WO2020171483A1 - Electrochemical device and manufacturing method thereof - Google Patents

Electrochemical device and manufacturing method thereof Download PDF

Info

Publication number
WO2020171483A1
WO2020171483A1 PCT/KR2020/002107 KR2020002107W WO2020171483A1 WO 2020171483 A1 WO2020171483 A1 WO 2020171483A1 KR 2020002107 W KR2020002107 W KR 2020002107W WO 2020171483 A1 WO2020171483 A1 WO 2020171483A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrochemical device
mixture
positive electrode
lithium
Prior art date
Application number
PCT/KR2020/002107
Other languages
French (fr)
Korean (ko)
Inventor
이창규
이상영
Original Assignee
주식회사 유뱃
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유뱃, 울산과학기술원 filed Critical 주식회사 유뱃
Publication of WO2020171483A1 publication Critical patent/WO2020171483A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrochemical device and a method of manufacturing the same. More specifically, a separate gel polymer electrolyte is applied to a positive electrode, a separator, and a negative electrode each containing a solid electrolyte to form a conjugate, and at least one or more selected from each of the gel polymer electrolytes has a different composition. It relates to an electrochemical device and a method of manufacturing the same.
  • the electrochemical device may introduce a gel polymer electrolyte with a separate optimized composition to the anode, the separator, and the cathode, and accordingly, the electrochemical device by controlling the optimized ion flow to each electrode and separator. There is a more advantageous effect in improving the life characteristics and safety of the device.
  • a secondary battery is a battery that repeats charging and discharging by converting chemical energy and electrical energy through chemical reactions of oxidation and reduction, and generally includes four basic elements: a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the positive and negative electrodes are collectively referred to as an electrode, and a material that actually reacts among the constituent elements of the electrode material is referred to as an active material.
  • the electrode is composed of a composite material and a current collector, and the composite material includes a positive electrode active material, and a conductive material and a binder are added as necessary, and the current collector is composed of a material exhibiting electron conductivity.
  • liquid electrolyte In general lithium ion secondary batteries, a liquid electrolyte and an electrolyte containing a liquid are used. However, since the liquid electrolyte is volatile, there is a risk of explosion, and thermal stability is also poor.
  • an all solid state battery using a solid electrolyte has a low risk of explosion and has excellent thermal stability.
  • a bi-polar plate is used, a high operating voltage can be configured by stacking electrodes to enable series connection. In this case, a higher energy density can be achieved than the parallel connection method of cells to which a liquid electrolyte is applied. have.
  • Solid electrolytes are largely divided into organic (polymer) electrolytes and inorganic electrolytes, and inorganic electrolytes are divided into oxide-based electrolytes and sulfide-based electrolytes.
  • Polymer electrolytes are more stable than liquid electrolytes by delivering lithium ions within the molecular chain, but polymers that do not contain liquids have an ionic conductivity of 10 -7 to 10 -4 S/m at room temperature. The level is low enough. In addition, due to its weak mechanical properties, it is unstable at a high voltage of 4 V or higher.
  • the sulfide-based solid electrolyte reacts with moisture to generate toxic H 2 S gas and can be used in an environment in which moisture is removed, and when exposed to the atmosphere, it is very dangerous and has a disadvantage that its ionic conductivity is rapidly degraded.
  • non-polar solvents such as benzene, toluene, and xylene, which are toxic when preparing a slurry, must be used. In this case, the slurry properties also deteriorate.
  • Oxide-based solid electrolytes are electrolytes containing oxygen such as LiPON-based, perovskite-based, garnet-based and glass-ceramic-based electrolytes, and have an ionic conductivity of 10 -5 to 10 -3 S/cm, which is lower than that of sulfide-based electrolytes. Although it has ionic conductivity, it has an advantage of very excellent moisture and stability compared to a sulfide solid electrolyte.
  • oxide-based solid electrolytes have high grain boundary resistance, electrolyte membranes or pellets formed by sintering at high temperatures to form neckings between particles can be used. High temperature sintering at high temperatures of 900 to 1400 °C Because of this, there is a problem that mass productivity is very poor in forming a large-area electrolyte membrane.
  • the all-solid-state battery has a problem in that the ion conductivity decreases because the ion conduction path is small due to the decrease in interface contact with the electrode.
  • Korean Patent Laid-Open Publication No. 10-2018-0106978 discloses a method of manufacturing an all-solid-state battery using a crosslinking agent to improve the interfacial bonding between the positive electrode and the solid electrolyte layer, and the negative electrode and the solid electrolyte layer. After impregnation, it is difficult to apply to mass production because it has to be taken out and subjected to a long solvent drying process and crosslinking process under vacuum at 80°C.
  • One aspect of the present invention solves the problem of grain boundary resistance, interfacial resistance, and low ionic conductivity occurring in an electrochemical device using a solid electrolyte, and a side reaction problem occurring in the anode and the cathode I want to solve it.
  • the positive electrode, the separator, and the negative electrode all form a gel polymer electrolyte by a coating method, and at least one of them has a different composition of the gel polymer electrolyte, thereby ions optimized for each of the positive electrode, the separator, and the negative electrode. It is intended to provide an electrochemical device that can control flow. Specifically, by varying the type of the solvent of the gel polymer electrolyte, the type of dissociable salt, the concentration of the dissociable salt, the type of monomer, the content of the monomer, etc., as necessary, the optimized ion flow for the anode, the separator, and the cathode can be adjusted. To provide an electrochemical device with
  • one aspect of the present invention is to provide an electrochemical device having more excellent charge/discharge efficiency and lifespan characteristics of a battery, since it may include a performance enhancer suitable for each of the positive electrode, the separator, and the negative electrode.
  • One aspect of the present invention for achieving the above object is a positive electrode-electrolyte assembly comprising a first electrolyte on the positive electrode,
  • a cathode-electrolyte assembly comprising a second electrolyte on the cathode
  • It includes a separator-electrolyte assembly including a third electrolyte on the separator,
  • the positive electrode includes a positive electrode active material layer
  • the positive electrode active material layer and the separator contain a solid electrolyte
  • the first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
  • At least one selected from the first electrolyte, the second electrolyte and the third electrolyte provides an electrochemical device that is made of different compositions.
  • Another aspect of the present invention is i) coating and curing a first gel polymer electrolyte composition on a positive electrode to prepare a positive electrode-electrolyte assembly including a first electrolyte, and coating a second gel polymer electrolyte composition on the negative electrode, and Curing to prepare a cathode-electrolyte assembly including a second electrolyte, and coating and curing a third gel polymer electrolyte composition on the separation membrane to prepare a separation membrane-electrolyte assembly including a third electrolyte; And
  • the positive electrode includes a positive electrode active material layer
  • the positive electrode active material layer and the separator contain a solid electrolyte
  • the first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
  • At least one selected from the first electrolyte, the second electrolyte, and the third electrolyte provides a method of manufacturing an electrochemical device that is made of different compositions.
  • a gel polymer electrolyte having a separate composition may be introduced into a positive electrode, a separator, and a negative electrode including a solid electrolyte, and an electrolyte may be provided with a composition optimized for each.
  • the gel polymer electrolyte is characterized by easy impregnation into an electrode having a low porosity and a separator including a solid electrolyte due to its inherent rheological properties having a viscosity that can be directly applied to the electrode, and the anode, the separator, and By filling the small pores formed between the solid electrolyte and the active material composition or between the solid electrolyte contained in the negative electrode with the gel polymer electrolyte, the grain boundary resistance of the battery can be reduced and the ionic conductivity can be improved. There is a more advantageous effect in improving the life characteristics and safety of the device.
  • a gel polymer electrolyte is bonded to the electrode and the separator to form a very thin gel polymer electrolyte layer on each surface, so that it is uniform on the anode-separator and the separator-cathode interface. Since an interface in close contact can be formed, interfacial resistance between the electrode and the separator can be reduced, thereby improving the life characteristics of the electrochemical device.
  • 'electrode assembly means that the anode, the separator, and the cathode are stacked in a stacked or jelly roll state, and refers to a state before being sealed with a packaging material.
  • electrochemical device means a state in which the electrode assembly is sealed with a packaging material and can be used as a battery.
  • the electrolyte formed on the positive electrode is expressed as the first electrolyte
  • the electrolyte formed on the negative electrode is the second electrolyte
  • the electrolyte formed on the separator is expressed as a third electrolyte, but at least one of them is excluded. It may be the same electrolyte.
  • the same electrolyte means that the type or content of monomers constituting the crosslinked polymer matrix, the type of solvent, and the type and concentration of dissociable salts are the same.
  • the gel polymer electrolyte composed of “different compositions” means that at least one selected from the type or content of monomers constituting the crosslinked polymer matrix, the type of solvent, and the type and concentration of a dissociable salt are different.
  • the “electrolyte assembly” means that a gel polymer electrolyte is coated or impregnated on an anode, a separator, or a cathode to be integrated.
  • “different ionic conductivity” means that at least one selected from the type of solvent constituting the electrolyte, the type of dissociable salt, and the concentration of the dissociable salt is different. More specifically, it means that the ion conductivity differs by 0.1 mS/cm or more. A method of measuring ionic conductivity will be described in more detail in the following examples.
  • a charging/discharging current is applied to separate the anode, the cathode and the separator from the electrode assembly in which the initial formation process has been completed, and each of them is subjected to a Fourier transform infrared spectrometer ( Fourier transform infrared spectroscopy, 670-IR, Varian), and the type or concentration of the material can be distinguished from the absorption spectrum obtained by spectroscopy of the reflected light when irradiated with infrared rays, depending on the peak intensity derived from the material properties. .
  • Fourier transform infrared spectrometer Fourier transform infrared spectroscopy, 670-IR, Varian
  • the'gel polymer electrolyte' may be formed by coating and curing a gel polymer electrolyte composition including a crosslinkable monomer, an initiator, a dissociable salt, and a solvent.
  • a gel polymer electrolyte composition including a crosslinkable monomer, an initiator, a dissociable salt, and a solvent.
  • 'Different solvent types','different salt types','different salt concentrations','different types of monomers' and'different monomer contents' means the types of solvents used in the gel polymer electrolyte composition. , It means that the type and concentration of the salt and the type and content of the monomer are different.
  • the “solid electrolyte” means an all-solid electrolyte that does not contain a liquid electrolyte. Specifically, it means any one or a mixture of two or more selected from, for example, a polymer electrolyte, an oxide-based electrolyte, and a sulfide-based electrolyte.
  • the positive electrode and the separator of the present invention, or the positive electrode, the separator, and the negative electrode include a separate solid electrolyte that is distinct from the gel polymer electrolyte of the first electrolyte, the second electrolyte, and the third electrolyte.
  • inclusion in the positive electrode and the negative electrode may include a solid electrolyte in the active material layer. Alternatively, a solid electrolyte may be pressed and impregnated on the active material layer. In addition, inclusion in the separation membrane may be obtained by compressing and impregnating a solid electrolyte on the separation membrane.
  • one aspect of the present invention is a positive electrode-electrolyte assembly comprising a first electrolyte on the positive electrode,
  • a cathode-electrolyte assembly comprising a second electrolyte on the cathode
  • It includes a separator-electrolyte assembly including a third electrolyte on the separator,
  • the positive electrode includes a positive electrode active material layer
  • the positive electrode active material layer and the separator contain a solid electrolyte
  • the first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
  • At least any one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte are made of different compositions.
  • the negative electrode may include a negative active material layer, and the negative active material layer may contain a solid electrolyte.
  • At least one of the first electrolyte, the second electrolyte, and the third electrolyte may have different ionic conductivity.
  • At least one of the first electrolyte, the second electrolyte, and the third electrolyte may have different types of solvents.
  • At least one of the first electrolyte, the second electrolyte, and the third electrolyte may have different types or concentrations of dissociable salts.
  • At least one of the first electrolyte, the second electrolyte, and the third electrolyte may have different types or amounts of monomers constituting the crosslinked polymer matrix.
  • At least two or more of the first electrolyte, the second electrolyte, and the third electrolyte include a performance enhancing agent, and at least one or more of the electrolytes containing the performance enhancing agent may have different types or concentrations of the performance enhancing agent.
  • the crosslinked polymer matrix may have a semi-interpenetrating network (semi-IPN) structure further including a linear polymer.
  • At least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte may have a difference in ionic conductivity of 0.1 mS/cm or more.
  • At least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte may have different slopes obtained from the Arrhenius plot of the temperature at 20 ⁇ 80 °C and the ion conductivity.
  • the ion conductivity IC 1 of the first electrolyte and the ion conductivity IC 2 of the second electrolyte may satisfy Equation 1 below.
  • the ionic conductivity IC 1 of the first electrolyte, the ionic conductivity IC 2 of the second electrolyte, and the ionic conductivity IC 3 of the third electrolyte may satisfy Equations 2 and 3 below.
  • the type of the solvent is any one or two or more selected from carbonate-based solvents, nitrile-based solvents, ester-based solvents, ether-based solvents, glyme-based solvents, ketone-based solvents, alcohol-based solvents, aprotic solvents, and water. It may be to use a mixed solvent.
  • the carbonate-based solvent is any one or a mixture of two or more selected from dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, methylethyl carbonate, ethylene carbonate, propylene carbonate and butylene carbonate ego,
  • the nitrile-based solvent is any one or a mixture of two or more selected from acetonitrile, succinonitrile, adiponitrile, sebaconitrile, etc.,
  • ester solvent methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethyl ethyl acetate, methyl propio Methylpropionate, ethylpropionate, ⁇ -butylolactone, decanolide, valerolactone, mevalonolactone, caprolactone ) Any one or a mixture of two or more selected from,
  • the ether solvent is any one or a mixture of two or more selected from dimethyl ether, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran and tetrahydrofuran,
  • the glyme solvent is any one or a mixture of two or more selected from ethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and the like,
  • the ketone solvent is cyclohexanone, etc.
  • the alcohol-based solvent is any one selected from ethyl alcohol and isopropyl alcohol, or a mixture thereof,
  • the aprotic solvent may be any one or a mixture of two or more selected from a nitrile-based solvent, an amide-based solvent, a dioxolane-based solvent, and a sulfolane-based solvent.
  • the dissociable salt is lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroantimonate (LiSbF 6 ), lithium hexafluoroacenate (LiAsF 6 ), lithium Difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl), lithium iodide (LiI) , Lithium bisoxalato borate (LiB(C 2 O 4 ) 2 ), lithium trifluoromethanesulfonylimide (LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (where , x and y
  • the concentration of the salt may be different from 0.1M or more.
  • the type of the monomer may be any one or a mixture of two or more selected from the group consisting of acrylate-based monomers, acrylic acid-based monomers, sulfonic acid-based monomers, phosphoric acid-based monomers, perfluorine-based monomers, and acrylonitrile-based monomers.
  • acrylate-based monomers acrylic acid-based monomers, sulfonic acid-based monomers, phosphoric acid-based monomers, perfluorine-based monomers, and acrylonitrile-based monomers.
  • the acrylate-based monomer is polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, trimethylolpropane ethoxylate triacrylate, trimethylol Any selected from propane ethoxylate trimethacrylate, bisphenol ethoxylate diacrylate and bisphenol ethoxylate dimethacrylate, beta carboxyethyl acrylate, 2,4,6-tribromophenyl acrylate, etc. Is one or a mixture of two or more,
  • the acrylic acid-based monomer is any one or a mixture of two or more selected from acrylic acid, methacrylic acid, methyl acrylic acid, methyl methacrylic acid, 2-ethylacrylic acid, 2-propylacrylic acid and 2-trifluoromethylacrylic acid,
  • the sulfonic acid-based monomer is from sulfonic acid, sodium styrene sulfonic acid, 2-acrylamide-2-methylpropane sulfonic acid, 2-sulfoethyl methacrylate, 3-sulfopropyl acrylate and 3-sulfopropyl methacrylate. Is any one or a mixture of two or more selected,
  • the phosphoric acid-based monomer is any one or a mixture of two or more selected from phosphoric acid, bis (2-methacryloxyethyl) phosphate, phosphoric acid-2-hydroxyethyl acrylate ester, and 2- (methacryloxy) ethyl phosphate. ,
  • the perfluorine-based monomers are hexafluoroisopropyl methacrylate, 1,1,3-hexafluorobutyl methacrylate, 1,1,7-dodecafluoroheptyl methacrylate, 2,2,2-trifluoroethyl methacrylate Any one or a mixture of two or more selected from acrylate, 1,1,5-octafluoropentyl methacrylate, pentafluorophenyl acrylate and 2,2,2-trifluoroethyl acrylate,
  • the acrylonitrile-based monomer may be any one or a mixture of two or more selected from acrylonitrile, 1-cyanovinyl acetate, and 2-cyanoethyl acrylate.
  • the content of the monomer may be different from 0.5% by weight or more.
  • the first electrolyte includes a first performance enhancing agent
  • the first performance enhancer may be any one or a mixture of two or more selected from the group consisting of a high voltage stability improver, a high temperature stability improver, an electrolyte wettability improver, and the like.
  • the high voltage stability improving agent is prop-1-ene-1,3-sultone, propane sultone, butane sultone, ethylene sulfate, ethylene propylene sulfate, trimethylene sulfate, vinyl sulfone, methyl sulfone, phenyl sulfone, benzyl sulfone , Tetramethylene sulfone, butadiene sulfone, benzoyl peroxide, lauroyl peroxide, 2-methyl maleic anhydride, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, sebaconitrile, azelaic It may be any one or a mixture of two or more selected from dinitrile, butylamine, N,N-dicyclohexylcarbodiamine, N,N-dimethyl amino trimethyl silane, N,N-dimethylacetamide, sulf
  • the high-temperature stability improving agent is propane sultone, propene sultone, dimethyl sulfone, diphenyl sulfone, divinyl sulfone, methane sulfonic acid, propylene sulfone, 3-fluorinated toluene, 2,5-dichlorotoluene, 2-fluorobi It may be any one or a mixture of two or more selected from phenyl, dicyanobutene, tris(-trimethyl-silyl)-phosphite, pyridine, 4-ethyl pyridine, 4-acetyl pyridine and 3-cyano pyridine.
  • the electrolyte wettability improving agent is lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethylsulfonyl) imide, maleic acid, tannic acid, silicon oxide, aluminum oxide, zirconia oxide, titanium oxide, It may be any one or a mixture of two or more selected from zinc oxide, manganese oxide, magnesium oxide, calcium oxide, iron oxide, barium oxide, molybdenum oxide, ruthenium oxide and zeolite.
  • the second electrolyte includes a second performance enhancing agent
  • the second performance enhancing agent may be any one or a mixture of two or more selected from the group consisting of an interfacial stabilizer and a gas generation inhibitor.
  • the interfacial stabilizer is vinylene carbonate, vinylethylene carbonate, methylene ethylene carbonate, methylene methyl ethylene carbonate, fluoroethylene carbonate, allyltrimethoxysilane, allyltriethoxysilane, cyclohexyltrimethoxysilane, Phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxy Propyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylethoxydimethylsilane, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglyci Dyl ether, propylene glycol diglycidyl ether, prop
  • the gas generation inhibitor is diphenyl sulfone, divinyl sulfone, vinyl sulfone, phenyl sulfone, benzyl sulfone, tetramethylene sulfone, butadiene sulfone, diethylene glycol diacrylate, diethylene glycol dimethacrylate, ethylene glycol Dimethacrylate, dipropylene glycol diacrylate, dipropylene glycol dimethacrylate, ethylene glycol divinyl ether, ethoxylated trimethylolpropane triacrylate, diethylene glycol divinyl ether, triethylene glycol dimethacryl Rate, difetaerythritol pentaacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, propoxylate (3) trimethylolpropane triacrylate, propoxylate (6) trimethylolpropane It may be any one or a mixture of two or more selected from tri
  • the third electrolyte includes a third performance enhancing agent
  • the third performance enhancing agent may be any one or a mixture of two or more selected from the group consisting of an electrode adhesion enhancer and an anion stabilizer.
  • the electrode adhesion improving agent is acetonitrile, thiophene acetonitrile, methoxyphenylacetonitrile, fluorophenylacetonitrile, acrylonitrile, methoxyacrylonitrile, and ethoxyacrylonitrile. It may be any one selected from a reel or a mixture of two or more.
  • the anion stabilizer may be any one or a mixture of two or more selected from dimethyl sulfone, sulfolane and benziimidazole.
  • the first electrolyte includes a first performance enhancing agent
  • the first performance enhancing agent may be any one or a mixture of two or more selected from propane sultone, ethylene sulfate and 2-fluorobiphenyl.
  • the second electrolyte includes a second performance enhancing agent
  • the second performance enhancing agent may be any one or a mixture of two or more selected from vinyl sulfone, allyl triethoxy silane, and allyl glycidyl ether.
  • the third electrolyte includes a third performance enhancing agent
  • the third performance enhancing agent may be any one or a mixture of two or more selected from acetonitrile and dimethylsulfone.
  • the performance enhancing agent may be included in an amount of 0.1 to 10% by weight of the content of each electrolyte.
  • the performance enhancing agent may be included in an amount of 0.1 to 5% by weight of the content of each electrolyte.
  • the performance enhancing agent may be included in an amount of 0.1 to 3% by weight of the content of each electrolyte.
  • the solid electrolyte may be any one or a mixture of two or more selected from a polymer solid electrolyte, an oxide solid electrolyte, and a sulfide solid electrolyte.
  • the polymer solid electrolyte is polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexa It may be any one or a mixture of two or more selected from pullopropylene (PVDF-HFP).
  • LLT Li7La3Zr2O12(LLZ)
  • Li3.5Zn0.25GeO4 having a lithium super ionic conductor (LISICON) type crystal structure.
  • LiTi2P3O12 Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12 with NASICON (Natrium super ionic conductor) type crystal structure (however, 0 ⁇ xb ⁇ 1, 0 ⁇ yb ⁇ 1) ), Li7La3Zr2O12, LiPON, LiPOD (D is, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, Au At least one selected from), LiAON (A is at least one selected from Si, B, Ge, Al, C, Ga, etc.) may be any one or a mixture of two or more selected from the group.
  • the oxide-based solid electrolyte is one containing Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12 (however, 0 ⁇ xb ⁇ 1, 0 ⁇ yb ⁇ 1) I can.
  • the sulfide-based solid electrolyte may include any one selected from Li 6 PS 5 Cl and Li 2 SP 2 S 5 , or a mixture thereof.
  • the separator may be formed by compressing and impregnating the solid electrolyte in a porous membrane.
  • the porous membrane may be any one selected from a woven fabric, a nonwoven fabric, and a porous polymer membrane, and may be one layer or a multilayer film in which two or more are stacked.
  • the positive electrode active material layer may include pores, and a porosity of the positive electrode active material layer may be 1 to 30% by volume.
  • the positive active material layer and the negative active material layer contain pores
  • the positive electrode active material layer may have a porosity of 1 to 30 vol%, and the negative active material layer may have a porosity of 1 to 35 vol%.
  • the porosity of the positive active material layer may be 1 to 20 vol%, and the porosity of the negative active material layer may be 1 to 25 vol%.
  • the negative electrode may be a lithium metal layer
  • the positive electrode active material layer may include pores
  • the porosity of the positive active material layer may be 1 to 30% by volume.
  • the porosity of the positive active material layer may be 1 to 20% by volume.
  • the first electrolyte, the second electrolyte, and the third electrolyte may be coated on a positive electrode, a negative electrode, and a separator and then cured to form a positive electrode-electrolyte assembly, a negative electrode-electrolyte assembly, and a separator-electrolyte combination.
  • the coating is a coating method selected from doctor blade coating, bar coating, spin coating, slot die coating, dip coating and spray coating; Alternatively, it may be applied by a printing method selected from inkjet printing, gravure printing, gravure offset, aerosol printing, stencil printing, and screen printing.
  • the electrochemical device may be a primary battery or a secondary battery capable of electrochemical reaction.
  • the electrochemical device is a lithium primary battery, lithium secondary battery, lithium-sulfur battery, lithium-air battery, sodium battery, aluminum battery, magnesium battery, calcium battery, zinc battery, zinc-air battery, sodium-air It is one type selected from the group consisting of battery, aluminum-air battery, magnesium-air battery, calcium-air battery, super capacitor, dye-sensitized solar battery, fuel cell, lead storage battery, nickel cadmium battery, nickel hydrogen storage battery, and alkaline battery. I can.
  • Another aspect of the present invention is a method of manufacturing an electrochemical device
  • the positive electrode includes a positive electrode active material layer
  • the positive electrode active material layer and the separator contain a solid electrolyte
  • the first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
  • At least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte have different compositions.
  • step ii)
  • step iii) sealing the electrode assembly with a packaging material may be further included.
  • the electrochemical device includes a positive electrode-electrolyte assembly including a first electrolyte on a positive electrode including a positive electrode active material layer, a negative electrode-electrolyte combination including a second electrolyte on the negative electrode, and a separator. 3 It includes a membrane-electrolyte assembly containing an electrolyte.
  • the positive electrode active material layer and the separator include a solid electrolyte
  • the first electrolyte, the second electrolyte, and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt, and the first electrolyte, At least one or more selected from the second electrolyte and the third electrolyte may have different compositions.
  • At least one of the first electrolyte, the second electrolyte, and the third electrolyte may have different ionic conductivity, and the difference in ionic conductivity between the electrolytes means the type of solvent, the type of dissociable salt, and the type of dissociable salt. It can be achieved by varying at least one selected from the concentration, the type and content of the monomers constituting the crosslinked polymer matrix.
  • the ionic conductivity of the first electrolyte may be different from that of the second and third electrolytes.
  • the ionic conductivity of the second electrolyte may be different from that of the first and third electrolytes.
  • the ionic conductivity of the third electrolyte may be different from that of the first and second electrolytes.
  • first electrolyte, the second electrolyte, and the third electrolyte may have different ionic conductivity.
  • the difference in ionic conductivity between the gel polymer electrolytes in the first aspect is that the gel polymer electrolytes of the present invention can be applied and cured by a coating method to form a gel polymer electrolyte having a separate composition.
  • the difference in ionic conductivity between the electrolytes may be achieved by differently selecting one or more of the types of solvents, types of dissociable salts, concentrations of dissociable salts, types and amounts of monomers forming the crosslinked polymer matrix.
  • the difference in ionic conductivity may be 0.1 mS/cm or more.
  • the difference in ionic conductivity is 0.1 mS/cm or more, charging/discharging efficiency and battery life may increase, and battery safety may be improved.
  • At least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte have different characteristics in the slope obtained from the Arrhenius plot of the temperature at 20 ⁇ 80 °C and the ion conductivity.
  • the slope of the Arrhenius plot is different, charging/discharging efficiency and battery life may be increased, and battery safety may be improved.
  • the gel polymer electrolyte may specifically include, for example, a crosslinked polymer matrix, a solvent, and a dissociable salt.
  • the crosslinkable polymer matrix may be formed by photocrosslinking or thermal crosslinking of a crosslinkable monomer and a derivative thereof by an initiator.
  • the gel polymer electrolyte is a gel polymer electrolyte composition, as well as coating methods such as doctor blade coating, bar coating, spin coating, slot die coating, dip coating and spray coating, as well as inkjet printing, gravure printing, gravure offset, aerosol printing, stencil printing. And it may be applied by a printing method such as screen printing to enable continuous production.
  • the gel polymer electrolyte composition preferably has a viscosity suitable for the application process, and specifically, the viscosity measured using a Brookfield viscometer at 25°C is 0.1 to 10,000,000 cps, more preferably 1.0 to 1,000,000 cps, more preferably Preferably, it may be 1.0 to 100,000 cps, and it is preferable because it is a viscosity suitable for application to the coating process in the above range, but is not limited thereto.
  • the gel polymer electrolyte composition may include 1 to 50% by weight, specifically 2 to 40% by weight, of a crosslinkable monomer and a derivative thereof, based on 100% by weight of the total composition, but is not limited thereto.
  • the initiator may be 0.01 to 50% by weight, specifically 0.01 to 20% by weight, and more specifically 0.1 to 10% by weight, but is not limited thereto.
  • the liquid electrolyte in which the solvent and the dissociable salt are mixed may be included in an amount of 1 to 95% by weight, specifically 1 to 90% by weight, and more specifically 2 to 80% by weight, but is not limited thereto.
  • the crosslinkable monomer may be used by mixing a monomer having two or more functional groups or a monomer having two or more functional groups and a monomer having one functional group, and any monomer capable of photocrosslinking or thermal crosslinking may be used without limitation. . More specifically, it may be one or a mixture of two or more selected from the group consisting of acrylate-based monomers, acrylic acid-based monomers, sulfonic acid-based monomers, phosphoric acid-based monomers, perfluorine-based monomers, and acrylonitrile-based monomers.
  • polyethylene glycol diacrylate polyethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, trimethylolpropane ethoxylate
  • polyethylene glycol dimethacrylate triethylene glycol diacrylate
  • triethylene glycol dimethacrylate trimethylolpropane ethoxylate
  • It may be any one or a mixture of two or more selected from triacrylate, trimethylolpropane ethoxylate trimethacrylate, bisphenol ethoxylate diacrylate, bisphenol ethoxylate dimethacrylate, and the like.
  • the monomer is any one selected from trimethylolpropane ethoxylate triacrylate alone or the trimethylolpropane ethoxylate triacrylate and other monomers having two or more functional groups and a monomer having one functional group It may be a mixture of the above.
  • any photo initiator or thermal initiator commonly used in the art may be used without limitation.
  • the liquid electrolyte is meant to contain a dissociable salt and a solvent.
  • the dissociable salt is not limited, but specifically, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroantimonate (LiSbF 6 ), lithium hexafluoroacetate (LiAsF 6 ), lithium difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl) , Lithium iodide (LiI), lithium bisoxalato borate (LiB(C 2 O 4 ) 2 ), lithium trifluoromethanesulfonylimide (LiN(C x F 2x+1 SO 2 )(C y F 2y+ 1 SO 2 ) (where
  • the dissociable salt may be any one or a mixture of two or more selected from lithium hexafluorophosphate, lithium bisoxalato borate, lithium trifluoromethanesulfonylimide, and derivatives thereof.
  • the solvent is any one or two or more mixed solvents selected from organic solvents such as carbonate-based solvents, nitrile-based solvents, ester-based solvents, ether-based solvents, ketone-based solvents, glyme-based solvents, alcohol-based solvents and aprotic solvents, and water May be to use.
  • organic solvents such as carbonate-based solvents, nitrile-based solvents, ester-based solvents, ether-based solvents, ketone-based solvents, glyme-based solvents, alcohol-based solvents and aprotic solvents, and water May be to use.
  • the carbonate-based solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC), and the like can be used.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • MEC methylethyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • nitrile-based solvent acetonitrile, succinonitrile, adiponitrile, sebaconitrile, or the like may be used.
  • ester solvent methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethyl ethyl acetate, methyl propio Methylpropionate, ethylpropionate, ⁇ -butylolactone, decanolide, valerolactone, mevalonolactone, caprolactone ), etc. may be used.
  • ether solvent dimethyl ether, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc.
  • ketone solvent cyclohexanone, etc. Can be used.
  • ethylene glycol dimethyl ether triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, or the like may be used.
  • Ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol-based solvent, and R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, and a double bond It may contain an aromatic ring or an ether bond) nitriles such as amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, and the like may be used.
  • R-CN R is a C2 to C20 linear, branched or cyclic hydrocarbon group, and a double bond It may contain an aromatic ring or an ether bond
  • nitriles such as amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, and the like may be used.
  • the solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more mixtures may be appropriately adjusted according to the desired battery performance, which may be widely understood by those engaged in the field. .
  • the solvent is dimethyl carbonate, ethylene carbonate, propylene carbonate, methylpropyl carbonate, methylethyl carbonate, succinonitrile, 1,3-dioxolane, dimethylacetamide, sulfolane, tetraethylene glycol dimethyl ether, dimethoxyethane It may be any one or a mixture of two or more selected from phosphorus and the like.
  • the crosslinked polymer matrix may have a semi-interpenetrating network (semi-IPN) structure further including a linear polymer.
  • Si-IPN semi-interpenetrating network
  • it has excellent flexibility and shows strong resistance to stress such as bending when used as a battery, so that the battery can be operated normally without deteriorating performance.
  • the linear polymer may be easily mixed with the crosslinkable monomer and may be used without limitation as long as it is a polymer capable of impregnating a liquid electrolyte.
  • polyvinylidene fluoride Poly(vinylidene fluoride), PVdF
  • polyvinylidene fluoride hexafluoropropylene Poly(vinylidene fluoride)-co-hexafluoropropylene, PVdF-co-HFP
  • the linear polymer may be included in an amount of 1 to 90% by weight based on the weight of the crosslinked polymer matrix. Specifically, it may be included in 1 to 80% by weight, 1 to 70% by weight, 1 to 60% by weight, 1 to 50% by weight, 1 to 40% by weight, 1 to 30% by weight. That is, when the polymer matrix has a semi-IPN structure, the crosslinkable polymer and the linear polymer may be included in a weight ratio of 99:1 to 10:90. When the linear polymer is included in the above range, the crosslinked polymer matrix can secure flexibility while maintaining appropriate mechanical strength.
  • the gel polymer electrolyte composition may further include inorganic particles as needed.
  • the inorganic particles may facilitate the application process by controlling rheological properties such as viscosity of the gel polymer electrolyte composition.
  • the inorganic particles may be used to improve ionic conductivity and mechanical strength of the electrolyte, and may be porous particles, but are not limited thereto.
  • metal oxides, carbon oxides, carbon-based materials, organic-inorganic composites, etc. may be used, and may be used alone or in combination of two or more.
  • the inorganic particles not only has high affinity with an organic solvent, but is also very stable thermally, thereby improving the thermal stability of the electrochemical device.
  • the average diameter of the inorganic particles is not limited, but may be 0.001 ⁇ m to 10 ⁇ m. Specifically, it may be 0.1 to 10 ⁇ m, more specifically 0.1 to 5 ⁇ m. When the average diameter of the inorganic particles satisfies the above range, excellent mechanical strength and stability of the electrochemical device may be implemented.
  • the content of the inorganic particles in the gel polymer electrolyte composition may be 1 to 50% by weight, more specifically 5 to 40% by weight, more specifically 10 to 30% by weight, and the viscosity range described above 0.1 to It may be used in an amount satisfying 10,000,000 cps, more preferably 1.0 to 1,000,000 cps, more preferably 1.0 to 100,000 cps, but is not limited thereto.
  • the separation membrane may be of various forms, and specifically, for example, i) a separation membrane made of a solid electrolyte and ii) a separation membrane formed by pressing and impregnating a solid electrolyte in a porous membrane may be selected. have.
  • the solid electrolyte is not particularly limited to specific components, and may be any one or a mixture of two or more selected from a polymer solid electrolyte, an oxide solid electrolyte, and a sulfide solid electrolyte. have.
  • the polymer solid electrolyte is polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene. (PVDF-HFP), LiPON, Li 3 N, LixLa1-xTiO 3 (0 ⁇ x ⁇ 1) and Li 2 S-GeS-Ga 2 S 3 It may be any one or a mixture of two or more selected from the group consisting of .
  • the oxide-based solid electrolyte contains an oxygen atom (O), further contains a metal belonging to Group 1 or 2 of the periodic table, has ionic conductivity, and has electronic insulation.
  • O oxygen atom
  • the oxide-based solid electrolyte contains an oxygen atom (O), further contains a metal belonging to Group 1 or 2 of the periodic table, has ionic conductivity, and has electronic insulation.
  • LISICON Lithium super ionic conductor
  • Li, P and O phosphorus compounds containing Li, P and O are also preferred.
  • Li3PO4 lithium phosphate
  • LiPON LiPOD
  • LiPOD LiPOD
  • D is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo
  • Ru Ag, Ta, W, Pt, Au
  • LiAON A is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12 (however, 0 ⁇ xb ⁇ 1, 0 ⁇ yb ⁇ 1) has high lithium ion conductivity, and is chemically It is preferable because it is stable and easy to handle.
  • These may be used individually or may be used in combination of 2 or more types.
  • the lithium ion conductivity of the oxide-based solid electrolyte is preferably 1 ⁇ 10 -6 S/cm or more, more preferably 1 ⁇ 10 -5 S/cm or more, and more preferably 5 ⁇ 10 -5 S/cm or more. .
  • the sulfide-based solid electrolyte preferably contains sulfur (S), contains a metal belonging to Group 1 or Group 2 of the periodic table, has ionic conductivity, and has electronic insulation.
  • the sulfide-based solid electrolyte material is produced by treating a starting material (eg, Li2S, P2S5, etc.) by a dissolution quenching method or a mechanical milling method. In addition, additional heat treatment may be performed after such treatment.
  • a starting material eg, Li2S, P2S5, etc.
  • additional heat treatment may be performed after such treatment.
  • the sulfide-based solid electrolyte may be amorphous or crystalline, and may be a mixture thereof.
