WO2019093853A1 - Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same - Google Patents

Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2019093853A1
WO2019093853A1 PCT/KR2018/013783 KR2018013783W WO2019093853A1 WO 2019093853 A1 WO2019093853 A1 WO 2019093853A1 KR 2018013783 W KR2018013783 W KR 2018013783W WO 2019093853 A1 WO2019093853 A1 WO 2019093853A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
lithium
additive
group
Prior art date
Application number
PCT/KR2018/013783
Other languages
French (fr)
Korean (ko)
Inventor
김하은
임영민
김광연
이철행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180138408A external-priority patent/KR102242252B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880050190.4A priority Critical patent/CN111052485B/en
Priority to JP2020502297A priority patent/JP7045589B2/en
Priority to US16/634,959 priority patent/US11309583B2/en
Priority to PL18875224T priority patent/PL3648231T3/en
Priority to EP18875224.0A priority patent/EP3648231B1/en
Publication of WO2019093853A1 publication Critical patent/WO2019093853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same.
  • the lithium secondary battery developed in the early 1990s is attracting attention because of its high operating voltage and energy density.
  • the currently used lithium secondary battery is composed of a carbonaceous anode capable of intercalating and deintercalating lithium ions, a cathode made of a lithium-containing transition metal oxide or the like, and a non-aqueous electrolyte solution in which an appropriate amount of a lithium salt is dissolved in a carbonate-based organic solvent.
  • the lithium secondary battery is charged and discharged by transferring energy while repeating the phenomenon that lithium ions discharged from the positive electrode are inserted into the negative electrode, for example, carbon particles and discharged again when discharged by charging.
  • a part of the electrolyte additive components and organic solvents are decomposed in the range of 0.5 V to 3.5 V during the initial charging to form a film on the surface of the negative electrode, and lithium ions generated from the positive electrode move to the negative electrode, And reacts with the electrolytic solution to produce compounds such as Li 2 CO 3 , Li 2 O, and LiOH. These compounds form a passivation layer on the surface of the negative electrode, which is referred to as a solid electrolyte interface (SEI) film.
  • SEI solid electrolyte interface
  • the SEI film formed during the initial charge prevents the reaction between the lithium ion and the carbonaceous anode or other materials during charging and discharging. It also acts as an ion tunnel, allowing only lithium ions to pass through. This ion tunnel serves to prevent the organic solvent of the electrolyte having a large molecular weight, which is solvated by lithium ion, to co-intercalate with the carbon-based anode to collapse the structure of the carbon-based cathode. Therefore, in order to improve the high-temperature cycle characteristics and the low-temperature output of the lithium secondary battery, a solid SEI film must always be formed on the cathode of the lithium secondary battery.
  • the organic solvent used for the non-aqueous electrolyte of the lithium secondary battery is stored for a long time at a high temperature, it is generally oxidized by a side reaction with the transition metal oxide released from the anode to generate gas, Deformation of the electrode assembly occurs.
  • the SEI film is gradually collapsed to expose the negative electrode and the exposed negative electrode reacts with the electrolyte to continuously generate a side reaction Therefore, gases such as CO, CO 2 , CH 4 and C 2 H 6 are generated.
  • gases such as CO, CO 2 , CH 4 and C 2 H 6 are generated.
  • the internal pressure of the battery is increased to cause deformation such as cell swelling.
  • the battery deteriorates and the battery may be ignited or exploded.
  • a non-aqueous electrolyte solution for a lithium secondary battery which comprises an additive capable of forming a stable film on an electrode surface.
  • the present invention also provides a lithium secondary battery including the nonaqueous electrolyte solution for the lithium secondary battery, which has improved high temperature and overcharge stability and low temperature output characteristics.
  • Lithium salts Organic solvent; And an additive,
  • the additive is selected from the group consisting of lithium difluorophosphate (LiPO 2 F 2 ): LiDFP, fluorobenzene (FB), tetravinyl silane (TVS) and one sulfonate group or sulfate group which is a mixed additive containing a compound in a weight ratio of 1: 2 to 8: 0.05 to 0.3: 0.5 to 2.
  • LiPO 2 F 2 lithium difluorophosphate
  • FB fluorobenzene
  • TVS tetravinyl silane
  • sulfonate group or sulfate group which is a mixed additive containing a compound in a weight ratio of 1: 2 to 8: 0.05 to 0.3: 0.5 to 2.
  • the weight ratio of the lithium difluorophosphate, the fluorobenzene, the tetravinylsilane, and the compound containing one sulfonate group or the sulfate group may be 1: 2 to 6: 0.05 to 0.3: 0.5 to 1.5.
  • the one sulfonate group or the compound containing a sulfate group may be selected from the group consisting of ethylene sulfate, trimethylene sulfate, methyl trimethylene sulfate, 1,3-propane sultone, 1 At least one selected from the group consisting of 4-butane sultone, ethene sultone, 1,4-butene sultone, 1-methyl-1,3-propane sultone and 1,3- And may specifically be at least one selected from the group consisting of ethylene sulfate, trimethylene sulfate, 1,3-propane sultone and 1,3-propenesultone.
  • the additive may be included in an amount of 1 to 18% by weight based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
  • the nonaqueous electrolyte solution for a lithium secondary battery of the present invention can be used for forming at least one SEI film selected from the group consisting of a halogen-substituted carbonate compound, a nitrile compound, a cyclic carbonate compound, a phosphate compound, a borate compound and a lithium salt compound
  • the first additive may further comprise a first additive.
  • the nonaqueous electrolyte solution for a lithium secondary battery of the present invention may further comprise at least one second additive for forming an SEI film selected from the group consisting of diphenyl disulfide, di-p-tolyl disulfide and bis (4-methoxyphenyl) disulfide (BMPDS) May be further included.
  • BMPDS bis (4-methoxyphenyl) disulfide
  • a lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a nonaqueous electrolyte
  • the nonaqueous electrolyte solution provides a lithium secondary battery comprising the nonaqueous electrolyte solution for a lithium secondary battery of the present invention.
  • the lithium-nickel-manganese-cobalt-based oxide may be Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , Li (Ni 0.35 Mn 0.28 Co 0.37 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , And at least one selected from the group consisting of Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2, and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 .
  • a nonaqueous electrolyte solution for a lithium secondary battery capable of forming a stable SEI film on the surface of a negative electrode by including an additive in which four kinds of compounds are mixed in a specific ratio. Also, by including it, it is possible to manufacture a lithium secondary battery having improved performance such as high temperature, overcharge stability, and low temperature output characteristics.
  • Example 1 is a graph showing a result of evaluation of low-temperature output characteristics of a lithium secondary battery according to Experimental Example 1 of the present invention.
  • Example 2 is a graph showing the overcharge stability evaluation result of the lithium secondary battery of Example 1 according to Experimental Example 6 of the present invention.
  • Lithium salts Organic solvent; And an additive,
  • the additive may be selected from the group consisting of lithium difluorophosphate (LiDFP), fluorobenzene (FB), tert-vinylsilane (TVS) and a compound containing one sulfonate group or sulfate group in a ratio of 1: To 8: 0.05 to 0.3: 0.5 to 2 by weight, based on the total weight of the non-aqueous electrolyte.
  • LiDFP lithium difluorophosphate
  • FB fluorobenzene
  • TVS tert-vinylsilane
  • the lithium salt may be any of those conventionally used in an electrolyte for a lithium secondary battery, and may include, for example, Li + as a cation of the lithium salt
  • the anions include F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , ClO 4 - , BF 4 - , B 10 Cl 10 - , PF 6 - , CF 3 SO 3 - CH 3 CO 2 -, CF 3 CO 2 -, AsF 6 -, SbF 6 -, AlCl 4 -, AlO 4 -, CH 3 SO 3 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF
  • the lithium salt may be LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiAlO 4 , LiCH 3 SO 3 , LiFSI (lithium fluorosulfonyl imide, LiN (SO 2 F) 2 ), LiTFSI (lithium bis) trifluoromethanesulfonimide, LiN (SO 2 CF 3 ) 2 and LiBETI (lithium bisperfluoroethanesulfonimide, 2 C 2 F 5 ) 2 ), or a mixture of two or more thereof.
  • LiFSI lithium fluorosulfonyl imide, LiN (SO 2 F) 2
  • LiTFSI lithium bis
  • LiN (SO 2 CF 3 ) 2 and LiBETI lithium bisperfluor
  • the lithium salt is LiPF 6, LiBF 4, LiCH 3 CO 2, LiCF 3 CO 2, LiCH 3 SO 3, LiFSI, LiTFSI and LiN (C 2 F 5 SO 2 ) or more danilmul selected from the group consisting of 2 or two And mixtures thereof.
  • the lithium salt does not include LiDFP, which is a lithium salt contained in the mixed additive.
  • the lithium salt may be appropriately changed within a range that is generally usable, but specifically, it may be contained in the electrolyte in an amount of 0.1M to 3M, specifically 0.8M to 2.5M. If the concentration of the lithium salt exceeds 3M, the viscosity of the non-aqueous electrolyte increases to lower the lithium ion transporting effect, and the wettability of the non-aqueous electrolyte deteriorates, making it difficult to form a uniform SEI film.
  • the organic solvent may minimize decomposition due to an oxidation reaction or the like during charging and discharging of the secondary battery,
  • a carbonate-based organic solvent, an ether-based organic solvent or an ester-based organic solvent may be used alone or in combination of two or more.
  • the carbonate-based organic solvent in the organic solvent may include at least one of a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent.
  • the cyclic carbonate-based organic solvent is selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, (Ethylene carbonate), ethylene carbonate (ethylene carbonate) having a high dielectric constant and ethylene carbonate (ethylene carbonate) having a dielectric constant higher than that of ethylene carbonate, And a mixed solvent of propylene carbonate having a low melting point.
  • the linear carbonate-based organic solvent may be a solvent having a low viscosity and a low dielectric constant, such as dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC) And at least one selected from the group consisting of propyl carbonate, ethyl carbonate, propyl carbonate, and ethyl propyl carbonate, and more specifically, dimethyl carbonate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • the ether organic solvent may be selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether, or a mixture of two or more thereof. It is not.
  • the ester-based organic solvent may include at least one selected from the group consisting of a linear ester organic solvent and a cyclic ester organic solvent.
  • the linear ester organic solvent may be any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate. A mixture of two or more thereof, and the like may be used, but the present invention is not limited thereto.
  • cyclic ester organic solvent examples include any one selected from the group consisting of? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone and? -Caprolactone, or 2 Mixtures of two or more species may be used, but are not limited thereto.
  • the organic solvent may be a high-viscosity cyclic carbonate-based organic solvent having high permittivity and dissociating the lithium salt in the electrolyte. Further, in order to produce an electrolyte having a higher electrical conductivity, the organic solvent may be used together with the above-mentioned environmental carbonate-based organic solvent to prepare a low viscosity, low dielectric constant linear carbonate compound and linear ester compound such as dimethyl carbonate and diethyl carbonate They can be mixed and used in an appropriate ratio.
  • the organic solvent may be a mixture of a cyclic carbonate compound and a linear carbonate compound.
  • the weight ratio of the cyclic carbonate compound to the linear carbonate compound in the organic solvent may be 10:90 to 70:30.
  • the nonaqueous electrolyte solution for a lithium secondary battery of the present invention may include an additive which is a mixture of lithium difluorophosphate, fluorobenzene, tetravinylsilane, and one sulfonate group or a compound containing a sulfate group.
  • lithium difluorophosphate represented by the following formula (1), which is one of the components of the mixed additive, is a component for realizing long-term lifetime improvement effect of a secondary battery, and is electrochemically decomposed
  • the SEI film can be formed to prevent exposure to the non-aqueous electrolyte. As a result, it is possible to suppress the generation of O 2 from the anode and the side reaction between the anode and the electrolyte, thereby improving the durability of the battery. Further, since the di-fluorophosphate structure is reduced when the battery is driven, a stable and stable SEI film can be formed on the surface of the negative electrode, thereby improving durability and high-temperature storage characteristics of the battery.
  • the fluorobenzene represented by the following formula (2) which is one of the components of the mixed additive, is a component for improving the stability during overcharging.
  • the product decomposed at a specific potential forms a polymer layer on the surface of the positive electrode and the negative electrode, By preventing the side reaction of the electrode, the high temperature storage stability of the lithium secondary battery can be improved.
  • Tetravinyl silane (TVS) represented by the following chemical formula (3), which is one of the mixed additive components, forms a solid SEI film through physical adsorption and electrochemical reaction on the surfaces of the positive and negative electrodes, It is possible to prevent exposure of the cathode. As a result, it is possible to suppress the side reaction of the non-aqueous electrolyte at high temperature and the electrode, and to prevent the increase in resistance, so that the high temperature storage stability of the lithium secondary battery can be improved.
  • one sulfonate group or a compound containing a sulfate group, which is one of the above-mentioned mixed additive components can form a stable coating film that is not cracked even when stored at high temperature on the surface of the negative electrode.
  • the negative electrode coated with such a coating suppresses the decomposition of the non-aqueous solvent by the negative active material during storage at a high temperature even when a carbon material highly crystallized by the activity of natural graphite or artificial graphite is used for the negative electrode, have. Therefore, high temperature stability of the lithium secondary battery and cycle life and capacity characteristics at high temperature storage can be improved, and resistance reduction can be suppressed.
  • the one sulfonate group or the compound containing a sulfate group may be selected from the group consisting of ethylene sulfate (Esa) represented by the following formula (4a), trimethylene sulfate (TMS) represented by the following formula (4b) Methyl trimethylene sulfate (MTMS), 1,3-propane sultone (PS), 1,4-butane sultone, ethene sultone, 1,4-butene sultone And 1-methyl-1,3-propenesultone and 1,3-propenesultone (PRS) represented by the following formula (4e).
  • Esa ethylene sulfate
  • TMS trimethylene sulfate
  • MTMS Methyl trimethylene sulfate
  • PS 1,3-propane sultone
  • PRS 1-methyl-1,3-propenesultone and 1,3-propenesultone
  • the one sulfonate group or the compound containing a sulfate group may be at least one or more of ethylene sulfate, trimethylene sulfate, 1,3-propane sultone and 1,3-propene sultone.
  • Such a sulfonate group or a compound containing a sulfate group may be used in an amount of up to 6.5% by weight, specifically 0.1% by weight to 6.5% by weight, more specifically 0.5% by weight to 4.0% by weight, based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery .
  • the compound containing lithium difluorophosphate, fluorobenzene, tetravinylsilane and one sulfonate group or sulfate group may be used in a ratio of 1: 2 to 8: 0.05 to 0.3: 0.5 to 2, particularly 1: 2 to 6 : 0.05 to 0.3: 0.5 to 1.5 by weight.
  • weight ratio of fluorobenzene to lithium difluorophosphate is 8 or less, an increase in internal resistance of the battery due to excessive use of the additive can be prevented. Further, when the weight ratio of the fluorobenzene is 2 or more, stability at the time of overcharging can be improved.
  • the weight ratio of the tetravinylsilane to the lithium difluorophosphate is 0.3 or less, side reactions due to surplus tetravinylsilane are caused to prevent the resistance of the battery from increasing and the cycle life characteristics are lowered Can be prevented.
  • the weight ratio of tetravinylsilane is 0.05 or more, the gas generation reduction effect and the SEI film formation stabilization effect can be obtained.
  • the weight ratio of the compound containing one sulfonate group or sulfate group to the lithium difluorophosphate is 2 or less, a stabilizing effect upon formation of the SEI film can be ensured and high-temperature storage characteristics and cycle life characteristics can be improved .
  • the weight ratio of the one sulfonate group or the sulfate group-containing compound is 0.5 or more, it is possible to improve the stability of the SEI film and suppress the electrolyte side reaction without increasing the resistance.
  • the additive is contained in an amount of 1 to 18 wt%, specifically 8 to 10 wt% based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery .
  • the content of the additive is 1 wt% or more, it is possible to form a stable (SEI) coating on the surface of the negative electrode, and to prevent decomposition of the electrolyte due to reaction between the electrolyte and the negative electrode, The expected effect can be met.
  • SEI stable
  • the solubility and wettability may deteriorate as the viscosity of the non-aqueous electrolyte increases due to the excess amount of the additive, resulting in degradation of output characteristics and cycle life characteristics.
  • lithium ions from the lithium metal oxide used as an anode migrate to a carbon (crystalline or amorphous) electrode used as a cathode and are intercalated into the carbon of the cathode.
  • a carbon (crystalline or amorphous) electrode used as a cathode used as a cathode and is intercalated into the carbon of the cathode.
  • an organic material and Li 2 CO 3 , Li 2 O, LiOH, etc. are formed by reacting with the carbon-based anode, and these form an SEI film on the surface of the cathode.
  • the SEI film will prevent the reaction between the lithium ion and the carbon-based anode or other materials during repeated charging and discharging by the use of the battery, and serves as an ion tunnel through which only lithium ions pass between the electrolyte and the cathode . Due to the ion tunneling effect, the SEI film prevents the migration of organic solvents, such as EC, DMC, DEC, PP, etc., having a large molecular weight to the carbonaceous cathode, co-decomposition of the structure of the carbon-based anode. That is, once the film is formed, the lithium ions do not react with the carbonaceous anode or other materials, and thereby the amount of lithium ions can be reversibly maintained at the time of charge / discharge by the use of the battery.
  • organic solvents such as EC, DMC, DEC, PP, etc.
  • the carbon material of the negative electrode reacts with the electrolytic solution at the time of initial charging to form a passivation layer on the surface of the negative electrode so as to maintain stable charging / discharging without further decomposition of the electrolytic solution.
  • the amount of charge consumed in the layer formation is irreversible capacity, which is characterized in that it does not react reversibly during discharging. For this reason, the lithium ion battery can maintain a stable life cycle without any irreversible reaction after the initial charging reaction .
  • the lithium ion battery when the lithium ion battery is stored at a high temperature (for example, at a temperature of 60 ° C after being charged at a temperature of 4.15 V or more at 100%) in a fully charged state, the SEI film gradually degrades due to increased electrochemical energy and thermal energy over time .
  • a high temperature for example, at a temperature of 60 ° C after being charged at a temperature of 4.15 V or more at 100%
  • Such SEI film breakdown exposes the surface of the negative electrode, and the exposed negative electrode surface is decomposed while the carbonate-based solvent in the electrolyte is reacted to cause continuous side reaction.
  • the main gases produced are CO, CO 2 , CH 4 , C 2 H 6, etc., depending on the type of carbonate used and the kind of negative active material used. Regardless of the type, continuous gas evolution at high temperatures causes the cell internal pressure of the lithium ion battery to rise, causing the cell thickness to expand.
  • the nonaqueous electrolyte solution for a lithium secondary battery of the present invention includes a mixed additive in which lithium difluorophosphate, fluorobenzene, tetravinylsilane and one sulfonate group or a compound containing a sulfate group are mixed in a specific ratio, It is possible to improve the overall performance such as high-temperature storage characteristics and lifetime characteristics of the lithium secondary battery by suppressing the electrolyte side reaction during high-temperature storage as well as improving the low-temperature output characteristics by forming a more stable and solid SEI film on the surface of the negative electrode .
  • the non-aqueous electrolyte according to an embodiment of the present invention may be used together with the above-mentioned mixed additive to form a stable coating on the surface of the negative electrode and the positive electrode,
  • An additional additive capable of suppressing the decomposition of the solvent in the electrolyte solution and serving as a complementary agent for improving the mobility of the lithium ion may be further included.
  • Such an additive is not particularly limited as long as it is an additive for forming an SEI film capable of forming a stable film on the surfaces of the anode and the cathode.
  • the SEI film forming additive includes at least one SEI film selected from the group consisting of a halogen-substituted carbonate compound, a nitrile compound, a cyclic carbonate compound, a phosphate compound, a borate compound and a lithium salt compound And a second additive for forming the first additive.
  • the halogen-substituted carbonate compound is fluoroethylene carbonate (FEC)), and may be contained in an amount of 5% by weight or less based on the total weight of the non-aqueous electrolyte. If the content of the halogen-substituted carbonate compound exceeds 5% by weight, the cell swelling performance may deteriorate.
  • FEC fluoroethylene carbonate
  • the nitrile compound may be at least one selected from the group consisting of succinonitrile, adiponitrile (Adn), acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile, In the group consisting of 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile At least one compound selected.
  • nitrile compound when used together with the above-mentioned mixed additive, effects such as improvement in high-temperature characteristics can be expected by stabilizing the positive / negative electrode coating.
  • it can serve as a complement in forming the negative electrode SEI coating, can play a role of inhibiting the decomposition of the solvent in the electrolyte, and can improve the mobility of lithium ions.
  • Such a nitrile compound may be contained in an amount of 8% by weight or less based on the total weight of the nonaqueous electrolyte solution. If the total content of the nitrile compound in the nonaqueous electrolyte exceeds 8 wt%, resistance increases due to an increase in the film formed on the surface of the electrode, and battery performance may be deteriorated.
  • the carbonate-based compound forms a stable SEI film mainly on the surface of the negative electrode at the time of battery activation, thereby improving the durability of the battery.
  • the cyclic carbonate-based compound may be vinylene carbonate (VC) or vinylethylene carbonate.
  • the cyclic carbonate-based compound may include up to 3% by weight based on the total weight of the non-aqueous electrolyte. When the content of the cyclic carbonate compound in the nonaqueous electrolyte solution exceeds 3% by weight, the cell swelling inhibition performance and initial resistance may be deteriorated.
  • phosphate-based compounds include, but are not limited to, difluoro (bisoxalato) phosphate (LiDFOP), tetramethyltrimethylsilyl phosphate (LiTFOP), trimethylsilylphosphite (TMSPi), tris (2,2,2-trifluoroethyl) phosphate (TFEPa) and tris (trifluoroethyl) phosphite (TFEPi), and may be contained in an amount of 3% by weight or less based on the total weight of the nonaqueous electrolyte solution.
  • the borate compound promotes ion-pair separation of the lithium salt, improves the mobility of lithium ions, can lower the interfacial resistance of the SEI film, and can be used for a material such as LiF By dissociation, problems such as generation of hydrofluoric acid gas can be solved.
  • a borate compound include lithium foroxylate borate (LiBOB, LiB (C 2 O 4 ) 2 ), lithium oxalyl difluoroborate or tetramethyltrimethylsilylborate (TMSB), and based on the total weight of the non- 3% by weight or less.
  • the lithium salt compound may be at least one compound selected from the group consisting of LiODFB and LiBF 4 , which is different from the lithium salt contained in the non-aqueous electrolyte.
  • the lithium salt compound may be contained in an amount of not more than 3% by weight based on the total weight of the non- .
  • the first additives for forming the SEI film may be used in combination of two or more, and may be contained in an amount of 10 wt% or less, specifically 0.01 wt% to 10 wt%, preferably 0.1 wt% to 5.0 wt% based on the total amount of the electrolytic solution .
  • the content of the first additive for SEI film formation is less than 0.01% by weight, the high-temperature storage characteristics and gas reduction effect to be realized from the additive are insignificant. If the content of the first additive for SEI film formation exceeds 10% by weight There is a possibility that a side reaction in the electrolytic solution occurs excessively during charging and discharging of the battery. In particular, when the first additive for SEI film formation is added in an excessive amount, it can not be decomposed sufficiently and may be present in the electrolyte solution at room temperature without being reacted or precipitated. As a result, the resistance increases and the lifetime characteristics of the secondary battery may be deteriorated.
  • the nonaqueous electrolyte solution for a lithium secondary battery may include diphenyl disulfide (DPDS), di-p-tolyl disulfide (DTDS), and bis (4- Methoxyphenyl) disulfide (BMPDS) as a second additive for forming at least one SEI film.
  • DPDS diphenyl disulfide
  • DTDS di-p-tolyl disulfide
  • BMPDS bis (4- Methoxyphenyl) disulfide
  • the second additive for forming the SEI film contributes to the formation of a stable protective film on the surface of the negative electrode carbon material.
  • This protective film maintains a stable state even if charge and discharge are repeated.
  • the non-aqueous solvent in the electrolytic solution is electrochemically reduced and gas generation is suppressed.
  • peeling of the negative electrode carbon material from the negative electrode can be suppressed and the cycle characteristics can be improved.
  • DPDS, DTDS, and BMPDS act on the polar terminal end of PVDF and P (VDF-HFP), which are the binders, of the reaction product of the nonaqueous solvent and the carbonaceous anode at the time of forming the protective film, and the swelling of the binder by the non- And the adhesion between the electrode materials is maintained.
  • VDF-HFP the binders
  • the second additive for forming the SEI film may be contained in an amount of 0.6 wt% or less, specifically 0.1 wt% to 0.6 wt%, based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery. If the content of the additive is 0.1% by weight or more, the effect to be achieved from the additive can be obtained. When the additive is 0.6% by weight or less, a side reaction due to a surplus additive can be prevented.
  • a lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a nonaqueous electrolyte
  • the nonaqueous electrolyte solution provides a lithium secondary battery comprising the nonaqueous electrolyte solution of the present invention.
  • the anode may include a lithium-nickel-manganese-cobalt oxide as a cathode active material.
  • the positive electrode, the negative electrode, and the separator interposed between the positive electrode and the negative electrode are sequentially laminated to form an electrode assembly.
  • the positive electrode, negative electrode, And those used in the production of lithium secondary batteries can all be used.
  • the positive electrode may be produced by forming a positive electrode mixture layer on the positive electrode collector.
  • the positive electrode mixture layer may be formed by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode collector, followed by drying and rolling.
  • the positive electrode collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery.
  • the positive electrode collector may be formed of a metal such as carbon, stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
  • Li (Ni p Co q Mn r 1 ) O 2 for example, Li (Ni p Co q Mn r 1 ) O 2
  • the positive electrode active material that is a typical example Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2, Li (Ni 0.35 Mn 0.28 Co 0.37) O 2, Li (Ni 0.6 Mn 0.2 Co 0.2) O 2, Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2, and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 .
  • LiMnO 2 , LiMn 2 O 4, etc. a lithium-cobalt oxide (for example, LiCoO 2, etc.) in addition to the lithium-nickel-manganese-cobalt oxide, Lithium-nickel-based oxides such as LiNiO 2 , lithium-nickel-manganese-based oxides such as LiNi 1 -Y Mn Y O 2 (where 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (where, 0 ⁇ Z ⁇ 2) and the like), lithium-nickel-cobalt oxide (e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.), lithium-manganese-cobalt oxide (e.
  • M lithium-nickel-cobalt-transition metal oxide
  • Such a cathode active material may be LiCoO 2 , LiMnO 2 , LiNiO 2 , or lithium nickel cobalt aluminum oxide (for example, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.).
  • the positive electrode active material may include 90 wt% to 99 wt%, specifically 93 wt% to 98 wt%, based on the total weight of the solid content in the positive electrode slurry.
  • the binder is a component that assists in bonding of the active material to the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 30 wt% based on the total weight of the solid content in the positive electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene (Ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM tetrafluoroethylene
  • EPDM tetrafluoroethylene
  • EPDM sulfonated EPDM
  • the conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery.
  • the conductive material may be carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, Carbon powder; Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the positive electrode slurry.
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that provides a preferable viscosity when the positive electrode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the solid content in the slurry containing the cathode active material, and optionally the binder and the conductive material may be 10 wt% to 70 wt%, preferably 20 wt% to 60 wt%.
  • the negative electrode may be manufactured by forming a negative electrode mixture layer on the negative electrode collector.
  • the negative electrode material mixture layer may be formed by coating a negative electrode current collector with a slurry containing a negative electrode active material, a binder, a conductive material, a solvent, and the like, followed by drying and rolling.
  • the anode current collector generally has a thickness of 3 to 500 mu m.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • Examples of the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used.
  • fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
  • the negative electrode active material may be a lithium metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal complex oxide, lithium capable of doping and dedoping lithium Materials, and transition metal oxide transition metal oxides.
  • the carbonaceous material capable of reversibly intercalating / deintercalating lithium ions is not particularly limited as long as it is a carbonaceous anode active material generally used in a lithium ion secondary battery.
  • the carbonaceous material include crystalline carbon, Amorphous carbon or any combination thereof.
  • the crystalline carbon include graphite such as natural graphite or artificial graphite in the form of amorphous, plate-like, flake, spherical or fiber, and examples of the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, fired coke, and the like.
  • the metal or an alloy of these metals and lithium may be selected from the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, And Sn, or an alloy of these metals and lithium may be used.
  • metal composite oxide is PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0? X? 1), Li x WO 2 (0? X? 1), and Sn x Me 1-x Me y y z , Pb, Ge, Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen: 0 ⁇ x? 1; 1? Y? May be used.
  • Si As the material capable of doping and dedoping lithium, Si, SiO x (0 ⁇ x? 2), Si-Y alloy (Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, Rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (wherein Y is at least one element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Element and an element selected from the group consisting of combinations thereof, and not Sn), and at least one of them may be mixed with SiO 2 .
  • Si-Y alloy Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, Rare earth elements and combinations thereof, but not Si
  • Sn, SnO 2 Sn-Y (wherein Y is at least one element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Element
  • the element Y may be at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Se, Te, Po, and combinations thereof.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, lithium vanadium oxide, and the like.
  • the negative active material may be contained in an amount of 80% by weight to 99% by weight based on the total weight of the solid content in the negative electrode slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof.
  • the conductive material is a component for further improving the conductivity of the negative electrode active material and may be added in an amount of 1 to 20 wt% based on the total weight of the solid content in the negative electrode slurry.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include water or an organic solvent such as NMP, alcohol, etc., and may be used in an amount in which the negative electrode active material and, optionally, a binder, a conductive material, and the like are contained in a desired viscosity.
  • the slurry containing the negative electrode active material and, optionally, the binder and the conductive material may be contained in such a manner that the solid concentration of the slurry is 50% by weight to 75% by weight, preferably 50% by weight to 65% by weight.
  • a conventional porous polymer film conventionally used as a separator for example, a polyolefin such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer
  • a porous polymer film made of a high molecular weight polymer may be used alone or in a laminated manner, or a nonwoven fabric made of a conventional porous nonwoven fabric such as a glass fiber having a high melting point, a polyethylene terephthalate fiber or the like may be used. It is not.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
  • LiDFP Lithium difluorophosphate
  • FB Fluorobenzene
  • TVS tetravinylsilane
  • PS 1,3-propane sultone
  • a negative active material Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2
  • a conductive material carbon black
  • a binder polyvinylidene fluoride
  • a negative electrode active material slurry (solid concentration: 60% by weight) was prepared by adding a negative electrode active material (artificial graphite), a binder (PVDF), and a conductive material (carbon black) to NMP as a solvent at a weight ratio of 95: 2: 3.
  • the negative electrode active material slurry was coated on a negative electrode current collector (Cu thin film) having a thickness of 90 ⁇ , dried, and rolled to produce a negative electrode.
  • the positive electrode and the negative electrode prepared by the above-mentioned method were sequentially laminated together with a polyethylene porous film to prepare an electrode assembly, which was then placed in a battery case, the nonaqueous electrolyte was injected, and the battery was sealed to manufacture a lithium secondary battery.
  • Example 2 In the same manner as in Example 1 except that 5.4 g of a mixed additive obtained by mixing LiDFP: FB: TVS: PS in an amount of 1: 2: 0.1: 1.5 by weight as an additive was added to 94.6 g of a solvent during the preparation of the non- To prepare a nonaqueous electrolyte of the present invention and a secondary battery comprising the same (see Table 1 below).
  • Example 1 In the same manner as in Example 1 except that 11.3 g of a mixed additive obtained by mixing LiDFP: FB: TVS: PS in an amount of 1: 8: 0.3: 2 by weight as an additive was added to 88.7 g of a solvent during the preparation of the non- To prepare a nonaqueous electrolyte of the present invention and a secondary battery comprising the same (see Table 1 below).
  • Example 2 In the same manner as in Example 1 except for adding, to the 83.05 g of the solvent, 16.95 g of a mixed additive obtained by mixing LiDFP: FB: TVS: PS in a weight ratio of 1: 8: 0.3: To prepare a nonaqueous electrolyte of the present invention and a secondary battery comprising the same (see Table 1 below).
  • Example 1 The procedure of Example 1 was repeated except for adding 16.95 g of a mixed additive obtained by mixing 83.05 g of a solvent with LiDFP: FB: TVS: PS: TMS in a weight ratio of 1: 8: 0.3:
  • the non-aqueous electrolyte of the present invention and a secondary battery containing the same were prepared (see Table 1 below).
  • a nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1 except that only 3 g of vinylene carbonate was added as an additive to 97 g of a solvent in the preparation of the nonaqueous electrolyte (see Table 2 below).
  • a non-aqueous electrolyte and a secondary battery containing the non-aqueous electrolyte were prepared in the same manner as in Example 1 except that only 2 g of LiBF 4 was added as an additive to 98 g of a solvent in the preparation of the non-aqueous electrolyte (see Table 2 below).
  • Example 2 In the same manner as in Example 1, except that 9 g of a mixed additive in which LiDFP: FB: TVS: PS was mixed at a weight ratio of 1: 6: 0.5: 1.5 as an additive was added to 91 g of a solvent at the time of preparing the non-aqueous electrolyte, To prepare an electrolytic solution and a secondary battery containing the electrolytic solution (see Table 2 below).
  • Aqueous electrolyte solution was prepared in the same manner as in Example 1, except that 8.2 g of a mixed additive obtained by mixing FB: TVS: PS at a weight ratio of 6: 0.2: 2 as an additive in 91.8 g of a solvent was added. And a secondary battery containing the same was prepared (see Table 2 below).
  • Aqueous electrolyte solution was prepared in the same manner as in Example 1, except that 5.2 g of a mixed additive obtained by mixing 94.8 g of a solvent with LiDFP: TVS: PS at a weight ratio of 2: 0.2: 3 as an additive was added. And a secondary battery containing the same was prepared (see Table 2 below).
  • Aqueous electrolyte solution was prepared in the same manner as in Example 1, except that 8.5 g of a mixed additive in which LiDFP: FB: PS was mixed at a weight ratio of 1: 6: 1.5 as an additive was added to 91.5 g of a solvent at the time of preparing the non- And a secondary battery containing the same was prepared (see Table 2 below).
  • Aqueous electrolyte solution was prepared in the same manner as in Example 1, except that 7.2 g of a mixed additive obtained by mixing LiDFP: FB: TVS in an amount of 1: 6: 0.2 by weight as an additive in 92.8 g of a solvent was added. And a secondary battery containing the same was prepared (see Table 2 below).
  • Example 2 The procedure of Example 1 was repeated except that 2.15 g of a mixed additive prepared by mixing 97.85 g of a solvent with LiDFP: FB: TVS: TMS in a weight ratio of 0.9: 8: 0.3: 2 as an additive was added during the preparation of the non- To prepare a nonaqueous electrolyte and a secondary battery containing the same (see Table 2 below).
  • Example 2 In the same manner as in Example 1 except that 3.5 g of a mixed additive in which LiDFP: FB: TVS: PS was mixed at a weight ratio of 1: 6: 0.2: 0.4 as an additive was added to 96.5 g of a solvent at the time of preparing the non- To prepare a nonaqueous electrolyte and a secondary battery containing the same (see Table 2 below).
  • Each of the lithium secondary batteries prepared in Examples 1 and 4 and Comparative Example 1 and Comparative Example 4 was charged at a constant voltage of 0.33 C / 4.25 V constant current-constant voltage 4.25 V / 0.05 C condition and discharging SOC 50% at a constant current of 0.33C to adjust the charged state of the battery.
  • Each of the secondary batteries was allowed to stand for 4 hours or more at -30 ° C for temperature equilibrium, and then the voltage drop was measured in a state where a discharge pulse was applied for 30 seconds at a power of 3W to 7W.
  • the SOC setting and the evaluation of the output power at low temperature were conducted using a PNE-0506 charge / discharge device (PNE solution, 5V, 6A, manufactured by the company).
  • the output characteristics at low temperature for each secondary battery are calculated using the obtained falling voltage value, and are shown in Fig.
  • the voltage drop of the lithium secondary battery including the non-aqueous electrolyte according to the first and fourth embodiments of the present invention is smaller than that of the lithium secondary batteries of Comparative Examples 1 and 4 . From these results, it can be confirmed that the low-temperature output characteristics are excellent.
  • the lithium secondary batteries prepared in Examples 1 to 15 and the lithium secondary batteries prepared in Comparative Examples 1 to 13 were respectively charged at a constant current / constant voltage (CC / CV) of 4.25 V / 0.05 C And discharged at a constant current of 0.33C / 3.0V.
  • the initial discharge capacity was defined as the discharge capacity measured by using a PNE-0506 charge / discharge device (manufactured by PNE Co., Ltd., 5V, 6A) prior to cell assembly / high temperature storage.
  • Each lithium secondary battery was set to a SOC 100% charged state and stored at 60 ⁇ ⁇ for 16 weeks.
  • the battery was charged at a constant current / constant voltage (CC / CV) of 4.25 V / 0.05 C at 25 ° C and discharged at a constant current of 0.33 C / 3.0 V, and charged in a PNE-0506 charge / discharge device Solution, 5V, 6A) was used to measure the discharge capacity.
  • the measured discharge capacity was defined as discharge capacity after high temperature storage.
  • Capacity retention rate (%) (discharge capacity after high-temperature storage / initial discharge capacity) x 100
  • the lithium secondary batteries prepared in Examples 1 to 15 and the lithium secondary batteries prepared in Comparative Examples 1 to 13 were respectively discharged at a constant current of 0.33 C at 25 DEG C for an SOC of 50%
  • the output of each lithium secondary battery was measured through a voltage drop at a constant current (CC) condition of 2.5 V and a discharge pulse for 30 seconds at 2.5C.
  • the discharge output value measured using a PNE-0506 charge / discharge device was defined as an initial discharge output after cell assembly / high temperature storage.
  • Each lithium secondary battery was set to a SOC 100% charged state and stored at 60 ⁇ ⁇ for 16 weeks.
  • the battery was charged at a constant current / constant voltage (CC / CV) of 4.25 V / 0.05 C at 25 ° C and discharged at a constant current of 0.33 C / 3.0 V, and charged in a PNE-0506 charge / discharge device Solution, 5V, 6A) was used to measure the discharge output value.
  • the measured discharge output value was defined as discharge output value after storing at high temperature.
  • the lithium secondary batteries manufactured in Examples 1 to 15 and the lithium secondary batteries prepared in Comparative Examples 1 to 13 were respectively driven at a voltage of 3.0 V to 4.25 V at 25 ⁇ in a voltage driving range of 0.33 C / 4.25 V constant current - constant voltage 4.25 V / 0.05C, and the thickness of each secondary cell was measured with a plate thickness meter (Mitutoyo (Japan)) under SOC 100% condition.
  • the initial thickness measured after cell assembly is defined as the initial thickness
  • the initial charge and discharge of the rechargeable lithium secondary batteries were charged to 4.2 V of SOC up to 100%, stored at 60 DEG C for 16 weeks, cooled at room temperature, and then stored at a high temperature using a plate thickness meter (Mitutoyo, The thickness was measured.
  • Thickness increase rate (%) ⁇ (thickness after high temperature storage - initial thickness) / initial thickness ⁇ x 100
  • the lithium secondary batteries prepared in Examples 1 to 15 and the lithium secondary batteries prepared in Comparative Examples 1 to 13 were respectively charged at 25 DEG C at 45 DEG C and at a constant current / constant voltage (CC / CV) of 4.25 V /0.05C and discharged at a constant current of 0.33C / 3.0V.
  • the charging and discharging was performed in one cycle, and the charging and discharging was repeated 500 times.
  • cycle life characteristic (%) (500 cycle capacity / one cycle capacity) x 100
  • PS means 1,3-propane sultone
  • PRS means 1,3-propanesultone
  • TMS means trimethylene sulfate
  • ESa means ethylene sulfate.
  • MMDS means methylene methane disulfonate.
  • the lithium secondary battery having the non-aqueous electrolyte containing the mixed additives of Examples 1 to 14 had a capacity retention rate of 79.1% or more after high temperature storage, an output characteristic of 81.9%
  • the cycle life characteristics are all significantly improved.
  • Example 7 Comparing the lithium secondary batteries of Example 7 and Comparative Example 7 in which addition of fluorobenzene was different among the additive components, the battery of Comparative Example 7 was ignited during overcharging, whereas in Example 7 Of the lithium secondary battery can not be ignited during overcharging while maintaining the capacity retention rate, output characteristics, cell thickness increase rate, and high temperature cycle life characteristics after high temperature storage.
  • the lithium secondary battery of Example 7 is superior to the lithium secondary battery of Comparative Example 8 by addition of tetravinylsilane It can be seen that exceptionally good capacity retention, output characteristics and cycle life characteristics are realized except for the cell thickness increase rate after high temperature storage.
  • the lithium secondary battery exhibits excellent capacity and output characteristics and cycle life characteristics at a high temperature, which is superior to that of the lithium secondary battery, and exhibits an excellent effect of suppressing the cell thickness increase.
  • the lithium secondary batteries of Examples 1 to 14 having the non- The capacity retention rate, the output characteristics, and the cycle life characteristics are all degraded.
  • the lithium secondary battery manufactured in Example 1 and the lithium secondary battery manufactured in Comparative Example 7 were each subjected to a SOC 100% state at 25 ⁇ ⁇ using a PNE-0506 charge / discharge device (PNE solution, 5V, 6A, 0.33C / 4.25V constant current / constant voltage (CC / CV) conditions. Thereafter, overcharging was carried out with a correct current of 0.33C up to 6.4 V, and the change of temperature and voltage of the battery was measured to confirm whether or not the battery was ignited.
  • the results of the lithium secondary battery of Example 1 are shown in FIG. 2, and the results of the lithium secondary battery of Comparative Example 7 are shown in FIG.
  • the voltage was found to be 5.0 V or less in the range of 7 to 22 minutes, while fluorobenzene It is found that the voltage of the lithium secondary battery of Comparative Example 7 (see FIG. 3) provided with the nonaqueous electrolyte solution which does not react with the nonaqueous electrolyte solution rose to 5.2 V around 25 minutes.
  • the fluorobenzene reacts with the corresponding voltage band to decompose, thereby suppressing the additional reaction between the battery and the electrolyte, thereby preventing overcharge of the battery.
  • ignition is suppressed by significantly preventing the electrolyte depletion and lithium precipitation due to the temperature increase of the battery and the additional overcharge.

