물질의 표면에 물리적으로 흡착되는 질소 가스의 양을 상대 압력(P/P0)의 변화에 따라 측정할 수 있다. 도 37에서 상대 압력(P/P0)이 x축에 도시되고 흡착된 질소 가스의 양이 y축에 도시된다. 이와 같은 상대 압력(P/P0)에 대한 가스 흡착량의 기울기로부터 아래의 Langmuir 이론(다분자층 모델)을 사용하여 BET 비표면적과 포어 볼륨이 계산될 수 있다.In order to measure the BET specific surface area, the amount of nitrogen gas physically adsorbed on the surface of the porous material can be measured according to a change in the relative pressure (P/P 0 ). In FIG. 37, the relative pressure (P/P 0 ) is plotted on the x-axis and the amount of adsorbed nitrogen gas is plotted on the y-axis. From the slope of the gas adsorption amount with respect to such relative pressure (P/P 0 ), the BET specific surface area and pore volume can be calculated using the following Langmuir theory (multilayer model).
Figure PCTKR2020014818-appb-I000005
Figure PCTKR2020014818-appb-I000005
BET 비표면적(m2/g)BET specific surface area (m 2 /g) 포어 볼륨(cm3/g)Pore volume (cm 3 /g)
케첸 블랙 (EX21)Ketjen Black (EX21) 1309.67661309.6766 2.3515182.351518
슈퍼 P (CO21)Super P (CO21) 50.206850.2068 0.1388890.138889
표 2에 따르면, 슈퍼 P(CO21)는 약 50 m2/g의 BET 비표면적을 나타낸 반면, 케첸 블랙(EX21)은 약 1310 m2/g의 BET 비표면적을 나타낸다. 또한 슈퍼 P(CO21)는 약 0.139 cm2/g의 포어 볼륨을 나타낸 반면, 케첸 블랙(EX21)은 약 2.35 cm2/g의 포어 볼륨을 나타낸다. 즉 케첸 블랙(EX21)은 슈퍼 P(CO21)에 비하여 현저히 넓은 표면적과 현저히 높은 포어 볼륨을 가짐을 확인할 수 있다. 즉, 케첸 블랙(EX21)이 상대적으로 넓은 표면적에 의해, 케첸 블랙(EX21)의 표면이 커패시터의 전극으로 작용하여 양극 전극의 충전 및 방전 단계에서 충전 용량 및 방전 용량에 기여하는 것으로 추측할 수 있다. According to Table 2, Super P (CO21) exhibits a BET specific surface area of about 50 m 2 /g, whereas Ketjen Black (EX21) exhibits a BET specific surface area of about 1310 m 2 /g. In addition, Super P (CO21) exhibited a pore volume of about 0.139 cm 2 /g, while Ketjen Black (EX21) exhibited a pore volume of about 2.35 cm 2 /g. That is, it can be seen that Ketjen Black (EX21) has a significantly larger surface area and significantly higher pore volume than Super P (CO21). That is, it can be assumed that the surface of Ketjen Black EX21 acts as an electrode of the capacitor due to the relatively large surface area of Ketjen Black EX21, contributing to the charging and discharging capacity in the charging and discharging steps of the anode electrode. .
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.Above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications and changes by those of ordinary skill in the art within the spirit and scope of the present invention This is possible.
[사사] 이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단-미래소재디스커버리사업의 지원을 받아 수행된 연구임(NRF-2017M3D1A1039561)[Sasa] This research was conducted with the support of the National Research Foundation-Future Materials Discovery Project with the government (Ministry of Science, ICT) funding (NRF-2017M3D1A1039561)

Claims (23)