  • a solid electrolyte containing at least sulfur (S), phosphorus (P), and lithium (Li) as constituent elements among the sulfide solid electrolyte materials and in particular, those containing Li 2 SP 2 S 5 are used. It is more preferable to do it.
  • the ionic conductivity of the sulfide solid electrolyte is, 1 ⁇ 10 -4 S / cm or more is preferable, 1 ⁇ 10 -3 S / cm or higher is more preferable.
  • the solid electrolyte does not absorb moisture from the viewpoint of reducing ionic conductivity due to hydrolysis or suppressing electrolysis of water during energization.
  • the sulfide-based solid electrolyte is very easy to react with moisture in the atmosphere and is easily decomposed to generate hydrogen sulfide. Since the oxide-based solid electrolyte generally has high hardness, it is easy to cause an increase in interface resistance in an all-solid secondary battery.
  • the gel polymer electrolyte when the gel polymer electrolyte is applied to the solid electrolyte, it is possible to improve the water resistance of the solid electrolyte separator and the adsorption state of the interface by forming a very thin coating film.
  • the average particle size of the solid electrolyte is not particularly limited. Further, 0.001 ⁇ m or more is preferable, and 0.01 ⁇ m or more is more preferable. As an upper limit, 1,000 micrometers or less are preferable, and 100 micrometers or less are more preferable.
  • the solid electrolyte separator may further include a binder for promoting adhesion between solid electrolyte particles.
  • binder examples include styrene-based thermoplastic elastomers such as SBS (styrene butadiene block polymer), SEBS (styrene ethylene butadiene styrene block polymer), styrene-styrene butadiene-styrene block polymer, SBR (styrene butadiene rubber), BR (Butadiene rubber), NR (natural rubber), IR (isoprene rubber), EPDM (ethylene-propylene-diene terpolymer), and partially hydrides thereof.
  • SBS styrene butadiene block polymer
  • SEBS styrene ethylene butadiene styrene block polymer
  • styrene-styrene butadiene-styrene block polymer SBR (styrene butadiene rubber), BR (Butadiene rubber), NR (natural rubber), IR (isopre
  • the weight ratio of the solid electrolyte and the binder may be 51:49 to 99:1, specifically 60:40 to 99:1, and more specifically 80:20 to 99:1.
  • the solid electrolyte separator may be prepared by mixing the solid electrolyte and the binder in a solvent to form a slurry.
  • the solvent may be any one or a mixture of two or more selected from acetone, tetrahydrofuran (THF), dimethylformamide (DMF), dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), N-methyl pyrrolidone (NMP), etc. It is not limited.
  • the solid electrolyte separator may be obtained by preparing a slurry for preparing a solid electrolyte separator including the solid electrolyte, a binder, and a solvent, applying it to an appropriate release plate, drying it, and separating it.
  • the slurry for preparing the solid electrolyte separator may include a sulfide-based solid electrolyte, and a rubber-based binder resin may be included as a binder.
  • the solvent includes a non-polar solvent, and has a polarity index of 0 to 3 and/or a dielectric constant of less than 5.
  • the thickness of the solid electrolyte separator prepared from the slurry for preparing the solid electrolyte separator is not limited, and may be 1 to 200 ⁇ m, more specifically 10 to 200 ⁇ m, which is a range generally used in the art. Not limited.
  • the solid electrolyte separation membrane may be one layer or a multilayer membrane in which two or more are stacked. In addition, when two or more of the solid electrolyte membranes are stacked, the material, composition ratio, and characteristics of each layer may be different from each other.
  • the ii) aspect of the separator of the present invention may be a compressed and impregnated solid electrolyte separation membrane formed by pressing and impregnating a solid electrolyte in a porous polymer membrane.
  • the solid electrolyte is as described above, and the porous membrane may be used without limitation as long as it is commonly used in the relevant field.
  • it may be a woven fabric, a non-woven fabric, and a porous polymer membrane.
  • these may be one layer or a multilayer film in which two or more are stacked.
  • the material, composition ratio, and characteristics of each layer may be different from each other.
  • different types and compositions of the solid material may be laminated in two or more layers by pressing them on the front and rear surfaces of the porous membrane or between two or more porous membranes.
  • the material of the porous membrane is not limited, but specifically, for example, polyethylene, polypropylene, polybutylene, polypentene, polymethylpentene, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyie It may be formed of any one or a mixture of two or more selected from the group consisting of mid, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene, and copolymers thereof.
  • the thickness is not limited, and may be in the range of 1 to 100 ⁇ m, more specifically 10 to 80 ⁇ m, which is typically used in the art, but is not limited thereto.
  • the compressed and impregnated solid electrolyte separation membrane may be prepared by applying the solid electrolyte to the porous membrane in a slurry state and compressing the porous membrane to which the solid electrolyte is applied.
  • the compression may be performed by cold-press or hot-press.
  • the above cold pressure has an advantage in the process in that no special heat treatment is required.
  • the compression may be due to heat pressure, which may affect the improvement of the ion conductivity and the contact area between particles, and thus a compression and impregnation solid electrolyte membrane with improved performance in terms of rate capability Can be manufactured.
  • the compression may be performed at a pressure of 50 to 1000 MPa. If it is less than 50 MPa, for example, a problem in that a separation film between the nonwoven fabric and the solid electrolyte cannot be formed may occur, and the above range is preferable.
  • the compressed and impregnated solid electrolyte separator may be formed to a thickness of 1 to 200 ⁇ m or less. More specifically, the thickness of the separator may be 10 to 200 ⁇ m. When it exceeds the 200 ⁇ m, mechanical properties may be weaker than that of a separator in an appropriate range. In addition, the resistance in the pressure bonding and impregnation solid electrolyte separation membrane increases, so that the advantage of rate capability may be lost. On the other hand, when the thickness is less than 1 ⁇ m, a problem of limiting the role of supporting mechanical properties of the compressed and impregnated solid electrolyte separator may occur. Therefore, it is limited to the above range.
  • the separator-electrolyte combination means that a gel polymer electrolyte is coated and impregnated on the separator to be integrated.
  • the impregnation means that some or all of them are penetrated and integrated.
  • the thickness of the gel polymer electrolyte layer may be 0.01 ⁇ m to 500 ⁇ m. Specifically, it may be 0.01 to 100 ⁇ m, but is not limited thereto. When the thickness of the gel polymer electrolyte layer satisfies the above range, it is possible to improve the performance of the electrochemical device and facilitate the manufacturing process.
  • the positive electrode means that a positive electrode active material layer is formed on a positive electrode current collector.
  • the positive electrode current collector is not limited as long as it is a substrate having excellent conductivity used in the art, and may be made of any one selected from conductive metals and conductive metal oxides.
  • the current collector may have a form in which the entire substrate is made of a conductive material, or a conductive metal, a conductive metal oxide, a conductive polymer, or the like is coated on one or both sides of an insulating substrate.
  • the current collector may be formed of a flexible substrate, and may be easily bent, thereby providing a flexible electronic device.
  • it may be made of a material having a restoring force that is bent and returned to its original shape. More specifically, for example, the current collector may be made of aluminum, stainless steel, copper, nickel, iron, lithium, cobalt, titanium, nickel foam, copper foam, and a polymer substrate coated with a conductive metal, but is limited thereto. It is not.
  • the positive electrode active material layer may be formed of an active material layer including a positive electrode active material, a solid electrolyte, and a binder.
  • the thickness of the positive electrode active material layer is not limited, but may be 0.01 to 500 ⁇ m, more specifically 1 to 200 ⁇ m, but is not limited thereto.
  • the active material layer may be formed by applying a positive electrode active material composition including a positive electrode active material, a solid electrolyte, a binder, and a solvent.
  • the positive electrode active material composition may be cast on a separate support, and then a film obtained by peeling from the support may be laminated on the current collector to prepare a positive electrode having a positive electrode active material layer.
  • the positive electrode active material may be used without limitation as long as it is commonly used in the art. Specifically, for example, a lithium primary battery or a secondary battery, a compound capable of reversible intercalation and deintercalation of lithium (retiated intercalation compound) may be used.
  • the positive electrode active material of the present invention may be in the form of a powder.
  • one or more of a composite oxide of lithium and a metal composed of any one selected from cobalt, manganese, nickel, or a combination of two or more may be used.
  • a specific example may be a compound represented by any one of the following formulas.
  • LiaA1-bRbD2 (wherein 0.90 ⁇ a ⁇ 1.8 and 0 ⁇ b ⁇ 0.5); LiaE1-bRbO2-cDc (wherein, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, and 0 ⁇ c ⁇ 0.05); LiE2-bRbO4-cDc (wherein 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiaNi1-b-cCobRcD ⁇ (wherein, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, and 0 ⁇ 2); LiaNi1-b-cCobRcO2- ⁇ Z ⁇ (wherein, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, and 0 ⁇ 2); LiaNi1-b-cCobRcO2- ⁇ Z2 (in the above formula, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, and 0 ⁇ 2); LiaNi1-b-cMnbR
  • A is Ni, Co, Mn, or a combination thereof;
  • R is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements, or combinations thereof;
  • D is O, F, S, P or a combination thereof;
  • E is Co, Mn or a combination thereof;
  • Z is F, S, P or a combination thereof;
  • G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof;
  • Q is Ti, Mo, Mn, or a combination thereof;
  • T is Cr, V, Fe, Sc, Y or a combination thereof;
  • J is V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
  • the coating layer may include, as a coating element compound, oxide, hydroxide of a coating element, oxyhydroxide of a coating element, oxycarbonate of a coating element, or hydroxycarbonate of a coating element.
  • the compound constituting these coating layers may be amorphous or crystalline.
  • As a coating element included in the coating layer Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof may be used.
  • the coating layer forming process may use any coating method as long as it can be coated by a method that does not adversely affect the physical properties of the positive electrode active material by using these elements in the compound, for example, spray coating, immersion method, etc. Since the content can be well understood by those in the field, detailed descriptions will be omitted.
  • the positive electrode active material may include 20 to 99% by weight, more preferably 30 to 95% by weight of the total weight of the composition.
  • the average particle diameter may be 0.001 ⁇ 50 ⁇ m, more preferably 0.01 ⁇ 20 ⁇ m, but is not limited thereto.
  • the solid electrolyte is as described above. Although not limited, the solid electrolyte may include 5 to 99% by weight, more preferably 5 to 90% by weight of the total weight of the composition. In addition, the average particle diameter may be 0.001 to 50 ⁇ m, more preferably 0.01 to 30 ⁇ m, but is not limited thereto.
  • the binder serves to attach the positive electrode active material particles and the solid electrolyte well to each other, and to fix the positive electrode active material and the solid electrolyte to the current collector. If it is generally used in the field, it may be used without limitation, and representative examples include polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinylfluoride, and ethylene oxide.
  • the present invention is not limited thereto.
  • the content of the binder may be 0.1 to 20% by weight, more preferably 1 to 10% by weight of the total weight. The amount sufficient to serve as a binder in the above range, but is not limited thereto.
  • the solvent may be any one or two or more mixed solvents selected from N-methyl pyrrolidone, acetone, water, etc., but is not limited thereto, and any one commonly used in the art may be used.
  • the content of the solvent is not limited, and may be used without limitation as long as it is an amount sufficient to be coated on the positive electrode current collector in a slurry state.
  • the positive electrode active material composition may further include a conductive material.
  • the conductive material is used to impart conductivity to the electrode, and does not cause chemical changes in the battery to be configured, and may be used without limitation as long as it is an electron conductive material.
  • carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon nanotubes, and carbon fibers
  • Metal-based materials such as metal powder or metal fibers such as copper, nickel, aluminum, and silver
  • Conductive polymers such as polyphenylene derivatives
  • a conductive material containing a mixture thereof may be used, and may be used alone or in combination of two or more.
  • the content of the conductive material may include 0.1 to 20% by weight, more specifically 0.5 to 10% by weight, and more specifically 1 to 5% by weight of the positive electrode active material composition, but is not limited thereto.
  • the average particle diameter of the conductive material may be 0.001 to 1000 ⁇ m, more specifically 0.01 to 100 ⁇ m, but is not limited thereto.
  • the positive electrode active material layer may include pores, and the porosity may be 1 to 30% by volume, and more specifically 1 to 20% by volume, and is limited thereto. It does not become.
  • an aspect of the present invention may be formed by applying a gel polymer electrolyte, thereby forming an evenly and uniformly impregnated electrolyte layer.
  • the positive electrode-electrolyte combination means that the gel polymer electrolyte is laminated or impregnated on a positive electrode to be integrated.
  • the impregnation means that some or all of them are penetrated and integrated.
  • the thickness of the gel polymer electrolyte layer in the positive electrode-electrolyte combination may be 0.01 ⁇ m to 500 ⁇ m. Specifically, it may be 0.01 to 100 ⁇ m, but is not limited thereto. When the thickness of the gel polymer electrolyte layer satisfies the above range, it is possible to improve the performance of the electrochemical device and facilitate the manufacturing process.
  • the negative electrode may have various aspects, and specifically, for example, i) an electrode made of only a current collector, ii) an active material layer including a negative active material, a solid electrolyte, and a binder on the current collector It may be selected from coated electrodes.
  • the negative electrode current collector may be in the form of a thin film or a mesh, and the material may be made of a metal such as lithium metal, lithium aluminum alloy, or other lithium metal alloy, or a polymer.
  • the negative electrode of the present invention may be integrated by using the thin-film or mesh-type current collector as it is or by stacking the thin-film or mesh-type current collector on a conductive substrate.
  • the current collector may be used without limitation as long as it is a substrate having excellent conductivity used in the art. Specifically, for example, it may be made of any one selected from conductive metals and conductive metal oxides. In addition, the current collector may have a form in which the entire substrate is made of a conductive material, or a conductive metal, a conductive metal oxide, a conductive polymer, or the like is coated on one or both sides of an insulating substrate. In addition, the current collector may be formed of a flexible substrate, and may be easily bent, thereby providing a flexible electronic device. In addition, it may be made of a material having a restoring force that is bent and returned to its original shape. More specifically, for example, the current collector may be made of aluminum, stainless steel, copper, nickel, iron, lithium, cobalt, titanium, nickel foam, copper foam, and a polymer substrate coated with a conductive metal, but is limited thereto. It is not.
  • an active material layer may be coated on a current collector by applying a negative active material composition including a negative active material, a solid electrolyte, and a binder.
  • the current collector is as described above, and the negative electrode active material composition may be directly coated and dried on a current collector such as a metal thin film to form a negative electrode plate on which the negative active material layer is formed.
  • the negative electrode active material composition may be cast on a separate support, and then a film obtained by peeling off the support may be laminated on the current collector to prepare a negative electrode having a negative electrode active material layer.
  • the thickness of the negative electrode active material layer is not limited, but may be 0.01 to 500 ⁇ m, more specifically 0.1 to 200 ⁇ m, but is not limited thereto.
  • the negative active material composition may include, but is not limited to, a negative active material, a solid electrolyte, a binder, and a solvent, and may further include a conductive material.
  • the negative active material may be used without limitation as long as it is commonly used in the art. Specifically, for example, a lithium primary battery or a secondary battery, a compound capable of reversible intercalation and deintercalation of lithium (retiated intercalation compound) may be used.
  • the negative active material of the present invention may be in a powder form.
  • it may be any one or a mixture of two or more selected from a metal alloyable with lithium, a transition metal oxide, a non-transition metal oxide, and a carbon-based material.
  • the metal alloyable with lithium may be Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn, etc. It is not limited thereto.
  • the transition metal oxide may be lithium titanium oxide, vanadium oxide, lithium vanadium oxide, or the like, and may be a single or a mixture of two or more.
  • the non-transition metal oxide is Si, SiOx (0 ⁇ x ⁇ 2), Si-C composite, Si-Q alloy (where Q is an alkali metal, alkaline earth metal, group 13 to 16 element, transition metal, rare earth element, or these Is a combination of, not Si), Sn, SnO2, Sn-C complex, Sn-R (wherein R is an alkali metal, alkaline earth metal, group 13 to 16 element, transition metal, rare earth element, or a combination thereof, and Sn Not).
  • Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, It may be any one or a mixture of two or more selected from Sb, Bi, S, Se, Te, and Po.
  • any one or a mixture of two or more selected from crystalline carbon, amorphous carbon, and combinations thereof may be used.
  • the crystalline carbon include graphite such as amorphous, plate-like, flake, spherical or fibrous natural graphite, artificial graphite, and the like
  • examples of the amorphous carbon include soft carbon, hard carbon, mesophase pitch carbide, and calcined coke. And the like can be used, but is not limited thereto.
  • the negative active material may include 1 to 90% by weight, more preferably 5 to 80% by weight of the total weight of the composition.
  • the average particle diameter may be 0.001 to 20 ⁇ m, more preferably 0.01 to 15 ⁇ m, but is not limited thereto.
  • the solid electrolyte is as described above. Although not limited, the solid electrolyte may include 5 to 99% by weight, more preferably 5 to 90% by weight of the total weight of the composition. In addition, the average particle diameter may be 0.001 to 50 ⁇ m, more preferably 0.01 to 30 ⁇ m, but is not limited thereto.
  • the binder serves to attach the negative active material particles well to each other and to fix the negative active material to the current collector.
  • the binder may be used without limitation, and representative examples include polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, and ethylene oxide. Included polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. However, it is not limited thereto.
  • the solvent may be any one or two or more mixed solvents selected from N-methyl pyrrolidone, acetone, water, etc., but is not limited thereto, and any one commonly used in the art may be used.
  • the negative active material composition may further include a conductive material.
  • the conductive material is used to impart conductivity to the electrode, and any electronically conductive material can be used as long as it does not cause chemical changes in the battery to be configured, such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black , Carbon-based materials such as carbon fiber; Metal-based materials such as metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used.
  • the content of the conductive material may include 1 to 90% by weight, more specifically 5 to 80% by weight of the negative electrode active material composition, but is not limited thereto.
  • the average particle diameter of the conductive material may be 0.001 to 100 ⁇ m, more specifically 0.01 to 80 ⁇ m, but is not limited thereto.
  • the negative active material layer may include pores, and the porosity may be 1 to 35% by volume, and more specifically 1 to 25% by volume, and is limited thereto. It does not become.
  • an aspect of the present invention may be formed by applying a gel polymer electrolyte, thereby forming an evenly and uniformly impregnated electrolyte layer.
  • the negative electrode-electrolyte combination means that the gel polymer electrolyte is laminated or impregnated on a negative electrode to be integrated.
  • the impregnation means that some or all of them are penetrated and integrated.
  • the thickness of the gel polymer electrolyte layer may be 0.01 ⁇ m to 500 ⁇ m. Specifically, it may be 0.01 to 100 ⁇ m, but is not limited thereto. When the thickness of the gel polymer electrolyte layer satisfies the above range, it is possible to improve the performance of the electrochemical device and facilitate the manufacturing process.
  • the electrochemical device may be a primary battery or a secondary battery capable of electrochemical reaction.
  • lithium primary battery, lithium secondary battery, lithium-sulfur battery, lithium-air battery, sodium battery, aluminum battery, magnesium battery, calcium battery, sodium-air battery, aluminum-air battery, magnesium-air battery, calcium -It may be an air battery, a super capacitor, a dye-sensitized solar cell, a fuel cell, a lead storage battery, a nickel cadmium battery, a nickel hydrogen storage battery, and an alkaline battery, but is not limited thereto.
  • the positive electrode includes a positive electrode active material layer
  • the positive electrode active material layer and the separator contain a solid electrolyte
  • the first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
  • At least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte are made of different compositions.
  • At least one selected from the first gel polymer electrolyte composition, the second gel polymer electrolyte composition, and the third gel polymer electrolyte composition is selected from a type of a solvent, a type of a dissociable salt, and a concentration of a dissociable salt. Any one or more may be different. In addition, the type or content of the monomers constituting the crosslinked polymer matrix may be different.
  • ii-1) laminating the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly and cutting them into a predetermined shape;
  • ii-2) cutting the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly into a predetermined shape and then laminating them; It may be selected from.
  • iii) sealing the electrode assembly with a packaging material may further include.
  • the gel polymer electrolyte may include coating methods such as doctor blade coating, bar coating, spin coating, slot die coating, dip coating and spray coating, as well as inkjet printing, gravure printing, gravure offset, It may be applied by a printing method such as aerosol printing, stencil printing, and screen printing to enable continuous production.
  • coating methods such as doctor blade coating, bar coating, spin coating, slot die coating, dip coating and spray coating, as well as inkjet printing, gravure printing, gravure offset, It may be applied by a printing method such as aerosol printing, stencil printing, and screen printing to enable continuous production.
  • the liquid electrolyte may be uniformly distributed in the network structure of the crosslinked polymer matrix by applying a composition for polymerization of a gel polymer electrolyte and crosslinking by applying ultraviolet rays or heat, and a solvent evaporation process may be unnecessary. .
  • the gel polymer electrolyte can be formed by the coating method, it can be formed by coating a separate electrolyte suitable for the characteristics of each electrode. In addition, since the gel polymer electrolyte can be formed by the coating method, the electrolyte can be formed evenly and uniformly on the electrode and the separator.
  • the ionic conductivity can be checked through the following calculation formula.
  • IC 1 ( ⁇ cathode 2 ⁇ IC cathode )/P cathode
  • IC 2 ( ⁇ anode 2 ⁇ IC anode )/P anode
  • IC 1 , IC 2 , IC 3 are the ionic conductivity of the first , second , and third electrolytes, respectively, and IC cathode , IC anode , and IC separator are a positive electrode-electrolyte combination, a negative electrode-electrolyte combination, It is the ionic conductivity of the membrane-electrolyte combination, ⁇ cathode , ⁇ anode , and ⁇ separator are the curvatures of the anode, cathode, and separator, respectively, and P cathode , P anode , and P separator are the porosities of the anode, cathode, and separator.
  • the porosity (% by volume) of the specimen may be measured using a mercury pressure porosity meter for each of the anode, the cathode, and the separator.
  • a standard electrolyte with known ionic conductivity in this patent, a liquid electrolyte in which 1 mol of LiPF 6 is dissolved in a solvent mixed with 50% by volume of ethylene carbonate and 50% by volume of ethyl methyl carbonate was used as the standard electrolyte.
  • the ionic conductivity of the positive electrode-electrolyte combination, the negative electrode-electrolyte combination, and the separator-electrolyte combination may be measured, and the degree of curvature of the positive electrode, the negative electrode, and the separator may be calculated through the above calculation formula.
  • the ionic conductivity is measured by cutting a positive electrode-electrolyte assembly, a negative electrode-electrolyte assembly, and a separator-electrolyte assembly into a circle having a diameter of 18 mm, and preparing a coin cell 2032, respectively, according to temperature, using an AC impedance measurement method.
  • the ion conductivity measurement was performed in a frequency band of 1 MHz to 0.01 Hz using a VMP3 measuring device.
  • the seal is removed, the positive electrode-electrolyte assembly, the negative electrode-electrolyte assembly, and the separator-electrolyte combination are separated, and each combination is put in a dimethyl carbonate solvent and stored for 24 hours, and then acetone solvent And then stored in a dimethyl carbonate solvent for 24 hours, and then stored in a dimethyl carbonate solvent for 24 hours to remove the electrolyte in each of the conjugates, and then dried for 24 hours in a vacuum atmosphere (at this time, the positive and negative electrodes from which the electrolyte was removed is 130 degrees, and the separator is 60 It was dried at degrees temperature.)
  • the positive electrode, the negative electrode, and the separator from which the electrolyte has been removed are calculated using the porosity and the standard electrolyte in the above-mentioned method, and the positive electrode-electrolyte combination, the negative electrode-electrolyte combination and the separator in the state before
  • the positive electrode-electrolyte combination and the negative electrode-electrolyte combination are composite conductors, which are both electron conductors and ion conductors, and the Nyquist plot for them shows the outline of a semicircle.
  • the semicircle is divided into a resistance in a high frequency region (R 1 ) and a resistance in a low frequency region (R 2 ), and the resistance to ion conduction can be calculated through the following calculation formula.
  • the separator-electrolyte combination is an ion conductor and exhibits a vertically rising shape in a Nyquist plot, and an impedance resistance value along the horizontal axis indicates resistance to ion conduction.
  • the ionic conductivity of the positive electrode-electrolyte assembly, the negative electrode-electrolyte assembly, and the separator-electrolyte assembly is a resistance value for ionic conduction obtained above and can be calculated through the following calculation formula.
  • L is the thickness of the specimen (thickness excluding the current collectors of the positive electrode and negative electrode and the thickness of the separator), and A is the area of the specimen.
  • the slope of the Arrhenius plot shows the ionic conductivity data for each temperature obtained above in graphs, with the inverse 1/T of the temperature T(K) on the horizontal axis and the logarithmic ln(IC) of the ion conductivity on the vertical axis, respectively.
  • the slope of the straight line at °C was determined.
  • the initial discharge capacity is the discharge capacity in the first cycle (mAh/cm2).
  • Initial charge/discharge efficiency is the ratio of charge capacity and discharge capacity in the first cycle.
  • the capacity retention rate for the life characteristics was calculated by the following equation.
  • Capacity retention rate (%) [200th cycle discharge capacity/first cycle discharge capacity] ⁇ 100
  • the porosity (volume %) of the specimen was measured using a mercury intrusion porosimetry (equipment name: AutoPore IV 9500, equipment manufacturer: Micromeritics Instrument Corp.).
  • the porosity of the electrode was calculated under the conditions of a pressure range of 30 psia to 60000 psia.
  • Each Fourier transform infrared spectroscopy (Fourier transform infrared spectroscopy, equipment name: 670-IR, equipment manufacturer: Varian) is performed by separating the positive electrode, negative electrode, and separator from the electrode assembly that has completed the initial formation process by applying a charge/discharge current. Performed. From the absorption spectrum obtained by spectroscopy of the reflected light when irradiated with infrared rays, it is confirmed that the peak intensity derived from the material properties of different solvent types, salt types, salt concentrations, monomer types and monomer content can be distinguished and judged. I did.
  • X-ray photoelectron analysis (X-ray Photoelectron Spectroscopy, equipment name: K-Alpha, equipment manufacturer: Thermo Fisher) by separating the positive electrode, negative electrode, and separator from the electrode assembly in the state where the charging/discharging current was applied and the initial formation process was completed. was performed. From the energy of photoelectrons escaped by X-rays irradiated on the sample, it is possible to distinguish and determine the presence and absence of elements and chemical bonding states including different types of solvents, types of salts, concentrations of salts, types of monomers, and content of monomers. Confirmed that there is.
  • Two-dimensional nuclear magnetic resonance spectroscopy analysis (Nuclear Magnetic Resonance Spectroscopy, equipment name: AVANCE III HD, equipment manufacturer: Bruker) by separating the positive electrode, negative electrode, and separator from the electrode assembly in which the initial formation process has been completed by applying charge/discharge current ) was performed.
  • the nuclear magnetic resonance phenomenon of the atomic nucleus that occurs when a magnetic field is applied to the performance enhancer included in the sample
  • the chemical environment around the nucleus and information on the spin bonds with neighboring atoms are used to determine the types of different solvents, salts, and salts. It was confirmed that the concentration, the type of the monomer, and the content of the monomer can be distinguished and determined.
  • Time-of-flight Secondary Ion Mass Spectrometry equipment name: TOF-SIMS, by separating the anode, cathode, and separator from the electrode assembly in the state where the initial formation process is completed by applying charge/discharge current. 5, equipment manufacturer: ION TOF) was performed. Through mass analysis of the secondary ions generated in the sample, it was confirmed that different types of solvents, types of salts, concentrations of salts, types of monomers, and content of monomers can be distinguished and determined.
  • LiCoO 2 lithium cobalt composite oxide
  • Li 6 PS 5 Cl Li 6 PS 5 Cl having an average particle diameter of 2.5 ⁇ m as a solid electrolyte
  • Super-P having an average particle diameter of 40 nm as a conductive material
  • a positive electrode active material composition (positive electrode mixture slurry) was prepared by adding 5% by weight and 5% by weight of polyvinylidene fluoride as a binder so as to have a solid content of 50% by weight to N-methyl-2-pyrrolidone as an organic solvent.
  • the positive electrode active material composition was applied to an aluminum thin film having a thickness of 20 ⁇ m using a doctor blade, dried at 120° C., and rolled with a roll press to prepare a positive electrode coated with an active material layer having a thickness of 40 ⁇ m.
  • the first electrolyte composition was coated on the active material layer of the prepared positive electrode using a doctor blade, and then crosslinked by irradiating ultraviolet rays at 2000 mW/cm 2 for 20 seconds, and a 41 ⁇ m thick positive electrode-electrolyte with the first gel polymer electrolyte layer formed thereon.
  • the conjugate was prepared.
  • the first electrolyte composition was a mixture of 5% by weight of trimethylolpropane ethoxylate triacrylate, 0.1% by weight of hydroxy methyl phenyl propanone as a photoinitiator, and 94.9% by weight of a liquid electrolyte.
  • a liquid electrolyte a liquid electrolyte in which 1 mol of LiPF 6 was dissolved in propylene carbonate, a cyclic carbonate-based organic solvent having excellent electrochemical oxidation stability, was used.
  • the viscosity of the first gel polymer electrolyte composition was 10 cps at 25°C.
  • the negative electrode active material composition was coated on a copper thin film having a thickness of 20 ⁇ m using a doctor blade, dried at 120° C., and rolled by a roll press to prepare a negative electrode coated with an active material layer having a thickness of 40 ⁇ m.
  • the second gel polymer electrolyte composition was coated on the active material layer of the prepared negative electrode using a doctor blade, and then crosslinked by irradiating ultraviolet rays at 2000 mW/cm -2 for 20 seconds.
  • the second gel polymer electrolyte layer was formed with a thickness of 41 ⁇ m.
  • a negative electrode-electrolyte assembly was prepared.
  • the second gel polymer electrolyte composition was a mixture of 7.5% by weight of trimethylolpropane ethoxylate triacrylate, 0.1% by weight of hydroxymethyl phenyl propanone as a photoinitiator, and 92.4% by weight of a liquid electrolyte.
  • a liquid electrolyte a liquid electrolyte in which 4 mol of LiFSI was dissolved in a dimethoxyethane solvent was used.
  • the viscosity of the second gel polymer electrolyte composition was 65 cps at 25°C.
  • a 50 ⁇ m thick membrane prepared by casting a Li 6 PS 5 Cl solid electrolyte having an average particle diameter of 2.5 ⁇ m as a separator was used.
  • a third gel polymer electrolyte composition was coated on the prepared separator using a doctor blade, and crosslinked by irradiation with ultraviolet rays at 2000 mW/cm -2 for 20 seconds, and a 51 ⁇ m-thick separator-electrolyte assembly with a third gel polymer electrolyte layer formed thereon.
  • the third gel polymer electrolyte composition 17.5 wt% of trimethylolpropane ethoxylate triacrylate, 0.1 wt% of hydroxy methyl phenyl propanone and 82.4 wt% of a liquid electrolyte were mixed as a photo initiator.
  • a liquid electrolyte a liquid electrolyte in which 1 mol of LiPF 6 was dissolved in ethylene carbonate/diethyl carbonate (1:1 volume ratio mixture), which is a linear carbonate-based mixed organic solvent with excellent wettability in the separator, was used.
  • the viscosity of the third gel polymer electrolyte composition was 30 cps at 25°C.
  • the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly were stacked and then punched to prepare a battery (coin cell).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to an electrochemical device and a manufacturing method thereof. More specifically, the present invention relates to an electrochemical device and a manufacturing method thereof, wherein in an electrode assembly consisting of an anode, a separator, and a cathode, the anode, the separator, and the cathode are each composed of a combination of a solid electrolyte and a gel polymer electrolyte, and wherein at least one or more selected from a first electrolyte, a second electrolyte, and a third electrolyte of the gel polymer electrolyte has a different composition. In addition, since the electrochemical device of the present invention includes an electrolyte having different ion conductivities in at least one or more of the anode, the separator, and the cathode, it is possible to provide an optimized ion flow to each electrode and separator, and thus, the present invention has a more advantageous effect on improving lifespan characteristics and safety of the electrochemical device.

Description

전기화학 소자 및 이의 제조방법Electrochemical device and its manufacturing method
본 발명은 전기화학 소자 및 이의 제조방법에 관한 것이다. 보다 구체적으로, 각각 고체 전해질을 포함하고 있는 양극, 분리막 및 음극에 각각 별도의 겔 고분자 전해질을 도포하여 결합체를 이루며, 상기 각각의 겔 고분자 전해질에서 선택되는 적어도 어느 하나 이상은 서로 다른 조성으로 이루어진 것을 특징으로 하는 전기화학 소자 및 이의 제조방법에 관한 것이다. The present invention relates to an electrochemical device and a method of manufacturing the same. More specifically, a separate gel polymer electrolyte is applied to a positive electrode, a separator, and a negative electrode each containing a solid electrolyte to form a conjugate, and at least one or more selected from each of the gel polymer electrolytes has a different composition. It relates to an electrochemical device and a method of manufacturing the same.
본 발명의 일 양태에 따른 전기화학소자는 양극, 분리막 및 음극에 각각 별개의 최적화된 조성으로 겔 고분자 전해질을 도입할 수 있으며, 이에 따라 각각의 전극 및 분리막에 최적화된 이온 흐름을 조절하여 전기화학 소자의 수명특성 및 안전성 개선에 더욱 유리한 효과가 있다.The electrochemical device according to an aspect of the present invention may introduce a gel polymer electrolyte with a separate optimized composition to the anode, the separator, and the cathode, and accordingly, the electrochemical device by controlling the optimized ion flow to each electrode and separator. There is a more advantageous effect in improving the life characteristics and safety of the device.
이차전지는 산화 및 환원의 화학반응을 통해 화학 에너지와 전기 에너지가 상호 변환되어 충전과 방전을 반복하는 전지로서, 일반적으로 양극, 음극, 분리막, 전해질의 네 가지 기본 요소를 포함한다. 이때 양극과 음극을 통틀어 전극이라 하며, 전극 재료의 구성 요소 중에서 실제로 반응을 일으키는 재료를 활물질이라 칭한다. 전극은 합재와 집전체로 구성되는데, 상기 합재는 양극활물질을 포함하며, 필요에 따라 도전재, 바인더가 첨가된 형태로 집전체는 전자전도성을 띠는 재료로 구성된다.A secondary battery is a battery that repeats charging and discharging by converting chemical energy and electrical energy through chemical reactions of oxidation and reduction, and generally includes four basic elements: a positive electrode, a negative electrode, a separator, and an electrolyte. In this case, the positive and negative electrodes are collectively referred to as an electrode, and a material that actually reacts among the constituent elements of the electrode material is referred to as an active material. The electrode is composed of a composite material and a current collector, and the composite material includes a positive electrode active material, and a conductive material and a binder are added as necessary, and the current collector is composed of a material exhibiting electron conductivity.
일반적인 리튬이온 이차전지는 액체 전해질 및 액체를 포함하는 전해질이 사용되고 있다. 그러나 액체 전해질은 휘발성이 있어 폭발의 위험이 존재하고, 열적 안정성도 떨어지는 단점이 있다.In general lithium ion secondary batteries, a liquid electrolyte and an electrolyte containing a liquid are used. However, since the liquid electrolyte is volatile, there is a risk of explosion, and thermal stability is also poor.
반면, 고체상의 전해질을 사용하는 전고체 전지(All solid state battery)는 폭발 위험이 적고, 열적 안정성도 우수하다. 또한 바이폴라플레이트(bi-polar plate)를 사용하게 되면, 전극을 적층하여 직렬 연결을 가능하게 함으로써 높은 작동 전압을 구성할 수 있는데 이 경우 액체 전해질이 적용된 셀의 병렬 연결 방식 보다 높은 에너지 밀도를 구현할 수 있다.On the other hand, an all solid state battery using a solid electrolyte has a low risk of explosion and has excellent thermal stability. In addition, if a bi-polar plate is used, a high operating voltage can be configured by stacking electrodes to enable series connection. In this case, a higher energy density can be achieved than the parallel connection method of cells to which a liquid electrolyte is applied. have.
이러한 전고체 전지를 제조하기 위해서는 리튬 이온을 전달시키는 고체 전해질이 반드시 필요하다. 고체 전해질은 크게 유기(고분자) 전해질과 무기 전해질로 구분되며, 무기 전해질은 산화물계 전해질과 황화물계 전해질로 구분된다. In order to manufacture such an all-solid-state battery, a solid electrolyte for transferring lithium ions is required. Solid electrolytes are largely divided into organic (polymer) electrolytes and inorganic electrolytes, and inorganic electrolytes are divided into oxide-based electrolytes and sulfide-based electrolytes.