Abstract

The present invention relates to a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same and, specifically, to a non-aqueous electrolyte for a lithium secondary battery, the non-aqueous electrolyte comprising: a lithium salt; an organic solvent; and an additive, the additive being a mixture additive comprising lithium difluorophosphate, fluorobenzene, tetravinyl silane, and a compound containing one sulfonate group or sulfate group at a weight ratio of 1 : 2-8 : 0.05-0.3 : 0.5-2, and to a lithium secondary battery comprising the same.

Description

리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
관련 출원(들)과의 상호 인용Cross-reference with related application (s)
본 출원은 2017년 11월 13일자 한국 특허 출원 제2017-0150920호 및 2018년 11월 12일자 한국 특허 출원 제2018-0138408호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2017-0150920, dated November 13, 2017, and Korean Patent Application No. 2018-0138408, dated November 12, 2018, all of which are incorporated herein by reference in their entirety The contents of which are incorporated herein by reference.
기술분야Technical field
본 발명은 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a nonaqueous electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있으며, 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다.In recent years, interest in energy storage technology has been increasing, and efforts for research and development of electrochemical devices are becoming more and more specific as the applications of cell phones, camcorders, notebook PCs, and electric vehicles are expanded.
전기화학소자 중에서도 충방전이 가능한 이차전지의 개발에 대한 관심이 대두되고 있으며, 특히 1990년대 초에 개발된 리튬 이차전지는 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점에서 각광 받고 있다.Among the electrochemical devices, there is a growing interest in the development of a rechargeable secondary battery. In particular, the lithium secondary battery developed in the early 1990s is attracting attention because of its high operating voltage and energy density.
현재 적용되고 있는 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 카본계 음극과, 리튬 함유 전이금속 산화물 등으로 이루어진 양극, 및 카보네이트계 유기용매에 리튬염이 적당량 용해된 비수전해액으로 구성된다. The currently used lithium secondary battery is composed of a carbonaceous anode capable of intercalating and deintercalating lithium ions, a cathode made of a lithium-containing transition metal oxide or the like, and a non-aqueous electrolyte solution in which an appropriate amount of a lithium salt is dissolved in a carbonate-based organic solvent.
리튬 이차전지는 충전에 의해 양극으로부터 나온 리튬 이온이 음극, 예컨대 카본 입자 내에 삽입되고 방전시 다시 탈리되는 현상을 반복하면서 에너지를 전달하여 충방전이 가능하게 된다.The lithium secondary battery is charged and discharged by transferring energy while repeating the phenomenon that lithium ions discharged from the positive electrode are inserted into the negative electrode, for example, carbon particles and discharged again when discharged by charging.
상기 리튬 이차전지는 초기 충전시 0.5V~3.5V 영역에서 전해액 첨가제 성분들과 유기용매들 중 일부가 분해되면서 음극 표면에 피막을 형성하고, 양극으로부터 발생한 리튬 이온이 음극으로 이동하면서, 음극 표면에서 전해액과 반응하여 Li2CO3, Li2O, LiOH 등의 화합물을 생성한다. 이들 화합물은 음극 표면에 일종의 부동태 피막(passivation layer)을 형성하게 되는데, 이러한 피막을 고체 전해질 계면(solid electrolyte interface: SEI) 막이라고 한다. In the lithium secondary battery, a part of the electrolyte additive components and organic solvents are decomposed in the range of 0.5 V to 3.5 V during the initial charging to form a film on the surface of the negative electrode, and lithium ions generated from the positive electrode move to the negative electrode, And reacts with the electrolytic solution to produce compounds such as Li 2 CO 3 , Li 2 O, and LiOH. These compounds form a passivation layer on the surface of the negative electrode, which is referred to as a solid electrolyte interface (SEI) film.
초기 충전 시에 형성된 SEI 막은 충방전 중 리튬 이온과 탄소계 음극 또는 다른 물질과의 반응을 막아준다. 또한 이온 터널(Ion Tunnel)의 역할을 수행하여 리튬 이온만을 통과시킨다. 이 이온 터널은 리튬 이온을 용매화(solvation)시켜 함께 이동하는 분자량이 큰 전해액의 유기용매들이 탄소계 음극에 함께 코인터컬레이션되어 탄소계 음극의 구조를 붕괴시키는 것을 막아 주는 역할을 한다. 따라서, 리튬 이차 전지의 고온 사이클 특성 및 저온 출력을 향상시키기 위해서는, 반드시 리튬 이차 전지의 음극에 견고한 SEI 막을 형성하여야만 한다.The SEI film formed during the initial charge prevents the reaction between the lithium ion and the carbonaceous anode or other materials during charging and discharging. It also acts as an ion tunnel, allowing only lithium ions to pass through. This ion tunnel serves to prevent the organic solvent of the electrolyte having a large molecular weight, which is solvated by lithium ion, to co-intercalate with the carbon-based anode to collapse the structure of the carbon-based cathode. Therefore, in order to improve the high-temperature cycle characteristics and the low-temperature output of the lithium secondary battery, a solid SEI film must always be formed on the cathode of the lithium secondary battery.
한편, 리튬 이차전지의 비수전해액에 사용되는 유기 용매는 일반적으로 고온에서 장시간 보관할 경우, 양극으로부터 방출된 전이금속 산화물과의 부반응에 의해 산화되면서 가스를 발생시키고, 이렇게 발생된 가스에 의해 전지 부풀음 및 전극 조립체 변형 등이 일어난다. On the other hand, when the organic solvent used for the non-aqueous electrolyte of the lithium secondary battery is stored for a long time at a high temperature, it is generally oxidized by a side reaction with the transition metal oxide released from the anode to generate gas, Deformation of the electrode assembly occurs.
특히, 만충전 상태에서 고온 저장시 (예를 들어, 4.2V에서 100% 충전 후 60℃에서 저장) SEI 막이 서서히 붕괴하면서 음극이 노출되고, 이렇게 노출된 음극이 전해액과 반응하여 부반응을 지속적으로 일으키기 때문에, CO, CO2, CH4, C2H6 등의 가스가 발생한다. 이는 결국, 전지 내압을 상승시켜 전지 부풀음과 같은 변형을 초래한다. 또한, 이러한 전지 변형에 의해 전지의 내부 단락이 유발되면 전지 열화가 나타나면서, 전지가 발화 또는 폭발될 수 있다.In particular, when the battery is stored in a fully charged state at a high temperature (for example, stored at 60 ° C after being charged at 100% at 4.2 V), the SEI film is gradually collapsed to expose the negative electrode and the exposed negative electrode reacts with the electrolyte to continuously generate a side reaction Therefore, gases such as CO, CO 2 , CH 4 and C 2 H 6 are generated. As a result, the internal pressure of the battery is increased to cause deformation such as cell swelling. Further, when such an internal short circuit of the battery is caused by the battery deformation, the battery deteriorates and the battery may be ignited or exploded.
최근 이러한 문제점을 해결하기 위해, 비수전해액 내에 SEI 막을 형성할 수 있는 첨가제를 포함하는 방법이 제안되었다. 하지만, 이러한 전해액 첨가제에 의하여 다른 부작용이 발생하면서, 이차전지의 제반 성능이 감소되는 또 다른 문제가 발생하였다.In order to solve this problem recently, a method has been proposed which includes an additive capable of forming an SEI film in a non-aqueous electrolyte. However, another side effect is caused by such an electrolyte additive, thereby causing another problem that the performance of the secondary battery is reduced.
이에, 부작용을 최소화하면서, 리튬 이차전지의 고온 및 과충전 안정성을 향상시킬 수 있는 새로운 구성의 비수전해액에 대한 개발이 지속적으로 요구되고 있다.Accordingly, there is a continuing need to develop a non-aqueous electrolyte having a novel structure capable of improving the high-temperature and overcharge stability of a lithium secondary battery while minimizing adverse effects.
선행기술문헌Prior art literature
일본 공개특허공보 제2017-117684호Japanese Laid-Open Patent Application No. 2017-117684
본 발명은 전극 표면 상에 안정한 피막을 형성할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공하고자 한다.Disclosed is a non-aqueous electrolyte solution for a lithium secondary battery, which comprises an additive capable of forming a stable film on an electrode surface.
또한, 본 발명은 상기 리튬 이차전지용 비수전해액을 포함함으로써 고온 및 과충전 안정성 및 저온 출력 특성이 향상된 리튬 이차전지를 제공하고자 한다.The present invention also provides a lithium secondary battery including the nonaqueous electrolyte solution for the lithium secondary battery, which has improved high temperature and overcharge stability and low temperature output characteristics.
상기의 목적을 달성하기 위하여, 본 발명의 일실시예에서는 In order to achieve the above object, in one embodiment of the present invention
리튬염; 유기 용매; 및 첨가제를 포함하며,Lithium salts; Organic solvent; And an additive,
상기 첨가제는 리튬 디플루오로포스페이트 (lithium difluorophosphate (LiPO2F2): LiDFP), 플루오로벤젠 (fluorobenzene; FB), 테트라비닐실란 (tetravinyl silane: TVS) 및 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물을 1 : 2 내지 8 : 0.05 내지 0.3 : 0.5 내지 2의 중량비로 포함하는 혼합 첨가제인 것인 리튬 이차전지용 비수전해액을 제공한다.The additive is selected from the group consisting of lithium difluorophosphate (LiPO 2 F 2 ): LiDFP, fluorobenzene (FB), tetravinyl silane (TVS) and one sulfonate group or sulfate group Which is a mixed additive containing a compound in a weight ratio of 1: 2 to 8: 0.05 to 0.3: 0.5 to 2. The non-aqueous electrolyte solution for a lithium secondary battery according to claim 1,
구체적으로, 상기 리튬 디플루오로포스페이트, 플루오로벤젠, 테트라비닐실란 및 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물의 중량비는 1 : 2 내지 6 : 0.05 내지 0.3 : 0.5 내지 1.5일 수 있다.Specifically, the weight ratio of the lithium difluorophosphate, the fluorobenzene, the tetravinylsilane, and the compound containing one sulfonate group or the sulfate group may be 1: 2 to 6: 0.05 to 0.3: 0.5 to 1.5.
상기 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물은 에틸렌 설페이트(Ethylene Sulfate), 트리메틸렌설페이트(Trimethylene sulfate), 메틸트리메틸렌설페이트(Methyl trimethylene sulfate), 1,3-프로판 설톤(Propane sultone), 1,4-부탄 설톤, 에텐설톤, 1,4-부텐 설톤, 1-메틸-1,3-프로펜 설톤 및 1,3-프로펜 설톤(1,3-Propene sultone)으로 이루어진 군으로부터 선택되는 적어도 하나 이상일 수 있으며, 구체적으로 에틸렌 설페이트, 트리메틸렌설페이트, 1,3-프로판 설톤 및 1,3-프로펜 설톤으로 이루어진 군으로부터 선택되는 적어도 하나 이상일 수 있다.The one sulfonate group or the compound containing a sulfate group may be selected from the group consisting of ethylene sulfate, trimethylene sulfate, methyl trimethylene sulfate, 1,3-propane sultone, 1 At least one selected from the group consisting of 4-butane sultone, ethene sultone, 1,4-butene sultone, 1-methyl-1,3-propane sultone and 1,3- And may specifically be at least one selected from the group consisting of ethylene sulfate, trimethylene sulfate, 1,3-propane sultone and 1,3-propenesultone.
상기 본 발명의 리튬 이차전지용 비수전해액에 있어서, 상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 1 중량% 내지 18 중량%로 포함될 수 있다.In the nonaqueous electrolyte solution for a lithium secondary battery of the present invention, the additive may be included in an amount of 1 to 18% by weight based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
한편, 본 발명의 리튬 이차전지용 비수전해액은 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 환형 카보네이트계 화합물, 포스페이트계 화합물, 보레이트계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 SEI 막 형성용 제1 첨가제를 추가로 포함할 수 있다.Meanwhile, the nonaqueous electrolyte solution for a lithium secondary battery of the present invention can be used for forming at least one SEI film selected from the group consisting of a halogen-substituted carbonate compound, a nitrile compound, a cyclic carbonate compound, a phosphate compound, a borate compound and a lithium salt compound The first additive may further comprise a first additive.
또한, 본 발명의 리튬 이차전지용 비수전해액은 디페닐 디설파이드, 디-p-톨릴 디설파이드 및 비스(4-메톡시페닐) 디설파이드(BMPDS)로 이루어진 군으로부터 선택된 적어도 하나 이상의 SEI 막 형성용 제2 첨가제를 추가로 포함할 수 있다.The nonaqueous electrolyte solution for a lithium secondary battery of the present invention may further comprise at least one second additive for forming an SEI film selected from the group consisting of diphenyl disulfide, di-p-tolyl disulfide and bis (4-methoxyphenyl) disulfide (BMPDS) May be further included.
또한, 본 발명의 일 실시예에서는 In an embodiment of the present invention,
음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막 및 비수전해액을 구비하는 리튬 이차전지에 있어서,A lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a nonaqueous electrolyte,
상기 비수전해액은 본 발명의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.The nonaqueous electrolyte solution provides a lithium secondary battery comprising the nonaqueous electrolyte solution for a lithium secondary battery of the present invention.
이때, 상기 양극은 양극활물질로 리튬-니켈-망간-코발트계 산화물을 포함하며, 구체적으로 상기 리튬-니켈-망간-코발트계 산화물은 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.35Mn0.28Co0.37)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, 및 Li(Ni0.8Mn0.1Co0.1)O2로 이루어진 군으로부터 선택된 적어도 하나 이상일 수 있다.The lithium-nickel-manganese-cobalt-based oxide may be Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , Li (Ni 0.35 Mn 0.28 Co 0.37 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , And at least one selected from the group consisting of Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2, and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 .
본 발명에 따르면, 4종의 화합물을 특정 비율로 혼합한 첨가제를 포함함으로써, 음극 표면에 안정한 SEI 막을 형성할 수 있는 리튬 이차전지용 비수전해액을 제조할 수 있다. 또한, 이를 포함함으로써, 고온 및 과충전 안정성 및 저온 출력 특성 등의 제반 성능이 향상된 리튬 이차전지를 제조할 수 있다.According to the present invention, it is possible to produce a nonaqueous electrolyte solution for a lithium secondary battery capable of forming a stable SEI film on the surface of a negative electrode by including an additive in which four kinds of compounds are mixed in a specific ratio. Also, by including it, it is possible to manufacture a lithium secondary battery having improved performance such as high temperature, overcharge stability, and low temperature output characteristics.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and together with the description of the invention serve to further the understanding of the technical idea of the invention, It is not limited.
도 1은 본 발명의 실험예 1에 따른 리튬 이차전지의 저온 출력 특성 평가 결과에 대한 그래프이다.1 is a graph showing a result of evaluation of low-temperature output characteristics of a lithium secondary battery according to Experimental Example 1 of the present invention.
도 2는 본 발명의 실험예 6에 따른 실시예 1의 리튬 이차전지의 과충전 안정성 평가 결과에 대한 그래프이다.2 is a graph showing the overcharge stability evaluation result of the lithium secondary battery of Example 1 according to Experimental Example 6 of the present invention.
도 3은 본 발명의 실험예 6에 따른 비교예 7의 리튬 이차전지의 과충전 안정성 평가 결과에 대한 그래프이다.3 is a graph showing the overcharge stability evaluation result of the lithium secondary battery of Comparative Example 7 according to Experimental Example 6 of the present invention.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.  Moreover, the terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the present invention. The singular expressions include plural expressions unless the context clearly dictates otherwise.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, the terms " comprising, " " comprising, " or " having ", and the like are intended to specify the presence of stated features, But do not preclude the presence or addition of one or more other features, integers, steps, components, or combinations thereof.
리튬 이차전지용 비수전해액Non-aqueous electrolyte for lithium secondary battery
구체적으로, 본 발명의 일 실시예에서는Specifically, in one embodiment of the present invention
리튬염; 유기 용매; 및 첨가제를 포함하며,Lithium salts; Organic solvent; And an additive,
상기 첨가제는 리튬 디플루오로포스페이트 (lithium difluorophosphate: LiDFP), 플루오로벤젠 (fluorobenzene; FB), 테트라비닐실란 (tert-vinylsilane: TVS) 및 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물을 1 : 2 내지 8 : 0.05 내지 0.3 : 0.5 내지 2의 중량비로 포함하는 혼합 첨가제인 리튬 이차전지용 비수전해액을 제공한다.The additive may be selected from the group consisting of lithium difluorophosphate (LiDFP), fluorobenzene (FB), tert-vinylsilane (TVS) and a compound containing one sulfonate group or sulfate group in a ratio of 1: To 8: 0.05 to 0.3: 0.5 to 2 by weight, based on the total weight of the non-aqueous electrolyte.
(1) 리튬염(1) Lithium salt
본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, ClO4 -, BF4 -, B10Cl10 -, PF6 -, CF3SO3 -, CH3CO2 -, CF3CO2 -, AsF6 -, SbF6 -, AlCl4 -, AlO4 -, CH3SO3 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. In the nonaqueous electrolyte solution for a lithium secondary battery according to an embodiment of the present invention, the lithium salt may be any of those conventionally used in an electrolyte for a lithium secondary battery, and may include, for example, Li + as a cation of the lithium salt, The anions include F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , ClO 4 - , BF 4 - , B 10 Cl 10 - , PF 6 - , CF 3 SO 3 - CH 3 CO 2 -, CF 3 CO 2 -, AsF 6 -, SbF 6 -, AlCl 4 -, AlO 4 -, CH 3 SO 3 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5 ) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, SCN - , and (CF 3 CF 2 SO 2) 2 N - consisting of And at least one selected from the group consisting of
구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiAlO4, LiCH3SO3, LiFSI (lithium fluorosulfonyl imide, LiN(SO2F)2), LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2) 및 LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO2C2F5)2)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다.Specifically, the lithium salt may be LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiAlO 4 , LiCH 3 SO 3 , LiFSI (lithium fluorosulfonyl imide, LiN (SO 2 F) 2 ), LiTFSI (lithium bis) trifluoromethanesulfonimide, LiN (SO 2 CF 3 ) 2 and LiBETI (lithium bisperfluoroethanesulfonimide, 2 C 2 F 5 ) 2 ), or a mixture of two or more thereof.
구체적으로 리튬염은 LiPF6, LiBF4, LiCH3CO2, LiCF3CO2, LiCH3SO3, LiFSI, LiTFSI 및 LiN(C2F5SO2)2으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. 다만, 상기 리튬염은 상기 혼합 첨가제에 포함되는 리튬염인 LiDFP는 포함하지 않는다.Specifically, the lithium salt is LiPF 6, LiBF 4, LiCH 3 CO 2, LiCF 3 CO 2, LiCH 3 SO 3, LiFSI, LiTFSI and LiN (C 2 F 5 SO 2 ) or more danilmul selected from the group consisting of 2 or two And mixtures thereof. However, the lithium salt does not include LiDFP, which is a lithium salt contained in the mixed additive.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 구체적으로 전해액 내에 0.1M 내지 3M, 구체적으로 0.8M 내지 2.5M로 포함될 수 있다. 만약, 상기 리튬염의 농도가 3M을 초과하는 경우 비수전해액의 점도가 증가되어 리튬 이온 이동 효과가 저하되고, 비수전해액 젖음성이 저하되어 균일한 SEI 막을 형성하기 어렵다는 단점이 있다.The lithium salt may be appropriately changed within a range that is generally usable, but specifically, it may be contained in the electrolyte in an amount of 0.1M to 3M, specifically 0.8M to 2.5M. If the concentration of the lithium salt exceeds 3M, the viscosity of the non-aqueous electrolyte increases to lower the lithium ion transporting effect, and the wettability of the non-aqueous electrolyte deteriorates, making it difficult to form a uniform SEI film.
(2) 유기용매(2) Organic solvent
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 유기용매는 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 그 종류에 제한이 없다. 예를 들면 카보네이트계 유기용매, 에테르계 유기용매 또는 에스테르계 유기용매 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. In the non-aqueous electrolyte solution for a lithium secondary battery according to an embodiment of the present invention, the organic solvent may minimize decomposition due to an oxidation reaction or the like during charging and discharging of the secondary battery, There is no limit to its kind. For example, a carbonate-based organic solvent, an ether-based organic solvent or an ester-based organic solvent may be used alone or in combination of two or more.
상기 유기용매 중 카보네이트계 유기용매는 환형 카보네이트계 유기용매 및 선형 카보네이트계 유기용매 중 적어도 하나 이상을 포함할 수 있다. 구체적으로, 상기 환형 카보네이트계 유기용매는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)으로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있으며, 구체적으로 고유전율을 가지는 에틸렌 카보네이트와 에틸렌 카보네이트에 비하여 상대적으로 저융점을 가지는 프로필렌 카보네이트의 혼합 용매를 포함할 수 있다.The carbonate-based organic solvent in the organic solvent may include at least one of a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent. Specifically, the cyclic carbonate-based organic solvent is selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, (Ethylene carbonate), ethylene carbonate (ethylene carbonate) having a high dielectric constant and ethylene carbonate (ethylene carbonate) having a dielectric constant higher than that of ethylene carbonate, And a mixed solvent of propylene carbonate having a low melting point.