  1. 유기 화합물 기반의 이차 전지로서,As an organic compound-based secondary battery,
    양극 전극; Anode electrode;
    전해액; 및Electrolyte; And
    음극 전극을 포함하며,Including a cathode electrode,
    상기 양극 전극은,The anode electrode,
    탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함하며, 상기 양극 전극의 총 중량에 대하여 30 내지 50 중량%의 범위인 양극 활물질;A positive electrode active material comprising an organic compound containing a carbon double bond and a functional group containing at least one of nitrogen, oxygen, and sulfur, and in the range of 30 to 50% by weight based on the total weight of the positive electrode;
    상기 양극 전극의 총 중량에 대하여 5 내지 20 중량% 범위인 카본 나노 튜브; Carbon nanotubes in the range of 5 to 20% by weight based on the total weight of the positive electrode;
    도전재; 및 Conductive material; And
    바인더를 포함하는 것을 특징으로 하는 유기 화합물 기반의 이차 전지.An organic compound-based secondary battery comprising a binder.
  2. 제1항에 있어서, 상기 유기 화합물은 레독스 활성을 갖는 폴리머, 유기 황 화합물, 및 카르보닐기 함유 화합물로 구성된 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.The organic compound-based lithium secondary battery according to claim 1, wherein the organic compound comprises at least one selected from the group consisting of a polymer having redox activity, an organic sulfur compound, and a carbonyl group-containing compound.
  3. 제2항에 있어서, 상기 유기 화합물은 디메틸페나진, 페릴렌테트라카르복실산 무수물, 테트라에틸 티우람 디설파이드, TEMPO(2,2,6,6-tetramethylpiperidinyloxy), PEDOT(poly(3,4-ethylenedioxythiophene)), DD-TCNQ(7,7,8,8-tetracyanoquinodimethane), 및 플라반트론(flavanthrone)으로 구성된 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.The method of claim 2, wherein the organic compound is dimethylphenazine, perylenetetracarboxylic anhydride, tetraethyl thiuram disulfide, TEMPO (2,2,6,6-tetramethylpiperidinyloxy), PEDOT (poly(3,4-ethylenedioxythiophene). )), DD-TCNQ (7,7,8,8-tetracyanoquinodimethane), and flavantron (flavanthrone), characterized in that it comprises at least one selected from the group consisting of an organic compound-based lithium secondary battery.
  4. 제1항에 있어서, 상기 유기 화합물은 디메틸페나진을 포함하고,The method of claim 1, wherein the organic compound comprises dimethylphenazine,
    리튬 금속을 상기 음극 전극으로 사용하여 상기 리튬 이차 전지를 충전할 때, 상기 양극 전극은 3.0 내지 3.2 V에서 제1 플래토(plateau)를 나타내고, 3.6 내지 3.8 V에서 제2 플래토를 나타내는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.When charging the lithium secondary battery using lithium metal as the negative electrode, the positive electrode exhibits a first plateau at 3.0 to 3.2 V and a second plateau at 3.6 to 3.8 V. Lithium secondary battery based on organic compounds.
  5. 제1항에 있어서, 상기 카본 나노 튜브는 단일벽 카본 나노 튜브, 다중벽 카본 나노 튜브, 다발형 카본 나노 튜브(nanotube rope) 중 적어도 하나를 포함하는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.The organic compound-based lithium secondary battery of claim 1, wherein the carbon nanotubes comprise at least one of single-walled carbon nanotubes, multi-walled carbon nanotubes, and bundle-type carbon nanotubes.
  6. 제1항에 있어서, 상기 카본 나노 튜브는 90% 내지 99.99%의 순도를 갖는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.The organic compound-based lithium secondary battery of claim 1, wherein the carbon nanotubes have a purity of 90% to 99.99%.
  7. 제1항에 있어서, 상기 양극 전극은, 상기 카본 나노 튜브의 길이 방향 양 단부에 부착된 1 중량% 미만의 금속 원자를 더 포함하는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.The organic compound-based lithium secondary battery of claim 1, wherein the positive electrode further comprises less than 1% by weight of metal atoms attached to both ends of the carbon nanotube in the length direction.
