WO2017209561A1 - Cathode active material, cathode comprising same, and lithium secondary battery comprising same - Google Patents

Cathode active material, cathode comprising same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2017209561A1
WO2017209561A1 PCT/KR2017/005785 KR2017005785W WO2017209561A1 WO 2017209561 A1 WO2017209561 A1 WO 2017209561A1 KR 2017005785 W KR2017005785 W KR 2017005785W WO 2017209561 A1 WO2017209561 A1 WO 2017209561A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
core
active material
negative electrode
silicon
Prior art date
Application number
PCT/KR2017/005785
Other languages
French (fr)
Korean (ko)
Inventor
최정현
이용주
김은경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780003931.9A priority Critical patent/CN108292745B/en
Priority to ES17807054T priority patent/ES2953371T3/en
Priority to EP17807054.6A priority patent/EP3343677B1/en
Priority to PL17807054.6T priority patent/PL3343677T3/en
Priority to US15/771,168 priority patent/US11133524B2/en
Priority to JP2018539063A priority patent/JP7027644B2/en
Priority claimed from KR1020170068856A external-priority patent/KR101837347B1/en
Publication of WO2017209561A1 publication Critical patent/WO2017209561A1/en
Priority to US17/382,544 priority patent/US11757126B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a negative electrode including the same, and a lithium secondary battery including the same.
  • Lithium secondary batteries are currently used as batteries capable of charging and discharging with high capacity while satisfying miniaturization and light weight, and are used in portable electronic devices and communication devices such as small video cameras, mobile phones, and notebook computers.
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and an electrolyte, and the first and second lithium electrodes reciprocate the positive electrode such that lithium ions from the positive electrode active material are inserted into the negative electrode active material, ie, carbon particles, and are detached again during discharge. While it plays a role of transferring energy, charging and discharging are possible.
  • high-capacity negative electrode materials such as tin and silicon, which have a much higher capacity per unit weight than carbon used as an existing negative electrode material, have been actively studied.
  • the anode material using silicon has a capacity about 10 times higher than the cathode material using carbon.
  • Patent Document 1 KR2005-0090218A
  • the present invention provides a negative electrode active material that can prevent the negative electrode from expanding and contracting by an electrochemical reaction of lithium discharged from the positive electrode and silicon contained in the negative electrode during charging and discharging of a lithium secondary battery.
  • the present invention provides a negative electrode active material having many passages through which lithium ions can move.
  • the present invention is to provide a lithium secondary battery having a high capacity and high output characteristics.
  • the present invention is to provide a lithium secondary battery that can increase the initial efficiency (initial efficiency) and improved speed characteristics.
  • a secondary particle comprising a first particle that is a primary particle, the first particle is disposed on the surface of the first core and the first core and comprises a first carbon And a surface layer, wherein the first core comprises at least one of silicon and a silicon compound; And a metal compound, wherein the metal compound is provided with a negative electrode active material including at least one of a metal oxide and a metal silicate.
  • a negative electrode including the negative electrode active material is provided.
  • a lithium secondary battery including the negative electrode is provided.
  • the negative electrode active material according to the present invention includes secondary particles including first particles as primary particles, a passage through which lithium ions may move also increases, so that an output characteristic of a lithium secondary battery may be improved, and a lithium secondary battery The initial efficiency of is high, and the speed characteristic (charge / discharge characteristic) can be improved.
  • the damage of the electrode can be minimized even if the contraction and expansion of the core is repeated.
  • the initial efficiency of the battery may be further improved.
  • a first particle including a first core doped with a metal compound and a second particle including a second core not doped with the metal compound may be mixed in an appropriate weight ratio to provide a battery having high initial capacity and high initial efficiency.
  • FIG. 1 is a schematic diagram showing a cross section of a negative electrode active material according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a cross section of a negative electrode active material according to another embodiment of the present invention.
  • FIG 3 is a schematic view showing a cross section of a negative electrode active material according to another embodiment of the present invention.
  • FIG. 4 is a schematic view showing a cross section of a negative electrode active material according to another embodiment of the present invention.
  • FIG. 5 is a schematic view showing a cross section of a negative electrode active material according to another embodiment of the present invention.
  • FIG. 6 is a schematic view showing a cross section of a negative electrode active material according to another embodiment of the present invention.
  • An anode active material includes secondary particles including first particles which are primary particles, wherein the first particles are disposed on a surface of the first core and the first core and include carbon.
  • a metal compound, wherein the metal compound may include at least one of a metal oxide and a metal silicate.
  • FIG. 1 is a schematic diagram showing a cross section of a negative electrode active material according to an embodiment of the present invention.
  • the anode active material includes secondary particles 200 including first particles 110 that are primary particles.
  • the expression secondary particles means particles formed by aggregation of primary particles.
  • the first particles 110 may include a first core 111 and a first surface layer 112.
  • the first core 111 is at least one of silicon and silicon compounds; And a metal compound 113.
  • the silicon has a theoretical capacity of about 3,600 mAh / g, since the silicon has a very high capacity as compared with the negative electrode active material including graphite, the capacity of the lithium secondary battery including the same may be improved.
  • the silicon compound refers to a compound containing silicon, which is physically or chemically complexed with silicon oxide (SiOx, 0 ⁇ x ⁇ 2) and a carbon-based material in which silicon is distributed in a silicon dioxide (SiO 2 ) matrix. It may be a silicon alloy (Si-alloy) complexed with C or a metal, specifically silicon oxide (SiOx, 0 ⁇ x ⁇ 2), more specifically SiOx (0 ⁇ x ⁇ 1), For example, it may be SiO.
  • the silicon oxide (SiOx, 0 ⁇ x ⁇ 2) is included in the first core 111, the silicon oxide (SiOx, 0 ⁇ x ⁇ 2) is lithium due to charging and discharging of a lithium secondary battery compared to silicon. Since there is little volume expansion during insertion and desorption of ions, damage of the negative electrode active material can be reduced, and high capacity and high initial efficiency, which are effects of silicon, can be realized.
  • Silicon in the silicon oxide (SiOx, 0 ⁇ x ⁇ 1) may be amorphous or crystalline.
  • the crystal size may be greater than 0 and less than 30 nm. If the above-mentioned range is satisfied, the final product of the lithium secondary battery can implement a higher capacity than the lithium secondary battery including the existing graphite, it is possible to improve the initial efficiency.
  • the first core 111 may be a porous core each including a plurality of pores.
  • the porous core may increase the lithium ion diffusion by increasing the contact area between the electrolyte and the electrode.
  • the internal porosity of the first core 111 may be 5% to 90% of the total volume of the first core 111, wherein the porosity is It means '(pore volume per unit mass) / (specific volume + pore volume per unit mass)' and can be measured by mercury porosimetry or Brunauer-Emmett-Teller (BET) measurement.
  • BET Brunauer-Emmett-Teller
  • the average particle diameter D 50 of the first core 111 may be 0.5 ⁇ m to 20 ⁇ m, and specifically 0.5 ⁇ m to 5 ⁇ m.
  • the average particle diameter of the first core 111 is 0.5 ⁇ m to 20 ⁇ m, aggregation is easy in forming secondary particles, and sintering does not occur even when charging and discharging are repeated. This can be prevented.
  • the volume change during charging and discharging can be effectively prevented.
  • the external appearance of the electrode may be smoothly formed, and thus the active material layer may be smoothly rolled during electrode production. Accordingly, the energy density per unit volume can be improved.
  • the average particle diameter (D 50 ) may be defined as a particle diameter based on 50% of the particle size distribution of the particles.
  • the average particle diameter D 50 may be measured using, for example, a laser diffraction method. In general, the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained.
  • the BET specific surface area of the first core 111 may be 0.5 m 2 / g to 30 m 2 / g.
  • the metal compound 113 may be formed by oxidizing a metal capable of reducing the silicon compound, specifically, a metal having a reducing power capable of reducing silicon dioxide (SiO 2 ) in the silicon compound to silicon.
  • the metal compound 113 may include at least one of a metal oxide and a metal silicate.
  • the metal oxide may include an oxide of at least one metal selected from the group consisting of lithium (Li), magnesium (Mg), aluminum (Al), calcium (Ca), and titanium (Ti).
  • the metal oxide may be at least one of MgO, MgSi 3 and Mg 2 SiO 4 .
  • the metal silicate may include silicate of at least one metal selected from the group consisting of lithium (Li), magnesium (Mg), aluminum (Al), calcium (Ca), and titanium (Ti).
  • the metal compound may be formed by a metal doped in the first core. As the metal is doped into the first core, the SiO 2 matrix in SiO may be reduced and a metal compound may be formed. Accordingly, since the content of SiO 2 acting as the initial irreversible can be reduced, the initial efficiency of the battery can be improved.
  • the weight of the metal compound 113 may be 1 wt% to 50 wt%, and specifically 2 wt% to 50 wt% with respect to the total weight of the first particles.
  • the initial efficiency is effectively improved, and excessive heat generation during the reduction reaction of SiO 2 can be suppressed from excessively increasing the size of the Si crystal.
  • most of the doped metals participate in the reaction, so that no metal impurities may occur.
  • the first surface layer 112 may include carbon and be disposed on the surface of the first core 111.
  • the first surface layer 112 prevents further surface oxidation of the first core 111.
  • the first surface layer 112 may improve the electrical conductivity of the negative electrode active material while forming a conductive passage in the negative electrode active material. Due to the first surface layer 112, a high capacity may be expressed by increasing the capacity per unit volume of the first particle 110.
  • the carbon may be amorphous carbon or crystalline carbon.
  • the strength between the first surface layers 112 may be properly maintained to suppress expansion of the first core 111.
  • the conductivity of the negative electrode active material may be further improved.
  • the crystalline carbon may be florene, carbon nanotubes, or graphene.
  • the first surface layer 112 may include one or more carbides independently selected from the group consisting of tar, pitch, and other organic materials. Specifically, the first surface layer 112 may each independently include tar carbide, Pitch carbide, or other organic carbides.
  • the carbide of the other organic material may be a carbide of an organic material selected from carbides of sucrose, glucose, galactose, fructose, lactose, manos, ribose, aldohexose or kedohexose, and combinations thereof.
  • the first surface layer 112 is each independently substituted or unsubstituted aliphatic or alicyclic hydrocarbon, substituted or unsubstituted aromatic hydrocarbons, products obtained in the distillation process of tar, vinyl-based resin, phenol-based resin, cellulose-based resin and It may include one or more pyrolysis products selected from the group consisting of a pitch-based resin.
  • pyrolysis products such as substituted or unsubstituted aliphatic or alicyclic hydrocarbons, substituted or unsubstituted aromatic hydrocarbons, and the like can be used as a carbon source for performing chemical vapor deposition.
  • substituted or unsubstituted aliphatic or alicyclic hydrocarbons include methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane or hexane.
  • substituted or unsubstituted aromatic hydrocarbons include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, Anthracene, phenanthrene, and the like.
  • the product obtained by the said tar distillation process is gas gas oil, creosote oil, anthracene oil, naphtha cracked tar oil, etc. are mentioned.
  • the first surface layer 112 may include a conductive polymer including carbon, and the conductive polymer may be polycellulose sulfonate, polyacetylene, polyparaphenylene, poly (p-phenylenevinylene), polypyrrole, poly Poly (1-pyrenemethyl methacrylate), which is a homopolymer of thiophene, polyaniline, polyisothianaphthene, polyparamethylene, pyrene, and poly (1-pyrenemethyl methacrylate, which is a copolymer of pyrene Late-coatriethylene oxide methyl ether methacrylate), a polymer in which the pyrene side chain of the homopolymer or copolymer of pyrene is converted to anthracene, a polymer having a carbonyl group and a methylbenzoic ester and a conjugation bond ( It may include one or more selected from the group consisting of polyacetylene having a conjugation bond).
  • the first surface layer 112 may be included in an amount of 2 parts by weight to 50 parts by weight based on 100 parts by weight of the first core 111.
  • the thickness of the first surface layer 112 may be 20 nm to 100 nm, respectively. If the above range is satisfied, the electrical conductivity of the lithium secondary battery may be improved while maintaining the conductive passages of the first cores 111.
  • the average particle diameter D 50 of the first particles 110 may be 0.502 ⁇ m to 20.2 ⁇ m, and specifically 0.502 ⁇ m to 5.2 ⁇ m.
  • aggregation is easy in forming the secondary particles, and even when charging and discharging are repeated, sintering does not occur and change in size can be prevented.
  • high output characteristics can be expressed.
  • the secondary particles 200 are formed by aggregation of the first particles 110, and include pores between the first particles 110.
  • the porosity between the first particles 110 is 2% to 50% with respect to the total volume of the secondary particles 200.
  • a buffer area may be provided to the volume expansion of the first core 111 during charging and discharging, and the secondary particles 200 may be prevented from being broken.
  • the output speed can be improved by increasing the moving speed of lithium ions.
  • the average particle diameter of the secondary particles 200 may be 2 ⁇ m to 50 ⁇ m, and specifically 2 ⁇ m to 42 ⁇ m. If the above-mentioned range is satisfied, there are many passages through which lithium ions can move, and thus a lithium secondary battery, which is a final product, can exhibit high capacity, high output, high initial efficiency, and excellent speed characteristics.
  • the negative electrode active material according to another embodiment of the present invention is the same as the negative electrode active material of the above-described embodiment except that the secondary particles further include second particles which are primary particles.
  • the secondary particles 210 may further include second particles 120 which are primary particles together with the first particles 110 described above, and the second particles 120 may include a second particle 120.
  • a second surface layer 122 disposed on a surface of the core 121 and the second core 121 and including carbon, wherein the second core 121 includes at least one of silicon and a silicon compound. can do.
  • the first particles 110 are the same as the first particles described with reference to FIG. 1, description thereof is omitted.
  • the second particle 120 may include a second core 121 and a second surface layer 122.
  • the second core 121 may include at least one of silicon and a silicon compound.
  • the silicon has a theoretical capacity of about 3,600 mAh / g, since the silicon has a very high capacity as compared with the negative electrode active material including graphite, the capacity of the lithium secondary battery including the same may be improved.
  • the silicon compound refers to a compound containing silicon, which is physically or chemically complexed with silicon oxide (SiOx, 0 ⁇ x ⁇ 2) and a carbon-based material in which silicon is distributed in a silicon dioxide (SiO 2 ) matrix. It may be a silicon alloy (Si-alloy) complexed with C or a metal, specifically silicon oxide (SiOx, 0 ⁇ x ⁇ 2), more specifically SiOx (0 ⁇ x ⁇ 1), For example, it may be SiO.
  • the silicon oxide (SiOx, 0 ⁇ x ⁇ 2) is included in the second core 121, the silicon oxide (SiOx, 0 ⁇ x ⁇ 2) is lithium due to charging and discharging of a lithium secondary battery compared to silicon. Since there is little volume expansion during insertion and desorption of ions, damage of the negative electrode active material can be reduced, and high capacity and high initial efficiency, which are effects of silicon, can be realized.
  • Silicon in the silicon oxide (SiOx, 0 ⁇ x ⁇ 1) may be amorphous or crystalline.
  • the crystal size may be greater than 0 and less than 30 nm. If the above-mentioned range is satisfied, the final product of the lithium secondary battery can implement a higher capacity than the lithium secondary battery including the existing graphite, it is possible to improve the initial efficiency.
  • the second core 121 may be a porous core each including a plurality of pores.
  • the porous core may increase the lithium ion diffusion by increasing the contact area between the electrolyte and the electrode.
  • the internal porosity of the second core 121 may be 5% to 90% of the total volume of the second core 121, wherein the porosity is It means '(pore volume per unit mass) / (specific volume + pore volume per unit mass)' and can be measured by mercury porosimetry or Brunauer-Emmett-Teller (BET) measurement.
  • BET Brunauer-Emmett-Teller
  • the average particle diameter D 50 of the second core 121 may be 0.5 ⁇ m to 20 ⁇ m, and specifically 0.5 ⁇ m to 5 ⁇ m.
  • the average particle diameter of the first core 121 is 0.5 ⁇ m to 20 ⁇ m, aggregation is easy in forming secondary particles, and sintering does not occur even when charging and discharging are repeated, causing cracking of the negative electrode. This can be prevented.
  • the volume change during charging and discharging can be effectively prevented.
  • the external appearance of the electrode may be smoothly formed, and thus the active material layer may be smoothly rolled during electrode production. Accordingly, the energy density per unit volume can be improved.
  • the BET specific surface area of the second core 121 may be 0.5 m 2 / g to 30 m 2 / g.
  • the second surface layer 122 may include carbon and be disposed on the surface of the second core 121.
  • the second surface layer 122 prevents further surface oxidation of the second core 121.
  • the second surface layer 122 may improve the electrical conductivity of the negative electrode active material while forming a conductive passage in the negative electrode active material.
  • the second surface layer 122 may increase the capacity per unit volume of the second particle 120 to express a high capacity.
  • the carbon may be amorphous carbon or crystalline carbon.
  • amorphous carbon When the amorphous carbon is included in the second surface layer 122, strength between the second surface layers 122 may be properly maintained to suppress expansion of the second core 121.
  • the conductivity of the negative electrode active material When the crystalline carbon is included in the second surface layer 122, the conductivity of the negative electrode active material may be further improved.
  • the crystalline carbon may be florene, carbon nanotubes, or graphene.
  • the second surface layer 122 may include one or more carbides independently selected from the group consisting of tar, pitch, and other organic materials. Specifically, the second surface layer 122 may each independently include a carbide of tar, Pitch carbide, or other organic carbides.
  • the carbide of the other organic material may be a carbide of an organic material selected from carbides of sucrose, glucose, galactose, fructose, lactose, manos, ribose, aldohexose or kedohexose, and combinations thereof.
  • the second surface layer 122 is each independently substituted or unsubstituted aliphatic or alicyclic hydrocarbon, substituted or unsubstituted aromatic hydrocarbons, products obtained in the distillation process of tar, vinyl resin, phenol resin, cellulose resin and It may include one or more pyrolysis products selected from the group consisting of a pitch-based resin.
  • pyrolysis products such as substituted or unsubstituted aliphatic or alicyclic hydrocarbons, substituted or unsubstituted aromatic hydrocarbons, and the like can be used as a carbon source for performing chemical vapor deposition.
  • substituted or unsubstituted aliphatic or alicyclic hydrocarbons include methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane or hexane.
  • substituted or unsubstituted aromatic hydrocarbons include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, Anthracene, phenanthrene, and the like.
  • the product obtained by the said tar distillation process is gas gas oil, creosote oil, anthracene oil, naphtha cracked tar oil, etc. are mentioned.
  • the second surface layer 122 may include a conductive polymer including carbon, and the conductive polymer may be polycellulose sulfonate, polyacetylene, polyparaphenylene, poly (p-phenylenevinylene), polypyrrole, poly Poly (1-pyrenemethyl methacrylate), which is a homopolymer of thiophene, polyaniline, polyisothianaphthene, polyparamethylene, pyrene, and poly (1-pyrenemethyl methacrylate, which is a copolymer of pyrene Late-coatriethylene oxide methyl ether methacrylate), a polymer in which the pyrene side chain of the homopolymer or copolymer of pyrene is converted to anthracene, a polymer having a carbonyl group and a methylbenzoic ester and a conjugation bond ( It may include one or more selected from the group consisting of polyacetylene having a conjugation bond).
  • the second surface layer 122 may be included in an amount of 2 parts by weight to 50 parts by weight based on 100 parts by weight of the second core 121.
  • the thickness of the second surface layer 122 may be 20 nm to 100 nm, respectively. If the above range is satisfied, the electrical conductivity of the lithium secondary battery may be improved while maintaining the conductive passages of the second cores 121.
  • the average particle diameter D 50 of the second particles 120 may be 0.502 ⁇ m to 20.2 ⁇ m, and specifically 0.502 ⁇ m to 5.2 ⁇ m.
  • aggregation is easy in forming the secondary particles, and even when charging and discharging are repeated, sintering does not occur and change in size can be prevented.
  • high output characteristics can be expressed.
  • the first particles 110 have a larger mass than the second particles 120, but the charge and discharge characteristics of the battery may be improved while the metal is doped during manufacture. Can be.
  • the amount of lithium bonds of the second particles 120 is high, high capacity characteristics of the battery may be improved. Therefore, when the battery includes a negative electrode including the secondary particles 210 formed through the first particles 110 and the second particles 120, it is possible to simultaneously achieve high capacity and excellent charge and discharge characteristics of the battery. have.
  • the weight ratio of the first particles 110 and the second particles 120 may be 1: 0.25 to 1: 4, and specifically 1: 0.43 to 1: 1.5. When the weight ratio is satisfied, high capacity and excellent charge / discharge characteristics of the battery may be achieved at a more preferable level, and an effect of reducing expansion of the electrode thickness may be obtained.
  • the secondary particles 210 are formed by aggregation of the first particles 110 and the second particles 120, between the first particles 110, and the second particles ( Pores between the first and second particles 120, and between the first particles 110 and the second particles 120, between the first particles 110, between the second particles 120, and the first particles.
  • the total porosity between the first particle 110 and the second particle 120 is 2% to 50% of the total volume of the secondary particle 210. If the above range is satisfied, a buffer area may be provided for volume expansion of the first core 111 and the second core 121 during charging and discharging, and the secondary particles 210 may be provided. Can be prevented from being crushed.
  • the output speed can be improved by increasing the moving speed of lithium ions.
  • the method of defining and measuring the porosity between the first particles 110, between the second particles 120, and between the first particles 110 and the second particles 120 depends on the internal porosity of the porous particles. Since it is mentioned in the description, it is omitted.
  • An average particle diameter of the secondary particles 210 may be 2 ⁇ m to 50 ⁇ m, specifically 2 ⁇ m to 42 ⁇ m, and more specifically 4 ⁇ m to 30 ⁇ m. If the above-mentioned range is satisfied, there are many passages through which lithium ions can move, and thus a lithium secondary battery, which is a final product, can exhibit high capacity, high output, high initial efficiency, and excellent speed characteristics.
  • the negative active material according to another embodiment of the present invention is similar to the negative active material according to the exemplary embodiment described with reference to FIG. 1, but the secondary particles 220 include the carbon layer 130.
  • the carbon layer 130 corresponding to the difference will be described mainly.
  • the carbon layer 130 may be disposed on the surface of the secondary particles. Specifically, the carbon layer 130 may be disposed on the surface of the structure in which the first particles 110 are aggregated to constitute the secondary particles 220. By the carbon layer 130, expansion of secondary particles may be suppressed during charging and discharging, and conductivity of the negative electrode active material may be further improved.
  • the carbon layer 130 may include carbon.
  • the carbon layer 130 may be any one of materials that may constitute the surface layer 112 described above.
  • the carbon layer 130 and the surface layer 112 may be made of the same material, or may be made of a different material. More specifically, both the surface layer and the carbon layer may be made of carbides of the other organic materials described above, or the surface layer may be carbides of other organic materials, and the carbon layer may be carbide of pitch.
  • the carbon layer 130 may have a thickness of 5 nm to 100 nm, and specifically 10 nm to 100 nm. If the above range is satisfied, the electrical conductivity of the lithium secondary battery may be improved while maintaining the conductive passage between the secondary particles.
  • the carbon layer may be 0.1% to 50% by weight, specifically 5% to 25% by weight based on the total weight of the secondary particles.
  • a conductive passage for the movement of lithium ions can be secured.
  • the carbon layer is formed at a level higher than the above range, a problem that the initial efficiency is excessively lowered may occur.
  • the negative electrode active material according to another embodiment of the present invention is similar to the negative electrode active material according to the embodiment described with reference to FIG. 2, but the secondary particles 230 include the carbon layer 130. The only difference is that. Since the carbon layer 130 included in the negative electrode active material of the present embodiment is the same as the carbon layer included in the negative electrode active material of the embodiment described with reference to FIG. 3, description thereof is omitted.
  • the negative electrode active material according to another embodiment of the present invention is similar to the negative electrode active material according to the exemplary embodiment described with reference to FIG. 1, but the secondary particles 240 may form the crystalline carbonaceous material 140.
  • the secondary particles 240 may form the crystalline carbonaceous material 140. The only difference is the inclusion. The differences will be explained mainly.