또한, 상기 선형 카보네이트계 유기용매는 저점도 및 저유전율을 가지는 용매로서, 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함할 수 있으며, 보다 구체적으로 디메틸 카보네이트를 포함할 수 있다.The linear carbonate-based organic solvent may be a solvent having a low viscosity and a low dielectric constant, such as dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC) And at least one selected from the group consisting of propyl carbonate, ethyl carbonate, propyl carbonate, and ethyl propyl carbonate, and more specifically, dimethyl carbonate.
상기 에테르계 유기용매는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.The ether organic solvent may be selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether, or a mixture of two or more thereof. It is not.
상기 에스테르계 유기용매는 선형 에스테르계 유기용매 및 환형 에스테르계 유기용매로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.The ester-based organic solvent may include at least one selected from the group consisting of a linear ester organic solvent and a cyclic ester organic solvent.
이때, 상기 선형 에스테르계 유기용매는 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.The linear ester organic solvent may be any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate. A mixture of two or more thereof, and the like may be used, but the present invention is not limited thereto.
상기 환형 에스테르계 유기용매는 그 구체적인 예로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, ε-카프로락톤과 같은 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the cyclic ester organic solvent include any one selected from the group consisting of? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone and? -Caprolactone, or 2 Mixtures of two or more species may be used, but are not limited thereto.
상기 유기용매는 유전율이 높아 전해질 내의 리튬염을 잘 해리시키는 고점도의 환형 카보네이트계 유기용매를 사용할 수 있다. 또한, 보다 높은 전기 전도율을 갖는 전해질을 제조하기 위하여, 상기 유기용매는 상기 환경 카보네이트계 유기용매와 함께, 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트계 화합물 및 선형 에스테르계 화합물을 적당한 비율로 혼합하여 사용할 수 있다.The organic solvent may be a high-viscosity cyclic carbonate-based organic solvent having high permittivity and dissociating the lithium salt in the electrolyte. Further, in order to produce an electrolyte having a higher electrical conductivity, the organic solvent may be used together with the above-mentioned environmental carbonate-based organic solvent to prepare a low viscosity, low dielectric constant linear carbonate compound and linear ester compound such as dimethyl carbonate and diethyl carbonate They can be mixed and used in an appropriate ratio.
보다 구체적으로 상기 유기용매는 환형 카보네이트계 화합물과 선형 카보네이트계 화합물을 혼합하여 사용할 수 있으며, 상기 유기용매 중 환형 카보네이트계 화합물:선형 카보네이트계 화합물의 중량비는 10:90 내지 70:30일 수 있다.More specifically, the organic solvent may be a mixture of a cyclic carbonate compound and a linear carbonate compound. The weight ratio of the cyclic carbonate compound to the linear carbonate compound in the organic solvent may be 10:90 to 70:30.
(3) 혼합 첨가제(3) Mixed additives
한편, 본 발명의 리튬 이차전지용 비수전해액은 리튬 디플루오로포스페이트, 플루오로벤젠, 테트라비닐실란 및 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물을 함께 혼용한 첨가제를 포함할 수 있다.On the other hand, the nonaqueous electrolyte solution for a lithium secondary battery of the present invention may include an additive which is a mixture of lithium difluorophosphate, fluorobenzene, tetravinylsilane, and one sulfonate group or a compound containing a sulfate group.
이때, 상기 혼합 첨가제 성분 중 하나인 하기 화학식 1로 표시되는 리튬 디플루오로포스페이트(LiDFP)는 이차전지의 장기적인 수명 특성 향상 효과를 구현하기 위한 성분으로써, 양극과 음극 표면에서 전기 화학적으로 분해되어 안정한 SEI 막을 형성시켜 비수전해액에 대한 노출을 방지할 수 있다. 그 결과, 양극으로부터 O2 발생 억제 및 양극과 전해액과의 부반응을 억제하여 전지의 내구성을 향상 시킬 수 있다. 또한, 전지 구동시 디플루오르포스페이트 구조가 환원되면서, 음극 표면에 견고하고 안정한 SEI 막을 형성할 수 있기 때문에, 전지의 내구성 향상 및 고온 저장 특성을 향상시킬 수 있다.Here, lithium difluorophosphate (LiDFP) represented by the following formula (1), which is one of the components of the mixed additive, is a component for realizing long-term lifetime improvement effect of a secondary battery, and is electrochemically decomposed The SEI film can be formed to prevent exposure to the non-aqueous electrolyte. As a result, it is possible to suppress the generation of O 2 from the anode and the side reaction between the anode and the electrolyte, thereby improving the durability of the battery. Further, since the di-fluorophosphate structure is reduced when the battery is driven, a stable and stable SEI film can be formed on the surface of the negative electrode, thereby improving durability and high-temperature storage characteristics of the battery.
[화학식 1][Chemical Formula 1]
Figure PCTKR2018013783-appb-I000001
Figure PCTKR2018013783-appb-I000001
또한, 상기 혼합 첨가제 성분 중 하나인 하기 화학식 2로 표시되는 플루오로벤젠은 과충전 시 안정성을 향상시키기 위한 성분으로, 특정 전위에서 분해된 산물이 양극 및 음극 표면에 고분자 층을 형성시켜, 비수전해액과 전극의 부반응을 방지함으로써, 리튬 이차전지의 고온 저장 안정성을 향상시킬 수 있다.The fluorobenzene represented by the following formula (2), which is one of the components of the mixed additive, is a component for improving the stability during overcharging. The product decomposed at a specific potential forms a polymer layer on the surface of the positive electrode and the negative electrode, By preventing the side reaction of the electrode, the high temperature storage stability of the lithium secondary battery can be improved.
[화학식 2](2)
Figure PCTKR2018013783-appb-I000002
Figure PCTKR2018013783-appb-I000002
또한, 상기 혼합 첨가제 성분 중 하나인 하기 화학식 3으로 표시되는 테트라비닐실란 (tetravinyl silane: TVS)은 양극과 음극 표면에 물리적 흡착 및 전기화학적 반응을 통하여 견고한 SEI 막을 형성하여, 비수전해액에 대한 양극 및 음극의 노출을 방지할 수 있다. 그 결과, 고온에서의 비수전해액과 전극의 부반응을 억제하고, 저항 증가를 방지하므로, 리튬 이차전지의 고온 저장 안정성을 향상시킬 수 있다.Tetravinyl silane (TVS) represented by the following chemical formula (3), which is one of the mixed additive components, forms a solid SEI film through physical adsorption and electrochemical reaction on the surfaces of the positive and negative electrodes, It is possible to prevent exposure of the cathode. As a result, it is possible to suppress the side reaction of the non-aqueous electrolyte at high temperature and the electrode, and to prevent the increase in resistance, so that the high temperature storage stability of the lithium secondary battery can be improved.
[화학식 3] (3)
Figure PCTKR2018013783-appb-I000003
Figure PCTKR2018013783-appb-I000003
또한, 상기 혼합 첨가제 성분 중 하나인 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물은 음극 표면에 고온 보존 시에도 균열되지 않는 안정적인 피막을 형성할 수 있다. 이러한 피막에 의해 피복된 음극은 천연 흑연이나 인조 흑연 등의 활성으로 고결정화한 탄소 재료를 음극에 사용했을 경우에도 고온 저장 시에 음극 활물질에 의한 비수용매의 분해를 억제하여 가스 발생을 억제할 수 있다. 따라서, 리튬 이차전지의 고온 안정성 및 고온 저장 시 사이클 수명 및 용량 특성을 개선할 수 있고, 저항 감소를 억제할 수 있다.In addition, one sulfonate group or a compound containing a sulfate group, which is one of the above-mentioned mixed additive components, can form a stable coating film that is not cracked even when stored at high temperature on the surface of the negative electrode. The negative electrode coated with such a coating suppresses the decomposition of the non-aqueous solvent by the negative active material during storage at a high temperature even when a carbon material highly crystallized by the activity of natural graphite or artificial graphite is used for the negative electrode, have. Therefore, high temperature stability of the lithium secondary battery and cycle life and capacity characteristics at high temperature storage can be improved, and resistance reduction can be suppressed.
구체적으로, 상기 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물은 하기 화학식 4a로 표시되는 에틸렌 설페이트(Ethylene Sulfate; Esa), 하기 화학식 4b로 표시되는 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 하기 화학식 4c로 표시되는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS), 하기 화학식 4d로 표시되는 1,3-프로판 설톤(Propane Sultone; PS), 1,4-부탄 설톤, 에텐설톤, 1,4-부텐 설톤, 및 1-메틸-1,3-프로펜 설톤 및 하기 화학식 4e로 표시되는 1,3-프로펜 설톤(1,3-Propene sultone; PRS)으로 이루어진 군으로부터 선택되는 적어도 하나 이상일 수 있다.  Specifically, the one sulfonate group or the compound containing a sulfate group may be selected from the group consisting of ethylene sulfate (Esa) represented by the following formula (4a), trimethylene sulfate (TMS) represented by the following formula (4b) Methyl trimethylene sulfate (MTMS), 1,3-propane sultone (PS), 1,4-butane sultone, ethene sultone, 1,4-butene sultone And 1-methyl-1,3-propenesultone and 1,3-propenesultone (PRS) represented by the following formula (4e).
[화학식 4a] [Chemical Formula 4a]
Figure PCTKR2018013783-appb-I000004
Figure PCTKR2018013783-appb-I000004
[화학식 4b](4b)
Figure PCTKR2018013783-appb-I000005
Figure PCTKR2018013783-appb-I000005
[화학식 4c][Chemical Formula 4c]
Figure PCTKR2018013783-appb-I000006
Figure PCTKR2018013783-appb-I000006
[화학식 4d][Chemical formula 4d]
Figure PCTKR2018013783-appb-I000007
Figure PCTKR2018013783-appb-I000007
[화학식 4e][Chemical Formula 4e]
Figure PCTKR2018013783-appb-I000008
Figure PCTKR2018013783-appb-I000008
구체적으로, 상기 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물은 에틸렌 설페이트, 트리메틸렌설페이트, 1,3-프로판 설톤 및 1,3-프로펜 설톤 중 적어도 하나 이상일 수 있다.Specifically, the one sulfonate group or the compound containing a sulfate group may be at least one or more of ethylene sulfate, trimethylene sulfate, 1,3-propane sultone and 1,3-propene sultone.
이러한 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물은 리튬 이차전지용 비수전해액 전체 중량을 기준으로 최대 6.5 중량% 이하, 구체적으로 0.1 중량% 내지 6.5 중량%, 더욱 구체적으로 0.5 중량% 내지 4.0 중량%로 포함될 수 있다.Such a sulfonate group or a compound containing a sulfate group may be used in an amount of up to 6.5% by weight, specifically 0.1% by weight to 6.5% by weight, more specifically 0.5% by weight to 4.0% by weight, based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery .
이때, 상기 리튬 이차전지용 비수전해액 중 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물의 총 함량이 6.5 중량%를 초과하는 경우, 지나치게 두꺼운 피막이 형성되어 저항 증가와 출력 열화가 발생할 수 있다.At this time, if the total content of one sulfonate group or sulfate group-containing compound in the non-aqueous electrolyte solution for the lithium secondary battery is more than 6.5% by weight, an excessively thick film may be formed and resistance increase and output deterioration may occur.
한편, 하기 화학식 5로 표시되는 화합물과 같이 둘 이상의 설포네이트기 및/또는 설페이트기를 모두 함유하는 화합물의 경우, 환원 반응성이 높기 때문에 비수전해액 자체의 변성이 일어날 가능성이 높다. 더욱이, 양극 또는 음극 표면에 형성하는 피막 내부에서 S와 O의 성분비가 높아짐에 따라, 이온전도도가 증가하여 출력 특성은 개선되는 반면에, 전해액과의 부반응이 증가하여 부동태 피막으로써 역할을 수행하기 어렵기 때문에, 고온에서 이차전지 내구성이 상대적으로 저감되어 그 사용을 지양하고 있다.On the other hand, in the case of a compound containing both of two or more sulfonate groups and / or sulfate groups as in the case of the compound represented by the following general formula (5), there is a high possibility that denaturation of the nonaqueous electrolyte itself occurs due to high reduction reactivity. Furthermore, as the composition ratio of S and O in the film formed on the surface of the anode or the cathode increases, the ionic conductivity increases and the output characteristic improves, while the side reaction with the electrolyte increases, The durability of the secondary battery is relatively reduced at a high temperature, and the use thereof is avoided.
[화학식 5][Chemical Formula 5]
Figure PCTKR2018013783-appb-I000009
Figure PCTKR2018013783-appb-I000009
한편, 상기 리튬 디플루오로포스페이트, 플루오로벤젠, 테트라비닐실란 및 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물은 1 : 2 내지 8 : 0.05 내지 0.3 : 0.5 내지 2, 구체적으로 1 : 2 내지 6 : 0.05 내지 0.3 : 0.5 내지 1.5 중량비로 포함될 수 있다.On the other hand, the compound containing lithium difluorophosphate, fluorobenzene, tetravinylsilane and one sulfonate group or sulfate group may be used in a ratio of 1: 2 to 8: 0.05 to 0.3: 0.5 to 2, particularly 1: 2 to 6 : 0.05 to 0.3: 0.5 to 1.5 by weight.
즉, 본 발명의 비수전해액 내에 상기 첨가제의 각 성분들이 상기 비율로 혼합되어 있는 경우, 제반 성능이 더욱 향상된 이차전지를 제조할 수 있다.That is, when the respective components of the additive are mixed in the nonaqueous electrolyte of the present invention in the above ratio, a secondary battery having improved performance can be manufactured.
예컨대, 상기 리튬 디플루오로포스페이트에 대한 플루오로벤젠의 중량비가 8 이하인 경우, 첨가제 과다 사용으로 인한 전지 내부 저항이 증가를 방지할 수 있다. 또한, 상기 플루오로벤젠의 중량비가 2 이상인 경우 과충전 시 안정성 개선 효과를 가져올 수 있다.For example, when the weight ratio of fluorobenzene to lithium difluorophosphate is 8 or less, an increase in internal resistance of the battery due to excessive use of the additive can be prevented. Further, when the weight ratio of the fluorobenzene is 2 or more, stability at the time of overcharging can be improved.
또한, 상기 리튬 디플루오로포스페이트에 대한 테트라비닐실란의 중량비가 0.3 이하인 경우, 잉여의 테트라비닐실란에 의한 부반응이 야기되어 전지의 저항이 증가하는 것을 방지할 수 있어, 사이클 수명 특성이 저하되는 것을 막을 수 있다. 또한, 상기 테트라비닐실란의 중량비가 0.05 이상인 경우 가스 발생 저감 효과 및 SEI 막 형성 시 안정화 효과를 가져올 수 있다.When the weight ratio of the tetravinylsilane to the lithium difluorophosphate is 0.3 or less, side reactions due to surplus tetravinylsilane are caused to prevent the resistance of the battery from increasing and the cycle life characteristics are lowered Can be prevented. When the weight ratio of tetravinylsilane is 0.05 or more, the gas generation reduction effect and the SEI film formation stabilization effect can be obtained.
또한, 상기 리튬 디플루오로포스페이트에 대한 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물의 중량비가 2 이하인 경우, SEI 막 형성 시 안정화 효과를 확보하여, 고온 저장 특성 및 사이클 수명 특성을 개선할 수 있다. 또한, 상기 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물의 중량비가 0.5 이상인 경우, 저항 증가 없이 SEI 막의 안정성 향상과, 전해액 부반응 억제하여 성능 개선 효과를 구현할 수 있다.When the weight ratio of the compound containing one sulfonate group or sulfate group to the lithium difluorophosphate is 2 or less, a stabilizing effect upon formation of the SEI film can be ensured and high-temperature storage characteristics and cycle life characteristics can be improved . In addition, when the weight ratio of the one sulfonate group or the sulfate group-containing compound is 0.5 or more, it is possible to improve the stability of the SEI film and suppress the electrolyte side reaction without increasing the resistance.
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 1 중량% 내지 18 중량%, 구체적으로 8 중량% 내지 10 중량%로 포함될 수 있다.In the non-aqueous electrolyte solution for a lithium secondary battery according to an embodiment of the present invention, the additive is contained in an amount of 1 to 18 wt%, specifically 8 to 10 wt% based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery .
이때, 상기 첨가제의 함량이 18 중량% 이하인 경우, 첨가제 사용에 따른 가스 발생 효과 등이 개선될 수 있을 뿐만 아니라, 각 성분이 과량으로 잔류하게 되는 것을 방지하여, 부반응에 의한 저항 증가를 막고, 전극 표면에 안정한 SEI 막을 형성할 수 있어, 리튬 이차전지의 고온 안정성 개선할 수 있다.At this time, when the content of the additive is 18% by weight or less, not only the gas generating effect and the like due to the use of additives can be improved but also the components are prevented from remaining excessively, A stable SEI film can be formed on the surface, and the high-temperature stability of the lithium secondary battery can be improved.
또한, 상기 첨가제의 함량이 1 중량% 이상인 경우, 음극 표면에 안정한 (SEI) 피막을 형성할 수 있을 뿐만 아니라, 전해액과 음극과의 반응에 의한 전해액의 분해를 억제하는 등 각 성분들을 첨가함에 따른 기대 효과를 충족할 수 있다.In addition, when the content of the additive is 1 wt% or more, it is possible to form a stable (SEI) coating on the surface of the negative electrode, and to prevent decomposition of the electrolyte due to reaction between the electrolyte and the negative electrode, The expected effect can be met.
만약, 상기 혼합 첨가제의 함량이 18 중량%를 초과하면, 첨가제 과량에 의한 비수전해액의 점도가 증가함에 따라, 용해도 및 젖음성이 저하되어, 출력 특성 및 사이클 수명 특성 열화가 발생할 수 있다. , If the content of the mixed additive exceeds 18% by weight, the solubility and wettability may deteriorate as the viscosity of the non-aqueous electrolyte increases due to the excess amount of the additive, resulting in degradation of output characteristics and cycle life characteristics. ,
리튬 이온전지의 초기 충전시 양극으로 사용되는 리튬 금속산화물로부터 나온 리튬 이온이 음극으로 사용되는 탄소(결정질 또는 비결정질) 전극으로 이동하며 음극의 탄소에 삽입(Intercalation)되게 되는데, 이때 리튬은 반응성이 강하므로 탄소계 음극과 반응하여 유기물질 및 Li2CO3, Li2O, LiOH 등을 형성하게 되고 이것들은 음극의 표면에 SEI 막을 형성하게 된다. 상기 SEI 막은 최초 충전시 일단 형성되고 나면 이후 전지 사용에 의한 충방전 반복시 리튬이온과 탄소계 음극 또는 다른 물질과의 반응을 막아주게 되며, 전해액과 음극 사이에서 리튬 이온만을 통과시키는 이온 터널로서의 역할을 수행하게 된다. 상기 이온 터널 효과에 의하여 SEI 막은 분자량이 큰 전해액의 유기 용매들, 예를 들면 EC, DMC, DEC, PP 등이 탄소계 음극으로 이동하는 것을 봉쇄함으로써, 리튬 이온과 함께 탄소계 음극에 동반삽입(cointercalation)되어 탄소계 음극의 구조를 붕괴시키는 것을 막아 주게 된다. 즉, 이 막이 형성되고 나면 리튬 이온은 다시 탄소계 음극이나 다른 물질과의 부반응을 하지 않게 됨으로써 이후 전지 사용에 의한 충방전시 리튬이온의 양을 가역적으로 유지시키게 되는 것이다.During the initial charging of the lithium ion battery, lithium ions from the lithium metal oxide used as an anode migrate to a carbon (crystalline or amorphous) electrode used as a cathode and are intercalated into the carbon of the cathode. At this time, Therefore, an organic material and Li 2 CO 3 , Li 2 O, LiOH, etc. are formed by reacting with the carbon-based anode, and these form an SEI film on the surface of the cathode. Once the SEI film is formed at the time of initial charging, it will prevent the reaction between the lithium ion and the carbon-based anode or other materials during repeated charging and discharging by the use of the battery, and serves as an ion tunnel through which only lithium ions pass between the electrolyte and the cathode . Due to the ion tunneling effect, the SEI film prevents the migration of organic solvents, such as EC, DMC, DEC, PP, etc., having a large molecular weight to the carbonaceous cathode, co-decomposition of the structure of the carbon-based anode. That is, once the film is formed, the lithium ions do not react with the carbonaceous anode or other materials, and thereby the amount of lithium ions can be reversibly maintained at the time of charge / discharge by the use of the battery.
다시 말하면, 음극의 탄소 재료는 초기 충전시 전해액과 반응하여 음극표면에 패시베이션층(passivation layer)을 형성함으로써 더 이상의 전해액 분해가 발생하지 않고 안정적인 충방전을 유지할 수 있도록 해주는데, 이때, 음극표면의 패시베이션층 형성에 소모된 전하량은 비가역 용량으로서, 방전시 가역적으로 반응하지 않는 특징을 가지고 있는 것이며, 이러한 이유로 리튬이온 전지는 초기 충전 반응 이후 더 이상의 비가역 반응을 나타내지 않고 안정적인 수명 사이클을 유지할 수 있게 되는 것이다.In other words, the carbon material of the negative electrode reacts with the electrolytic solution at the time of initial charging to form a passivation layer on the surface of the negative electrode so as to maintain stable charging / discharging without further decomposition of the electrolytic solution. At this time, The amount of charge consumed in the layer formation is irreversible capacity, which is characterized in that it does not react reversibly during discharging. For this reason, the lithium ion battery can maintain a stable life cycle without any irreversible reaction after the initial charging reaction .
하지만, 만충전 상태에서 리튬 이온전지를 고온 저장(예: 4.15V 이상 100%충전 후 60℃에서 저장)하는 경우, SEI 막이 시간이 경과함에 따라 증가된 전기화학적 에너지와 열에너지에 의해 서서히 붕괴되는 단점을 가진다. However, when the lithium ion battery is stored at a high temperature (for example, at a temperature of 60 ° C after being charged at a temperature of 4.15 V or more at 100%) in a fully charged state, the SEI film gradually degrades due to increased electrochemical energy and thermal energy over time .
이러한 SEI 막 붕괴는 음극 표면을 노출시키고, 노출된 음극 표면은 전해액 중 카보네이트계 용매가 반응하면서 분해되어, 지속적인 부반응을 야기한다.Such SEI film breakdown exposes the surface of the negative electrode, and the exposed negative electrode surface is decomposed while the carbonate-based solvent in the electrolyte is reacted to cause continuous side reaction.
이와 같은 부반응은 계속적으로 기체를 발생시키게 되는데, 이때 생성되는 주요 기체들은 CO, CO2, CH4, C2H6 등으로서, 전해액으로 사용된 카보네이트 종류와 음극활물질의 종류에 따라 달라지며, 그 종류에 관계없이 고온에서 계속적인 기체발생은 리튬 이온전지의 전지 내부 압력을 상승시켜 전지 두께를 팽창시키는 원인이 되는 것이다.These side reactions generate gas continuously. The main gases produced are CO, CO 2 , CH 4 , C 2 H 6, etc., depending on the type of carbonate used and the kind of negative active material used. Regardless of the type, continuous gas evolution at high temperatures causes the cell internal pressure of the lithium ion battery to rise, causing the cell thickness to expand.