  8. 제7항에 있어서, 상기 금속 원자는 구리(Cu), 니켈(Ni), 코발트(Co), 은(Ag), 티타늄(Ti), 알루미늄(Al), 텅스텐(W), 및 몰리브덴(Mo) 중 적어도 하나를 포함하는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.The method of claim 7, wherein the metal atoms are copper (Cu), nickel (Ni), cobalt (Co), silver (Ag), titanium (Ti), aluminum (Al), tungsten (W), and molybdenum (Mo). An organic compound-based lithium secondary battery comprising at least one of.
  9. 제1항에 있어서, 상기 바인더는 비드 형태의 폴리테트라플루오로에틸렌(PTFE)를 포함하고,The method of claim 1, wherein the binder comprises polytetrafluoroethylene (PTFE) in the form of beads,
    상기 바인더는 상기 양극 전극의 총 중량에 대하여 10 내지 30%의 범위인 것을 특징으로 유기 화합물 기반의 리튬 이차 전지.The binder is an organic compound-based lithium secondary battery, characterized in that the range of 10 to 30% based on the total weight of the positive electrode.
  10. 제1항에 있어서, 상기 도전재는 슈퍼P(super P), 카본 블랙, 케첸 블랙(Ketjenblack®), 아세틸렌 블랙 중 적어도 하나를 포함하는 것을 특징으로 유기 화합물 기반의 리튬 이차 전지.The organic compound-based lithium secondary battery of claim 1, wherein the conductive material comprises at least one of super P, carbon black, Ketjenblack®, and acetylene black.
  11. 제1항에 있어서, 상기 도전재는 상기 양극 전극의 총 중량에 대하여 30 내지 50%의 범위인 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.The organic compound-based lithium secondary battery according to claim 1, wherein the conductive material is in the range of 30 to 50% based on the total weight of the positive electrode.
  12. 제1항에 있어서, 상기 양극 전극은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 갖는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.The organic compound-based lithium secondary battery according to claim 1, wherein the positive electrode has a density of 0.50 g/cm 3 to 1.2 g/cm 3.
  13. 양극 전극을 형성하는 단계를 포함하는 유기 화합물 기반의 이차전지의 제조 방법으로서,As a method of manufacturing a secondary battery based on an organic compound comprising the step of forming a positive electrode,
    상기 양극 전극을 형성하는 단계는,Forming the anode electrode,
    30 내지 50 중량%의 양극 활물질, 5 내지 20 중량%의 카본 나노 튜브, 30 내지 50 중량%의 도전재, 및 10 내지 30 중량%의 바인더를 고상 혼합하여 예비 양극 전극을 형성하는 단계; 및Forming a preliminary positive electrode by solid-mixing 30 to 50% by weight of a positive electrode active material, 5 to 20% by weight of carbon nanotubes, 30 to 50% by weight of a conductive material, and 10 to 30% by weight of a binder; And
    상기 예비 양극 전극을 롤 프레스에 의해 압착하는 단계;를 포함하고,Comprising the preliminary anode electrode by a roll press; Including,
    상기 양극 활물질은 탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함하는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법.The positive electrode active material includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur.
  14. 제13항에 있어서, 상기 카본 나노 튜브는 90% 내지 99.99%의 순도를 가지며,The method of claim 13, wherein the carbon nanotubes have a purity of 90% to 99.99%,
    상기 카본 나노 튜브의 표면에 부착된 1 중량% 미만의 금속 원자가 더 포함되는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법.A method of manufacturing a lithium secondary battery based on an organic compound, characterized in that less than 1% by weight of metal atoms attached to the surface of the carbon nanotubes are further included.
  15. 제13항에 있어서, 상기 양극 전극이 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 갖도록 상기 예비 양극 전극을 압착하는 단계가 복수 회 수행되는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법.The method of claim 13, wherein the step of compressing the preliminary positive electrode so that the positive electrode has a density of 0.50 g/cm 3 to 1.2 g/cm 3 is performed a plurality of times. Manufacturing method.