고분자 전해질은 분자 사슬 내에서 리튬이온을 호핑(hopping)하는 방식으로 전달하여 액체 전해질 대비 안정성이 우수하지만, 액체를 포함하지 않은 고분자의 경우 상온에서 이온전도도가 10 -7~10 -4S/m 정도로 낮은 수준을 나타낸다. 또한 기계적 물성이 취약하여 4 V 이상의 고전압에서 불안정한 단점이 있다.Polymer electrolytes are more stable than liquid electrolytes by delivering lithium ions within the molecular chain, but polymers that do not contain liquids have an ionic conductivity of 10 -7 to 10 -4 S/m at room temperature. The level is low enough. In addition, due to its weak mechanical properties, it is unstable at a high voltage of 4 V or higher.
황화물계 고체 전해질은 Li 2S-P 2S 5, Thio-LISICON, Li-M-P-S(M= Si,Ge, Sn) 등의 다양한 구조 및 성분이 알려져 있으며, 10 -3~10 -2S/cm 수준의 높은 이온전도도를 가지는 것으로 보고된다. 그러나 황화물계 고체 전해질은 수분과 반응하여 유독한 H 2S 가스를 발생시켜 수분이 제거된 환경에서 사용될 수 있으며, 대기에 노출 시 매우 위험하고 이온전도도가 급격히 떨어지는 단점이 있다. 또한 무극성 용매에 안정하고 극성 용매에는 불안정하여, 슬러리 제조 시 독성이 있는 벤젠, 톨루엔, 자일렌 등의 무극성 용매를 사용해야 하는 단점이 있다. 이 경우 슬러리 특성 또한 저하된다.Sulfide-based solid electrolytes are known for various structures and components such as Li 2 SP 2 S 5 , Thio-LISICON, and Li-MPS (M= Si,Ge, Sn), and have a level of 10 -3 to 10 -2 S/cm. It is reported to have high ionic conductivity. However, the sulfide-based solid electrolyte reacts with moisture to generate toxic H 2 S gas and can be used in an environment in which moisture is removed, and when exposed to the atmosphere, it is very dangerous and has a disadvantage that its ionic conductivity is rapidly degraded. In addition, since it is stable in non-polar solvents and unstable in polar solvents, there is a disadvantage in that non-polar solvents such as benzene, toluene, and xylene, which are toxic when preparing a slurry, must be used. In this case, the slurry properties also deteriorate.
산화물계 고체 전해질은 리폰(LiPON)계, 페로브스카이트계, 가넷계 및 글라스 세라믹계 등의 산소를 포함하고 있는 전해질로서, 10 -5~10 -3S/cm 의 이온전도도로 황화물계 보다 낮은 이온전도도를 갖지만, 황화물 고체 전해질 대비 수분 및 안정성이 매우 우수한 장점이 있다. 그러나 산화물계 고체 전해질은 입계(grain boundary) 저항이 크기 때문에 고온으로 소결하여 입자 간의 네킹(necking)을 형성시킨 전해질 막 또는 펠렛(pellet)을 사용할 수 있는데, 900 ~ 1400 ℃의 높은 온도에서 고온 소결이 이루어지기 때문에 대면적 전해질 막을 형성하기에는 양산성이 매우 떨어지는 문제가 있다.Oxide-based solid electrolytes are electrolytes containing oxygen such as LiPON-based, perovskite-based, garnet-based and glass-ceramic-based electrolytes, and have an ionic conductivity of 10 -5 to 10 -3 S/cm, which is lower than that of sulfide-based electrolytes. Although it has ionic conductivity, it has an advantage of very excellent moisture and stability compared to a sulfide solid electrolyte. However, because oxide-based solid electrolytes have high grain boundary resistance, electrolyte membranes or pellets formed by sintering at high temperatures to form neckings between particles can be used. High temperature sintering at high temperatures of 900 to 1400 ℃ Because of this, there is a problem that mass productivity is very poor in forming a large-area electrolyte membrane.
전고체 전지는 전극과의 계면 접촉 저하로 인한 이온전도경로가 적기 때문에 이온전도도가 감소하는 문제가 있다. 대한민국 공개특허 제10-2018-0106978호에는 가교제를 사용하여 양극과 고체 전해질 층 및 음극과 고체 전해질 층의 계면 결착력을 개선하는 전고체 전지 제조방법이 개시가 되어 있으나, 전극 조립체를 한꺼번에 가교제 용액에 함침시킨 후 이를 취출하여 80℃ 진공 하에서 장시간의 용매 건조 공정 및 가교 공정을 거쳐야 하기 때문에 양산에 적용하기에는 어려운 점이 있다. The all-solid-state battery has a problem in that the ion conductivity decreases because the ion conduction path is small due to the decrease in interface contact with the electrode. Korean Patent Laid-Open Publication No. 10-2018-0106978 discloses a method of manufacturing an all-solid-state battery using a crosslinking agent to improve the interfacial bonding between the positive electrode and the solid electrolyte layer, and the negative electrode and the solid electrolyte layer. After impregnation, it is difficult to apply to mass production because it has to be taken out and subjected to a long solvent drying process and crosslinking process under vacuum at 80℃.
[선행기술문헌][Prior technical literature]
대한민국 공개특허 제10-2018-0106978호(2018.10.01)Republic of Korea Patent Publication No. 10-2018-0106978 (2018.10.01)
본 발명의 일 양태는 고체 전해질을 사용하는 전기화학 소자에서 발생하는 입계 저항(grain boundary resistance), 계면 저항(interfacial resistance) 및 낮은 이온전도도에 따른 문제를 해결하고, 양극과 음극에서 발생하는 부반응 문제를 해결하고자 한다. One aspect of the present invention solves the problem of grain boundary resistance, interfacial resistance, and low ionic conductivity occurring in an electrochemical device using a solid electrolyte, and a side reaction problem occurring in the anode and the cathode I want to solve it.
또한 본 발명의 일 양태는 양극, 분리막 및 음극은 모두 도포방법으로 겔 고분자 전해질을 형성하고, 이중 적어도 어느 하나 이상은 겔 고분자 전해질의 조성이 상이하도록 함으로써 상기 양극, 분리막 및 음극에 각각 최적화된 이온 흐름을 조절할 수 있는 전기화학소자를 제공하고자 한다. 구체적으로, 필요에 따라 상기 겔 고분자 전해질의 용매의 종류, 해리 가능한 염의 종류, 해리 가능한 염의 농도, 단량체의 종류, 단량체의 함량 등을 다르게 함으로써 양극, 분리막 및 음극에 각각 최적화된 이온 흐름을 조절할 수 있는 전기화학소자를 제공하고자 한다.In addition, in one aspect of the present invention, the positive electrode, the separator, and the negative electrode all form a gel polymer electrolyte by a coating method, and at least one of them has a different composition of the gel polymer electrolyte, thereby ions optimized for each of the positive electrode, the separator, and the negative electrode. It is intended to provide an electrochemical device that can control flow. Specifically, by varying the type of the solvent of the gel polymer electrolyte, the type of dissociable salt, the concentration of the dissociable salt, the type of monomer, the content of the monomer, etc., as necessary, the optimized ion flow for the anode, the separator, and the cathode can be adjusted. To provide an electrochemical device with
또한 본 발명의 일 양태는 양극, 분리막 및 음극에 각각 적합한 성능향상제를 포함할 수 있으므로, 전지의 충방전 효율 및 수명 특성이 더욱 우수한 전기화학 소자를 제공하고자 한다.In addition, one aspect of the present invention is to provide an electrochemical device having more excellent charge/discharge efficiency and lifespan characteristics of a battery, since it may include a performance enhancer suitable for each of the positive electrode, the separator, and the negative electrode.
상기 목적을 달성하기 위한 본 발명의 일 양태는 양극 상에 제 1 전해질을 포함하는 양극-전해질 결합체,One aspect of the present invention for achieving the above object is a positive electrode-electrolyte assembly comprising a first electrolyte on the positive electrode,
음극 상에 제 2 전해질을 포함하는 음극-전해질 결합체, 및A cathode-electrolyte assembly comprising a second electrolyte on the cathode, and
분리막 상에 제 3 전해질을 포함하는 분리막-전해질 결합체를 포함하며,It includes a separator-electrolyte assembly including a third electrolyte on the separator,
상기 양극은 양극 활물질 층을 포함하고, The positive electrode includes a positive electrode active material layer,
상기 양극 활물질 층 및 상기 분리막은 고체 전해질을 포함하고,The positive electrode active material layer and the separator contain a solid electrolyte,
상기 제 1 전해질, 제 2 전해질 및 제 3 전해질은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질이며, The first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 서로 다른 조성으로 이루어진 것인 전기화학 소자를 제공한다.At least one selected from the first electrolyte, the second electrolyte and the third electrolyte provides an electrochemical device that is made of different compositions.
본 발명의 또 다른 일 양태는 i) 양극 상에 제 1 겔 고분자 전해질 조성물을 도포 및 경화하여 제 1 전해질을 포함하는 양극-전해질 결합체를 제조하고, 음극 상에 제 2 겔 고분자 전해질 조성물을 도포 및 경화하여 제 2 전해질을 포함하는 음극-전해질 결합체를 제조하고, 분리막 상에 제 3 겔 고분자 전해질 조성물을 도포 및 경화하여 제 3 전해질을 포함하는 분리막-전해질 결합체를 제조하는 단계; 및Another aspect of the present invention is i) coating and curing a first gel polymer electrolyte composition on a positive electrode to prepare a positive electrode-electrolyte assembly including a first electrolyte, and coating a second gel polymer electrolyte composition on the negative electrode, and Curing to prepare a cathode-electrolyte assembly including a second electrolyte, and coating and curing a third gel polymer electrolyte composition on the separation membrane to prepare a separation membrane-electrolyte assembly including a third electrolyte; And
ii) 상기 양극-전해질 결합체, 분리막-전해질 결합체 및 음극-전해질 결합체를 적층하여 전극조립체를 제조하는 단계; ii) preparing an electrode assembly by laminating the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly;
를 포함하며,Including,
상기 양극은 양극 활물질 층을 포함하고,The positive electrode includes a positive electrode active material layer,
상기 양극 활물질 층 및 상기 분리막은 고체 전해질을 포함하고,The positive electrode active material layer and the separator contain a solid electrolyte,
상기 제 1 전해질, 제 2 전해질 및 제 3 전해질은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질이며, The first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 서로 다른 조성으로 이루어진 것인 전기화학 소자의 제조방법을 제공한다.At least one selected from the first electrolyte, the second electrolyte, and the third electrolyte provides a method of manufacturing an electrochemical device that is made of different compositions.
본 발명의 일 양태에 따른 전기화학소자는 고체 전해질을 포함하는 양극, 분리막 및 음극에 각각 별도 조성의 겔 고분자 전해질을 도입할 수 있으며, 각각에 최적화된 조성으로 전해질을 제공할 수 있다. 상기 겔 고분자 전해질은 전극에 직접 도포 할 수 있는 점도를 갖는 고유의 유변학적 특성으로 인해, 고체 전해질을 포함하는 기공도가 낮은 전극 및 분리막으로의 함침이 용이한 특징이 있어, 상기 양극, 분리막 및 음극에 포함되어 있는 고체 전해질과 활물질 조성물 사이 또는 고체 전해질 사이에 형성된 작은 기공을 상기 겔 고분자 전해질로 채움으로써 전지의 입계 저항(grain boundary resistance)을 줄일 수 있고, 이온전도도를 향상시킬 수 있어 전기화학소자의 수명특성 및 안전성 개선에 더욱 유리한 효과가 있다. In the electrochemical device according to an aspect of the present invention, a gel polymer electrolyte having a separate composition may be introduced into a positive electrode, a separator, and a negative electrode including a solid electrolyte, and an electrolyte may be provided with a composition optimized for each. The gel polymer electrolyte is characterized by easy impregnation into an electrode having a low porosity and a separator including a solid electrolyte due to its inherent rheological properties having a viscosity that can be directly applied to the electrode, and the anode, the separator, and By filling the small pores formed between the solid electrolyte and the active material composition or between the solid electrolyte contained in the negative electrode with the gel polymer electrolyte, the grain boundary resistance of the battery can be reduced and the ionic conductivity can be improved. There is a more advantageous effect in improving the life characteristics and safety of the device.
또한 본 발명의 일 양태에 따른 전기화학소자는 겔 고분자 전해질이 전극과 분리막 상에 결합되어 각각의 표면 상에 아주 얇은 겔 고분자 전해질 층이 형성되어, 양극-분리막 및 분리막-음극 계면 상에 균일하고 밀접하게 접촉된 계면을 형성할 수 있으므로 전극과 분리막 간의 계면 저항(interfacial resistance)을 줄일 수 있어 전기화학소자의 수명특성을 개선하는 효과가 있다.In addition, in the electrochemical device according to an aspect of the present invention, a gel polymer electrolyte is bonded to the electrode and the separator to form a very thin gel polymer electrolyte layer on each surface, so that it is uniform on the anode-separator and the separator-cathode interface. Since an interface in close contact can be formed, interfacial resistance between the electrode and the separator can be reduced, thereby improving the life characteristics of the electrochemical device.
또한, 양극, 분리막 및 음극 각각에 최적화된 용매, 염, 염의 농도, 단량체의 종류 및 함량을 구성할 수 있어, 전극 및 분리막에 최적화된 이온 흐름을 조절이 가능한 효과가 있다.In addition, it is possible to configure the solvent, salt, concentration of the salt, the type and content of the monomer optimized for each of the anode, the separator and the cathode, there is an effect that it is possible to control the ion flow optimized for the electrode and the separator.
또한, 양극, 분리막 및 음극에 각각 별도의 최적화된 성능향상제를 도입하여 양극, 분리막 및 음극에서 발생하는 부반응에 따른 문제를 해결하고, 각각의 전극 및 분리막의 성능을 더욱 향상시킬 수 있는 효과가 있다. In addition, by introducing a separate optimized performance enhancer to the anode, the separator and the cathode, there is an effect of solving the problems caused by side reactions occurring in the anode, the separator and the cathode, and further improving the performance of each electrode and the separator. .
또한, 겔 고분자 전해질을 도포함에 있어, 닥터 블레이드 코팅, 바 코팅, 스핀 코팅, 슬롯다이 코팅, 딥 코팅 및 스프레이 코팅 등의 코팅 공정뿐만 아니라, 롤투롤 프린팅, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅, 스텐실 프린팅 및 스크린 프린팅 등의 프린팅 공정으로 도포가 가능하며, 연속적으로 제조가 가능하여 생산성이 향상될 수 있는 효과가 있다. In addition, in applying the gel polymer electrolyte, not only coating processes such as doctor blade coating, bar coating, spin coating, slot die coating, dip coating and spray coating, but also roll-to-roll printing, inkjet printing, gravure printing, gravure offset, aerosol It can be applied in a printing process such as printing, stencil printing, and screen printing, and it can be manufactured continuously, thereby improving productivity.
이하 첨부된 구체예 또는 실시예를 통해 본 발명을 더욱 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. Hereinafter, the present invention will be described in more detail through the accompanying specific examples or examples. However, the following specific examples or examples are only one reference for describing the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. In addition, unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. The terms used in the description in the present invention are merely intended to effectively describe specific embodiments and are not intended to limit the present invention.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다. In addition, the singular form used in the specification and the appended claims may be intended to include the plural form unless otherwise indicated in the context.
본 발명에서 어떤 부분이 어떤 구성 요소를‘포함한다’고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In the present invention, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless otherwise stated.
본 발명에서 ‘전극조립체’는 양극, 분리막 및 음극이 적층 또는 젤리롤 상태로 적층된 것을 의미하며, 포장재로 밀봉되기 전의 상태를 의미한다.In the present invention,'electrode assembly' means that the anode, the separator, and the cathode are stacked in a stacked or jelly roll state, and refers to a state before being sealed with a packaging material.
본 발명에서 ‘전기화학소자’는 상기 전극조립체를 포장재로 밀봉하여 전지로 사용 가능한 상태를 의미한다.In the present invention, "electrochemical device" means a state in which the electrode assembly is sealed with a packaging material and can be used as a battery.
본 발명에서 편의를 위하여 양극 상에 형성되는 전해질은 제 1 전해질, 음극 상에 형성되는 전해질은 제 2 전해질, 분리막 상에 형성되는 전해질은 제 3 전해질이라 표현하였으나, 이들 중 적어도 하나를 제외하고는 동일한 전해질인 것일 수 있다. 상기 동일한 전해질은 가교 고분자 매트릭스를 이루는 단량체의 종류 또는 함량, 용매의 종류, 해리 가능한 염의 종류 및 농도 등이 동일함을 의미한다.In the present invention, for convenience, the electrolyte formed on the positive electrode is expressed as the first electrolyte, the electrolyte formed on the negative electrode is the second electrolyte, and the electrolyte formed on the separator is expressed as a third electrolyte, but at least one of them is excluded. It may be the same electrolyte. The same electrolyte means that the type or content of monomers constituting the crosslinked polymer matrix, the type of solvent, and the type and concentration of dissociable salts are the same.
본 발명에서 ‘서로 다른 조성’으로 이루어진 겔 고분자 전해질은 가교 고분자 매트릭스를 이루는 단량체의 종류 또는 함량, 용매의 종류, 해리 가능한 염의 종류 및 농도 등에서 선택되는 어느 하나 이상이 상이함을 의미한다.In the present invention, the gel polymer electrolyte composed of “different compositions” means that at least one selected from the type or content of monomers constituting the crosslinked polymer matrix, the type of solvent, and the type and concentration of a dissociable salt are different.
본 발명에서 ‘전해질 결합체’는 양극, 분리막 또는 음극 상에 겔 고분자 전해질이 도포 또는 함침되어 일체화된 것을 의미한다. In the present invention, the “electrolyte assembly” means that a gel polymer electrolyte is coated or impregnated on an anode, a separator, or a cathode to be integrated.
본 발명에서 ‘이온전도도가 상이’함은 전해질을 이루는 용매의 종류, 해리 가능한 염의 종류 및 해리 가능한 염의 농도 중에서 선택되는 어느 하나 이상이 상이한 것을 의미한다. 더욱 구체적으로 이온전도도가 0.1 mS/cm 이상 차이가 나는 것을 의미한다. 이온전도도의 측정방법에 대해서는 아래 실시예에서 더욱 구체적으로 설명하기로 한다.In the present invention, “different ionic conductivity” means that at least one selected from the type of solvent constituting the electrolyte, the type of dissociable salt, and the concentration of the dissociable salt is different. More specifically, it means that the ion conductivity differs by 0.1 mS/cm or more. A method of measuring ionic conductivity will be described in more detail in the following examples.
본 발명에서 ‘용매의 종류가 상이’, ‘염의 종류가 상이’, ‘염의 농도가 상이’, ‘단량체의 종류가 상이’ 및 ‘단량체의 함량이 상이’함은 적외선 분광 분석을 통하여 확인할 수 있다. 구체적으로 용매의 종류 또는 염의 종류가 상이한 전해질이 도포 또는 함침된 경우, 충방전 전류가 인가되어 초기 포메이션 공정을 마친 상태의 전극조립체로부터 양극, 음극 및 분리막을 분리하여 각각을 퓨리에 변환 적외선 분광 분석기(Fourier transform infrared spectroscopy, 670-IR, Varian)로 분석을 수행하여, 적외선을 조사했을 때의 반사광을 분광함으로써 얻어지는 흡수 스펙트럼으로부터 물질 특성에서 유래되는 피크 강도에 따라 물질의 종류 또는 농도가 구별될 수 있다. In the present invention,'the type of solvent is different','the type of salt is different','the concentration of salt is different','the type of monomer is different' and'the content of monomer is different' can be confirmed through infrared spectral analysis. . Specifically, when an electrolyte having a different type of solvent or salt is applied or impregnated, a charging/discharging current is applied to separate the anode, the cathode and the separator from the electrode assembly in which the initial formation process has been completed, and each of them is subjected to a Fourier transform infrared spectrometer ( Fourier transform infrared spectroscopy, 670-IR, Varian), and the type or concentration of the material can be distinguished from the absorption spectrum obtained by spectroscopy of the reflected light when irradiated with infrared rays, depending on the peak intensity derived from the material properties. .
또한, 필요에 따라 X선 광전자 분석, 유도 결합 플라즈마 질량 분석, 핵자기 공명 분광 분석 및 비행시간형 이차이온 질량 분석 등을 통하여 확인할 수 있다. 이의 측정방법에 대해서는 아래 실시예에서 더욱 구체적으로 설명하기로 한다.In addition, if necessary, it can be confirmed through X-ray photoelectron analysis, inductively coupled plasma mass analysis, nuclear magnetic resonance spectroscopy, and time-of-flight secondary ion mass analysis. The measurement method thereof will be described in more detail in the following examples.
또한, 본 발명에서 ‘겔 고분자 전해질’은 가교 가능한 단량체, 개시제, 해리 가능한 염 및 용매를 포함하는 겔 고분자 전해질 조성물을 도포 및 경화하여 형성한 것일 수 있다. ‘용매의 종류가 상이’, ‘염의 종류가 상이’, ‘염의 농도가 상이’, ‘단량체의 종류가 상이’ 및 ‘단량체의 함량이 상이’ 함은 상기 겔 고분자 전해질 조성물에 사용된 용매의 종류, 염의 종류 및 염의 농도, 단량체의 종류 및 함량이 상이함을 의미한다.In addition, in the present invention, the'gel polymer electrolyte' may be formed by coating and curing a gel polymer electrolyte composition including a crosslinkable monomer, an initiator, a dissociable salt, and a solvent. 'Different solvent types','different salt types','different salt concentrations','different types of monomers' and'different monomer contents' means the types of solvents used in the gel polymer electrolyte composition. , It means that the type and concentration of the salt and the type and content of the monomer are different.
또한, 본 발명에서 ‘고체 전해질’은 액체 전해질을 포함하지 않는 전고체 전해질을 의미한다. 구체적으로 예를 들어, 고분자 전해질, 산화물계 전해질 및 황화물계 전해질에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 의미한다. 또한 본 발명의 양극 및 분리막, 또는 양극, 분리막 및 음극은 제 1 전해질, 제 2 전해질 및 제 3 전해질의 겔 고분자 전해질과는 구별되는 별도의 고체 전해질을 포함한다. 여기 양극 및 음극에 포함은 활물질층에 고체전해질을 포함하는 것일 수 있다. 또는 활물질층 상에 고체전해질을 압착 및 함침시킨 것일 수 있다. 또한, 분리막에 포함은 분리막 상에 고체전해질을 압착 및 함침시킨 것일 수 있다.In addition, in the present invention, the “solid electrolyte” means an all-solid electrolyte that does not contain a liquid electrolyte. Specifically, it means any one or a mixture of two or more selected from, for example, a polymer electrolyte, an oxide-based electrolyte, and a sulfide-based electrolyte. In addition, the positive electrode and the separator of the present invention, or the positive electrode, the separator, and the negative electrode include a separate solid electrolyte that is distinct from the gel polymer electrolyte of the first electrolyte, the second electrolyte, and the third electrolyte. Inclusion in the positive electrode and the negative electrode may include a solid electrolyte in the active material layer. Alternatively, a solid electrolyte may be pressed and impregnated on the active material layer. In addition, inclusion in the separation membrane may be obtained by compressing and impregnating a solid electrolyte on the separation membrane.
구체적으로 본 발명의 일 양태는 양극 상에 제 1 전해질을 포함하는 양극-전해질 결합체,Specifically, one aspect of the present invention is a positive electrode-electrolyte assembly comprising a first electrolyte on the positive electrode,
음극 상에 제 2 전해질을 포함하는 음극-전해질 결합체, 및A cathode-electrolyte assembly comprising a second electrolyte on the cathode, and
분리막 상에 제 3 전해질을 포함하는 분리막-전해질 결합체를 포함하며,It includes a separator-electrolyte assembly including a third electrolyte on the separator,
상기 양극은 양극 활물질 층을 포함하고, The positive electrode includes a positive electrode active material layer,
상기 양극 활물질 층 및 상기 분리막은 고체 전해질을 포함하고, The positive electrode active material layer and the separator contain a solid electrolyte,
상기 제 1 전해질, 제 2 전해질 및 제 3 전해질은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질이며, The first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 서로 다른 조성으로 이루어진 것인 전기화학 소자이다.At least any one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte are made of different compositions.
일 양태로, 상기 음극은 음극 활물질층을 포함하며, 상기 음극 활물질 층은 고체 전해질을 포함하는 것일 수 있다. In one aspect, the negative electrode may include a negative active material layer, and the negative active material layer may contain a solid electrolyte.
일 양태로, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 하나 이상은 이온전도도가 상이한 것일 수 있다.In one aspect, at least one of the first electrolyte, the second electrolyte, and the third electrolyte may have different ionic conductivity.
일 양태로, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 하나 이상은 용매의 종류가 상이한 것일 수 있다.In one aspect, at least one of the first electrolyte, the second electrolyte, and the third electrolyte may have different types of solvents.
일 양태로, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 하나 이상은 해리 가능한 염의 종류 또는 농도가 상이한 것일 수 있다.In one aspect, at least one of the first electrolyte, the second electrolyte, and the third electrolyte may have different types or concentrations of dissociable salts.
일 양태로, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 하나 이상은 가교 고분자 매트릭스를 이루는 단량체 종류 또는 함량이 상이한 것일 수 있다.In one aspect, at least one of the first electrolyte, the second electrolyte, and the third electrolyte may have different types or amounts of monomers constituting the crosslinked polymer matrix.
일 양태로, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 둘 이상은 성능향상제를 포함하며, 상기 성능향상제를 포함하는 전해질 중 적어도 하나 이상은 성능향상제의 종류 또는 농도가 상이한 것일 수 있다.In one aspect, at least two or more of the first electrolyte, the second electrolyte, and the third electrolyte include a performance enhancing agent, and at least one or more of the electrolytes containing the performance enhancing agent may have different types or concentrations of the performance enhancing agent. .
일 양태로, 상기 가교 고분자 매트릭스는 선형 고분자를 더 포함하여 반 상호 침투 망상(semi-IPN) 구조인 것일 수 있다.In one aspect, the crosslinked polymer matrix may have a semi-interpenetrating network (semi-IPN) structure further including a linear polymer.
일 양태로, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 이온전도도 차이가 0.1 mS/cm 이상인 것일 수 있다.In one aspect, at least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte may have a difference in ionic conductivity of 0.1 mS/cm or more.
일 양태로, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 20 ~ 80 ℃에서의 온도와 이온전도도의 아레니우스 플롯에서 구한 기울기가 상이한 것일 수 있다.In one aspect, at least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte may have different slopes obtained from the Arrhenius plot of the temperature at 20 ~ 80 °C and the ion conductivity.
일 양태로, 상기 제 1 전해질의 이온전도도 IC 1 및 제 2 전해질의 이온전도도 IC 2는 하기 식 1을 만족하는 것일 수 있다.In one aspect, the ion conductivity IC 1 of the first electrolyte and the ion conductivity IC 2 of the second electrolyte may satisfy Equation 1 below.
[식 1][Equation 1]
IC 1 - IC 2 ≥ 0.1 mS/cm IC 1 -IC 2 ≥ 0.1 mS/cm
일 양태로, 상기 제 1 전해질의 이온전도도 IC 1, 제 2 전해질의 이온전도도 IC 2 및 제 3 전해질의 이온전도도 IC 3은 하기 식 2 및 식 3을 만족하는 것일 수 있다.In one aspect, the ionic conductivity IC 1 of the first electrolyte, the ionic conductivity IC 2 of the second electrolyte, and the ionic conductivity IC 3 of the third electrolyte may satisfy Equations 2 and 3 below.
[식 2][Equation 2]
IC 1 - IC 3 ≥ 0.1 mS/cm IC 1 -IC 3 ≥ 0.1 mS/cm
[식 3][Equation 3]
IC 2 - IC 3 ≥ 0.1 mS/cm IC 2 -IC 3 ≥ 0.1 mS/cm
일 양태로, 상기 용매의 종류는 카보네이트계 용매, 니트릴계 용매, 에스테르계 용매, 에테르계 용매, 글림계 용매, 케톤계 용매, 알코올계 용매, 비양자성 용매 및 물 등에서 선택되는 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있다.In one aspect, the type of the solvent is any one or two or more selected from carbonate-based solvents, nitrile-based solvents, ester-based solvents, ether-based solvents, glyme-based solvents, ketone-based solvents, alcohol-based solvents, aprotic solvents, and water. It may be to use a mixed solvent.
일 양태로, 상기 카보네이트계 용매는 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸에틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트 및 부틸렌 카보네이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,In one aspect, the carbonate-based solvent is any one or a mixture of two or more selected from dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, methylethyl carbonate, ethylene carbonate, propylene carbonate and butylene carbonate ego,
상기 니트릴계 용매는 아세토니트릴(acetonitrile), 석시노니트릴(succinonitrile), 아디포니트릴(adiponitrile, 세바코니크릴(sebaconitrile) 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The nitrile-based solvent is any one or a mixture of two or more selected from acetonitrile, succinonitrile, adiponitrile, sebaconitrile, etc.,
상기 에스테르계 용매로는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), n-프로필 아세테이트(n-propyl acetate), 1,1-디메틸에틸 아세테이트(1,1-dimethyl acetate), 메틸프로피오네이트(methylpropionate), 에틸프로피오네이트(ethylpropionate), γ-부티로락톤(γ-butylolactone), 데카놀라이드(decanolide), 발레로락톤(valerolactone), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,As the ester solvent, methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethyl ethyl acetate, methyl propio Methylpropionate, ethylpropionate, γ-butylolactone, decanolide, valerolactone, mevalonolactone, caprolactone ) Any one or a mixture of two or more selected from,
상기 에테르계 용매는 디메틸 에테르, 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란 및 테트라히드로퓨란 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The ether solvent is any one or a mixture of two or more selected from dimethyl ether, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran and tetrahydrofuran,
상기 글림계 용매는 에틸렌 글리콜 디메틸에테르, 트리에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The glyme solvent is any one or a mixture of two or more selected from ethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and the like,
상기 케톤계 용매는 시클로헥사논 등이고,The ketone solvent is cyclohexanone, etc.,
상기 알코올계 용매는 에틸알코올 및 이소프로필 알코올 등에서 선택되는 어느 하나 또는 이들의 혼합물이고,The alcohol-based solvent is any one selected from ethyl alcohol and isopropyl alcohol, or a mixture thereof,
상기 비양자성 용매는 니트릴계 용매, 아미드계 용매, 디옥솔란계 용매 및 설포란계 용매 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.The aprotic solvent may be any one or a mixture of two or more selected from a nitrile-based solvent, an amide-based solvent, a dioxolane-based solvent, and a sulfolane-based solvent.
일 양태로, 상기 해리 가능한 염은 리튬헥사플루오르포스페이트(LiPF 6), 리튬테트라플루오로보레이트(LiBF 4), 리튬헥사플루오르안티모네이트(LiSbF 6), 리튬헥사플루오르아세네이트(LiAsF 6), 리튬디플루오르메탄설포네이트(LiC 4F 9SO 3), 과염소산리튬(LiClO 4), 리튬알루미네이트(LiAlO 2), 리튬테트라클로로알루미네이트(LiAlCl 4), 염화리튬(LiCl), 요오드화리튬(LiI), 리튬 비스옥살레이토 보레이트(LiB(C 2O 4) 2), 리튬트리플루오로메탄설포닐이미드(LiN(C xF 2x+1SO 2)(C yF 2y+1SO 2)(여기서, x 및 y는 자연수임) 및 이들의 유도체 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the dissociable salt is lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroantimonate (LiSbF 6 ), lithium hexafluoroacenate (LiAsF 6 ), lithium Difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl), lithium iodide (LiI) , Lithium bisoxalato borate (LiB(C 2 O 4 ) 2 ), lithium trifluoromethanesulfonylimide (LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (where , x and y are natural numbers) and derivatives thereof, or any one or a mixture of two or more.
일 양태로, 상기 염의 농도는 0.1M이상 상이한 것일 수 있다.In one aspect, the concentration of the salt may be different from 0.1M or more.
일 양태로, 상기 단량체의 종류는 아크릴레이트계 단량체, 아크릴산계 단량체, 술폰산계 단량체, 인산계 단량체, 과불소계 단량체 및 아크릴로나이트릴계 단량체 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the type of the monomer may be any one or a mixture of two or more selected from the group consisting of acrylate-based monomers, acrylic acid-based monomers, sulfonic acid-based monomers, phosphoric acid-based monomers, perfluorine-based monomers, and acrylonitrile-based monomers. I can.
일 양태로, 상기 아크릴레이트계 단량체는 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디아크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 트리메틸올프로판 에톡시레이트 트리아크릴레이트, 트리메틸올프로판 에톡시레이트 트리메타크릴레이트, 비스페놀에이에톡시레이트 디아크릴레이트 및 비스페놀에이에톡시레이트 디메타크릴레이트, 베타카르복시에틸아크릴레이트, 2,4,6-트리브로모페닐아크릴레이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, In one aspect, the acrylate-based monomer is polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, trimethylolpropane ethoxylate triacrylate, trimethylol Any selected from propane ethoxylate trimethacrylate, bisphenol ethoxylate diacrylate and bisphenol ethoxylate dimethacrylate, beta carboxyethyl acrylate, 2,4,6-tribromophenyl acrylate, etc. Is one or a mixture of two or more,
상기 아크릴산계 단량체는 아크릴산, 메타크릴산, 메틸 아크릴산, 메틸 메타크릴산, 2-에틸아크릴산, 2-프로필아크릴산 및 2-트리플루오로메틸아크릴산 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The acrylic acid-based monomer is any one or a mixture of two or more selected from acrylic acid, methacrylic acid, methyl acrylic acid, methyl methacrylic acid, 2-ethylacrylic acid, 2-propylacrylic acid and 2-trifluoromethylacrylic acid,
상기 술폰산계 단량체는 술폰산, 소듐스티렌설포닉에시드, 2-아크릴아미드-2-메틸프로페인설포닉에시드, 2-설포에틸메타크릴레이트, 3-설포프로필아크릴레이트 및 3-설포프로필메타크릴레이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The sulfonic acid-based monomer is from sulfonic acid, sodium styrene sulfonic acid, 2-acrylamide-2-methylpropane sulfonic acid, 2-sulfoethyl methacrylate, 3-sulfopropyl acrylate and 3-sulfopropyl methacrylate. Is any one or a mixture of two or more selected,
상기 인산계 단량체는 인산, 비스(2-메타크릴옥시에틸)포스페이트, 포스포릭에시드-2-하이드록시에틸아크릴레이트에스터 및 2-(메타크릴옥시)에틸포스페이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The phosphoric acid-based monomer is any one or a mixture of two or more selected from phosphoric acid, bis (2-methacryloxyethyl) phosphate, phosphoric acid-2-hydroxyethyl acrylate ester, and 2- (methacryloxy) ethyl phosphate. ,
상기 과불소계 단량체는 헥사플루오르이소프로필메타크릴레이트, 1,1,3-헥사플루오르부틸메타크릴레이트, 1,1,7-도데카플루오르헵틸메타크릴레이트, 2,2,2-트리플루오르에틸메타크릴레이트, 1,1,5-옥타플루오르펜틸메타크릴레이트, 펜타플루오르페닐아크릴레이트 및 2,2,2-트리플루오르에틸아크릴레이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The perfluorine-based monomers are hexafluoroisopropyl methacrylate, 1,1,3-hexafluorobutyl methacrylate, 1,1,7-dodecafluoroheptyl methacrylate, 2,2,2-trifluoroethyl methacrylate Any one or a mixture of two or more selected from acrylate, 1,1,5-octafluoropentyl methacrylate, pentafluorophenyl acrylate and 2,2,2-trifluoroethyl acrylate,
상기 아크릴로나이트릴계 단량체는 아크릴로나이트릴, 1-시아노비닐아세테이트 및 2-시아노에틸아크릴레이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.The acrylonitrile-based monomer may be any one or a mixture of two or more selected from acrylonitrile, 1-cyanovinyl acetate, and 2-cyanoethyl acrylate.
일 양태로, 상기 단량체의 함량은 0.5 중량% 이상 상이한 것일 수 있다.In one aspect, the content of the monomer may be different from 0.5% by weight or more.
일 양태로, 상기 제 1 전해질은 제 1 성능향상제를 포함하며,In one aspect, the first electrolyte includes a first performance enhancing agent,
상기 제 1 성능향상제는 고전압 안정성 향상제, 고온 안정성 향상제 및 전해질 젖음성 향상제 등으로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.The first performance enhancer may be any one or a mixture of two or more selected from the group consisting of a high voltage stability improver, a high temperature stability improver, an electrolyte wettability improver, and the like.