이에, 본 발명의 리튬 이차전지용 비수전해액은 리튬 디플루오로포스페이트, 플루오로벤젠, 테트라비닐실란 및 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물을 특정 비율로 혼합한 혼합 첨가제를 포함함으로써, 양극 및 음극 표면에 보다 안정적이고 견고한 SEI 피막을 형성하여, 저온 출력 특성 향상 효과와 함께, 고온 저장 시 전해액 부반응을 억제함으로써, 리튬 이차전지의 고온 저장 특성 및 수명 특성과 같은 전반적인 성능 향상을 도모할 수 있다.Accordingly, the nonaqueous electrolyte solution for a lithium secondary battery of the present invention includes a mixed additive in which lithium difluorophosphate, fluorobenzene, tetravinylsilane and one sulfonate group or a compound containing a sulfate group are mixed in a specific ratio, It is possible to improve the overall performance such as high-temperature storage characteristics and lifetime characteristics of the lithium secondary battery by suppressing the electrolyte side reaction during high-temperature storage as well as improving the low-temperature output characteristics by forming a more stable and solid SEI film on the surface of the negative electrode .
(4) SEI 막 형성용 첨가제(4) Additive for forming SEI film
한편, 본 발명의 일 실시예에 따른 비수전해액은 상기 혼합 첨가제와 함께 사용되어 상기 혼합 첨가제가 발현하는 효과와 더불어 초기저항을 크게 증가시키지 않으면서, 음극 및 양극 표면에 안정한 피막을 형성하거나, 비수전해액 내 용매의 분해를 억제하고, 리튬 이온의 이동성을 향상시키는 보완제 역할을 할 수 있는 부가적 첨가제를 추가로 포함할 수 있다.Meanwhile, the non-aqueous electrolyte according to an embodiment of the present invention may be used together with the above-mentioned mixed additive to form a stable coating on the surface of the negative electrode and the positive electrode, An additional additive capable of suppressing the decomposition of the solvent in the electrolyte solution and serving as a complementary agent for improving the mobility of the lithium ion may be further included.
이러한 부가적 첨가제로는 양극 및 음극 표면에 안정한 피막을 형성할 수 있는 SEI 막 형성용 첨가제라면 특별히 제한하지 않는다.Such an additive is not particularly limited as long as it is an additive for forming an SEI film capable of forming a stable film on the surfaces of the anode and the cathode.
구체적으로, 상기 SEI 막 형성용 첨가제는 그 대표적인 예로 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 환형 카보네이트계 화합물, 포스페이트계 화합물, 보레이트계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 SEI 막 형성용 제1 첨가제를 포함할 수 있다. Specifically, the SEI film forming additive includes at least one SEI film selected from the group consisting of a halogen-substituted carbonate compound, a nitrile compound, a cyclic carbonate compound, a phosphate compound, a borate compound and a lithium salt compound And a second additive for forming the first additive.
구체적으로, 상기 할로겐 치환된 카보네이트계 화합물은 플루오로에틸렌 카보네이트(FEC))를 들 수 있으며, 비수전해액 전체 중량을 기준으로 5중량% 이하로 포함할 수 있다. 상기 할로겐 치환된 카보네이트계 화합물의 함량이 5중량%를 초과하는 경우, 셀 팽윤 성능이 열화될 수 있다.Specifically, the halogen-substituted carbonate compound is fluoroethylene carbonate (FEC)), and may be contained in an amount of 5% by weight or less based on the total weight of the non-aqueous electrolyte. If the content of the halogen-substituted carbonate compound exceeds 5% by weight, the cell swelling performance may deteriorate.
또한, 상기 니트릴계 화합물은 숙시노니트릴, 아디포니트릴(Adn), 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 들 수 있다.The nitrile compound may be at least one selected from the group consisting of succinonitrile, adiponitrile (Adn), acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile, In the group consisting of 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile At least one compound selected.
이때, 상기 니트릴계 화합물은 상술한 혼합 첨가제와 함께 사용되는 경우, 양/음극 피막 안정화로 고온특성 개선 등의 효과를 기대할 수 있다. 즉, 음극 SEI 피막을 형성하는 데에 보완제 역할을 할 수 있고, 전해질 내 용매의 분해를 억제하는 역할을 할 수 있으며, 리튬 이온의 이동성을 향상시키는 역할을 할 수 있다. 이러한 니트릴계 화합물은 비수전해액 전체 중량을 기준으로 8 중량% 이하로 포함될 수 있다. 상기 비수전해액 중에 니트릴계 화합물의 전체 함량이 8중량%를 초과하는 경우, 전극 표면에 형성되는 피막 증가로 저항이 커져, 전지 성능이 열화될 수 있다. At this time, when the nitrile compound is used together with the above-mentioned mixed additive, effects such as improvement in high-temperature characteristics can be expected by stabilizing the positive / negative electrode coating. In other words, it can serve as a complement in forming the negative electrode SEI coating, can play a role of inhibiting the decomposition of the solvent in the electrolyte, and can improve the mobility of lithium ions. Such a nitrile compound may be contained in an amount of 8% by weight or less based on the total weight of the nonaqueous electrolyte solution. If the total content of the nitrile compound in the nonaqueous electrolyte exceeds 8 wt%, resistance increases due to an increase in the film formed on the surface of the electrode, and battery performance may be deteriorated.
상기 카보네이트계 화합물은 전지 활성화 시에 주로 음극 표면에 안정한 SEI 막을 형성하여, 전지의 내구성 향상을 도모할 수 있다. 이러한 환형 카보네이트계 화합물은 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트를 들 수 있으며, 비수전해액 전체 중량을 기준으로 3중량% 이하로 포함할 수 있다. 상기 비수전해액 중에 환형 카보네이트계 화합물의 함량이 3중량%를 초과하는 경우, 셀 팽윤 억제 성능 및 초기 저항이 열화될 수 있다.The carbonate-based compound forms a stable SEI film mainly on the surface of the negative electrode at the time of battery activation, thereby improving the durability of the battery. The cyclic carbonate-based compound may be vinylene carbonate (VC) or vinylethylene carbonate. The cyclic carbonate-based compound may include up to 3% by weight based on the total weight of the non-aqueous electrolyte. When the content of the cyclic carbonate compound in the nonaqueous electrolyte solution exceeds 3% by weight, the cell swelling inhibition performance and initial resistance may be deteriorated.
또한, 상기 포스페이트계 화합물은 전해액 내 PF6 음이온 등을 안정화하고 양극 및 음극 피막 형성에 도움을 주기 때문에, 전지의 내구성 향상을 도모할 수 있다. 이러한 포스페이트계 화합물은 디플루오로(비스옥살라토)포스페이트(LiDFOP), 테트라메틸 트리메틸 실릴 포스페이트(LiTFOP), 트리메틸 실릴 포스파이트 (TMSPi), 트리스(2,2,2-트리플루오로에틸)포스페이트(TFEPa) 및 트리스(트리플루오로에틸) 포스파이트(TFEPi)로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 비수전해액 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.In addition, since the phosphate compound stabilizes the PF 6 anion and the like in the electrolytic solution and assists in the formation of the anode and cathode coatings, the durability of the battery can be improved. Such phosphate-based compounds include, but are not limited to, difluoro (bisoxalato) phosphate (LiDFOP), tetramethyltrimethylsilyl phosphate (LiTFOP), trimethylsilylphosphite (TMSPi), tris (2,2,2-trifluoroethyl) phosphate (TFEPa) and tris (trifluoroethyl) phosphite (TFEPi), and may be contained in an amount of 3% by weight or less based on the total weight of the nonaqueous electrolyte solution.
상기 보레이트계 화합물은 리튬염의 이온쌍 분리를 촉진시켜, 리튬 이온의 이동도를 향상시킬 수 있고, SEI 피막의 계면 저항을 저하시킬 수 있으며, 전지 반응 시 생성되어 잘 분리되지 않는 LiF 등의 물질도 해리시킴으로써, 불산 가스 발생 등의 문제를 해결할 수 있다. 이러한 보레이트계 화합물은 리튬 비옥살릴보레이트 (LiBOB, LiB(C2O4)2), 리튬 옥살릴디플루오로보레이트 또는 테트라메틸트리메틸실릴보레이트(TMSB)를 들 수 있으며, 비수전해액 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.The borate compound promotes ion-pair separation of the lithium salt, improves the mobility of lithium ions, can lower the interfacial resistance of the SEI film, and can be used for a material such as LiF By dissociation, problems such as generation of hydrofluoric acid gas can be solved. Examples of such a borate compound include lithium foroxylate borate (LiBOB, LiB (C 2 O 4 ) 2 ), lithium oxalyl difluoroborate or tetramethyltrimethylsilylborate (TMSB), and based on the total weight of the non- 3% by weight or less.
또한, 상기 리튬염계 화합물은 상기 비수전해액에 포함되는 리튬염과 상이한 화합물로서, LiODFB 및 LiBF4로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 비수전해액 전체 중량을 기준으로 3중량% 이하로 포함할 수 있다.The lithium salt compound may be at least one compound selected from the group consisting of LiODFB and LiBF 4 , which is different from the lithium salt contained in the non-aqueous electrolyte. The lithium salt compound may be contained in an amount of not more than 3% by weight based on the total weight of the non- .
상기 SEI 막 형성용 제1 첨가제는 2 종 이상 혼합하여 사용 가능하며, 전해액 총량을 기준으로 10 중량%이하, 구체적으로 0.01 중량% 내지 10 중량%, 바람직하게는 0.1 내지 5.0 중량%로 포함될 수 있다.The first additives for forming the SEI film may be used in combination of two or more, and may be contained in an amount of 10 wt% or less, specifically 0.01 wt% to 10 wt%, preferably 0.1 wt% to 5.0 wt% based on the total amount of the electrolytic solution .
상기 SEI 막 형성용 제1 첨가제의 함량이 0.01 중량% 미만인 경우 상기 첨가제로부터 구현하고자 하는 고온 저장 특성 및 가스 저감 효과가 미미하고, 상기 SEI 막 형성용 제1 첨가제의 함량이 10 중량%를 초과하면 전지의 충방전시 전해액 내의 부반응이 과도하게 발생할 가능성이 있다. 특히, 상기 SEI 막 형성용 제1 첨가제가 과량으로 첨가되면 충분히 분해되지 못하여 상온에서 전해액 내에서 미반응물 또는 석출된 채로 존재하고 있을 수 있다. 이에 따라 저항이 증가하여 이차전지의 수명 특성이 저하될 수 있다. If the content of the first additive for SEI film formation is less than 0.01% by weight, the high-temperature storage characteristics and gas reduction effect to be realized from the additive are insignificant. If the content of the first additive for SEI film formation exceeds 10% by weight There is a possibility that a side reaction in the electrolytic solution occurs excessively during charging and discharging of the battery. In particular, when the first additive for SEI film formation is added in an excessive amount, it can not be decomposed sufficiently and may be present in the electrolyte solution at room temperature without being reacted or precipitated. As a result, the resistance increases and the lifetime characteristics of the secondary battery may be deteriorated.
한편, 상기 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액은 음극 표면에 보다 안정적인 보호막을 형성하기 위하여, 디페닐 디설파이드(DPDS), 디-p-톨릴 디설파이드(DTDS), 및 비스(4-메톡시페닐) 디설파이드(BMPDS)로 이루어진 군으로부터 선택된 적어도 하나 이상의 SEI 막 형성용 제2 첨가제를 추가로 포함할 수 있다.The nonaqueous electrolyte solution for a lithium secondary battery according to an embodiment of the present invention may include diphenyl disulfide (DPDS), di-p-tolyl disulfide (DTDS), and bis (4- Methoxyphenyl) disulfide (BMPDS) as a second additive for forming at least one SEI film.
상기 SEI 막 형성용 제2 첨가제는 음극 탄소 재료 표면에서의 안정적인 보호막 형성에 기여한다. 이 보호막은 충방전이 반복되어도 안정적인 상태가 유지된다. 이 보호막의 작용에 의해 전해액 중의 비수용매가 전기 화학적으로 환원되어 가스 발생하는 것이 억제된다. 그 결과, 음극 탄소 재료의 음극으로부터의 박리를 억제할 수 있고 사이클 특성을 향상시킬 수 있다.The second additive for forming the SEI film contributes to the formation of a stable protective film on the surface of the negative electrode carbon material. This protective film maintains a stable state even if charge and discharge are repeated. By the action of the protective film, the non-aqueous solvent in the electrolytic solution is electrochemically reduced and gas generation is suppressed. As a result, peeling of the negative electrode carbon material from the negative electrode can be suppressed and the cycle characteristics can be improved.
또한, DPDS, DTDS, BMPDS는 상기 보호막 형성 시의 비수용매와 탄소계 음극과의 반응 생성물이 바인더인 PVDF, P(VDF-HFP) 등에 존재하는 극성기 말단에 작용해 비수용매에 의한 바인더의 팽윤을 억제하고 전극 재료 간의 밀착성이 유지된다. 이것에 의해 전극의 임피던스 상승을 억제함과 동시에 사이클 특성을 한층 향상시키는 효과를 발휘할 수 있다.In addition, DPDS, DTDS, and BMPDS act on the polar terminal end of PVDF and P (VDF-HFP), which are the binders, of the reaction product of the nonaqueous solvent and the carbonaceous anode at the time of forming the protective film, and the swelling of the binder by the non- And the adhesion between the electrode materials is maintained. As a result, it is possible to suppress the rise of the impedance of the electrode and further improve the cycle characteristics.
상기 SEI 막 형성용 제2 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 각각 0.6 중량% 이하, 구체적으로 각각 0.1 중량% 내지 0.6 중량%로 포함할 수 있다. 만약, 상기 첨가제의 함량이 0.1 중량% 이상인 경우 상기 첨가제로부터 구현하고자 하는 효과를 얻을 수 있고, 0.6 중량% 이하인 경우에, 잉여의 첨가제에 의한 부반응을 방지할 수 있다.The second additive for forming the SEI film may be contained in an amount of 0.6 wt% or less, specifically 0.1 wt% to 0.6 wt%, based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery. If the content of the additive is 0.1% by weight or more, the effect to be achieved from the additive can be obtained. When the additive is 0.6% by weight or less, a side reaction due to a surplus additive can be prevented.
리튬 이차전지Lithium secondary battery
또한, 본 발명의 일 실시예에서는In an embodiment of the present invention,
음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막 및 비수전해액을 구비하는 리튬 이차전지에 있어서,A lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a nonaqueous electrolyte,
상기 비수전해액은 본 발명의 비수전해액을 포함하는 리튬 이차전지를 제공한다.The nonaqueous electrolyte solution provides a lithium secondary battery comprising the nonaqueous electrolyte solution of the present invention.
이때, 상기 양극은 리튬-니켈-망간-코발트계 산화물을 양극 활물질로 포함할 수 있다.At this time, the anode may include a lithium-nickel-manganese-cobalt oxide as a cathode active material.
한편, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 분리막이 순차적으로 적층되어 전극 조립체를 형성할 수 있으며, 이때, 상기 전극조립체를 이루는 양극, 음극 및 분리막은 통상적인 방법으로 제조되어 리튬 이차전지 제조 시 사용되던 것들이 모두 사용될 수 있다.Meanwhile, in the lithium secondary battery of the present invention, the positive electrode, the negative electrode, and the separator interposed between the positive electrode and the negative electrode are sequentially laminated to form an electrode assembly. At this time, the positive electrode, negative electrode, And those used in the production of lithium secondary batteries can all be used.
(1) 양극(1) anode
상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.The positive electrode may be produced by forming a positive electrode mixture layer on the positive electrode collector. The positive electrode mixture layer may be formed by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode collector, followed by drying and rolling.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. The positive electrode collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery. For example, the positive electrode collector may be formed of a metal such as carbon, stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등)을 포함할 수 있다.The cathode active material is a compound capable of reversibly intercalating and deintercalating lithium, and may specifically include a lithium composite metal oxide including lithium and at least one metal such as cobalt, manganese, nickel, or aluminum have. More specifically, the lithium composite metal oxide is a lithium-nickel-manganese-cobalt oxide (for example, Li (Ni p Co q Mn r 1 ) O 2 , 0 <p <1, 0 <q <1, 0 <r1 <1, p + q + r1 = 1) , or Li (Ni p1 Co q1 Mn r2 ) O 4 ( here, 0 <p1 <2, 0 (Q1 <2, 0 <r2 <2, p1 + q1 + r2 = 2)).
이러한 양극활물질은 그 대표적인 예로 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.35Mn0.28Co0.37)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, 및 Li(Ni0.8Mn0.1Co0.1)O2을 들 수 있다.The positive electrode active material that is a typical example Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2, Li (Ni 0.35 Mn 0.28 Co 0.37) O 2, Li (Ni 0.6 Mn 0.2 Co 0.2) O 2, Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2, and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 .
상기 양극활물질은 상기 리튬-니켈-망간-코발트계 산화물 외에도 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다)) 등을 더 포함할 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. (For example, LiMnO 2 , LiMn 2 O 4, etc.), a lithium-cobalt oxide (for example, LiCoO 2, etc.) in addition to the lithium-nickel-manganese-cobalt oxide, Lithium-nickel-based oxides such as LiNiO 2 , lithium-nickel-manganese-based oxides such as LiNi 1 -Y Mn Y O 2 (where 0 <Y <1), LiMn 2-z Ni z O 4 (where, 0 <Z <2) and the like), lithium-nickel-cobalt oxide (e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 <Y1 <1), etc.), lithium-manganese-cobalt oxide (e. g., LiCo (here 1-Y2 Mn Y2 O 2, 0 <Y2 <1), LiMn 2-z1 Co z1 O 4 ( here, 0 <Z1 <2), etc. ), or a lithium-nickel-cobalt-transition metal (M) oxide (e.g., Li (Ni p2 Co q2 Mn r3 M S2) O 2 (here, M is Al, Fe, V, Cr, Ti, Ta , Mg and Mo, and p2, q2, r3 and s2 are atomic fractions of independent elements, 0 <p2 <1, 0 <q2 <1, 0 <r3 <1, 0 <s2 < 1, p2 + q2 + r3 + s2 = 1))), and the like, and any one or two or more of these compounds may be included.
이러한 양극 활물질은 LiCoO2, LiMnO2, LiNiO2, 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있다.Such a cathode active material may be LiCoO 2 , LiMnO 2 , LiNiO 2 , or lithium nickel cobalt aluminum oxide (for example, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.).
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 90 중량% 내지 99 중량%, 구체적으로 93 중량% 내지 98 중량%로 포함될 수 있다.The positive electrode active material may include 90 wt% to 99 wt%, specifically 93 wt% to 98 wt%, based on the total weight of the solid content in the positive electrode slurry.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding of the active material to the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 30 wt% based on the total weight of the solid content in the positive electrode slurry. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene (Ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers and the like.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. The conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery. For example, the conductive material may be carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, Carbon powder; Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. The conductive material is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the positive electrode slurry.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 10 중량% 내지 70 중량%, 바람직하게 20 중량% 내지 60 중량%가 되도록 포함될 수 있다.The solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that provides a preferable viscosity when the positive electrode active material and optionally a binder and a conductive material are included. For example, the solid content in the slurry containing the cathode active material, and optionally the binder and the conductive material may be 10 wt% to 70 wt%, preferably 20 wt% to 60 wt%.
(2) 음극(2) cathode
상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.The negative electrode may be manufactured by forming a negative electrode mixture layer on the negative electrode collector. The negative electrode material mixture layer may be formed by coating a negative electrode current collector with a slurry containing a negative electrode active material, a binder, a conductive material, a solvent, and the like, followed by drying and rolling.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The anode current collector generally has a thickness of 3 to 500 mu m. The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. Examples of the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