  16. 제13항에 있어서, 상기 양극 활물질은 제1 입자 사이즈를 가지며, 상기 도전재는 제2 입자 사이즈를 가지며,The method of claim 13, wherein the positive electrode active material has a first particle size, the conductive material has a second particle size,
    상기 바인더는 상기 제1 입자 사이즈 및 상기 제2 입자 사이즈보다 더 큰 제3 입자 사이즈를 갖는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법.The method of manufacturing a lithium secondary battery based on an organic compound, wherein the binder has a third particle size larger than the first particle size and the second particle size.
  17. 제16항에 있어서, 상기 제1 입자 사이즈는 500 나노미터 내지 60 마이크로미터이며, The method of claim 16, wherein the first particle size is 500 nanometers to 60 micrometers,
    상기 제2 입자 사이즈는 10 내지 100 나노미터이며,The second particle size is 10 to 100 nanometers,
    상기 제3 입자 사이즈는 1 내지 5 밀리미터인 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법.The method of manufacturing a lithium secondary battery based on an organic compound, characterized in that the third particle size is 1 to 5 millimeters.
  18. 제13항에 있어서, 상기 압착하는 단계에 의해, 상기 양극 전극은 양극 집전체를 포함하지 않는 프리 스탠딩(free standing) 타입으로 형성되는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법.14. The method of claim 13, wherein by the pressing step, the positive electrode is formed in a free standing type that does not include a positive electrode current collector.
  19. 제13항에 있어서, 상기 양극 전극을 형성하는 단계는 유기 용매의 첨가 없이 전 고체 상태에서(all solid-state) 수행되는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법.14. The method of claim 13, wherein the forming of the positive electrode is performed in an all solid-state without adding an organic solvent.
  20. 유기 화합물 기반의 리튬 이차 전지로서,As an organic compound-based lithium secondary battery,
    양극 전극; Anode electrode;
    전해액; 및Electrolyte; And
    음극 전극을 포함하며,Including a cathode electrode,
    상기 양극 전극은,The anode electrode,
    탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함하며, 상기 양극 전극의 총 중량에 대하여 30 내지 50 중량%의 범위인 양극 활물질;A positive electrode active material comprising an organic compound containing a carbon double bond and a functional group containing at least one of nitrogen, oxygen, and sulfur, and in the range of 30 to 50% by weight based on the total weight of the positive electrode;
    상기 양극 전극의 총 중량에 대하여 30 내지 50 중량%의 도전재; 및 30 to 50% by weight of a conductive material based on the total weight of the positive electrode; And
    바인더를 포함하며,Contains a binder,
    상기 양극 전극은 0.50 g/cm3 내지 1.2 g/cm3의 밀도를 갖는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.The positive electrode is an organic compound-based lithium secondary battery, characterized in that it has a density of 0.50 g / cm 3 to 1.2 g / cm 3.
  21. 양극 전극을 형성하는 단계를 포함하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법으로서,As a method for manufacturing a lithium secondary battery based on an organic compound comprising the step of forming a positive electrode,
    상기 양극 전극을 형성하는 단계는,Forming the anode electrode,
    30 내지 50 중량%의 양극 활물질 및 30 내지 50 중량%의 도전재를 고상 혼합하여 제1 예비 양극 전극을 형성하는 단계;Forming a first preliminary positive electrode by solid-phase mixing 30 to 50% by weight of a positive electrode active material and 30 to 50% by weight of a conductive material;
    상기 제1 예비 양극 전극과 10 내지 30 중량%의 바인더를 고상 혼합하여 제2 예비 양극 전극을 형성하는 단계; 및 Forming a second preliminary anode electrode by solid-phase mixing the first preliminary anode electrode and 10 to 30% by weight of a binder; And