일 양태로, 상기 고전압 안정성 향상제는 프로프-1-엔-1,3-술톤, 프로판 술톤, 부탄 술톤, 에틸렌 설페이트, 에틸렌 프로필렌 설페이트, 트리메틸렌 설페이트, 비닐 설폰, 메틸 설폰, 페닐 설폰, 벤질 설폰, 테트라메틸렌 설폰, 부타디엔 설폰, 벤조일 퍼옥사이드, 라우로일 퍼옥사이드, 2-메틸 무수 말레인산, 숙시노니트릴, 글루타르니트릴, 아디포니트릴, 피멜로니트릴, 수베로니트릴, 세바코니트릴, 아젤레익 디니트릴, 부틸아민, N,N-디시클로헥실카보디아민, N,N-디메틸 아미노 트리메틸 실란, N,N-디메틸아세트아미드, 술포란 및 프로필렌카보네이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the high voltage stability improving agent is prop-1-ene-1,3-sultone, propane sultone, butane sultone, ethylene sulfate, ethylene propylene sulfate, trimethylene sulfate, vinyl sulfone, methyl sulfone, phenyl sulfone, benzyl sulfone , Tetramethylene sulfone, butadiene sulfone, benzoyl peroxide, lauroyl peroxide, 2-methyl maleic anhydride, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, sebaconitrile, azelaic It may be any one or a mixture of two or more selected from dinitrile, butylamine, N,N-dicyclohexylcarbodiamine, N,N-dimethyl amino trimethyl silane, N,N-dimethylacetamide, sulfolane, and propylene carbonate. have.
일 양태로, 상기 고온 안정성 향상제는 프로판 술톤, 프로펜 술톤, 디메틸 설폰, 디페닐 설폰, 디비닐 설폰, 메탄 설폰산, 프로필렌 설폰, 3-불화톨루엔, 2,5-디클로로톨루엔, 2-플루오로비페닐, 디시아노부텐, 트리스(-트리메틸-실릴)-포스파이트, 피리딘, 4-에틸 피리딘, 4-아세틸 피리딘 및 3-시아노 피리딘 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the high-temperature stability improving agent is propane sultone, propene sultone, dimethyl sulfone, diphenyl sulfone, divinyl sulfone, methane sulfonic acid, propylene sulfone, 3-fluorinated toluene, 2,5-dichlorotoluene, 2-fluorobi It may be any one or a mixture of two or more selected from phenyl, dicyanobutene, tris(-trimethyl-silyl)-phosphite, pyridine, 4-ethyl pyridine, 4-acetyl pyridine and 3-cyano pyridine.
일 양태로, 상기 전해질 젖음성 향상제는 리튬비스(플루오르설포닐)이미드, 리튬비스(트리플루오로메틸설포닐)이미드, 말레익산, 타닉산, 실리콘 옥사이드, 알루미늄 옥사이드, 지르코니아 옥사이드, 티타늄 옥사이드, 징크 옥사이드, 망간 옥사이드, 마그네슘 옥사이드, 칼슘 옥사이드, 아이언 옥사이드, 바륨 옥사이드, 몰리브덴 옥사이드, 루테늄 옥사이드 및 제올라이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the electrolyte wettability improving agent is lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethylsulfonyl) imide, maleic acid, tannic acid, silicon oxide, aluminum oxide, zirconia oxide, titanium oxide, It may be any one or a mixture of two or more selected from zinc oxide, manganese oxide, magnesium oxide, calcium oxide, iron oxide, barium oxide, molybdenum oxide, ruthenium oxide and zeolite.
일 양태로, 상기 제 2 전해질은 제 2 성능향상제를 포함하며,In one aspect, the second electrolyte includes a second performance enhancing agent,
상기 제 2 성능향상제는 계면 안정화제 및 가스 발생 억제제 등으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. The second performance enhancing agent may be any one or a mixture of two or more selected from the group consisting of an interfacial stabilizer and a gas generation inhibitor.
일 양태로, 상기 계면 안정화제는 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 메틸렌에틸렌카보네이트, 메틸렌메틸에틸렌 카보네이트, 플루오로에틸렌카보네이트, 알릴트리메톡시실란, 알릴트리에톡시실란, 시클로헥실트리메톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 3-메타크릴록시프로필트리메톡시실란, 3-메르캅토프로필트리메톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필에톡시디메틸실란, 에틸렌글리콜디글리시딜에테르, 디에틸렌글리콜디글리시딜에테르, 폴리에틸렌글리콜디글리시딜에테르, 프로필렌글리콜디글리시딜에테르, 트리프로필렌글리콜디글리시딜에테르, 폴리프로필렌글리콜디글리시딜에테르, 알릴 글리시딜 에테르, 페닐 글리시딜 에테르, 플루오로 γ-부티로락톤, 디플루오로 γ-부티로락톤, 클로로 γ-부티로락톤, 디클로로 -부티로락톤, 브로모 γ-부티로락톤, 디브로모 γ-부티로락톤, 니트로 γ-부티로락톤, 시아노 γ-부티로락톤 및 몰리브덴 황화물 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the interfacial stabilizer is vinylene carbonate, vinylethylene carbonate, methylene ethylene carbonate, methylene methyl ethylene carbonate, fluoroethylene carbonate, allyltrimethoxysilane, allyltriethoxysilane, cyclohexyltrimethoxysilane, Phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxy Propyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylethoxydimethylsilane, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglyci Dyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, fluoro γ-butyrolactone, di Fluoro γ-butyrolactone, chloro γ-butyrolactone, dichloro-butyrolactone, bromo γ-butyrolactone, dibromo γ-butyrolactone, nitro γ-butyrolactone, cyano γ-buty It may be any one or a mixture of two or more selected from lolactone and molybdenum sulfide.
일 양태로, 상기 가스 발생 억제제는 디페닐 설폰, 디비닐 설폰, 비닐 설폰, 페닐 설폰, 벤질 설폰, 테트라메틸렌 설폰, 부타디엔 설폰, 디에틸렌글리콜 디아크릴레이트, 디에틸렌글리콜 디메타크릴레이트, 에틸렌글리콜 디메타크릴레이트, 디프로필렌글리콜 디아크릴레이트, 디프로필렌글리콜 디메타크릴레이트, 에틸렌글리콜 디비닐 에테르, 에톡실레이티드 트리메틸올프로판 트리아크릴레이트, 디에틸렌글리콜 디비닐 에테르, 트리에틸렌 글리콜 디메타크릴레이트, 디페타에리쓰리톨 펜타아크릴레이트, 트리메틸올프로판 트리아크릴레이트, 트리메틸올프로판 트리메타크릴레이트, 프로폭실레이티드(3) 트리메틸올프로판 트리아크릴레이트, 프로폭실레이티드(6) 트리메틸올프로판 트리아크릴레이트 및 폴리에틸렌글리콜 디아크릴레이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the gas generation inhibitor is diphenyl sulfone, divinyl sulfone, vinyl sulfone, phenyl sulfone, benzyl sulfone, tetramethylene sulfone, butadiene sulfone, diethylene glycol diacrylate, diethylene glycol dimethacrylate, ethylene glycol Dimethacrylate, dipropylene glycol diacrylate, dipropylene glycol dimethacrylate, ethylene glycol divinyl ether, ethoxylated trimethylolpropane triacrylate, diethylene glycol divinyl ether, triethylene glycol dimethacryl Rate, difetaerythritol pentaacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, propoxylate (3) trimethylolpropane triacrylate, propoxylate (6) trimethylolpropane It may be any one or a mixture of two or more selected from triacrylate and polyethylene glycol diacrylate.
일 양태로, 상기 제 3 전해질은 제 3 성능향상제를 포함하며,In one aspect, the third electrolyte includes a third performance enhancing agent,
상기 제 3 성능향상제는 전극 접착력 향상제 및 음이온 안정화제 등으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.The third performance enhancing agent may be any one or a mixture of two or more selected from the group consisting of an electrode adhesion enhancer and an anion stabilizer.
일 양태로, 상기 전극 접착력 향상제는 아세토나이트릴, 티오펜아세토나이트릴, 메톡시페닐아세토나이트릴, 플루오로페닐아세토나이트릴, 아크릴로나이트릴, 메톡시아크릴로나이트릴 및 에톡시아크릴로나이트릴 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the electrode adhesion improving agent is acetonitrile, thiophene acetonitrile, methoxyphenylacetonitrile, fluorophenylacetonitrile, acrylonitrile, methoxyacrylonitrile, and ethoxyacrylonitrile. It may be any one selected from a reel or a mixture of two or more.
일 양태로, 상기 음이온 안정화제는 디메틸설폰, 설포레인 및 벤지이미다졸 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the anion stabilizer may be any one or a mixture of two or more selected from dimethyl sulfone, sulfolane and benziimidazole.
일 양태로, 상기 제 1 전해질은 제 1 성능향상제를 포함하고,In one aspect, the first electrolyte includes a first performance enhancing agent,
상기 제 1 성능향상제는 프로판 술톤, 에틸렌 설페이트 및 2-플루오로비페닐 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.The first performance enhancing agent may be any one or a mixture of two or more selected from propane sultone, ethylene sulfate and 2-fluorobiphenyl.
일 양태로, 상기 제 2 전해질은 제 2 성능향상제를 포함하고,In one aspect, the second electrolyte includes a second performance enhancing agent,
상기 제 2 성능향상제는 비닐 설폰, 알릴 트리에톡시 실란 및 알릴 글리시딜 에테르 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.The second performance enhancing agent may be any one or a mixture of two or more selected from vinyl sulfone, allyl triethoxy silane, and allyl glycidyl ether.
일 양태로, 상기 제 3 전해질은 제 3 성능향상제를 포함하고,In one aspect, the third electrolyte includes a third performance enhancing agent,
상기 제 3 성능향상제는 아세토나이트릴 및 디메틸설폰 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.The third performance enhancing agent may be any one or a mixture of two or more selected from acetonitrile and dimethylsulfone.
일 양태로, 상기 성능향상제는 상기 각 전해질의 함량 중 0.1 내지 10 중량%로 포함되는 것일 수 있다.In one aspect, the performance enhancing agent may be included in an amount of 0.1 to 10% by weight of the content of each electrolyte.
일 양태로, 상기 성능향상제는 상기 각 전해질의 함량 중 0.1 내지 5 중량%로 포함되는 것일 수 있다.In one aspect, the performance enhancing agent may be included in an amount of 0.1 to 5% by weight of the content of each electrolyte.
일 양태로, 상기 성능향상제는 상기 각 전해질의 함량 중 0.1 내지 3 중량%로 포함되는 것일 수 있다.In one aspect, the performance enhancing agent may be included in an amount of 0.1 to 3% by weight of the content of each electrolyte.
일 양태로, 상기 고체전해질은 고분자 고체 전해질, 산화물계 고체 전해질 및 황화물계 고체 전해질에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the solid electrolyte may be any one or a mixture of two or more selected from a polymer solid electrolyte, an oxide solid electrolyte, and a sulfide solid electrolyte.
일 양태로, 상기 고분자 고체 전해질은 폴리에틸렌옥사이드(PEO), 폴리아크릴로니트릴(PAN), 폴리메틸메타크릴레이트(PMMA), 폴리비닐리덴 풀루오라이드(PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌(PVDF-HFP) 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the polymer solid electrolyte is polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexa It may be any one or a mixture of two or more selected from pullopropylene (PVDF-HFP).
일 양태로, 상기 산화물계 고체전해질은 LixaLayaTiO3〔xa=0.3~0.7, ya=0.3~0.7〕(LLT), Li7La3Zr2O12(LLZ), LISICON(Lithium super ionic conductor)형 결정 구조를 갖는 Li3.5Zn0.25GeO4, NASICON(Natrium super ionic conductor)형 결정 구조를 갖는 LiTi2P3O12, Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12(단, 0≤xb≤1, 0≤yb≤1), 가닛형 결정 구조를 갖는 Li7La3Zr2O12, LiPON, LiPOD(D는, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, Au으로부터 선택되는 적어도 1종), LiAON(A는, Si, B, Ge, Al, C, Ga 등으로부터 선택되는 적어도 1종)군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the oxide-based solid electrolyte is LixaLayaTiO3 [xa=0.3~0.7, ya=0.3~0.7] (LLT), Li7La3Zr2O12(LLZ), Li3.5Zn0.25GeO4 having a lithium super ionic conductor (LISICON) type crystal structure. , LiTi2P3O12, Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12 with NASICON (Natrium super ionic conductor) type crystal structure (however, 0≤xb≤1, 0≤yb≤1) ), Li7La3Zr2O12, LiPON, LiPOD (D is, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, Au At least one selected from), LiAON (A is at least one selected from Si, B, Ge, Al, C, Ga, etc.) may be any one or a mixture of two or more selected from the group.
일 양태로, 상기 산화물계 고체전해질은 Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12(단, 0≤xb≤1, 0≤yb≤1)를 포함하는 것일 수 있다.In one aspect, the oxide-based solid electrolyte is one containing Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12 (however, 0≤xb≤1, 0≤yb≤1) I can.
일 양태로, 상기 황화물계 고체전해질은 Li7-aPS6-aXa (X는 F, Cl, Br, I, 또는 이의 조합, 0≤a<2), aLi2S-(1-a)P2S5 (0<a<1), aLi2S-bP2S5-cLiX (X는 F, Cl, Br, I, 또는 이들의 조합이고, 0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1),aLi2S-bP2S5-cLi2O (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-bP2S5-cLi2O-dLiI (0<a<1, 0<b<1, 0<c<1, 0<d<1 및 a+b+c+d=1), aLi2S-(1-a)SiS2 (0<a<1), aLi2S-bSiS2-cLiI (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-bSiS2-cLiBr (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-bSiS2-cLiCl (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2SbSiS2-cB2S3-dLiI (0<a<1, 0<b<1, 0<c<1, 0<d<1 및 a+b+c+d=1), aLi2S-bSiS2-cP2S5-dLiI (0<a<1, 0<b<1, 0<c<1,0<d<1 및 a+b+c+d=1), aLi2S-(1-a)B2S3 (0<a<1), aLi2S-bP2S5-cZmSn (m 및 n는 서로 독립적으로 1 내지 10의 양의 정수이고, Z는 Ge, Zn, 또는 Ga이고, 0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-(1-a)GeS2 (0<a<1), aLi2SbSiS2-cLi3PO4 (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), 또는 aLi2S-bSiS2-cLiPMOq (p 및 q는 서로 독립적으로 1 내지 10의 양의 정수이고, 0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1이고, M은 P, Si, Ge, B, Al, Ga 또는 In)군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.In one aspect, the sulfide-based solid electrolyte is Li7-aPS6-aXa (X is F, Cl, Br, I, or a combination thereof, 0≤a<2), aLi2S-(1-a)P2S5 (0<a< 1), aLi2S-bP2S5-cLiX (X is F, Cl, Br, I, or a combination thereof, 0<a<1, 0<b<1, 0<c<1, and a+b+c= 1),aLi2S-bP2S5-cLi2O (0<a<1, 0<b<1, 0<c<1, and a+b+c=1), aLi2S-bP2S5-cLi2O-dLiI (0<a<1 , 0<b<1, 0<c<1, 0<d<1 and a+b+c+d=1), aLi2S-(1-a)SiS2 (0<a<1), aLi2S-bSiS2- cLiI (0<a<1, 0<b<1, 0<c<1, and a+b+c=1), aLi2S-bSiS2-cLiBr (0<a<1, 0<b<1, 0< c<1, and a+b+c=1), aLi2S-bSiS2-cLiCl (0<a<1, 0<b<1, 0<c<1, and a+b+c=1), aLi2SbSiS2- cB2S3-dLiI (0<a<1, 0<b<1, 0<c<1, 0<d<1 and a+b+c+d=1), aLi2S-bSiS2-cP2S5-dLiI (0<a <1, 0<b<1, 0<c<1,0<d<1 and a+b+c+d=1), aLi2S-(1-a)B2S3 (0<a<1), aLi2S- bP2S5-cZmSn (m and n are each independently a positive integer of 1 to 10, Z is Ge, Zn, or Ga, 0<a<1, 0<b<1, 0<c<1, and a +b+c=1), aLi2S-(1-a)GeS2 (0<a<1), aLi2SbSiS2-cLi3PO4 (0<a<1, 0<b<1, 0<c<1, and a+b +c=1), or aLi2S-bSiS2-cLiPMOq (p and q are each independently positive integers of 1 to 10, 0<a<1, 0<b<1, 0<c<1, and a+ b+c=1, and M may be any one or a mixture of two or more selected from the group P, Si, Ge, B, Al, Ga, or In).
일 양태로, 상기 황화물계 고체전해질은 Li 6PS 5Cl 및 Li 2S-P 2S 5에서 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 것일 수 있다.In one aspect, the sulfide-based solid electrolyte may include any one selected from Li 6 PS 5 Cl and Li 2 SP 2 S 5 , or a mixture thereof.
일 양태로, 상기 분리막은 다공성 막에 상기 고체 전해질이 압착 및 함침되어 이루어진 것일 수 있다.In one aspect, the separator may be formed by compressing and impregnating the solid electrolyte in a porous membrane.
일 양태로, 상기 다공성 막은 직포, 부직포 및 다공성 고분자 막에서 선택되는 어느 하나이고, 한 층 또는 둘 이상이 적층된 다층막인 것일 수 있다.In one aspect, the porous membrane may be any one selected from a woven fabric, a nonwoven fabric, and a porous polymer membrane, and may be one layer or a multilayer film in which two or more are stacked.
일 양태로, 상기 양극 활물질층은 기공을 포함하며, 상기 양극 활물질층의 기공도(porosity)가 1 내지 30 부피% 인 것일 수 있다.In one aspect, the positive electrode active material layer may include pores, and a porosity of the positive electrode active material layer may be 1 to 30% by volume.
일 양태로, 상기 양극 활물질층 및 음극 활물질층은 기공을 포함하며, In one aspect, the positive active material layer and the negative active material layer contain pores,
상기 양극 활물질층의 기공도(porosity)가 1 내지 30 부피% 이고, 상기 음극 활물질층의 기공도(porosity)가 1 내지 35 부피%인 것일 수 있다.The positive electrode active material layer may have a porosity of 1 to 30 vol%, and the negative active material layer may have a porosity of 1 to 35 vol%.
일 양태로, 상기 양극 활물질층의 기공도(porosity)가 1 내지 20 부피%이고, 상기 음극 활물질층의 기공도(porosity)가 1 내지 25 부피%인 것일 수 있다.In an embodiment, the porosity of the positive active material layer may be 1 to 20 vol%, and the porosity of the negative active material layer may be 1 to 25 vol%.
일 양태로, 상기 음극은 리튬금속 층이며, 상기 양극 활물질층은 기공을 포함하는 것일 수 있다.In one aspect, the negative electrode may be a lithium metal layer, and the positive electrode active material layer may include pores.
일 양태로, 상기 양극 활물질층의 기공도(porosity)가 1 내지 30 부피%인 것일 수 있다.In one aspect, the porosity of the positive active material layer may be 1 to 30% by volume.
일 양태로, 상기 양극 활물질층의 기공도(porosity)가 1 내지 20 부피%인 것일 수 있다.In one aspect, the porosity of the positive active material layer may be 1 to 20% by volume.
일 양태로, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질은 각각 양극, 음극 및 분리막 상에 도포 후 경화되어 양극-전해질 결합체, 음극-전해질 결합체 및 분리막-전해질 결합체를 이루는 것일 수 있다.In one embodiment, the first electrolyte, the second electrolyte, and the third electrolyte may be coated on a positive electrode, a negative electrode, and a separator and then cured to form a positive electrode-electrolyte assembly, a negative electrode-electrolyte assembly, and a separator-electrolyte combination.
일 양태로, 상기 도포는 닥터 블레이드 코팅, 바 코팅, 스핀 코팅, 슬롯다이 코팅, 딥 코팅 및 스프레이 코팅에서 선택되는 코팅 방법; 또는 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅, 스텐실 프린팅 및 스크린 프린팅에서 선택되는 프린팅 방법으로 도포된 것일 수 있다.In one aspect, the coating is a coating method selected from doctor blade coating, bar coating, spin coating, slot die coating, dip coating and spray coating; Alternatively, it may be applied by a printing method selected from inkjet printing, gravure printing, gravure offset, aerosol printing, stencil printing, and screen printing.
일 양태로, 상기 전기화학 소자는 전기화학반응이 가능한 일차전지 또는 이차전지인 것일 수 있다.In one aspect, the electrochemical device may be a primary battery or a secondary battery capable of electrochemical reaction.
일 양태로, 상기 전기화학 소자는 리튬 일차 전지, 리튬 이차 전지, 리튬-설퍼 전지, 리튬-공기 전지, 나트륨 전지, 알루미늄 전지, 마그네슘 전지, 칼슘 전지, 아연 전지, 아연-공기 전지, 나트륨-공기 전지, 알루미늄-공기 전지, 마그네슘-공기 전지, 칼슘-공기 전지, 슈퍼 캐패시터, 염료감응 태양전지, 연료전지, 납 축전지, 니켈 카드뮴전지, 니켈 수소 축전지 및 알칼리전지로 이루어진 군에서 선택되는 1종인 것일 수 있다.In one aspect, the electrochemical device is a lithium primary battery, lithium secondary battery, lithium-sulfur battery, lithium-air battery, sodium battery, aluminum battery, magnesium battery, calcium battery, zinc battery, zinc-air battery, sodium-air It is one type selected from the group consisting of battery, aluminum-air battery, magnesium-air battery, calcium-air battery, super capacitor, dye-sensitized solar battery, fuel cell, lead storage battery, nickel cadmium battery, nickel hydrogen storage battery, and alkaline battery. I can.
본 발명의 또 다른 양태는 전기화학 소자의 제조방법으로,Another aspect of the present invention is a method of manufacturing an electrochemical device,
i) 양극 상에 제 1 겔 고분자 전해질 조성물을 도포 및 경화하여 제 1 전해질을 포함하는 양극-전해질 결합체를 제조하고, 음극 상에 제 2 겔 고분자 전해질 조성물을 도포 및 경화하여 제 2 전해질을 포함하는 음극-전해질 결합체를 제조하고, 분리막 상에 제 3 겔 고분자 전해질 조성물을 도포 및 경화하여 제 3 전해질을 포함하는 분리막-전해질 결합체를 제조하는 단계; 및i) coating and curing the first gel polymer electrolyte composition on the positive electrode to prepare a positive electrode-electrolyte assembly including the first electrolyte, and coating and curing the second gel polymer electrolyte composition on the negative electrode to include a second electrolyte. Preparing a negative electrode-electrolyte assembly, and coating and curing a third gel polymer electrolyte composition on the separation membrane to prepare a separation membrane-electrolyte assembly including a third electrolyte; And
ii) 상기 양극-전해질 결합체, 분리막-전해질 결합체 및 음극-전해질 결합체를 적층하여 전극조립체를 제조하는 단계; ii) preparing an electrode assembly by laminating the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly;
를 포함하며,Including,
상기 양극은 양극 활물질 층을 포함하고,The positive electrode includes a positive electrode active material layer,
상기 양극 활물질 층 및 상기 분리막은 고체 전해질을 포함하고,The positive electrode active material layer and the separator contain a solid electrolyte,
상기 제 1 전해질, 제 2 전해질 및 제 3 전해질은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질이며, The first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 서로 다른 조성으로 이루어진다.At least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte have different compositions.
일 양태로, 상기 ii)단계는In one aspect, step ii)
ii-1) 상기 양극-전해질 결합체, 분리막-전해질 결합체 및 음극-전해질 결합체를 적층한 후 일정 모양으로 컷팅하는 단계; 또는ii-1) laminating the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly and cutting them into a predetermined shape; or
ii-2) 상기 양극-전해질 결합체, 분리막-전해질 결합체 및 음극-전해질 결합체를 각각 일정 모양으로 커팅한 후 적층하는 단계;ii-2) cutting the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly into a predetermined shape and then laminating them;
에서 선택되는 것일 수 있다.It may be selected from.
일 양태로, 상기 ii)단계 후, iii) 상기 전극조립체를 포장재로 밀봉하는 단계;를 더 포함하는 것일 수 있다.In one aspect, after step ii), iii) sealing the electrode assembly with a packaging material; may be further included.
이하는 본 발명의 일 양태에 대하여 보다 구체적으로 설명한다.Hereinafter, an aspect of the present invention will be described in more detail.
먼저, 본 발명의 일 양태에 따른 전기화학 소자에 대하여 보다 구체적으로 설명한다.First, an electrochemical device according to an aspect of the present invention will be described in more detail.
본 발명의 1 양태에 따른 전기화학 소자는 양극 활물질층을 포함하는 양극 상에 제 1 전해질을 포함하는 양극-전해질 결합체, 음극 상에 제 2 전해질을 포함하는 음극-전해질 결합체, 및 분리막 상에 제 3 전해질을 포함하는 분리막-전해질 결합체를 포함한다. The electrochemical device according to the first aspect of the present invention includes a positive electrode-electrolyte assembly including a first electrolyte on a positive electrode including a positive electrode active material layer, a negative electrode-electrolyte combination including a second electrolyte on the negative electrode, and a separator. 3 It includes a membrane-electrolyte assembly containing an electrolyte.
이때, 상기 양극 활물질 층 및 분리막은 고체전해질을 포함하고, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질이며, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 서로 다른 조성으로 이루어진 것일 수 있다. In this case, the positive electrode active material layer and the separator include a solid electrolyte, the first electrolyte, the second electrolyte, and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt, and the first electrolyte, At least one or more selected from the second electrolyte and the third electrolyte may have different compositions.
더욱 구체적으로, 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 어느 하나 이상은 이온전도도가 상이한 것일 수 있으며, 상기 전해질 간의 이온전도도가 상이함은 용매의 종류, 해리 가능한 염의 종류, 해리 가능한 염의 농도, 가교 고분자 매트릭스를 이루는 단량체의 종류 및 함량 중에서 선택되는 어느 하나 이상을 다르게 함으로써 달성될 수 있다. More specifically, at least one of the first electrolyte, the second electrolyte, and the third electrolyte may have different ionic conductivity, and the difference in ionic conductivity between the electrolytes means the type of solvent, the type of dissociable salt, and the type of dissociable salt. It can be achieved by varying at least one selected from the concentration, the type and content of the monomers constituting the crosslinked polymer matrix.
상기 제 1 양태에 대해 더욱 구체적으로 예를 들면, 상기 제 1 전해질의 이온전도도가 상기 제 2 전해질 및 제 3 전해질의 이온전도도와 상이한 것일 수 있다.More specifically, for the first aspect, for example, the ionic conductivity of the first electrolyte may be different from that of the second and third electrolytes.
또는 상기 제 2 전해질의 이온전도도가 상기 제 1 전해질 및 제 3 전해질의 이온전도도와 상이한 것일 수 있다.Alternatively, the ionic conductivity of the second electrolyte may be different from that of the first and third electrolytes.
또는 상기 제 3 전해질의 이온전도도가 상기 제 1 전해질 및 제 2 전해질의 이온전도도와 상이한 것일 수 있다.Alternatively, the ionic conductivity of the third electrolyte may be different from that of the first and second electrolytes.
또는 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질의 이온전도도가 모두 상이한 것일 수 있다.Alternatively, the first electrolyte, the second electrolyte, and the third electrolyte may have different ionic conductivity.
이상의 양태는 본 발명의 일 양태를 구체적으로 예시하기 위하여 설명한 것일 뿐, 본 발명의 개시가 상기 제 1 양태에 한정되는 것은 아니며, 상기 제 1 양태 를 참고하여 다양하게 변경 가능함은 자명하다. The above aspects are only described to specifically illustrate one aspect of the present invention, and the disclosure of the present invention is not limited to the first aspect, and it is obvious that various changes can be made with reference to the first aspect.
상기 제 1 양태에서 상기 겔 고분자 전해질 간에 이온전도도가 상이함은 본 발명의 겔 고분자 전해질이 도포 방법으로 도포 및 경화하여 각각 별개의 조성물을 가진 겔 고분자 전해질을 형성할 수 있음에 따른 것이다. 상기 전해질 간의 이온전도도가 상이함은 용매의 종류, 해리 가능한 염의 종류, 해리 가능한 염의 농도, 가교 고분자 매트릭스를 이루는 단량체의 종류 및 함량 중에서 선택되는 어느 하나 이상을 다르게 함으로써 달성될 수 있다. The difference in ionic conductivity between the gel polymer electrolytes in the first aspect is that the gel polymer electrolytes of the present invention can be applied and cured by a coating method to form a gel polymer electrolyte having a separate composition. The difference in ionic conductivity between the electrolytes may be achieved by differently selecting one or more of the types of solvents, types of dissociable salts, concentrations of dissociable salts, types and amounts of monomers forming the crosslinked polymer matrix.
또한, 적어도 어느 하나 이상은 이온전도도가 상이하며, 더욱 구체적으로 이온전도도 차이가 0.1 mS/cm 이상인 것일 수 있다. 상기 이온전도도 차이가 0.1 mS/cm 이상인 경우, 충방전 효율 및 전지 수명이 증가하고 동시에 전지 안전성 향상을 도모할 수 있다.In addition, at least one or more have different ionic conductivity, and more specifically, the difference in ionic conductivity may be 0.1 mS/cm or more. When the difference in ionic conductivity is 0.1 mS/cm or more, charging/discharging efficiency and battery life may increase, and battery safety may be improved.
또한, 상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 20 ~ 80 ℃에서의 온도와 이온전도도의 아레니우스 플롯에서 구한 기울기가 상이한 특징이 있다. 상기 아레니우스 플롯의 기울기가 상이한 경우, 충방전 효율 및 전지 수명이 증가하고 동시에 전지 안전성 향상을 도모할 수 있다. In addition, at least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte have different characteristics in the slope obtained from the Arrhenius plot of the temperature at 20 ~ 80 ℃ and the ion conductivity. When the slope of the Arrhenius plot is different, charging/discharging efficiency and battery life may be increased, and battery safety may be improved.
<겔 고분자 전해질><Gel polymer electrolyte>
상기 겔 고분자 전해질은 구체적으로 예를 들면, 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 것일 수 있다. 상기 가교 고분자 매트릭스는 가교 가능한 단량체 및 이의 유도체가 개시제에 의해 광가교 또는 열가교 결합되어 이루어지는 것일 수 있다. The gel polymer electrolyte may specifically include, for example, a crosslinked polymer matrix, a solvent, and a dissociable salt. The crosslinkable polymer matrix may be formed by photocrosslinking or thermal crosslinking of a crosslinkable monomer and a derivative thereof by an initiator.
상기 겔 고분자 전해질은 겔 고분자 전해질 조성물이 닥터 블레이드 코팅, 바 코팅, 스핀 코팅, 슬롯다이 코팅, 딥 코팅 및 스프레이 코팅 등의 코팅 방법뿐만 아니라, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅, 스텐실 프린팅 및 스크린 프린팅 등의 프린팅 방법으로 도포되어 연속적으로 생산이 가능하도록 하는 것일 수 있다 The gel polymer electrolyte is a gel polymer electrolyte composition, as well as coating methods such as doctor blade coating, bar coating, spin coating, slot die coating, dip coating and spray coating, as well as inkjet printing, gravure printing, gravure offset, aerosol printing, stencil printing. And it may be applied by a printing method such as screen printing to enable continuous production.
상기 겔 고분자 전해질 조성물은 도포 공정에 적합한 점도를 갖는 것이 바람직하며, 구체적으로 예를 들면 25℃에서 브룩필드 점도계를 이용하여 측정된 점도가 0.1 ~ 10,000,000 cps, 더욱 좋게는 1.0 ~ 1,000,000 cps, 더욱 바람직하게는 1.0 ~ 100,000 cps인 것일 수 있으며, 상기 범위에서 도포 공정에 적용하기에 적절한 점도이므로 바람직하나 이에 제한되는 것은 아니다. The gel polymer electrolyte composition preferably has a viscosity suitable for the application process, and specifically, the viscosity measured using a Brookfield viscometer at 25°C is 0.1 to 10,000,000 cps, more preferably 1.0 to 1,000,000 cps, more preferably Preferably, it may be 1.0 to 100,000 cps, and it is preferable because it is a viscosity suitable for application to the coating process in the above range, but is not limited thereto.
상기 겔 고분자 전해질 조성물은 전체 조성물 100 중량% 중, 가교 가능한 단량체 및 이의 유도체를 1 ~ 50 중량%, 구체적으로 2 ~ 40 중량%로 포함되는 것일 수 있으며, 이에 제한되는 것은 아니다. 개시제는 0.01 ~ 50 중량%, 구체적으로 0.01 ~ 20 중량%, 더욱 구체적으로 0.1 ~ 10 중량%인 것일 수 있으며 이에 제한되는 것은 아니다. 상기 용매, 해리 가능한 염이 혼합된 액체전해질은 1 ~ 95 중량%, 구체적으로 1 ~ 90 중량%, 더욱 구체적으로 2 ~ 80 중량%로 포함되는 것일 수 있으며 이에 제한되는 것은 아니다.The gel polymer electrolyte composition may include 1 to 50% by weight, specifically 2 to 40% by weight, of a crosslinkable monomer and a derivative thereof, based on 100% by weight of the total composition, but is not limited thereto. The initiator may be 0.01 to 50% by weight, specifically 0.01 to 20% by weight, and more specifically 0.1 to 10% by weight, but is not limited thereto. The liquid electrolyte in which the solvent and the dissociable salt are mixed may be included in an amount of 1 to 95% by weight, specifically 1 to 90% by weight, and more specifically 2 to 80% by weight, but is not limited thereto.
상기 가교 가능한 단량체는 2개 이상의 관능기를 갖는 단량체 또는 2개 이상의 관능기를 갖는 단량체와 1개의 관능기를 갖는 단량체를 혼합하여 사용하는 것일 수 있으며, 광가교 또는 열가교 가능한 단량체라면 제한되지 않고 사용될 수 있다. 더욱 구체적으로 아크릴레이트계 단량체, 아크릴산계 단량체, 술폰산계 단량체, 인산계 단량체, 과불소계 단량체, 아크릴로나이트릴계 단량체로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. The crosslinkable monomer may be used by mixing a monomer having two or more functional groups or a monomer having two or more functional groups and a monomer having one functional group, and any monomer capable of photocrosslinking or thermal crosslinking may be used without limitation. . More specifically, it may be one or a mixture of two or more selected from the group consisting of acrylate-based monomers, acrylic acid-based monomers, sulfonic acid-based monomers, phosphoric acid-based monomers, perfluorine-based monomers, and acrylonitrile-based monomers.
상기 2개 이상의 관능기를 갖는 단량체로는 구체적으로 예를 들면, 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디아크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 트리메틸올프로판 에톡시레이트 트리아크릴레이트, 트리메틸올프로판 에톡시레이트 트리메타크릴레이트, 비스페놀에이에톡시레이트 디아크릴레이트, 비스페놀에이에톡시레이트 디메타크릴레이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.Specifically, as a monomer having two or more functional groups, for example, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, trimethylolpropane ethoxylate It may be any one or a mixture of two or more selected from triacrylate, trimethylolpropane ethoxylate trimethacrylate, bisphenol ethoxylate diacrylate, bisphenol ethoxylate dimethacrylate, and the like.
또한, 상기 1개의 관능기를 갖는 단량체로는 메틸메타크릴레이트, 에틸메타크릴레이트, 부틸메타크릴레이트, 메틸아크릴레이트, 부틸아크릴레이트, 에틸렌글리콜 메틸에테르아크릴레이트, 에틸렌글리콜 메틸에테르메타크레이트, 아크릴로니트릴, 비닐아세테이트, 비닐클로라이드 및 비닐플로라이드 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. In addition, as the monomer having one functional group, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, butyl acrylate, ethylene glycol methyl ether acrylate, ethylene glycol methyl ether methacrylate, and acrylo It may be any one or a mixture of two or more selected from nitrile, vinyl acetate, vinyl chloride and vinyl fluoride.
더욱 구체적으로 상기 단량체는 트리메틸올프로판 에톡시레이트 트리아크릴레이트 단독 또는 상기 트리메틸올프로판 에톡시레이트 트리아크릴레이트와 그외 상기 2개 이상의 관능기를 갖는 단량체 및 상기 1개의 관능기를 갖는 단량체에서 선택되는 어느 하나 이상을 혼합하여 사용하는 것일 수 있다. More specifically, the monomer is any one selected from trimethylolpropane ethoxylate triacrylate alone or the trimethylolpropane ethoxylate triacrylate and other monomers having two or more functional groups and a monomer having one functional group It may be a mixture of the above.
상기 개시제로는 당업계에서 통상적으로 사용되는 광개시제 또는 열 개시제라면 제한되지 않고 사용될 수 있다.As the initiator, any photo initiator or thermal initiator commonly used in the art may be used without limitation.
상기 액체전해질은 해리 가능한 염 및 용매를 포함하는 것을 의미한다.The liquid electrolyte is meant to contain a dissociable salt and a solvent.