또한, 상기 음극활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질, 및 전이 금속 산화물 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다. The negative electrode active material may be a lithium metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal complex oxide, lithium capable of doping and dedoping lithium Materials, and transition metal oxide transition metal oxides.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.The carbonaceous material capable of reversibly intercalating / deintercalating lithium ions is not particularly limited as long as it is a carbonaceous anode active material generally used in a lithium ion secondary battery. Examples of the carbonaceous material include crystalline carbon, Amorphous carbon or any combination thereof. Examples of the crystalline carbon include graphite such as natural graphite or artificial graphite in the form of amorphous, plate-like, flake, spherical or fiber, and examples of the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, fired coke, and the like.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.The metal or an alloy of these metals and lithium may be selected from the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, And Sn, or an alloy of these metals and lithium may be used.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.In the metal composite oxide is PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0? X? 1), Li x WO 2 (0? X? 1), and Sn x Me 1-x Me y y z , Pb, Ge, Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen: 0 <x? 1; 1? Y? May be used.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.As the material capable of doping and dedoping lithium, Si, SiO x (0 <x? 2), Si-Y alloy (Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, Rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (wherein Y is at least one element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Element and an element selected from the group consisting of combinations thereof, and not Sn), and at least one of them may be mixed with SiO 2 . The element Y may be at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Se, Te, Po, and combinations thereof.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.Examples of the transition metal oxide include lithium-containing titanium composite oxide (LTO), vanadium oxide, lithium vanadium oxide, and the like.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.The negative active material may be contained in an amount of 80% by weight to 99% by weight based on the total weight of the solid content in the negative electrode slurry.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode slurry. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene Examples thereof include ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber and various copolymers thereof.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is a component for further improving the conductivity of the negative electrode active material and may be added in an amount of 1 to 20 wt% based on the total weight of the solid content in the negative electrode slurry. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 75 중량%, 바람직하게 50 중량% 내지 65 중량%가 되도록 포함될 수 있다.The solvent may include water or an organic solvent such as NMP, alcohol, etc., and may be used in an amount in which the negative electrode active material and, optionally, a binder, a conductive material, and the like are contained in a desired viscosity. For example, the slurry containing the negative electrode active material and, optionally, the binder and the conductive material may be contained in such a manner that the solid concentration of the slurry is 50% by weight to 75% by weight, preferably 50% by weight to 65% by weight.
또한, 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.As the separator, a conventional porous polymer film conventionally used as a separator, for example, a polyolefin such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer A porous polymer film made of a high molecular weight polymer may be used alone or in a laminated manner, or a nonwoven fabric made of a conventional porous nonwoven fabric such as a glass fiber having a high melting point, a polyethylene terephthalate fiber or the like may be used. It is not.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to enable those skilled in the art to more fully understand the present invention.
실시예Example
실시예 1. Example 1.
(비수전해액 제조)(Preparation of non-aqueous electrolyte)
1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트:에틸메틸카보네이트= 30:70 부피비) 96.4g에 첨가제로 리튬 디플루오로포스페이트(LiDFP):플루오로벤젠(FB):테트라비닐실란(TVS):1,3-프로판설톤(PS)을 1:2:0.1:0.5 중량비로 혼합한 혼합 첨가제 3.6g을 첨가하여, 본 발명의 비수전해액을 제조하였다 (하기 표 1 참조).Lithium difluorophosphate (LiDFP): Fluorobenzene (FB): tetravinylsilane (TVS) as an additive: 96.4 g of an organic solvent in which 1.0 M LiPF 6 is dissolved (ethylene carbonate: ethyl methyl carbonate = 30:70 by volume) And 3.6 g of a mixed additive in which 1,3-propane sultone (PS) was mixed at a weight ratio of 1: 2: 0.1: 0.5 was added to prepare a non-aqueous electrolyte of the present invention (see Table 1 below).
(전극 제조)(Electrode manufacturing)
양극 활물질(Li(Ni0.6Mn0.2Co0.2)O2), 도전재(카본 블랙) 및 바인더(폴리비닐리덴플루오라이드)를 90:5:5 중량 비율로 용제인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리 (고형분 농도 50 중량%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 100㎛인 양극 집전체 (Al 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다.A negative active material (Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 ), a conductive material (carbon black) and a binder (polyvinylidene fluoride) were mixed in a weight ratio of 90: (NMP) to prepare a positive electrode active material slurry (solid content concentration: 50% by weight). The positive electrode active material slurry was applied to a positive electrode current collector (Al thin film) having a thickness of 100 m, dried, and roll pressed to produce a positive electrode.
음극 활물질(인조 흑연), 바인더(PVDF), 도전재(카본 블랙)를 95 : 2 : 3 중량비율로 용제인 NMP에 첨가하여 음극 활물질 슬러리(고형분 농도 60 중량%)를 제조하였다. 상기 음극 활물질 슬러리를 두께가 90㎛인 음극 집전체 (Cu 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 음극을 제조하였다.A negative electrode active material slurry (solid concentration: 60% by weight) was prepared by adding a negative electrode active material (artificial graphite), a binder (PVDF), and a conductive material (carbon black) to NMP as a solvent at a weight ratio of 95: 2: 3. The negative electrode active material slurry was coated on a negative electrode current collector (Cu thin film) having a thickness of 90 탆, dried, and rolled to produce a negative electrode.
(이차전지 제조)(Secondary Battery Manufacturing)
전술한 방법으로 제조한 양극과 음극을 폴리에틸렌 다공성 필름과 함께 순차적으로 적층하여 전극조립체를 제조한 다음, 이를 전지 케이스에 넣고 상기 비수전해액을 주액하고, 밀봉하여 리튬 이차전지를 제조하였다.The positive electrode and the negative electrode prepared by the above-mentioned method were sequentially laminated together with a polyethylene porous film to prepare an electrode assembly, which was then placed in a battery case, the nonaqueous electrolyte was injected, and the battery was sealed to manufacture a lithium secondary battery.
실시예 2. Example 2.
비수전해액 제조 시에, 유기용매 97.84g에 첨가제로 LiDFP:FB:TVS:PS를 1:2:0.1:0.5 중량비로 혼합한 혼합 첨가제 2.16g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that 2.16 g of a mixed additive prepared by mixing 97.84 g of an organic solvent with LiDFP: FB: TVS: PS in an amount of 1: 2: 0.1: 0.5 by weight as an additive was added during the preparation of the non-aqueous electrolyte. The non-aqueous electrolyte of the present invention and a secondary battery containing the same were prepared (see Table 1 below).
실시예 3. Example 3.
비수전해액 제조 시에, 용매 94.6g에 첨가제로 LiDFP:FB:TVS:PS를 1:2:0.1:1.5 중량비로 혼합한 혼합 첨가제 5.4g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).In the same manner as in Example 1 except that 5.4 g of a mixed additive obtained by mixing LiDFP: FB: TVS: PS in an amount of 1: 2: 0.1: 1.5 by weight as an additive was added to 94.6 g of a solvent during the preparation of the non- To prepare a nonaqueous electrolyte of the present invention and a secondary battery comprising the same (see Table 1 below).
실시예 4. Example 4.
비수전해액 제조 시에, 용매 88.7g에 첨가제로 LiDFP:FB:TVS:PS를 1:8:0.3:2 중량비로 혼합한 혼합 첨가제 11.3g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).In the same manner as in Example 1 except that 11.3 g of a mixed additive obtained by mixing LiDFP: FB: TVS: PS in an amount of 1: 8: 0.3: 2 by weight as an additive was added to 88.7 g of a solvent during the preparation of the non- To prepare a nonaqueous electrolyte of the present invention and a secondary battery comprising the same (see Table 1 below).
실시예 5. Example 5.
비수전해액 제조 시에, 용매 96g에 첨가제로 LiDFP:FB:TVS:PS를 1:8:0.3:2 중량비로 혼합한 혼합 첨가제 4g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that 4 g of a mixed additive obtained by mixing LiDFP: FB: TVS: PS in an amount of 1: 8: 0.3: 2 by weight as an additive was added to 96 g of the solvent in the preparation of the non-aqueous electrolyte. The nonaqueous electrolytic solution of the invention and the secondary battery comprising the same were prepared (see Table 1 below).
실시예 6. Example 6.
비수전해액 제조 시에, 용매 83.05g에 첨가제로 LiDFP:FB:TVS:PS를 1:8:0.3:2 중량비로 혼합한 혼합 첨가제 16.95g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).In the same manner as in Example 1 except for adding, to the 83.05 g of the solvent, 16.95 g of a mixed additive obtained by mixing LiDFP: FB: TVS: PS in a weight ratio of 1: 8: 0.3: To prepare a nonaqueous electrolyte of the present invention and a secondary battery comprising the same (see Table 1 below).
실시예 7. Example 7.
비수전해액 제조 시에, 용매 91.3g에 첨가제로 LiDFP:FB:TVS:PS를 1:6:0.2:1.5 중량비로 혼합한 혼합 첨가제 8.7g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that 8.7 g of a mixed additive in which LiDFP: FB: TVS: PS was mixed at a weight ratio of 1: 6: 0.2: 1.5 as an additive was added to 91.3 g of a solvent in the preparation of the non-aqueous electrolyte, To prepare a nonaqueous electrolyte of the present invention and a secondary battery comprising the same (see Table 1 below).
실시예 8. Example 8.
비수전해액 제조 시에, 용매 86g에 첨가제로 LiDFP:FB:TVS:PS를 1:8:0.05:0.5 중량비로 혼합한 혼합 첨가제 14g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that 14 g of a mixed additive in which LiDFP: FB: TVS: PS was mixed at a weight ratio of 1: 8: 0.05: 0.5 as an additive was added to 86 g of a solvent in the preparation of the non-aqueous electrolyte, The nonaqueous electrolytic solution of the invention and the secondary battery comprising the same were prepared (see Table 1 below).
실시예 9. Example 9.
비수전해액 제조 시에, 용매 96g에 첨가제로 LiDFP:FB:TVS:PRS를 1:8:0.3:2 중량비로 혼합한 혼합 첨가제 4g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that 4 g of a mixed additive prepared by mixing 96 g of a solvent with LiDFP: FB: TVS: PRS in a weight ratio of 1: 8: 0.3: 2 as an additive agent was added in the same manner as in Example 1 The nonaqueous electrolytic solution of the invention and the secondary battery comprising the same were prepared (see Table 1 below).
실시예 10. Example 10.
비수전해액 제조 시에, 용매 96g에 첨가제로 LiDFP:FB:TVS:TMS를 1:8:0.3:2 중량비로 혼합한 혼합 첨가제 4g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that 4 g of a mixed additive in which 96 g of a solvent was mixed with LiDFP: FB: TVS: TMS in a weight ratio of 1: 8: 0.3: 2 as an additive agent was added at the time of preparing the non-aqueous electrolyte. The nonaqueous electrolytic solution of the invention and the secondary battery comprising the same were prepared (see Table 1 below).
실시예 11. Example 11.
비수전해액 제조 시에, 용매 83.05g에 첨가제로 LiDFP:FB:TVS:PS:TMS를 1:8:0.3:1:1 중량비로 혼합한 혼합 첨가제 16.95g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).The procedure of Example 1 was repeated except for adding 16.95 g of a mixed additive obtained by mixing 83.05 g of a solvent with LiDFP: FB: TVS: PS: TMS in a weight ratio of 1: 8: 0.3: The non-aqueous electrolyte of the present invention and a secondary battery containing the same were prepared (see Table 1 below).
실시예 12.Example 12.
비수전해액 제조 시에, 용매 91.3g에 첨가제로 LiDFP:FB:TVS:PS:Esa를 1:6:0.2:0.5:1.0 중량비로 혼합한 혼합 첨가제 8.7g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that 8.7 g of a mixed additive prepared by mixing 91.3 g of a solvent with LiDFP: FB: TVS: PS: Esa in a weight ratio of 1: 6: 0.2: 0.5: The non-aqueous electrolyte of the present invention and a secondary battery containing the same were prepared (see Table 1 below).
실시예 13.Example 13.
비수전해액 제조 시에, 용매 89.95g에 첨가제로 LiDFP:FB:TVS:Esa를 1:4:0.2:1.5 중량비로 혼합한 혼합 첨가제 10.05g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that 10.05 g of a mixed additive in which LiDFP: FB: TVS: Esa was mixed at a weight ratio of 1: 4: 0.2: 1.5 as an additive was added to 89.95 g of the solvent at the time of preparing the non-aqueous electrolyte, To prepare a nonaqueous electrolyte of the present invention and a secondary battery comprising the same (see Table 1 below).
실시예 14.Example 14.
비수전해액 제조 시에, 유기용매 92g에 첨가제로 LiDFP:FB:TVS:PS:Esa를 1:8:0.3:1:1 중량비로 혼합한 혼합 첨가제 18g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that 18 g of a mixed additive obtained by mixing LiDFP: FB: TVS: PS: Esa in an amount of 1: 8: 0.3: 1: 1 by weight as an additive was added to 92 g of an organic solvent at the time of preparing the non-aqueous electrolyte. In the same manner, the nonaqueous electrolyte of the present invention and a secondary battery containing the same were prepared (see Table 1 below).
실시예 15.Example 15.
비수전해액 제조 시에, 유기용매 78g에 첨가제로 LiDFP:FB:TVS:PS:ESa를 1:4:0.2:0.5:1 중량비로 혼합한 혼합 첨가제 22g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 본 발명의 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that 22 g of a mixed additive obtained by mixing LiDFP: FB: TVS: PS: ESa in an amount of 1: 4: 0.2: 0.5: 1 by weight as an additive was added to 78 g of an organic solvent during the preparation of the non-aqueous electrolyte. In the same manner, the nonaqueous electrolyte of the present invention and a secondary battery containing the same were prepared (see Table 1 below).
비교예 1.Comparative Example 1
비수전해액 제조 시에, 용매 97g에 첨가제로 비닐렌 카보네이트 3g 만을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).A nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1 except that only 3 g of vinylene carbonate was added as an additive to 97 g of a solvent in the preparation of the nonaqueous electrolyte (see Table 2 below).
비교예 2.Comparative Example 2
비수전해액 제조 시에, 용매 98g에 첨가제로 LiBF4 2g 만을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).A non-aqueous electrolyte and a secondary battery containing the non-aqueous electrolyte were prepared in the same manner as in Example 1 except that only 2 g of LiBF 4 was added as an additive to 98 g of a solvent in the preparation of the non-aqueous electrolyte (see Table 2 below).
비교예 3.Comparative Example 3
비수전해액 제조 시에, 용매 87.3g에 첨가제로 LiDFP:FB:TVS:PS를 1:15:0.2:1.5 중량비로 혼합한 혼합 첨가제 12.7g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).Except that 12.7 g of a mixed additive in which LiDFP: FB: TVS: PS was mixed at a weight ratio of 1: 15: 0.2: 1.5 as an additive was added to 87.3 g of a solvent at the time of preparing the non-aqueous electrolyte, To prepare a nonaqueous electrolyte and a secondary battery containing the same (see Table 2 below).
비교예 4.Comparative Example 4
비수전해액 제조 시에, 용매 91g에 첨가제로 LiDFP:FB:TVS:PS를 1:6:0.5:1.5 중량비로 혼합한 혼합 첨가제 9g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).In the same manner as in Example 1, except that 9 g of a mixed additive in which LiDFP: FB: TVS: PS was mixed at a weight ratio of 1: 6: 0.5: 1.5 as an additive was added to 91 g of a solvent at the time of preparing the non-aqueous electrolyte, To prepare an electrolytic solution and a secondary battery containing the electrolytic solution (see Table 2 below).
비교예 5.Comparative Example 5
비수전해액 제조 시에, 용매 89.8g에 첨가제로 LiDFP:FB:TVS:PS를 1:6:0.2:5 중량비로 혼합한 혼합 첨가제 10.2g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).Except that 10.2 g of a mixed additive in which LiDFP: FB: TVS: PS was mixed at a weight ratio of 1: 6: 0.2: 5 as an additive was added to 89.8 g of a solvent in the preparation of the non-aqueous electrolyte, To prepare a nonaqueous electrolyte and a secondary battery containing the same (see Table 2 below).
비교예 6.Comparative Example 6
비수전해액 제조 시에, 용매 91.8g에 첨가제로 FB:TVS:PS를 6:0.2:2 중량비로 혼합한 혼합 첨가제 8.2g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).Aqueous electrolyte solution was prepared in the same manner as in Example 1, except that 8.2 g of a mixed additive obtained by mixing FB: TVS: PS at a weight ratio of 6: 0.2: 2 as an additive in 91.8 g of a solvent was added. And a secondary battery containing the same was prepared (see Table 2 below).
비교예 7.Comparative Example 7
비수전해액 제조 시에, 용매 94.8g에 첨가제로 LiDFP:TVS:PS를 2:0.2:3 중량비로 혼합한 혼합 첨가제 5.2g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).Aqueous electrolyte solution was prepared in the same manner as in Example 1, except that 5.2 g of a mixed additive obtained by mixing 94.8 g of a solvent with LiDFP: TVS: PS at a weight ratio of 2: 0.2: 3 as an additive was added. And a secondary battery containing the same was prepared (see Table 2 below).
비교예 8.Comparative Example 8
비수전해액 제조 시에, 용매 91.5g에 첨가제로 LiDFP:FB:PS를 1:6:1.5 중량비로 혼합한 혼합 첨가제 8.5g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).Aqueous electrolyte solution was prepared in the same manner as in Example 1, except that 8.5 g of a mixed additive in which LiDFP: FB: PS was mixed at a weight ratio of 1: 6: 1.5 as an additive was added to 91.5 g of a solvent at the time of preparing the non- And a secondary battery containing the same was prepared (see Table 2 below).
비교예 9.Comparative Example 9
비수전해액 제조 시에, 용매 92.8g에 첨가제로 LiDFP:FB:TVS를 1:6:0.2 중량비로 혼합한 혼합 첨가제 7.2g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).Aqueous electrolyte solution was prepared in the same manner as in Example 1, except that 7.2 g of a mixed additive obtained by mixing LiDFP: FB: TVS in an amount of 1: 6: 0.2 by weight as an additive in 92.8 g of a solvent was added. And a secondary battery containing the same was prepared (see Table 2 below).
비교예 10.Comparative Example 10.
비수전해액 제조 시에, 용매 90.8g에 첨가제로 LiDFP:FB:TVS:MMDS(메틸렌 메탄디설포네이트)를 1:6:0.2:2 중량비로 혼합한 혼합 첨가제 9.2g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).Except that 9.2 g of a mixed additive obtained by mixing LiDFP: FB: TVS: MMDS (methylene methane disulfonate) as an additive in a weight ratio of 1: 6: 0.2: 2 was added to 90.8 g of a solvent in the preparation of the non- A nonaqueous electrolyte and a secondary battery containing the same were prepared in the same manner as in Example 1 (see Table 2 below).
비교예 11.Comparative Example 11.
비수전해액 제조 시에, 용매 97.85g에 첨가제로 LiDFP:FB:TVS:TMS를 0.9:8:0.3:2 중량비로 혼합한 혼합 첨가제 2.15g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).The procedure of Example 1 was repeated except that 2.15 g of a mixed additive prepared by mixing 97.85 g of a solvent with LiDFP: FB: TVS: TMS in a weight ratio of 0.9: 8: 0.3: 2 as an additive was added during the preparation of the non- To prepare a nonaqueous electrolyte and a secondary battery containing the same (see Table 2 below).
비교예 12.Comparative Example 12.
비수전해액 제조 시에, 용매 90.96g에 첨가제로 LiDFP:FB:TVS:ESa를 1:6:0.04:2 중량비로 혼합한 혼합 첨가제 9.04g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).Except that 9.04 g of a mixed additive obtained by mixing 90.96 g of a solvent with LiDFP: FB: TVS: ESa in a weight ratio of 1: 6: 0.04: 2 as an additive was added to the nonaqueous electrolyte solution in the same manner as in Example 1 To prepare a nonaqueous electrolyte and a secondary battery containing the same (see Table 2 below).
비교예 13.Comparative Example 13.
비수전해액 제조 시에, 용매 96.5g에 첨가제로 LiDFP:FB:TVS:PS를 1:6:0.2:0.4 중량비로 혼합한 혼합 첨가제 3.5g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 2 참조).In the same manner as in Example 1 except that 3.5 g of a mixed additive in which LiDFP: FB: TVS: PS was mixed at a weight ratio of 1: 6: 0.2: 0.4 as an additive was added to 96.5 g of a solvent at the time of preparing the non- To prepare a nonaqueous electrolyte and a secondary battery containing the same (see Table 2 below).
실험예Experimental Example
실험예 1. 저온 출력 특성 평가Experimental Example 1. Evaluation of low-temperature output characteristics
상기 실시예 1 및 실시예 4와 비교예 1 및 비교예 4에서 제조한 각각의 리튬 이차전지를 3 25℃에서 3.0V 내지 4.25V 전압 구동 범위에서 0.33C/4.25V 정전류-정전압 4.25V/0.05C 조건으로 충전하고 0.33C 정전류로 SOC 50%만큼 방전시켜 전지의 충전 상태를 맞추었다. Each of the lithium secondary batteries prepared in Examples 1 and 4 and Comparative Example 1 and Comparative Example 4 was charged at a constant voltage of 0.33 C / 4.25 V constant current-constant voltage 4.25 V / 0.05 C condition and discharging SOC 50% at a constant current of 0.33C to adjust the charged state of the battery.