    상기 제2 예비 양극 전극을 롤 프레스에 의해 압착하는 단계;를 포함하고,Comprising; compressing the second preliminary anode electrode by a roll press; Including,
    상기 양극 활물질은 탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함하는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법.The positive electrode active material includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur.
  22. 유기 화합물 기반의 리튬 이차 전지로서,As an organic compound-based lithium secondary battery,
    양극 전극; Anode electrode;
    전해액; 및Electrolyte; And
    음극 전극을 포함하며,Including a cathode electrode,
    상기 양극 전극은,The anode electrode,
    탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함하며, 상기 양극 전극의 총 중량에 대하여 30 내지 50 중량%의 범위인 양극 활물질;A positive electrode active material comprising an organic compound containing a carbon double bond and a functional group containing at least one of nitrogen, oxygen, and sulfur, and in the range of 30 to 50% by weight based on the total weight of the positive electrode;
    상기 양극 전극의 총 중량에 대하여 30 내지 50 중량%의 범위인 도전재; 및 A conductive material in the range of 30 to 50% by weight based on the total weight of the positive electrode; And
    상기 양극 전극의 총 중량에 대하여 10 내지 30 중량%의 범위인 바인더를 포함하며,It includes a binder in the range of 10 to 30% by weight based on the total weight of the positive electrode,
    상기 도전재는 1.5 V 내지 4.0 V에서 분해되지 않으며, 상기 도전재는 500 내지 2000 m2/g의 BET 비표면적을 갖는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지.The conductive material does not decompose at 1.5 V to 4.0 V, and the conductive material has a BET specific surface area of 500 to 2000 m 2 /g.
  23. 양극 전극을 형성하는 단계를 포함하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법으로서,As a method for manufacturing a lithium secondary battery based on an organic compound comprising the step of forming a positive electrode,
    상기 양극 전극을 형성하는 단계는,Forming the anode electrode,
    30 내지 50 중량%의 양극 활물질, 30 내지 50 중량%의 도전재, 및 10 내지 30 중량%의 바인더를 고상 혼합하여 예비 양극 전극을 형성하는 단계;Forming a preliminary positive electrode by solid-phase mixing 30 to 50% by weight of a positive electrode active material, 30 to 50% by weight of a conductive material, and 10 to 30% by weight of a binder;
    상기 예비 양극 전극을 롤 프레스에 의해 압착하는 단계;를 포함하고,Comprising the preliminary anode electrode by a roll press; Including,
    상기 양극 활물질은 탄소 이중 결합과, 질소, 산소, 및 황 중 적어도 하나를 포함하는 작용기를 포함하는 유기 화합물을 포함하고,The positive electrode active material includes an organic compound including a carbon double bond and a functional group including at least one of nitrogen, oxygen, and sulfur,
    상기 도전재는 케첸 블랙을 포함하고, 상기 도전재는 500 내지 2000 m2/g의 BET 비표면적을 갖는 것을 특징으로 하는 유기 화합물 기반의 리튬 이차 전지의 제조 방법.The conductive material includes Ketjen Black, and the conductive material has a BET specific surface area of 500 to 2000 m 2 /g.
PCT/KR2020/014818 2019-11-11 2020-10-28 Organic compound-based lithium secondary battery, and method for producing same WO2021096113A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020190143662A KR20210057272A (en) 2019-11-11 2019-11-11 Organic compounds-based lithium secondary batteries including carbon nanotube and methods of forming the same
KR10-2019-0143663 2019-11-11
KR10-2019-0143664 2019-11-11
KR1020190143663A KR102280793B1 (en) 2019-11-11 2019-11-11 Density controlled organic compounds-based lithium secondary batteries and methods of forming the same
KR10-2019-0143662 2019-11-11
KR1020190143664A KR20210056782A (en) 2019-11-11 2019-11-11 Composition controlled organic compounds-based lithium secondary batteries and methods of forming the same