  • the crystalline carbonaceous material 140 may be primary particles. Therefore, the crystalline carbonaceous material 140 may be aggregated together with the first particles 110 to form the secondary particles 240. In detail, the crystalline carbonaceous material 140 may be mixed with the first particles 110 in a solvent, and may be formed in a configuration of secondary particles through drying and firing.
  • the crystalline carbon material 140 may improve the capacity and cycle characteristics of the lithium secondary battery.
  • Specific examples of the crystalline carbon-based material 140 may include graphene, carbon nanotubes, or nanofibers.
  • the content of the crystalline carbonaceous material 140 may be included in an amount of 75 parts by weight to 95 parts by weight based on 100 parts by weight of the first particles 110. If the above range is satisfied, the capacity and cycle characteristics of the lithium secondary battery, which is a final product, may be further improved.
  • the negative electrode active material according to another embodiment of the present invention is similar to the negative electrode active material according to the exemplary embodiment described with reference to FIG. 1, but the secondary particles 250 may form the crystalline carbonaceous material 140. The only difference is the inclusion. Since the crystalline carbon-based material 140 included in the secondary particles 250 of the negative electrode active material of the present embodiment is the same as the crystalline carbon-based material included in the secondary particles 240 of the negative electrode active material of the embodiment described with reference to FIG. 5, Omit the description.
  • the negative electrode active material according to another embodiment of the present invention is similar to the negative electrode active material of the embodiments described with reference to FIGS. 1 to 6, except that the negative electrode active material further includes graphite-based active material particles.
  • the graphite-based active material particles may be used together with the secondary particles of the above-described embodiments. Specifically, the graphite-based active material particles may be mixed with secondary particles, and the negative electrode active material may be a mixture of two kinds of active materials. Through this, charging and discharging characteristics of a battery may be improved.
  • the graphite-based active material particles may be at least one selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fiber, and graphitized mesocarbon microbeads.
  • the weight ratio of the secondary particles and the graphite-based active material particles in the negative electrode active material may be 1: 1 to 1:49, specifically 1: 9 to 1:19.
  • the graphite-based active material particles may be mixed in a solvent together with the prepared secondary particles and used for preparing a negative electrode.
  • a method of manufacturing a negative active material includes preparing a core including at least one of silicon or a silicon compound (first step); Forming a preliminary first particle by forming a surface layer containing carbon on the surface of the core (second step); Doping metal to the preliminary first particles and performing heat treatment to form first particles (third step); And forming a secondary particle including the first particles (fourth step).
  • the core is the first core and the second core of the present embodiments described above
  • the surface layer is the same as the first surface layer and the second surface layer of the present embodiments described above
  • the first particle is the first particle of the present embodiments described above Is the same as
  • the core may be prepared by grinding a silicon or silicon compound having a large average particle diameter (D 50 ) to 0.5 ⁇ m to 20 ⁇ m.
  • the core may be prepared by grinding silicon oxide having an average particle diameter (D 50 ) of 5 ⁇ m to 50 ⁇ m by zirconia balls in a bead mill under ethanol solvent.
  • the core may be made of silicon or a silicon compound obtained by performing heat treatment of silicon oxide in an inert gas or reducing atmosphere at a temperature range of 1,100 ° C. or less.
  • silicon oxide is a generic term for amorphous silicon oxide obtained by cooling and precipitation of silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon.
  • the inert gas may include Ar, He, H 2 or N 2 , and these may be used alone or as a mixed gas.
  • the temperature of the precipitation plate for cooling and precipitation of the silicon monoxide gas may be 500 ° C to 1,050 ° C.
  • the core may be silicon obtained by heating and evaporating metal silicon in a vacuum to precipitate on a cold plate.
  • the second and first mixtures and the mixture are pulverized and dried in a solvent by milling the mixture of the core and the other organic materials.
  • the method may include a step 2-2 of forming a surface layer including carbon on the surface of the core by carbonizing the organic material by heat treatment after spheroidization.
  • the solvent is not particularly limited as long as the other organic material may be evenly dispersed, but may be an alcohol such as ethanol, n-butanol, 1-propanol or 2-propanol.
  • the content of the organic solvent may be 100 parts by weight to 300 parts by weight based on 100 parts by weight of the particles.
  • the core and the organic material are pulverized to a desired size, and the particles and the organic material are mixed well in a solvent, so that the organic material is evenly distributed on the surface of the particles.
  • the milling process may be performed using a beads mill, a high energy ball mill, a planetary mill, a stirred ball mill, a vibration mill, or the like.
  • the bead mill or the ball mill may be made of a chemically inert material that does not react with silicon and organic materials, and specific examples may be made of zirconia.
  • the drying may be performed at a temperature range in which the solvent may be evaporated to volatilized, and the temperature range may be 60 to 150 ° C.
  • the carbon may be derived from any of the sources of the surface layer described above.
  • the second step may be a step of forming a surface layer containing carbon on the surface of the core by chemical vapor deposition.
  • the temperature may be 700 ° C. to 1,200 ° C.
  • the carbon source may be selected to pyrolyze at the temperature to generate carbon.
  • the carbon source may be one or two or more selected from the group consisting of substituted or unsubstituted aliphatic or alicyclic hydrocarbons, substituted or unsubstituted aromatic hydrocarbons.
  • the core When the carbon is carbon contained in the conductive polymer, the core may be dip-coated in a solution containing the conductive polymer to form a surface layer on the core.
  • Description of the conductive polymer is as described above.
  • the core may be coarsely ground in an inert atmosphere in order to obtain a desired average particle diameter.
  • a mixture of the core and the other organic material may further include a crystalline carbonaceous material.
  • the preliminary first particles may be uniformly mixed with the metal powder in a state in which the air is blocked, and then heat-treated under an argon gas atmosphere in a furnace. Thereafter, metal powder or side reaction substances remaining on the particle surface are removed by washing with a strong acid or the like.
  • a second particle including a core including a metal compound may be prepared.
  • the heat treatment may be to heat up to 900 °C to 1100 °C at a temperature increase rate of 4 °C / min to 6 °C / min, and may be heated for 1 hour to 3 hours.
  • the metal compound formed by oxidizing the metal is the final active material particles, as compared with the case where the metal particles are included in the core by doping and heat-treating the metal after the secondary particles are prepared. It may be more uniformly distributed within.
  • the first particles may be aggregated to form secondary particles.
  • a solution including the first particles and the solvent is prepared, and the solution is spray-dried, secondary particles in which the first particles are aggregated may be formed.
  • the solution may further include a carbon precursor to facilitate aggregation of the first particles and the second particles.
  • the solvent is not particularly limited as long as the first particles are well dispersed, but specific examples thereof include water, alcohol, N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), acetonitrile, acetone, Tetrahydrofuran (THF), diethyl ether, toluene or 1,2-dichlorobenzene, and the like.
  • the inlet temperature during the spray drying may be 100 ° C to 250 ° C.
  • the secondary particles may further perform a separate firing process to improve durability and conductivity.
  • the firing temperature may be 400 °C to 1,000 °C.
  • the secondary particles may be formed by agglomeration such that the porosity between the first particles is 2% to 50%.
  • a filler is included in the solvent together with the first particles to prepare a solution, and the solution is spray-dried to form preliminary secondary particles in which the first particles and the filler are aggregated. Can be.
  • the filler is included to form secondary particles such that the porosity between the first particles is 2% to 50%, and the porosity may be adjusted by adjusting the amount of the filler.
  • the amount of the filler may be included in a volume ratio of 1: 0.01 to 1: 0.43 with respect to the first particle.
  • Specific examples include metals, polymethyl methacrylate (PMMA), polystyrene beads (polystylene beads), sodium chloride (NaCl), calcium chloride (KCl) or sodium sulfate (Na2SO4).
  • the filler may be sodium chloride, calcium chloride or sodium sulfate.
  • the filler may be polymethyl methacrylate (PMMA), sodium chloride, calcium chloride or sodium sulfate.
  • the preliminary secondary particles may be added to water or a mixture of water and ethanol to remove the filler, and then further subjected to an ultrasonic treatment and a drying process. Through this, secondary particles having a porosity of 2% to 50% can be prepared.
  • the manufacturing method of the negative electrode active material according to another embodiment of the present invention is similar to the method of manufacturing the negative electrode active material according to the above-described embodiment, but in the fourth step, using the preliminary primary particles as the second particle, It may include forming a secondary particle further comprising the first particle and the second particle. Specifically, in the fourth step, not only the first particles but also the second particles may be aggregated together to form secondary particles.
  • the secondary particles may be formed by aggregation so that the porosity between the first particles and the second particles is 2% to 50%.
  • the fourth step is to prepare a solution by including a filler in a solvent together with the first particles, the second particles, and spray-drying the solution, the first particles, the second particles And preliminary secondary particles in which the filler is agglomerated.
  • the filler is included to form secondary particles such that the porosity between the first particles and the second particles is 2% to 50%, and the porosity may be adjusted by adjusting the amount of the filler.
  • the amount of the filler may be included in a volume ratio of 1: 0.01 to 1: 0.43 with respect to the primary particles (first particles and second particles). Specific examples include metals, polymethyl methacrylate (PMMA), polystyrene beads (polystylene beads), sodium chloride (NaCl), calcium chloride (KCl) or sodium sulfate (Na2SO4).
  • the filler may be sodium chloride, calcium chloride or sodium sulfate.
  • the filler may be polymethyl methacrylate (PMMA), sodium chloride, calcium chloride or sodium sulfate.
  • the preliminary secondary particles may be added to water or a mixture of water and ethanol to remove the filler, and then further subjected to an ultrasonic treatment and a drying process. Through this, secondary particles having a porosity of 2% to 50% can be prepared.
  • a lithium secondary battery includes an electrode assembly and an electrolyte including a cathode, a cathode, and a separator disposed between the cathode and the anode.
  • the positive electrode may include a positive electrode current collector and a mixture of a positive electrode active material, a conductive material, and a binder on the positive electrode current collector.
  • the positive electrode current collector must be high in conductivity, easily adherable to the mixture, and not reactive in the voltage range of the cell. Specific examples of the positive electrode current collector include aluminum, nickel or alloys thereof.
  • the positive electrode current collector may have a thickness of 3 ⁇ m to 500 ⁇ m.
  • the conductive material is a material having conductivity without causing chemical change in the lithium secondary battery of the present invention.
  • Specific examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive materials such as polyphenylene derivatives.
  • the binder is a component that assists in bonding the positive electrode active material and the conductive material to the current collector.
  • Specific examples of the binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, reconstituted cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene monomer (EPDM) rubber, hydrogenated nitrile butadiene rubber (HNBR), sulfonated ethylene propylene diene, styrene butadiene rubber (SBR), fluorine rubber, various copolymers, and the like. Can be.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material positioned on the negative electrode current collector.
  • the negative electrode current collector should be highly conductive, easily adhereable to the negative electrode active material, and not be reactive in the voltage range of the battery.
  • Specific examples of the negative electrode current collector include copper, gold, nickel or alloys thereof.
  • the separator prevents a short circuit between the positive electrode and the negative electrode and provides a passage for moving lithium ions.
  • an insulating thin film having high ion permeability and mechanical strength may be used.
  • Specific examples of the separator include polyolefin-based polymer membranes such as polypropylene and polyethylene, or multiple membranes thereof, microporous films, woven fabrics, and nonwoven fabrics.
  • the solid electrolyte may serve as a separator.
  • the electrolyte may be an electrolyte containing a lithium salt.
  • the lithium salt of the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 - , and the like -, CF 3 CO 2 -, SCN - or (CF 3 CF 2 SO 2) 2 N.
  • the external shape of the lithium secondary battery according to another embodiment of the present invention is not particularly limited, but specific examples thereof include a cylindrical shape, a square shape, a pouch type or a coin type using a can.
  • Lithium secondary battery according to another embodiment of the present invention can be used not only for the battery cell used as a power source of a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • the medium-to-large device include an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, a power storage system, and the like, but are not limited thereto.
  • a silicon oxide (SiOx, 0 ⁇ x ⁇ 1) having an average particle diameter (D 50 ) of 10 ⁇ m was put into a specs mill 8000M and 15 sus ball media were milled for 2 hours, and the average particle diameter (D 50 ) was 1 ⁇ m.
  • the core was prepared by grinding.
  • a solution was prepared by adding 10 g of the core and 0.5 g of cellulose to 30 g of isopropanol. Using the zirconia beads (average particle diameter: 0.3 mm), the mixture was ground for 12 hours at a beads rotation speed of 1,200 rpm. The mixture was then dried in a drying furnace at 120 ° C. for 2 hours. The dried mixture was pulverized again in a mortar and classified to form silicon particles mixed with sucrose. Heat treatment at 800 ° C. under a nitrogen atmosphere to carbonize sucrose to form a surface layer having a thickness of 2 nm to prepare preliminary first particles. The surface layer was 2.1% by weight relative to the total weight of the core.
  • the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the first particles was 15% by weight based on the total weight of the first particles, which was determined by X-ray diffraction analysis. Measured via quantitative analysis using (XRD).
  • a solution containing the first particles and ethanol / water (volume ratio 1: 9) in a volume ratio of 1:10 was stirred at 10,000 rpm for 30 minutes with a mechanical homogenizer to prepare a dispersion solution for spray drying.
  • the dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions.
  • Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat. Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C.
  • the porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 5 ⁇ m.
  • the porosity was measured by a mercury porosimeter method.
  • Core and preliminary first particles were prepared in the same manner as in Example 1.
  • the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the first particles was 51% by weight based on the total weight of the first particles, which was determined by X-ray diffraction analysis. Measured via quantitative analysis using (XRD).
  • the secondary particle of Example 2 was manufactured by the same method as the secondary particle manufacturing method of Example 1.
  • the porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 4 ⁇ m.
  • the porosity was measured by a mercury porosimeter method.
  • a silicon oxide (SiOx, 0 ⁇ x ⁇ 1) having an average particle diameter (D 50 ) of 10 ⁇ m was milled for 4 hours by adding 15 sus ball media to a spec mill 8000M for an average particle diameter (D 50 ) of 0.4 ⁇ m.
  • the core was prepared by grinding.
  • preliminary first particles having a surface layer of 2 nm thickness were prepared by the same method as the preparation method of preliminary first particle of Example 1.
  • the surface layer was 2.1% by weight relative to the total weight of the core.
  • the first particles were manufactured by the same method as the method for preparing the first particles of Example 1.
  • the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the first particles was 15% by weight based on the total weight of the first particles, which was determined by X-ray diffraction analysis. Measured via quantitative analysis using (XRD).
  • the secondary particle of Example 3 was manufactured by the method similar to the secondary particle manufacturing method of Example 1.
  • the porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 2 ⁇ m.
  • the porosity was measured by a mercury porosimeter method.
  • a silicon oxide (SiOx, 0 ⁇ x ⁇ 1) having an average particle diameter (D 50 ) of 10 ⁇ m was milled for 4 hours by adding 15 sus ball media to a spec mill 8000M for an average particle diameter (D 50 ) of 0.4 ⁇ m.
  • the core was prepared by grinding.
  • preliminary first particles having a surface layer of 2 nm thickness were prepared by the same method as the preparation method of preliminary first particle of Example 1.
  • the surface layer was 2.1% by weight relative to the total weight of the core.
  • the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the first particles was 55% by weight based on the total weight of the first particles, which was determined by X-ray diffraction analysis. Measured via quantitative analysis using (XRD).
  • the secondary particle of Example 4 was manufactured by the method similar to the secondary particle manufacturing method of Example 1.
  • the porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 3 ⁇ m.
  • the porosity was measured by a mercury porosimeter method.
  • preliminary first particles having a surface layer of 2 nm thickness were prepared.
  • the surface layer was 2.1% by weight relative to the total weight of the core.
  • the first particles were prepared by the first particle production method of Example 1.
  • the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the first particles was 15% by weight based on the total weight of the first particles, which was determined by X-ray diffraction analysis. Measured by quantitative analysis using (XRD).
  • Secondary particles were prepared through the first particles and the second particles using the preliminary first particles as the second particles. Specifically, after mixing the first particles and the second particles in a weight ratio of 6: 4, a mechanical homogenizer comprising a solution containing the mixture and ethanol / water (volume ratio 1: 9) in a volume ratio of 1:10. A dispersion solution for spray drying was prepared by stirring at 10,000 rpm for 30 minutes with a mechanical homogenizer. The dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions. Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat.
  • a mechanical homogenizer comprising a solution containing the mixture and ethanol / water (volume ratio 1: 9) in a volume ratio of 1:10.
  • a dispersion solution for spray drying was prepared by stirring at 10,000 rpm for 30 minutes with a mechanical homogenizer.
  • Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. .
  • the porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 5 ⁇ m.
  • the porosity was measured by a mercury porosimeter method.
  • Secondary particles were prepared in the same manner as in Example 6, except that the first particles and the second particles were mixed in a weight ratio of 1.5: 8.5.
  • the porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 5 ⁇ m.
  • the porosity was measured by a mercury porosimeter method.
  • preliminary first particles having a surface layer of 2 nm thickness were prepared.
  • the surface layer was 2.1% by weight relative to the total weight of the core.
  • Secondary particles were prepared in the same manner as in the manufacturing method of the secondary particles of Example 1, except that the first particles of Example 1 were not used and the preliminary first particles were used.
  • the porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 5 ⁇ m.
  • the porosity was measured by a mercury porosimeter method.
  • the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the negative electrode active material was 15% by weight based on the total weight of the negative electrode active material, which was X-ray diffraction analysis (XRD) It was measured through quantitative analysis using.
  • XRD X-ray diffraction analysis
  • Each negative electrode active material prepared in Examples 1 to 6 and Comparative Examples 1 and 2, fine graphite as a conductive material, and polyacrylonitrile as a binder were mixed at a weight ratio of 7: 2: 1 to prepare 0.2 g of a mixture.
  • a negative electrode mixture slurry was prepared by adding 3.1 g of solvent N-methyl-2-pyrrolidone (NMP) to the mixture.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode mixture slurry was applied and dried on a copper (Cu) metal thin film, which is a negative electrode current collector having a thickness of 20 ⁇ m.
  • the temperature of the air circulated was 80 °C.
  • rolls were pressed and dried in a vacuum oven at 130 ° C. for 12 hours, and then punched into a circle of 1.4875 cm 2 to prepare negative electrodes of Examples 7 to 12, respectively.
  • Each prepared negative electrode was cut into a circle of 1.4875 cm 2, which was used as a negative electrode, and a lithium (Li) metal thin film cut into 1.4875 cm 2 circular was used as a positive electrode.
  • EMC methyl ethyl carbonate
  • EC ethylene carbonate
  • Test Example 1 evaluation of discharge capacity, initial efficiency, capacity retention rate and electrode thickness change rate
  • one cycle and two cycles were charged and discharged at 0.1C, and charging and discharging were performed at 0.5C from 3 cycles to 49 cycles.
  • the 50 cycles were terminated in the state of charging (lithium in the negative electrode), the battery was disassembled, the thickness was measured, and the electrode thickness change rate was calculated.
  • Discharge capacity (mAh / g) and initial efficiency (%) were derived through the result at the time of single charge / discharge. Specifically, the initial efficiency (%) was derived by the following calculation.
  • the capacity retention rate and the electrode thickness change rate were derived by the following calculations, respectively.
  • Capacity retention rate (%) (49 discharge capacity / 1 discharge capacity) ⁇ 100
  • Example 1 1420 82.2 87.5 107
  • Example 8 Example 2 1400 84.2 87 108
  • Example 3 1350 81.5 87.3 105
  • Example 10 Example 4 1300 83.5 87.2 109
  • Example 11 Example 5 1508 80.08 88 105
  • Example 12 Example 6 1520 75.5 87.0 115 Comparative Example 3 Comparative Example 1 1550 74.0 86.5 123 Comparative Example 4 Comparative Example 2 1320 80.1 80 110
  • Example 7 using the negative electrode active material in which the metal compound is suitably included in the core at 15% by weight discharge capacity and capacity retention rate compared to Example 8 using the negative electrode active material containing the metal compound but the content is 51% by weight You can see that this is high.
  • the metal doping amount for forming the metal compound is too high, the size of the crystal of Si in the negative electrode active material is too large, and a part of the metal acts as an impurity, which adversely affects the battery life, resulting in low capacity retention. see.
  • Example 7 using the negative electrode active material of Example 1 having a suitable core size of 1 ⁇ m compared with Example 9 using the negative electrode active material of Example 3 having a small core size of 0.4 ⁇ m the discharge capacity, initial efficiency, Capacity maintenance rate is high. This is because when using a small core, the specific surface area is increased to increase the irreversible reaction.
  • Each prepared negative electrode was cut into a circle of 1.4875 cm 2, which was used as a negative electrode, and a lithium (Li) metal thin film cut into 1.4875 cm 2 circular was used as a positive electrode.
  • EMC methyl ethyl carbonate
  • EC ethylene carbonate
  • Test Example 2 evaluation of initial efficiency, capacity retention and electrode thickness change rate
  • one cycle and two cycles were charged and discharged at 0.1C, and charging and discharging were performed at 0.5C from 3 cycles to 49 cycles.
  • the 50 cycles were terminated in the state of charging (lithium in the negative electrode), the battery was disassembled, the thickness was measured, and the electrode thickness change rate was calculated.
  • Initial efficiency (%) was derived through the result of one time charge / discharge. Specifically, the initial efficiency (%) was derived by the following calculation.
  • the capacity retention rate and the electrode thickness change rate were derived by the following calculations, respectively.
  • Capacity retention rate (%) (49 discharge capacity / 1 discharge capacity) ⁇ 100
  • Example 14 Example 2 black smoke 90.2 89.8 53.2
  • Example 15 Example 3 black smoke 89.3 89.5 53.2
  • Example 16 Example 4 black smoke 90.1 89.2 53.3
  • Example 17 Example 5 black smoke 89.0 89.0 52.5 Comparative Example 5 Comparative Example 1 black smoke 86.1 88.8 53.4 Comparative Example 6 Comparative Example 2 black smoke 88.9 87.5 55.0
  • first surface layer 113 metal compound

Abstract

The present invention relates to a cathode active material, a method for preparing same, an electrode comprising same, and a lithium secondary battery comprising same, the cathode active material comprising a secondary particle comprising a first particle which is a primary particle, wherein the first particle comprises a first core and a first surface layer which is disposed on the surface of the first core and comprises carbon, wherein the first core comprises silicon and/or a silicon compound and a metal compound, wherein the metal compound comprises a metal oxide and/or a metal silicate.

Description

음극 활물질, 이를 포함하는 음극 및 이를 포함하는 리튬 이차전지Negative electrode active material, negative electrode including same and lithium secondary battery comprising same
관련출원과의 상호인용Citation with Related Applications
본 출원은 2016년 6월 2일자 출원된 한국 특허 출원 제10-2016-0068956호, 2016년 6월 2일자 출원된 한국 특허 출원 제10-2016-0068940호 및 2017년 6월 2일자 출원된 한국 특허 출원 제10-2017-0068856호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application is subject to Korean Patent Application No. 10-2016-0068956, filed June 2, 2016, Korean Patent Application No. 10-2016-0068940, filed June 2, 2016, and Korea, filed June 2, 2017. Claiming the benefit of priority based on patent application No. 10-2017-0068856, all contents disclosed in the literature of that Korean patent application are incorporated as part of this specification.
기술분야Technical Field
본 발명은 음극 활물질, 이를 포함하는 음극 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a negative electrode active material, a negative electrode including the same, and a lithium secondary battery including the same.
최근 전자기기의 소형화 및 경량화 추세에 따라 전원으로 작용하는 전지도 소형화 및 경량화가 요구되고 있다. 현재 소형화 및 경량화를 만족하면서 고용량으로 충·방전이 가능한 전지로서 리튬이차전지가 실용화되고 있으며, 소형 비디오 카메라, 휴대전화, 노트북 등의 휴대용 전자기기 및 통신기기 등에 이용되고 있다.In accordance with the recent trend toward miniaturization and lightening of electronic devices, miniaturization and lightening of batteries serving as power sources are also required. Lithium secondary batteries are currently used as batteries capable of charging and discharging with high capacity while satisfying miniaturization and light weight, and are used in portable electronic devices and communication devices such as small video cameras, mobile phones, and notebook computers.