각각의 이차전지를 -30℃에서 온도 평형을 위하여 4시간 이상 방치한 후, 3W~7W 전력으로 30초간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하를 측정하였다. 상기의 SOC 설정 및 저온에서의 출력 인가 평가는 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 진행하였다. Each of the secondary batteries was allowed to stand for 4 hours or more at -30 ° C for temperature equilibrium, and then the voltage drop was measured in a state where a discharge pulse was applied for 30 seconds at a power of 3W to 7W. The SOC setting and the evaluation of the output power at low temperature were conducted using a PNE-0506 charge / discharge device (PNE solution, 5V, 6A, manufactured by the company).
얻어진 강하 전압 값을 이용해 각각의 이차전지에 대한 저온에서의 출력 특성을 산출하여, 도 1에 나타내었다.The output characteristics at low temperature for each secondary battery are calculated using the obtained falling voltage value, and are shown in Fig.
도 1을 살펴보면, 본 발명의 실시예 1 및 실시예 4에 따른 비수전해액을 포함하는 리튬 이차전지의 경우, 비교예 1 및 비교예 4의 리튬 이차전지에 비해 전압 강하 정도가 작은 것을 알 수 있다. 따라서, 이러한 결과로부터 저온 출력 특성이 우수함을 확인할 수 있다.Referring to FIG. 1, it can be seen that the voltage drop of the lithium secondary battery including the non-aqueous electrolyte according to the first and fourth embodiments of the present invention is smaller than that of the lithium secondary batteries of Comparative Examples 1 and 4 . From these results, it can be confirmed that the low-temperature output characteristics are excellent.
실험예 2. 고온 저장 후 용량 유지율 평가Experimental Example 2. Evaluation of Capacity Retention after High Temperature Storage
실시예 1 내지 실시예 15에서 제조된 리튬 이차전지와 비교예 1 내지 비교예 13에서 제조된 리튬 이차전지를 각각 25℃에서 0.33C/4.25V 정전류/정전압(CC/CV) 4.25V/0.05C 조건으로 충전하고 0.33C/3.0V 정전류로 방전하였다. 이때, 셀 조립 후/고온 저장 전에 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 측정한 방전용량을 초기 방전 용량으로 정의하였다.The lithium secondary batteries prepared in Examples 1 to 15 and the lithium secondary batteries prepared in Comparative Examples 1 to 13 were respectively charged at a constant current / constant voltage (CC / CV) of 4.25 V / 0.05 C And discharged at a constant current of 0.33C / 3.0V. At this time, the initial discharge capacity was defined as the discharge capacity measured by using a PNE-0506 charge / discharge device (manufactured by PNE Co., Ltd., 5V, 6A) prior to cell assembly / high temperature storage.
각각의 리튬 이차전지를 SOC 100% 충전 상태로 설정한 후 60℃에 16주 저장하였다.Each lithium secondary battery was set to a SOC 100% charged state and stored at 60 占 폚 for 16 weeks.
그 다음, 25℃에서 0.33C/4.25V 정전류/정전압(CC/CV) 4.25V/0.05C 조건으로 충전하고 0.33C/3.0V 정전류로 방전하고, PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 방전 용량을 측정하였다. 이때, 측정된 방전 용량을 고온 저장 후 방전용량으로 정의하였다.Then, the battery was charged at a constant current / constant voltage (CC / CV) of 4.25 V / 0.05 C at 25 ° C and discharged at a constant current of 0.33 C / 3.0 V, and charged in a PNE-0506 charge / discharge device Solution, 5V, 6A) was used to measure the discharge capacity. At this time, the measured discharge capacity was defined as discharge capacity after high temperature storage.
이를 하기 식 (1)에 대입하여 용량 유지율(capacity retention)을 측정하고, 그 결과를 하기 표 1 및 표 2에 기재하였다.The capacity retention was measured by substituting it into the following formula (1), and the results are shown in Tables 1 and 2 below.
식 (1): 용량 유지율(%)=(고온 저장 후 방전 용량/초기 방전 용량)×100(1): Capacity retention rate (%) = (discharge capacity after high-temperature storage / initial discharge capacity) x 100
실험예 3. 고온 저장 후 출력 특성 평가Experimental Example 3. Evaluation of Output Characteristics after Storage at High Temperature
실시예 1 내지 실시예 15에서 제조된 리튬 이차전지와 비교예 1 내지 비교예 13에서 제조된 리튬 이차전지를 각각 25℃에서 0.33C 정전류로 SOC 50%만큼 방전시켜 전지의 충전상태를 맞추었다. The lithium secondary batteries prepared in Examples 1 to 15 and the lithium secondary batteries prepared in Comparative Examples 1 to 13 were respectively discharged at a constant current of 0.33 C at 25 DEG C for an SOC of 50%
그 다음 정전류(CC) 조건으로 2.5 V까지 2.5C로 30초간 방전 펄스(Pulse)를 준 상태에서 나타나는 전압 강하량을 통하여 각각의 리튬 이차전지에 대한 출력을 측정하였다. 이때, 셀 조립 후/고온 저장 전에 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 측정한 방전 출력 값을 초기 방전출력으로 정의하였다.Then, the output of each lithium secondary battery was measured through a voltage drop at a constant current (CC) condition of 2.5 V and a discharge pulse for 30 seconds at 2.5C. At this time, the discharge output value measured using a PNE-0506 charge / discharge device (manufacturer: PNE solution, 5V, 6A) was defined as an initial discharge output after cell assembly / high temperature storage.
각각의 리튬 이차전지를 SOC 100% 충전 상태로 설정한 후 60℃에 16주 저장하였다.Each lithium secondary battery was set to a SOC 100% charged state and stored at 60 占 폚 for 16 weeks.
그 다음, 25℃에서 0.33C/4.25V 정전류/정전압(CC/CV) 4.25V/0.05C 조건으로 충전하고 0.33C/3.0V 정전류로 방전하고, PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 방전 출력 값을 측정하였다. 이때, 측정된 방전 출력 값을 고온저장 후 방전 출력 값으로 정의하였다. Then, the battery was charged at a constant current / constant voltage (CC / CV) of 4.25 V / 0.05 C at 25 ° C and discharged at a constant current of 0.33 C / 3.0 V, and charged in a PNE-0506 charge / discharge device Solution, 5V, 6A) was used to measure the discharge output value. At this time, the measured discharge output value was defined as discharge output value after storing at high temperature.
셀 측정된 출력을 하기 식(2)에 대입하여 출력 유지율(%)을 산출하고, 그 결과를 하기 표 1 및 표 2에 기재하였다.The cell measured output was substituted into the following equation (2) to calculate the output retention ratio (%). The results are shown in Tables 1 and 2 below.
식 (2): 출력 특성 (%)= (고온 저장 후 방전출력(W)/초기 방전출력(W))×100(2): Output characteristic (%) = (discharge output (W) / initial discharge output (W) after high temperature storage) × 100
실험예 4. 고온 저장 후 전지 두께 증가율 평가Experimental Example 4. Evaluation of Cell Thickness Growth Rate After High Temperature Storage
실시예 1 내지 실시예 15에서 제조된 리튬 이차전지와 비교예 1 내지 비교예 13에서 제조된 리튬 이차전지를 각각 25℃에서 3.0V 내지 4.25V 전압 구동 범위에서 0.33C/4.25V 정전류-정전압 4.25V/0.05C 조건으로 만충전하여 SOC 100% 상태에서 평판 두께 측정기(Mitutoyo(日))로 각 이차전지의 두께를 측정하였다. 셀 조립 후 처음 측정하는 두께를 초기 두께라고 정의하였다The lithium secondary batteries manufactured in Examples 1 to 15 and the lithium secondary batteries prepared in Comparative Examples 1 to 13 were respectively driven at a voltage of 3.0 V to 4.25 V at 25 캜 in a voltage driving range of 0.33 C / 4.25 V constant current - constant voltage 4.25 V / 0.05C, and the thickness of each secondary cell was measured with a plate thickness meter (Mitutoyo (Japan)) under SOC 100% condition. The initial thickness measured after cell assembly is defined as the initial thickness
이어서, 상기 초기 충방전 된 리튬 이차전지를 각각 4.25V로 SOC 100%까지 충전하고, 60℃에서 16 주 동안 저장 한 후 상온에서 식힌 후 평판 두께 측정기(Mitutoyo(日))를 이용하여 고온 저장 후의 두께를 측정하였다.Then, the initial charge and discharge of the rechargeable lithium secondary batteries were charged to 4.2 V of SOC up to 100%, stored at 60 DEG C for 16 weeks, cooled at room temperature, and then stored at a high temperature using a plate thickness meter (Mitutoyo, The thickness was measured.
상기와 같이 측정된 초기 두께 및 고온 저장 후의 두께를 하기 식 (3)에 대입하여 두께 증가율을 산출하고, 그 결과를 하기 표 1 및 표 2에 나타내었다. The initial thickness and the thickness after high-temperature storage as described above were substituted into the following equation (3) to calculate the thickness increase rate, and the results are shown in Tables 1 and 2 below.
식 (3): 두께 증가율(%)={(고온 저장 후의 두께-초기 두께)/초기 두께}×100(3): Thickness increase rate (%) = {(thickness after high temperature storage - initial thickness) / initial thickness} x 100
실험예 5. 고온 저장 후 사이클 수명 특성 평가EXPERIMENTAL EXAMPLE 5. Evaluation of cycle life characteristics after storage at high temperature
실시예 1 내지 실시예 15에서 제조된 리튬 이차전지와 비교예 1 내지 비교예 13에서 제조된 리튬 이차전지를 각각 45℃에서 25℃에서 0.33C/4.25V 정전류/정전압(CC/CV) 4.25V/0.05C 조건으로 충전하고 0.33C/3.0V 정전류로 방전하였다. 상기 충방전을 1 사이클로 하여 이를 500회 충방전을 반복 시행하였다. The lithium secondary batteries prepared in Examples 1 to 15 and the lithium secondary batteries prepared in Comparative Examples 1 to 13 were respectively charged at 25 DEG C at 45 DEG C and at a constant current / constant voltage (CC / CV) of 4.25 V /0.05C and discharged at a constant current of 0.33C / 3.0V. The charging and discharging was performed in one cycle, and the charging and discharging was repeated 500 times.
이때, 첫 번째 사이클후의 용량과 500 번째 사이클 후의 용량을 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 측정하고, 용량을 하기 식 (4)에 대입하여 사이클 수명 특성을 평가하였다. 그 결과를 하기 표 1 및 표 2에 나타내었다.At this time, the capacity after the first cycle and the capacity after the 500th cycle were measured using a PNE-0506 charge / discharge machine (manufacturer: PNE solution, 5V, 6A by the manufacturer), and the capacity was substituted into the following expression (4) The properties were evaluated. The results are shown in Tables 1 and 2 below.
식 (4): 사이클 수명 특성(%)=(500회 사이클 용량/1회 사이클 용량)×100 (4): cycle life characteristic (%) = (500 cycle capacity / one cycle capacity) x 100
Figure PCTKR2018013783-appb-T000001
Figure PCTKR2018013783-appb-T000001
Figure PCTKR2018013783-appb-T000002
Figure PCTKR2018013783-appb-T000002
상기 표 1 및 표 2에서, PS는 1,3-프로판설톤을 의미하고, PRS는 1,3-프로펜 설톤을 의미하며, TMS는 트리메틸렌설페이트 의미하고, ESa는 에틸렌 설페이트를 의미한다. 또한, MMDS는 메틸렌 메탄디설포네이트를 의미한다.In Table 1 and Table 2, PS means 1,3-propane sultone, PRS means 1,3-propanesultone, TMS means trimethylene sulfate, and ESa means ethylene sulfate. Also, MMDS means methylene methane disulfonate.
상기 표 1 및 표 2를 살펴보면, 실시예 1 내지 실시예 14의 혼합 첨가제를 포함하는 비수전해액을 구비한 리튬 이차전지는 고온 저장 후 용량 유지율이 79.1% 이상, 출력 특성이 81.9%, 전지 두께 증가율이 29.5% 이하 및 사이클 수명 특성이 80.2% 이상으로, 혼합 첨가제를 포함하지 않는 비수전해액을 구비한 비교예 1 및 비교예 2의 리튬 이차전지 대비 고온 저장 후 용량 유지율, 출력 특성, 전지 두께 증가율 및 사이클 수명 특성이 모두 현저히 향상된 것을 알 수 있다. As shown in Tables 1 and 2, the lithium secondary battery having the non-aqueous electrolyte containing the mixed additives of Examples 1 to 14 had a capacity retention rate of 79.1% or more after high temperature storage, an output characteristic of 81.9% The capacity retention ratio, the output characteristics, the cell thickness increase rate, and the battery capacity increase rate after storage at a high temperature compared to the lithium secondary batteries of Comparative Example 1 and Comparative Example 2 having a non-aqueous electrolyte containing no mixed additive at 29.5% or less and a cycle life characteristic of 80.2% And the cycle life characteristics are all significantly improved.
한편, 혼합 첨가제가 과량으로 포함된 실시예 15의 리튬 이차전지의 경우, 용량 유지율은 비교예 2에 비하여 개선된 반면에, 비수 전해액 점도 증가에 의해 전해액 젖음성이 저하되면서 출력 특성 및 사이클 수명 특성 등이 실시예 1 내지 실시예 14의 리튬 이차전지에 비하여 저감되는 것을 알 수 있다.On the other hand, in the case of the lithium secondary battery of Example 15 in which an excessive amount of the mixed additive was contained, the capacity retention ratio was improved as compared with Comparative Example 2, while the electrolyte wettability was decreased due to the increase of the non-aqueous electrolyte viscosity, Is reduced in comparison with the lithium secondary batteries of Examples 1 to 14.
한편, 혼합 첨가제 성분 중 적어도 하나 이상의 성분이 과량으로 포함된 비수전해액을 구비한 비교예 3 내지 비교예 5의 리튬 이차전지의 경우, 본 발명의 비수전해액을 구비한 실시예 1 내지 실시예 14의 리튬 이차전지와 비교하여, 고온 저장 후 전지 두께 증가율을 제외하고, 용량 유지율, 출력 특성 및 사이클 수명 특성이 모두 열화된 것을 알 수 있다.On the other hand, in the case of the lithium secondary batteries of Comparative Examples 3 to 5 having the nonaqueous electrolyte solution containing at least one component of the mixed additive component in an excessive amount, in Examples 1 to 14 with the nonaqueous electrolyte solution of the present invention The capacity retention rate, the output characteristics, and the cycle life characteristics are all degraded, except for the cell thickness increase rate after high temperature storage, as compared with the lithium secondary battery.
한편, 첨가제 성분 중 리튬 디플루오로포스페이트의 첨가 여부에 차이가 있는 실시예 7 및 비교예 6의 리튬 이차전지를 비교해 보면, 비교예 6의 리튬 이차전지는 셀 작동이 불가한 반면에, 실시예 7의 리튬 이차전지는 월등히 우수한 고온 저장 후 용량 유지율, 출력 특성, 전지 두께 증가율 및 고온 사이클 수명 특성이 구현된 것을 알 수 있다.On the other hand, when comparing the lithium secondary batteries of Example 7 and Comparative Example 6 in which the addition of lithium difluorophosphate was different among the additive components, the lithium secondary battery of Comparative Example 6 was incapable of cell operation, 7 lithium secondary batteries exhibited excellent capacity retention, output characteristics, cell thickness increase rate, and high temperature cycle life characteristics after high-temperature storage.
또한, 첨가제 성분 중 플루오로벤젠의 첨가 여부에 차이가 있는 실시예 7 및 비교예 7의 리튬 이차전지를 비교해 보면, 비교예 7의 리튬 이차전지는 과충전 시 전지 발화가 일어난 반면에, 실시예 7의 리튬 이차전지는 고온 저장 후 용량 유지율, 출력 특성, 전지 두께 증가율 및 고온 사이클 수명 특성을 유지하면서 과충전 시 전지 미발화되는 것을 알 수 있다.Comparing the lithium secondary batteries of Example 7 and Comparative Example 7 in which addition of fluorobenzene was different among the additive components, the battery of Comparative Example 7 was ignited during overcharging, whereas in Example 7 Of the lithium secondary battery can not be ignited during overcharging while maintaining the capacity retention rate, output characteristics, cell thickness increase rate, and high temperature cycle life characteristics after high temperature storage.
또한, 첨가제 성분 중 테트라비닐실란의 첨가 여부에 차이가 있는 실시예 7과 비교예 8의 리튬 이차전지를 비교해 보면, 실시예 7의 리튬 이차전지는 테트라비닐실란의 첨가에 따라 비교예 8에 비하여 고온 저장 후 전지 두께 증가율을 제외하고, 월등히 우수한 용량 유지율, 출력 특성 및 사이클 수명 특성이 구현되는 것을 알 수 있다.Comparing the lithium secondary batteries of Example 7 and Comparative Example 8 in which addition of tetravinylsilane is different among the additive components, the lithium secondary battery of Example 7 is superior to the lithium secondary battery of Comparative Example 8 by addition of tetravinylsilane It can be seen that exceptionally good capacity retention, output characteristics and cycle life characteristics are realized except for the cell thickness increase rate after high temperature storage.
또한, 첨가제 성분 중 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물의 첨가 여부에 차이가 있는 실시예 7 및 비교예 9의 리튬 이차전지를 비교해 보면, 실시예 7의 리튬 이차전지는 비교예 9의 리튬 이차전지에 비하여 월등히 우수한 고온 저장 후 용량 및 출력 특성과 사이클 수명 특성을 나타내고, 우수한 전지 두께 증가 억제 효과를 나타내는 것을 알 수 있다.Further, when comparing the lithium secondary batteries of Example 7 and Comparative Example 9 in which the addition of one sulfonate group or sulfate group-containing compound among the additive components is different, The lithium secondary battery exhibits excellent capacity and output characteristics and cycle life characteristics at a high temperature, which is superior to that of the lithium secondary battery, and exhibits an excellent effect of suppressing the cell thickness increase.
한편, 2개의 설포네이트기를 포함하는 메틸렌 메타디설포네이트를 함유한 비수전해액을 구비한 비교예 10의 이차전지의 경우, 출력 특성은 본 발명의 비수전해액을 구비한 실시예 1 내지 실시예 14의 리튬 이차전지와 동등 수준인 반면에, 용량 유지율, 출력 특성 및 사이클 수명 특성이 모두 본 발명의 비수전해액을 구비한 실시예 1 내지 실시예 14의 리튬 이차전지에 비하여 열화된 것을 알 수 있다.On the other hand, in the case of the secondary battery of Comparative Example 10 having the non-aqueous electrolyte containing methylene methadylsulfonate containing two sulfonate groups, the output characteristics were similar to those of Examples 1 to 14 The capacity retention rate, the output characteristics, and the cycle life characteristics are all degraded compared to the lithium secondary batteries of Examples 1 to 14 having the non-aqueous electrolyte of the present invention.
한편, 혼합 첨가제 성분 중 적어도 하나 이상의 성분이 소량 포함된 비수전해액을 구비한 비교예 11 내지 13의 이차전지의 경우, 본 발명의 비수전해액을 구비한 실시예 1 내지 실시예 14의 리튬 이차전지와 비교하여, 용량 유지율, 출력 특성 및 사이클 수명 특성 등이 모두 열화된 것을 알 수 있다.On the other hand, in the case of the secondary batteries of Comparative Examples 11 to 13 having a non-aqueous electrolyte containing a small amount of at least one component of the mixed additive component, the lithium secondary batteries of Examples 1 to 14 having the non- The capacity retention rate, the output characteristics, and the cycle life characteristics are all degraded.
실험예 6. 과충전 안전성 평가 실험Experimental Example 6 Overcharge Safety Evaluation Experiment
실시예 1에서 제조된 리튬 이차전지와 비교예 7에서 제조된 리튬 이차전지를 각각 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 25℃에서 SOC 100% 상태까지 0.33C/4.25V 정전류/정전압(CC/CV) 조건으로 충전하였다. 이후, 6.4V 까지 0.33C 정정류로 과충전을 실시하면서 전지의 온도 및 전압 변화를 측정하면서 발화 여부를 확인하였다. 실시예 1의 리튬 이차전지의 결과를 도 2에 나타내었고, 비교예 7의 리튬 이차전지에 대한 결과를 도 3에 나타내었다. The lithium secondary battery manufactured in Example 1 and the lithium secondary battery manufactured in Comparative Example 7 were each subjected to a SOC 100% state at 25 占 폚 using a PNE-0506 charge / discharge device (PNE solution, 5V, 6A, 0.33C / 4.25V constant current / constant voltage (CC / CV) conditions. Thereafter, overcharging was carried out with a correct current of 0.33C up to 6.4 V, and the change of temperature and voltage of the battery was measured to confirm whether or not the battery was ignited. The results of the lithium secondary battery of Example 1 are shown in FIG. 2, and the results of the lithium secondary battery of Comparative Example 7 are shown in FIG.
과충전 시간에 따른 전압 변화를 살펴보면, 실시예 1의 리튬 이차전지(도 2 참조)의 경우 7분 내지 22분 사이에 전압이 5.0V 이하로 낮은 것을 알 수 있다, 반면에, 플루오로벤젠을 포함하지 않는 비수전해액을 구비한 비교예 7의 리튬 이차전지(도 3 참조)는 25분 경에 전압이 5.2V까지 상승하는 것을 알 수 있다.In the case of the lithium secondary battery of Example 1 (see FIG. 2), the voltage was found to be 5.0 V or less in the range of 7 to 22 minutes, while fluorobenzene It is found that the voltage of the lithium secondary battery of Comparative Example 7 (see FIG. 3) provided with the nonaqueous electrolyte solution which does not react with the nonaqueous electrolyte solution rose to 5.2 V around 25 minutes.
즉, 본원발명의 리튬 이차전지의 경우 해당 전압대에서 플루오로벤젠이 반응하여 분해되면서 전지와 전해액의 추가반응을 억제하고 전지의 과충전을 방지시켜준 것을 알 수 있다. 이때 전지의 온도 증가 및 추가적인 과충전으로 인한 전해액 고갈 및 리튬 석출현상을 현저하게 막아주어 발화가 억제되는 것을 확인할 수 있다. That is, in the case of the lithium secondary battery of the present invention, the fluorobenzene reacts with the corresponding voltage band to decompose, thereby suppressing the additional reaction between the battery and the electrolyte, thereby preventing overcharge of the battery. At this time, it can be confirmed that ignition is suppressed by significantly preventing the electrolyte depletion and lithium precipitation due to the temperature increase of the battery and the additional overcharge.
또한, 과충전 시간에 따른 온도경과를 살펴보면, 플루오로벤젠을 필수 첨가제 성분으로 포함하는 비수전해액을 구비한 실시예 1의 리튬 이차전지(도 2 참조)의 경우 40 분 동안 100℃까지 빠르게 상승하다가 40분 이후부터 CID가 단락됨으로써, 온도가 서서히 하락하는 양상을 보여 발화온도에까지 이르지 않는 것을 알 수 있다. 반면에, 플루오로벤젠을 첨가제로 포함하지 않는 비수전해액을 구비한 비교예 7의 이차전지(도 3 참조)의 경우 약 33분 까지 온도가 빠르게 상승하다가 33분 이후에 최대 200℃ 이상까지 온도가 상승함으로써, 결국 전지가 발화되었음을 확인할 수 있다. In the case of the lithium secondary battery of Example 1 (see FIG. 2) equipped with a non-aqueous electrolyte containing fluorobenzene as an essential additive component, the temperature rises rapidly to 100 DEG C for 40 minutes, Minute, CID is short-circuited. As a result, the temperature gradually decreases and it is found that the temperature does not reach the ignition temperature. On the other hand, in the case of the secondary battery of Comparative Example 7 (see FIG. 3) provided with the non-aqueous electrolyte containing no fluorobenzene as an additive, the temperature rises rapidly to about 33 minutes, As a result, it can be confirmed that the battery is finally ignited.
이러한 결과에 의해, 실시예 1의 리튬 이차전지는 과충전 시 안정성이 향상되었음을 알 수 있다.These results show that the lithium secondary battery of Example 1 has improved stability upon overcharging.