상기 해리 가능한 염은 제한되는 것은 아니나 구체적으로 예를 들면, 리튬헥사플루오르포스페이트(LiPF 6), 리튬테트라플루오로보레이트(LiBF 4), 리튬헥사플루오르안티모네이트(LiSbF 6), 리튬헥사플루오르아세네이트(LiAsF 6), 리튬디플루오르메탄설포네이트(LiC 4F 9SO 3), 과염소산리튬(LiClO 4), 리튬알루미네이트(LiAlO 2), 리튬테트라클로로알루미네이트(LiAlCl 4), 염화리튬(LiCl), 요오드화리튬(LiI), 리튬 비스옥살레이토 보레이트(LiB(C 2O 4) 2), 리튬트리플루오로메탄설포닐이미드(LiN(C xF 2x+1SO 2)(C yF 2y+1SO 2)(여기서, x 및 y는 자연수임) 및 이들의 유도체 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. 상기 해리 가능한 염의 농도는 0.1 ~ 10.0 M, 더욱 구체적으로 1 ~ 5 M인 것일 수 있으며, 이에 한정되는 것은 아니다.The dissociable salt is not limited, but specifically, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroantimonate (LiSbF 6 ), lithium hexafluoroacetate (LiAsF 6 ), lithium difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl) , Lithium iodide (LiI), lithium bisoxalato borate (LiB(C 2 O 4 ) 2 ), lithium trifluoromethanesulfonylimide (LiN(C x F 2x+1 SO 2 )(C y F 2y+ 1 SO 2 ) (where x and y are natural waters) and derivatives thereof, etc. The concentration of the dissociable salt may be 0.1 to 10.0 M, more specifically 1 to 5 M It may be, but is not limited thereto.
더욱 구체적으로 상기 해리 가능한 염은 리튬헥사플루오르포스페이트, 리튬 비스옥살레이토 보레이트, 리튬트리플루오로메탄설포닐이미드 및 이들의 유도체 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. More specifically, the dissociable salt may be any one or a mixture of two or more selected from lithium hexafluorophosphate, lithium bisoxalato borate, lithium trifluoromethanesulfonylimide, and derivatives thereof.
상기 용매는 카보네이트계 용매, 니트릴계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 글림계 용매, 알코올계 용매 및 비양자성 용매 등과 같은 유기용매 및 물에서 선택되는 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있다.The solvent is any one or two or more mixed solvents selected from organic solvents such as carbonate-based solvents, nitrile-based solvents, ester-based solvents, ether-based solvents, ketone-based solvents, glyme-based solvents, alcohol-based solvents and aprotic solvents, and water May be to use.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC) 등이 사용될 수 있다.The carbonate-based solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC), and the like can be used.
상기 니트릴계 용매는 아세토니트릴(acetonitrile), 석시노니트릴(succinonitrile), 아디포니트릴(adiponitrile, 세바코니크릴(sebaconitrile) 등이 사용될 수 있다.As the nitrile-based solvent, acetonitrile, succinonitrile, adiponitrile, sebaconitrile, or the like may be used.
상기 에스테르계 용매로는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), n-프로필 아세테이트(n-propyl acetate), 1,1-디메틸에틸 아세테이트(1,1-dimethyl acetate), 메틸프로피오네이트(methylpropionate), 에틸프로피오네이트(ethylpropionate), γ-부티로락톤(γ-butylolactone), 데카놀라이드(decanolide), 발레로락톤(valerolactone), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다.As the ester solvent, methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethyl ethyl acetate, methyl propio Methylpropionate, ethylpropionate, γ-butylolactone, decanolide, valerolactone, mevalonolactone, caprolactone ), etc. may be used.
상기 에테르계 용매로는 디메틸 에테르, 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. As the ether solvent, dimethyl ether, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used, and as the ketone solvent, cyclohexanone, etc. Can be used.
상기 글림계 용매로는 에틸렌 글리콜 디메틸에테르, 트리에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르 등이 사용될 수 있다.As the glyme-based solvent, ethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, or the like may be used.
상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다.Ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol-based solvent, and R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, and a double bond It may contain an aromatic ring or an ether bond) nitriles such as amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, and the like may be used.
상기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.The solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more mixtures may be appropriately adjusted according to the desired battery performance, which may be widely understood by those engaged in the field. .
더욱 구체적으로 상기 용매는 디메틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 메틸프로필 카보네이트, 메틸에틸 카보네이트, 석시노니트릴, 1,3-디옥솔란, 디메틸아세트아미드, 설포란, 테트라에틸렌 글리콜 디메틸 에테르, 디메톡시에탄인 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.More specifically, the solvent is dimethyl carbonate, ethylene carbonate, propylene carbonate, methylpropyl carbonate, methylethyl carbonate, succinonitrile, 1,3-dioxolane, dimethylacetamide, sulfolane, tetraethylene glycol dimethyl ether, dimethoxyethane It may be any one or a mixture of two or more selected from phosphorus and the like.
또한, 상기 가교 고분자 매트릭스는 선형 고분자를 더 포함하여 반 상호 침투 망상(semi-IPN) 구조인 것일 수 있다. 이 경우, 우수한 유연성을 가지며, 전지로 사용 시 굽힘 등의 응력에 강한 저항성을 보여 성능 저하 없이 정상적으로 전지를 구동할 수 있다. In addition, the crosslinked polymer matrix may have a semi-interpenetrating network (semi-IPN) structure further including a linear polymer. In this case, it has excellent flexibility and shows strong resistance to stress such as bending when used as a battery, so that the battery can be operated normally without deteriorating performance.
상기 선형 고분자는 상기 가교 가능한 단량체와 혼합이 용이하고, 액체 전해질을 함침시킬 수 있는 고분자라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 폴리비닐리덴 플루오라이드 (Poly(vinylidene fluoride), PVdF), 폴리비닐리덴 플루오라이드 헥사플루오로프로필렌 (Poy(vinylidene fluoride)-co-hexafluoropropylene, PVdF-co-HFP), 폴리메틸메타아크릴레이트 (Polymethylmethacryalte, PMMA), 폴리스티렌 (Polystyrene, PS), 폴리비닐아세테이트(Polyvinylacetate, PVA), 폴리아크릴로나이트릴 (Polyacrylonitrile, PAN), 폴레에틸렌옥사이드(Polyethylene oxide, PEO) 등에서 선택되는 어느 하나 또는 둘 이상의 조합일 수 있으며, 반드시 이에 한정된 것은 아니다.The linear polymer may be easily mixed with the crosslinkable monomer and may be used without limitation as long as it is a polymer capable of impregnating a liquid electrolyte. Specifically, for example, polyvinylidene fluoride (Poly(vinylidene fluoride), PVdF), polyvinylidene fluoride hexafluoropropylene (Poy(vinylidene fluoride)-co-hexafluoropropylene, PVdF-co-HFP), polymethyl Any one selected from methacrylate (Polymethylmethacryalte, PMMA), polystyrene (PS), polyvinylacetate (PVA), polyacrylonitrile (PAN), polyethylene oxide (PEO), etc. Or it may be a combination of two or more, but is not necessarily limited thereto.
상기 선형 고분자는 상기 가교 고분자 매트릭스 중량에 대하여 1 내지 90 중량%로 포함될 수 있다. 구체적으로 1 내지 80 중량%, 1 내지 70 중량%, 1 내지 60 중량%, 1 내지 50 중량%, 1 내지 40 중량%, 1 내지 30 중량%로 포함될 수 있다. 즉, 상기 고분자 매트릭스가 반 상호 침투 망상(semi-IPN) 구조인 경우, 상기 가교 가능한 고분자와 상기 선형 고분자는 99 : 1 내지 10 : 90 중량비의 범위로 포함될 수 있다. 상기 선형 고분자가 상기 범위로 포함될 경우, 상기 가교 고분자 매트릭스는 적절한 기계적 강도를 유지하면서 유연성을 확보할 수 있다. The linear polymer may be included in an amount of 1 to 90% by weight based on the weight of the crosslinked polymer matrix. Specifically, it may be included in 1 to 80% by weight, 1 to 70% by weight, 1 to 60% by weight, 1 to 50% by weight, 1 to 40% by weight, 1 to 30% by weight. That is, when the polymer matrix has a semi-IPN structure, the crosslinkable polymer and the linear polymer may be included in a weight ratio of 99:1 to 10:90. When the linear polymer is included in the above range, the crosslinked polymer matrix can secure flexibility while maintaining appropriate mechanical strength.
또한, 상기 겔 고분자 전해질 조성물은 필요에 따라 무기입자를 더 포함하는 것일 수 있다. 상기 무기 입자는 상기 겔 고분자 전해질 조성물의 점도 등 유변학적 특성을 제어함으로써 도포 공정이 수월하도록 할 수 있다. In addition, the gel polymer electrolyte composition may further include inorganic particles as needed. The inorganic particles may facilitate the application process by controlling rheological properties such as viscosity of the gel polymer electrolyte composition.
상기 무기 입자는 전해질의 이온전도도를 향상시키고 기계적인 강도를 향상시키기 위하여 사용될 수 있으며, 다공성 입자인 것일 수 있으나 이에 제한되는 것은 아니다. 예를 들면, 금속산화물, 탄소산화물, 탄소계 재료 및 유무기복합체 등이 사용될 수 있으며, 단독 또는 둘 이상을 혼합하여 사용하는 것일 수 있다. 더욱 구체적으로 예를 들면, SiO 2, Al 2O 3, TiO 2, BaTiO 3, Li 2O, LiF, LiOH, Li 3N, BaO, Na 2O, Li 2CO 3, CaCO 3, LiAlO 2, SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZrO 2, SiC, 및 제올라이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. 제한되는 것은 아니나 상기 무기입자를 사용함으로써, 유기 용매와 친화성이 높을 뿐 아니라 열적으로도 매우 안정하여 전기화학 소자의 열적 안정성을 향상시킬 수 있다.The inorganic particles may be used to improve ionic conductivity and mechanical strength of the electrolyte, and may be porous particles, but are not limited thereto. For example, metal oxides, carbon oxides, carbon-based materials, organic-inorganic composites, etc. may be used, and may be used alone or in combination of two or more. More specifically, for example, SiO 2 , Al 2 O 3 , TiO 2 , BaTiO 3 , Li 2 O, LiF, LiOH, Li 3 N, BaO, Na 2 O, Li 2 CO 3 , CaCO 3 , LiAlO 2 , It may be any one or a mixture of two or more selected from SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiC, and zeolite. Although not limited, by using the inorganic particles, not only has high affinity with an organic solvent, but is also very stable thermally, thereby improving the thermal stability of the electrochemical device.
상기 무기 입자의 평균 직경은 제한되는 것은 아니나 0.001㎛ 내지 10㎛일 수 있다. 구체적으로 0.1 내지 10㎛, 더욱 구체적으로 0.1 내지 5㎛인 것일 수 있다. 상기 무기입자의 평균 직경이 상기 범위를 만족할 경우 전기화학소자의 우수한 기계적 강도 및 안정성을 구현할 수 있다.The average diameter of the inorganic particles is not limited, but may be 0.001 μm to 10 μm. Specifically, it may be 0.1 to 10 µm, more specifically 0.1 to 5 µm. When the average diameter of the inorganic particles satisfies the above range, excellent mechanical strength and stability of the electrochemical device may be implemented.
상기 겔 고분자 전해질 조성물 중 상기 무기 입자의 함량이 1 ~ 50 중량%, 더욱 구체적으로 5 ~ 40 중량%, 더욱 구체적으로 10 ~ 30 중량%로 포함되는 것일 수 있으며, 앞서 설명된 점도 범위인 0.1 ~ 10,000,000 cps, 더욱 좋게는 1.0 ~ 1,000,000 cps, 더욱 바람직하게는 1.0 ~ 100,000 cps를 만족하는 함량으로 사용되는 것일 수 있으며, 이에 제한되지 않는다.The content of the inorganic particles in the gel polymer electrolyte composition may be 1 to 50% by weight, more specifically 5 to 40% by weight, more specifically 10 to 30% by weight, and the viscosity range described above 0.1 to It may be used in an amount satisfying 10,000,000 cps, more preferably 1.0 to 1,000,000 cps, more preferably 1.0 to 100,000 cps, but is not limited thereto.
(1) 분리막-전해질 결합체(1) Membrane-electrolyte combination
본 발명의 일 양태에서, 상기 분리막은 다양한 형태로 이루어진 것일 수 있으며, 구체적으로 예를 들며 i) 고체 전해질로 이루어진 분리막 및 ii) 다공성 막에 고체 전해질이 압착 및 함침되어 이루어지는 분리막에서 선택되는 것일 수 있다. In one aspect of the present invention, the separation membrane may be of various forms, and specifically, for example, i) a separation membrane made of a solid electrolyte and ii) a separation membrane formed by pressing and impregnating a solid electrolyte in a porous membrane may be selected. have.
상기 분리막 i) 양태의 고체 전해질 분리막에 있어서, 상기 고체 전해질은 특별히 구체적인 성분으로 한정되는 것은 아니며, 고분자 고체 전해질, 산화물계 고체 전해질 및 황화물계 고체 전해질에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. The separation membrane In the solid electrolyte separation membrane of the aspect i), the solid electrolyte is not particularly limited to specific components, and may be any one or a mixture of two or more selected from a polymer solid electrolyte, an oxide solid electrolyte, and a sulfide solid electrolyte. have.
상기 고분자 고체 전해질은 폴리에틸렌옥사이드(PEO), 폴리아크릴로니트릴(PAN), 폴리메틸메타크릴레이트(PMMA), 폴리비닐리덴 풀루오라이드(PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌(PVDF-HFP), LiPON, Li 3N, LixLa1-xTiO 3(0 < x < 1) 및 Li 2S-GeS-Ga 2S 3로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. The polymer solid electrolyte is polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene. (PVDF-HFP), LiPON, Li 3 N, LixLa1-xTiO 3 (0 <x <1) and Li 2 S-GeS-Ga 2 S 3 It may be any one or a mixture of two or more selected from the group consisting of .
상기 산화물계 고체 전해질은 산소 원자(O)를 함유하고, 또한 주기율표 제1족 혹은 제2족에 속하는 금속을 포함하며, 이온 전도성을 갖고, 또한 전자 절연성을 갖는 것이 바람직하다. It is preferable that the oxide-based solid electrolyte contains an oxygen atom (O), further contains a metal belonging to Group 1 or 2 of the periodic table, has ionic conductivity, and has electronic insulation.
구체적으로는, 예를 들면, LixaLayaTiO3〔xa=0.3~0.7, ya=0.3~0.7〕(LLT), Li7La3Zr2O12(LLZ), LISICON(Lithium super ionic conductor)형 결정 구조를 갖는 Li3.5Zn0.25GeO4, NASICON(Natrium super ionic conductor)형 결정 구조를 갖는 LiTi2P3O12, Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12(단, 0≤xb≤1, 0≤yb≤1), 가닛형 결정 구조를 갖는 Li7La3Zr2O12를 들 수 있다. Specifically, for example, LixaLayaTiO3 [xa=0.3~0.7, ya=0.3~0.7] (LLT), Li7La3Zr2O12(LLZ), Li3.5Zn0.25GeO4, NASICON having a crystal structure of LISICON (Lithium super ionic conductor) type. (Natrium super ionic conductor) type crystal structure LiTi2P3O12, Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12 (however, 0≤xb≤1, 0≤yb≤1), Li7La3Zr2O12 which has a garnet-type crystal structure is mentioned.
또한 Li, P 및 O를 포함하는 인 화합물도 바람직하다. 예를 들면, 인산 리튬(Li3PO4), 인산 리튬의 산소의 일부를 질소로 치환한 LiPON, LiPOD(D는, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, Au 등으로부터 선택되는 적어도 1종)를 들 수 있다. 또한, LiAON(A는, Si, B, Ge, Al, C, Ga 등으로부터 선택되는 적어도 1종) 등도 바람직하게 이용할 수 있다. Further, phosphorus compounds containing Li, P and O are also preferred. For example, lithium phosphate (Li3PO4), LiPON, LiPOD (D is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, At least one selected from Ru, Ag, Ta, W, Pt, Au, and the like). In addition, LiAON (A is at least one selected from Si, B, Ge, Al, C, Ga, etc.) or the like can be preferably used.
그 중에서도, Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12(단, 0≤xb≤1, 0≤yb≤1)는, 높은 리튬 이온 전도성을 갖고, 화학적으로 안정적이고 취급이 용이하기 때문에, 바람직하다. 이들은 단독으로 이용해도 되고, 2종 이상을 조합하여 이용해도 된다. Among them, Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12 (however, 0≤xb≤1, 0≤yb≤1) has high lithium ion conductivity, and is chemically It is preferable because it is stable and easy to handle. These may be used individually or may be used in combination of 2 or more types.
산화물계 고체 전해질의 리튬 이온 전도도는, 1× 10 -6S/cm 이상이 바람직하고, 1× 10 -5 S/cm 이상이 보다 바람직하며, 5× 10 -5S/cm 이상이 더 바람직하다.The lithium ion conductivity of the oxide-based solid electrolyte is preferably 1×10 -6 S/cm or more, more preferably 1×10 -5 S/cm or more, and more preferably 5×10 -5 S/cm or more. .
상기 황화물계 고체전해질은, 황(S)을 함유하고, 또한 주기율표 제1족 혹은 제2족에 속하는 금속을 포함하며, 이온 전도성을 갖고, 또한 전자 절연성을 갖는 것이 바람직하다. The sulfide-based solid electrolyte preferably contains sulfur (S), contains a metal belonging to Group 1 or Group 2 of the periodic table, has ionic conductivity, and has electronic insulation.
구체적으로는 Li7-aPS6-aXa (X는 F, Cl, Br, I, 또는 이의 조합, 0≤a<2), aLi2S-(1-a)P2S5 (0<a<1), aLi2S-bP2S5-cLiX (X는 F, Cl, Br, I, 또는 이들의 조합이고, 0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1),aLi2S-bP2S5-cLi2O (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-bP2S5-cLi2O-dLiI (0<a<1, 0<b<1, 0<c<1, 0<d<1 및 a+b+c+d=1), aLi2S-(1-a)SiS2 (0<a<1), aLi2S-bSiS2-cLiI (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-bSiS2-cLiBr (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-bSiS2-cLiCl (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2SbSiS2-cB2S3-dLiI (0<a<1, 0<b<1, 0<c<1, 0<d<1 및 a+b+c+d=1), aLi2S-bSiS2-cP2S5-dLiI (0<a<1, 0<b<1, 0<c<1,0<d<1 및 a+b+c+d=1), aLi2S-(1-a)B2S3 (0<a<1), aLi2S-bP2S5-cZmSn (m 및 n는 서로 독립적으로 1 내지 10의 양의 정수이고, Z는 Ge, Zn, 또는 Ga이고, 0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-(1-a)GeS2 (0<a<1), aLi2SbSiS2-cLi3PO4 (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), 또는 aLi2S-bSiS2-cLiPMOq (p 및 q는 서로 독립적으로 1 내지 10의 양의 정수이고, 0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1이고, M은 P, Si, Ge, B, Al, Ga 또는 In)군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. Specifically, Li7-aPS6-aXa (X is F, Cl, Br, I, or a combination thereof, 0≤a<2), aLi2S-(1-a)P2S5 (0<a<1), aLi2S-bP2S5- cLiX (X is F, Cl, Br, I, or a combination thereof, 0<a<1, 0<b<1, 0<c<1, and a+b+c=1), aLi2S-bP2S5- cLi2O (0<a<1, 0<b<1, 0<c<1, and a+b+c=1), aLi2S-bP2S5-cLi2O-dLiI (0<a<1, 0<b<1, 0<c<1, 0<d<1 and a+b+c+d=1), aLi2S-(1-a)SiS2 (0<a<1), aLi2S-bSiS2-cLiI (0<a<1) , 0<b<1, 0<c<1, and a+b+c=1), aLi2S-bSiS2-cLiBr (0<a<1, 0<b<1, 0<c<1, and a+ b+c=1), aLi2S-bSiS2-cLiCl (0<a<1, 0<b<1, 0<c<1, and a+b+c=1), aLi2SbSiS2-cB2S3-dLiI (0<a <1, 0<b<1, 0<c<1, 0<d<1 and a+b+c+d=1), aLi2S-bSiS2-cP2S5-dLiI (0<a<1, 0<b< 1, 0<c<1,0<d<1 and a+b+c+d=1), aLi2S-(1-a)B2S3 (0<a<1), aLi2S-bP2S5-cZmSn (m and n Is independently from each other a positive integer of 1 to 10, Z is Ge, Zn, or Ga, 0<a<1, 0<b<1, 0<c<1, and a+b+c=1) , aLi2S-(1-a)GeS2 (0<a<1), aLi2SbSiS2-cLi3PO4 (0<a<1, 0<b<1, 0<c<1, and a+b+c=1), or aLi2S-bSiS2-cLiPMOq (p and q are each independently positive integers from 1 to 10, 0<a<1, 0<b<1, 0<c<1, and a+b+c=1, M may be any one or a mixture of two or more selected from the group P, Si, Ge, B, Al, Ga, or In).
여기서 황화물계 고체 전해질 재료는 시작 원료(예를 들어 Li2S, P2S5등)을 용해급랭법 또는 기계적 밀링(mechanical milling)법 등으로 처리하여 제작된다. 또한, 이러한 처리 후에 추가적인 열처리를 할 수 있다. 황화물계 고체 전해질은 비결정질 또는 결정질일 수 있으며, 이들의 혼합 형태일 수 있다.Here, the sulfide-based solid electrolyte material is produced by treating a starting material (eg, Li2S, P2S5, etc.) by a dissolution quenching method or a mechanical milling method. In addition, additional heat treatment may be performed after such treatment. The sulfide-based solid electrolyte may be amorphous or crystalline, and may be a mixture thereof.
또한, 고체 전해질로서 황화물 고체 전해질 재료 중 적어도 구성 원소로서 황(S), 인(P) 및 리튬(Li)을 포함하는 것을 사용하는 것이 바람직하며, 특히 Li 2S-P 2S 5를 포함하는 것을 사용하는 것이 더 바람직하다.In addition, it is preferable to use a solid electrolyte containing at least sulfur (S), phosphorus (P), and lithium (Li) as constituent elements among the sulfide solid electrolyte materials, and in particular, those containing Li 2 SP 2 S 5 are used. It is more preferable to do it.
황화물 고체 전해질의 이온 전도도는, 1× 10 -4S/cm 이상이 바람직하고, 1× 10 -3S/cm 이상이 보다 바람직하다.The ionic conductivity of the sulfide solid electrolyte is, 1 × 10 -4 S / cm or more is preferable, 1 × 10 -3 S / cm or higher is more preferable.
고체 전해질은 가수분해에 의한 이온 전도도의 저하나, 통전 시의 물의 전기 분해를 억제하는 관점에서, 흡습하지 않는 것이 바람직하다. 특히 황화물계 고체 전해질은 대기 중의 수분과 매우 반응하기 쉽고, 분해되어 황화 수소를 발생시키기 쉽다. 산화물계 고체 전해질은 대체로 경도가 높기 때문에, 전고체 이차전지에 있어서 계면저항의 상승을 일으키기 쉽다. 본 발명에 있어서 겔 고분자 전해질을 고체 전해질에 도포하는 경우, 아주 얇은 코팅 막을 형성하여 고체 전해질 분리막의 내수성 및 계면의 흡착 상태를 개선할 수 있다.It is preferable that the solid electrolyte does not absorb moisture from the viewpoint of reducing ionic conductivity due to hydrolysis or suppressing electrolysis of water during energization. In particular, the sulfide-based solid electrolyte is very easy to react with moisture in the atmosphere and is easily decomposed to generate hydrogen sulfide. Since the oxide-based solid electrolyte generally has high hardness, it is easy to cause an increase in interface resistance in an all-solid secondary battery. In the present invention, when the gel polymer electrolyte is applied to the solid electrolyte, it is possible to improve the water resistance of the solid electrolyte separator and the adsorption state of the interface by forming a very thin coating film.
상기 고체 전해질은, 1종을 단독으로 이용해도 되고, 2종 이상을 조합하여 이용해도 된다. 고체 전해질의 평균 입자 사이즈는 특별히 한정되지 않는다. 또한, 0.001 ㎛ 이상이 바람직하고, 0.01 ㎛ 이상이 보다 바람직하다. 상한으로서는, 1,000 ㎛ 이하가 바람직하고, 100 ㎛ 이하가 보다 바람직하다.These solid electrolytes may be used singly or in combination of two or more. The average particle size of the solid electrolyte is not particularly limited. Further, 0.001 µm or more is preferable, and 0.01 µm or more is more preferable. As an upper limit, 1,000 micrometers or less are preferable, and 100 micrometers or less are more preferable.
상기 분리막 i) 양태에서 고체 전해질 분리막은 고체 전해질 입자 사이의 접착을 촉진시키기 위한 바인더를 더 포함할 수 있다. In the separator i) aspect, the solid electrolyte separator may further include a binder for promoting adhesion between solid electrolyte particles.
구체적인 예를 들면 상기 바인더로는 SBS(스티렌 부타디엔 블록 중합체), SEBS(스티렌 에틸렌 부타디엔 스티렌 블록중합체), 스티렌-스티렌 부타디엔-스티렌 블록 중합체 등의 스티렌계 열가소성 엘라스토머류, SBR(스티렌 부타디엔 고무), BR(부타디엔 고무), NR(천연 고무), IR(이소프렌 고무), EPDM (에틸렌-프로필렌-디엔 3원 공중합체) 및 이들의 부분 수소화물이 있다. 그 외에도 폴리스티렌, 폴리올레핀, 올레핀계 열가소성 엘라스토머, 폴리시클로올레핀, 실리콘 수지, NBR(니트릴 고무), CR(클로로프렌 고무) 및 이들의 부분 수소화물 혹은 완전 수소화물, 폴리아크릴산 에스테르의 공중합체, PVDF(폴리비닐리덴플로라이드), VDF-HFP(비닐리덴플로라이드-헥사 플루오로프로필렌 공중합체) 및 이들의 카르본산 변성물, CM(염소화 폴리에틸렌), 폴리메타크릴산 에스테르, 폴리비닐알코올, 에틸렌-비닐알코올 공중합체, 폴리이미드, 폴리아미드, 폴리아미드이미드에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.Specific examples of the binder include styrene-based thermoplastic elastomers such as SBS (styrene butadiene block polymer), SEBS (styrene ethylene butadiene styrene block polymer), styrene-styrene butadiene-styrene block polymer, SBR (styrene butadiene rubber), BR (Butadiene rubber), NR (natural rubber), IR (isoprene rubber), EPDM (ethylene-propylene-diene terpolymer), and partially hydrides thereof. In addition, polystyrene, polyolefin, olefin-based thermoplastic elastomer, polycycloolefin, silicone resin, NBR (nitrile rubber), CR (chloroprene rubber) and partially hydride or fully hydride thereof, copolymer of polyacrylic acid ester, PVDF (poly Vinylidene fluoride), VDF-HFP (vinylidene fluoride-hexafluoropropylene copolymer) and carboxylic acid modified products thereof, CM (chlorinated polyethylene), polymethacrylic acid ester, polyvinyl alcohol, ethylene-vinyl alcohol It may be any one or a mixture of two or more selected from a copolymer, polyimide, polyamide, and polyamideimide.
상기 고체 전해질과 바인더의 중량비는 51:49 내지 99:1일 수 있으며, 구체적으로는 60:40 내지 99:1일 수 있으며, 보다 구체적으로 80:20 내지 99:1일 수 있다. The weight ratio of the solid electrolyte and the binder may be 51:49 to 99:1, specifically 60:40 to 99:1, and more specifically 80:20 to 99:1.
상기 고체 전해질 분리막은 상기 고체 전해질과 상기 바인더를 용매에 혼합하여 슬러리를 만들어 제조할 수도 있다. 상기 용매는 아세톤(acetone), THF(tetrahydrofuran), DMF (dimethylformamide), DMSO (dimethylsulfoxide), DMAc (dimethylacetamide), NMP(N-methyl pyrrolidone) 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있으나, 이에 한정되는 것은 아니다. The solid electrolyte separator may be prepared by mixing the solid electrolyte and the binder in a solvent to form a slurry. The solvent may be any one or a mixture of two or more selected from acetone, tetrahydrofuran (THF), dimethylformamide (DMF), dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), N-methyl pyrrolidone (NMP), etc. It is not limited.
상기 고체 전해질 분리막은 상기 고체 전해질, 바인더 및 용매를 포함하는 고체 전해질 분리막 제조용 슬러리를 준비하고 이를 적절한 이형판에 도포 및 건조한 후 분리하는 방법으로 수득할 수 있다. The solid electrolyte separator may be obtained by preparing a slurry for preparing a solid electrolyte separator including the solid electrolyte, a binder, and a solvent, applying it to an appropriate release plate, drying it, and separating it.
구체적으로, 상기 고체 전해질 분리막 제조용 슬러리는 황화물계 고체 전해질을 포함할 수 있으며, 바인더로는 고무계 바인더 수지를 포함할 수 있다. 또한, 상기 용매는 비극성 용매를 포함하는 것으로서, 극성도(polarity index) 가 0 내지 3의 범위 및/또는 유전 상수가 5 미만인 것이 바람직하다. Specifically, the slurry for preparing the solid electrolyte separator may include a sulfide-based solid electrolyte, and a rubber-based binder resin may be included as a binder. In addition, it is preferable that the solvent includes a non-polar solvent, and has a polarity index of 0 to 3 and/or a dielectric constant of less than 5.
상기 고체 전해질 분리막 제조용 슬러리로 제조된 고체 전해질 분리막의 두께는 또한 그 두께는 제한되지 않으며, 통상적으로 당업계에서 사용되는 범위인 1 ~ 200 ㎛, 더욱 구체적으로 10 ~ 200 ㎛인 것일 수 있으며, 이에 제한되지 않는다. 상기 고체 전해질 분리막은 한 층 또는 둘 이상이 적층된 다층막 인 것일 수 있다. 또한, 둘 이상의 상기 고체 전해질 분리막이 적층될 경우, 각 층의 소재, 조성비 및 특성이 서로 다른 것일 수도 있다.The thickness of the solid electrolyte separator prepared from the slurry for preparing the solid electrolyte separator is not limited, and may be 1 to 200 µm, more specifically 10 to 200 µm, which is a range generally used in the art. Not limited. The solid electrolyte separation membrane may be one layer or a multilayer membrane in which two or more are stacked. In addition, when two or more of the solid electrolyte membranes are stacked, the material, composition ratio, and characteristics of each layer may be different from each other.
본 발명의 분리막의 ii)양태는 다공성 고분자 막에 고체 전해질이 압착 및 함침되어 이루어진 압착 및 함침 고체 전해질 분리막인 것일 수 있다. 고체 전해질은 앞서 설명한 바와 같으며, 상기 다공성 막은 통상적으로 해당 분야에서 사용되는 것이라면 제한되지 않고 사용될 수 있다.The ii) aspect of the separator of the present invention may be a compressed and impregnated solid electrolyte separation membrane formed by pressing and impregnating a solid electrolyte in a porous polymer membrane. The solid electrolyte is as described above, and the porous membrane may be used without limitation as long as it is commonly used in the relevant field.
예를 들어, 직포, 부직포 및 다공성 고분자 막 등인 것일 수 있다. 또한 이들이 한층 또는 둘 이상이 적층된 다층막인 것일 수 있다. 또한, 둘 이상의 상기 다공성 막이 적층될 경우, 각 층의 소재, 조성비 및 특성이 서로 다른 것일 수도 있다. 또한, 상기 고체질의 종류 및 조성이 서로 다른 것이 상기 다공성 막 앞면 및 뒷면에 혹은 두 층 이상의 다공성 막 사이에 압착되어 두 층 이상으로 적층될 수도 있다. For example, it may be a woven fabric, a non-woven fabric, and a porous polymer membrane. In addition, these may be one layer or a multilayer film in which two or more are stacked. In addition, when two or more of the porous membranes are laminated, the material, composition ratio, and characteristics of each layer may be different from each other. In addition, different types and compositions of the solid material may be laminated in two or more layers by pressing them on the front and rear surfaces of the porous membrane or between two or more porous membranes.
상기 다공성 막의 소재는 제한되지 않으나 구체적으로 예를 들면, 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리메틸펜텐, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌 및 이들의 공중합체 등으로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물로 형성된 것일 수 있다. 또한 그 두께는 제한되지 않으며, 통상적으로 당업계에서 사용되는 범위인 1 ~ 100 ㎛, 더욱 구체적으로 10 ~ 80 ㎛인 것일 수 있으며, 이에 제한되지 않는다.The material of the porous membrane is not limited, but specifically, for example, polyethylene, polypropylene, polybutylene, polypentene, polymethylpentene, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyie It may be formed of any one or a mixture of two or more selected from the group consisting of mid, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene, and copolymers thereof. In addition, the thickness is not limited, and may be in the range of 1 to 100 μm, more specifically 10 to 80 μm, which is typically used in the art, but is not limited thereto.
상기 압착 및 함침 고체 전해질 분리막은 상기 고체 전해질을 슬러리 상태로 상기 다공성 막에 도포하고, 상기 고체 전해질이 도포된 상기 다공성 막을 압착하여 제조할 수 있다.The compressed and impregnated solid electrolyte separation membrane may be prepared by applying the solid electrolyte to the porous membrane in a slurry state and compressing the porous membrane to which the solid electrolyte is applied.
상기 압착은 냉압(cold-press) 또는 열압(hot-press)에 의해 수행되는 것일 수 있다. 특히, 상기의 냉압은 특별한 열처리가 요구되지 않는다는 점에서, 공정상의 장점이 있는 것이다. 구체적으로, 상기 압착은 열압에 의한 것일 수 있는데, 이는 이온전도도와 입자간 접촉면적의 향상에 영향을 미칠 수 있는 것이므로, 방전용량(rate capability)의 측면에서 성능이 향상된 압착 및 함침 고체전해질 분리막을 제조할 수 있다. The compression may be performed by cold-press or hot-press. In particular, the above cold pressure has an advantage in the process in that no special heat treatment is required. Specifically, the compression may be due to heat pressure, which may affect the improvement of the ion conductivity and the contact area between particles, and thus a compression and impregnation solid electrolyte membrane with improved performance in terms of rate capability Can be manufactured.
또한, 상기 압착은 50 내지 1000 MPa의 압력으로 수행되는 것일 수 있다. 상기 50 MPa 미만인 경우에는 일례로 부직포와 고체전해질간의 분리막 형성이 이뤄질 수 없는 문제가 발생할 수 있어, 상기 범위가 바람직하다.In addition, the compression may be performed at a pressure of 50 to 1000 MPa. If it is less than 50 MPa, for example, a problem in that a separation film between the nonwoven fabric and the solid electrolyte cannot be formed may occur, and the above range is preferable.
상기 압착 및 함침 고체 전해질 분리막은 1 내지 200 ㎛ 이하의 두께로 형성될 수 있다. 보다 구체적으로, 상기 분리막의 두께는 10 내지 200㎛일 수 있다. 상기 200 ㎛을 초과하는 경우, 기계적 특성이 적정 범위의 분리막보다 약해질 수 있다. 또한, 압착 및 함침 고체 전해질 분리막 내의 저항이 증가하여 방전용량(rate capability)의 장점을 잃을 수 있다. 한편, 상기 1 ㎛ 미만인 경우에는 압착 및 함침 고체 전해질 분리막의 기계적 물성 지지 역할 한계의 문제가 발생할 수 있다. 따라서, 상기 범위로 한정한다.The compressed and impregnated solid electrolyte separator may be formed to a thickness of 1 to 200 μm or less. More specifically, the thickness of the separator may be 10 to 200 μm. When it exceeds the 200 μm, mechanical properties may be weaker than that of a separator in an appropriate range. In addition, the resistance in the pressure bonding and impregnation solid electrolyte separation membrane increases, so that the advantage of rate capability may be lost. On the other hand, when the thickness is less than 1 µm, a problem of limiting the role of supporting mechanical properties of the compressed and impregnated solid electrolyte separator may occur. Therefore, it is limited to the above range.
본 발명의 일 양태에서, 상기 분리막-전해질 결합체는 분리막 상에 겔 고분자 전해질이 도포 및 함침되어 일체화 된 것을 의미한다. 상기 함침은 일부 또는 전부가 침투되어 일체화 된 것을 의미한다.In one aspect of the present invention, the separator-electrolyte combination means that a gel polymer electrolyte is coated and impregnated on the separator to be integrated. The impregnation means that some or all of them are penetrated and integrated.
상기 분리막-전해질 결합체에서 상기 겔 고분자 전해질 층의 두께는 0.01㎛ 내지 500㎛일 수 있다. 구체적으로 0.01 내지 100㎛일 수 있으며, 이에 제한되는 것은 아니다. 상기 겔 고분자 전해질 층의 두께가 상기 범위를 만족할 경우 전기 화학 소자의 성능을 향상시키면서 제조과정의 용이성을 도모할 수 있다.In the separator-electrolyte assembly, the thickness of the gel polymer electrolyte layer may be 0.01 μm to 500 μm. Specifically, it may be 0.01 to 100 μm, but is not limited thereto. When the thickness of the gel polymer electrolyte layer satisfies the above range, it is possible to improve the performance of the electrochemical device and facilitate the manufacturing process.
(2) 양극-전해질 결합체(2) anode-electrolyte combination
본 발명의 일 양태에서, 상기 양극은 양극 집전체 상에 양극활물질층이 형성된 것을 의미한다. In one aspect of the present invention, the positive electrode means that a positive electrode active material layer is formed on a positive electrode current collector.
상기 양극 집전체는 당해 분야에서 사용되는 전도성이 우수한 기판이라면 제한되지 않으며, 전도성 금속, 전도성 금속산화물 등에서 선택되는 어느 하나를 포함하는 것으로 이루어진 것일 수 있다. 또한, 집전체는 기판 전체가 전도성 재료로 이루어지거나, 절연성 기판의 일면 또는 양면에 전도성 금속, 전도성 금속 산화물, 전도성 고분자 등이 코팅된 형태인 것일 수 있다. 또한, 상기 집전체는 유연성 기판으로 이루어진 것일 수 있으며, 쉽게 굽혀질 수 있어 플렉서블한 전자소자를 제공할 수 있다. 또한, 굽혔다가 다시 원래 형태로 되돌아가는 복원력을 갖는 소재로 이루어진 것일 수 있다. 더욱 구체적으로 예를 들면, 집전체는 알루미늄, 스테인레스 스틸, 구리, 니켈, 철, 리튬, 코발트, 티타늄, 니켈 발포체, 구리 발포체 및 전도성 금속이 코팅된 폴리머 기재 등으로 이루어진 것일 수 있으나, 이에 한정되는 것은 아니다.The positive electrode current collector is not limited as long as it is a substrate having excellent conductivity used in the art, and may be made of any one selected from conductive metals and conductive metal oxides. In addition, the current collector may have a form in which the entire substrate is made of a conductive material, or a conductive metal, a conductive metal oxide, a conductive polymer, or the like is coated on one or both sides of an insulating substrate. In addition, the current collector may be formed of a flexible substrate, and may be easily bent, thereby providing a flexible electronic device. In addition, it may be made of a material having a restoring force that is bent and returned to its original shape. More specifically, for example, the current collector may be made of aluminum, stainless steel, copper, nickel, iron, lithium, cobalt, titanium, nickel foam, copper foam, and a polymer substrate coated with a conductive metal, but is limited thereto. It is not.
상기 양극활물질층은 양극 활물질, 고체전해질 및 바인더를 포함하는 활물질층으로 형성된 것일 수 있다. The positive electrode active material layer may be formed of an active material layer including a positive electrode active material, a solid electrolyte, and a binder.
상기 양극활물질층의 두께는 제한되는 것은 아니나 0.01 ~ 500 ㎛, 더욱 구체적으로 1 ~ 200 ㎛인 것일 수 있으며, 이에 제한되는 것은 아니다. The thickness of the positive electrode active material layer is not limited, but may be 0.01 to 500 µm, more specifically 1 to 200 µm, but is not limited thereto.
상기 양극활물질층 중 상기 활물질층은 양극 활물질, 고체전해질, 바인더 및 용매를 포함하는 양극활물질 조성물을 도포하여 형성한 것일 수 있다. 또는 상기 양극활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 상기 집전체 상에 라미네이션 하여 양극활물질층이 형성된 양극을 제조하는 것일 수 있다. Among the positive electrode active material layers, the active material layer may be formed by applying a positive electrode active material composition including a positive electrode active material, a solid electrolyte, a binder, and a solvent. Alternatively, the positive electrode active material composition may be cast on a separate support, and then a film obtained by peeling from the support may be laminated on the current collector to prepare a positive electrode having a positive electrode active material layer.
상기 양극 활물질은 당업계에서 통상적으로 사용되는 것이라면 제한되지 않고 사용될 수 있다. 구체적으로 리튬 일차전지 또는 이차전지를 예로 들면, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 본 발명의 양극 활물질은 분말 형태인 것일 수 있다.The positive electrode active material may be used without limitation as long as it is commonly used in the art. Specifically, for example, a lithium primary battery or a secondary battery, a compound capable of reversible intercalation and deintercalation of lithium (retiated intercalation compound) may be used. The positive electrode active material of the present invention may be in the form of a powder.
구체적으로는 코발트, 망간, 니켈 등에서 선택되는 어느 하나 또는 둘 이상의 조합으로 이루어진 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있다. 제한되는 것은 아니나 구체적인 예로는 하기 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다. LiaA1-bRbD2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0 ≤ b ≤ 0.5이다); LiaE1-bRbO2-cDc(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 및 0 ≤ c ≤ 0.05이다); LiE2-bRbO4-cDc(상기 식에서, 0 ≤ b ≤0.5, 0 ≤ c ≤ 0.05이다); LiaNi1-b-cCobRcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α ≤ 2이다); LiaNi1-b-cCobRcO2-αZα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNi1-b-cCobRcO2-αZ2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNi1-b-cMnbRcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α ≤ 2 이다); LiaNi1-b-cMnbRcO2-αZα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNi1-b-cMnbRcO2-αZ2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5 및 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5 및 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); QO2;QS2;LiQS2;V2O5;LiV2O5;LiTO2;LiNiVO4;Li(3-f)J2(PO4)3(0≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0≤ f ≤ 2); 및 LiFePO4.Specifically, one or more of a composite oxide of lithium and a metal composed of any one selected from cobalt, manganese, nickel, or a combination of two or more may be used. Although not limited, a specific example may be a compound represented by any one of the following formulas. LiaA1-bRbD2 (wherein 0.90≦a≦1.8 and 0≦b≦0.5); LiaE1-bRbO2-cDc (wherein, 0.90≦a≦1.8, 0≦b≦0.5, and 0≦c≦0.05); LiE2-bRbO4-cDc (wherein 0≦b≦0.5, 0≦c≦0.05); LiaNi1-b-cCobRcDα (wherein, 0.90≦a≦1.8, 0≦b≦0.5, 0≦c≦0.05, and 0<α≦2); LiaNi1-b-cCobRcO2-αZα (wherein, 0.90≦a≦1.8, 0≦b≦0.5, 0≦c≦0.05, and 0<α<2); LiaNi1-b-cCobRcO2-αZ2 (in the above formula, 0.90≦a≦1.8, 0≦b≦0.5, 0≦c≦0.05, and 0<α<2); LiaNi1-b-cMnbRcDα (wherein, 0.90≦a≦1.8, 0≦b≦0.5, 0≦c≦0.05, and 0<α≦2); LiaNi1-b-cMnbRcO2-αZα (wherein, 0.90≦a≦1.8, 0≦b≦0.5, 0≦c≦0.05 and 0<α<2); LiaNi1-b-cMnbRcO2-αZ2 (in the above formula, 0.90≦a≦1.8, 0≦b≦0.5, 0≦c≦0.05, and 0<α<2); LiaNibEcGdO2 (in the above formula, 0.90≦a≦1.8, 0≦b≦0.9, 0≦c≦0.5, and 0.001≦d≦0.1); LiaNibCocMndGeO2 (wherein, 0.90≦a≦1.8, 0≦b≦0.9, 0≦c≦0.5, 0≦d≦0.5, and 0.001≦e≦0.1.); LiaNiGbO2 (in the above formula, 0.90≦a≦1.8 and 0.001≦b≦0.1); LiaCoGbO2 (in the above formula, 0.90≦a≦1.8 and 0.001≦b≦0.1); LiaMnGbO2 (in the above formula, 0.90≦a≦1.8 and 0.001≦b≦0.1); LiaMn2GbO4 (in the above formula, 0.90≦a≦1.8 and 0.001≦b≦0.1); QO2;QS2;LiQS2;V2O5;LiV2O5;LiTO2;LiNiVO4;Li(3-f)J2(PO4)3(0≦f≦2); Li(3-f)Fe2(PO4)3 (0≦f≦2); And LiFePO4.
상기 화학식에 있어서, A는 Ni, Co, Mn 또는 이들의 조합이고; R은 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P 또는 이들의 조합이고; E는 Co, Mn 또는 이들의 조합이고; Z는 F, S, P 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고; Q는 Ti, Mo, Mn 또는 이들의 조합이고; T는 Cr, V, Fe, Sc, Y 또는 이들의 조합이고; J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합이다.In the above formula, A is Ni, Co, Mn, or a combination thereof; R is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements, or combinations thereof; D is O, F, S, P or a combination thereof; E is Co, Mn or a combination thereof; Z is F, S, P or a combination thereof; G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof; Q is Ti, Mo, Mn, or a combination thereof; T is Cr, V, Fe, Sc, Y or a combination thereof; J is V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
물론 이 화합물 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 화합물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 상기 코팅층은 코팅 원소 화합물로서, 코팅 원소의 옥사이드, 하이드록사이드, 코팅원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트 또는 코팅 원소의 하이드록시카보네이트를 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법, 예를 들어 스프레이 코팅, 침지법 등으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.Of course, one having a coating layer on the surface of the compound may be used, or a mixture of the compound and a compound having a coating layer may be used. The coating layer may include, as a coating element compound, oxide, hydroxide of a coating element, oxyhydroxide of a coating element, oxycarbonate of a coating element, or hydroxycarbonate of a coating element. The compound constituting these coating layers may be amorphous or crystalline. As a coating element included in the coating layer, Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof may be used. The coating layer forming process may use any coating method as long as it can be coated by a method that does not adversely affect the physical properties of the positive electrode active material by using these elements in the compound, for example, spray coating, immersion method, etc. Since the content can be well understood by those in the field, detailed descriptions will be omitted.
제한되는 것은 아니나 양극활물질은 조성물 총 중량 중 20 ~ 99 중량%, 더욱 좋게는 30 ~ 95 중량%를 포함하는 것일 수 있다. 또한 평균입경이 0.001 ~ 50 ㎛, 더욱 좋게는 0.01 ~ 20 ㎛인 것일 수 있으며 이에 제한되는 것은 아니다.Although not limited, the positive electrode active material may include 20 to 99% by weight, more preferably 30 to 95% by weight of the total weight of the composition. In addition, the average particle diameter may be 0.001 ~ 50 ㎛, more preferably 0.01 ~ 20 ㎛, but is not limited thereto.
상기 고체 전해질은 앞서 설명한 바와 같다. 제한되는 것은 아니나 고체 전해질은 조성물 총 중량 중 5 ~ 99 중량%, 더욱 좋게는 5 ~ 90 중량%를 포함하는 것일 수 있다. 또한 평균입경이 0.001 ~ 50 ㎛, 더욱 좋게는 0.01 ~ 30 ㎛인 것일 수 있으며 이에 제한되는 것은 아니다.The solid electrolyte is as described above. Although not limited, the solid electrolyte may include 5 to 99% by weight, more preferably 5 to 90% by weight of the total weight of the composition. In addition, the average particle diameter may be 0.001 to 50 µm, more preferably 0.01 to 30 µm, but is not limited thereto.
상기 바인더는 양극 활물질 입자와 고체 전해질들을 서로 잘 부착시키고, 또한 양극 활물질과 고체 전해질을 집전체에 고정시키는 역할을 하는 것이다. 통상적으로 해당 분야에서 사용되는 것이라면 제한되지 않고 사용될 수 있으며, 대표적인 예로 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 단독 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다. 제한되는 것은 아니나 바인더의 함량은 총 중량 중 0.1 ~ 20 중량%, 더욱 좋게는 1 ~ 10 중량%를 사용하는 것일 수 있다. 상기 범위에서 바인더 역할을 하기에 충분한 함량이나 이에 제한되는 것은 아니다.The binder serves to attach the positive electrode active material particles and the solid electrolyte well to each other, and to fix the positive electrode active material and the solid electrolyte to the current collector. If it is generally used in the field, it may be used without limitation, and representative examples include polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinylfluoride, and ethylene oxide. Including polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. Alternatively, two or more types may be mixed and used, but the present invention is not limited thereto. Although not limited, the content of the binder may be 0.1 to 20% by weight, more preferably 1 to 10% by weight of the total weight. The amount sufficient to serve as a binder in the above range, but is not limited thereto.
상기 용매는 N-메틸 피롤리돈, 아세톤 및 물 등에서 선택되는 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있으며, 이에 제한되지 않고 당해분야에서 통상적으로 사용되는 것이라면 사용 가능하다. 상기 용매의 함량은 제한되지 않으며, 슬러리 상태로 양극 집전체 상에 도포가 가능할 정도의 함량이라면 제한되지 않고 사용될 수 있다.The solvent may be any one or two or more mixed solvents selected from N-methyl pyrrolidone, acetone, water, etc., but is not limited thereto, and any one commonly used in the art may be used. The content of the solvent is not limited, and may be used without limitation as long as it is an amount sufficient to be coated on the positive electrode current collector in a slurry state.
또한, 상기 양극활물질 조성물은 도전재를 더 포함하는 것일 수 있다.In addition, the positive electrode active material composition may further include a conductive material.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소나노튜브, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있으며, 단독 또는 2종 이상을 혼합하여 사용할 수 있다.The conductive material is used to impart conductivity to the electrode, and does not cause chemical changes in the battery to be configured, and may be used without limitation as long as it is an electron conductive material. Specifically, for example, carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon nanotubes, and carbon fibers; Metal-based materials such as metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used, and may be used alone or in combination of two or more.
상기 도전재의 함량은 양극활물질 조성물 중 0.1 ~ 20 중량%, 더욱 구체적으로 0.5 ~ 10 중량%, 더욱 구체적으로 1 ~ 5 중량%를 포함하는 것일 수 있으며, 이에 제한되는 것은 아니다. 또한, 도전재의 평균입경은 0.001 ~ 1000 ㎛, 더욱 구체적으로 0.01 ~ 100 ㎛인 것일 수 있으며, 이에 제한되는 것은 아니다.The content of the conductive material may include 0.1 to 20% by weight, more specifically 0.5 to 10% by weight, and more specifically 1 to 5% by weight of the positive electrode active material composition, but is not limited thereto. In addition, the average particle diameter of the conductive material may be 0.001 to 1000 μm, more specifically 0.01 to 100 μm, but is not limited thereto.
본 발명의 일 양태에서, 상기 양극 활물질층은 기공을 포함할 수 있으며, 기공도(porosity)가 1 내지 30 부피% 인 것일 수 있으며, 더욱 구체적으로 1 내지 20 부피%인 것일 수 있으며, 이에 제한되는 것은 아니다. 기공도가 낮음에도 불구하고 본 발명의 일 양태는 겔 고분자 전해질을 도포하여 형성할 수 있으며, 이에 따라 고르고 균일하게 함침된 전해질층을 형성할 수 있다.In one aspect of the present invention, the positive electrode active material layer may include pores, and the porosity may be 1 to 30% by volume, and more specifically 1 to 20% by volume, and is limited thereto. It does not become. In spite of low porosity, an aspect of the present invention may be formed by applying a gel polymer electrolyte, thereby forming an evenly and uniformly impregnated electrolyte layer.
본 발명의 일 양태에서, 상기 양극-전해질 결합체는 양극 상에 상기 겔 고분자 전해질이 적층 또는 함침되어 일체화 된 것을 의미한다. 상기 함침은 일부 또는 전부가 침투되어 일체화 된 것을 의미한다.In one aspect of the present invention, the positive electrode-electrolyte combination means that the gel polymer electrolyte is laminated or impregnated on a positive electrode to be integrated. The impregnation means that some or all of them are penetrated and integrated.
상기 양극-전해질 결합체에서 상기 겔 고분자 전해질 층의 두께는 0.01㎛ 내지 500㎛일 수 있다. 구체적으로 0.01 내지 100㎛일 수 있으며, 이에 제한되는 것은 아니다. 상기 겔 고분자 전해질 층의 두께가 상기 범위를 만족할 경우 전기 화학 소자의 성능을 향상시키면서 제조과정의 용이성을 도모할 수 있다.The thickness of the gel polymer electrolyte layer in the positive electrode-electrolyte combination may be 0.01 μm to 500 μm. Specifically, it may be 0.01 to 100 μm, but is not limited thereto. When the thickness of the gel polymer electrolyte layer satisfies the above range, it is possible to improve the performance of the electrochemical device and facilitate the manufacturing process.
(3) 음극-전해질 결합체(3) cathode-electrolyte combination
본 발명의 일 양태에서, 상기 음극은 다양한 양태로 이루어진 것일 수 있으며, 구체적으로 예를 들면 i) 집전체만으로 이루어진 전극, ii) 집전체 상에 음극 활물질, 고체 전해질 및 바인더를 포함하는 활물질층이 코팅된 전극에서 선택되는 것일 수 있다.In one aspect of the present invention, the negative electrode may have various aspects, and specifically, for example, i) an electrode made of only a current collector, ii) an active material layer including a negative active material, a solid electrolyte, and a binder on the current collector It may be selected from coated electrodes.
상기 음극 집전체는 박막 또는 메쉬(Mesh) 형태인 것일 수 있으며, 그 재질은 리튬 금속, 리튬알루미늄 합금, 기타 리튬금속 합금 등의 금속 또는 고분자 등으로 이루어진 것일 수 있다. 본 발명의 음극은 상기 박막 또는 메쉬형태의 집전체를 그대로 사용하거나 박막 또는 메쉬 형태의 집전체가 전도성 기판 상에 적층되어 일체화 된 것일 수 있다. The negative electrode current collector may be in the form of a thin film or a mesh, and the material may be made of a metal such as lithium metal, lithium aluminum alloy, or other lithium metal alloy, or a polymer. The negative electrode of the present invention may be integrated by using the thin-film or mesh-type current collector as it is or by stacking the thin-film or mesh-type current collector on a conductive substrate.
또한, 상기 집전체는 당해 분야에서 사용되는 전도성이 우수한 기판이라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 전도성 금속, 전도성 금속산화물 등에서 선택되는 어느 하나를 포함하는 것으로 이루어진 것일 수 있다. 또한, 집전체는 기판 전체가 전도성 재료로 이루어지거나, 절연성 기판의 일면 또는 양면에 전도성 금속, 전도성 금속 산화물, 전도성 고분자 등이 코팅된 형태인 것일 수 있다. 또한, 상기 집전체는 유연성 기판으로 이루어진 것일 수 있으며, 쉽게 굽혀질 수 있어 플렉서블한 전자소자를 제공할 수 있다. 또한, 굽혔다가 다시 원래 형태로 되돌아가는 복원력을 갖는 소재로 이루어진 것일 수 있다. 더욱 구체적으로 예를 들면, 집전체는 알루미늄, 스테인레스 스틸, 구리, 니켈, 철, 리튬, 코발트, 티타늄, 니켈 발포체, 구리 발포체 및 전도성 금속이 코팅된 폴리머 기재 등으로 이루어진 것일 수 있으나, 이에 한정되는 것은 아니다.In addition, the current collector may be used without limitation as long as it is a substrate having excellent conductivity used in the art. Specifically, for example, it may be made of any one selected from conductive metals and conductive metal oxides. In addition, the current collector may have a form in which the entire substrate is made of a conductive material, or a conductive metal, a conductive metal oxide, a conductive polymer, or the like is coated on one or both sides of an insulating substrate. In addition, the current collector may be formed of a flexible substrate, and may be easily bent, thereby providing a flexible electronic device. In addition, it may be made of a material having a restoring force that is bent and returned to its original shape. More specifically, for example, the current collector may be made of aluminum, stainless steel, copper, nickel, iron, lithium, cobalt, titanium, nickel foam, copper foam, and a polymer substrate coated with a conductive metal, but is limited thereto. It is not.
본 발명의 음극의 ii)양태는 집전체 상에 음극 활물질, 고체 전해질 및 바인더를 포함하는 음극활물질 조성물을 도포하여 활물질층이 코팅된 것일 수 있다. 집전체는 앞서 설명한 바와 같으며, 음극활물질 조성물은 금속 박막 등의 집전체 상에 직접 코팅 및 건조하여 음극활물질층이 형성된 음극 극판을 형성하는 것일 수 있다. In the ii) aspect of the negative electrode of the present invention, an active material layer may be coated on a current collector by applying a negative active material composition including a negative active material, a solid electrolyte, and a binder. The current collector is as described above, and the negative electrode active material composition may be directly coated and dried on a current collector such as a metal thin film to form a negative electrode plate on which the negative active material layer is formed.
또는 상기 음극활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 상기 집전체 상에 라미네이션 하여 음극활물질층이 형성된 음극을 제조하는 것일 수 있다. 음극활물질층의 두께는 제한되는 것은 아니나 0.01 ~ 500 ㎛, 더욱 구체적으로 0.1 ~ 200 ㎛인 것일 수 있으며, 이에 제한되는 것은 아니다.Alternatively, the negative electrode active material composition may be cast on a separate support, and then a film obtained by peeling off the support may be laminated on the current collector to prepare a negative electrode having a negative electrode active material layer. The thickness of the negative electrode active material layer is not limited, but may be 0.01 to 500 µm, more specifically 0.1 to 200 µm, but is not limited thereto.
상기 음극활물질 조성물은 제한되는 것은 아니나 음극 활물질, 고체 전해질, 바인더 및 용매를 포함하는 것일 수 있으며, 도전재를 더 포함하는 것일 수 있다.The negative active material composition may include, but is not limited to, a negative active material, a solid electrolyte, a binder, and a solvent, and may further include a conductive material.
상기 음극 활물질은 당업계에서 통상적으로 사용되는 것이라면 제한되지 않고 사용될 수 있다. 구체적으로 리튬 일차전지 또는 이차전지를 예로 들면, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 본 발명의 음극 활물질은 분말 형태인 것일 수 있다.The negative active material may be used without limitation as long as it is commonly used in the art. Specifically, for example, a lithium primary battery or a secondary battery, a compound capable of reversible intercalation and deintercalation of lithium (retiated intercalation compound) may be used. The negative active material of the present invention may be in a powder form.
더욱 구체적으로 예를 들면, 리튬과 합금 가능한 금속, 전이금속 산화물, 비전이금속산화물 및 탄소계 재료 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.More specifically, for example, it may be any one or a mixture of two or more selected from a metal alloyable with lithium, a transition metal oxide, a non-transition metal oxide, and a carbon-based material.
상기 리튬과 합금 가능한 금속은 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn 등이 사용될 수 있으며, 이에 제한되는 것은 아니다. The metal alloyable with lithium may be Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn, etc. It is not limited thereto.
상기 전이금속 산화물은 리튬 티탄 산화물, 바나듐 산화물 및 리튬 바나듐 산화물 등인 것일 수 있으며, 단독 또는 2 이상의 혼합물인 것일 수 있다.The transition metal oxide may be lithium titanium oxide, vanadium oxide, lithium vanadium oxide, or the like, and may be a single or a mixture of two or more.
상기 비전이 금속 산화물은 Si, SiOx(0 < x < 2), Si-C 복합체, Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Si은 아님), Sn, SnO2, Sn-C 복합체, Sn-R(상기 R은 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Sn은 아님) 등을 들 수 있다. 상기 Q 및 R의 구체적인 원소로는, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te 및 Po 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.The non-transition metal oxide is Si, SiOx (0 <x <2), Si-C composite, Si-Q alloy (where Q is an alkali metal, alkaline earth metal, group 13 to 16 element, transition metal, rare earth element, or these Is a combination of, not Si), Sn, SnO2, Sn-C complex, Sn-R (wherein R is an alkali metal, alkaline earth metal, group 13 to 16 element, transition metal, rare earth element, or a combination thereof, and Sn Not). Specific elements of Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, It may be any one or a mixture of two or more selected from Sb, Bi, S, Se, Te, and Po.
상기 탄소계 재료로는 결정질 탄소, 비정질 탄소 및 이들의 조합에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 플레이크, 구형 또는 섬유형의 천연 흑연, 인조 흑연 등의 흑연이 사용될 수 있고, 상기 비정질 탄소의 예로는 소프트 카본, 하드카본, 메조페이스 피치 탄화물, 소성된 코크스 등을 사용할 수 있으며, 이에 제한되는 것은 아니다.As the carbon-based material, any one or a mixture of two or more selected from crystalline carbon, amorphous carbon, and combinations thereof may be used. Examples of the crystalline carbon include graphite such as amorphous, plate-like, flake, spherical or fibrous natural graphite, artificial graphite, and the like, and examples of the amorphous carbon include soft carbon, hard carbon, mesophase pitch carbide, and calcined coke. And the like can be used, but is not limited thereto.
제한되는 것은 아니나 음극활물질은 조성물 총 중량 중 1 ~ 90 중량%, 더욱 좋게는 5 ~ 80 중량%를 포함하는 것일 수 있다. 또한 평균입경이 0.001 ~ 20 ㎛, 더욱 좋게는 0.01 ~ 15 ㎛인 것일 수 있으며 이에 제한되는 것은 아니다.Although not limited, the negative active material may include 1 to 90% by weight, more preferably 5 to 80% by weight of the total weight of the composition. In addition, the average particle diameter may be 0.001 to 20 µm, more preferably 0.01 to 15 µm, but is not limited thereto.
상기 고체 전해질은 앞서 설명한 바와 같다. 제한되는 것은 아니나 고체 전해질은 조성물 총 중량 중 5 ~ 99 중량%, 더욱 좋게는 5 ~ 90 중량%를 포함하는 것일 수 있다. 또한 평균입경이 0.001 ~ 50 ㎛, 더욱 좋게는 0.01 ~ 30 ㎛인 것일 수 있으며 이에 제한되는 것은 아니다.The solid electrolyte is as described above. Although not limited, the solid electrolyte may include 5 to 99% by weight, more preferably 5 to 90% by weight of the total weight of the composition. In addition, the average particle diameter may be 0.001 to 50 µm, more preferably 0.01 to 30 µm, but is not limited thereto.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 집전체에 고정시키는 역할을 하는 것이다. 통상적으로 해당 분야에서 사용되는 것이라면 제한되지 않고 사용될 수 있으며, 대표적인 예로 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. The binder serves to attach the negative active material particles well to each other and to fix the negative active material to the current collector. If it is generally used in the field, it may be used without limitation, and representative examples include polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, and ethylene oxide. Included polymer, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. However, it is not limited thereto.
상기 용매는 N-메틸 피롤리돈, 아세톤 및 물 등에서 선택되는 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있으며, 이에 제한되지 않고 당해분야에서 통상적으로 사용되는 것이라면 사용 가능하다.The solvent may be any one or two or more mixed solvents selected from N-methyl pyrrolidone, acetone, water, etc., but is not limited thereto, and any one commonly used in the art may be used.
또한, 상기 음극활물질 조성물은 도전재를 더 포함하는 것일 수 있다.In addition, the negative active material composition may further include a conductive material.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.The conductive material is used to impart conductivity to the electrode, and any electronically conductive material can be used as long as it does not cause chemical changes in the battery to be configured, such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black , Carbon-based materials such as carbon fiber; Metal-based materials such as metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used.
상기 도전재의 함량은 음극활물질 조성물 중 1 ~ 90 중량%, 더욱 구체적으로 5 ~ 80 중량%를 포함하는 것일 수 있으며, 이에 제한되는 것은 아니다.The content of the conductive material may include 1 to 90% by weight, more specifically 5 to 80% by weight of the negative electrode active material composition, but is not limited thereto.
또한, 도전재의 평균입경은 0.001 ~ 100 ㎛, 더욱 구체적으로 0.01 ~ 80 ㎛인 것일 수 있으며, 이에 제한되는 것은 아니다.In addition, the average particle diameter of the conductive material may be 0.001 to 100 µm, more specifically 0.01 to 80 µm, but is not limited thereto.
본 발명의 일 양태에서, 상기 음극 활물질층은 기공을 포함할 수 있으며, 기공도(porosity)가 1 내지 35 부피% 인 것일 수 있으며, 더욱 구체적으로 1 내지 25 부피%인 것일 수 있으며, 이에 제한되는 것은 아니다. 기공도가 낮음에도 불구하고 본 발명의 일 양태는 겔 고분자 전해질을 도포하여 형성할 수 있으며, 이에 따라 고르고 균일하게 함침된 전해질층을 형성할 수 있다.In one aspect of the present invention, the negative active material layer may include pores, and the porosity may be 1 to 35% by volume, and more specifically 1 to 25% by volume, and is limited thereto. It does not become. In spite of low porosity, an aspect of the present invention may be formed by applying a gel polymer electrolyte, thereby forming an evenly and uniformly impregnated electrolyte layer.
본 발명의 일 양태에서, 상기 음극-전해질 결합체는 음극 상에 상기 겔 고분자 전해질이 적층 또는 함침되어 일체화 된 것을 의미한다. 상기 함침은 일부 또는 전부가 침투되어 일체화 된 것을 의미한다.In one aspect of the present invention, the negative electrode-electrolyte combination means that the gel polymer electrolyte is laminated or impregnated on a negative electrode to be integrated. The impregnation means that some or all of them are penetrated and integrated.
상기 음극-전해질 결합체에서 상기 겔 고분자 전해질 층의 두께는 0.01㎛ 내지 500㎛일 수 있다. 구체적으로 0.01 내지 100㎛일 수 있으며, 이에 제한되는 것은 아니다. 상기 겔 고분자 전해질 층의 두께가 상기 범위를 만족할 경우 전기 화학 소자의 성능을 향상시키면서 제조과정의 용이성을 도모할 수 있다.In the negative electrode-electrolyte assembly, the thickness of the gel polymer electrolyte layer may be 0.01 μm to 500 μm. Specifically, it may be 0.01 to 100 μm, but is not limited thereto. When the thickness of the gel polymer electrolyte layer satisfies the above range, it is possible to improve the performance of the electrochemical device and facilitate the manufacturing process.
(4) 전기화학소자(4) Electrochemical device
본 발명의 일 양태에서, 상기 전기화학소자는 전기화학반응이 가능한 일차전지 또는 이차전지인 것일 수 있다.In one aspect of the present invention, the electrochemical device may be a primary battery or a secondary battery capable of electrochemical reaction.
더욱 구체적으로, 리튬 일차 전지, 리튬 이차 전지, 리튬-설퍼 전지, 리튬-공기 전지, 나트륨 전지, 알루미늄 전지, 마그네슘 전지, 칼슘 전지, 나트륨-공기 전지, 알루미늄-공기 전지, 마그네슘-공기 전지, 칼슘-공기 전지, 슈퍼 캐패시터, 염료감응 태양전지, 연료전지, 납 축전지, 니켈 카드뮴전지, 니켈 수소 축전지 및 알칼리전지 등인 것일 수 있으며, 이에 제한되는 것은 아니다.More specifically, lithium primary battery, lithium secondary battery, lithium-sulfur battery, lithium-air battery, sodium battery, aluminum battery, magnesium battery, calcium battery, sodium-air battery, aluminum-air battery, magnesium-air battery, calcium -It may be an air battery, a super capacitor, a dye-sensitized solar cell, a fuel cell, a lead storage battery, a nickel cadmium battery, a nickel hydrogen storage battery, and an alkaline battery, but is not limited thereto.
(5) 전기화학소자의 제조방법(5) Manufacturing method of electrochemical device
이하는 본 발명의 일 양태에 따른 전기화학소자의 제조방법을 보다 구체적으로 설명한다.Hereinafter, a method of manufacturing an electrochemical device according to an aspect of the present invention will be described in more detail.
본 발명의 전기화학소자를 제조하는 방법의 1 양태는 One aspect of the method for manufacturing the electrochemical device of the present invention
i) 양극 상에 제 1 겔 고분자 전해질 조성물을 도포 및 경화하여 제 1 전해질을 포함하는 양극-전해질 결합체를 제조하고, 음극 상에 제 2 겔 고분자 전해질 조성물을 도포 및 경화하여 제 2 전해질을 포함하는 음극-전해질 결합체를 제조하고, 분리막 상에 제 3 겔 고분자 전해질 조성물을 도포 및 경화하여 제 3 전해질을 포함하는 분리막-전해질 결합체를 제조하는 단계; 및i) coating and curing the first gel polymer electrolyte composition on the positive electrode to prepare a positive electrode-electrolyte assembly including the first electrolyte, and coating and curing the second gel polymer electrolyte composition on the negative electrode to include a second electrolyte. Preparing a negative electrode-electrolyte assembly, and coating and curing a third gel polymer electrolyte composition on the separation membrane to prepare a separation membrane-electrolyte assembly including a third electrolyte; And
ii) 상기 양극-전해질 결합체, 분리막-전해질 결합체 및 음극-전해질 결합체를 적층하여 전극조립체를 제조하는 단계; ii) preparing an electrode assembly by laminating the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly;
를 포함하며,Including,
상기 양극은 양극 활물질 층을 포함하고,The positive electrode includes a positive electrode active material layer,
상기 양극 활물질 층 및 상기 분리막은 고체 전해질을 포함하고,The positive electrode active material layer and the separator contain a solid electrolyte,
상기 제 1 전해질, 제 2 전해질 및 제 3 전해질은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질이며, The first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 서로 다른 조성으로 이루어진 것이다.At least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte are made of different compositions.
상기 제 1 양태에서, 상기 제 1 겔 고분자 전해질 조성물, 제 2 겔 고분자 전해질 조성물 및 제 3 겔 고분자 전해질 조성물에서 선택되는 적어도 하나 이상은 용매의 종류, 해리 가능한 염의 종류 및 해리 가능한 염의 농도 중에서 선택되는 어느 하나 이상이 상이한 것일 수 있다. 또한, 가교 고분자 매트릭스를 이루는 단량체의 종류 또는 함량이 상이할 수 있다. In the first aspect, at least one selected from the first gel polymer electrolyte composition, the second gel polymer electrolyte composition, and the third gel polymer electrolyte composition is selected from a type of a solvent, a type of a dissociable salt, and a concentration of a dissociable salt. Any one or more may be different. In addition, the type or content of the monomers constituting the crosslinked polymer matrix may be different.
또한, 제 1 양태에서, 상기 ii)단계는In addition, in the first aspect, step ii)
ii-1) 상기 양극-전해질 결합체, 분리막-전해질 결합체 및 음극-전해질 결합체를 적층한 후 일정 모양으로 컷팅하는 단계; 또는 ii-2) 상기 양극-전해질 결합체, 분리막-전해질 결합체 및 음극-전해질 결합체를 각각 일정 모양으로 커팅한 후 적층하는 단계; 에서 선택되는 것일 수 있다.ii-1) laminating the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly and cutting them into a predetermined shape; Or ii-2) cutting the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly into a predetermined shape and then laminating them; It may be selected from.
또한, 제 1 양태에서, 상기 ii)단계 후, iii) 상기 전극조립체를 포장재로 밀봉하는 단계;를 더 포함할 수 있다.In addition, in the first aspect, after step ii), iii) sealing the electrode assembly with a packaging material; may further include.
본 발명의 제조방법의 일 양태에서, 상기 겔 고분자 전해질은 닥터블레이드 코팅, 바 코팅, 스핀 코팅, 슬롯다이 코팅, 딥 코팅 및 스프레이 코팅 등의 코팅 방법뿐만 아니라, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅, 스텐실 프린팅 및 스크린 프린팅 등의 프린팅 방법으로 도포되어 연속적으로 생산이 가능하도록 하는 것일 수 있다.In one aspect of the manufacturing method of the present invention, the gel polymer electrolyte may include coating methods such as doctor blade coating, bar coating, spin coating, slot die coating, dip coating and spray coating, as well as inkjet printing, gravure printing, gravure offset, It may be applied by a printing method such as aerosol printing, stencil printing, and screen printing to enable continuous production.
더욱 구체적으로, 겔 고분자 전해질 중합용 조성물을 도포하고, 자외선 조사 또는 열을 가하여 가교시킴으로써 가교 고분자 매트릭스의 그물 구조 내에 액체전해질 등이 균일하게 분포되는 것일 수 있으며, 용매의 증발 공정이 불필요한 것일 수 있다. More specifically, the liquid electrolyte may be uniformly distributed in the network structure of the crosslinked polymer matrix by applying a composition for polymerization of a gel polymer electrolyte and crosslinking by applying ultraviolet rays or heat, and a solvent evaporation process may be unnecessary. .
또한 도포방법으로 겔 고분자 전해질을 형성할 수 있으므로, 각 전극의 특성에 맞는 별도의 전해질을 도포하여 형성할 수 있다. 또한, 도포방법으로 겔 고분자 전해질을 형성할 수 있으므로 전극 및 분리막에 고르고 균일하게 전해질을 형성할 수 있다. In addition, since the gel polymer electrolyte can be formed by the coating method, it can be formed by coating a separate electrolyte suitable for the characteristics of each electrode. In addition, since the gel polymer electrolyte can be formed by the coating method, the electrolyte can be formed evenly and uniformly on the electrode and the separator.
이하 실시예 및 비교예를 바탕으로 본 발명을 더욱 상세히 설명한다. 다만 하기 실시예 및 비교예는 본 발명을 더욱 상세히 설명하기 위한 하나의 예시일 뿐, 본 발명이 하기 실시예 및 비교예에 의해 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples. However, the following Examples and Comparative Examples are only one example for describing the present invention in more detail, and the present invention is not limited by the following Examples and Comparative Examples.