일반적으로 리튬이차전지는 양극, 음극, 분리막 및 전해질로 구성되며, 첫번째 충전에 의해 양극 활물질로부터 나온 리튬 이온이 음극 활물질, 즉 카본(carbon) 입자 내에 삽입되고 방전시 다시 탈리되는 등, 양전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충·방전이 가능하게 된다.In general, a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and an electrolyte, and the first and second lithium electrodes reciprocate the positive electrode such that lithium ions from the positive electrode active material are inserted into the negative electrode active material, ie, carbon particles, and are detached again during discharge. While it plays a role of transferring energy, charging and discharging are possible.
한편, 휴대용 전자기기의 발달로 인하여 고용량의 전지가 계속 요구됨에 따라 기존 음극재로 사용되는 탄소보다 단위 무게당 용량이 월등히 높은 주석, 규소 등의 고용량 음극재가 활발하게 연구되고 있다. 이 중 규소를 이용한 음극소재는 탄소를 이용한 음극소재보다 약 10배 이상 높은 용량을 가지고 있다.Meanwhile, as high-capacity batteries continue to be required due to the development of portable electronic devices, high-capacity negative electrode materials such as tin and silicon, which have a much higher capacity per unit weight than carbon used as an existing negative electrode material, have been actively studied. Among these, the anode material using silicon has a capacity about 10 times higher than the cathode material using carbon.
이에 따라 고용량이면서 반복적인 리튬의 삽입 및 탈리에도 전극이 손상되지 않는 규소를 이용한 음극소재에 대한 연구가 이루어지고 있다.Accordingly, research has been conducted on a negative electrode material using silicon, which has a high capacity and does not damage electrodes even after repeated insertion and removal of lithium.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) KR2005-0090218A(Patent Document 1) KR2005-0090218A
본 발명은 리튬 이차전지의 충·방전시 양극에서 방출된 리튬과 음극에 포함된 규소의 전기 화학적 반응에 의해 음극이 팽창 및 수축되는 것을 방지할 수 있는 음극 활물질을 제공하는 것이다.The present invention provides a negative electrode active material that can prevent the negative electrode from expanding and contracting by an electrochemical reaction of lithium discharged from the positive electrode and silicon contained in the negative electrode during charging and discharging of a lithium secondary battery.
본 발명은 리튬 이온이 이동할 수 있는 통로가 많은 음극 활물질을 제공하는 것이다.The present invention provides a negative electrode active material having many passages through which lithium ions can move.
본 발명은 고용량 및 고출력 특성을 갖는 리튬이차전지를 제공하는 것이다.The present invention is to provide a lithium secondary battery having a high capacity and high output characteristics.
본 발명은 초기 효율(initial efficiency)을 높일 수 있고 속도 특성이 향상된 리튬이차전지를 제공하는 것이다.The present invention is to provide a lithium secondary battery that can increase the initial efficiency (initial efficiency) and improved speed characteristics.
본 발명의 일 실시예에 따르면, 1차 입자인 제1 입자를 포함하는 2차 입자를 포함하고, 상기 제1 입자는 제1 코어 및 상기 제1 코어의 표면에 배치되고 탄소를 포함하는 제1 표면층을 포함하며, 상기 제1 코어는, 규소 및 규소 화합물 중 적어도 어느 하나; 및 금속 화합물을 포함하고, 상기 금속 화합물은 금속 산화물 및 금속 실리케이트 중 적어도 어느 하나를 포함하는 음극 활물질이 제공된다.According to an embodiment of the present invention, it comprises a secondary particle comprising a first particle that is a primary particle, the first particle is disposed on the surface of the first core and the first core and comprises a first carbon And a surface layer, wherein the first core comprises at least one of silicon and a silicon compound; And a metal compound, wherein the metal compound is provided with a negative electrode active material including at least one of a metal oxide and a metal silicate.
본 발명의 다른 실시예에 따르면, 상기 음극 활물질을 포함하는 음극이 제공된다.According to another embodiment of the present invention, a negative electrode including the negative electrode active material is provided.
본 발명의 또 다른 실시예에 따르면, 상기 음극을 포함하는 리튬 이차전지가 제공된다.According to another embodiment of the present invention, a lithium secondary battery including the negative electrode is provided.
본 발명에 따른 음극 활물질은 1차 입자인 제1 입자를 포함하는 2차 입자를 포함하므로, 리튬 이온이 이동할 수 있는 통로도 증가하여, 리튬 이차전지의 출력 특성이 향상될 수 있으며, 리튬 이차전지의 초기 효율이 높고, 속도 특성(충방전 특성)이 향상될 수 있다.Since the negative electrode active material according to the present invention includes secondary particles including first particles as primary particles, a passage through which lithium ions may move also increases, so that an output characteristic of a lithium secondary battery may be improved, and a lithium secondary battery The initial efficiency of is high, and the speed characteristic (charge / discharge characteristic) can be improved.
또한, 본 발명에 따르면, 1차 입자들 사이의 공극에 인해, 리튬 이온의 삽입 및 탈리가 반복되어 코어의 수축 및 팽창이 반복되더라도 전극의 손상이 최소화될 수 있다.In addition, according to the present invention, due to the voids between the primary particles, even if the insertion and desorption of lithium ions is repeated, the damage of the electrode can be minimized even if the contraction and expansion of the core is repeated.
또한, 본 발명에 따르면 제1 코어에 금속 화합물이 도핑되므로, 전지의 초기 효율이 더욱 개선될 수 있다.In addition, according to the present invention, since the metal compound is doped in the first core, the initial efficiency of the battery may be further improved.
나아가, 금속 화합물이 도핑된 제1 코어를 포함하는 제1 입자와 금속 화합물이 도핑되지 않은 제2 코어를 포함하는 제2 입자가 적절한 중량비로 혼합되어 고용량이면서 초기 효율이 좋은 전지의 제공이 가능하다.Furthermore, a first particle including a first core doped with a metal compound and a second particle including a second core not doped with the metal compound may be mixed in an appropriate weight ratio to provide a battery having high initial capacity and high initial efficiency. .
도 1은 본 발명의 일 실시예에 따른 음극 활물질의 단면을 나타낸 모식도이다.1 is a schematic diagram showing a cross section of a negative electrode active material according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 음극 활물질의 단면을 나타낸 모식도이다. 2 is a schematic view showing a cross section of a negative electrode active material according to another embodiment of the present invention.
도 3는 본 발명의 또 다른 실시예에 따른 음극 활물질의 단면을 나타낸 모식도이다.3 is a schematic view showing a cross section of a negative electrode active material according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 음극 활물질의 단면을 나타낸 모식도이다.4 is a schematic view showing a cross section of a negative electrode active material according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따른 음극 활물질의 단면을 나타낸 모식도이다.5 is a schematic view showing a cross section of a negative electrode active material according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 실시예에 따른 음극 활물질의 단면을 나타낸 모식도이다.6 is a schematic view showing a cross section of a negative electrode active material according to another embodiment of the present invention.
도 7은 본 발명의 실시예들 및 비교예들의 정규화된 용량을 나타낸 그래프이다.7 is a graph showing normalized doses of Examples and Comparative Examples of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
그리고 본 발명이 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.And while the present invention has been described with reference to the embodiments shown in the drawings, which are merely exemplary, those skilled in the art will understand that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명의 일 실시예에 따른 음극 활물질은 1차 입자인 제1 입자를 포함하는 2차 입자를 포함하고, 상기 제1 입자는 제1 코어 및 상기 제1 코어의 표면에 배치되고 탄소를 포함하는 제1 표면층을 포함하며, 상기 제1 코어는, 규소 및 규소 화합물 중 적어도 어느 하나; 및 금속 화합물을 포함하고, 상기 금속 화합물은 금속 산화물 및 금속 실리케이트 중 적어도 어느 하나를 포함할 수 있다. An anode active material according to an embodiment of the present invention includes secondary particles including first particles which are primary particles, wherein the first particles are disposed on a surface of the first core and the first core and include carbon. A first surface layer, wherein the first core comprises at least one of silicon and a silicon compound; And a metal compound, wherein the metal compound may include at least one of a metal oxide and a metal silicate.
도 1은 본 발명의 일 실시예에 따른 음극 활물질의 단면을 나타낸 모식도이다. 1 is a schematic diagram showing a cross section of a negative electrode active material according to an embodiment of the present invention.
도 1을 참조하면, 상기 음극 활물질은 1차 입자인 제1 입자(110)를 포함하는 2차 입자(200)를 포함한다. 여기서 2차 입자라는 표현은 1차 입자들이 응집되어 형성된 입자를 의미한다.Referring to FIG. 1, the anode active material includes secondary particles 200 including first particles 110 that are primary particles. Here, the expression secondary particles means particles formed by aggregation of primary particles.
상기 제1 입자(110)는 제1 코어(111)와 제1 표면층(112)을 포함할 수 있다.The first particles 110 may include a first core 111 and a first surface layer 112.
상기 제1 코어(111)는 규소 및 규소 화합물 중 적어도 어느 하나; 및 금속 화합물(113)을 포함할 수 있다.The first core 111 is at least one of silicon and silicon compounds; And a metal compound 113.
상기 규소는 이론 용량이 약 3,600㎃h/g이므로, 기존의 흑연을 포함하는 음극 활물질에 비하여 매우 고용량이므로, 이를 포함하는 리튬이차전지의 용량을 향상시킬 수 있다. Since the silicon has a theoretical capacity of about 3,600 mAh / g, since the silicon has a very high capacity as compared with the negative electrode active material including graphite, the capacity of the lithium secondary battery including the same may be improved.
상기 규소 화합물은 규소를 함유한 화합물을 의미하는 것으로서, 이산화규소(SiO2) 매트릭스 내에 규소가 분포한 규소 산화물(SiOx, 0<x<2), 탄소계 물질과 물리적 또는 화학적으로 복합화된 Si/C 또는 금속과 복합화된 규소 합금(Si-alloy)일 수 있고, 구체적으로 규소 산화물(SiOx, 0<x<2)일 수 있으며, 보다 구체적으로는 SiOx (0<x≤1)일 수 있고, 예를 들어 SiO일 수 있다.The silicon compound refers to a compound containing silicon, which is physically or chemically complexed with silicon oxide (SiOx, 0 <x <2) and a carbon-based material in which silicon is distributed in a silicon dioxide (SiO 2 ) matrix. It may be a silicon alloy (Si-alloy) complexed with C or a metal, specifically silicon oxide (SiOx, 0 <x <2), more specifically SiOx (0 <x≤1), For example, it may be SiO.
상기 규소 산화물(SiOx, 0<x<2)이 상기 제1 코어(111)에 포함되면, 상기 규소 산화물(SiOx, 0<x<2)이 규소에 비해 리튬 이차전지의 충·방전으로 인한 리튬 이온의 삽입 및 탈리 시 체적 팽창이 적으므로, 음극 활물질의 손상을 줄일 수 있고, 규소에 의한 효과인 고용량과 높은 초기 효율도 구현할 수 있다.When the silicon oxide (SiOx, 0 <x <2) is included in the first core 111, the silicon oxide (SiOx, 0 <x <2) is lithium due to charging and discharging of a lithium secondary battery compared to silicon. Since there is little volume expansion during insertion and desorption of ions, damage of the negative electrode active material can be reduced, and high capacity and high initial efficiency, which are effects of silicon, can be realized.
상기 규소 산화물(SiOx, 0<x≤1) 내 규소는 비정질 또는 결정질일 수 있다. 상기 규소 산화물(SiOx, 0<x≤1) 내 규소가 결정질일 경우, 결정의 크기는 0초과 30nm이하 일 수 있다. 상술한 범위를 만족하면, 최종 생산품인 리튬이차전지가 기존의 흑연을 포함한 리튬 이차전지보다 고용량을 구현할 수 있으며, 초기 효율을 향상시킬 수 있다.Silicon in the silicon oxide (SiOx, 0 <x≤1) may be amorphous or crystalline. When silicon in the silicon oxide (SiOx, 0 <x≤1) is crystalline, the crystal size may be greater than 0 and less than 30 nm. If the above-mentioned range is satisfied, the final product of the lithium secondary battery can implement a higher capacity than the lithium secondary battery including the existing graphite, it is possible to improve the initial efficiency.
상기 제1 코어(111)는 각각 다수의 기공을 포함하는 다공성 코어일 수 있다. 상기 다공성 코어는 전해질과 전극의 접촉 면적을 증가시켜 리튬 이온 확산이 빠르게 진행될 수 있다.The first core 111 may be a porous core each including a plurality of pores. The porous core may increase the lithium ion diffusion by increasing the contact area between the electrolyte and the electrode.
상기 제1 코어(111)가 다공성 코어인 경우, 상기 제1 코어(111)의 내부 공극률은 상기 제1 코어(111) 전체 부피에 대하여, 5% 내지 90%일 수 있다, 여기서, 상기 공극률은 '(단위 질량당 기공 부피)/(비체적+단위 질량당 기공 부피)'을 의미하며, 수은 침투법(Mercury porosimetry) 또는 BET(Brunauer-Emmett-Teller) 측정법으로 측정할 수 있다. 상술한 범위를 만족하면, 충·방전시 상기 코어(111)의 부피 팽창을 억제할 수 있고, 기계적 강도가 우수하며, 압연 등 전지의 제조 공정시에도 견딜 수 있는 내구성을 가질 수 있다.When the first core 111 is a porous core, the internal porosity of the first core 111 may be 5% to 90% of the total volume of the first core 111, wherein the porosity is It means '(pore volume per unit mass) / (specific volume + pore volume per unit mass)' and can be measured by mercury porosimetry or Brunauer-Emmett-Teller (BET) measurement. When the above-mentioned range is satisfied, the volume expansion of the core 111 may be suppressed during charging and discharging, and the mechanical strength may be excellent, and durability may be tolerated even during a manufacturing process of a battery such as rolling.
상기 제1 코어(111)의 평균 입경(D50)은 각각 0.5㎛ 내지 20㎛일 수 있고, 구체적으로는 0.5㎛ 내지 5㎛일 수 있다. 상기 제1 코어(111)의 평균 입경이 0.5㎛ 내지 20㎛인 경우, 2차 입자를 형성함에 있어 응집이 용이하며, 충·방전이 반복되어도 소결 현상이 일어나지 않아 음극의 크랙(crack) 현상 발생이 방지될 수 있다. 또한, 충방전 시 부피 변화가 효과적으로 방지될 수 있다. 이와 동시에 전극 외관이 매끄럽게 형성될 수 있어서, 전극 제조 시 활물질층의 압연이 원활하게 이루어질 수 있다. 이에 따라, 단위 부피 당 에너지 밀도가 향상될 수 있다. 본 명세서에서 평균 입경(D50)은 입자의 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.The average particle diameter D 50 of the first core 111 may be 0.5 μm to 20 μm, and specifically 0.5 μm to 5 μm. When the average particle diameter of the first core 111 is 0.5 μm to 20 μm, aggregation is easy in forming secondary particles, and sintering does not occur even when charging and discharging are repeated. This can be prevented. In addition, the volume change during charging and discharging can be effectively prevented. At the same time, the external appearance of the electrode may be smoothly formed, and thus the active material layer may be smoothly rolled during electrode production. Accordingly, the energy density per unit volume can be improved. In the present specification, the average particle diameter (D 50 ) may be defined as a particle diameter based on 50% of the particle size distribution of the particles. The average particle diameter D 50 may be measured using, for example, a laser diffraction method. In general, the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained.
상기 상기 제1 코어(111)의 BET 비표면적은 0.5㎡/g 내지 30㎡/g일 수 있다.The BET specific surface area of the first core 111 may be 0.5 m 2 / g to 30 m 2 / g.
상기 금속 화합물(113)은 상기 규소 화합물을 환원시킬 수 있는, 구체적으로는 상기 규소 화합물 내 이산화규소(SiO2)를 규소로 환원시킬 수 있는 환원력을 가진 금속이 산화되어 형성된 것 일 수 있다. 상기 금속 화합물(113)은 금속 산화물 및 금속 실리케이트 중 적어도 어느 하나를 포함할 수 있다.The metal compound 113 may be formed by oxidizing a metal capable of reducing the silicon compound, specifically, a metal having a reducing power capable of reducing silicon dioxide (SiO 2 ) in the silicon compound to silicon. The metal compound 113 may include at least one of a metal oxide and a metal silicate.
상기 금속 산화물은 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 칼슘(Ca), 티타늄(Ti)으로 이루어진 군에서 선택되는 1종 이상의 금속의 산화물을 포함할 수 있다. 구체적으로 상기 금속 산화물은 MgO, MgSi3 및 Mg2SiO4 중 적어도 어느 하나일 수 있다.The metal oxide may include an oxide of at least one metal selected from the group consisting of lithium (Li), magnesium (Mg), aluminum (Al), calcium (Ca), and titanium (Ti). Specifically, the metal oxide may be at least one of MgO, MgSi 3 and Mg 2 SiO 4 .
상기 상기 금속 실리케이트는 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 칼슘(Ca) 및 티타늄(Ti)으로 이루어진 군에서 선택되는 1종 이상의 금속의 실리케이트를 포함할 수 있다. The metal silicate may include silicate of at least one metal selected from the group consisting of lithium (Li), magnesium (Mg), aluminum (Al), calcium (Ca), and titanium (Ti).
상기 금속 화합물은 상기 제1 코어에 도핑되는 금속에 의해 형성된 것일 수 있다. 상기 금속이 상기 제1 코어에 도핑됨으로써, SiO 내 SiO2 매트릭스가 환원될 수 있으며, 금속 화합물이 형성될 수 있다. 이에 따라, 초기 비가역으로 작용하는 SiO2의 함량이 줄어들 수 있으므로, 전지의 초기 효율이 향상될 수 있다.The metal compound may be formed by a metal doped in the first core. As the metal is doped into the first core, the SiO 2 matrix in SiO may be reduced and a metal compound may be formed. Accordingly, since the content of SiO 2 acting as the initial irreversible can be reduced, the initial efficiency of the battery can be improved.
상기 금속 화합물(113)의 중량은 상기 제1 입자 총 중량에 대하여, 1중량% 내지 50중량% 일 수 있으며, 구체적으로 2중량% 내지 50중량%일 수 있다. 상기 범위를 만족하는 경우, 초기 효율이 효과적으로 향상되며, SiO2의 환원 반응 시 열이 과도하게 발생하지 않아 Si 결정의 크기가 지나치게 커지는 것이 억제될 수 있다. 또한, 도핑된 금속들이 대부분 반응에 참여해, 금속 불순물이 발생하지 않을 수 있다.The weight of the metal compound 113 may be 1 wt% to 50 wt%, and specifically 2 wt% to 50 wt% with respect to the total weight of the first particles. When the above range is satisfied, the initial efficiency is effectively improved, and excessive heat generation during the reduction reaction of SiO 2 can be suppressed from excessively increasing the size of the Si crystal. In addition, most of the doped metals participate in the reaction, so that no metal impurities may occur.
상기 제1 표면층(112)은 탄소를 포함하고 상기 제1 코어(111)의 표면에 배치될 수 있다. 상기 제1 표면층(112)은 상기 제1 코어(111)의 표면 추가 산화를 방지한다. 상기 제1 표면층(112)은 음극 활물질 내에 도전 통로를 형성하면서 음극 활물질의 전기 전도성을 향상시킬 수 있다. 상기 제1 표면층(112)으로 인해 상기 제1 입자(110)의 단위 부피당 용량을 증가시켜 고용량이 발현될 수 있다.The first surface layer 112 may include carbon and be disposed on the surface of the first core 111. The first surface layer 112 prevents further surface oxidation of the first core 111. The first surface layer 112 may improve the electrical conductivity of the negative electrode active material while forming a conductive passage in the negative electrode active material. Due to the first surface layer 112, a high capacity may be expressed by increasing the capacity per unit volume of the first particle 110.
상기 탄소는 비정질 탄소 또는 결정질 탄소일 수 있다. 상기 비정질 탄소가 상기 제1 표면층(112)에 포함되면, 상기 제1 표면층(112)들 사이의 강도가 적절하게 유지되어 상기 제1 코어(111)의 팽창을 억제할 수 있다. 상기 결정질 탄소가 상기 제1 표면층(112)에 포함되면, 음극 활물질의 도전성이 보다 향상될 수 있다. 상기 결정질 탄소는 플로렌, 탄소나노튜브 또는 그래핀일 수 있다.The carbon may be amorphous carbon or crystalline carbon. When the amorphous carbon is included in the first surface layer 112, the strength between the first surface layers 112 may be properly maintained to suppress expansion of the first core 111. When the crystalline carbon is included in the first surface layer 112, the conductivity of the negative electrode active material may be further improved. The crystalline carbon may be florene, carbon nanotubes, or graphene.
상기 제1 표면층(112)은 독립적으로 타르, 피치 및 기타 유기물로 이루어진 군에서 선택되는 1종 이상의 탄화물을 포함할 수 있으며, 구체적으로 상기 제1 표면층(112)은 각각 독립적으로, 타르의 탄화물, 피치의 탄화물, 또는 기타 유기물의 탄화물로 이루어질 수 있다. 상기 기타 유기물의 탄화물은 수크로오스, 글루코오스, 갈락토오스, 프록토오스, 락토오스, 마노스, 리보스, 알도헥소스 또는 케도헥소스의 탄화물 및 이들의 조합에서 선택되는 유기물의 탄화물일 수 있다.The first surface layer 112 may include one or more carbides independently selected from the group consisting of tar, pitch, and other organic materials. Specifically, the first surface layer 112 may each independently include tar carbide, Pitch carbide, or other organic carbides. The carbide of the other organic material may be a carbide of an organic material selected from carbides of sucrose, glucose, galactose, fructose, lactose, manos, ribose, aldohexose or kedohexose, and combinations thereof.
상기 제1 표면층(112)은 각각 독립적으로 치환 또는 비치환된 지방족 또는 지환식 탄화수소, 치환 또는 비치환된 방향족 탄화수소, 타르의 증류 공정에서 얻어지는 산물, 비닐계 수지, 페놀계 수지, 셀룰로오스계 수지 및 피치계 수지로 이루어진 군에서 선택되는 1종 이상의 열분해 산물을 포함할 수 있다. 예를 들어, 상기 치환 또는 비치환된 지방족 또는 지환식 탄화수소, 치환 또는 비치환된 방향족 탄화수소 등의 열분해 산물은 화학기상증착법을 수행하기 위한 탄소원으로 이용될 수 있다.The first surface layer 112 is each independently substituted or unsubstituted aliphatic or alicyclic hydrocarbon, substituted or unsubstituted aromatic hydrocarbons, products obtained in the distillation process of tar, vinyl-based resin, phenol-based resin, cellulose-based resin and It may include one or more pyrolysis products selected from the group consisting of a pitch-based resin. For example, pyrolysis products such as substituted or unsubstituted aliphatic or alicyclic hydrocarbons, substituted or unsubstituted aromatic hydrocarbons, and the like can be used as a carbon source for performing chemical vapor deposition.
상기 치환 또는 비치환된 지방족 또는 지환식 탄화수소의 구체적인 예로는 메테인, 에테인, 에틸렌, 아세틸렌, 프로페인, 뷰테인, 뷰텐, 펜테인, 아이소뷰테인 또는 헥세인 등을 들 수 있다.Specific examples of the substituted or unsubstituted aliphatic or alicyclic hydrocarbons include methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane or hexane.
상기 치환 또는 비치환된 방향족 탄화수소의 구체적인 예로는 벤젠, 톨루엔, 자일렌, 스티렌, 에틸벤젠, 다이페닐메테인, 나프탈렌, 페놀, 크레졸, 나이트로벤젠, 클로로벤젠, 인덴, 쿠마론, 파이리딘, 안트라센 또는 페난트렌 등을 들 수 있다.Specific examples of the substituted or unsubstituted aromatic hydrocarbons include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, Anthracene, phenanthrene, and the like.
상기 타르 증류 공정에서 얻어지는 산물은 가스 경유, 크레오소트유, 안트라센유 또는 나프타 분해 타르유 등을 들 수 있다.The product obtained by the said tar distillation process is gas gas oil, creosote oil, anthracene oil, naphtha cracked tar oil, etc. are mentioned.