Claims (10)

  1. 리튬염, 유기 용매 및 첨가제를 포함하며,A lithium salt, an organic solvent and an additive,
    상기 첨가제는 리튬 디플루오로포스페이트, 플루오로벤젠, 테트라비닐실란 및 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물을 1 : 2 내지 8 : 0.05 내지 0.3 : 0.5 내지 2의 중량비로 포함하는 혼합 첨가제인 것인 리튬 이차전지용 비수전해액.The additive is a mixed additive comprising lithium difluorophosphate, fluorobenzene, tetravinylsilane and one sulfonate group or a compound containing a sulfate group in a weight ratio of 1: 2 to 8: 0.05 to 0.3: 0.5 to 2 A non-aqueous electrolyte for a lithium secondary battery.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 리튬 디플루오로포스페이트, 플루오로벤젠, 테트라비닐실란 및 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물의 중량비는 1 : 2 내지 6 : 0.05 내지 0.3 : 0.5 내지 1.5인 것인 리튬 이차전지용 비수전해액.Wherein the weight ratio of the lithium difluorophosphate, the fluorobenzene, the tetravinylsilane and the compound containing one sulfonate group or the sulfate group is 1: 2 to 6: 0.05 to 0.3: 0.5 to 1.5. .
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물은 에틸렌 설페이트, 트리메틸렌설페이트, 메틸트리메틸렌설페이트, 1,3-프로판 설톤, 1,4-부탄 설톤, 에텐설톤, 1,4-부텐 설톤, 및 1-메틸-1,3-프로펜 설톤 및 1,3-프로펜 설톤으로 이루어진 군으로부터 선택되는 적어도 하나 이상인 것인 리튬 이차전지용 비수전해액.The one sulfonate group or the compound containing a sulfate group is selected from the group consisting of ethylene sulfate, trimethylene sulfate, methyltrimethylene sulfate, 1,3-propane sultone, 1,4-butane sultone, ethenesulfone, 1-methyl-1,3-propanesultone and 1,3-propanesultone. 2. A non-aqueous electrolyte solution for a lithium secondary battery, comprising:
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 하나의 설포네이트기 또는 설페이트기를 함유하는 화합물은 에틸렌 설페이트, 트리메틸렌설페이트, 1,3-프로판 설톤 및 1,3-프로펜 설톤으로 이루어진 군으로부터 선택되는 적어도 하나 이상인 것인 리튬 이차전지용 비수전해액.Wherein the one sulfonate group or the compound containing a sulfate group is at least one or more selected from the group consisting of ethylene sulfate, trimethylene sulfate, 1,3-propane sultone and 1,3-propanesultone. .
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 1 중량% 내지 18 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.Wherein the additive is contained in an amount of 1 wt% to 18 wt% based on the total weight of the non-aqueous electrolyte for a lithium secondary battery.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 리튬 이차전지용 비수전해액은 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 환형 카보네이트계 화합물, 포스페이트계 화합물, 보레이트계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 SEI 막 형성용 제1 첨가제를 추가로 포함하는 것인 리튬 이차전지용 비수전해액.Wherein the nonaqueous electrolyte solution for a lithium secondary battery comprises at least one SEI film forming first additive selected from the group consisting of a halogen-substituted carbonate compound, a nitrile compound, a cyclic carbonate compound, a phosphate compound, a borate compound and a lithium salt compound Further comprising a non-aqueous electrolyte solution for a lithium secondary battery.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 리튬 이차전지용 비수전해액은 디페닐 디설파이드, 디-p-톨릴 디설파이드 및 비스(4-메톡시페닐) 디설파이드(BMPDS)로 이루어진 군으로부터 선택된 적어도 하나 이상의 SEI 막 형성용 제2 첨가제를 추가로 포함하는 것인 리튬 이차전지용 비수전해액.Wherein the nonaqueous electrolyte solution for lithium secondary batteries further comprises a second additive for forming at least one SEI film selected from the group consisting of diphenyl disulfide, di-p-tolyl disulfide and bis (4-methoxyphenyl) disulfide (BMPDS) A non-aqueous electrolyte for a lithium secondary battery.
  8. 음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막 및 비수전해액을 구비하는 리튬 이차전지에 있어서,A lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a nonaqueous electrolyte,
    상기 비수전해액은 청구항 1의 리튬 이차전지용 비수전해액을 포함하는 것인 리튬 이차전지.And the nonaqueous electrolyte solution comprises the nonaqueous electrolyte solution for a lithium secondary battery according to claim 1.
  9. 청구항 8에서,In claim 8,
    상기 양극은 양극활물질로 리튬-니켈-망간-코발트계 산화물을 포함하는 것인 리튬 이차전지.Wherein the positive electrode comprises a lithium-nickel-manganese-cobalt oxide as a positive electrode active material.
  10. 청구항 9에서,In claim 9,
    상기 리튬-니켈-망간-코발트계 산화물은 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.35Mn0.28Co0.37)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, 및 Li(Ni0.8Mn0.1Co0.1)O2로 이루어진 군으로부터 선택된 적어도 하나 이상인 것인 리튬 이차전지.Wherein the lithium-nickel-manganese-cobalt oxide is Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , Li (Ni 0.35 Mn 0.28 Co 0.37 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Wherein the lithium secondary battery is at least one selected from the group consisting of Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2, and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 .
PCT/KR2018/013783 2017-11-13 2018-11-13 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same WO2019093853A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880050190.4A CN111052485B (en) 2017-11-13 2018-11-13 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2020502297A JP7045589B2 (en) 2017-11-13 2018-11-13 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery containing it
US16/634,959 US11309583B2 (en) 2017-11-13 2018-11-13 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
PL18875224T PL3648231T3 (en) 2017-11-13 2018-11-13 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
EP18875224.0A EP3648231B1 (en) 2017-11-13 2018-11-13 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170150920 2017-11-13
KR10-2017-0150920 2017-11-13
KR10-2018-0138408 2018-11-12
KR1020180138408A KR102242252B1 (en) 2017-11-13 2018-11-12 Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2019093853A1 true WO2019093853A1 (en) 2019-05-16

Family

ID=66437979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013783 WO2019093853A1 (en) 2017-11-13 2018-11-13 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2019093853A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687956A (en) * 2020-12-28 2021-04-20 远景动力技术(江苏)有限公司 Non-aqueous electrolyte of lithium battery and lithium ion battery based on same
CN113517471A (en) * 2021-05-18 2021-10-19 中节能万润股份有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof
CN114024034A (en) * 2021-10-25 2022-02-08 珠海冠宇电池股份有限公司 Battery with a battery cell
CN114649589A (en) * 2020-12-18 2022-06-21 张家港市国泰华荣化工新材料有限公司 Electrolyte and lithium secondary battery
CN114649589B (en) * 2020-12-18 2024-04-30 张家港市国泰华荣化工新材料有限公司 Electrolyte and lithium secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100546919B1 (en) * 2000-06-26 2006-01-26 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte and non-aqueous electrolyte secondary cell
US20140120414A1 (en) * 2011-06-09 2014-05-01 Asahi Kasei Kabushiki Kaisha Materials for Battery Electrolytes and Methods for Use
KR20160036810A (en) * 2014-09-26 2016-04-05 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR20170068595A (en) * 2014-11-19 2017-06-19 샌트랄 글래스 컴퍼니 리미티드 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte lithium battery
JP2017117684A (en) 2015-12-25 2017-06-29 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the same
KR20170110995A (en) * 2016-03-24 2017-10-12 주식회사 엘지화학 Non-aqueous electrolyte solution and lithium secondary battery comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100546919B1 (en) * 2000-06-26 2006-01-26 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte and non-aqueous electrolyte secondary cell
US20140120414A1 (en) * 2011-06-09 2014-05-01 Asahi Kasei Kabushiki Kaisha Materials for Battery Electrolytes and Methods for Use
KR20160036810A (en) * 2014-09-26 2016-04-05 주식회사 엘지화학 Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR20170068595A (en) * 2014-11-19 2017-06-19 샌트랄 글래스 컴퍼니 리미티드 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte lithium battery
JP2017117684A (en) 2015-12-25 2017-06-29 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the same
KR20170110995A (en) * 2016-03-24 2017-10-12 주식회사 엘지화학 Non-aqueous electrolyte solution and lithium secondary battery comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3648231A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649589A (en) * 2020-12-18 2022-06-21 张家港市国泰华荣化工新材料有限公司 Electrolyte and lithium secondary battery
CN114649589B (en) * 2020-12-18 2024-04-30 张家港市国泰华荣化工新材料有限公司 Electrolyte and lithium secondary battery
CN112687956A (en) * 2020-12-28 2021-04-20 远景动力技术(江苏)有限公司 Non-aqueous electrolyte of lithium battery and lithium ion battery based on same
CN113517471A (en) * 2021-05-18 2021-10-19 中节能万润股份有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof
CN113517471B (en) * 2021-05-18 2022-07-22 中节能万润股份有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof
CN114024034A (en) * 2021-10-25 2022-02-08 珠海冠宇电池股份有限公司 Battery with a battery cell
CN114024034B (en) * 2021-10-25 2022-08-30 珠海冠宇电池股份有限公司 Battery with improved battery capacity

Similar Documents

Publication Publication Date Title
WO2021034141A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018169371A2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2012169843A2 (en) Non-aqueous electrolyte and lithium secondary battery using same
WO2020067779A1 (en) Nonaqueous electrolyte and lithium secondary battery comprising same
WO2018106078A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020149678A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019203622A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018135822A1 (en) Additive for non-aqueous electrolyte, lithium secondary battery non-aqueous electrolyte comprising same, and lithium secondary battery
WO2019013501A1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive
WO2021033987A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2019093853A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018093152A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2022092831A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020222469A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021015535A1 (en) Lithium secondary battery
WO2019039903A2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019151725A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2022211320A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte comprising same for lithium secondary battery, and lithium secondary battery
WO2022055307A1 (en) Precursor composition for polymer electrolyte, and gel polymer electrolyte formed therefrom
WO2018080259A1 (en) Polymer electrolyte for secondary battery and secondary battery comprising same
WO2022010281A1 (en) Nonaqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020190076A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019103496A1 (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
WO2020096411A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battering including same
WO2019009595A1 (en) Electrolyte additive and nonaqueous electrolyte solution for lithium secondary battery containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502297

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018875224

Country of ref document: EP

Effective date: 20200130

NENP Non-entry into the national phase

Ref country code: DE