1) 이온전도도1) Ionic conductivity
상기 이온전도도는 하기의 계산식을 통해 확인할 수 있다. The ionic conductivity can be checked through the following calculation formula.
[계산식 1][Calculation 1]
IC 1 = (τ cathode 2 × IC cathode)/P cathode IC 1 = (τ cathode 2 × IC cathode )/P cathode
[계산식 2][Calculation 2]
IC 2 = (τ anode 2 × IC anode)/P anode IC 2 = (τ anode 2 × IC anode )/P anode
[계산식 3][Calculation 3]
IC 3 = (τ separator 2 × IC separator)/P separator IC 3 = (τ separator 2 × IC separator )/P separator
이 때, IC 1, IC 2, IC 3은 각각 상기 제 1전해질, 제 2전해질, 제 3전해질의 이온전도도이고, IC cathode, IC anode, IC separator는 각각 양극-전해질 결합체, 음극-전해질 결합체, 분리막-전해질 결합체의 이온전도도이고, τ cathode, τ anode, τ separator는 각각 양극, 음극, 분리막의 굴곡도이고, P cathode, P anode, P separator은 양극, 음극, 분리막의 기공도를 의미한다. At this time, IC 1 , IC 2 , IC 3 are the ionic conductivity of the first , second , and third electrolytes, respectively, and IC cathode , IC anode , and IC separator are a positive electrode-electrolyte combination, a negative electrode-electrolyte combination, It is the ionic conductivity of the membrane-electrolyte combination, τ cathode , τ anode , and τ separator are the curvatures of the anode, cathode, and separator, respectively, and P cathode , P anode , and P separator are the porosities of the anode, cathode, and separator.
상기 전해질의 이온전도도를 계산하기 위해, 양극, 음극 및 분리막 각각에 대하여 수은압기공률측정기를 이용하여 상기 시편의 기공도(부피%)를 측정할 수 있다. 이온전도도를 알고 있는 표준전해질 (본 특허에서는, 표준전해질로 에틸렌 카보네이트 50 부피%, 에틸 메틸 카보네이트 50 부피%로 혼합된 용매에 1몰의 LiPF 6가 녹아있는 액체전해질을 사용하였다.)을 이용하여 양극-전해질 결합체, 음극-전해질 결합체 및 분리막-전해질 결합체의 이온전도도를 측정하고, 상기 계산식을 통해 양극, 음극 및 분리막의 굴곡도를 계산할 수 있다.In order to calculate the ionic conductivity of the electrolyte, the porosity (% by volume) of the specimen may be measured using a mercury pressure porosity meter for each of the anode, the cathode, and the separator. A standard electrolyte with known ionic conductivity (in this patent, a liquid electrolyte in which 1 mol of LiPF 6 is dissolved in a solvent mixed with 50% by volume of ethylene carbonate and 50% by volume of ethyl methyl carbonate was used as the standard electrolyte.) The ionic conductivity of the positive electrode-electrolyte combination, the negative electrode-electrolyte combination, and the separator-electrolyte combination may be measured, and the degree of curvature of the positive electrode, the negative electrode, and the separator may be calculated through the above calculation formula.
상기 이온전도도는, 양극-전해질 결합체, 음극-전해질 결합체 및 분리막-전해질 결합체를 18 mm 지름의 원형으로 커팅하고 각각 코인셀 (2032)을 제조한 후, 온도에 따라 교류 임피던스 측정법을 사용하여 측정할 수 있다. 상기 이온전도도 측정은, VMP3 측정 장비를 사용하여 주파수 대역 1MHz 내지 0.01 Hz에서 측정하였다. The ionic conductivity is measured by cutting a positive electrode-electrolyte assembly, a negative electrode-electrolyte assembly, and a separator-electrolyte assembly into a circle having a diameter of 18 mm, and preparing a coin cell 2032, respectively, according to temperature, using an AC impedance measurement method. I can. The ion conductivity measurement was performed in a frequency band of 1 MHz to 0.01 Hz using a VMP3 measuring device.
임의의 전해질을 포함하는 전기화학소자의 경우, 밀봉을 제거하고 양극-전해질 결합체, 음극-전해질 결합체 및 분리막-전해질 결합체를 분리하고, 각 결합체를 디메틸 카보네이트 용매에 넣고 24시간 보관한 후, 아세톤 용매에 넣고 24시간 보관한 후, 다시 디메틸 카보네이트 용매에 넣고 24시간 보관하여 상기 각 결합체 내의 전해질을 제거한 후, 진공 분위기에서 24시간 건조 (이 때, 전해질을 제거한 양극 및 음극은 130도, 분리막은 60도 온도에서 건조하였다.) 하였다. 상기 전해질이 제거된 양극, 음극 및 분리막을 상기 언급한 방법으로, 기공도와 표준전해질을 이용하여 굴곡도를 계산하고, 상기 전해질을 제거하기 전 상태의 양극-전해질 결합체, 음극-전해질 결합체 및 분리막-전해질 결합체의 이온전도도를 측정하여, 상기 계산식을 통해 제 1전해질, 제 2전해질 및 제 3전해질의 이온전도도를 측정할 수 있다.In the case of an electrochemical device containing any electrolyte, the seal is removed, the positive electrode-electrolyte assembly, the negative electrode-electrolyte assembly, and the separator-electrolyte combination are separated, and each combination is put in a dimethyl carbonate solvent and stored for 24 hours, and then acetone solvent And then stored in a dimethyl carbonate solvent for 24 hours, and then stored in a dimethyl carbonate solvent for 24 hours to remove the electrolyte in each of the conjugates, and then dried for 24 hours in a vacuum atmosphere (at this time, the positive and negative electrodes from which the electrolyte was removed is 130 degrees, and the separator is 60 It was dried at degrees temperature.) The positive electrode, the negative electrode, and the separator from which the electrolyte has been removed are calculated using the porosity and the standard electrolyte in the above-mentioned method, and the positive electrode-electrolyte combination, the negative electrode-electrolyte combination and the separator in the state before removing the electrolyte- By measuring the ionic conductivity of the electrolyte assembly, the ionic conductivity of the first electrolyte, the second electrolyte, and the third electrolyte can be measured through the above calculation formula.
이하에서 상기 양극-전해질 결합체, 음극-전해질 결합체 및 분리막-전해질 결합체의 이온전도도를 측정한 나이키스트 플롯에 대해서 상세히 설명하고자 한다. 상기 양극-전해질 결합체 및 음극-전해질 결합체는 복합전도체로서 전자전도체이자 이온전도체이며, 이에 대한 나이키스트 플롯은 세미서클의 개형을 나타낸다. 이 때, 상기 세미서클은 높은 주파수 영역의 저항 (R 1) 및 낮은 주파수 영역의 저항 (R 2)로 구분되며, 이온전도에 대한 저항은 하기의 계산식을 통해 계산할 수 있다. Hereinafter, a Nyquist plot obtained by measuring the ionic conductivity of the positive electrode-electrolyte assembly, the negative electrode-electrolyte assembly, and the separator-electrolyte assembly will be described in detail. The positive electrode-electrolyte combination and the negative electrode-electrolyte combination are composite conductors, which are both electron conductors and ion conductors, and the Nyquist plot for them shows the outline of a semicircle. In this case, the semicircle is divided into a resistance in a high frequency region (R 1 ) and a resistance in a low frequency region (R 2 ), and the resistance to ion conduction can be calculated through the following calculation formula.
[계산식 4][Equation 4]
R ion = R 2 - R 1 R ion = R 2 -R 1
상기 분리막-전해질 결합체는 이온전도체로서 나이키스트 플롯에서 수직 상승하는 개형을 나타내며, 횡축의 임피던스 저항값은 이온전도에 대한 저항을 의미한다. 양극-전해질 결합체, 음극-전해질 결합체 및 분리막-전해질 결합체의 이온전도도는, 상기에서 얻어진 이온전도에 대한 저항값으로, 하기의 계산식을 통해 계산할 수 있다. The separator-electrolyte combination is an ion conductor and exhibits a vertically rising shape in a Nyquist plot, and an impedance resistance value along the horizontal axis indicates resistance to ion conduction. The ionic conductivity of the positive electrode-electrolyte assembly, the negative electrode-electrolyte assembly, and the separator-electrolyte assembly is a resistance value for ionic conduction obtained above and can be calculated through the following calculation formula.
[계산식 5][Equation 5]
IC = L/(R ion × A)IC = L/(R ion × A)
이 때, L은 시편의 두께 (양극 및 음극의 집전체를 제외한 두께 및 분리막의 두께), A는 시편의 면적을 의미한다. In this case, L is the thickness of the specimen (thickness excluding the current collectors of the positive electrode and negative electrode and the thickness of the separator), and A is the area of the specimen.
2) 아레니우스 플롯의 기울기2) Arrhenius plot slope
아레니우스 플롯의 기울기는, 상기에서 얻어진 온도별 이온전도도 데이터를 횡축에 온도 T(K)의 역수 1/T와 세로축에 이온전도도의 대수 ln(IC)를 각각 그래프에 도시하여, 20 ~ 80 ℃에서의 직선의 기울기를 구했다. The slope of the Arrhenius plot shows the ionic conductivity data for each temperature obtained above in graphs, with the inverse 1/T of the temperature T(K) on the horizontal axis and the logarithmic ln(IC) of the ion conductivity on the vertical axis, respectively. The slope of the straight line at °C was determined.
3) 점도3) viscosity
25 ℃에서 브룩필드(Brookfield) 점도계(Dv2TRV-cone&plate, CPA-52Z)를 이용하여 측정하였다.It was measured at 25°C using a Brookfield viscometer (Dv2TRV-cone&plate, CPA-52Z).
4) 전지 성능 평가4) Battery performance evaluation
리튬전지를 상온(25℃)에서 3.0 ~ 4.2 V의 전압 범위에서 0.1 C (= 0.3 mA/㎠)의 전류로 초기 충전/방전 용량을 관찰하고, 0.2 C (= 0.6 mA/㎠)의 전류 하에서 충전/방전 횟수에 따른 리튬전지의 수명 특성을 관찰하였다.The lithium battery was initially charged/discharged at a current of 0.1 C (= 0.3 mA/㎠) in a voltage range of 3.0 to 4.2 V at room temperature (25℃), and under a current of 0.2 C (= 0.6 mA/㎠) The life characteristics of the lithium battery according to the number of charging/discharging were observed.
초기 방전용량은 첫 번째 사이클에서의 방전용량(mAh/cm2)이다. 초기충방전효율은 첫 번째 사이클에서 충전용량과 방전용량의 비율이다. 수명특성에 대한 용량유지율은 하기 수학식으로 계산하였다.The initial discharge capacity is the discharge capacity in the first cycle (mAh/cm2). Initial charge/discharge efficiency is the ratio of charge capacity and discharge capacity in the first cycle. The capacity retention rate for the life characteristics was calculated by the following equation.
용량유지율(%) = [200번째 사이클 방전용량/첫번째 사이클 방전용량] × 100Capacity retention rate (%) = [200th cycle discharge capacity/first cycle discharge capacity] × 100
5) 기공도5) Porosity
양극 및 음극에 대하여 수은압기공률측정기 (Mercury intrusion porosimetry, 장비명: AutoPore IV 9500, 장비제조사: Micromeritics Instrument Corp.) 를 이용하여 상기 시편의 기공도(부피%)를 측정하였다. 시료 적층에 따라 형성된 기공의 영향을 배제하기 위해, 30 psia 내지 60000 psia 압력범위의 조건으로 전극의 기공도를 계산하였다.For the positive and negative electrodes, the porosity (volume %) of the specimen was measured using a mercury intrusion porosimetry (equipment name: AutoPore IV 9500, equipment manufacturer: Micromeritics Instrument Corp.). In order to exclude the effect of the pores formed by the sample stacking, the porosity of the electrode was calculated under the conditions of a pressure range of 30 psia to 60000 psia.
6) 적외선 분광 분석6) Infrared spectral analysis
충방전 전류가 인가되어 초기 포메이션 공정을 마친 상태의 전극조립체로부터 양극, 음극 및 분리막을 분리하여 각각의 퓨리에 변환 적외선 분광 분석 (Fourier transform infrared spectroscopy, 장비명: 670-IR, 장비제조사: Varian)을 수행하였다. 적외선을 조사했을 때의 반사광을 분광함으로써 얻어지는 흡수 스펙트럼으로부터, 상이한 용매의 종류, 염의 종류, 염의 농도, 단량체의 종류 및 단량체의 함량의 물질 특성에서 유래되는 피크 강도가 구별되어 판단할 수 있음을 확인하였다. Each Fourier transform infrared spectroscopy (Fourier transform infrared spectroscopy, equipment name: 670-IR, equipment manufacturer: Varian) is performed by separating the positive electrode, negative electrode, and separator from the electrode assembly that has completed the initial formation process by applying a charge/discharge current. Performed. From the absorption spectrum obtained by spectroscopy of the reflected light when irradiated with infrared rays, it is confirmed that the peak intensity derived from the material properties of different solvent types, salt types, salt concentrations, monomer types and monomer content can be distinguished and judged. I did.
7) X선 광전자 분석7) X-ray photoelectron analysis
충방전 전류가 인가되어 초기 포메이션 공정을 마친 상태의 전극조립체로부터 양극, 음극 및 분리막을 분리하여 각각의 X선 광전자 분석 (X-ray Photoelectron Spectroscopy, 장비명: K-Alpha, 장비 제조사: Thermo Fisher)을 수행하였다. 시료에 조사된 X선에 의해 탈출된 광전자의 에너지로부터, 상이한 용매의 종류, 염의 종류, 염의 농도, 단량체의 종류 및 단량체의 함량이 포함하고 있는 원소의 유무와 화학결합 상태를 구별하여 판단할 수 있음을 확인하였다.X-ray photoelectron analysis (X-ray Photoelectron Spectroscopy, equipment name: K-Alpha, equipment manufacturer: Thermo Fisher) by separating the positive electrode, negative electrode, and separator from the electrode assembly in the state where the charging/discharging current was applied and the initial formation process was completed. Was performed. From the energy of photoelectrons escaped by X-rays irradiated on the sample, it is possible to distinguish and determine the presence and absence of elements and chemical bonding states including different types of solvents, types of salts, concentrations of salts, types of monomers, and content of monomers. Confirmed that there is.
8) 유도 결합 플라즈마 질량 분석8) Inductively coupled plasma mass spectrometry
충방전 전류가 인가되어 초기 포메이션 공정을 마친 상태의 전극조립체로부터 양극, 음극 및 분리막을 분리하여 각각의 유도결합 플라스마 질량분석 (Inductively Coupled Plasma Mass Spectromerty, 장비명: ELAN DRC-II, 장비 제조사: Perkin Elmer) 을 수행하였다. 시료에 포함된 염을 이온화 시키고, 해당 이온들을 질량 분석기를 이용해 분리함으로써, 상이한 용매의 종류, 염의 종류, 염의 농도, 단량체의 종류 및 단량체의 함량을 구별하여 판단할 수 있음을 확인하였다.Inductively Coupled Plasma Mass Spectromerty, equipment name: ELAN DRC-II, equipment manufacturer: Perkin, by separating the positive electrode, negative electrode, and separator from the electrode assembly in which the initial formation process has been completed by applying a charging/discharging current. Elmer). By ionizing the salt contained in the sample and separating the ions using a mass spectrometer, it was confirmed that different types of solvents, types of salts, concentrations of salts, types of monomers, and content of monomers can be distinguished and determined.
9) 핵자기 공명 분광 분석9) Nuclear magnetic resonance spectroscopy analysis
충방전 전류가 인가되어 초기 포메이션 공정을 마친 상태의 전극조립체로부터 양극, 음극 및 분리막을 분리하여 각각의 2차원 핵자기 공명 분광 분석 (Nuclear Magnetic Resonance Spectroscopy, 장비명: AVANCE III HD, 장비 제조사: Bruker)을 수행 하였다. 시료에 포함된 성능향상제에 자기장을 걸어주었을 때 발생하는 원자핵의 핵자기 공명 현상을 이용하여 핵 주위의 화학적 환경 및 이웃 원자와의 스핀 결합에 대한 정보를 통해, 상이한 용매의 종류, 염의 종류, 염의 농도, 단량체의 종류 및 단량체의 함량을 구별하여 판단할 수 있음을 확인하였다.Two-dimensional nuclear magnetic resonance spectroscopy analysis (Nuclear Magnetic Resonance Spectroscopy, equipment name: AVANCE III HD, equipment manufacturer: Bruker) by separating the positive electrode, negative electrode, and separator from the electrode assembly in which the initial formation process has been completed by applying charge/discharge current ) Was performed. By using the nuclear magnetic resonance phenomenon of the atomic nucleus that occurs when a magnetic field is applied to the performance enhancer included in the sample, the chemical environment around the nucleus and information on the spin bonds with neighboring atoms are used to determine the types of different solvents, salts, and salts. It was confirmed that the concentration, the type of the monomer, and the content of the monomer can be distinguished and determined.
10) 비행시간형 이차이온 질량 분석10) Time-of-flight secondary ion mass analysis
충방전 전류가 인가되어 초기 포메이션 공정을 마친 상태의 전극조립체로부터 양극, 음극 및 분리막을 분리하여 각각의 비행시간형 이차이온 질량 분석 (Time-of-flight Secondary Ion Mass Spectrometry, 장비명: TOF-SIMS 5, 장비 제조사: ION TOF)을 수행 하였다. 시료에서 발생된 이차이온의 질량 분석을 통해, 상이한 용매의 종류, 염의 종류, 염의 농도, 단량체의 종류 및 단량체의 함량을 구별하여 판단할 수 있음을 확인하였다.Time-of-flight Secondary Ion Mass Spectrometry, equipment name: TOF-SIMS, by separating the anode, cathode, and separator from the electrode assembly in the state where the initial formation process is completed by applying charge/discharge current. 5, equipment manufacturer: ION TOF) was performed. Through mass analysis of the secondary ions generated in the sample, it was confirmed that different types of solvents, types of salts, concentrations of salts, types of monomers, and content of monomers can be distinguished and determined.
[실시예 1][Example 1]
1) 양극-전해질 결합체의 제조1) Preparation of positive electrode-electrolyte combination
양극활물질로 평균입경이 5㎛인 리튬코발트 복합산화물(LiCoO 2) 70중량%, 고체 전해질로 평균입경이 2.5㎛인 Li 6PS 5Cl 20중량%, 도전재로 평균입경이 40nm인 Super-P 5 중량%, 바인더로 폴리비닐리덴플루오라이드 5중량%를 유기용매인 N-메틸-2-피롤리돈에 고형분 함량 50 중량%가 되도록 첨가하여 양극활물질 조성물(양극 혼합물 슬러리)을 제조하였다.70% by weight of lithium cobalt composite oxide (LiCoO 2 ) having an average particle diameter of 5 μm as a positive electrode active material, 20% by weight of Li 6 PS 5 Cl having an average particle diameter of 2.5 μm as a solid electrolyte, and Super-P having an average particle diameter of 40 nm as a conductive material A positive electrode active material composition (positive electrode mixture slurry) was prepared by adding 5% by weight and 5% by weight of polyvinylidene fluoride as a binder so as to have a solid content of 50% by weight to N-methyl-2-pyrrolidone as an organic solvent.
상기 양극활물질 조성물을 두께가 20 ㎛인 알루미늄 박막에 닥터블레이드를 이용하여 도포하고, 120 ℃에서 건조한 후, 롤 프레스로 압연하여 40 ㎛ 두께의 활물질층이 코팅된 양극을 준비하였다. The positive electrode active material composition was applied to an aluminum thin film having a thickness of 20 μm using a doctor blade, dried at 120° C., and rolled with a roll press to prepare a positive electrode coated with an active material layer having a thickness of 40 μm.
제조된 양극의 활물질층 상에 제 1 전해질 조성물을 닥터블레이드를 이용하여 코팅하고, 자외선을 2000 mW/cm 2로 20초간 조사하여 가교하였으며 제 1 겔 고분자 전해질 층이 형성된 41 ㎛ 두께의 양극-전해질 결합체를 제조하였다.The first electrolyte composition was coated on the active material layer of the prepared positive electrode using a doctor blade, and then crosslinked by irradiating ultraviolet rays at 2000 mW/cm 2 for 20 seconds, and a 41 µm thick positive electrode-electrolyte with the first gel polymer electrolyte layer formed thereon. The conjugate was prepared.
상기 제 1 전해질 조성물은 트리메틸올프로판 에톡시레이트 트리아크릴레이트 5 중량%, 광 개시제로 하이드록시 메틸 페닐 프로파논 0.1 중량%, 액체 전해질 94.9 중량%를 혼합 합하였다. 액체 전해질로는, 전기화학적 산화 안정성이 우수한 환형 카보네이트계 유기용매인 프로필렌 카보네이트(propylene carbonate)에 1몰의 LiPF 6가 녹아있는 액체 전해질을 사용하였다. 상기 제 1 겔 고분자 전해질 조성물의 점도는 25℃에서 10 cps 이었다. The first electrolyte composition was a mixture of 5% by weight of trimethylolpropane ethoxylate triacrylate, 0.1% by weight of hydroxy methyl phenyl propanone as a photoinitiator, and 94.9% by weight of a liquid electrolyte. As the liquid electrolyte, a liquid electrolyte in which 1 mol of LiPF 6 was dissolved in propylene carbonate, a cyclic carbonate-based organic solvent having excellent electrochemical oxidation stability, was used. The viscosity of the first gel polymer electrolyte composition was 10 cps at 25°C.
2) 음극-전해질 결합체의 제조2) Preparation of cathode-electrolyte combination
음극활물질로 천연흑연분말 72 중량%, 고체 전해질로 평균입경이 2.5㎛인 Li 6PS 5Cl 20중량%, 도전재로 평균입경이 40nm인 카본블랙 4 중량%, 바인더로 스티렌-부타디엔 러버 2 중량%, 카르복시메틸셀룰로즈 2 중량%를 물에 첨가하여 음극활물질 조성물(음극 혼합물 슬러리)을 제조하였다. 상기 음극활물질 조성물을 두께가 20 ㎛인 구리 박막에 닥터블레이드를 이용하여 도포하고, 120 ℃에서 건조한 후, 롤 프레스로 압연하여 40 ㎛ 두께의 활물질층이 코팅된 음극을 준비하였다. 72% by weight of natural graphite powder as a negative electrode active material, 20% by weight of Li 6 PS 5 Cl having an average particle diameter of 2.5 μm as a solid electrolyte, 4% by weight of carbon black with an average particle diameter of 40 nm as a conductive material, and 2% by weight of styrene-butadiene rubber as a binder % And 2% by weight of carboxymethylcellulose were added to water to prepare an anode active material composition (cathode mixture slurry). The negative electrode active material composition was coated on a copper thin film having a thickness of 20 μm using a doctor blade, dried at 120° C., and rolled by a roll press to prepare a negative electrode coated with an active material layer having a thickness of 40 μm.
제조된 음극의 활물질층 상에 제 2 겔 고분자 전해질 조성물을 닥터블레이드를 이용하여 코팅하고, 자외선을 2000 mW/cm -2로 20초간 조사하여 가교하였으며 제 2 겔 고분자 전해질 층이 형성된 41 ㎛ 두께의 음극-전해질 결합체를 제조하였다.The second gel polymer electrolyte composition was coated on the active material layer of the prepared negative electrode using a doctor blade, and then crosslinked by irradiating ultraviolet rays at 2000 mW/cm -2 for 20 seconds. The second gel polymer electrolyte layer was formed with a thickness of 41 μm. A negative electrode-electrolyte assembly was prepared.
상기 제 2 겔 고분자 전해질 조성물은 트리메틸올프로판 에톡시레이트 트리아크릴레이트 7.5 중량%, 광 개시제로 하이드록시 메틸 페닐 프로파논 0.1 중량%, 액체 전해질 92.4 중량%를 혼합 합하였다. 액체 전해질로는, 디메톡시에탄 용매에 4몰의 LiFSI가 녹아있는 액체 전해질을 사용하였다. 상기 제 2 겔 고분자 전해질 조성물의 점도는 25℃에서 65 cps 이었다. The second gel polymer electrolyte composition was a mixture of 7.5% by weight of trimethylolpropane ethoxylate triacrylate, 0.1% by weight of hydroxymethyl phenyl propanone as a photoinitiator, and 92.4% by weight of a liquid electrolyte. As the liquid electrolyte, a liquid electrolyte in which 4 mol of LiFSI was dissolved in a dimethoxyethane solvent was used. The viscosity of the second gel polymer electrolyte composition was 65 cps at 25°C.
3) 분리막-전해질 결합체의 제조3) Preparation of membrane-electrolyte combination
분리막으로 평균입경이 2.5㎛인 Li 6PS 5Cl 고체전해질을 캐스팅하여 제조한 50㎛ 두께의 멤브레인을 사용하였다.A 50 μm thick membrane prepared by casting a Li 6 PS 5 Cl solid electrolyte having an average particle diameter of 2.5 μm as a separator was used.
준비된 분리막 상에 제 3 겔 고분자 전해질 조성물을 닥터블레이드를 이용하여 코팅하고, 자외선을 2000 mW/cm -2로 20초간 조사하여 가교하였으며 제 3 겔 고분자 전해질 층이 형성된 51 ㎛ 두께의 분리막-전해질 결합체를 제조하였다.A third gel polymer electrolyte composition was coated on the prepared separator using a doctor blade, and crosslinked by irradiation with ultraviolet rays at 2000 mW/cm -2 for 20 seconds, and a 51 μm-thick separator-electrolyte assembly with a third gel polymer electrolyte layer formed thereon. Was prepared.
상기 제 3 겔 고분자 전해질 조성물은 트리메틸올프로판 에톡시레이트 트리아크릴레이트 17.5 중량%, 광 개시제로 하이드록시 메틸 페닐 프로파논 0.1 중량%, 액체 전해질 82.4 중량%를 혼합하였다. 액체 전해질로는, 분리막에 젖음성이 우수한 선형 카보네이트계 혼합유기용매인 에틸렌카보네이트/디에틸카보네이트 (1:1 부피비 혼합)에 1몰의 LiPF 6가 녹아있는 액체 전해질을 사용하였다. 상기 제 3 겔 고분자 전해질 조성물의 점도는 25℃에서 30 cps 이었다. In the third gel polymer electrolyte composition, 17.5 wt% of trimethylolpropane ethoxylate triacrylate, 0.1 wt% of hydroxy methyl phenyl propanone and 82.4 wt% of a liquid electrolyte were mixed as a photo initiator. As the liquid electrolyte, a liquid electrolyte in which 1 mol of LiPF 6 was dissolved in ethylene carbonate/diethyl carbonate (1:1 volume ratio mixture), which is a linear carbonate-based mixed organic solvent with excellent wettability in the separator, was used. The viscosity of the third gel polymer electrolyte composition was 30 cps at 25°C.
4) 리튬이온 이차전지의 제조4) Manufacture of lithium ion secondary battery
상기 양극-전해질 결합체, 상기 분리막-전해질 결합체 및 상기 음극-전해질 결합체를 적층한 후, 타발하여 전지(코인셀)를 제조하였다. The positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly were stacked and then punched to prepare a battery (coin cell).
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described by specific matters and limited embodiments, but these are provided only to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the field to which the present invention pertains. Those of ordinary skill in the above can make various modifications and variations from these descriptions.
따라서 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention is limited to the described embodiments and should not be defined, and all those having equivalent or equivalent modifications to the claims as well as the claims to be described later belong to the scope of the inventive concept.

Claims (56)

  1. 양극 상에 제 1 전해질을 포함하는 양극-전해질 결합체,A positive electrode-electrolyte assembly comprising a first electrolyte on the positive electrode,
    음극 상에 제 2 전해질을 포함하는 음극-전해질 결합체, 및A cathode-electrolyte assembly comprising a second electrolyte on the cathode, and
    분리막 상에 제 3 전해질을 포함하는 분리막-전해질 결합체를 포함하며,It includes a separator-electrolyte assembly including a third electrolyte on the separator,
    상기 양극은 양극 활물질 층을 포함하고, The positive electrode includes a positive electrode active material layer,
    상기 양극 활물질 층 및 상기 분리막은 고체 전해질을 포함하고,The positive electrode active material layer and the separator contain a solid electrolyte,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질이며, The first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 서로 다른 조성으로 이루어진 것인 전기화학 소자.At least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte are made of different compositions.
  2. 제 1항에 있어서,The method of claim 1,
    상기 음극은 음극 활물질층을 포함하며, The negative electrode includes a negative active material layer,
    상기 음극 활물질 층은 고체 전해질을 포함하는 전기화학 소자.The negative active material layer is an electrochemical device comprising a solid electrolyte.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 하나 이상은 이온전도도가 상이한 것인 전기화학 소자.At least one of the first electrolyte, the second electrolyte, and the third electrolyte is an electrochemical device having different ionic conductivity.
  4. 제 1항에 있어서,The method of claim 1,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 하나 이상은 용매의 종류가 상이한 것인 전기화학 소자.At least one of the first electrolyte, the second electrolyte, and the third electrolyte is an electrochemical device in which the type of solvent is different.
  5. 제 1항에 있어서,The method of claim 1,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 하나 이상은 해리 가능한 염의 종류 또는 농도가 상이한 것인 전기화학 소자.At least one of the first electrolyte, the second electrolyte, and the third electrolyte is an electrochemical device in which the type or concentration of the dissociable salt is different.
  6. 제 1항에 있어서,The method of claim 1,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 하나 이상은 가교 고분자 매트릭스를 이루는 단량체 종류 또는 함량이 상이한 것인 전기화학 소자.At least one of the first electrolyte, the second electrolyte, and the third electrolyte is an electrochemical device having different types or contents of monomers constituting the crosslinked polymer matrix.
  7. 제 1항에 있어서,The method of claim 1,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질 중 적어도 둘 이상은 성능향상제를 포함하며, At least two or more of the first electrolyte, the second electrolyte, and the third electrolyte include a performance enhancing agent,
    상기 성능향상제를 포함하는 전해질 중 적어도 하나 이상은 성능향상제의 종류 또는 농도가 상이한 것인 전기화학 소자At least one of the electrolytes containing the performance enhancing agent is an electrochemical device in which the type or concentration of the performance enhancing agent is different
  8. 제 1항에 있어서,The method of claim 1,
    상기 가교 고분자 매트릭스는 선형 고분자를 더 포함하여 반 상호 침투 망상(semi-IPN) 구조인 것인 전기화학 소자.The cross-linked polymer matrix further comprises a linear polymer to have a semi-interpenetrating network (semi-IPN) structure.
  9. 제 3항에 있어서,The method of claim 3,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 이온전도도 차이가 0.1 mS/cm 이상인 것인 전기화학 소자.At least any one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte has an ionic conductivity difference of 0.1 mS/cm or more.
  10. 제 3항에 있어서,The method of claim 3,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 20 ~ 80 ℃에서의 온도와 이온전도도의 아레니우스 플롯에서 구한 기울기가 상이한 것인 전기화학 소자.At least any one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte have different slopes obtained from the Arrhenius plot of the temperature at 20 to 80 °C and the ion conductivity.
  11. 제 3항에 있어서,The method of claim 3,
    상기 제 1 전해질의 이온전도도 IC 1 및 제 2 전해질의 이온전도도 IC 2는 하기 식 1을 만족하는 전기화학 소자.The ionic conductivity IC 1 of the first electrolyte and the ionic conductivity IC 2 of the second electrolyte satisfy Equation 1 below.
    [식 1][Equation 1]
    IC 1 - IC 2 ≥ 0.1 mS/cm IC 1 -IC 2 ≥ 0.1 mS/cm
  12. 제 3항에 있어서,The method of claim 3,
    상기 제 1 전해질의 이온전도도 IC 1, 제 2 전해질의 이온전도도 IC 2 및 제 3 전해질의 이온전도도 IC 3은 하기 식 2 및 식 3을 만족하는 전기화학 소자.The ionic conductivity IC 1 of the first electrolyte, the ionic conductivity IC 2 of the second electrolyte, and the ionic conductivity IC 3 of the third electrolyte satisfy the following Equations 2 and 3.
    [식 2][Equation 2]
    IC 1 - IC 3 ≥ 0.1 mS/cm IC 1 -IC 3 ≥ 0.1 mS/cm
    [식 3][Equation 3]
    IC 2 - IC 3 ≥ 0.1 mS/cm IC 2 -IC 3 ≥ 0.1 mS/cm
  13. 제 1항 또는 제 4항에 있어서,The method of claim 1 or 4,
    상기 용매의 종류는 카보네이트계 용매, 니트릴계 용매, 에스테르계 용매, 에테르계 용매, 글림계 용매, 케톤계 용매, 알코올계 용매, 비양자성 용매 및 물에서 선택되는 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것인 전기화학 소자.The type of solvent is a carbonate-based solvent, a nitrile-based solvent, an ester-based solvent, an ether-based solvent, a glyme-based solvent, a ketone-based solvent, an alcohol-based solvent, an aprotic solvent, and a mixed solvent of two or more selected from water. The electrochemical device.
  14. 제 13항에 있어서,The method of claim 13,
    상기 카보네이트계 용매는 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸에틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트 및 부틸렌 카보네이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The carbonate-based solvent is any one or a mixture of two or more selected from dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, methylethyl carbonate, ethylene carbonate, propylene carbonate and butylene carbonate,
    상기 니트릴계 용매는 아세토니트릴(acetonitrile), 석시노니트릴(succinonitrile), 아디포니트릴(adiponitrile, 세바코니크릴(sebaconitrile)에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The nitrile solvent is any one or a mixture of two or more selected from acetonitrile, succinonitrile, adiponitrile, sebaconitrile,
    상기 에스테르계 용매로는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), n-프로필 아세테이트(n-propyl acetate), 1,1-디메틸에틸 아세테이트(1,1-dimethyl acetate), 메틸프로피오네이트(methylpropionate), 에틸프로피오네이트(ethylpropionate), γ-부티로락톤(γ-butylolactone), 데카놀라이드(decanolide), 발레로락톤(valerolactone), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone)에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,As the ester solvent, methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethyl ethyl acetate, methyl propio Methylpropionate, ethylpropionate, γ-butylolactone, decanolide, valerolactone, mevalonolactone, caprolactone ) Is any one or a mixture of two or more selected from,
    상기 에테르계 용매는 디메틸 에테르, 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란 및 테트라히드로퓨란에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The ether solvent is any one or a mixture of two or more selected from dimethyl ether, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, and tetrahydrofuran,
    상기 글림계 용매는 에틸렌 글리콜 디메틸에테르, 트리에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The glyme solvent is any one or a mixture of two or more selected from ethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether,
    상기 케톤계 용매는 시클로헥사논이고,The ketone solvent is cyclohexanone,
    상기 알코올계 용매는 에틸알코올 및 이소프로필 알코올에서 선택되는 어느 하나 또는 이들의 혼합물이고,The alcohol-based solvent is any one selected from ethyl alcohol and isopropyl alcohol, or a mixture thereof,
    상기 비양자성 용매는 니트릴계 용매, 아미드계 용매, 디옥솔란계 용매 및 설포란계 용매에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것인 전기화학 소자.The aprotic solvent is any one or a mixture of two or more selected from a nitrile-based solvent, an amide-based solvent, a dioxolane-based solvent, and a sulfolane-based solvent.
  15. 제 1항 또는 제 5항에 있어서,The method according to claim 1 or 5,
    상기 해리 가능한 염은 리튬헥사플루오르포스페이트(LiPF 6), 리튬테트라플루오로보레이트(LiBF 4), 리튬헥사플루오르안티모네이트(LiSbF 6), 리튬헥사플루오르아세네이트(LiAsF 6), 리튬디플루오르메탄설포네이트(LiC 4F 9SO 3), 과염소산리튬(LiClO 4), 리튬알루미네이트(LiAlO 2), 리튬테트라클로로알루미네이트(LiAlCl 4), 염화리튬(LiCl), 요오드화리튬(LiI), 리튬 비스옥살레이토 보레이트(LiB(C 2O 4) 2), 리튬트리플루오로메탄설포닐이미드(LiN(C xF 2x+1SO 2)(C yF 2y+1SO 2)(여기서, x 및 y는 자연수임) 및 이들의 유도체에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것인 전기화학 소자.The dissociable salts are lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroantimonate (LiSbF 6 ), lithium hexafluoroacetate (LiAsF 6 ), lithium difluoromethanesulfo Nate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl), lithium iodide (LiI), lithium bisoxal Latoborate (LiB(C 2 O 4 ) 2 ), lithium trifluoromethanesulfonylimide (LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (where x and y Is a natural number) and any one or a mixture of two or more selected from derivatives thereof.