상기 제1 표면층(112)은 탄소를 포함하는 도전성 고분자를 포함할 수 있고, 상기 도전성 고분자는 폴리셀룰로오스설포네이트, 폴리아세틸렌, 폴리파라페닐렌, 폴리(p-페닐렌비닐렌), 폴리피롤, 폴리티오펜, 폴리아닐린, 폴리이소티아나프텐, 폴리파라메틸렌, 파이렌(pyrene)의 동종중합체인 폴리(1-파이렌메틸메타크릴레이트), 파이렌의 공중합체인 폴리(1-파이렌메틸 메타크릴레이트-코트리에틸렌 옥사이드 메틸 에테르 메타크릴레이트), 상기 파이렌의 동종중합체 혹은 공중합체의 피렌 측쇄를 안트라센(anthracene)으로 변경한 고분자, 카보닐기와 메틸벤조익 에스테르를 갖는 고분자 및 컨쥬게이션 결합(conjugation bond)를 갖는 폴리아세틸렌로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.The first surface layer 112 may include a conductive polymer including carbon, and the conductive polymer may be polycellulose sulfonate, polyacetylene, polyparaphenylene, poly (p-phenylenevinylene), polypyrrole, poly Poly (1-pyrenemethyl methacrylate), which is a homopolymer of thiophene, polyaniline, polyisothianaphthene, polyparamethylene, pyrene, and poly (1-pyrenemethyl methacrylate, which is a copolymer of pyrene Late-coatriethylene oxide methyl ether methacrylate), a polymer in which the pyrene side chain of the homopolymer or copolymer of pyrene is converted to anthracene, a polymer having a carbonyl group and a methylbenzoic ester and a conjugation bond ( It may include one or more selected from the group consisting of polyacetylene having a conjugation bond).
상기 제1 표면층(112)은 상기 제1 코어(111) 100중량부에 대하여, 2중량부 내지 50중량부로 포함될 수 있다. 상기 제1 표면층(112)의 두께는 각각 20㎚ 내지 100㎚일 수 있다. 상술한 범위를 만족하면, 상기 제1 코어(111)들의 도전 통로를 유지시키면서 리튬이차전지의 전기 전도도를 향상시킬 수 있다.The first surface layer 112 may be included in an amount of 2 parts by weight to 50 parts by weight based on 100 parts by weight of the first core 111. The thickness of the first surface layer 112 may be 20 nm to 100 nm, respectively. If the above range is satisfied, the electrical conductivity of the lithium secondary battery may be improved while maintaining the conductive passages of the first cores 111.
상기 제1 입자(110)의 평균입경(D50)은 각각 0.502㎛ 내지 20.2㎛일 수 있고, 구체적으로는 0.502㎛ 내지 5.2㎛일 수 있다. 상술한 범위를 만족하면, 상기 2차 입자를 형성함에 있어 응집이 용이하며, 충·방전이 반복되어도 소결(sintering) 현상이 일어나지 않고, 크기의 변화를 방지할 수 있다. 뿐만 아니라, 고출력 특성을 발현할 수 있다.The average particle diameter D 50 of the first particles 110 may be 0.502 μm to 20.2 μm, and specifically 0.502 μm to 5.2 μm. When the above-mentioned range is satisfied, aggregation is easy in forming the secondary particles, and even when charging and discharging are repeated, sintering does not occur and change in size can be prevented. In addition, high output characteristics can be expressed.
도 1을 참조하면, 상기 2차 입자(200)는 상기 제1 입자(110)가 응집되어 형성된 것이고, 상기 제1 입자(110)들 사이의 기공을 포함한다. 상기 제1 입자(110)들 사이의 공극률은 상기 2차 입자(200) 전체 부피에 대하여, 2% 내지 50%이다. 상술한 범위를 만족하면, 충·방전시 상기 제1 코어(111)의 부피 팽창에 대하여 완충 공간(buffer area)을 제공할 수 있고, 상기 2차 입자(200)가 파쇄되는 것을 방지할 수 있다. 또한 리튬 이온의 이동 속도를 높여 출력 특성을 높일 수 있다.Referring to FIG. 1, the secondary particles 200 are formed by aggregation of the first particles 110, and include pores between the first particles 110. The porosity between the first particles 110 is 2% to 50% with respect to the total volume of the secondary particles 200. When the above range is satisfied, a buffer area may be provided to the volume expansion of the first core 111 during charging and discharging, and the secondary particles 200 may be prevented from being broken. . In addition, the output speed can be improved by increasing the moving speed of lithium ions.
상기 제1 입자(110)들 사이의 공극률의 정의 및 측정 방법은 다공성 입자의 내부 공극률에 대한 설명에서 언급하였으므로, 생략한다. Since the definition and measurement method of the porosity between the first particles 110 is mentioned in the description of the internal porosity of the porous particles, it is omitted.
상기 2차 입자(200)의 평균 입경은 2㎛ 내지 50㎛일 수 있고, 구체적으로는 2㎛ 내지 42㎛일 수 있다. 상술한 범위를 만족하면, 리튬 이온이 이동할 수 있는 통로가 많아져 최종 생산품인 리튬 이차전지가 고용량, 고출력, 높은 초기 효율 및 우수한 속도 특성을 발현할 수 있다.The average particle diameter of the secondary particles 200 may be 2 μm to 50 μm, and specifically 2 μm to 42 μm. If the above-mentioned range is satisfied, there are many passages through which lithium ions can move, and thus a lithium secondary battery, which is a final product, can exhibit high capacity, high output, high initial efficiency, and excellent speed characteristics.
본 발명의 또 다른 실시예에 따른 음극 활물질은 상기 2차 입자가 1차 입자인 제2 입자를 더 포함하는 점을 제외하고는 상술한 일 실시예의 음극 활물질과 동일하다. 도 2를 참조하면, 상기 2차 입자(210)가 상술한 제1 입자(110)와 함께, 1차 입자인 제2 입자(120)를 더 포함하며, 상기 제2 입자(120)는 제2 코어(121) 및 상기 제2 코어(121)의 표면에 배치되며 탄소를 포함하는 제2 표면층(122)을 포함하며, 상기 제2 코어(121)는, 규소 및 규소 화합물 중 적어도 어느 하나를 포함할 수 있다. 여기서, 제1 입자(110)는 도 1을 통해 설명한 제1 입자와 동일하므로, 설명을 생략한다.The negative electrode active material according to another embodiment of the present invention is the same as the negative electrode active material of the above-described embodiment except that the secondary particles further include second particles which are primary particles. Referring to FIG. 2, the secondary particles 210 may further include second particles 120 which are primary particles together with the first particles 110 described above, and the second particles 120 may include a second particle 120. And a second surface layer 122 disposed on a surface of the core 121 and the second core 121 and including carbon, wherein the second core 121 includes at least one of silicon and a silicon compound. can do. Here, since the first particles 110 are the same as the first particles described with reference to FIG. 1, description thereof is omitted.
상기 제2 입자(120)는 제2 코어(121)와 제2 표면층(122)을 포함할 수 있다.The second particle 120 may include a second core 121 and a second surface layer 122.
상기 제2 코어(121)는 규소 및 규소 화합물 중 적어도 어느 하나를 포함할 수 있다. The second core 121 may include at least one of silicon and a silicon compound.
상기 규소는 이론 용량이 약 3,600㎃h/g이므로, 기존의 흑연을 포함하는 음극 활물질에 비하여 매우 고용량이므로, 이를 포함하는 리튬이차전지의 용량을 향상시킬 수 있다. Since the silicon has a theoretical capacity of about 3,600 mAh / g, since the silicon has a very high capacity as compared with the negative electrode active material including graphite, the capacity of the lithium secondary battery including the same may be improved.
상기 규소 화합물은 규소를 함유한 화합물을 의미하는 것으로서, 이산화규소(SiO2) 매트릭스 내에 규소가 분포한 규소 산화물(SiOx, 0<x<2), 탄소계 물질과 물리적 또는 화학적으로 복합화된 Si/C 또는 금속과 복합화된 규소 합금(Si-alloy)일 수 있고, 구체적으로 규소 산화물(SiOx, 0<x<2)일 수 있으며, 보다 구체적으로는 SiOx (0<x≤1)일 수 있고, 예를 들어 SiO일 수 있다.The silicon compound refers to a compound containing silicon, which is physically or chemically complexed with silicon oxide (SiOx, 0 <x <2) and a carbon-based material in which silicon is distributed in a silicon dioxide (SiO 2 ) matrix. It may be a silicon alloy (Si-alloy) complexed with C or a metal, specifically silicon oxide (SiOx, 0 <x <2), more specifically SiOx (0 <x≤1), For example, it may be SiO.
상기 규소 산화물(SiOx, 0<x<2)이 상기 제2 코어(121)에 포함되면, 상기 규소 산화물(SiOx, 0<x<2)이 규소에 비해 리튬 이차전지의 충·방전으로 인한 리튬 이온의 삽입 및 탈리 시 체적 팽창이 적으므로, 음극 활물질의 손상을 줄일 수 있고, 규소에 의한 효과인 고용량과 높은 초기 효율도 구현할 수 있다.When the silicon oxide (SiOx, 0 <x <2) is included in the second core 121, the silicon oxide (SiOx, 0 <x <2) is lithium due to charging and discharging of a lithium secondary battery compared to silicon. Since there is little volume expansion during insertion and desorption of ions, damage of the negative electrode active material can be reduced, and high capacity and high initial efficiency, which are effects of silicon, can be realized.
상기 규소 산화물(SiOx, 0<x≤1) 내 규소는 비정질 또는 결정질일 수 있다. 상기 규소 산화물(SiOx, 0<x≤1) 내 규소가 결정질일 경우, 결정의 크기는 0초과 30nm이하 일 수 있다. 상술한 범위를 만족하면, 최종 생산품인 리튬이차전지가 기존의 흑연을 포함한 리튬 이차전지보다 고용량을 구현할 수 있으며, 초기 효율을 향상시킬 수 있다.Silicon in the silicon oxide (SiOx, 0 <x≤1) may be amorphous or crystalline. When silicon in the silicon oxide (SiOx, 0 <x≤1) is crystalline, the crystal size may be greater than 0 and less than 30 nm. If the above-mentioned range is satisfied, the final product of the lithium secondary battery can implement a higher capacity than the lithium secondary battery including the existing graphite, it is possible to improve the initial efficiency.
상기 제2 코어(121)는 각각 다수의 기공을 포함하는 다공성 코어일 수 있다. 상기 다공성 코어는 전해질과 전극의 접촉 면적을 증가시켜 리튬 이온 확산이 빠르게 진행될 수 있다.The second core 121 may be a porous core each including a plurality of pores. The porous core may increase the lithium ion diffusion by increasing the contact area between the electrolyte and the electrode.
상기 제2 코어(121)가 다공성 코어인 경우, 상기 제2 코어(121)의 내부 공극률은 상기 제2 코어(121) 전체 부피에 대하여, 5% 내지 90%일 수 있다, 여기서, 상기 공극률은 '(단위 질량당 기공 부피)/(비체적+단위 질량당 기공 부피)'을 의미하며, 수은 침투법(Mercury porosimetry) 또는 BET(Brunauer-Emmett-Teller) 측정법으로 측정할 수 있다. 상술한 범위를 만족하면, 충·방전시 상기 제2 코어(121)의 부피 팽창을 억제할 수 있고, 기계적 강도가 우수하며, 압연 등 전지의 제조 공정시에도 견딜 수 있는 내구성을 가질 수 있다.When the second core 121 is a porous core, the internal porosity of the second core 121 may be 5% to 90% of the total volume of the second core 121, wherein the porosity is It means '(pore volume per unit mass) / (specific volume + pore volume per unit mass)' and can be measured by mercury porosimetry or Brunauer-Emmett-Teller (BET) measurement. When the aforementioned range is satisfied, the volume expansion of the second core 121 may be suppressed during charging and discharging, and the mechanical strength may be excellent, and durability may be withstand even during the manufacturing process of the battery such as rolling.
상기 제2 코어(121)의 평균 입경(D50)은 각각 0.5㎛ 내지 20㎛일 수 있고, 구체적으로는 0.5㎛ 내지 5㎛일 수 있다. 상기 제1 코어(121)의 평균 입경이 0.5㎛ 내지 20㎛인 경우, 2차 입자를 형성함에 있어 응집이 용이하며, 충·방전이 반복되어도 소결 현상이 일어나지 않아 음극의 크랙(crack) 현상 발생이 방지될 수 있다. 또한, 충방전 시 부피 변화가 효과적으로 방지될 수 있다. 이와 동시에 전극 외관이 매끄럽게 형성될 수 있어서, 전극 제조 시 활물질층의 압연이 원활하게 이루어질 수 있다. 이에 따라, 단위 부피 당 에너지 밀도가 향상될 수 있다. The average particle diameter D 50 of the second core 121 may be 0.5 μm to 20 μm, and specifically 0.5 μm to 5 μm. When the average particle diameter of the first core 121 is 0.5 μm to 20 μm, aggregation is easy in forming secondary particles, and sintering does not occur even when charging and discharging are repeated, causing cracking of the negative electrode. This can be prevented. In addition, the volume change during charging and discharging can be effectively prevented. At the same time, the external appearance of the electrode may be smoothly formed, and thus the active material layer may be smoothly rolled during electrode production. Accordingly, the energy density per unit volume can be improved.
상기 제2 코어(121)의 BET 비표면적은 0.5㎡/g 내지 30㎡/g일 수 있다.The BET specific surface area of the second core 121 may be 0.5 m 2 / g to 30 m 2 / g.
상기 제2 표면층(122)은 탄소를 포함하고 상기 제2 코어(121)의 표면에 배치될 수 있다. 상기 제2 표면층(122)은 상기 제2 코어(121)의 표면 추가 산화를 방지한다. 상기 제2 표면층(122)은 음극 활물질 내에 도전 통로를 형성하면서 음극 활물질의 전기 전도성을 향상시킬 수 있다. 상기 제2 표면층(122)으로 인해 상기 제2 입자(120)의 단위 부피당 용량을 증가시켜 고용량이 발현될 수 있다.The second surface layer 122 may include carbon and be disposed on the surface of the second core 121. The second surface layer 122 prevents further surface oxidation of the second core 121. The second surface layer 122 may improve the electrical conductivity of the negative electrode active material while forming a conductive passage in the negative electrode active material. The second surface layer 122 may increase the capacity per unit volume of the second particle 120 to express a high capacity.
상기 탄소는 비정질 탄소 또는 결정질 탄소일 수 있다. 상기 비정질 탄소가 상기 제2 표면층(122)에 포함되면, 상기 제2 표면층(122)들 사이의 강도가 적절하게 유지되어 상기 제2 코어(121)의 팽창을 억제할 수 있다. 상기 결정질 탄소가 상기 제2 표면층(122)에 포함되면, 음극 활물질의 도전성이 보다 향상될 수 있다. 상기 결정질 탄소는 플로렌, 탄소나노튜브 또는 그래핀일 수 있다.The carbon may be amorphous carbon or crystalline carbon. When the amorphous carbon is included in the second surface layer 122, strength between the second surface layers 122 may be properly maintained to suppress expansion of the second core 121. When the crystalline carbon is included in the second surface layer 122, the conductivity of the negative electrode active material may be further improved. The crystalline carbon may be florene, carbon nanotubes, or graphene.
상기 제2 표면층(122)은 독립적으로 타르, 피치 및 기타 유기물로 이루어진 군에서 선택되는 1종 이상의 탄화물을 포함할 수 있으며, 구체적으로 상기 제2 표면층(122)은 각각 독립적으로, 타르의 탄화물, 피치의 탄화물, 또는 기타 유기물의 탄화물로 이루어질 수 있다. 상기 기타 유기물의 탄화물은 수크로오스, 글루코오스, 갈락토오스, 프록토오스, 락토오스, 마노스, 리보스, 알도헥소스 또는 케도헥소스의 탄화물 및 이들의 조합에서 선택되는 유기물의 탄화물일 수 있다.The second surface layer 122 may include one or more carbides independently selected from the group consisting of tar, pitch, and other organic materials. Specifically, the second surface layer 122 may each independently include a carbide of tar, Pitch carbide, or other organic carbides. The carbide of the other organic material may be a carbide of an organic material selected from carbides of sucrose, glucose, galactose, fructose, lactose, manos, ribose, aldohexose or kedohexose, and combinations thereof.
상기 제2 표면층(122)은 각각 독립적으로 치환 또는 비치환된 지방족 또는 지환식 탄화수소, 치환 또는 비치환된 방향족 탄화수소, 타르의 증류 공정에서 얻어지는 산물, 비닐계 수지, 페놀계 수지, 셀룰로오스계 수지 및 피치계 수지로 이루어진 군에서 선택되는 1종 이상의 열분해 산물을 포함할 수 있다. 예를 들어, 상기 치환 또는 비치환된 지방족 또는 지환식 탄화수소, 치환 또는 비치환된 방향족 탄화수소 등의 열분해 산물은 화학기상증착법을 수행하기 위한 탄소원으로 이용될 수 있다.The second surface layer 122 is each independently substituted or unsubstituted aliphatic or alicyclic hydrocarbon, substituted or unsubstituted aromatic hydrocarbons, products obtained in the distillation process of tar, vinyl resin, phenol resin, cellulose resin and It may include one or more pyrolysis products selected from the group consisting of a pitch-based resin. For example, pyrolysis products such as substituted or unsubstituted aliphatic or alicyclic hydrocarbons, substituted or unsubstituted aromatic hydrocarbons, and the like can be used as a carbon source for performing chemical vapor deposition.
상기 치환 또는 비치환된 지방족 또는 지환식 탄화수소의 구체적인 예로는 메테인, 에테인, 에틸렌, 아세틸렌, 프로페인, 뷰테인, 뷰텐, 펜테인, 아이소뷰테인 또는 헥세인 등을 들 수 있다.Specific examples of the substituted or unsubstituted aliphatic or alicyclic hydrocarbons include methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane or hexane.
상기 치환 또는 비치환된 방향족 탄화수소의 구체적인 예로는 벤젠, 톨루엔, 자일렌, 스티렌, 에틸벤젠, 다이페닐메테인, 나프탈렌, 페놀, 크레졸, 나이트로벤젠, 클로로벤젠, 인덴, 쿠마론, 파이리딘, 안트라센 또는 페난트렌 등을 들 수 있다.Specific examples of the substituted or unsubstituted aromatic hydrocarbons include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, Anthracene, phenanthrene, and the like.
상기 타르 증류 공정에서 얻어지는 산물은 가스 경유, 크레오소트유, 안트라센유 또는 나프타 분해 타르유 등을 들 수 있다.The product obtained by the said tar distillation process is gas gas oil, creosote oil, anthracene oil, naphtha cracked tar oil, etc. are mentioned.
상기 제2 표면층(122)은 탄소를 포함하는 도전성 고분자를 포함할 수 있고, 상기 도전성 고분자는 폴리셀룰로오스설포네이트, 폴리아세틸렌, 폴리파라페닐렌, 폴리(p-페닐렌비닐렌), 폴리피롤, 폴리티오펜, 폴리아닐린, 폴리이소티아나프텐, 폴리파라메틸렌, 파이렌(pyrene)의 동종중합체인 폴리(1-파이렌메틸메타크릴레이트), 파이렌의 공중합체인 폴리(1-파이렌메틸 메타크릴레이트-코트리에틸렌 옥사이드 메틸 에테르 메타크릴레이트), 상기 파이렌의 동종중합체 혹은 공중합체의 피렌 측쇄를 안트라센(anthracene)으로 변경한 고분자, 카보닐기와 메틸벤조익 에스테르를 갖는 고분자 및 컨쥬게이션 결합(conjugation bond)를 갖는 폴리아세틸렌로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.The second surface layer 122 may include a conductive polymer including carbon, and the conductive polymer may be polycellulose sulfonate, polyacetylene, polyparaphenylene, poly (p-phenylenevinylene), polypyrrole, poly Poly (1-pyrenemethyl methacrylate), which is a homopolymer of thiophene, polyaniline, polyisothianaphthene, polyparamethylene, pyrene, and poly (1-pyrenemethyl methacrylate, which is a copolymer of pyrene Late-coatriethylene oxide methyl ether methacrylate), a polymer in which the pyrene side chain of the homopolymer or copolymer of pyrene is converted to anthracene, a polymer having a carbonyl group and a methylbenzoic ester and a conjugation bond ( It may include one or more selected from the group consisting of polyacetylene having a conjugation bond).
상기 제2 표면층(122)은 상기 제2 코어(121) 100중량부에 대하여, 2중량부 내지 50중량부로 포함될 수 있다. 상기 제2 표면층(122)의 두께는 각각 20㎚ 내지 100㎚일 수 있다. 상술한 범위를 만족하면, 상기 제2 코어(121)들의 도전 통로를 유지시키면서 리튬이차전지의 전기 전도도를 향상시킬 수 있다.The second surface layer 122 may be included in an amount of 2 parts by weight to 50 parts by weight based on 100 parts by weight of the second core 121. The thickness of the second surface layer 122 may be 20 nm to 100 nm, respectively. If the above range is satisfied, the electrical conductivity of the lithium secondary battery may be improved while maintaining the conductive passages of the second cores 121.
상기 제2 입자(120)의 평균입경(D50)은 각각 0.502㎛ 내지 20.2㎛일 수 있고, 구체적으로는 0.502㎛ 내지 5.2㎛일 수 있다. 상술한 범위를 만족하면, 상기 2차 입자를 형성함에 있어 응집이 용이하며, 충·방전이 반복되어도 소결(sintering) 현상이 일어나지 않고, 크기의 변화를 방지할 수 있다. 뿐만 아니라, 고출력 특성을 발현할 수 있다.The average particle diameter D 50 of the second particles 120 may be 0.502 μm to 20.2 μm, and specifically 0.502 μm to 5.2 μm. When the above-mentioned range is satisfied, aggregation is easy in forming the secondary particles, and even when charging and discharging are repeated, sintering does not occur and change in size can be prevented. In addition, high output characteristics can be expressed.
도 2를 통해 설명하는 본 실시예의 음극 활물질에 있어서, 상기 제1 입자(110)는 상기 제2 입자(120)에 비해 질량이 크지만, 제조 시 금속이 도핑되면서 전지의 충방전 특성이 향상될 수 있다. 또한, 상기 제2 입자(120)은 리튬 결합량이 높으므로, 전지의 고용량 특성을 향상시킬 수 있다. 따라서, 전지가 상기 제1 입자(110)와 상기 제2 입자(120)를 통해 형성된 2차 입자(210)를 포함하는 음극을 포함할 시, 전지의 고용량 및 우수한 충방전 특성을 동시에 달성할 수 있다.In the negative electrode active material of the present embodiment described with reference to FIG. 2, the first particles 110 have a larger mass than the second particles 120, but the charge and discharge characteristics of the battery may be improved while the metal is doped during manufacture. Can be. In addition, since the amount of lithium bonds of the second particles 120 is high, high capacity characteristics of the battery may be improved. Therefore, when the battery includes a negative electrode including the secondary particles 210 formed through the first particles 110 and the second particles 120, it is possible to simultaneously achieve high capacity and excellent charge and discharge characteristics of the battery. have.
상기 제1 입자(110)와 상기 제2 입자(120)의 중량비는 1:0.25 내지 1:4일 수 있으며, 구체적으로 1:0.43 내지 1:1.5일 수 있다. 상기 중량비를 만족하는 경우, 전지의 고용량 및 우수한 충방전 특성이 더욱 바람직한 수준으로 달성될 수 있으며, 전극 두께의 팽창을 줄이는 효과를 얻을 수 있다.The weight ratio of the first particles 110 and the second particles 120 may be 1: 0.25 to 1: 4, and specifically 1: 0.43 to 1: 1.5. When the weight ratio is satisfied, high capacity and excellent charge / discharge characteristics of the battery may be achieved at a more preferable level, and an effect of reducing expansion of the electrode thickness may be obtained.