Publications (1)

Publication Number Publication Date
WO2021096113A1 true WO2021096113A1 (en) 2021-05-20

Family

ID=75913059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014818 WO2021096113A1 (en) 2019-11-11 2020-10-28 Organic compound-based lithium secondary battery, and method for producing same

Country Status (1)

Country Link
WO (1) WO2021096113A1 (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GU TIANTIAN, ZHOU MIN, HUANG BING, CAO SHENGLING, WANG JUAN, TANG YUN, WANG KANGLI, CHENG SHIJIE, JIANG KAI: "Advanced Li-organic batteries with super-high capacity and long cycle life via multiple redox reactions", CHEMICAL ENGENEERING JOURNAL, vol. 373, 1 October 2019 (2019-10-01), pages 501 - 507, XP055812150, ISSN: 1385-8947, DOI: 10.1016/j.cej.2019.05.062 *
HAIPING WU , KAI WANG , YUENA MENG , KUN LU , ZHIXIANG WEI: "An organic cathode material based on a polyimide/CNT nanocomposite for lithium ion batteries", JOURNAL OF MATERIALS CHEMISTRY A, vol. 1, no. 21, 26 March 2013 (2013-03-26), pages 6366 - 6372, XP055812147, ISSN: 2050-7488, DOI: 10.1039/C3TA10473G *
LEE, M. et al. Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chem. electronic publication 08 May 2017, vol. 19, no. 13, pp. 2980-2985. See abstract; Experimental electrochemistry, lines 10-15; Introduction, right column, lines 14-23; and figure 1. Y 1-23 *
MASAHIRO SUGURO, SHIGEYUKI IWASA, YUKI KUSACHI, YUKIKO MORIOKA, KENTARO NAKAHARA: "Cationic Polymerization of Poly(vinyl ether) Bearing a TEMPO Radical: A New Cathode-Active Material for Organic Radical Batteries", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 28, no. 18-19, 18 September 2007 (2007-09-18), pages 1929 - 1933, XP055812156, ISSN: 1022-1336, DOI: 10.1002/marc.200700300 *
XU FEI; WANG HONGTAO; WU MENGYI; NAN JIANGSAI; LI TING; CAO SHUN-AN: "Electrochemical properties of poly(anthraquinonyl imide)s as high-capacity organic cathode materials for Li-ion batteries", MATERIALS CHEMISTRY AND PHYSICS, vol. 214, 26 April 2018 (2018-04-26), pages 120 - 125, XP085399705, ISSN: 0254-0584, DOI: 10.1016/j.matchemphys.2018.04.079 *
YUKI HANYU , ITARU HONMA: "Rechargeable quasi-solid state lithium battery with organic crystalline cathode", SCIENTIFIC REPORTS, vol. 2, no. 1, 453, 12 June 2012 (2012-06-12), pages 1 - 6, XP055812158, DOI: 10.1038/srep00453 *

Similar Documents

Publication Publication Date Title
WO2017111542A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery including same
WO2015030531A1 (en) Porous silicon based particles, method for preparing same and anode active material comprising same
WO2021235794A1 (en) Secondary battery
WO2018169371A2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019013501A1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive
WO2019078644A2 (en) Positive electrode for lithium air battery, lithium air battery comprising same, and method for manufacturing positive electrode for lithium air battery
WO2020235841A1 (en) Negative electrode manufacturing device and negative electrode manufacturing method
WO2020171483A1 (en) Electrochemical device and manufacturing method thereof
WO2019203622A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018106078A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021066458A1 (en) Composite anode active material, preparation method therefor, and anode comprising same
WO2019093853A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2017209561A1 (en) Cathode active material, cathode comprising same, and lithium secondary battery comprising same
WO2018147486A1 (en) Lithium ion capacitor and manufacturing method therefor
WO2020242138A1 (en) Cathode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019039903A2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021194260A1 (en) Method for manufacturing anode
WO2021015535A1 (en) Lithium secondary battery
WO2021096113A1 (en) Organic compound-based lithium secondary battery, and method for producing same
WO2018080259A1 (en) Polymer electrolyte for secondary battery and secondary battery comprising same
WO2019088733A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021118144A1 (en) Anode active material, preparation method therefor, and anode and secondary battery each comprising same
WO2021075621A1 (en) Anode, secondary battery including same and method for manufacturing same
WO2019107855A1 (en) Polymer electrolyte for secondary battery and secondary battery comprising same
WO2019098612A1 (en) Cathode slurry composition, secondary battery cathode comprising same, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887997

Country of ref document: EP

Kind code of ref document: A1