  16. 제 5항에 있어서,The method of claim 5,
    상기 염의 농도는 0.1M이상 상이한 것인 전기화학 소자.The concentration of the salt is 0.1M or more different from the electrochemical device.
  17. 제 6항에 있어서,The method of claim 6,
    상기 단량체의 종류는 아크릴레이트계 단량체, 아크릴산계 단량체, 술폰산계 단량체, 인산계 단량체, 과불소계 단량체 및 아크릴로나이트릴계 단량체로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The type of the monomer is any one or a mixture of two or more selected from the group consisting of acrylate-based monomers, acrylic acid-based monomers, sulfonic acid-based monomers, phosphoric acid-based monomers, perfluorine-based monomers, and acrylonitrile-based monomers.
  18. 제 17항에 있어서, The method of claim 17,
    상기 아크릴레이트계 단량체는 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디아크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 트리메틸올프로판 에톡시레이트 트리아크릴레이트, 트리메틸올프로판 에톡시레이트 트리메타크릴레이트, 비스페놀에이에톡시레이트 디아크릴레이트 및 비스페놀에이에톡시레이트 디메타크릴레이트, 베타카르복시에틸아크릴레이트, 2,4,6-트리브로모페닐아크릴레이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, The acrylate monomers are polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethacrylate, trimethylolpropane ethoxylate triacrylate, trimethylolpropane ethoxylate Any one or two or more selected from trimethacrylate, bisphenol ethoxylate diacrylate and bisphenol ethoxylate dimethacrylate, beta carboxyethyl acrylate, 2,4,6-tribromophenyl acrylate Is a mixture,
    상기 아크릴산계 단량체는 아크릴산, 메타크릴산, 메틸 아크릴산, 메틸 메타크릴산, 2-에틸아크릴산, 2-프로필아크릴산 및 2-트리플루오로메틸아크릴산에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The acrylic acid-based monomer is any one or a mixture of two or more selected from acrylic acid, methacrylic acid, methyl acrylic acid, methyl methacrylic acid, 2-ethylacrylic acid, 2-propylacrylic acid and 2-trifluoromethylacrylic acid,
    상기 술폰산계 단량체는 술폰산, 소듐스티렌설포닉에시드, 2-아크릴아미드-2-메틸프로페인설포닉에시드, 2-설포에틸메타크릴레이트, 3-설포프로필아크릴레이트 및 3-설포프로필메타크릴레이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The sulfonic acid-based monomer is from sulfonic acid, sodium styrene sulfonic acid, 2-acrylamide-2-methylpropane sulfonic acid, 2-sulfoethyl methacrylate, 3-sulfopropyl acrylate and 3-sulfopropyl methacrylate. Is any one or a mixture of two or more selected,
    상기 인산계 단량체는 인산, 비스(2-메타크릴옥시에틸)포스페이트, 포스포릭에시드-2-하이드록시에틸아크릴레이트에스터 및 2-(메타크릴옥시)에틸포스페이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The phosphoric acid-based monomer is any one or a mixture of two or more selected from phosphoric acid, bis(2-methacryloxyethyl)phosphate, phosphoric acid-2-hydroxyethylacrylate ester, and 2-(methacryloxy)ethylphosphate ,
    상기 과불소계 단량체는 헥사플루오르이소프로필메타크릴레이트, 1,1,3-헥사플루오르부틸메타크릴레이트, 1,1,7-도데카플루오르헵틸메타크릴레이트, 2,2,2-트리플루오르에틸메타크릴레이트, 1,1,5-옥타플루오르펜틸메타크릴레이트, 펜타플루오르페닐아크릴레이트 및 2,2,2-트리플루오르에틸아크릴레이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고,The perfluorine-based monomers are hexafluoroisopropyl methacrylate, 1,1,3-hexafluorobutyl methacrylate, 1,1,7-dodecafluoroheptyl methacrylate, 2,2,2-trifluoroethyl methacrylate Any one or a mixture of two or more selected from acrylate, 1,1,5-octafluoropentyl methacrylate, pentafluorophenyl acrylate and 2,2,2-trifluoroethyl acrylate,
    상기 아크릴로나이트릴계 단량체는 아크릴로나이트릴, 1-시아노비닐아세테이트 및 2-시아노에틸아크릴레이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것인 전기화학 소자.The acrylonitrile-based monomer is an electrochemical device that is any one or a mixture of two or more selected from acrylonitrile, 1-cyanovinyl acetate, and 2-cyanoethyl acrylate.
  19. 제 6항에 있어서,The method of claim 6,
    상기 단량체의 함량은 0.5 중량% 이상 상이한 것인 전기화학 소자.The content of the monomer is 0.5% by weight or more different from the electrochemical device.
  20. 제 7항에 있어서,The method of claim 7,
    상기 제 1 전해질은 제 1 성능향상제를 포함하며,The first electrolyte includes a first performance enhancing agent,
    상기 제 1 성능향상제는 고전압 안정성 향상제, 고온 안정성 향상제 및 전해질 젖음성 향상제로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The first performance enhancer is an electrochemical device of any one or a mixture of two or more selected from the group consisting of a high voltage stability improver, a high temperature stability improver, and an electrolyte wettability improver.
  21. 제 20항에 있어서,The method of claim 20,
    상기 고전압 안정성 향상제는 프로프-1-엔-1,3-술톤, 프로판 술톤, 부탄 술톤, 에틸렌 설페이트, 에틸렌 프로필렌 설페이트, 트리메틸렌 설페이트, 비닐 설폰, 메틸 설폰, 페닐 설폰, 벤질 설폰, 테트라메틸렌 설폰, 부타디엔 설폰, 벤조일 퍼옥사이드, 라우로일 퍼옥사이드, 2-메틸 무수 말레인산, 숙시노니트릴, 글루타르니트릴, 아디포니트릴, 피멜로니트릴, 수베로니트릴, 세바코니트릴, 아젤레익 디니트릴, 부틸아민, N,N-디시클로헥실카보디아민, N,N-디메틸 아미노 트리메틸 실란, N,N-디메틸아세트아미드, 술포란 및 프로필렌카보네이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The high voltage stability enhancer is prop-1-ene-1,3-sultone, propane sultone, butane sultone, ethylene sulfate, ethylene propylene sulfate, trimethylene sulfate, vinyl sulfone, methyl sulfone, phenyl sulfone, benzyl sulfone, tetramethylene sulfone. , Butadiene sulfone, benzoyl peroxide, lauroyl peroxide, 2-methyl maleic anhydride, succinonitrile, glutarnitrile, adiponitrile, pimelonitrile, suberonitrile, sebaconitrile, azelaic dinitrile, butyl An electrochemical device which is any one or a mixture of two or more selected from amine, N,N-dicyclohexylcarbodiamine, N,N-dimethyl amino trimethyl silane, N,N-dimethylacetamide, sulfolane and propylene carbonate.
  22. 제 20항에 있어서,The method of claim 20,
    상기 고온 안정성 향상제는 프로판 술톤, 프로펜 술톤, 디메틸 설폰, 디페닐 설폰, 디비닐 설폰, 메탄 설폰산, 프로필렌 설폰, 3-불화톨루엔, 2,5-디클로로톨루엔, 2-플루오로비페닐, 디시아노부텐, 트리스(-트리메틸-실릴)-포스파이트, 피리딘, 4-에틸 피리딘, 4-아세틸 피리딘 및 3-시아노 피리딘에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The high-temperature stability improving agent is propane sultone, propene sultone, dimethyl sulfone, diphenyl sulfone, divinyl sulfone, methane sulfonic acid, propylene sulfone, 3- toluene fluoride, 2,5-dichlorotoluene, 2-fluorobiphenyl, dicyano An electrochemical device which is any one or a mixture of two or more selected from butene, tris(-trimethyl-silyl)-phosphite, pyridine, 4-ethyl pyridine, 4-acetyl pyridine and 3-cyano pyridine.
  23. 제 20항에 있어서,The method of claim 20,
    상기 전해질 젖음성 향상제는 리튬비스(플루오르설포닐)이미드, 리튬비스(트리플루오로메틸설포닐)이미드, 말레익산, 타닉산, 실리콘 옥사이드, 알루미늄 옥사이드, 지르코니아 옥사이드, 티타늄 옥사이드, 징크 옥사이드, 망간 옥사이드, 마그네슘 옥사이드, 칼슘 옥사이드, 아이언 옥사이드, 바륨 옥사이드, 몰리브덴 옥사이드, 루테늄 옥사이드 및 제올라이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The electrolyte wettability improving agent is lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethylsulfonyl) imide, maleic acid, tannic acid, silicon oxide, aluminum oxide, zirconia oxide, titanium oxide, zinc oxide, manganese An electrochemical device that is any one or a mixture of two or more selected from oxide, magnesium oxide, calcium oxide, iron oxide, barium oxide, molybdenum oxide, ruthenium oxide, and zeolite.
  24. 제 7항에 있어서,The method of claim 7,
    상기 제 2 전해질은 제 2 성능향상제를 포함하며,The second electrolyte includes a second performance enhancing agent,
    상기 제 2 성능향상제는 계면 안정화제 및 가스 발생 억제제로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The second performance enhancing agent is an electrochemical device of any one or a mixture of two or more selected from the group consisting of an interfacial stabilizer and a gas generation inhibitor.
  25. 제 24항에 있어서,The method of claim 24,
    상기 계면 안정화제는 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 메틸렌에틸렌카보네이트, 메틸렌메틸에틸렌 카보네이트, 플루오로에틸렌카보네이트, 알릴트리메톡시실란, 알릴트리에톡시실란, 시클로헥실트리메톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 3-메타크릴록시프로필트리메톡시실란, 3-메르캅토프로필트리메톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필에톡시디메틸실란, 에틸렌글리콜디글리시딜에테르, 디에틸렌글리콜디글리시딜에테르, 폴리에틸렌글리콜디글리시딜에테르, 프로필렌글리콜디글리시딜에테르, 트리프로필렌글리콜디글리시딜에테르, 폴리프로필렌글리콜디글리시딜에테르, 알릴 글리시딜 에테르, 페닐 글리시딜 에테르, 플루오로 γ-부티로락톤, 디플루오로 γ-부티로락톤, 클로로 γ-부티로락톤, 디클로로 -부티로락톤, 브로모 γ-부티로락톤, 디브로모 γ-부티로락톤, 니트로 γ-부티로락톤, 시아노 γ-부티로락톤 및 몰리브덴 황화물에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The interfacial stabilizer is vinylene carbonate, vinylethylene carbonate, methyleneethylene carbonate, methylene methylethylene carbonate, fluoroethylene carbonate, allyltrimethoxysilane, allyltriethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane. Silane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane Silane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylethoxydimethylsilane, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene Glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, fluoro γ-butyrolactone, difluoro γ- Butyrolactone, chloro γ-butyrolactone, dichloro-butyrolactone, bromo γ-butyrolactone, dibromo γ-butyrolactone, nitro γ-butyrolactone, cyano γ-butyrolactone and molybdenum Any one selected from sulfides or a mixture of two or more electrochemical devices.
  26. 제 24항에 있어서,The method of claim 24,
    상기 가스 발생 억제제는 디페닐 설폰, 디비닐 설폰, 비닐 설폰, 페닐 설폰, 벤질 설폰, 테트라메틸렌 설폰, 부타디엔 설폰, 디에틸렌글리콜 디아크릴레이트, 디에틸렌글리콜 디메타크릴레이트, 에틸렌글리콜 디메타크릴레이트, 디프로필렌글리콜 디아크릴레이트, 디프로필렌글리콜 디메타크릴레이트, 에틸렌글리콜 디비닐 에테르, 에톡실레이티드 트리메틸올프로판 트리아크릴레이트, 디에틸렌글리콜 디비닐 에테르, 트리에틸렌 글리콜 디메타크릴레이트, 디페타에리쓰리톨 펜타아크릴레이트, 트리메틸올프로판 트리아크릴레이트, 트리메틸올프로판 트리메타크릴레이트, 프로폭실레이티드(3) 트리메틸올프로판 트리아크릴레이트, 프로폭실레이티드(6) 트리메틸올프로판 트리아크릴레이트 및 폴리에틸렌글리콜 디아크릴레이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The gas generation inhibitor is diphenyl sulfone, divinyl sulfone, vinyl sulfone, phenyl sulfone, benzyl sulfone, tetramethylene sulfone, butadiene sulfone, diethylene glycol diacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate. , Dipropylene glycol diacrylate, dipropylene glycol dimethacrylate, ethylene glycol divinyl ether, ethoxylated trimethylolpropane triacrylate, diethylene glycol divinyl ether, triethylene glycol dimethacrylate, difeta Erythritol pentaacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, propoxylated (3) trimethylolpropane triacrylate, propoxylated (6) trimethylolpropane triacrylate and An electrochemical device that is a mixture of any one or a mixture of two or more selected from polyethylene glycol diacrylate.
  27. 제 7항에 있어서,The method of claim 7,
    상기 제 3 전해질은 제 3 성능향상제를 포함하며,The third electrolyte includes a third performance enhancing agent,
    상기 제 3 성능향상제는 전극 접착력 향상제 및 음이온 안정화제로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The third performance enhancing agent is an electrochemical device of any one or a mixture of two or more selected from the group consisting of an electrode adhesion enhancer and an anion stabilizer.
  28. 제 27항에 있어서,The method of claim 27,
    상기 전극 접착력 향상제는 아세토나이트릴, 티오펜아세토나이트릴, 메톡시페닐아세토나이트릴, 플루오로페닐아세토나이트릴, 아크릴로나이트릴, 메톡시아크릴로나이트릴 및 에톡시아크릴로나이트릴에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The electrode adhesion improving agent is selected from acetonitrile, thiopheneacetonitrile, methoxyphenylacetonitrile, fluorophenylacetonitrile, acrylonitrile, methoxyacrylonitrile, and ethoxyacrylonitrile. An electrochemical device that is any one or a mixture of two or more.
  29. 제 27항에 있어서,The method of claim 27,
    상기 음이온 안정화제는 디메틸설폰, 설포레인 및 벤지이미다졸에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The anion stabilizer is an electrochemical device of any one or a mixture of two or more selected from dimethylsulfone, sulfolane and benzimidazole.
  30. 제 7항에 있어서,The method of claim 7,
    상기 제 1 전해질은 제 1 성능향상제를 포함하고,The first electrolyte includes a first performance enhancing agent,
    상기 제 1 성능향상제는 프로판 술톤, 에틸렌 설페이트 및 2-플루오로비페닐에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The first performance enhancing agent is an electrochemical device of any one or a mixture of two or more selected from propane sultone, ethylene sulfate and 2-fluorobiphenyl.
  31. 제 7항에 있어서,The method of claim 7,
    상기 제 2 전해질은 제 2 성능향상제를 포함하고,The second electrolyte includes a second performance enhancing agent,
    상기 제 2 성능향상제는 비닐 설폰, 알릴 트리에톡시 실란 및 알릴 글리시딜 에테르에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The second performance enhancing agent is an electrochemical device of any one or a mixture of two or more selected from vinyl sulfone, allyl triethoxy silane and allyl glycidyl ether.
  32. 제 7항에 있어서,The method of claim 7,
    상기 제 3 전해질은 제 3 성능향상제를 포함하고,The third electrolyte includes a third performance enhancing agent,
    상기 제 3 성능향상제는 아세토나이트릴 및 디메틸설폰에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The third performance enhancing agent is an electrochemical device of any one or a mixture of two or more selected from acetonitrile and dimethylsulfone.
  33. 제 7항에 있어서,The method of claim 7,
    상기 성능향상제는 상기 각 전해질의 함량 중 0.1 내지 10 중량%로 포함되는 전기화학 소자.The performance enhancing agent is an electrochemical device containing 0.1 to 10% by weight of the content of each electrolyte.
  34. 제 33항에 있어서,The method of claim 33,
    상기 성능향상제는 상기 각 전해질의 함량 중 0.1 내지 5 중량%로 포함되는 전기화학 소자.The performance enhancing agent is an electrochemical device containing 0.1 to 5% by weight of the content of each electrolyte.
  35. 제 34항에 있어서,The method of claim 34,
    상기 성능향상제는 상기 각 전해질의 함량 중 0.1 내지 3 중량%로 포함되는 전기화학 소자.The performance enhancing agent is an electrochemical device contained in an amount of 0.1 to 3% by weight of the content of each electrolyte.
  36. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2,
    상기 고체전해질은 고분자 고체 전해질, 산화물계 고체 전해질 및 황화물계 고체 전해질에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The solid electrolyte is an electrochemical device of any one or a mixture of two or more selected from a polymer solid electrolyte, an oxide solid electrolyte, and a sulfide solid electrolyte.
  37. 제 36항에 있어서,The method of claim 36,
    상기 고분자 고체 전해질은 폴리에틸렌옥사이드(PEO), 폴리아크릴로니트릴(PAN), 폴리메틸메타크릴레이트(PMMA), 폴리비닐리덴 풀루오라이드(PVDF), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌(PVDF-HFP)에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The polymer solid electrolyte is polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene. (PVDF-HFP) any one selected from or a mixture of two or more electrochemical devices.
  38. 제 36항에 있어서,The method of claim 36,
    상기 산화물계 고체전해질은 LixaLayaTiO3〔xa=0.3~0.7, ya=0.3~0.7〕(LLT), Li7La3Zr2O12(LLZ), LISICON(Lithium super ionic conductor)형 결정 구조를 갖는 Li3.5Zn0.25GeO4, NASICON(Natrium super ionic conductor)형 결정 구조를 갖는 LiTi2P3O12, Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12(단, 0≤xb≤1, 0≤yb≤1), 가닛형 결정 구조를 갖는 Li7La3Zr2O12, LiPON, LiPOD(D는, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, Au으로부터 선택되는 적어도 1종), LiAON(A는, Si, B, Ge, Al, C, Ga으로부터 선택되는 적어도 1종)군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The oxide-based solid electrolyte is LixaLayaTiO3 (xa=0.3-0.7, ya=0.3-0.7) (LLT), Li7La3Zr2O12 (LLZ), Li3.5Zn0.25GeO4, NASICON (Natrium LiTi2P3O12 with super ionic conductor) type crystal structure, Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12 (however, 0≤xb≤1, 0≤yb≤1), garnet type Li7La3Zr2O12, LiPON, LiPOD having a crystal structure (D is at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, Au 1 type), LiAON (A is at least one selected from Si, B, Ge, Al, C, Ga) any one selected from the group or a mixture of two or more electrochemical devices.
  39. 제 38항에 있어서,The method of claim 38,
    상기 산화물계 고체전해질은 Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12(단, 0≤xb≤1, 0≤yb≤1)를 포함하는 전기화학 소자.The oxide-based solid electrolyte is an electrochemical device comprising Li1+xb+yb(Al,Ga)xb(Ti,Ge)2-xbSiybP3-ybO12 (however, 0≦xb≦1, 0≦yb≦1).
  40. 제 36항에 있어서,The method of claim 36,
    상기 황화물계 고체전해질은 Li7-aPS6-aXa (X는 F, Cl, Br, I, 또는 이의 조합, 0≤a<2), aLi2S-(1-a)P2S5 (0<a<1), aLi2S-bP2S5-cLiX (X는 F, Cl, Br, I, 또는 이들의 조합이고, 0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1),aLi2S-bP2S5-cLi2O (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-bP2S5-cLi2O-dLiI (0<a<1, 0<b<1, 0<c<1, 0<d<1 및 a+b+c+d=1), aLi2S-(1-a)SiS2 (0<a<1), aLi2S-bSiS2-cLiI (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-bSiS2-cLiBr (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-bSiS2-cLiCl (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2SbSiS2-cB2S3-dLiI (0<a<1, 0<b<1, 0<c<1, 0<d<1 및 a+b+c+d=1), aLi2S-bSiS2-cP2S5-dLiI (0<a<1, 0<b<1, 0<c<1,0<d<1 및 a+b+c+d=1), aLi2S-(1-a)B2S3 (0<a<1), aLi2S-bP2S5-cZmSn (m 및 n는 서로 독립적으로 1 내지 10의 양의 정수이고, Z는 Ge, Zn, 또는 Ga이고, 0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), aLi2S-(1-a)GeS2 (0<a<1), aLi2SbSiS2-cLi3PO4 (0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1), 또는 aLi2S-bSiS2-cLiPMOq (p 및 q는 서로 독립적으로 1 내지 10의 양의 정수이고, 0<a<1, 0<b<1, 0<c<1, 및 a+b+c=1이고, M은 P, Si, Ge, B, Al, Ga 또는 In)군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 전기화학 소자.The sulfide-based solid electrolyte is Li7-aPS6-aXa (X is F, Cl, Br, I, or a combination thereof, 0≤a<2), aLi2S-(1-a)P2S5 (0<a<1), aLi2S -bP2S5-cLiX (X is F, Cl, Br, I, or a combination thereof, 0<a<1, 0<b<1, 0<c<1, and a+b+c=1), aLi2S -bP2S5-cLi2O (0<a<1, 0<b<1, 0<c<1, and a+b+c=1), aLi2S-bP2S5-cLi2O-dLiI (0<a<1, 0<b <1, 0<c<1, 0<d<1 and a+b+c+d=1), aLi2S-(1-a)SiS2 (0<a<1), aLi2S-bSiS2-cLiI (0< a<1, 0<b<1, 0<c<1, and a+b+c=1), aLi2S-bSiS2-cLiBr (0<a<1, 0<b<1, 0<c<1, And a+b+c=1), aLi2S-bSiS2-cLiCl (0<a<1, 0<b<1, 0<c<1, and a+b+c=1), aLi2SbSiS2-cB2S3-dLiI ( 0<a<1, 0<b<1, 0<c<1, 0<d<1 and a+b+c+d=1), aLi2S-bSiS2-cP2S5-dLiI (0<a<1, 0 <b<1, 0<c<1,0<d<1 and a+b+c+d=1), aLi2S-(1-a)B2S3 (0<a<1), aLi2S-bP2S5-cZmSn ( m and n are each independently a positive integer from 1 to 10, Z is Ge, Zn, or Ga, 0<a<1, 0<b<1, 0<c<1, and a+b+c =1), aLi2S-(1-a)GeS2 (0<a<1), aLi2SbSiS2-cLi3PO4 (0<a<1, 0<b<1, 0<c<1, and a+b+c=1 ), or aLi2S-bSiS2-cLiPMOq (p and q are each independently positive integers from 1 to 10, 0<a<1, 0<b<1, 0<c<1, and a+b+c= 1, and M is P, Si, Ge, B, Al, Ga, or In) any one or a mixture of two or more selected from the group electrochemical device.
  41. 제 40항에 있어서,The method of claim 40,
    상기 황화물계 고체전해질은 Li 6PS 5Cl 및 Li 2S-P 2S 5에서 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 것인 전기화학 소자.The sulfide-based solid electrolyte is an electrochemical device comprising any one selected from Li 6 PS 5 Cl and Li 2 SP 2 S 5 , or a mixture thereof.
  42. 제 1항에 있어서,The method of claim 1,
    상기 분리막은 다공성 막에 상기 고체 전해질이 압착 및 함침되어 이루어진 것인 전기화학 소자.The separator is an electrochemical device made by compressing and impregnating the solid electrolyte in a porous membrane.
  43. 제 42항에 있어서,The method of claim 42,
    상기 다공성 막은 직포, 부직포 및 다공성 고분자 막에서 선택되는 어느 하나이고, 한 층 또는 둘 이상이 적층된 다층막 인 것인 전기화학 소자.The porous membrane is any one selected from a woven fabric, a nonwoven fabric, and a porous polymer membrane, and one layer or a multilayer film in which two or more are stacked.
  44. 제 1항에 있어서,The method of claim 1,
    상기 양극 활물질층은 기공을 포함하며, 상기 양극 활물질층의 기공도(porosity)가 1 내지 30 부피% 인 것인 전기화학 소자.The positive electrode active material layer includes pores, and the positive electrode active material layer has a porosity of 1 to 30% by volume.
  45. 제 2항에 있어서,The method of claim 2,
    상기 양극 활물질층 및 음극 활물질층은 기공을 포함하며, The positive active material layer and the negative active material layer contain pores,
    상기 양극 활물질층의 기공도(porosity)가 1 내지 30 부피% 이고, 상기 음극 활물질층의 기공도(porosity)가 1 내지 35 부피%인 것인 전기화학 소자.An electrochemical device in which a porosity of the positive active material layer is 1 to 30% by volume, and a porosity of the negative active material layer is 1 to 35% by volume.
  46. 제 45항에 있어서,The method of claim 45,
    상기 양극 활물질층의 기공도(porosity)가 1 내지 20 부피%이고, 상기 음극 활물질층의 기공도(porosity)가 1 내지 25 부피%인 것인 전기화학 소자.The electrochemical device in which the porosity of the positive active material layer is 1 to 20 vol%, and the porosity of the negative active material layer is 1 to 25 vol%.
  47. 제 1항에 있어서,The method of claim 1,
    상기 음극은 리튬금속 층이며, 상기 양극 활물질층은 기공을 포함하는 것인 전기화학 소자.The negative electrode is a lithium metal layer, and the positive electrode active material layer is an electrochemical device comprising pores.
  48. 제 47항에 있어서,The method of claim 47,
    상기 양극 활물질층의 기공도(porosity)가 1 내지 30 부피%인 것인 전기화학 소자.The electrochemical device in which the porosity of the positive active material layer is 1 to 30% by volume.
  49. 제 48항에 있어서,The method of claim 48,
    상기 양극 활물질층의 기공도(porosity)가 1 내지 20 부피%인 것인 전기화학 소자.An electrochemical device in which the porosity of the positive active material layer is 1 to 20% by volume.
  50. 제 1항에 있어서,The method of claim 1,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질은 각각 양극, 음극 및 분리막 상에 도포 후 경화되어 양극-전해질 결합체, 음극-전해질 결합체 및 분리막-전해질 결합체를 이루는 것인 전기화학 소자.The first electrolyte, the second electrolyte, and the third electrolyte are coated on a positive electrode, a negative electrode, and a separator, respectively, and then cured to form a positive electrode-electrolyte combination, a negative electrode-electrolyte combination, and a separator-electrolyte combination.
  51. 제 50항에 있어서,The method of claim 50,
    상기 도포는 닥터 블레이드 코팅, 바 코팅, 스핀 코팅, 슬롯다이 코팅, 딥 코팅 및 스프레이 코팅에서 선택되는 코팅 방법; 또는 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅, 스텐실 프린팅 및 스크린 프린팅에서 선택되는 프린팅 방법으로 도포된 것인 전기화학 소자.The coating is a coating method selected from doctor blade coating, bar coating, spin coating, slot die coating, dip coating and spray coating; Or inkjet printing, gravure printing, gravure offset, aerosol printing, stencil printing, and the electrochemical device applied by a printing method selected from screen printing.
  52. 제 1항에 있어서,The method of claim 1,
    상기 전기화학 소자는 전기화학반응이 가능한 일차전지 또는 이차전지인 전기화학 소자.The electrochemical device is an electrochemical device which is a primary or secondary battery capable of an electrochemical reaction.
  53. 제 52항에 있어서,The method of claim 52,
    상기 전기화학 소자는 리튬 일차 전지, 리튬 이차 전지, 리튬-설퍼 전지, 리튬-공기 전지, 나트륨 전지, 알루미늄 전지, 마그네슘 전지, 칼슘 전지, 아연 전지, 아연-공기 전지, 나트륨-공기 전지, 알루미늄-공기 전지, 마그네슘-공기 전지, 칼슘-공기 전지, 슈퍼 캐패시터, 염료감응 태양전지, 연료전지, 납 축전지, 니켈 카드뮴전지, 니켈 수소 축전지 및 알칼리전지로 이루어진 군에서 선택되는 1종인 전기화학 소자.The electrochemical device is a lithium primary battery, lithium secondary battery, lithium-sulfur battery, lithium-air battery, sodium battery, aluminum battery, magnesium battery, calcium battery, zinc battery, zinc-air battery, sodium-air battery, aluminum- An electrochemical device that is one kind selected from the group consisting of an air cell, a magnesium-air cell, a calcium-air cell, a super capacitor, a dye-sensitized solar cell, a fuel cell, a lead storage battery, a nickel cadmium battery, a nickel hydrogen storage battery, and an alkaline battery.
  54. i) 양극 상에 제 1 겔 고분자 전해질 조성물을 도포 및 경화하여 제 1 전해질을 포함하는 양극-전해질 결합체를 제조하고, 음극 상에 제 2 겔 고분자 전해질 조성물을 도포 및 경화하여 제 2 전해질을 포함하는 음극-전해질 결합체를 제조하고, 분리막 상에 제 3 겔 고분자 전해질 조성물을 도포 및 경화하여 제 3 전해질을 포함하는 분리막-전해질 결합체를 제조하는 단계; 및i) coating and curing the first gel polymer electrolyte composition on the positive electrode to prepare a positive electrode-electrolyte assembly including the first electrolyte, and coating and curing the second gel polymer electrolyte composition on the negative electrode to include a second electrolyte. Preparing a negative electrode-electrolyte assembly, and coating and curing a third gel polymer electrolyte composition on the separation membrane to prepare a separation membrane-electrolyte assembly including a third electrolyte; And
    ii) 상기 양극-전해질 결합체, 분리막-전해질 결합체 및 음극-전해질 결합체를 적층하여 전극조립체를 제조하는 단계; ii) preparing an electrode assembly by laminating the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly;
    를 포함하며,Including,
    상기 양극은 양극 활물질 층을 포함하고,The positive electrode includes a positive electrode active material layer,
    상기 양극 활물질 층 및 상기 분리막은 고체 전해질을 포함하고,The positive electrode active material layer and the separator contain a solid electrolyte,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질이며, The first electrolyte, the second electrolyte and the third electrolyte are a gel polymer electrolyte containing a crosslinked polymer matrix, a solvent, and a dissociable salt,
    상기 제 1 전해질, 제 2 전해질 및 제 3 전해질에서 선택되는 적어도 어느 하나 이상은 서로 다른 조성으로 이루어진 것인 전기화학 소자의 제조방법.At least one or more selected from the first electrolyte, the second electrolyte, and the third electrolyte are made of different compositions.
  55. 제 54항에 있어서,The method of claim 54,
    상기 ii)단계는Step ii)
    ii-1) 상기 양극-전해질 결합체, 분리막-전해질 결합체 및 음극-전해질 결합체를 적층한 후 일정 모양으로 컷팅하는 단계; 또는ii-1) laminating the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly and cutting them into a predetermined shape; or
    ii-2) 상기 양극-전해질 결합체, 분리막-전해질 결합체 및 음극-전해질 결합체를 각각 일정 모양으로 커팅한 후 적층하는 단계;ii-2) cutting the positive electrode-electrolyte assembly, the separator-electrolyte assembly, and the negative electrode-electrolyte assembly into a predetermined shape and then laminating them;
    에서 선택되는 것인 전기화학 소자의 제조방법.Method of manufacturing an electrochemical device that is selected from.
  56. 제 54항에 있어서,The method of claim 54,
    상기 ii)단계 후, iii) 상기 전극조립체를 포장재로 밀봉하는 단계;를 더 포함하는 것인 전기화학 소자의 제조방법.After step ii), iii) sealing the electrode assembly with a packaging material; the method of manufacturing an electrochemical device further comprising.
PCT/KR2020/002107 2019-02-21 2020-02-14 Electrochemical device and manufacturing method thereof WO2020171483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0020709 2019-02-21
KR1020190020709A KR20200102613A (en) 2019-02-21 2019-02-21 Electrochemical device and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2020171483A1 true WO2020171483A1 (en) 2020-08-27

Family

ID=72144305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002107 WO2020171483A1 (en) 2019-02-21 2020-02-14 Electrochemical device and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR20200102613A (en)
WO (1) WO2020171483A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086611A (en) * 2020-09-29 2020-12-15 中国第一汽车股份有限公司 Composite diaphragm and preparation method and application thereof
CN113497267A (en) * 2021-06-04 2021-10-12 天津中电新能源研究院有限公司 Solid metal lithium battery and preparation method thereof
CN113540559A (en) * 2021-07-21 2021-10-22 中北大学 ZIF-8@ PEGMEM-co-AMPS-Li single ion polymer solid electrolyte and preparation method thereof
CN114373986A (en) * 2022-01-14 2022-04-19 吉林省东驰新能源科技有限公司 Polymer solid electrolyte membrane, preparation method thereof and all-solid-state battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220073309A (en) * 2020-11-26 2022-06-03 주식회사 엘지에너지솔루션 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising the same
KR20220168389A (en) * 2021-06-16 2022-12-23 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery, and lithium secondary battery including the same
KR20230111514A (en) * 2022-01-18 2023-07-25 삼성에스디아이 주식회사 Rechargeable lithium battery including gel polymer electrolyte

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140145450A (en) * 2013-06-13 2014-12-23 국립대학법인 울산과학기술대학교 산학협력단 Electrolyte-electrode assembly, method of manufacturing the same, and electrochemical device having the same
KR20150004358A (en) * 2012-04-10 2015-01-12 캘리포니아 인스티튜트 오브 테크놀로지 Novel separators for electrochemical systems
KR20150129181A (en) * 2014-05-08 2015-11-19 국립대학법인 울산과학기술대학교 산학협력단 Composite electrode-composite electrolyte assembly, method of manufacturing the same, and electrochemical device having the same
KR20160026648A (en) * 2014-08-28 2016-03-09 삼성전자주식회사 Composite electrolyte, and lithium battery comprising electrolyte
KR101648465B1 (en) * 2015-02-17 2016-08-16 주식회사 제낙스 Gel polymer electrolyte, method for manufacturing the same, and electrochemical device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3570358A4 (en) 2017-03-16 2020-03-18 LG Chem, Ltd. Electrode assembly for all-solid battery and method for fabricating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150004358A (en) * 2012-04-10 2015-01-12 캘리포니아 인스티튜트 오브 테크놀로지 Novel separators for electrochemical systems
KR20140145450A (en) * 2013-06-13 2014-12-23 국립대학법인 울산과학기술대학교 산학협력단 Electrolyte-electrode assembly, method of manufacturing the same, and electrochemical device having the same
KR20150129181A (en) * 2014-05-08 2015-11-19 국립대학법인 울산과학기술대학교 산학협력단 Composite electrode-composite electrolyte assembly, method of manufacturing the same, and electrochemical device having the same
KR20160026648A (en) * 2014-08-28 2016-03-09 삼성전자주식회사 Composite electrolyte, and lithium battery comprising electrolyte
KR101648465B1 (en) * 2015-02-17 2016-08-16 주식회사 제낙스 Gel polymer electrolyte, method for manufacturing the same, and electrochemical device including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086611A (en) * 2020-09-29 2020-12-15 中国第一汽车股份有限公司 Composite diaphragm and preparation method and application thereof
CN113497267A (en) * 2021-06-04 2021-10-12 天津中电新能源研究院有限公司 Solid metal lithium battery and preparation method thereof
CN113540559A (en) * 2021-07-21 2021-10-22 中北大学 ZIF-8@ PEGMEM-co-AMPS-Li single ion polymer solid electrolyte and preparation method thereof
CN114373986A (en) * 2022-01-14 2022-04-19 吉林省东驰新能源科技有限公司 Polymer solid electrolyte membrane, preparation method thereof and all-solid-state battery

Also Published As

Publication number Publication date
KR20200102613A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2020171483A1 (en) Electrochemical device and manufacturing method thereof
WO2021235794A1 (en) Secondary battery
WO2020167021A1 (en) Electrochemical device and method for manufacturing same
WO2020167017A1 (en) Electrochemical device and method for manufacturing same
WO2019203622A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018106078A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020167022A1 (en) Electrochemical device and manufacturing method therefor
WO2019107921A1 (en) Gel polymer electrolyte composition, and gel polymer electrolyte and lithium secondary battery which comprise same
WO2019013501A1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive
WO2019004699A1 (en) Lithium secondary battery
WO2020242138A1 (en) Cathode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2021025521A1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery
WO2020060295A1 (en) Composition for gel polymer electrolyte, and lithium secondary battery including gel polymer electrolyte formed therefrom
WO2020060293A1 (en) Composition for gel polymer electrolyte and lithium secondary battery comprising gel polymer electrolyte formed therefrom
WO2019050356A1 (en) Electrochemical element and manufacturing method therefor
WO2019039903A2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021194260A1 (en) Method for manufacturing anode
WO2021015535A1 (en) Lithium secondary battery
WO2021158027A1 (en) Thin lithium battery and method for manufacturing same
WO2018080259A1 (en) Polymer electrolyte for secondary battery and secondary battery comprising same
WO2019088733A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2022035040A1 (en) Separator for electrochemical element
WO2019066403A2 (en) Electrode active material complex for lithium secondary battery, and method for producing electrode active material complex
WO2019107855A1 (en) Polymer electrolyte for secondary battery and secondary battery comprising same
WO2021025535A1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759833

Country of ref document: EP

Kind code of ref document: A1