도 2를 참조하면, 상기 2차 입자(210)는 상기 제1 입자(110) 및 상기 제2 입자(120)가 응집되어 형성된 것이고, 상기 제1 입자(110)들 사이, 상기 제2 입자(120)들 사이, 및 상기 제1 입자(110)와 제2 입자(120) 사이의 기공을 포함하며, 상기 제1 입자(110)들 사이, 상기 제2 입자(120)들 사이, 및 상기 제1 입자(110)와 제2 입자(120) 사이의 총 공극률은 상기 2차 입자(210) 전체 부피에 대하여, 2% 내지 50%이다. 상술한 범위를 만족하면, 충·방전시 상기 제1 코어(111) 및 상기 제2 코어(121)의 부피 팽창에 대하여 완충 공간(buffer area)을 제공할 수 있고, 상기 2차 입자(210)가 파쇄되는 것을 방지할 수 있다. 또한 리튬 이온의 이동 속도를 높여 출력 특성을 높일 수 있다.Referring to FIG. 2, the secondary particles 210 are formed by aggregation of the first particles 110 and the second particles 120, between the first particles 110, and the second particles ( Pores between the first and second particles 120, and between the first particles 110 and the second particles 120, between the first particles 110, between the second particles 120, and the first particles. The total porosity between the first particle 110 and the second particle 120 is 2% to 50% of the total volume of the secondary particle 210. If the above range is satisfied, a buffer area may be provided for volume expansion of the first core 111 and the second core 121 during charging and discharging, and the secondary particles 210 may be provided. Can be prevented from being crushed. In addition, the output speed can be improved by increasing the moving speed of lithium ions.
상기 제1 입자(110)들 사이, 상기 제2 입자(120)들 사이, 및 상기 제1 입자(110)와 제2 입자(120) 사이의 공극률의 정의 및 측정 방법은 다공성 입자의 내부 공극률에 대한 설명에서 언급하였으므로, 생략한다. The method of defining and measuring the porosity between the first particles 110, between the second particles 120, and between the first particles 110 and the second particles 120 depends on the internal porosity of the porous particles. Since it is mentioned in the description, it is omitted.
상기 2차 입자(210)의 평균 입경은 2㎛ 내지 50㎛일 수 있고, 구체적으로는 2㎛ 내지 42㎛일 수 있으며, 더욱 구체적으로 4㎛ 내지 30㎛. 상술한 범위를 만족하면, 리튬 이온이 이동할 수 있는 통로가 많아져 최종 생산품인 리튬 이차전지가 고용량, 고출력, 높은 초기 효율 및 우수한 속도 특성을 발현할 수 있다.An average particle diameter of the secondary particles 210 may be 2 μm to 50 μm, specifically 2 μm to 42 μm, and more specifically 4 μm to 30 μm. If the above-mentioned range is satisfied, there are many passages through which lithium ions can move, and thus a lithium secondary battery, which is a final product, can exhibit high capacity, high output, high initial efficiency, and excellent speed characteristics.
도 3을 참조하면, 본 발명의 또 다른 실시예에 따른 음극 활물질은 도 1을 참조하여 설명한 일 실시예에 따른 음극 활물질과 유사하나, 2차 입자(220)가 탄소층(130)을 포함하는 점에서만 차이가 있다. 이에, 차이점에 해당하는 탄소층(130)을 위주로 설명한다.Referring to FIG. 3, the negative active material according to another embodiment of the present invention is similar to the negative active material according to the exemplary embodiment described with reference to FIG. 1, but the secondary particles 220 include the carbon layer 130. The only difference is that. Thus, the carbon layer 130 corresponding to the difference will be described mainly.
상기 탄소층(130)은 2차 입자의 표면에 배치되며, 구체적으로, 제1 입자(110)들이 응집된 구조체의 표면에 배치되어 2차 입자(220)를 구성할 수 있다. 상기 탄소층(130)에 의해 충·방전 시 2차 입자의 팽창이 억제될 수 있으며, 음극 활물질의 도전성이 보다 향상될 수 있다.The carbon layer 130 may be disposed on the surface of the secondary particles. Specifically, the carbon layer 130 may be disposed on the surface of the structure in which the first particles 110 are aggregated to constitute the secondary particles 220. By the carbon layer 130, expansion of secondary particles may be suppressed during charging and discharging, and conductivity of the negative electrode active material may be further improved.
상기 탄소층(130)은 탄소를 포함할 수 있다. 구체적으로, 상기 탄소층(130)은 상술한 표면층(112)을 구성할 수 있는 물질 중 어느 하나일 수 있다. 나아가, 상기 탄소층(130)과 표면층(112)은 동일할 물질로 구성될 수도 있고, 다른 물질로 구성될 수도 있다. 보다 구체적으로, 상기 표면층 및 상기 탄소층은 모두 상술한 기타 유기물의 탄화물로 이루어질 수 있거나, 상기 표면층은 기타 유기물의 탄화물이고, 상기 탄소층은 피치의 탄화물일 수 있다. The carbon layer 130 may include carbon. In detail, the carbon layer 130 may be any one of materials that may constitute the surface layer 112 described above. Further, the carbon layer 130 and the surface layer 112 may be made of the same material, or may be made of a different material. More specifically, both the surface layer and the carbon layer may be made of carbides of the other organic materials described above, or the surface layer may be carbides of other organic materials, and the carbon layer may be carbide of pitch.
상기 탄소층(130)의 두께는 5㎚ 내지 100㎚일 수 있으며, 구체적으로 10㎚ 내지 100㎚일 수 있다. 상술한 범위를 만족하면, 상기 2차 입자들 간의 도전 통로를 유지시키면서 리튬 이차전지의 전기 전도도를 향상시킬 수 있다. The carbon layer 130 may have a thickness of 5 nm to 100 nm, and specifically 10 nm to 100 nm. If the above range is satisfied, the electrical conductivity of the lithium secondary battery may be improved while maintaining the conductive passage between the secondary particles.
상기 탄소층은 상기 2차 입자 총 중량에 대해 0.1중량% 내지 50중량%, 구체적으로 5중량% 내지 25중량%일 수 있다. 상기 범위를 만족할 시, 리튬 이온의 이동을 위한 전도성 통로가 확보될 수 있다. 상기 범위보다 높은 수준으로 탄소층이 형성될 시, 초기 효율이 지나치게 저하되는 문제가 발생할 수 있다.The carbon layer may be 0.1% to 50% by weight, specifically 5% to 25% by weight based on the total weight of the secondary particles. When satisfying the above range, a conductive passage for the movement of lithium ions can be secured. When the carbon layer is formed at a level higher than the above range, a problem that the initial efficiency is excessively lowered may occur.
도 4를 참조하면, 본 발명의 또 다른 실시예에 따른 음극 활물질은 도 2를 참조하여 설명한 일 실시예에 따른 음극 활물질과 유사하나, 2차 입자(230)가 탄소층(130)을 포함하는 점에서만 차이가 있다. 본 실시예의 음극 활물질이 포함하는 탄소층(130)은 도 3을 통해 설명한 실시예의 음극 활물질이 포함하는 탄소층과 동일하므로, 설명을 생략한다.Referring to FIG. 4, the negative electrode active material according to another embodiment of the present invention is similar to the negative electrode active material according to the embodiment described with reference to FIG. 2, but the secondary particles 230 include the carbon layer 130. The only difference is that. Since the carbon layer 130 included in the negative electrode active material of the present embodiment is the same as the carbon layer included in the negative electrode active material of the embodiment described with reference to FIG. 3, description thereof is omitted.
도 5를 참조하면, 본 발명의 또 다른 실시예에 따른 음극 활물질은 도 1을 참조하여 설명한 일 실시예에 따른 음극 활물질과 유사하나, 2차 입자(240)가 결정질 탄소계 물질(140)을 포함하는 점에서만 차이가 있다. 이에 차이점을 위주로 설명하도록 한다.Referring to FIG. 5, the negative electrode active material according to another embodiment of the present invention is similar to the negative electrode active material according to the exemplary embodiment described with reference to FIG. 1, but the secondary particles 240 may form the crystalline carbonaceous material 140. The only difference is the inclusion. The differences will be explained mainly.
상기 결정질 탄소계 물질(140)은 1차 입자일 수 있다. 따라서, 상기 결정질 탄소계 물질(140)은 제1 입자(110)와 함께 응집되어 상기 2차 입자(240)를 형성할 수 있다. 구체적으로, 상기 결정질 탄소계 물질(140)은 제1 입자(110)와 함께 용매에서 혼합되어, 건조 및 소성을 거쳐 2차 입자의 구성으로 형성될 수 있다.The crystalline carbonaceous material 140 may be primary particles. Therefore, the crystalline carbonaceous material 140 may be aggregated together with the first particles 110 to form the secondary particles 240. In detail, the crystalline carbonaceous material 140 may be mixed with the first particles 110 in a solvent, and may be formed in a configuration of secondary particles through drying and firing.
상기 제1 입자(110)에 대한 설명은 전술한 바와 같다. Description of the first particle 110 is as described above.
상기 결정질계 탄소 물질(140)은 리튬이차전지의 용량 및 사이클 특성을 향상시킬 수 있다. 상기 결정질 탄소계 물질(140)의 구체적인 예로는 그래핀, 탄소 나노튜브 또는 나노 파이버 등을 들 수 있다.The crystalline carbon material 140 may improve the capacity and cycle characteristics of the lithium secondary battery. Specific examples of the crystalline carbon-based material 140 may include graphene, carbon nanotubes, or nanofibers.
상기 결정질 탄소계 물질(140)의 함량은 상기 제1 입자(110) 100중량부에 대하여 75중량부 내지 95중량부로 포함될 수 있다. 상술한 범위를 만족하면, 최종 생산품인 리튬 이차전지의 용량 및 사이클 특성이 더욱 향상될 수 있다.The content of the crystalline carbonaceous material 140 may be included in an amount of 75 parts by weight to 95 parts by weight based on 100 parts by weight of the first particles 110. If the above range is satisfied, the capacity and cycle characteristics of the lithium secondary battery, which is a final product, may be further improved.
도 6을 참조하면, 본 발명의 또 다른 실시예에 따른 음극 활물질은 도 1을 참조하여 설명한 일 실시예에 따른 음극 활물질과 유사하나, 2차 입자(250)가 결정질 탄소계 물질(140)을 포함하는 점에서만 차이가 있다. 본 실시예의 음극 활물질의 2차 입자(250)가 포함하는 결정질 탄소계 물질(140)은 도 5를 통해 설명한 실시예의 음극 활물질의 2차 입자(240)가 포함하는 결정질 탄소계 물질과 동일하므로, 설명을 생략한다.Referring to FIG. 6, the negative electrode active material according to another embodiment of the present invention is similar to the negative electrode active material according to the exemplary embodiment described with reference to FIG. 1, but the secondary particles 250 may form the crystalline carbonaceous material 140. The only difference is the inclusion. Since the crystalline carbon-based material 140 included in the secondary particles 250 of the negative electrode active material of the present embodiment is the same as the crystalline carbon-based material included in the secondary particles 240 of the negative electrode active material of the embodiment described with reference to FIG. 5, Omit the description.
본 발명의 또 다른 실시예에 따른 음극 활물질은, 도 1 내지 6을 통해 설명한 실시예들의 음극 활물질과 유사하나, 음극 활물질이 흑연계 활물질 입자를 더 포함하는 점에서 차이가 있다. 상기 흑연계 활물질 입자는 전술한 실시예들의 2차 입자와 함께 사용될 수 있다. 구체적으로, 상기 흑연계 활물질 입자는 2차 입자와 혼합될 수 있으며, 상기 음극 활물질은 두 종류의 활물질이 혼합된 형태일 수 있다.이를 통해, 전지의 충·방전 특성이 개선될 수 있다. 상기 흑연계 활물질 입자는 인조흑연, 천연흑연, 흑연화 탄소 섬유 및 흑연화 메조카본마이크로비드로 이루어진 군에서 선택되는 1종 이상일 수 있다.The negative electrode active material according to another embodiment of the present invention is similar to the negative electrode active material of the embodiments described with reference to FIGS. 1 to 6, except that the negative electrode active material further includes graphite-based active material particles. The graphite-based active material particles may be used together with the secondary particles of the above-described embodiments. Specifically, the graphite-based active material particles may be mixed with secondary particles, and the negative electrode active material may be a mixture of two kinds of active materials. Through this, charging and discharging characteristics of a battery may be improved. The graphite-based active material particles may be at least one selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fiber, and graphitized mesocarbon microbeads.
상기 음극 활물질 내에서 상기 2차 입자와 상기 흑연계 활물질 입자의 중량비는 1:1 내지 1:49일 수 있으며, 구체적으로 1:9 내지 1:19일 수 있다. 상기 범위를 만족할 시, 전지의 충·방전 특성이 더욱 개선되며, 2차 입자들 사이의 공극이 확보될 수 있어서, 2차 입자의 수축 및 팽창이 반복되더라도 전극의 손상이 최소화될 수 있다. 상기 흑연계 활물질 입자는 제조된 2차 입자와 함께 용매에서 혼합되어, 음극 제조에 사용될 수 있다.The weight ratio of the secondary particles and the graphite-based active material particles in the negative electrode active material may be 1: 1 to 1:49, specifically 1: 9 to 1:19. When the above range is satisfied, the charge and discharge characteristics of the battery are further improved, and voids between the secondary particles can be secured, so that damage to the electrode can be minimized even if the secondary particles shrink and expand repeatedly. The graphite-based active material particles may be mixed in a solvent together with the prepared secondary particles and used for preparing a negative electrode.
본 발명의 또 다른 실시예에 따른 음극 활물질의 제조 방법은 규소 또는 규소 화합물 중 적어도 어느 하나를 포함하는 코어를 준비하는 단계(제1 단계); 상기 코어의 표면에 탄소를 포함하는 표면층을 형성시켜 예비 제1 입자를 형성하는 단계(제2 단계); 상기 예비 제1 입자에 금속을 도핑하고 열처리하여 제1 입자를 형성하는 단계(제3 단계); 및 상기 제1 입자들을 포함하는 2차 입자를 형성하는 단계(제4 단계)를 포함할 수 있다. 여기서 코어란 상술한 본 실시예들의 제1 코어 및 제2 코어며, 표면층은 상술한 본 실시예들의 제1 표면층 및 제2 표면층과 동일하며, 제1 입자는 상술한 본 실시예들의 제1 입자와 동일하다.According to another embodiment of the present invention, a method of manufacturing a negative active material includes preparing a core including at least one of silicon or a silicon compound (first step); Forming a preliminary first particle by forming a surface layer containing carbon on the surface of the core (second step); Doping metal to the preliminary first particles and performing heat treatment to form first particles (third step); And forming a secondary particle including the first particles (fourth step). Here, the core is the first core and the second core of the present embodiments described above, the surface layer is the same as the first surface layer and the second surface layer of the present embodiments described above, the first particle is the first particle of the present embodiments described above Is the same as
상기 제1 단계에서, 상기 코어는 평균 입경(D50)이 큰 규소 또는 규소 화합물을 0.5㎛ 내지 20㎛로 분쇄하여 준비될 수 있다. 구체적으로, 상기 코어는 평균 입경(D50)이 5㎛ 내지 50㎛인 규소 산화물을 비즈밀에 지르코니아 볼을 넣어 에탄올 용매 하에 분쇄하는 것을 통해 준비될 수 있다. 그러나 반드시 이에 한정되는 것은 아니다. 상기 코어는 산화규소를 불활성 가스 또는 환원 분위기하, 1,100℃ 이하의 온도 영역에서 열처리를 수행하여 얻어진 규소 또는 규소 화합물로 제조될 수 있다. 여기서, 상기 산화규소는 이산화규소와 금속 규소와의 혼합물을 가열하여 생성한 일산화규소 가스를 냉각·석출하여 얻어진 비정질의 규소 산화물의 총칭이다. 또한, 상기 불활성 가스의 구체적인 예로는 Ar, He, H2 또는 N2 등을 들 수 있고, 이들은 단독 또는 혼합 가스로 이용될 수 있다. 상기 일산화규소 가스를 냉각·석출시키기 위한 석출판의 온도는 500℃ 내지 1,050℃일 수 있다.In the first step, the core may be prepared by grinding a silicon or silicon compound having a large average particle diameter (D 50 ) to 0.5㎛ to 20㎛. Specifically, the core may be prepared by grinding silicon oxide having an average particle diameter (D 50 ) of 5 μm to 50 μm by zirconia balls in a bead mill under ethanol solvent. However, it is not necessarily limited thereto. The core may be made of silicon or a silicon compound obtained by performing heat treatment of silicon oxide in an inert gas or reducing atmosphere at a temperature range of 1,100 ° C. or less. Here, silicon oxide is a generic term for amorphous silicon oxide obtained by cooling and precipitation of silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon. In addition, specific examples of the inert gas may include Ar, He, H 2 or N 2 , and these may be used alone or as a mixed gas. The temperature of the precipitation plate for cooling and precipitation of the silicon monoxide gas may be 500 ° C to 1,050 ° C.
또한, 상기 코어는 금속규소를 진공 중에서 가열 증발시켜 냉각판에 석출함으로써 얻어진 규소일 수 있다.In addition, the core may be silicon obtained by heating and evaporating metal silicon in a vacuum to precipitate on a cold plate.
상기 제2 단계는, 상기 탄소가 전술한 기타 유기물의 탄화물에 포함된 탄소일 경우, 상기 코어와 상기 기타 유기물의 혼합물을 용매 내에서 밀링공정으로 분쇄하고 건조하는 제2-1 단계 및 상기 혼합물을 구형화한 후 열처리하여 상기 유기물을 탄화시켜 상기 코어의 표면에 탄소를 포함하는 표면층을 형성시켜 예비 제1 입자를 형성하는 제2-2 단계를 포함할 수 있다. In the second step, when the carbon is carbon included in the carbide of the other organic materials described above, the second and first mixtures and the mixture are pulverized and dried in a solvent by milling the mixture of the core and the other organic materials. The method may include a step 2-2 of forming a surface layer including carbon on the surface of the core by carbonizing the organic material by heat treatment after spheroidization.
상기 용매는 상기 기타 유기물이 고르게 분산될 수 있는 것이면 특별히 한정하지 않으나, 에탄올, n-부탄올, 1-프로판올 또는 2-프로판올 등의 알코올일 수 있다. 상기 유기 용매의 함량은, 상기 입자 100중량부에 대하여, 100 중량부 내지 300 중량부일 수 있다.The solvent is not particularly limited as long as the other organic material may be evenly dispersed, but may be an alcohol such as ethanol, n-butanol, 1-propanol or 2-propanol. The content of the organic solvent may be 100 parts by weight to 300 parts by weight based on 100 parts by weight of the particles.
상기 밀링공정은 상기 코어와 상기 유기물이 원하는 크기로 분쇄되면서, 상기 입자와 유기물이 용매 내에서 잘 혼합되어, 상기 유기물이 상기 입자의 표면에 고르게 분포되도록 수행하는 것이다. 상기 밀링공정은 비즈밀(beads mill), 고에너지 볼밀(high energy ball mill), 유성밀(planetary mill), 교반볼밀(stirred ball mill), 진동 밀(vibration mill) 등을 이용하여 수행될 수 있다. 여기서 비즈밀이나 볼밀은 규소와 유기물과 반응하지 않는 화학적으로 불활성인 재질로 된 것을 이용할 수 있으며, 구체적인 예로는 지르코니아 재질로 이루어진 것일 수 있다.In the milling process, the core and the organic material are pulverized to a desired size, and the particles and the organic material are mixed well in a solvent, so that the organic material is evenly distributed on the surface of the particles. The milling process may be performed using a beads mill, a high energy ball mill, a planetary mill, a stirred ball mill, a vibration mill, or the like. . Here, the bead mill or the ball mill may be made of a chemically inert material that does not react with silicon and organic materials, and specific examples may be made of zirconia.
상기 건조는 상기 용매가 증발 내지 휘발될 수 있는 온도 범위에서 수행될 수 있으며, 그 온도 범위는 60 내지 150℃일 수 있다.The drying may be performed at a temperature range in which the solvent may be evaporated to volatilized, and the temperature range may be 60 to 150 ° C.
상술한 기타 유기물 대신, 상기 탄소는 전술한 표면층의 소스들 중 어느 하나로부터도 도출될 수 있다.Instead of the other organics described above, the carbon may be derived from any of the sources of the surface layer described above.
상기 탄소가 열분해 산물에 포함된 탄소일 경우, 상기 제2 단계는 상기 코어의 표면에 탄소를 포함하는 표면층을 화학기상증착법을 이용하여 형성하는 단계일 수 있다.When the carbon is carbon included in the pyrolysis product, the second step may be a step of forming a surface layer containing carbon on the surface of the core by chemical vapor deposition.
상기 화학기상증착법을 이용하면, 상기 코어의 표면에 균일하고 상기 표면층을 형성할 수 있다.Using the chemical vapor deposition method, it is possible to form the surface layer uniformly on the surface of the core.
상기 화학기상증착법을 수행시 온도는 700℃ 내지 1,200℃일 수 있고, 탄소원으로는 상기 온도에서 열분해하여 탄소를 생성할 수 있는 것이 선택된다. 상기 탄소원은 치환 또는 비치환된 지방족 또는 지환식 탄화수소, 치환 또는 비치환된 방향족 탄화수소로 이루어진 군에서 선택되는 1종 또는 2종 이상일 수 있다. When the chemical vapor deposition method is performed, the temperature may be 700 ° C. to 1,200 ° C., and the carbon source may be selected to pyrolyze at the temperature to generate carbon. The carbon source may be one or two or more selected from the group consisting of substituted or unsubstituted aliphatic or alicyclic hydrocarbons, substituted or unsubstituted aromatic hydrocarbons.
상기 탄소가 도전성 고분자에 포함된 탄소일 경우, 상기 도전성 고분자를 포함하는 용액에 상기 코어를 딥코팅하여, 상기 코어 상에 표면층을 형성한 것일 수 있다. 상기 도전성 고분자에 대한 설명은 전술한 바와 같다.When the carbon is carbon contained in the conductive polymer, the core may be dip-coated in a solution containing the conductive polymer to form a surface layer on the core. Description of the conductive polymer is as described above.
한편, 상기 코어는 원하는 평균 입경을 얻기 위하여, 불활성 분위기에서 조분쇄할 수 있다. 또한, 상기 코어와 상기 기타 유기물의 혼합물에는 결정질 탄소계 물질이 더 포함될 수도 있다.On the other hand, the core may be coarsely ground in an inert atmosphere in order to obtain a desired average particle diameter. In addition, a mixture of the core and the other organic material may further include a crystalline carbonaceous material.
상기 제3 단계에서, 상기 예비 제1 입자는 공기가 차단된 상태에서 금속 파우더와 균일하게 혼합된 후, 반응로(furnace)에서 아르곤 가스 분위기 하에 열처리 될 수 있다. 이 후, 입자 표면에 남아 있는 금속 파우더 또는 부반응 물질들을 강산 등을 통해 세척하여 제거한다. 이를 통해 금속 화합물을 포함하는 코어를 포함하는 제2 입자가 제조될 수 있다. 구체적으로, 상기 열처리는 4℃/min 내지 6℃/min의 승온 속도로 900℃ 내지 1100℃까지 승온시킨 뒤, 1시간 내지 3시간 동안 가열하는 것일 수 있다. 2차 입자로 제조되기 전에 금속을 도핑하고 열처리하는 경우, 2차 입자가 제조된 후 금속을 도핑하고 열처리하여 금속 화합물을 코어에 포함시키는 경우에 비해 상기 금속이 산화되어 형성된 금속 화합물이 최종 활물질 입자 내에서 더 균일하게 분포되어 있을 수 있다.In the third step, the preliminary first particles may be uniformly mixed with the metal powder in a state in which the air is blocked, and then heat-treated under an argon gas atmosphere in a furnace. Thereafter, metal powder or side reaction substances remaining on the particle surface are removed by washing with a strong acid or the like. Through this, a second particle including a core including a metal compound may be prepared. Specifically, the heat treatment may be to heat up to 900 ℃ to 1100 ℃ at a temperature increase rate of 4 ℃ / min to 6 ℃ / min, and may be heated for 1 hour to 3 hours. When the metal is doped and heat-treated before the secondary particles are prepared, the metal compound formed by oxidizing the metal is the final active material particles, as compared with the case where the metal particles are included in the core by doping and heat-treating the metal after the secondary particles are prepared. It may be more uniformly distributed within.
상기 제4 단계에서는 상기 제1 입자들이 응집되어 2차 입자가 형성될 수 있다. 구체적으로, 상기 제1 입자 및 용매를 포함하는 용액을 제조하고, 상기 용액을 분무 건조하면, 상기 제1 입자가 응집된 2차 입자가 형성될 수 있다. 상기 용액에는 상기 제1 입자 및 상기 제2 입자의 응집이 용이하도록 탄소 전구체가 더 포함될 수 있다.In the fourth step, the first particles may be aggregated to form secondary particles. Specifically, when a solution including the first particles and the solvent is prepared, and the solution is spray-dried, secondary particles in which the first particles are aggregated may be formed. The solution may further include a carbon precursor to facilitate aggregation of the first particles and the second particles.
상기 용매는 상기 제1 입자가 잘 분산되는 용매라면 특별히 한정하지 않으나, 구체적인 예로는 물, 알코올, N-메틸-2-피롤리돈(NMP), 디메틸설폭사이드(DMSO), 아세토니트릴, 아세톤, 테트라하이드로퓨란(THF), 디에틸에테르, 톨루엔 또는 1,2-디클로로벤젠 등을 들 수 있다.The solvent is not particularly limited as long as the first particles are well dispersed, but specific examples thereof include water, alcohol, N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), acetonitrile, acetone, Tetrahydrofuran (THF), diethyl ether, toluene or 1,2-dichlorobenzene, and the like.
상기 분무 건조시 입구 온도(inlet temperature)는 100℃ 내지 250℃일 수 있다.The inlet temperature during the spray drying may be 100 ° C to 250 ° C.
상기 2차 입자는 내구성 및 전도도 향상을 위하여 별도의 소성 공정을 더 수행할 수 있다. 상기 소성 온도는 400℃ 내지 1,000℃일 수 있다.The secondary particles may further perform a separate firing process to improve durability and conductivity. The firing temperature may be 400 ℃ to 1,000 ℃.
상기 제4 단계에서, 상기 2차 입자는 상기 제1 입자들 사이의 공극률이 2% 내지 50%가 되도록 응집되어 형성될 수도 있다. 구체적으로, 상기 제4 단계는 상기 제1 입자들과 함께 필러를 용매에 포함하여 용액을 제조하고, 상기 용액을 분무 건조하여, 상기 제1 입자들 및 필러가 응집된 예비 2차 입자가 형성될 수 있다.In the fourth step, the secondary particles may be formed by agglomeration such that the porosity between the first particles is 2% to 50%. Specifically, in the fourth step, a filler is included in the solvent together with the first particles to prepare a solution, and the solution is spray-dried to form preliminary secondary particles in which the first particles and the filler are aggregated. Can be.
상기 필러는 상기 제1 입자들 사이의 공극률이 2% 내지 50%가 되도록 2차 입자를 형성하기 위하여 포함되는 것으로서, 상기 필러의 양을 조절하여 상기 공극률을 조절할 수 있다. 상기 필러의 양은, 상기 제1 입자에 대하여, 1:0.01 내지 1:0.43의 부피비로 포함될 수 있다. 구체적인 예로는 금속, 폴리메틸메타크릴레이트(PMMA), 폴리스티렌 비즈(polystylene beads), 염화나트륨(NaCl), 염화칼슘(KCl) 또는 황산나트륨(Na2SO4) 등을 들 수 있다. The filler is included to form secondary particles such that the porosity between the first particles is 2% to 50%, and the porosity may be adjusted by adjusting the amount of the filler. The amount of the filler may be included in a volume ratio of 1: 0.01 to 1: 0.43 with respect to the first particle. Specific examples include metals, polymethyl methacrylate (PMMA), polystyrene beads (polystylene beads), sodium chloride (NaCl), calcium chloride (KCl) or sodium sulfate (Na2SO4).
전술한 소성 공정이 제4 단계에 포함될 경우, 상기 필러는 염화나트륨, 염화칼슘 또는 황산나트륨일 수 있다. 상기 소성 공정이 900℃ 내지 1,000℃에서 수행되면 상기 필러는 폴리메틸메타크릴레이트(PMMA), 염화나트륨, 염화칼슘 또는 황산나트륨일 수 있다.When the above-described firing process is included in the fourth step, the filler may be sodium chloride, calcium chloride or sodium sulfate. When the firing process is performed at 900 ℃ to 1,000 ℃ the filler may be polymethyl methacrylate (PMMA), sodium chloride, calcium chloride or sodium sulfate.
상기 예비 2차 입자는 상기 필러를 제거하기 위하여 물 또는 물과 에탄올의 혼합물에 첨가한 후, 초음파 처리 및 건조 공정을 더 수행할 수 있다. 이를 통해, 공극률이 2% 내지 50%인 2차 입자가 제조될 수 있다.The preliminary secondary particles may be added to water or a mixture of water and ethanol to remove the filler, and then further subjected to an ultrasonic treatment and a drying process. Through this, secondary particles having a porosity of 2% to 50% can be prepared.
본 발명의 또 다른 실시예에 따른 음극 활물질의 제조방법은, 앞서 설명한 실시예에 따른 음극 활물질의 제조방법과 유사하나, 상기 제4 단계에 있어서, 상기 예비 1차 입자들을 제2 입자로 하여, 상기 제1 입자와 상기 제2 입자를 더 포함하는 2차 입자를 형성하는 것을 포함할 수 있다. 구체적으로, 제4 단계에서 제1 입자 뿐만 아니라 상기 제2 입자를 함께 응집시켜서 2차 입자를 형성할 수 있다.The manufacturing method of the negative electrode active material according to another embodiment of the present invention is similar to the method of manufacturing the negative electrode active material according to the above-described embodiment, but in the fourth step, using the preliminary primary particles as the second particle, It may include forming a secondary particle further comprising the first particle and the second particle. Specifically, in the fourth step, not only the first particles but also the second particles may be aggregated together to form secondary particles.
이 경우 역시, 상기 제4 단계에서, 상기 2차 입자는 상기 제1 입자들과 상기 제2 입자들 사이의 공극률이 2% 내지 50%가 되도록 응집되어 형성될 수 있다. 구체적으로, 상기 제4 단계는 상기 제1 입자들, 상기 제2 입자들과 함께 필러를 용매에 포함하여 용액을 제조하고, 상기 용액을 분무 건조하여, 상기 제1 입자들, 상기 제2 입자들 및 필러가 응집된 예비 2차 입자가 형성될 수 있다. In this case, too, in the fourth step, the secondary particles may be formed by aggregation so that the porosity between the first particles and the second particles is 2% to 50%. Specifically, the fourth step is to prepare a solution by including a filler in a solvent together with the first particles, the second particles, and spray-drying the solution, the first particles, the second particles And preliminary secondary particles in which the filler is agglomerated.
상기 필러는 상기 제1 입자들과 상기 제2 입자들 사이의 공극률이 2% 내지 50%가 되도록 2차 입자를 형성하기 위하여 포함되는 것으로서, 상기 필러의 양을 조절하여 상기 공극률을 조절할 수 있다. 상기 필러의 양은, 상기 1차 입자(제1 입자 및 제2 입자)에 대하여, 1:0.01 내지 1:0.43의 부피비로 포함될 수 있다. 구체적인 예로는 금속, 폴리메틸메타크릴레이트(PMMA), 폴리스티렌 비즈(polystylene beads), 염화나트륨(NaCl), 염화칼슘(KCl) 또는 황산나트륨(Na2SO4) 등을 들 수 있다. The filler is included to form secondary particles such that the porosity between the first particles and the second particles is 2% to 50%, and the porosity may be adjusted by adjusting the amount of the filler. The amount of the filler may be included in a volume ratio of 1: 0.01 to 1: 0.43 with respect to the primary particles (first particles and second particles). Specific examples include metals, polymethyl methacrylate (PMMA), polystyrene beads (polystylene beads), sodium chloride (NaCl), calcium chloride (KCl) or sodium sulfate (Na2SO4).
전술한 소성 공정이 제4 단계에 포함될 경우, 상기 필러는 염화나트륨, 염화칼슘 또는 황산나트륨일 수 있다. 상기 소성 공정이 900℃ 내지 1,000℃에서 수행되면 상기 필러는 폴리메틸메타크릴레이트(PMMA), 염화나트륨, 염화칼슘 또는 황산나트륨일 수 있다.When the above-described firing process is included in the fourth step, the filler may be sodium chloride, calcium chloride or sodium sulfate. When the firing process is performed at 900 ℃ to 1,000 ℃ the filler may be polymethyl methacrylate (PMMA), sodium chloride, calcium chloride or sodium sulfate.
상기 예비 2차 입자는 상기 필러를 제거하기 위하여 물 또는 물과 에탄올의 혼합물에 첨가한 후, 초음파 처리 및 건조 공정을 더 수행할 수 있다. 이를 통해, 공극률이 2% 내지 50%인 2차 입자가 제조될 수 있다.The preliminary secondary particles may be added to water or a mixture of water and ethanol to remove the filler, and then further subjected to an ultrasonic treatment and a drying process. Through this, secondary particles having a porosity of 2% to 50% can be prepared.
이하, 본 발명의 또 다른 실시예에 따른 리튬 이차전지를 설명한다.Hereinafter, a lithium secondary battery according to another embodiment of the present invention will be described.
본 발명의 또 다른 실시예에 따른 리튬이차전지는 양극, 음극 및 상기 양극과 음극 사이에 위치한 분리막을 포함하는 전극 조립체 및 전해질을 포함한다. According to another embodiment of the present invention, a lithium secondary battery includes an electrode assembly and an electrolyte including a cathode, a cathode, and a separator disposed between the cathode and the anode.
상기 양극은 양극 집전체와 상기 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 포함할 수 있다.The positive electrode may include a positive electrode current collector and a mixture of a positive electrode active material, a conductive material, and a binder on the positive electrode current collector.
상기 양극 집전체는 전도성이 높고 상기 혼합물이 용이하게 접착할 수 있고 전지의 전압 범위에서 반응성이 없어야 한다. 상기 양극 집전체의 구체적인 예로는 알루미늄, 니켈 또는 이들의 합금 등을 들 수 있다. 상기 양극 집전체의 두께는 3㎛ 내지 500㎛일 수 있다.The positive electrode current collector must be high in conductivity, easily adherable to the mixture, and not reactive in the voltage range of the cell. Specific examples of the positive electrode current collector include aluminum, nickel or alloys thereof. The positive electrode current collector may have a thickness of 3 μm to 500 μm.
상기 양극 활물질의 구체적인 예로는 Lix1CoO2(0.5<x1<1.3) 등의 리튬코발트산화물; Lix2NiO2(0.5<x2<1.3) 등의 리튬니켈산화물; Li1 + x3Mn2 - xO4(0≤x3≤0.33), LiMnO3, LiMn2O3, 또는 Lix4MnO2(0.5<x4<1.3) 등의 리튬망간산화물; Li2CuO2 등의 리튬구리산화물; LiFe3O4 등의 리튬철산화물; Li[NixaCoyaMnza]O2(xa+ya+za=1, 0<xa<1, 0<ya<1, 0<za<1) 등의 리튬니켈코발트망간산화물; Li[NixbCoybAlzb]O2(xb+yb+zb=1, 0<xb<1, 0<yb<1, 0<zb<1) 등의 리튬니켈코발트알루미늄산화물; LiV3O8 등의 리튬바나듐화합물; LiNi1 - x4Mx4O2(M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga, 0.01≤x4≤0.3) 등의 니켈 사이트형 리튬니켈산화물; LiMn2 - x5Mx5O2(M=Co, Ni, Fe, Cr, Zn 또는 Ta, 0.01≤x5≤0.1) 또는 Li2Mn3MO8(M=Fe, Co, Ni, Cu 또는 Zn) 등의 리튬망간복합산화물; 리튬의 일부가 알칼리토금속이온으로 치환된 LiMn2O4; 디설파이드 화합물; V2O5 또는 Cu2V2O7 등의 바나듐산화물; 또는 Fe2(MoO4)3 등을 들 수 있고, 보다 구체적으로는 Li[NixcCoycMnzc]O2(xc+yc+zc=1, 0.3≤xc≤0.4, 0.3≤yc≤0.4, 0.3≤zc≤0.4) 등의 리튬니켈코발트망간산화물 또는 Li[NixdCoydAlzd]O2(xd+yd+zd=1, 0.3≤xd≤0.4, 0.3≤yd≤0.4, 0.3≤zd≤0.4) 등의 리튬니켈코발트알루미늄산화물일 수 있다. 이들은 상기 양극 활물질 내에 1종 또는 2종 이상이 포함될 수 있다.Specific examples of the positive electrode active material include lithium cobalt oxide such as Li x1 CoO 2 (0.5 <x1 <1.3); Lithium nickel oxides such as Li x2 NiO 2 (0.5 <x2 <1.3); Li 1 + x3 Mn 2 - x O 4 (0≤x3≤0.33), LiMnO 3, LiMn 2 O 3, or Li x4 MnO 2 (0.5 <x4 <1.3) lithium manganese oxide and the like; Lithium copper oxides such as Li 2 CuO 2 ; Lithium iron oxides such as LiFe 3 O 4 ; Lithium nickel cobalt manganese oxides such as Li [Ni xa Co ya Mn za ] O 2 (xa + ya + za = 1, 0 <xa <1, 0 <ya <1, 0 <za <1); Lithium nickel cobalt aluminum oxide such as Li [Ni xb Co yb Al zb ] O 2 (xb + yb + zb = 1, 0 <xb <1, 0 <yb <1, 0 <zb <1); Lithium vanadium compounds such as LiV 3 O 8 ; Nickel-site lithium nickel oxides such as LiNi 1 - x4 M x4 O 2 (M = Co, Mn, Al, Cu, Fe, Mg, B or Ga, 0.01 ≦ x4 ≦ 0.3); LiMn 2 - x5 M x5 O 2 (M = Co, Ni, Fe, Cr, Zn or Ta, 0.01 ≦ x5 ≦ 0.1) or Li 2 Mn 3 MO 8 (M = Fe, Co, Ni, Cu or Zn), etc. Lithium manganese composite oxide; LiMn 2 O 4 in which part of lithium is substituted with alkaline earth metal ions; Disulfide compounds; Vanadium oxides such as V 2 O 5 or Cu 2 V 2 O 7 ; Fe 2 (MoO 4 ) 3 , and the like, and more specifically Li [Ni xc Co yc Mn zc ] O 2 (xc + yc + zc = 1, 0.3 ≦ xc ≦ 0.4, 0.3 ≦ yc ≦ 0.4, Lithium nickel cobalt manganese oxide such as 0.3 ≦ zc ≦ 0.4) or Li [Ni xd Co yd Al zd ] O 2 (xd + yd + zd = 1, 0.3 ≦ xd ≦ 0.4, 0.3 ≦ yd ≦ 0.4, 0.3 ≦ zd ≦ 0.4) lithium nickel cobalt aluminum oxide. These may be included one or two or more kinds in the cathode active material.
상기 도전재는 본 발명의 리튬이차전지에 화학적 변화를 유발하지 않으면서 도전성을 가지는 물질이다. 상기 도전재의 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 도전성 소재 등을 들 수 있다.The conductive material is a material having conductivity without causing chemical change in the lithium secondary battery of the present invention. Specific examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive materials such as polyphenylene derivatives.
상기 바인더는 양극 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분이다. 상기 바인더의 구체적인 예로는 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재상 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM) 고무, 수소첨가 니트릴 부타디엔 고무(HNBR), 술폰화 에틸렌 프로필렌 디엔, 스티렌 부타디엔 고무(SBR: Styrene butadiene rubber), 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding the positive electrode active material and the conductive material to the current collector. Specific examples of the binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, reconstituted cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene monomer (EPDM) rubber, hydrogenated nitrile butadiene rubber (HNBR), sulfonated ethylene propylene diene, styrene butadiene rubber (SBR), fluorine rubber, various copolymers, and the like. Can be.
상기 음극은 음극 집전체와 상기 음극 집전체 상에 위치하는 음극 활물질을 포함한다. The negative electrode includes a negative electrode current collector and a negative electrode active material positioned on the negative electrode current collector.
상기 음극 집전체는 전도성이 높고 상기 음극 활물질이 용이하게 접착할 수 있고 전지의 전압 범위에서 반응성이 없어야 한다. 상기 음극 집전체의 구체적인 예로는 구리, 금, 니켈 또는 이들의 합금 등을 들 수 있다.The negative electrode current collector should be highly conductive, easily adhereable to the negative electrode active material, and not be reactive in the voltage range of the battery. Specific examples of the negative electrode current collector include copper, gold, nickel or alloys thereof.
상기 음극 활물질에 대한 설명은 전술한 실시예들의 음극 활물질들에 대한 설명과 동일하다.Description of the negative electrode active material is the same as the description of the negative electrode active material of the above embodiments.
상기 분리막은 상기 양극과 음극 사이의 단락을 방지하고, 리튬 이온의 이동통로를 제공한다. 상기 분리막은 높은 이온 투과도, 기계적 강도를 가지는 절연성 박막이 이용될 수 있다. 상기 분리막의 구체적인 예로는 폴리프로필렌, 폴리에틸렌 등의 폴리올레핀계 고분자막 또는 이들의 다중막, 미세다공성 필름, 직포, 또는 부직포 등을 들 수 있다. 후술할 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수 있다.The separator prevents a short circuit between the positive electrode and the negative electrode and provides a passage for moving lithium ions. As the separator, an insulating thin film having high ion permeability and mechanical strength may be used. Specific examples of the separator include polyolefin-based polymer membranes such as polypropylene and polyethylene, or multiple membranes thereof, microporous films, woven fabrics, and nonwoven fabrics. When a solid electrolyte such as a polymer is used as the electrolyte to be described later, the solid electrolyte may serve as a separator.
상기 전해질은 리튬염을 함유하는 전해질일 수 있다. 상기 리튬염의 음이온의 구체적인 예로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, SCN- 또는 (CF3CF2SO2)2N- 등을 들 수 있다. 이들은 전해질 내에 1종 또는 2종 이상이 포함될 수 있다.The electrolyte may be an electrolyte containing a lithium salt. Examples of the lithium salt of the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 - , and the like -, CF 3 CO 2 -, SCN - or (CF 3 CF 2 SO 2) 2 N. These may include one or two or more kinds in the electrolyte.
본 발명의 또 다른 실시예에 따른 리튬 이차전지의 외형은 특별히 한정하지는 않으나, 구체적인 예로는 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등을 들 수 있다.The external shape of the lithium secondary battery according to another embodiment of the present invention is not particularly limited, but specific examples thereof include a cylindrical shape, a square shape, a pouch type or a coin type using a can.
본 발명의 또 다른 실시예에 따른 리튬이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로 바람직하게 사용될 수 있다. 상기 중대형 다비이스의 구체적인 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력 저장용 시스템 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.Lithium secondary battery according to another embodiment of the present invention can be used not only for the battery cell used as a power source of a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells. Specific examples of the medium-to-large device include an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, a power storage system, and the like, but are not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.Hereinafter, preferred embodiments are provided to aid in understanding the present invention, but the above embodiments are merely illustrative of the present disclosure, and it is apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present disclosure. It is natural that such variations and modifications fall within the scope of the appended claims.
실시예Example 1: 음극 활물질의 제조 1: Preparation of Anode Active Material
<코어의 제조><Manufacture of core>
평균 입경(D50)이 10㎛인 규소 산화물(SiOx, 0<x≤1)을 스펙스 밀(Spex mill) 8000M에 sus ball media를 15개 넣어 2시간 동안 밀링하여 평균 입경(D50) 1㎛로 분쇄하여 코어를 제조하였다. A silicon oxide (SiOx, 0 <x≤1) having an average particle diameter (D 50 ) of 10 μm was put into a specs mill 8000M and 15 sus ball media were milled for 2 hours, and the average particle diameter (D 50 ) was 1 μm. The core was prepared by grinding.
<예비 제1 입자의 제조><Production of Preliminary First Particles>
상기 코어 10g과 스크로오스 0.5g을 이소프로판올 30g에 첨가하여 용액을 제조하였다. 지르코니아 재질의 비즈(평균 입경: 0.3㎜)를 이용하여, 비즈 회전속도 1,200rpm으로 12시간 동안 상기 혼합물을 분쇄하였다. 이어서, 상기 혼합물을 120℃의 건조로에서 2시간 동안 건조하였다. 건조된 혼합물을 막자 사발에서 다시 분쇄하고 분급하여 수크로오스가 혼합된 규소 입자를 형성하였다. 질소분위기 하에서 800℃에서 열처리하여 수크로오스를 탄화시켜 2nm 두께의 표면층을 형성하여 예비 제1 입자를 제조하였다. 상기 표면층은 상기 코어 총 중량에 대해 2.1중량%였다.A solution was prepared by adding 10 g of the core and 0.5 g of cellulose to 30 g of isopropanol. Using the zirconia beads (average particle diameter: 0.3 mm), the mixture was ground for 12 hours at a beads rotation speed of 1,200 rpm. The mixture was then dried in a drying furnace at 120 ° C. for 2 hours. The dried mixture was pulverized again in a mortar and classified to form silicon particles mixed with sucrose. Heat treatment at 800 ° C. under a nitrogen atmosphere to carbonize sucrose to form a surface layer having a thickness of 2 nm to prepare preliminary first particles. The surface layer was 2.1% by weight relative to the total weight of the core.
<제1 입자의 제조><Production of First Particles>
상기 예비 제1 입자 8g와 마그네슘 파우더 0.9g를 아르곤 가스 분위기 하에서 혼합하여 혼합 파우더를 준비하였다. 상기 혼합 파우더를 튜브 반응로(tube furnace)에 넣고, 아르곤 가스 분위기 하에서 1030℃까지 5℃/min으로 승온한 뒤, 2시간 동안 가열하였다. 이 후, 상온까지 반응로의 온도를 떨어뜨린 뒤, 열처리된 혼합 파우더를 꺼내어, 1M HCl에 1시간 동안 교반시키는 것으로 세척하였다. 세척된 혼합 파우더를 필터링하면서, 증류수로 세척한 후 60℃ 오븐에서 8시간 동안 건조시켜, 제1 입자를 제조하였다. 제조된 제1 입자를 분석한 결과, 상기 제1 입자에 있어서, 마그네슘이 산화되어 형성된 마그네슘 산화물 및 마그네슘 실리케이트의 함량은 상기 제1 입자 전체 중량을 기준으로 15중량% 였으며, 이는 X-ray 회절 분석법(XRD)을 이용한 정량 분석을 통해 측정되었다.8 g of the preliminary first particles and 0.9 g of magnesium powder were mixed in an argon gas atmosphere to prepare a mixed powder. The mixed powder was placed in a tube furnace, heated to 5 ° C./min to 1030 ° C. under argon gas atmosphere, and heated for 2 hours. Thereafter, the temperature of the reactor was lowered to room temperature, and the heat-treated mixed powder was taken out and washed by stirring in 1M HCl for 1 hour. The filtered mixed powder was washed with distilled water and then dried in an oven at 60 ° C. for 8 hours to prepare first particles. As a result of analyzing the prepared first particles, the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the first particles was 15% by weight based on the total weight of the first particles, which was determined by X-ray diffraction analysis. Measured via quantitative analysis using (XRD).
<2차 입자의 제조><Production of Secondary Particles>
상기 제1 입자와 에탄올/물(부피비= 1:9)이 1:10의 부피비로 포함하는 용액을 기계적 균질기(mechanical homogenizer)로 30분간 10,000rpm으로 교반하여 분무 건조용 분산용액을 제조하였다. 상기 분산용액을 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)의 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12 조건 하에서 분무 건조하여 예비 2차 입자를 제조한 후, 알루미나 보트에 옮겼다. 길이 80㎝, 내경이 4.8㎝인 석영관이 설치된 튜브 퍼니스(tube furnace)의 온도를 10℃/min의 속도로 600℃로 상승시킨 후 2시간 동안 온도를 유지하면서 소성함으로써 2차 입자를 제조하였다. 제조된 2차 입자의 공극률은 1%이며, 평균 입경(D50)은 5㎛였다. 상기 공극률은 수은 포로시미터(porosimeter) 방법으로 측정하였다.A solution containing the first particles and ethanol / water (volume ratio 1: 9) in a volume ratio of 1:10 was stirred at 10,000 rpm for 30 minutes with a mechanical homogenizer to prepare a dispersion solution for spray drying. The dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions. Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat. Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. . The porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 5 μm. The porosity was measured by a mercury porosimeter method.
실시예Example 2: 음극 활물질의 제조 2: Preparation of Anode Active Material
<코어 및 예비 제1 입자의 제조><Production of Core and Preliminary First Particles>
실시예 1과 동일하게 코어 및 예비 제1 입자를 제조하였다.Core and preliminary first particles were prepared in the same manner as in Example 1.
<제1 입자의 제조><Production of First Particles>
상기 예비 제1 입자 8g와 마그네슘 파우더 10g를 아르곤 가스 분위기 하에서 혼합하여 혼합 파우더를 준비하였다. 상기 혼합 파우더를 튜브 반응로(tube furnace)에 넣고, 아르곤 가스 분위기 하에서 1030℃까지 5℃/min으로 승온한 뒤, 2시간 동안 가열하였다. 이 후, 상온까지 반응로의 온도를 떨어뜨린 뒤, 열처리된 혼합 파우더를 꺼내어, 1M HCl에 1시간 동안 교반시키는 것으로 세척하였다. 세척된 혼합 파우더를 필터링하면서, 증류수로 세척한 후 60℃ 오븐에서 8시간 동안 건조시켜, 제1 입자를 제조하였다. 제조된 제1 입자를 분석한 결과, 상기 제1 입자에 있어서, 마그네슘이 산화되어 형성된 마그네슘 산화물 및 마그네슘 실리케이트의 함량은 상기 제1 입자 전체 중량을 기준으로 51중량% 였으며, 이는 X-ray 회절 분석법(XRD)을 이용한 정량 분석을 통해 측정되었다.8 g of the preliminary first particles and 10 g of magnesium powder were mixed in an argon gas atmosphere to prepare a mixed powder. The mixed powder was placed in a tube furnace, heated to 5 ° C./min to 1030 ° C. under argon gas atmosphere, and heated for 2 hours. Thereafter, the temperature of the reactor was lowered to room temperature, and the heat-treated mixed powder was taken out and washed by stirring in 1M HCl for 1 hour. The filtered mixed powder was washed with distilled water and then dried in an oven at 60 ° C. for 8 hours to prepare first particles. As a result of analyzing the prepared first particles, the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the first particles was 51% by weight based on the total weight of the first particles, which was determined by X-ray diffraction analysis. Measured via quantitative analysis using (XRD).
<2차 입자의 제조><Production of Secondary Particles>
상기 제1 입자를 사용하여, 실시예 1의 2차 입자 제조 방법과 동일한 방법으로 실시예 2의 2차 입자를 제조하였다. 제조된 2차 입자의 공극률은 1%이며, 평균 입경(D50)은 4㎛였다. 상기 공극률은 수은 포로시미터(porosimeter) 방법으로 측정하였다.Using the said 1st particle | grains, the secondary particle of Example 2 was manufactured by the same method as the secondary particle manufacturing method of Example 1. The porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 4 μm. The porosity was measured by a mercury porosimeter method.
실시예Example 3: 음극 활물질의 제조 3: Preparation of Anode Active Material
<코어의 제조><Manufacture of core>
평균 입경(D50)이 10㎛인 규소 산화물(SiOx, 0<x≤1)을 스펙스 밀(Spex mill) 8000M에 sus ball media를 15개 넣어 4시간 동안 밀링하여 평균 입경(D50) 0.4㎛로 분쇄하여 코어를 제조하였다. A silicon oxide (SiOx, 0 <x≤1) having an average particle diameter (D 50 ) of 10 µm was milled for 4 hours by adding 15 sus ball media to a spec mill 8000M for an average particle diameter (D 50 ) of 0.4 µm. The core was prepared by grinding.
<예비 제1 입자의 제조><Production of Preliminary First Particles>
상기 코어를 사용하여, 실시예 1의 예비 제1 입자의 제조방법과 동일한 방법을 통해, 2nm 두께의 표면층을 형성된 예비 제1 입자를 제조하였다. 상기 표면층은 상기 코어 총 중량에 대해 2.1중량%였다.Using the core, preliminary first particles having a surface layer of 2 nm thickness were prepared by the same method as the preparation method of preliminary first particle of Example 1. The surface layer was 2.1% by weight relative to the total weight of the core.
<제1 입자의 제조><Production of First Particles>
상기 예비 제1 입자를 사용하여, 실시예 1의 제1 입자 제조 방법과 동일한 방법을 통해 제1 입자를 제조하였다. 제조된 제1 입자를 분석한 결과, 상기 제1 입자에 있어서, 마그네슘이 산화되어 형성된 마그네슘 산화물 및 마그네슘 실리케이트의 함량은 상기 제1 입자 전체 중량을 기준으로 15중량% 였으며, 이는 X-ray 회절 분석법(XRD)을 이용한 정량 분석을 통해 측정되었다.Using the preliminary first particles, the first particles were manufactured by the same method as the method for preparing the first particles of Example 1. As a result of analyzing the prepared first particles, the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the first particles was 15% by weight based on the total weight of the first particles, which was determined by X-ray diffraction analysis. Measured via quantitative analysis using (XRD).
<2차 입자의 제조><Production of Secondary Particles>
상기 제1 입자를 사용하여, 실시예 1의 2차 입자 제조 방법과 동일한 방법으로 실시예 3의 2차 입자를 제조하였다. 제조된 2차 입자의 공극률은 1%이며, 평균 입경(D50)은 2㎛였다. 상기 공극률은 수은 포로시미터(porosimeter) 방법으로 측정하였다.Using the said 1st particle | grains, the secondary particle of Example 3 was manufactured by the method similar to the secondary particle manufacturing method of Example 1. The porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 2 μm. The porosity was measured by a mercury porosimeter method.
실시예Example 4: 음극 활물질의 제조 4: Preparation of Anode Active Material
<코어의 제조><Manufacture of core>
평균 입경(D50)이 10㎛인 규소 산화물(SiOx, 0<x≤1)을 스펙스 밀(Spex mill) 8000M에 sus ball media를 15개 넣어 4시간 동안 밀링하여 평균 입경(D50) 0.4㎛로 분쇄하여 코어를 제조하였다. A silicon oxide (SiOx, 0 <x≤1) having an average particle diameter (D 50 ) of 10 µm was milled for 4 hours by adding 15 sus ball media to a spec mill 8000M for an average particle diameter (D 50 ) of 0.4 µm. The core was prepared by grinding.
<예비 제1 입자의 제조><Production of Preliminary First Particles>
상기 코어를 사용하여, 실시예 1의 예비 제1 입자의 제조방법과 동일한 방법을 통해, 2nm 두께의 표면층을 형성된 예비 제1 입자를 제조하였다. 상기 표면층은 상기 코어 총 중량에 대해 2.1중량%였다.Using the core, preliminary first particles having a surface layer of 2 nm thickness were prepared by the same method as the preparation method of preliminary first particle of Example 1. The surface layer was 2.1% by weight relative to the total weight of the core.
<제1 입자의 제조><Production of First Particles>
상기 예비 제1 입자 8g와 마그네슘 파우더 5g를 아르곤 가스 분위기 하에서 혼합하여 혼합 파우더를 준비하였다. 상기 혼합 파우더를 튜브 반응로(tube furnace)에 넣고, 아르곤 가스 분위기 하에서 1030℃까지 5℃/min으로 승온한 뒤, 2시간 동안 가열하였다. 이 후, 상온까지 반응로의 온도를 떨어뜨린 뒤, 열처리된 혼합 파우더를 꺼내어, 1M HCl에 1시간 동안 교반시키는 것으로 세척하였다. 세척된 혼합 파우더를 필터링하면서, 증류수로 세척한 후 60℃ 오븐에서 8시간 동안 건조시켜, 제1 입자를 제조하였다. 제조된 제1 입자를 분석한 결과, 상기 제1 입자에 있어서, 마그네슘이 산화되어 형성된 마그네슘 산화물 및 마그네슘 실리케이트의 함량은 상기 제1 입자 전체 중량을 기준으로 55중량% 였으며, 이는 X-ray 회절 분석법(XRD)을 이용한 정량 분석을 통해 측정되었다.8 g of the preliminary first particles and 5 g of magnesium powder were mixed in an argon gas atmosphere to prepare a mixed powder. The mixed powder was placed in a tube furnace, heated to 5 ° C./min to 1030 ° C. under argon gas atmosphere, and heated for 2 hours. Thereafter, the temperature of the reactor was lowered to room temperature, and the heat-treated mixed powder was taken out and washed by stirring in 1M HCl for 1 hour. The filtered mixed powder was washed with distilled water and then dried in an oven at 60 ° C. for 8 hours to prepare first particles. As a result of analyzing the prepared first particles, the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the first particles was 55% by weight based on the total weight of the first particles, which was determined by X-ray diffraction analysis. Measured via quantitative analysis using (XRD).
<2차 입자의 제조><Production of Secondary Particles>
상기 제1 입자를 사용하여, 실시예 1의 2차 입자 제조 방법과 동일한 방법으로 실시예 4의 2차 입자를 제조하였다. 제조된 2차 입자의 공극률은 1%이며, 평균 입경(D50)은 3㎛였다. 상기 공극률은 수은 포로시미터(porosimeter) 방법으로 측정하였다.Using the said 1st particle | grains, the secondary particle of Example 4 was manufactured by the method similar to the secondary particle manufacturing method of Example 1. The porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 3 μm. The porosity was measured by a mercury porosimeter method.
실시예Example 5: 음극 활물질의 제조 5: Preparation of Anode Active Material
<코어 및 예비 제1 입자의 제조><Production of Core and Preliminary First Particles>
실시예 1의 코어 및 예비 제1 입자의 제조 방법과 동일한 방법으로, 2nm 두께의 표면층이 형성된 예비 제1 입자를 제조하였다. 상기 표면층은 상기 코어 총 중량에 대해 2.1중량%였다.In the same manner as the method for preparing the core and preliminary first particles of Example 1, preliminary first particles having a surface layer of 2 nm thickness were prepared. The surface layer was 2.1% by weight relative to the total weight of the core.
<제1 입자의 제조><Production of First Particles>
상기 예비 제1 입자를 사용하여, 실시예 1의 제1 입자 제조 방법을 통해 제1 입자를 제조하였다. 제조된 제1 입자를 분석한 결과, 상기 제1 입자에 있어서, 마그네슘이 산화되어 형성된 마그네슘 산화물 및 마그네슘 실리케이트의 함량은 상기 제1 입자 전체 중량을 기준으로 15중량% 였으며, 이는 X-ray 회절 분석법(XRD)을 이용한 정량분석을 통해 측정되었다.Using the preliminary first particles, the first particles were prepared by the first particle production method of Example 1. As a result of analyzing the prepared first particles, the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the first particles was 15% by weight based on the total weight of the first particles, which was determined by X-ray diffraction analysis. Measured by quantitative analysis using (XRD).
<2차 입자의 제조><Production of Secondary Particles>
상기 예비 제1 입자를 상기 제2 입자로 하여, 상기 제1 입자와 상기 제2 입자를 통해 2차 입자를 제조하였다. 구체적으로, 상기 제1 입자와 상기 제2 입자를 6:4의 중량비로 혼합한 후, 상기 혼합물과 에탄올/물(부피비= 1:9)을 1:10의 부피비로 포함하는 용액을 기계적 균질기(mechanical homogenizer)로 30분간 10,000rpm으로 교반하여 분무 건조용 분산용액을 제조하였다. 상기 분산용액을 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)의 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12 조건 하에서 분무 건조하여 예비 2차 입자를 제조한 후, 알루미나 보트에 옮겼다. 길이 80㎝, 내경이 4.8㎝인 석영관이 설치된 튜브 퍼니스(tube furnace)의 온도를 10℃/min의 속도로 600℃로 상승시킨 후 2시간 동안 온도를 유지하면서 소성함으로써 2차 입자를 제조하였다. 제조된 2차 입자의 공극률은 1%이며, 평균 입경(D50)은 5㎛였다. 상기 공극률은 수은 포로시미터(porosimeter) 방법으로 측정하였다. Secondary particles were prepared through the first particles and the second particles using the preliminary first particles as the second particles. Specifically, after mixing the first particles and the second particles in a weight ratio of 6: 4, a mechanical homogenizer comprising a solution containing the mixture and ethanol / water (volume ratio 1: 9) in a volume ratio of 1:10. A dispersion solution for spray drying was prepared by stirring at 10,000 rpm for 30 minutes with a mechanical homogenizer. The dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions. Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat. Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. . The porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 5 μm. The porosity was measured by a mercury porosimeter method.
실시예Example 6: 음극 활물질의 제조 6: Preparation of Anode Active Material
<코어, 제1 입자 및 제2 입자의 제조><Production of Core, First Particles and Second Particles>
실시예 5과 동일한 방법으로 코어, 제1 입자 및 제2 입자(예비 제1 입자)를 제조하였다.In the same manner as in Example 5, a core, first particles, and second particles (preliminary first particles) were prepared.
<음극 활물질의 제조><Production of Anode Active Material>
제1 입자와 제2 입자를 1.5:8.5의 중량비로 혼합한 것을 제외하고는, 실시예 6과 동일한 방법으로 2차 입자를 제조하였다. 제조된 2차 입자의 공극률은 1%이며, 평균 입경(D50)은 5㎛였다. 상기 공극률은 수은 포로시미터(porosimeter) 방법으로 측정하였다.Secondary particles were prepared in the same manner as in Example 6, except that the first particles and the second particles were mixed in a weight ratio of 1.5: 8.5. The porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 5 μm. The porosity was measured by a mercury porosimeter method.
비교예Comparative example 1: 음극 활물질의 제조 1: Preparation of Anode Active Material
<코어 및 예비 제 입자의 제조><Production of Core and Preparative Particles>
실시예 1의 코어 및 예비 제1 입자의 제조 방법과 동일한 방법으로, 2nm 두께의 표면층이 형성된 예비 제1 입자를 제조하였다. 상기 표면층은 상기 코어 총 중량에 대해 2.1중량%였다.In the same manner as the method for preparing the core and preliminary first particles of Example 1, preliminary first particles having a surface layer of 2 nm thickness were prepared. The surface layer was 2.1% by weight relative to the total weight of the core.
<2차 입자의 제조><Production of Secondary Particles>
실시예 1의 제1 입자를 사용하지 않고, 상기 예비 제1 입자를 사용한 것을 제외하고는, 실시예 1의 2차 입자 제조 방법과 동일한 방법으로 2차 입자를 제조하였다. 제조된 2차 입자의 공극률은 1%이며, 평균 입경(D50)은 5㎛였다. 상기 공극률은 수은 포로시미터(porosimeter) 방법으로 측정하였다.Secondary particles were prepared in the same manner as in the manufacturing method of the secondary particles of Example 1, except that the first particles of Example 1 were not used and the preliminary first particles were used. The porosity of the prepared secondary particles was 1%, and the average particle diameter (D 50 ) was 5 μm. The porosity was measured by a mercury porosimeter method.
비교예Comparative example 2: 음극 활물질의 제조 2: Preparation of Anode Active Material
실시예 1에서 제조된 예비 제1 입자 8g와 마그네슘 파우더 0.9g를 아르곤 가스 분위기 하에서 혼합하여 혼합 파우더를 준비하였다. 상기 혼합 파우더를 튜브 반응로(tube furnace)에 넣고, 아르곤 가스 분위기 하에서 1030℃까지 5℃/min으로 승온한 뒤, 2시간 동안 가열하였다. 이 후, 상온까지 반응로의 온도를 떨어뜨린 뒤, 열처리된 혼합 파우더를 꺼내어, 1M HCl에 1시간 동안 교반시키는 것으로 세척하였다. 세척된 혼합 파우더를 필터링하면서, 증류수로 세척한 후 60℃ 오븐에서 8시간 동안 건조시켜, 단일 입자 형태의 음극 활물질을 제조하였다. 제조된 음극 활물질을 분석한 결과, 상기 음극 활물질에 있어서, 마그네슘이 산화되어 형성된 마그네슘 산화물 및 마그네슘 실리케이트의 함량은 상기 음극 활물질 전체 중량을 기준으로 15중량% 였으며, 이는 X-ray 회절 분석법(XRD)을 이용한 정량 분석을 통해 측정되었다.8 g of the preliminary first particles prepared in Example 1 and 0.9 g of magnesium powder were mixed under an argon gas atmosphere to prepare a mixed powder. The mixed powder was placed in a tube furnace, heated to 5 ° C./min to 1030 ° C. under argon gas atmosphere, and heated for 2 hours. Thereafter, the temperature of the reactor was lowered to room temperature, and the heat-treated mixed powder was taken out and washed by stirring in 1M HCl for 1 hour. The filtered mixed powder was washed with distilled water and then dried in an oven at 60 ° C. for 8 hours to prepare a negative active material in the form of a single particle. As a result of analyzing the prepared negative active material, the content of magnesium oxide and magnesium silicate formed by oxidizing magnesium in the negative electrode active material was 15% by weight based on the total weight of the negative electrode active material, which was X-ray diffraction analysis (XRD) It was measured through quantitative analysis using.
실시예Example 7 내지 12 및  7 to 12 and 비교예Comparative example 3, 4: 전지의 제조 3, 4: battery manufacturing
<음극의 제조><Production of Cathode>
실시예 1 내지 6 및 비교예 1, 2에서 제조된 각각의 음극 활물질과 도전재인 미립 흑연, 바인더인 폴리아크리로니트릴을 7:2:1의 중량비로 혼합하여 혼합물 0.2g을 제조하였다. 상기 혼합물에 용매인 N-메틸-2-피롤리돈(NMP) 3.1g을 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 20㎛인 음극 집전체인 구리(Cu) 금속 박막에 도포, 건조하였다. 이때 순환되는 공기의 온도는 80℃였다. 이어서, 압연(roll press)하고 130℃의 진공 오븐에서 12시간 동안 건조한 후, 1.4875㎠의 원형으로 타발하여 실시예 7 내지 12의 음극을 각각 제조하였다.Each negative electrode active material prepared in Examples 1 to 6 and Comparative Examples 1 and 2, fine graphite as a conductive material, and polyacrylonitrile as a binder were mixed at a weight ratio of 7: 2: 1 to prepare 0.2 g of a mixture. A negative electrode mixture slurry was prepared by adding 3.1 g of solvent N-methyl-2-pyrrolidone (NMP) to the mixture. The negative electrode mixture slurry was applied and dried on a copper (Cu) metal thin film, which is a negative electrode current collector having a thickness of 20 μm. At this time, the temperature of the air circulated was 80 ℃. Subsequently, rolls were pressed and dried in a vacuum oven at 130 ° C. for 12 hours, and then punched into a circle of 1.4875 cm 2 to prepare negative electrodes of Examples 7 to 12, respectively.
<전지의 제조><Manufacture of battery>
제조된 각각의 음극을 1.4875㎠의 원형으로 절단하여 이를 음극으로 하고, 1.4875㎠의 원형으로 절단한 리튬(Li) 금속 박막을 양극으로 하였다. 상기 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 메틸에틸카보네이트(EMC)와 에틸렌카보네이트(EC)의 혼합 부피비가 7:3인 혼합 용액에 0.5 중량%로 용해된 비닐렌 카보네이트를 용해시키고, 1M 농도의 LiPF6가 용해된 전해액을 주입하여, 리튬 코인 하프 셀(coin half-cell)을 제조하였다.Each prepared negative electrode was cut into a circle of 1.4875 cm 2, which was used as a negative electrode, and a lithium (Li) metal thin film cut into 1.4875 cm 2 circular was used as a positive electrode. Dissolving vinylene carbonate dissolved in 0.5 wt% in a mixed solution having a mixing volume ratio of methyl ethyl carbonate (EMC) and ethylene carbonate (EC) at 7: 3 through a separator of porous polyethylene between the positive electrode and the negative electrode, An electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 M was injected to prepare a lithium coin half-cell.
시험예Test Example 1: 방전 용량, 초기 효율, 용량 유지율 및 전극 두께 변화율의 평가 1: evaluation of discharge capacity, initial efficiency, capacity retention rate and electrode thickness change rate
실시예 7 내지 12 및 비교예 3, 4의 전지에 대해 충·방전을 수행하여, 방전 용량, 초기 효율, 용량 유지율 및 전극 두께 변화율을 평가하였고, 이를 하기 표 1에 기재하였다.Charging and discharging were performed on the batteries of Examples 7 to 12 and Comparative Examples 3 and 4 to evaluate discharge capacity, initial efficiency, capacity retention rate, and electrode thickness change rate, which are shown in Table 1 below.
한편, 1회 사이클과 2회 사이클은 0.1C로 충·방전하였고, 3회 사이클부터 49회 싸이클까지는 0.5C로 충·방전을 수행하였다. 50회 사이클은 충전(리튬이 음극에 들어있는 상태)상태에서 종료하고, 전지를 분해하여 두께를 측정한 후, 전극 두께 변화율을 계산하였다.Meanwhile, one cycle and two cycles were charged and discharged at 0.1C, and charging and discharging were performed at 0.5C from 3 cycles to 49 cycles. The 50 cycles were terminated in the state of charging (lithium in the negative electrode), the battery was disassembled, the thickness was measured, and the electrode thickness change rate was calculated.
충전 조건: CC(정전류)/CV(정전압)(5mV/0.005C current cut-off) Charging Conditions: CC (Constant Current) / CV (Constant Voltage) (5mV / 0.005C current cut-off)
방전 조건: CC(정전류) 조건 1.5VDischarge condition: CC (constant current) condition 1.5 V
1회 충방전 시의 결과를 통해, 방전 용량(mAh/g) 및 초기 효율(%)을 도출하였다. 구체적으로 초기 효율(%)은 다음과 같은 계산에 의해 도출되었다.Discharge capacity (mAh / g) and initial efficiency (%) were derived through the result at the time of single charge / discharge. Specifically, the initial efficiency (%) was derived by the following calculation.
초기 효율(%) = (1회 방전 후 방전 용량 / 1회 충전 용량)×100Initial efficiency (%) = (discharge capacity after 1 discharge / 1 charge capacity) x 100
용량 유지율과 전극 두께 변화율은 각각 다음과 같은 계산에 의해 도출되었다. The capacity retention rate and the electrode thickness change rate were derived by the following calculations, respectively.
용량 유지율(%) = (49회 방전 용량 / 1회 방전 용량)×100Capacity retention rate (%) = (49 discharge capacity / 1 discharge capacity) × 100
전극 두께 변화울(%) = (최종 전극 두께 변화량 / 최초 전극 두께)×100% Change in electrode thickness = (final electrode thickness change / initial electrode thickness) × 100
활물질Active material 방전 용량(mAh/g)Discharge Capacity (mAh / g) 초기 효율(%)Initial Efficiency (%) 용량 유지율(%)Capacity retention rate (%) 전극 두께 변화율(%)% Change in electrode thickness
실시예 7Example 7 실시예 1Example 1 14201420 82.282.2 87.587.5 107107
실시예 8Example 8 실시예 2Example 2 14001400 84.284.2 8787 108108
실시예 9Example 9 실시예 3Example 3 13501350 81.581.5 87.387.3 105105
실시예 10Example 10 실시예 4Example 4 13001300 83.583.5 87.287.2 109109
실시예 11Example 11 실시예 5Example 5 15081508 80.0880.08 8888 105105
실시예 12Example 12 실시예 6Example 6 15201520 75.575.5 87.087.0 115115
비교예 3Comparative Example 3 비교예 1Comparative Example 1 15501550 74.074.0 86.586.5 123123
비교예 4Comparative Example 4 비교예 2Comparative Example 2 13201320 80.180.1 8080 110110
상기 표 1을 참조하면, 본 발명에 따른 활물질을 사용한 실시예 7 내지 12의 경우, 비교예 3에 비해 초기 효율, 용량 유지율 및 전극 두께 변화율 측면에서 모두 우수한 것을 확인할 수 있다. 이는 제1 입자의 코어가 금속 화합물을 포함하므로 얻어지는 효과임을 알 수 있다.Referring to Table 1, in Examples 7 to 12 using the active material according to the present invention, it can be confirmed that compared with Comparative Example 3 in terms of initial efficiency, capacity retention rate and electrode thickness change rate. It can be seen that this is an effect obtained because the core of the first particles contains a metal compound.
또한, 금속 화합물이 코어에 15중량%로 적당히 포함된 음극 활물질을 사용하는 실시예 7는 금속 화합물을 포함하나 그 함량이 51중량%로 큰 음극 활물질을 사용하는 실시예 8보다 방전 용량 및 용량 유지율이 높은 것을 알 수 있다. 실시예 8의 경우, 금속 화합물을 형성하기 위한 금속 도핑량이 지나치게 높아서, 음극 활물질 내 Si의 결정의 크기가 지나치게 크며, 금속의 일부가 불순물로 작용하므로 전지 수명에 악영향이 있어 용량 유지율이 낮아지는 것으로 보인다. 또한, 코어의 크기가 1㎛로 적당한 실시예 1의 음극 활물질을 사용한 실시예 7은 코어의 크기가 0.4㎛로 지나치게 작은 실시예 3의 음극 활물질을 사용한 실시예 9에 비해 방전 용량, 초기 효율, 용량 유지율이 높다. 이것은 크기가 작은 코어를 사용 시, 비표면적이 증가하여 비가역 반응이 증가되었기 때문이다.Further, Example 7 using the negative electrode active material in which the metal compound is suitably included in the core at 15% by weight, discharge capacity and capacity retention rate compared to Example 8 using the negative electrode active material containing the metal compound but the content is 51% by weight You can see that this is high. In the case of Example 8, the metal doping amount for forming the metal compound is too high, the size of the crystal of Si in the negative electrode active material is too large, and a part of the metal acts as an impurity, which adversely affects the battery life, resulting in low capacity retention. see. In addition, Example 7 using the negative electrode active material of Example 1 having a suitable core size of 1 μm compared with Example 9 using the negative electrode active material of Example 3 having a small core size of 0.4 μm, the discharge capacity, initial efficiency, Capacity maintenance rate is high. This is because when using a small core, the specific surface area is increased to increase the irreversible reaction.
실시예Example 13 내지 17 및  13 to 17 and 비교예Comparative example 5, 6: 전지의 제조 5, 6: manufacture of batteries
<음극의 제조><Production of Cathode>
실시예 1 내지 5 및 비교예 1, 2에서 제조된 각각의 음극 활물질과 흑연(천연흑연)을 1:9의 중량비로 혼합한 혼합 음극 활물질, 도전재인 카본 블랙, 바인더인 CMC(Carboxylmethyl cellulose) 및 SBR(Styrene butadiene rubber)을 95.8:1:1.7:1.5의 중량비로 혼합하여 혼합물 5g을 제조하였다. 상기 혼합물에 증류수를 28.9g을 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 20㎛인 음극 집전체인 구리(Cu) 금속 박막에 도포, 건조하였다. 이때 순환되는 공기의 온도는 60℃였다. 이어서, 압연(roll press)하고 130℃의 진공 오븐에서 12시간 동안 건조한 후, 1.4875㎠의 원형으로 타발하여 실시예 13 내지 17 및 비교예 5, 6 각각의 음극을 제조하였다.Mixed negative electrode active material prepared by mixing the negative electrode active material and graphite (natural graphite) prepared in Examples 1 to 5 and Comparative Examples 1 and 2 in a weight ratio of 1: 9, carbon black as a conductive material, CMC (carboxylmethyl cellulose) as a binder, and 5 g of a mixture was prepared by mixing SBR (Styrene butadiene rubber) in a weight ratio of 95.8: 1: 1.7: 1.5. 28.9 g of distilled water was added to the mixture to prepare a negative electrode mixture slurry. The negative electrode mixture slurry was applied and dried on a copper (Cu) metal thin film, which is a negative electrode current collector having a thickness of 20 μm. At this time, the temperature of the air circulated was 60 ℃. Subsequently, rolls were pressed and dried in a vacuum oven at 130 ° C. for 12 hours, and then punched into a circle of 1.4875 cm 2 to prepare negative electrodes of Examples 13 to 17 and Comparative Examples 5 and 6, respectively.
<전지의 제조><Manufacture of battery>
제조된 각각의 음극을 1.4875㎠의 원형으로 절단하여 이를 음극으로 하고, 1.4875㎠의 원형으로 절단한 리튬(Li) 금속 박막을 양극으로 하였다. 상기 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 메틸에틸카보네이트(EMC)와 에틸렌카보네이트(EC)의 혼합 부피비가 7:3인 혼합 용액에 0.5 중량%로 용해된 비닐렌 카보네이트를 용해시키고, 1M 농도의 LiPF6가 용해된 전해액을 주입하여, 리튬 코인 하프 셀(coin half-cell)을 제조하였다.Each prepared negative electrode was cut into a circle of 1.4875 cm 2, which was used as a negative electrode, and a lithium (Li) metal thin film cut into 1.4875 cm 2 circular was used as a positive electrode. Dissolving vinylene carbonate dissolved in 0.5 wt% in a mixed solution having a mixing volume ratio of methyl ethyl carbonate (EMC) and ethylene carbonate (EC) at 7: 3 through a separator of porous polyethylene between the positive electrode and the negative electrode, An electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 M was injected to prepare a lithium coin half-cell.
시험예Test Example 2: 초기 효율, 용량 유지율 및 전극 두께 변화율의 평가 2: evaluation of initial efficiency, capacity retention and electrode thickness change rate
실시예 13 내지 17 및 비교예 5, 6의 전지에 대해 충·방전을 수행하여, 초기 효율, 용량 유지율 및 전극 두께 변화율을 평가하였고, 이를 하기 표 2에 기재하였다. 도 7에는 실시예 13 내지 16 및 비교예 5, 6에 대해 사이클 횟수마다 정규화된 용량을 나타내었다.Charging and discharging were performed on the batteries of Examples 13 to 17 and Comparative Examples 5 and 6 to evaluate initial efficiency, capacity retention rate, and electrode thickness change rate, which are described in Table 2 below. 7 shows the capacity normalized for each cycle number for Examples 13 to 16 and Comparative Examples 5 and 6. FIG.
한편, 1회 사이클과 2회 사이클은 0.1C로 충·방전하였고, 3회 사이클부터 49회 싸이클까지는 0.5C로 충·방전을 수행하였다. 50회 사이클은 충전(리튬이 음극에 들어있는 상태)상태에서 종료하고, 전지를 분해하여 두께를 측정한 후, 전극 두께 변화율을 계산하였다.Meanwhile, one cycle and two cycles were charged and discharged at 0.1C, and charging and discharging were performed at 0.5C from 3 cycles to 49 cycles. The 50 cycles were terminated in the state of charging (lithium in the negative electrode), the battery was disassembled, the thickness was measured, and the electrode thickness change rate was calculated.
충전 조건: CC(정전류)/CV(정전압)(5mV/0.005C current cut-off) Charging Conditions: CC (Constant Current) / CV (Constant Voltage) (5mV / 0.005C current cut-off)
방전 조건: CC(정전류) 조건 1.5VDischarge condition: CC (constant current) condition 1.5 V
1회 충방전 시의 결과를 통해, 초기 효율(%)을 도출하였다. 구체적으로 초기 효율(%)은 다음과 같은 계산에 의해 도출되었다.Initial efficiency (%) was derived through the result of one time charge / discharge. Specifically, the initial efficiency (%) was derived by the following calculation.
초기 효율(%) = (1회 방전 후 방전 용량 / 1회 충전 용량)×100Initial efficiency (%) = (discharge capacity after 1 discharge / 1 charge capacity) x 100
용량 유지율과 전극 두께 변화율은 각각 다음과 같은 계산에 의해 도출되었다. The capacity retention rate and the electrode thickness change rate were derived by the following calculations, respectively.
용량 유지율(%) = (49회 방전 용량 / 1회 방전 용량)×100Capacity retention rate (%) = (49 discharge capacity / 1 discharge capacity) × 100
전극 두께 변화울(%) = (전극 두께 변화량 / 최초 전극 두께)×100% Change in electrode thickness = (change in electrode thickness / initial electrode thickness) × 100
활물질Active material 초기 효율(%)Initial Efficiency (%) 용량 유지율(%)Capacity retention rate (%) 전극 두께 변화율(%)% Change in electrode thickness
실시예 13Example 13 실시예 1Example 1 흑연black smoke 89.489.4 90.290.2 53.053.0
실시예 14Example 14 실시예 2Example 2 흑연black smoke 90.290.2 89.889.8 53.253.2
실시예 15Example 15 실시예 3Example 3 흑연black smoke 89.389.3 89.589.5 53.253.2
실시예 16Example 16 실시예 4Example 4 흑연black smoke 90.190.1 89.289.2 53.353.3
실시예 17Example 17 실시예 5Example 5 흑연black smoke 89.089.0 89.089.0 52.552.5
비교예 5Comparative Example 5 비교예 1Comparative Example 1 흑연black smoke 86.186.1 88.888.8 53.453.4
비교예 6Comparative Example 6 비교예 2Comparative Example 2 흑연black smoke 88.988.9 87.587.5 55.055.0
표 2 및 도 7을 참조하면, 본 발명을 따른 실시예 13 내지 17의 전지는 비교예 5 및 6의 전지에 비해 초기 효율 및 용량 유지율이 우수한 것을 확인할 수 있었다. 또한, 실시예 13 내지 17의 경우, 실시예 7 내지 12에 비해, 초기 효율, 용량 유지율 및 전극 두께 변화율 측면에서 성능이 우수한 것을 확인할 수 있었으며, 이를 통해, 본 발명의 활물질을 흑연과 함께 사용하는 경우, 더 우수한 효과를 도출할 수 있음을 알 수 있다.Referring to Table 2 and FIG. 7, it was confirmed that the batteries of Examples 13 to 17 according to the present invention had superior initial efficiency and capacity retention compared to the batteries of Comparative Examples 5 and 6. In addition, in Examples 13 to 17, compared to Examples 7 to 12, it was confirmed that the performance is excellent in terms of initial efficiency, capacity retention rate and electrode thickness change rate, through which, using the active material of the present invention with graphite In this case, it can be seen that a better effect can be derived.
[부호의 설명][Description of the code]
110: 제1 입자 111: 제1 코어110: first particle 111: first core
112: 제1 표면층 113: 금속 화합물112: first surface layer 113: metal compound
120: 제2 입자 121: 제2 코어120: second particle 121: second core
122: 제2 표면층 130: 탄소층122: second surface layer 130: carbon layer
140: 결정질 탄소계 물질 140: crystalline carbonaceous material
200, 210, 220, 230, 240, 250: 2차 입자200, 210, 220, 230, 240, 250: secondary particles

Claims (19)

1차 입자인 제1 입자를 포함하는 2차 입자를 포함하고,Including secondary particles including first particles that are primary particles,
상기 제1 입자는 제1 코어 및 상기 제1 코어의 표면에 배치되고 탄소를 포함하는 제1 표면층을 포함하며,The first particle comprises a first core and a first surface layer disposed on the surface of the first core and comprising carbon,
상기 제1 코어는,The first core,
규소 및 규소 화합물 중 적어도 어느 하나; 및At least one of silicon and a silicon compound; And
금속 화합물을 포함하고,Contains a metal compound,
상기 금속 화합물은 금속 산화물 및 금속 실리케이트 중 적어도 어느 하나를 포함하는 음극 활물질.The metal compound includes at least one of a metal oxide and a metal silicate.
청구항 1에 있어서,The method according to claim 1,
상기 금속 화합물은 상기 제1 입자 총 중량에 대하여 1중량% 내지 50중량%로 도핑된 음극 활물질.The metal compound is doped with 1% to 50% by weight relative to the total weight of the first particles.
청구항 1에 있어서,The method according to claim 1,
상기 2차 입자는 1차 입자인 제2 입자를 더 포함하며,The secondary particles further include second particles that are primary particles,
상기 제2 입자는 제2 코어 및 상기 제2 코어의 표면에 배치되며 탄소를 포함하는 제2 표면층을 포함하며,The second particle comprises a second core and a second surface layer disposed on the surface of the second core and comprising carbon,
상기 제2 코어는,The second core,
규소 및 규소 화합물 중 적어도 어느 하나를 포함하는 음극 활물질. A negative electrode active material comprising at least one of silicon and silicon compounds.
청구항 3에 있어서,The method according to claim 3,
상기 제1 입자와 상기 제2 입자의 중량비는 1:0.25 내지 1:4인 음극 활물질.The negative electrode active material having a weight ratio of the first particles and the second particles is 1: 0.25 to 1: 4.
청구항 3에 있어서The method according to claim 3
상기 제1 코어 및 상기 제2 코어의 평균 입경(D50)은 각각 0.5㎛ 내지 20㎛인 음극 활물질.An average particle diameter (D 50 ) of the first core and the second core is 0.5 μm to 20 μm, respectively.
청구항 3에 있어서,The method according to claim 3,
상기 제1 코어 및 상기 제2 코어가 각각 포함하는 상기 규소는 비정질 규소 및 결정 크기가 0초과 30㎚이하인 결정질 규소 중 적어도 어느 하나를 포함하는 음극 활물질.The silicon included in each of the first core and the second core each includes at least one of amorphous silicon and crystalline silicon having a crystal size of greater than 0 and less than 30 nm.
청구항 3에 있어서,The method according to claim 3,
상기 제1 코어 및 상기 제2 코어가 각각 포함하는 상기 규소 화합물은 이산화규소(SiO2) 매트릭스 내에 규소가 분포한 규소 산화물(SiOx, 0<x<2)인 음극 활물질.The silicon compound included in each of the first and second cores is a silicon oxide (SiO x , 0 <x <2) in which silicon is distributed in a silicon dioxide (SiO 2 ) matrix.
청구항 3에 있어서,The method according to claim 3,
상기 제1 코어 및 제2 코어는 다수의 기공을 포함하는 다공성 코어인 음극 활물질.The first core and the second core is a porous core including a plurality of pores.
청구항 8에 있어서,The method according to claim 8,
상기 다공성 코어의 내부 공극률은, 상기 다공성 코어 전체 부피에 대하여, 5% 내지 90%인 음극 활물질.The internal porosity of the porous core is 5% to 90% of the total volume of the porous core.
청구항 1에 있어서,The method according to claim 1,
상기 금속 산화물은 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 칼슘(Ca) 및 티타늄(Ti)으로 이루어진 군에서 선택되는 1종 이상의 금속의 산화물을 포함하는 음극 활물질.The metal oxide is a negative electrode active material including an oxide of at least one metal selected from the group consisting of lithium (Li), magnesium (Mg), aluminum (Al), calcium (Ca) and titanium (Ti).
청구항 1에 있어서,The method according to claim 1,
상기 금속 실리케이트는 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 칼슘(Ca) 및 티타늄(Ti)으로 이루어진 군에서 선택되는 1종 이상의 금속의 실리케이트를 포함하는 음극 활물질.The metal silicate includes a silicate of at least one metal selected from the group consisting of lithium (Li), magnesium (Mg), aluminum (Al), calcium (Ca) and titanium (Ti).
청구항 3에 있어서,The method according to claim 3,
상기 제1 표면층 및 상기 제2 표면층의 두께는 1㎚ 내지 100㎚인 음극 활물질.The thickness of the first surface layer and the second surface layer is 1 nm to 100 nm negative electrode active material.
청구항 1에 있어서,The method according to claim 1,
상기 2차 입자의 평균 입경(D50)은 2㎛ 내지 50㎛인 음극 활물질.The average particle diameter (D 50 ) of the secondary particles is a negative electrode active material 2㎛ to 50㎛.
청구항 1 또는 청구항 3에 있어서,The method according to claim 1 or 3,
상기 2차 입자의 표면에 배치되고 탄소를 포함하는 탄소층을 더 포함하는 음극 활물질.The anode active material further comprises a carbon layer disposed on the surface of the secondary particles and containing carbon.
청구항 14에 있어서,The method according to claim 14,
상기 탄소층은 5nm 내지 100nm인 음극 활물질.The carbon layer is 5nm to 100nm negative electrode active material.
청구항 1 또는 청구항 3에 있어서,The method according to claim 1 or 3,
상기 2차 입자가 1차 입자인 결정질 탄소계 물질을 더 포함하는 음극 활물질.The anode active material further comprises a crystalline carbonaceous material wherein the secondary particles are primary particles.
청구항 1 또는 청구항 3에 있어서,The method according to claim 1 or 3,
흑연계 활물질 입자를 더 포함하는 음극 활물질.An anode active material further comprising graphite-based active material particles.
청구항 1 또는 청구항 3의 음극 활물질을 포함하는 것을 특징으로 하는 음극.A negative electrode comprising the negative electrode active material of claim 1 or 3.
청구항 18의 음극을 포함하는 리튬 이차전지.Lithium secondary battery comprising a negative electrode of claim 18.
PCT/KR2017/005785 2016-06-02 2017-06-02 Cathode active material, cathode comprising same, and lithium secondary battery comprising same WO2017209561A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201780003931.9A CN108292745B (en) 2016-06-02 2017-06-02 Negative electrode active material, negative electrode comprising same, and lithium secondary battery comprising same
ES17807054T ES2953371T3 (en) 2016-06-02 2017-06-02 Cathode active material, cathode comprising the same, and secondary lithium battery comprising the same
EP17807054.6A EP3343677B1 (en) 2016-06-02 2017-06-02 Cathode active material, cathode comprising same, and lithium secondary battery comprising same
PL17807054.6T PL3343677T3 (en) 2016-06-02 2017-06-02 Cathode active material, cathode comprising same, and lithium secondary battery comprising same
US15/771,168 US11133524B2 (en) 2016-06-02 2017-06-02 Negative electrode active material, negative electrode including the same and lithium secondary battery including the same
JP2018539063A JP7027644B2 (en) 2016-06-02 2017-06-02 Negative electrode active material, negative electrode containing it, and lithium secondary battery containing it
US17/382,544 US11757126B2 (en) 2016-06-02 2021-07-22 Negative electrode active material, negative electrode including the same and lithium secondary battery including the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20160068940 2016-06-02
KR10-2016-0068956 2016-06-02
KR20160068956 2016-06-02
KR10-2016-0068940 2016-06-02
KR10-2017-0068856 2017-06-02
KR1020170068856A KR101837347B1 (en) 2016-06-02 2017-06-02 Negative electrode active material, negative electrode comprising the negative electrode active material and lithium secondarty battery comprising the negative electrode

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/771,168 A-371-Of-International US11133524B2 (en) 2016-06-02 2017-06-02 Negative electrode active material, negative electrode including the same and lithium secondary battery including the same
US17/382,544 Continuation US11757126B2 (en) 2016-06-02 2021-07-22 Negative electrode active material, negative electrode including the same and lithium secondary battery including the same

Publications (1)

Publication Number Publication Date
WO2017209561A1 true WO2017209561A1 (en) 2017-12-07

Family

ID=60477697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005785 WO2017209561A1 (en) 2016-06-02 2017-06-02 Cathode active material, cathode comprising same, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2017209561A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755500A (en) * 2018-12-05 2019-05-14 华为技术有限公司 A kind of silicon oxygen composite negative pole material and preparation method thereof
WO2020045256A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
WO2020045255A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary battery
WO2020045257A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
CN111741928A (en) * 2018-02-22 2020-10-02 住友金属矿山株式会社 Metal composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110124728A (en) * 2010-05-11 2011-11-17 주식회사 루트제이제이 Active material for secondary lithium battery, manufacturing method thereof, and secondary lithium battery comprising the same
KR20130004536A (en) * 2011-06-30 2013-01-11 삼성에스디아이 주식회사 Negative active material, manufacturing method thereof, and lithium battery containing the material
KR20130045212A (en) * 2011-10-24 2013-05-03 주식회사 엘지화학 Manufacturing method of negative active material, negative active material thereof and lithium secondary battery comprising the same
KR20140048761A (en) * 2012-10-16 2014-04-24 국립대학법인 울산과학기술대학교 산학협력단 Negative electrode active material for rechargeable lithium battery, method for preparing the same, and rechargeable lithium battery including the same
KR20140070162A (en) * 2012-11-30 2014-06-10 주식회사 엘지화학 Anode active material for lithium secondary battery with high capacity, a manufacturing method of the same and Lithium secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110124728A (en) * 2010-05-11 2011-11-17 주식회사 루트제이제이 Active material for secondary lithium battery, manufacturing method thereof, and secondary lithium battery comprising the same
KR20130004536A (en) * 2011-06-30 2013-01-11 삼성에스디아이 주식회사 Negative active material, manufacturing method thereof, and lithium battery containing the material
KR20130045212A (en) * 2011-10-24 2013-05-03 주식회사 엘지화학 Manufacturing method of negative active material, negative active material thereof and lithium secondary battery comprising the same
KR20140048761A (en) * 2012-10-16 2014-04-24 국립대학법인 울산과학기술대학교 산학협력단 Negative electrode active material for rechargeable lithium battery, method for preparing the same, and rechargeable lithium battery including the same
KR20140070162A (en) * 2012-11-30 2014-06-10 주식회사 엘지화학 Anode active material for lithium secondary battery with high capacity, a manufacturing method of the same and Lithium secondary battery comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3343677A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111741928A (en) * 2018-02-22 2020-10-02 住友金属矿山株式会社 Metal composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
CN111741928B (en) * 2018-02-22 2023-04-28 住友金属矿山株式会社 Metal composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
WO2020045257A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
WO2020045255A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary battery
CN112136234A (en) * 2018-08-30 2020-12-25 松下知识产权经营株式会社 Negative electrode active material for secondary battery and secondary battery
JPWO2020045257A1 (en) * 2018-08-30 2021-08-10 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
JPWO2020045256A1 (en) * 2018-08-30 2021-08-10 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
JPWO2020045255A1 (en) * 2018-08-30 2021-08-10 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
WO2020045256A1 (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
JP7336690B2 (en) 2018-08-30 2023-09-01 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary battery and secondary battery
JP7417903B2 (en) 2018-08-30 2024-01-19 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
JP7417902B2 (en) 2018-08-30 2024-01-19 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries and secondary batteries
CN109755500A (en) * 2018-12-05 2019-05-14 华为技术有限公司 A kind of silicon oxygen composite negative pole material and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2017209561A1 (en) Cathode active material, cathode comprising same, and lithium secondary battery comprising same
WO2017111542A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery including same
WO2021066458A1 (en) Composite anode active material, preparation method therefor, and anode comprising same
WO2015065047A1 (en) Negative electrode active material and method for preparing same
WO2020040586A1 (en) Silicon-based composite, anode comprising same, and lithium secondary battery
WO2015170918A1 (en) Graphene-coated porous silicon-carbon composite and preparation method therefor
WO2018221827A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode
WO2023282684A1 (en) Anode for lithium secondary battery, manufacturing method of anode for lithium secondary battery, and lithium secondary battery comprising anode
WO2017209556A1 (en) Cathode active material, method for preparing same, cathode comprising same, and lithium secondary battery comprising same
WO2020242138A1 (en) Cathode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2018034553A1 (en) Negative electrode material comprising silicon flakes and method for preparing silicon flakes
WO2020256473A1 (en) Positive electrode active material having surface portion doped with hetero elements, and method for producing same
WO2021153987A1 (en) Negative electrode active material, negative electrode comprising same, and secondary battery comprising same
WO2020067793A1 (en) Sulfur-carbon composite and manufacturing method therefor
WO2017150893A1 (en) Cathode active material for lithium secondary battery and preparation method therefor
WO2016052944A1 (en) Positive electrode active material and method for manufacturing same
WO2016032222A1 (en) Surface-coated positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2021118144A1 (en) Anode active material, preparation method therefor, and anode and secondary battery each comprising same
WO2023282683A1 (en) Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023068900A1 (en) Cylindrical secondary battery
WO2023018183A1 (en) Negative electrode active material, negative electrode including negative electrode active material, secondary battery including negative electrode, and method for preparing negative electrode active material
WO2023121247A1 (en) Negative electrode and secondary battery comprising same
WO2024043673A1 (en) Composite negative electrode active material, negative electrode and lithium battery employing same, and preparation method therefor
WO2019098612A1 (en) Cathode slurry composition, secondary battery cathode comprising same, and lithium secondary battery
WO2024085709A1 (en) Anode for lithium secondary battery, method for manufacturing anode for lithium secondary battery, and lithium secondary battery comprising anode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017807054

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15771168

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018539063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE