WO2021095151A1 - Compressor and air conditioner - Google Patents

Compressor and air conditioner Download PDF

Info

Publication number
WO2021095151A1
WO2021095151A1 PCT/JP2019/044481 JP2019044481W WO2021095151A1 WO 2021095151 A1 WO2021095151 A1 WO 2021095151A1 JP 2019044481 W JP2019044481 W JP 2019044481W WO 2021095151 A1 WO2021095151 A1 WO 2021095151A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
balance weight
see
compressor
recess
Prior art date
Application number
PCT/JP2019/044481
Other languages
French (fr)
Japanese (ja)
Inventor
隆雅 足立
太田 裕樹
駿 田坂
村上 晃啓
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to CN202211076594.5A priority Critical patent/CN115324899B/en
Priority to PCT/JP2019/044481 priority patent/WO2021095151A1/en
Priority to CN201980100738.6A priority patent/CN114450488B/en
Priority to JP2020513662A priority patent/JP6772399B1/en
Publication of WO2021095151A1 publication Critical patent/WO2021095151A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing

Definitions

  • the present invention relates to a compressor or the like.
  • Patent Document 1 describes an arc-shaped balance weight in which a plurality of thin plates are laminated.
  • the compressor is usually filled with lubricating oil to improve the lubricity of the sliding part and the sealing property of the compression chamber.
  • the lubricating oil stored as an oil pool in the closed container rises through the oil supply passage of the crankshaft, lubricates the sliding parts such as bearings, and then the compression mechanism part and the closed container. It descends through the gap between the motors and the gap between the electric motor and the closed container, and is returned to the oil sump in the closed container.
  • the mist-like lubricating oil may be blown up through the gap between the stator and the rotor of the motor, and the lubricating oil may flow out from the compressor through the discharge pipe.
  • the balance weight installed on the rotor has a smooth flush shape on the upper surface, the lower surface, and the peripheral surface.
  • the flow of the lubricating oil blown up through the gap between the stator and the rotor is hardly obstructed by the balance weight, and the lubricating oil flows out through the discharge pipe. It will be easier. As a result, the compressor may be under-lubricated and the efficiency of the refrigeration cycle may be reduced.
  • an object of the present invention is to provide a compressor or the like that suppresses the outflow of lubricating oil.
  • the present invention has a plurality of notches in which the balance weight is recessed radially inward from the outer peripheral surface, and each of the plurality of notches is in the circumferential direction of the balance weight. It was decided that the space inside the closed container would be open.
  • FIG. 1 is a vertical cross-sectional view of the compressor 100 according to the first embodiment.
  • the compressor 100 shown in FIG. 1 is a device that compresses a gaseous refrigerant.
  • the compressor 100 includes a closed container 1, a compression mechanism 2, a frame 3, a crankshaft 4 (drive shaft), a main bearing 5, a swivel bearing 6, and an electric motor 7. It has. Further, the compressor 100 includes an old dam ring 8, a subframe 9, an auxiliary bearing 10, and balance weights 11 and 12 in addition to the above-described configuration.
  • the closed container 1 is a shell-shaped container that houses the motor 7, the crankshaft 4, the compression mechanism 2, the balance weights 11, 12, and the like, and is substantially sealed.
  • Lubricating oil for improving the lubricity of the compressor 100 is sealed in the closed container 1, and is stored as an oil sump M at the bottom of the closed container 1.
  • the closed container 1 includes a cylindrical tubular chamber 1a, a lid chamber 1b welded to the upper part of the tubular chamber 1a, and a bottom chamber 1c welded to the lower part of the tubular chamber 1a.
  • a suction pipe Pa is inserted and fixed in the lid chamber 1b of the closed container 1.
  • the suction pipe Pa is a pipe that guides the refrigerant to the suction chamber H of the compression mechanism unit 2.
  • a discharge pipe Pb is inserted and fixed in the cylinder chamber 1a of the closed container 1.
  • the discharge pipe Pb is a pipe that guides the refrigerant compressed by the compression mechanism unit 2 to the outside of the compressor 100.
  • the compression mechanism unit 2 is a mechanism that compresses the refrigerant as the crankshaft 4 rotates.
  • the compression mechanism unit 2 includes a fixed scroll 21 and a swivel scroll 22, and is arranged in the upper space inside the closed container 1.
  • the fixed scroll 21 is a fixing member fixed in the closed container 1.
  • the fixed scroll 21 includes a thick base plate 21a having a disk shape and a spiral wrap 21b erected under the base plate 21a.
  • a suction chamber H in which the refrigerant is guided via the suction pipe Pa is provided near the peripheral edge of the base plate 21a.
  • the swivel scroll 22 is a moving member that forms a compression chamber C between the swivel scroll 22 and the fixed scroll 21 by the swivel.
  • the swivel scroll 22 includes a disc-shaped base plate 22a, a spiral wrap 22b erected on the base plate 22a, and a boss portion 22c fitted to the upper end portion of the crankshaft 4. .. As shown in FIG. 1, the wrap 22b extends above the base plate 22a, while the boss portion 22c extends below the base plate 22a.
  • a predetermined compression chamber C is formed between the spiral wrap 21b of the fixed scroll 21 and the spiral wrap 22b of the swirl scroll 22.
  • the compression chamber C is a space for compressing the gaseous refrigerant, and is formed on the outer line side and the inner line side of the lap 22b of the swivel scroll 22, respectively.
  • a discharge port V for guiding the refrigerant compressed in the compression chamber C to the upper space in the closed container 1 is provided.
  • the frame 3 shown in FIG. 1 is a member that supports the swivel scroll 22 and fixes the main bearing 5.
  • the frame 3 has a substantially rotationally symmetric shape and is fastened to the lower side of the fixed scroll 21.
  • the frame 3 is provided with a hole through which the crankshaft 4 is inserted (not shown by reference numeral in FIG. 1).
  • the crankshaft 4 is a shaft that rotates integrally with the rotor 7b of the motor 7, and extends in the vertical direction.
  • the crankshaft 4 includes a main shaft 4a, a flange portion 4b connected to the upper side of the main shaft 4a, and an eccentric portion 4c connected to the upper side of the flange portion 4b.
  • the spindle 4a is coaxially fixed to the rotor 7b of the electric motor 7, and rotates integrally with the rotor 7b.
  • the flange portion 4b has a columnar shape and is provided coaxially with the spindle 4a between the spindle 4a and the eccentric portion 4c.
  • the diameter of the flange portion 4b is larger than the diameter of the main shaft 4a and the eccentric portion 4c.
  • the eccentric portion 4c is an axis that rotates while being eccentric with respect to the main shaft 4a, and is fitted to the boss portion 22c of the swivel scroll 22 as described above. Then, the eccentric portion 4c rotates while being eccentric, so that the swivel scroll 22 turns.
  • the main bearing 5 rotatably supports the upper portion of the main shaft 4a, and is fixed to the peripheral wall surface of a hole (not shown by a reference numeral in FIG. 1) of the frame 3.
  • the swivel bearing 6 rotatably supports the eccentric portion 4c and is fixed to the inner peripheral wall of the boss portion 22c.
  • a lubrication passage 4d through which lubricating oil flows is provided in the vertical direction.
  • the lubricating oil flowing through the oil supply passage 4d is guided to the main bearing 5, the swivel bearing 6, the auxiliary bearing 10, and the like in addition to the compression mechanism portion 2.
  • the motor 7 is a drive source for rotating the crankshaft 4, and is arranged below the frame 3.
  • the electric motor 7 includes a stator 7a, a rotor 7b, and a winding 7c.
  • the stator 7a is a cylindrical member formed by laminating electromagnetic steel sheets, and is fixed to the inner peripheral wall of the tubular chamber 1a.
  • the rotor 7b is a cylindrical member formed by laminating electromagnetic steel sheets, and is arranged inside the stator 7a in the radial direction.
  • the crankshaft 4 is fixed to the rotor 7b by press fitting or the like.
  • the winding 7c is a wiring through which an electric current flows, is wound in a predetermined manner, and is installed in the stator 7a.
  • the Oldam ring 8 is a ring-shaped member that receives the eccentric rotation of the eccentric portion 4c and rotates the swivel scroll 22 without rotating.
  • the old dam ring 8 is provided between the swivel scroll 22 and the frame 3.
  • the balance weights 11 and 12 are arc-shaped members that alleviate the unbalance of rotation caused by the compression mechanism unit 2.
  • one balance weight 11 is installed on the outer peripheral wall of the flange portion 4b, and the other balance weight 12 is installed below the rotor 7b of the motor 7.
  • the relative positional relationship between the balance weights 11 and 12 is appropriately set based on prior experiments and simulations.
  • the main feature of this embodiment is the configuration of the balance weight 12 installed under the rotor 7b, and the details of the balance weight 12 will be described later.
  • the subframe 9 shown in FIG. 1 rotatably supports the lower portion of the crankshaft 4, and is fixed to the inner peripheral wall of the closed container 1.
  • the sub-bearing 10 rotatably supports the lower portion of the crankshaft 4, and is fixed to the peripheral wall surface of a hole (not shown) of the sub-frame 9.
  • a thin plate-shaped metal piece (not shown) twisted and bent at an upstream end (that is, near the lower end of the crankshaft 4) of the oil supply passage 4d of the crankshaft 4 ) Is installed. Then, the metal piece is rotated integrally with the crankshaft 4, so that the lubricating oil is pumped up through the oil supply passage 4d.
  • the swivel scroll 22 is swiveled by the drive of the electric motor 7, the volume of the compression chambers C formed one after another is reduced accordingly, and the gaseous refrigerant is compressed.
  • the compressed refrigerant is discharged into the upper space in the closed container 1 through the discharge port V of the fixed scroll 21, and further, through the gap between the frame 3 and the cylinder chamber 1a, the compression mechanism unit 2 Guided to the bottom. Therefore, the spaces above and below the compression mechanism 2 are filled with gaseous refrigerants that are substantially equal to the discharge pressure, respectively.
  • the refrigerant guided to the lower side of the compression mechanism portion 2 is guided to a condenser (not shown) via a discharge pipe Pb or the like, and circulates in a predetermined refrigeration cycle.
  • a condenser not shown
  • the configuration of the compressor 100 shown in FIG. 1 is an example, and the present invention is not limited to this.
  • FIG. 2 is a cross-sectional view of the rotor 7b of the motor 7.
  • the cylindrical rotor 7b shown in FIG. 2 includes a plurality of electromagnetic steel sheets 71b laminated in the axial direction, six permanent magnets 72b (magnets), and a pair of end plates 72c and 72d (see FIG. 3).
  • Six magnet insertion holes h1 into which thin plate rectangular permanent magnets 72b are inserted are provided near the outer peripheral edges of the plurality of electromagnetic steel plates 71b at substantially equal intervals in the circumferential direction.
  • the rotor 7b is provided with a plurality of rivet through holes h2 (six in the example of FIG. 2) for penetrating the rivet 13, which will be described later, in the radial direction with respect to the magnet insertion hole h1.
  • FIG. 3 is a vertical cross-sectional view including the motor 7 and the balance weight 12.
  • an annular end plate 72c is installed on the upper surface of the rotor 7b (the upper surface of the electromagnetic steel sheet 71b having the highest installation position).
  • another annular end plate 72d is installed on the lower surface of the rotor 7b (the lower surface of the electromagnetic steel sheet 71b having the lowest installation position).
  • the pair of end plates 72c and 72d close the magnet insertion hole h1 (see FIG. 2) to prevent the permanent magnet 72b from coming off the rotor 7b.
  • the balance weight 12 is a member that alleviates the unbalance of rotation caused by the compression mechanism portion 2 and suppresses the vibration of the compressor 100, and is installed on the lower surface of the end plate 72d.
  • an iron material magnetic material having a relatively high density and being inexpensive is used as a constituent material of the balance weight 12 will be described.
  • the rivet 13 shown in FIG. 3 fixes the end plates 72c and 72d and the balance weight 12 to the rotor 7b. These rivets 13 penetrate the above-mentioned rivet through holes h2 and the like (see FIG. 2) and are crimped and fixed. Next, the configuration of the balance weight 12 will be described with reference to FIG. 4 and the like.
  • FIG. 4 is a perspective view of the balance weight 12 included in the compressor.
  • the balance weight 12 has an arc shape and has a predetermined thickness in the height direction.
  • the balance weight 12 includes three recesses 12a recessed from the upper surface T in the axial direction of the rotor 7b, and three notches 12b recessed radially inward from the outer peripheral surface.
  • the upper surface T of the balance weight 12 is an end surface on the rotor 7b side (see FIG. 3), and at least a part thereof is in contact with the end plate 72d (see FIG. 3).
  • the lower surface B (see FIG. 5B) of the balance weight 12 is an end face on the opposite side of the rotor 7b (see FIG. 3) and has a flat shape.
  • the balance weight 12 has the following configuration. That is, the balance weight 12 cuts a virtual cylindrical member (not shown) having a predetermined thickness in substantially half on a predetermined plane (not shown) parallel to the central axis Z (see FIG. 3). Further, the structure is provided with a recess 12a and a notch 12b. Further, the balance weight 12 includes a rib 12c (first rib), an oil escape hole h3 (first hole), and a rivet through hole h4.
  • the recess 12a is a portion recessed downward in the axial direction from the upper surface T of the balance weight 12, and is mainly used for adjusting the weight of the balance weight 12.
  • the weight of the balance weight 12 is reduced, it is appropriately designed at the design stage so that the bottom surface of the recess 12a becomes deeper with respect to the upper surface T of the balance weight 12.
  • the weight of the balance weight 12 can be adjusted by adjusting the depth of the notch 12b, but as will be described later, the notch 12b mainly has a function of applying a lateral force to the mist-like lubricating oil. It has a function of suppressing leakage of magnetic flux of the permanent magnet 72b.
  • the inner wall surface of the recess 12a includes a pair of peripheral wall surfaces 121a, 122a, a pair of side surfaces 123a, 124a, and a bottom surface 125a.
  • the pair of peripheral wall surfaces 121a and 122a described above have an arc shape in a plan view with the central axis Z of the rotor 7b (see FIG. 3) as the center.
  • the other peripheral wall surface 122a is located on the outer side in the radial direction than the one peripheral wall surface 121a.
  • the pair of side surfaces 123a and 124a are planar wall surfaces connected to the peripheral wall surfaces 121a and 122a, and are provided in the radial direction in a plan view with reference to the central axis Z of the rotor 7b (see FIG. 3).
  • the bottom surface 125a of the recess 12a is flat.
  • each of the three recesses 12a has the same shape.
  • the three recesses 12a are provided at substantially equal intervals in the circumferential direction, and are provided inside the notch 12b (first notch) in the radial direction. Further, the recess 12a and the notch 12b are arranged in the radial direction.
  • the end surface (that is, the upper surface T) of the balance weight 12 on the rotor 7b side is in contact with the rotor 7b around the recess 12a (see FIG. 3).
  • Each recess 12a is provided with one oil relief hole h3 (first hole) having a predetermined diameter.
  • These oil relief holes h3 are holes for releasing oil accumulated in the recess 12a, and penetrate the recess 12a in the axial direction of the rotor 7b.
  • the diameter of the oil relief hole h3 is smaller than the diameter of the rivet through hole h4 described later, and is smaller than the diameter of the rivet 13 (see FIG. 3) (the diameter of the portion penetrating the rotor 7b).
  • the oil release hole h3 opens in the space Ga (see FIG. 3) between the recess 12a and the rotor 7b, and also in the space G1 (see FIG.
  • the balance weight 12 It is open to the lower surface B (the surface opposite to the upper surface T, which is the surface in contact with the rotor 7b). Therefore, the space Ga (see FIG. 3) between the recess 12a and the rotor 7b communicates with the space G1 in the closed container 1 through the oil escape hole h3.
  • Each of the three notched portions 12b shown in FIG. 4 is a portion recessed radially inward from the outer peripheral surface of the balance weight 12, and is provided on the outer peripheral edge portion of the balance weight 12 on the rotor 7b side (see FIG. 3). Has been done. That is, each of the three notches 12b is provided in the circumferential direction of the balance weight 12 and opens into the space inside the closed container 1.
  • the wall surface of the recess 12a includes a peripheral wall surface 121b, a pair of side surfaces 122b and 123b, and a bottom surface 124b.
  • the peripheral wall surface 121b has an arc shape in a plan view with the central axis Z of the rotor 7b (see FIG. 3) as the center.
  • the pair of side surfaces 122b and 123b are connected to the peripheral wall surface 121b described above, and are provided in the radial direction in a plan view with reference to the central axis Z of the rotor 7b (see FIG. 3).
  • the bottom surface 124b of the notch portion 12b is flat. In the example of FIG. 4, each of the three notches 12b has the same shape.
  • each notch portion 12b the wall surface closest to the central axis Z of the rotor 7b (see FIG. 3) (that is, the peripheral wall surface 121b) is located radially outside the inner peripheral surface of the balance weight 12. There is. According to such a configuration, since the radial inner portion of the notch portion 12b occupies a part of the weight of the balance weight 12, the axial length of the balance weight 12 can be made relatively short. Further, the balance weight 12 is stably held in the radial inner portion of the notch portion 12b.
  • the axial depth of the recess 12a and the axial depth of the notch 12b are the same, but they may be different. As shown in FIG. 4, three notches 12b are provided at substantially equal intervals in the circumferential direction. Further, in the outer peripheral edge portion of the balance weight 12 on the rotor 7b side (see FIG. 3), a predetermined gap Gb (see FIG. 3) is formed between the portion where the notch portion 12b is provided and the rotor 7b. It is provided.
  • the notch 12b includes a region R (see FIG. 5A) when the permanent magnet 72b of the rotor 7b is projected in the axial direction.
  • the balance weight 12 is made of a magnetic material such as an iron material, it is possible to prevent the magnetic flux of the permanent magnet 72b of the rotor 7b from leaking to the balance weight 12 side via the end plate 72d (see FIG. 3). ..
  • the axial depth of the notch portion 12b is appropriately adjusted at the design stage to the extent that leakage of magnetic flux from the electric motor 7 is suppressed.
  • two ribs 12c (first ribs) extending in the radial direction are provided between the recesses 12a adjacent to each other in the circumferential direction and between the notches 12b adjacent to each other in the circumferential direction. ..
  • the radial outer wall surface of these ribs 12c is flush with the outer peripheral surface of the balance weight 12.
  • Ribs 12c are also provided at both ends of the balance weight 12 in the circumferential direction.
  • the end face of each rib 12c on the rotor 7b side (that is, a part of the upper surface T) is in contact with the rotor 7b. More specifically, the upper surface of each rib 12c is in contact with the lower surface of the end plate 72d (see FIG. 3) of the rotor 7b.
  • one rivet through hole h4 for penetrating the rivet 13 is provided in each of the four ribs 12c.
  • the circumferential length of the rib 12c is shorter than the circumferential length of the recess 12a and shorter than the circumferential length of the notch 12b. ..
  • the circumferential length of the recess 12a is the length of the outer peripheral edge (arc) of the bottom surface 125a of the recess 12a.
  • the circumferential length of the notch portion 12b is the length of the outer peripheral side edge (arc) of the bottom surface 124b of the notch portion 12b.
  • the radial length of the portion between the recess 12a and the notch 12b is shorter than the radial length of the recess 12a, and the radial length of the notch 12b is short. It is shorter than the length of.
  • the balance weight 12 can be stably held. Further, when the balance weight 12 is rotating together with the rotor 7b, a lateral force acts on the mist-like lubricating oil by the rib 12c (in other words, by the notch 12b), and the vertical force in the velocity vector of the lubricating oil is applied. The ratio of velocity components in the direction and lateral direction changes. Next, the flow of such lubricating oil will be described in detail.
  • the mist-like lubricating oil existing under the motor 7 (see FIG. 1) is exposed to the wall surface of the notch 12b (particularly, the side surface opposite to the direction of rotation). ), A lateral force acts.
  • the velocity component in the horizontal direction becomes relatively large with respect to the velocity component in the vertical direction. That is, assuming that the mist-like lubricating oil is moving in the closed container 1 (see FIG. 1) with a velocity vector of a predetermined magnitude, the lateral velocity component occupying the magnitude of the velocity vector is large.
  • the velocity component in the vertical direction becomes smaller.
  • FIG. 5A is an explanatory view (plan view) regarding the arrangement of the recess 12a of the balance weight 12, the notch 12b, the oil relief hole h3, and the like.
  • a predetermined arc including a group of points at an intermediate position of the concave portion 12a in the radial direction is referred to as an intermediate arc J (two-dot chain line in FIG. 5A).
  • the three recesses 12a are arranged side by side in the circumferential direction so that their intermediate arcs J substantially coincide with each other.
  • the oil relief hole h3 provided in the recess 12a is arranged radially outside the intermediate arc J. In other words, the oil relief hole h3 is provided radially outside the intermediate position of the recess 12a in the radial direction.
  • the notch 12b (first notch) includes the region R when the permanent magnet 72b (magnet) embedded in the rotor 7b is projected in the axial direction of the rotor 7b. There is. Therefore, even when the balance weight 12 is made of a magnetic material such as an iron material, it is possible to prevent the magnetic flux of the permanent magnet 72b from leaking to the balance weight 12 side.
  • the positional relationship between the permanent magnet 72b and the notch 12b is not limited to this.
  • the region R when the permanent magnet 72b is projected in the axial direction of the rotor 7b may be included in at least a part (preferably all) of the notch portion 12b.
  • both ends in the circumferential direction of the region R are included in the notch portion 12b, while the central portion in the circumferential direction of the region R is included in the notch portion 12b. It may not be configured. Even with such a configuration, leakage of magnetic flux of the permanent magnet 72b can be suppressed.
  • the region R when the permanent magnet 72b is projected in the axial direction is close to the radial inner edge of the notch portion 12b (first notch portion).
  • the region R when the permanent magnet 72b is projected in the axial direction is in contact with the edge of the notch portion 12b. More specifically, on the side surface of the permanent magnet 72b on the central axis Z side, the position F closest to the central axis Z of the rotor 7b is in contact with the radial inner edge of the notch 12b.
  • the region R when the permanent magnet 72b is projected in the axial direction is included in the notch portion 12b.
  • the length of the balance weight 12 in the axial direction can be short, so that the compressor 100 (see FIG. 1) can be made compact.
  • the notch portion 12b is formed on the outer peripheral edge portion on the rotor 7b side (see FIG. 3) rather than forming the notch portion 12b over the entire axial length of the balance weight 12. Is preferable. This is because the region located on the outer side of the balance weight 12 in the radial direction has a larger moment of inertia during rotation and contributes more to the function of the balance weight 12 to maintain a good rotational balance.
  • FIG. 5B is a bottom view of the balance weight 12 included in the compressor. As shown in FIG. 5B, the lower surface B of the balance weight 12 is flat. Further, the oil escape hole h3 described above is opened on the lower surface B of the balance weight 12, and the rivet through hole h4 is opened.
  • a predetermined gap Gb is provided between the portion of the balance weight 12 where the notch 12b (see FIG. 3) is provided and the rotor 7b, and the permanent magnet 72b is projected in the axial direction.
  • the region R of the case (see FIG. 5A) is included in the notch 12b. Therefore, even when the balance weight 12 of a magnetic material such as an iron material is used, the leakage of magnetic flux can be suppressed.
  • the lubricating oil that has entered the recess 12a can be released to the lower side of the balance weight 12. Further, since the oil relief hole h3 is provided on the outer side in the radial direction from the intermediate arc J (see FIG. 5A), the lubricating oil that has moved outward in the radial direction by centrifugal force passes through the oil relief hole h3. , It becomes easy to escape from the recess 12a.
  • FIG. 6 is an explanatory view (plan view) of the balance weight 12A included in the compressor according to the first modification.
  • the oil relief hole h3 (first hole) provided in the recess 12a of the balance weight 12A is provided in the recess 12a on the side opposite to the direction in which the rotor 7b rotates in the circumferential direction. You may do so.
  • the "opposite side” means a region between an intermediate position in the concave portion 12a in the circumferential direction and a side surface in the concave portion 12a opposite to the direction in which the rotor 7b rotates.
  • the lubricating oil accumulated in the recess 12a is biased to the side opposite to the direction in which the rotor 7b rotates due to its inertia. Is distributed. Therefore, by providing the oil release hole h3 in the recess 12a on the side opposite to the direction in which the rotor 7b rotates, the lubricating oil can be easily released from the recess 12a through the oil release hole h3.
  • the arrangement of the oil relief hole h3 described in FIG. 5A of the first embodiment may be combined with the arrangement of the oil relief hole h3 described in FIG. 6 as a first modification. That is, in the recess 12a, the oil escape hole h3 may be provided on the radial side of the intermediate arc J (see FIG. 5A) and on the side opposite to the direction in which the rotor 7b rotates. As a result, the lubricating oil that moves outward in the radial direction by centrifugal force and is distributed unevenly in the direction opposite to the direction of rotation of the rotor 7b due to inertia escapes from the recess 12a through the oil relief hole h3. It becomes easy to be done.
  • FIG. 7 is an exploded perspective view of the balance weight 12B included in the compressor according to the second modification.
  • the balance weight 12B is not integrally formed as a whole, but as a plurality of steel plates laminated in the axial direction of the rotor 7b, for example, three first steel plates 121 and six.
  • the second steel plate 122 of the above may be provided.
  • the first steel plate 121 is provided with a notch 12b and a rivet through hole h4, and further, a hole h5 for forming a recess 12a (see FIG. 4) and a protrusion for forming a rib 12c (see FIG. 4).
  • a portion 121c is provided.
  • the protrusion 121c can be positioned in the circumferential direction and the radial direction when the first steel plate 121 and the second steel plate 122 are laminated, and has a diameter. Used to receive directional pressure. As shown in FIG. 7, each of the three first steel plates 121 has the same shape.
  • the second steel plate 122 is provided with an oil escape hole h3 and a rivet through hole h4.
  • the second steel plate 122 is not provided with a notch 12b like the first steel plate 121, and is not provided with a hole h5 for forming a recess 12a (see FIG. 4).
  • the six second steel plates 122 each have the same shape.
  • the second laminated body 12t formed by laminating six second steel plates 122 is superposed on the lower side of the first laminated body 12s formed by laminating three first steel plates 121. Then, the balance weight 12B having the same shape as that of the first embodiment (see FIG. 4) is formed.
  • the balance weight 12B is made of laminated steel plates in this way, for example, the depth of the recess 12a (see FIG. 4) can be adjusted or the rotor can be adjusted by appropriately changing the number of laminated steel plates 121.
  • the length of the gap Gb between 7b (see FIG. 3) and the bottom surface of the notch 12b (see FIG. 3) can be adjusted. Therefore, when changing the depth of the recess 12a (see FIG. 1) and the notch 12b of the balance weight 12B according to the specifications of the compressor 100 (see FIG. 1), it is common to the first steel plate 121 and the second steel plate 122. Can be used, so that the manufacturing cost of the balance weight 12B can be reduced.
  • a notch 12b is provided, but a hole h5 corresponding to a recess 12a (see FIG. 4) is provided.
  • a steel plate that has not been used may be inserted between the first steel plate 121 and the second steel plate 122.
  • the hole h5 corresponding to the recess 12a is provided. The steel plate may be inserted between the first steel plate 121 and the second steel plate 122. Thereby, the depth of the notch portion 12b and the depth of the recess 12a can be adjusted independently.
  • the balance weight 12C (see FIGS. 8A and 8B) according to the second embodiment is the first embodiment in that the first steel plate 121 and the second steel plate 122 are alternately laminated in the axial direction. It is different from the modification of No. 2 (see FIG. 7).
  • the configurations of the first steel plate 121 and the second steel plate 122 are the same as those of the second modification of the first embodiment (see FIG. 7). The same is true. Therefore, a part different from the second modification of the first embodiment will be described, and the description of the overlapping part will be omitted.
  • FIG. 8A is a perspective view of the balance weight 12C included in the compressor according to the second embodiment.
  • the balance weight 12C has a configuration in which the first steel plate 121 and the second steel plate 122 are alternately laminated in the axial direction of the rotor 7b.
  • eight first steel plates 121 and eight second steel plates 122 are used as the steel plates constituting the balance weight 12C, but the number of each steel plate is limited to this. It's not a thing.
  • the first steel plate 121 is provided with a notch 12b, a rivet through hole h4, a protruding portion 121c (first rib), and a hole h5 for forming a recess 12a (see FIG. 4).
  • the second steel plate 122 is provided with an oil escape hole h3 and a rivet through hole h4, but is not provided with a notch 12b or a hole h5.
  • the surface area of the balance weight 12C is larger than that of the first embodiment (see FIG. 4). It's getting bigger. Therefore, during the driving of the motor 7 (see FIG. 1), the amount of lubricating oil adhering to the balance weight 12C due to its surface tension is larger than that in the first embodiment. As a result, the amount of mist-like lubricating oil floating under the balance weight 12C is reduced, and the lubricating oil is passed through the gap between the stator 7a (see FIG. 1) and the rotor 7b (see FIG. 1). It becomes difficult for the oil to blow up. Therefore, the outflow of lubricating oil through the discharge pipe Pb (see FIG. 1) is suppressed.
  • the first steel plate 121 is provided at a position (that is, the upper end portion) closest to the rotor 7b in the axial direction of the rotor 7b (see FIG. 1).
  • a permanent magnet 72b (magnet) embedded in the rotor 7b is axially formed in the notch 12b of the first steel plate 121 located closest to the rotor 7b (see FIG. 1) in the axial direction. It is preferable that the region R (see FIG. 5A) when projected in is included.
  • the balance weight 12C is made of a magnetic material such as an iron material, it is possible to prevent the magnetic flux of the permanent magnet 72b of the rotor 7b from leaking to the balance weight 12C side via the end plate 72d (see FIG. 3). ..
  • FIG. 8B is a perspective view of the back side of the balance weight 12C provided in the compressor. That is, FIG. 8B is a perspective view of the balance weight 12C of FIG. 8A looking up obliquely from below.
  • the second steel plate 122 is installed at the position farthest from the rotor 7b in the axial direction (that is, the lower end portion), and the lower surface of the balance weight 12C is flat.
  • the surface area of the balance weight 12C can be increased. Therefore, while the motor 7 (see FIG. 1) is being driven, a large amount of lubricating oil adheres to the balance weight 12C, and the amount of mist-like lubricating oil floating under the balance weight 12C is reduced. As a result, the lubricating oil is less likely to be blown up through the gap between the stator 7a (see FIG. 1) and the rotor 7b (see FIG. 1), and eventually through the discharge pipe Pb (see FIG. 1). The outflow of lubricating oil is suppressed.
  • the notch portion 12d (second notch portion) and the rib 12e (second rib) are also provided in the lower portion of the balance weight 12D (see FIGS. 9A and 9B). Is different.
  • the configuration of the upper and middle portions of the balance weight 12D is the same as that of the first embodiment (see FIG. 4). Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
  • FIG. 9A is a perspective view of the balance weight 12D included in the compressor according to the third embodiment.
  • the balance weight 12D is provided with a notch 12d and a rib 12e at the lower part in the axial direction. That is, the balance weight 12D includes three notches 12d (second notch portions) provided on the outer peripheral edge portion on the opposite side (that is, the lower side) of the balance weight 12D to the rotor 7b.
  • Each of the plurality of cutout portions 12d is provided in the circumferential direction of the balance weight 12D, and is open to the space G1 (see FIG. 1) in the closed container 1.
  • ribs 12e second ribs
  • extending in the radial direction are provided between the notches 12d adjacent to each other in the circumferential direction.
  • the position of the notch portion 12d when projected in the axial direction of the rotor 7b (see FIG. 1) substantially coincides with the position of another notch portion 12b above the notch portion 12d.
  • the balance weight 12D is made of laminated steel plates, the number of types of steel plates can be reduced, so that the manufacturing cost of the balance weight 12D can be reduced.
  • the first steel plate 121, the second steel plate 122, and the first steel plate are used by using the first steel plate 121 and the second steel plate 122 described in the second modification of the first embodiment (see FIG. 7).
  • the balance weight 12D shown in FIG. 9A can be manufactured by laminating a predetermined number of 121 in this order in the axial direction.
  • FIG. 9B is a perspective view of the back side of the balance weight 12D included in the compressor. That is, FIG. 9B is a perspective view of the balance weight 12D looking up obliquely from below. In the example of FIG. 9B, the lower surface of the balance weight 12D is flat, and the oil escape hole h3 and the rivet through hole h4 are opened.
  • the notch portion 12d and the rib 12e are provided in the lower portion of the balance weight 12D, when the balance weight 12D is rotating together with the rotor 7b (see FIG. 1), the upper notch portion is provided.
  • the wall surface of the lower notch 12d (see FIG. 9A) also collides with the mist-like lubricating oil.
  • a lateral force is likely to be applied to the lubricating oil from the balance weight 12D, and the lubricating oil is less likely to move in the vertical direction. Therefore, since the flow in which the lubricating oil is blown up in the vertical direction is suppressed, the outflow of the lubricating oil through the discharge pipe Pb (see FIG. 1) can be suppressed.
  • the fourth embodiment is different from the first embodiment (see FIG. 4) in that the balance weight 12E (see FIG. 10) is cylindrical.
  • the first embodiment FIG. 4
  • It has the same configuration as (see). Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
  • FIG. 10 is a plan view of the balance weight 12E included in the compressor according to the fourth embodiment. That is, FIG. 10 is a plan view when the balance weight 12E is looked down from the rotor 7b side (see FIG. 1). Further, in FIG. 10, the region R when the permanent magnet 72b (see FIG. 1) of the rotor 7b is projected in the axial direction is shown by a broken line.
  • the balance weight 12E has a cylindrical shape.
  • the balance weight 12E includes recesses 12a, notches 12b and 12f, ribs 12c and 12g, oil escape holes h3, rivet through holes h4, and lightening holes h6.
  • one arcuate portion S1 when the cylindrical balance weight 12E is cut on a predetermined plane K parallel to the central axis Z of the rotor 7b is the same as that of the first embodiment (see FIG. 4). It has a similar configuration. Therefore, in the following, the other arcuate portion S2 will be mainly described, but one portion S1 may also be referred to.
  • three notches 12b and three notches 12f recessed inward in the radial direction from the outer peripheral surface of the balance weight 12E are provided at substantially equal intervals in the circumferential direction.
  • the three notches 12b are included in the arcuate portion S1, while the remaining three notches 12f are included in the arcuate portion S2.
  • These notches 12b and 12f are arranged so as to include a region R when the permanent magnet 72b is projected in the axial direction.
  • ribs 12g extending in the radial direction are provided between the notches 12f adjacent to each other in the circumferential direction.
  • a lateral force is likely to act on the lubricating oil, and the ratio of the lateral velocity component to the magnitude of the velocity vector of the lubricating oil becomes large.
  • the mist-like lubricating oil adheres to the balance weight 12E having a relatively large surface area, the amount of the mist-like lubricating oil floating on the lower side of the motor 7 (see FIG. 1) is reduced. Therefore, the amount of lubricating oil that rises through the gap between the stator 7a (see FIG. 1) and the rotor 7b (see FIG. 1) can be reduced.
  • a rivet through hole h4 is provided at a predetermined position of each rib 12 g.
  • the arc-shaped portion S1 included in the balance weight 12E is provided with three recesses 12a, while the other arc-shaped portion S2 is provided with a lightening hole h6.
  • the shape of the edge of the lightening hole h6 is the same as the shape of the edge of the recess 12a, but both may be different.
  • Each lightening hole h6 penetrates in the axial direction and opens on the rotor 7b side (see FIG. 1) of the balance weight 12E and also on the side opposite to the rotor 7b. Further, in order to reduce the weight of the other portion S2, the notch portion 12f between the ribs 12g adjacent to each other in the circumferential direction is provided over the entire length in the axial direction of the balance weight 12E.
  • the surface of the balance weight 12E opposite to the rotor 7b may be flat or may be provided with a predetermined uneven shape.
  • the notches 12b and 12f are arranged so as to include the region R when the permanent magnet 72b is projected in the axial direction. Therefore, even when the balance weight 12E is made of a magnetic material such as an iron material, the magnetic flux of the permanent magnet 72b embedded in the rotor 7b (see FIG. 3) leaks through the end plate 72d (see FIG. 3). Can be suppressed.
  • FIG. 11 is a configuration diagram of the air conditioner W according to the fifth embodiment.
  • the solid line arrow in FIG. 11 indicates the flow of the refrigerant during the heating operation. Further, the broken line arrow in FIG. 11 indicates the flow of the refrigerant during the cooling operation.
  • the air conditioner W is a device that performs air conditioning such as cooling and heating. As shown in FIG. 11, the air conditioner W includes a compressor 100, an outdoor heat exchanger Eo, an outdoor fan Fo, an expansion valve Ve, a four-way valve Vf, an indoor heat exchanger Ei, and an indoor fan Fi. And have.
  • the compressor 100, the outdoor heat exchanger Eo, the outdoor fan Fo, the expansion valve Ve, and the four-way valve Vf are provided in the outdoor unit Wo.
  • the indoor heat exchanger Ei and the indoor fan Fi are provided in the indoor unit Wi.
  • the compressor 100 is a device that compresses a gaseous refrigerant, and has the same configuration as that of the first embodiment (see FIG. 1).
  • the outdoor heat exchanger Eo is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan Fo.
  • the outdoor fan Fo is a fan that sends outside air to the outdoor heat exchanger Eo by driving the outdoor fan motor Mo, and is installed near the outdoor heat exchanger Eo.
  • the indoor heat exchanger Ei is a heat exchanger in which heat is exchanged between the refrigerant passing through the heat transfer tube (not shown) and the indoor air (air in the air conditioning target space) sent from the indoor fan Fi. Is.
  • the indoor fan Fi is a fan that sends indoor air to the indoor heat exchanger Ei by driving the indoor fan motor Mi, and is installed in the vicinity of the indoor heat exchanger Ei.
  • the expansion valve Ve has a function of reducing the pressure of the refrigerant condensed by the "condenser" (one of the outdoor heat exchanger Eo and the indoor heat exchanger Ei).
  • the refrigerant decompressed by the expansion valve Ve is guided to an "evaporator" (the other of the outdoor heat exchanger Eo and the indoor heat exchanger Ei).
  • the four-way valve Vf is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner W.
  • Devices such as the compressor 100, the outdoor fan Fo, the expansion valve Ve, and the indoor fan Fi are driven based on a command from a control device (not shown).
  • the compressor 100, the outdoor heat exchanger Eo (condenser), the expansion valve Ve, and the indoor heat exchanger Ei (evaporator) are sequentially passed through. Circulate.
  • the compressor 100, the indoor heat exchanger Ei (condenser), the expansion valve Ve, and the outdoor heat exchanger Eo (evaporator) are sequentially passed through.
  • Refrigerant circulates.
  • the present invention is not limited to this. That is, the oil accumulated in the recess 12a is released to the outside of the balance weight 12 by centrifugal force from the peripheral wall surface 122a (see FIG. 4) of the recess 12a through the oil relief hole (not shown) provided in the radial direction. It may be. That is, the balance weight 12 may have an oil escape hole (first hole) penetrating the rotor 7b from the recess 12a. In such a configuration, an oil escape hole (or a slit in the radial direction) may be provided so that the recess 12a and the notch 12b communicate with each other in the radial direction.
  • the balance weight 12 is made of an iron material, but the present invention is not limited to this.
  • the balance weight 12 may be composed of a magnetic material such as ferrite or oxide.
  • the balance weight 12 may be composed of a non-magnetic material such as brass (brass) or stainless steel. Even in such a case, it is possible to prevent the lubricating oil from flowing out from the compressor 100 depending on the configuration of each embodiment.
  • the shape and number of the recesses 12a and the notches 12b of the balance weight 12 are not limited to those described in each embodiment, and can be changed as appropriate.
  • the balance weight 12 may be configured by omitting the recess 12a and providing the balance weight 12 with a plurality of notches 12b. Even with such a configuration, the outflow of lubricating oil from the compressor 100 can be suppressed.
  • the notch portion 12b may be arranged regardless of the position of the permanent magnet 72b.
  • the first steel plate 121 is arranged at the upper end closest to the rotor 7b (see FIG. 1), while the rotor 7b is the most.
  • the configuration in which the second steel plate 122 is arranged at the far lower end has been described, but the present invention is not limited to this.
  • the second steel plate 122 may be arranged at the upper end closest to the rotor 7b, or the first steel plate 121 may be arranged at the lower end farthest from the rotor 7b.
  • the balance weight 12C in which the first steel plate 121 and the second steel plate 122 are laminated one by one has been described, but a plurality of sheets may be laminated. That is, the balance weight 12C has a configuration in which at least one first steel plate 121 and at least one second steel plate 122 are alternately laminated in the axial direction of the rotor 7b (see FIG. 1). May be good.
  • the balance weight 12D includes the notch portion 12b (first notch portion) and the notch portion 12d (second notch portion) has been described, but one notch portion 12b is provided. It may be omitted.
  • the balance weight 12D may be made of a laminated steel plate by combining the second modification (see FIG. 7) and the third embodiment (see FIG. 9A) of the first embodiment.
  • the oil relief hole h3 of the balance weight 12C is formed on the rotor 7b. It may be provided on the side opposite to the direction of rotation.
  • the second embodiment (see FIG. 8A) and the fifth embodiment (see FIG. 11) may be combined so that the air conditioner W includes the compressor 100 having the balance weight 12C.
  • the scroll type compressor 100 (see FIG. 1) has been described, but the present invention is not limited to this. That is, the configuration of each embodiment can be applied to various types of compressors such as rotary type compressors. Further, in each embodiment, the case where the compressor 100 is installed vertically has been described, but the present invention is not limited to this. That is, each embodiment can be applied even when the compressor 100 is arranged horizontally or diagonally. Further, in each embodiment, the configuration in which the oil relief hole h3 is provided in the recess 12a of the balance weight 12 (see FIG. 4) has been described, but the oil relief hole h3 may be omitted. Further, the adjacent recesses 12a and 12a may be communicated with each other in the circumferential direction. Further, the adjacent notches 12b and 12b may be communicated with each other in the circumferential direction.
  • the air conditioner W (see FIG. 11) described in the fifth embodiment can be applied to various types of air conditioners such as room air conditioners, package air conditioners, and multi air conditioners for buildings. Further, each embodiment can be applied to a refrigerating cycle device such as a refrigerator, a water heater, a hot water air conditioning system, and a refrigerator.
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
  • the above-mentioned mechanism and configuration show what is considered necessary for explanation, and do not necessarily show all the mechanisms and configurations in the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided are a compressor and the like in which outflow of lubricating oil is suppressed. A compressor (100) is provided with: an electric motor (7) including a stator (7a) and a rotor (7b); a crankshaft (4) which rotates integrally with the rotor (7b); a compression mechanism unit (2) which compresses a refrigerant concomitant with the rotation of the crankshaft (4); an arc-shaped or cylindrical balance weight (12) situated on the rotor (7b); and a hermetically sealed container (1) in which the lubricating oil is sealed. The balance weight (12) has a plurality of notched portions which are recessed radially inward from an outer circumferential surface, wherein the plurality of notched portions are each provided in the circumferential direction of the balance weight (12), and open in a space (G1) inside the hermetically sealed container (1).

Description

圧縮機及び空気調和機Compressor and air conditioner
 本発明は、圧縮機等に関する。 The present invention relates to a compressor or the like.
 圧縮機の振動を抑制するためのバランスウェイトとして、例えば、特許文献1には、複数の薄板が積層されてなる円弧状のバランスウェイトが記載されている。 As a balance weight for suppressing the vibration of the compressor, for example, Patent Document 1 describes an arc-shaped balance weight in which a plurality of thin plates are laminated.
特開2000-116080号公報Japanese Unexamined Patent Publication No. 2000-116080
 ところで、圧縮機には、通常、摺動部の潤滑性や圧縮室のシール性を高めるための潤滑油が封入されている。このような圧縮機において、密閉容器に油溜まりとして貯留されている潤滑油は、クランク軸の給油路を介して上昇し、軸受等の摺動部を潤滑した後、圧縮機構部と密閉容器との間の隙間や、電動機と密閉容器との間の隙間を介して下降し、密閉容器の油溜まりに戻される。 By the way, the compressor is usually filled with lubricating oil to improve the lubricity of the sliding part and the sealing property of the compression chamber. In such a compressor, the lubricating oil stored as an oil pool in the closed container rises through the oil supply passage of the crankshaft, lubricates the sliding parts such as bearings, and then the compression mechanism part and the closed container. It descends through the gap between the motors and the gap between the electric motor and the closed container, and is returned to the oil sump in the closed container.
 しかしながら、例えば、電動機の固定子と回転子との間の隙間を介して、ミスト状の潤滑油が吹き上げられ、さらに吐出パイプを介して、圧縮機から潤滑油が流出することがある。前記した特許文献1において、回転子に設置されるバランスウェイトは、その上面・下面・周面の表面がいずれも滑らかな面一の形状になっている。このような形状のバランスウェイトが用いられると、固定子と回転子との間の隙間を介して吹き上げられる潤滑油の流れがバランスウェイトではほとんど阻害されず、吐出パイプを介して潤滑油が流出しやすくなる。その結果、圧縮機の潤滑不足を招き、また、冷凍サイクルの効率の低下を招く可能性がある。 However, for example, the mist-like lubricating oil may be blown up through the gap between the stator and the rotor of the motor, and the lubricating oil may flow out from the compressor through the discharge pipe. In Patent Document 1 described above, the balance weight installed on the rotor has a smooth flush shape on the upper surface, the lower surface, and the peripheral surface. When a balance weight having such a shape is used, the flow of the lubricating oil blown up through the gap between the stator and the rotor is hardly obstructed by the balance weight, and the lubricating oil flows out through the discharge pipe. It will be easier. As a result, the compressor may be under-lubricated and the efficiency of the refrigeration cycle may be reduced.
 そこで、本発明は、潤滑油の流出を抑制する圧縮機等を提供することを課題とする。 Therefore, an object of the present invention is to provide a compressor or the like that suppresses the outflow of lubricating oil.
 前記した課題を解決するために、本発明は、バランスウェイトが、外周面から径方向内側に凹んでなる複数の切欠部を有し、複数の前記切欠部は、それぞれ、前記バランスウェイトの周方向に設けられ、密閉容器内の空間に開口していることとした。 In order to solve the above-mentioned problems, the present invention has a plurality of notches in which the balance weight is recessed radially inward from the outer peripheral surface, and each of the plurality of notches is in the circumferential direction of the balance weight. It was decided that the space inside the closed container would be open.
 本発明によれば、潤滑油の流出を抑制する圧縮機等を提供できる。 According to the present invention, it is possible to provide a compressor or the like that suppresses the outflow of lubricating oil.
本発明の第1実施形態に係る圧縮機の縦断面図である。It is a vertical sectional view of the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機が備える電動機の回転子の横断面図である。It is sectional drawing of the rotor of the electric motor provided in the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機の電動機やバランスウェイトを含む縦断面図である。It is a vertical cross-sectional view including the electric motor and the balance weight of the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機が備えるバランスウェイトの斜視図である。It is a perspective view of the balance weight provided in the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機が備えるバランスウェイトの凹部、切欠部、油逃がし孔等の配置に関する説明図(平面図)である。It is explanatory drawing (plan view) about the arrangement of the concave part, the notch part, the oil escape hole, etc. of the balance weight provided in the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機が備えるバランスウェイトの下面図である。It is a bottom view of the balance weight provided in the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に関する第1の変形例に係る圧縮機が備えるバランスウェイトの説明図(平面図)である。It is explanatory drawing (plan view) of the balance weight provided in the compressor which concerns on 1st modification which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に関する第2の変形例に係る圧縮機が備えるバランスウェイトの分解斜視図である。It is an exploded perspective view of the balance weight provided in the compressor which concerns on the 2nd modification which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る圧縮機が備えるバランスウェイトの斜視図である。It is a perspective view of the balance weight provided in the compressor which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る圧縮機が備えるバランスウェイトの裏側の斜視図である。It is a perspective view of the back side of the balance weight provided in the compressor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る圧縮機が備えるバランスウェイトの斜視図である。It is a perspective view of the balance weight provided in the compressor which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る圧縮機が備えるバランスウェイトの裏側の斜視図である。It is a perspective view of the back side of the balance weight provided in the compressor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る圧縮機が備えるバランスウェイトの平面図である。It is a top view of the balance weight provided in the compressor which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る空気調和機の構成図である。It is a block diagram of the air conditioner which concerns on 5th Embodiment of this invention.
≪第1実施形態≫
<圧縮機の構成>
 図1は、第1実施形態に係る圧縮機100の縦断面図である。
 図1に示す圧縮機100は、ガス状の冷媒を圧縮する機器である。図1に示すように、圧縮機100は、密閉容器1と、圧縮機構部2と、フレーム3と、クランク軸4(駆動軸)と、主軸受5と、旋回軸受6と、電動機7と、を備えている。また、圧縮機100は、前記した構成の他に、オルダムリング8と、サブフレーム9と、副軸受10と、バランスウェイト11,12と、を備えている。
<< First Embodiment >>
<Compressor configuration>
FIG. 1 is a vertical cross-sectional view of the compressor 100 according to the first embodiment.
The compressor 100 shown in FIG. 1 is a device that compresses a gaseous refrigerant. As shown in FIG. 1, the compressor 100 includes a closed container 1, a compression mechanism 2, a frame 3, a crankshaft 4 (drive shaft), a main bearing 5, a swivel bearing 6, and an electric motor 7. It has. Further, the compressor 100 includes an old dam ring 8, a subframe 9, an auxiliary bearing 10, and balance weights 11 and 12 in addition to the above-described configuration.
 密閉容器1は、電動機7、クランク軸4、圧縮機構部2、バランスウェイト11,12等を収容する殻状の容器であり、略密閉されている。密閉容器1には、圧縮機100の潤滑性を高めるための潤滑油が封入され、密閉容器1の底部に油溜りMとして貯留されている。密閉容器1は、円筒状の筒チャンバ1aと、この筒チャンバ1aの上部に溶接されている蓋チャンバ1bと、筒チャンバ1aの下部に溶接されている底チャンバ1cと、を備えている。 The closed container 1 is a shell-shaped container that houses the motor 7, the crankshaft 4, the compression mechanism 2, the balance weights 11, 12, and the like, and is substantially sealed. Lubricating oil for improving the lubricity of the compressor 100 is sealed in the closed container 1, and is stored as an oil sump M at the bottom of the closed container 1. The closed container 1 includes a cylindrical tubular chamber 1a, a lid chamber 1b welded to the upper part of the tubular chamber 1a, and a bottom chamber 1c welded to the lower part of the tubular chamber 1a.
 図1に示すように、密閉容器1の蓋チャンバ1bには、吸入パイプPaが差し込まれて固定されている。吸入パイプPaは、圧縮機構部2の吸入室Hに冷媒を導く管である。また、密閉容器1の筒チャンバ1aには、吐出パイプPbが差し込まれて固定されている。吐出パイプPbは、圧縮機構部2で圧縮された冷媒を圧縮機100の外部に導く管である。 As shown in FIG. 1, a suction pipe Pa is inserted and fixed in the lid chamber 1b of the closed container 1. The suction pipe Pa is a pipe that guides the refrigerant to the suction chamber H of the compression mechanism unit 2. Further, a discharge pipe Pb is inserted and fixed in the cylinder chamber 1a of the closed container 1. The discharge pipe Pb is a pipe that guides the refrigerant compressed by the compression mechanism unit 2 to the outside of the compressor 100.
 圧縮機構部2は、クランク軸4の回転に伴って、冷媒を圧縮する機構である。圧縮機構部2は、固定スクロール21と、旋回スクロール22と、を備え、密閉容器1内の上部空間に配置されている。 The compression mechanism unit 2 is a mechanism that compresses the refrigerant as the crankshaft 4 rotates. The compression mechanism unit 2 includes a fixed scroll 21 and a swivel scroll 22, and is arranged in the upper space inside the closed container 1.
 固定スクロール21は、密閉容器1内に固定される固定部材である。固定スクロール21は、円板状を呈する肉厚の台板21aと、この台板21aの下側に立設される渦巻状のラップ21bと、を備えている。台板21aの周縁付近には、吸入パイプPaを介して冷媒が導かれる吸入室Hが設けられている。 The fixed scroll 21 is a fixing member fixed in the closed container 1. The fixed scroll 21 includes a thick base plate 21a having a disk shape and a spiral wrap 21b erected under the base plate 21a. A suction chamber H in which the refrigerant is guided via the suction pipe Pa is provided near the peripheral edge of the base plate 21a.
 旋回スクロール22は、その旋回によって固定スクロール21との間に圧縮室Cを形成する移動部材である。旋回スクロール22は、円板状の台板22aと、この台板22aに立設される渦巻状のラップ22bと、クランク軸4の上端部に嵌合されるボス部22cと、を備えている。図1に示すように、ラップ22bが台板22aの上側に延びている一方、ボス部22cは台板22aの下側に延びている。 The swivel scroll 22 is a moving member that forms a compression chamber C between the swivel scroll 22 and the fixed scroll 21 by the swivel. The swivel scroll 22 includes a disc-shaped base plate 22a, a spiral wrap 22b erected on the base plate 22a, and a boss portion 22c fitted to the upper end portion of the crankshaft 4. .. As shown in FIG. 1, the wrap 22b extends above the base plate 22a, while the boss portion 22c extends below the base plate 22a.
 そして、固定スクロール21の渦巻状のラップ21bと、旋回スクロール22の渦巻状のラップ22bと、の間に、所定の圧縮室Cが形成される。圧縮室Cは、ガス状の冷媒を圧縮する空間であり、旋回スクロール22のラップ22bの外線側・内線側にそれぞれ形成される。固定スクロール21の台板21aの中心付近には、圧縮室Cで圧縮された冷媒を密閉容器1内の上部空間に導く吐出口Vが設けられている。 Then, a predetermined compression chamber C is formed between the spiral wrap 21b of the fixed scroll 21 and the spiral wrap 22b of the swirl scroll 22. The compression chamber C is a space for compressing the gaseous refrigerant, and is formed on the outer line side and the inner line side of the lap 22b of the swivel scroll 22, respectively. Near the center of the base plate 21a of the fixed scroll 21, a discharge port V for guiding the refrigerant compressed in the compression chamber C to the upper space in the closed container 1 is provided.
 図1に示すフレーム3は、旋回スクロール22を支持し、また、主軸受5を固定する部材である。このフレーム3は、概ね回転対称な形状を呈し、固定スクロール21の下側に締結されている。フレーム3には、クランク軸4が挿通される孔(図1では符号を図示せず)が設けられている。
 クランク軸4は、電動機7の回転子7bと一体で回転する軸であり、上下方向に延びている。図1に示すように、クランク軸4は、主軸4aと、この主軸4aの上側に連なる鍔部4bと、この鍔部4bの上側に連なる偏心部4cと、を備えている。
The frame 3 shown in FIG. 1 is a member that supports the swivel scroll 22 and fixes the main bearing 5. The frame 3 has a substantially rotationally symmetric shape and is fastened to the lower side of the fixed scroll 21. The frame 3 is provided with a hole through which the crankshaft 4 is inserted (not shown by reference numeral in FIG. 1).
The crankshaft 4 is a shaft that rotates integrally with the rotor 7b of the motor 7, and extends in the vertical direction. As shown in FIG. 1, the crankshaft 4 includes a main shaft 4a, a flange portion 4b connected to the upper side of the main shaft 4a, and an eccentric portion 4c connected to the upper side of the flange portion 4b.
 主軸4aは、電動機7の回転子7bに同軸で固定され、この回転子7bと一体で回転する。鍔部4bは、円柱状を呈し、主軸4aと偏心部4cとの間において主軸4aと同軸に設けられている。なお、鍔部4bの径は、主軸4aや偏心部4cの径よりも大きい。
 偏心部4cは、主軸4aに対して偏心しながら回転する軸であり、前記したように、旋回スクロール22のボス部22cに嵌合している。そして、偏心部4cが偏心しながら回転することで、旋回スクロール22が旋回するようになっている。
The spindle 4a is coaxially fixed to the rotor 7b of the electric motor 7, and rotates integrally with the rotor 7b. The flange portion 4b has a columnar shape and is provided coaxially with the spindle 4a between the spindle 4a and the eccentric portion 4c. The diameter of the flange portion 4b is larger than the diameter of the main shaft 4a and the eccentric portion 4c.
The eccentric portion 4c is an axis that rotates while being eccentric with respect to the main shaft 4a, and is fitted to the boss portion 22c of the swivel scroll 22 as described above. Then, the eccentric portion 4c rotates while being eccentric, so that the swivel scroll 22 turns.
 主軸受5は、主軸4aの上部を回転自在に軸支するものであり、フレーム3の孔(図1では符号を図示せず)の周壁面に固定されている。
 旋回軸受6は、偏心部4cを回転自在に軸支するものであり、ボス部22cの内周壁に固定されている。
The main bearing 5 rotatably supports the upper portion of the main shaft 4a, and is fixed to the peripheral wall surface of a hole (not shown by a reference numeral in FIG. 1) of the frame 3.
The swivel bearing 6 rotatably supports the eccentric portion 4c and is fixed to the inner peripheral wall of the boss portion 22c.
 なお、クランク軸4の内部には、潤滑油が通流する給油路4dが上下方向に設けられている。給油路4dを介して通流する潤滑油は、圧縮機構部2の他、主軸受5や旋回軸受6、副軸受10等に導かれる。 Inside the crankshaft 4, a lubrication passage 4d through which lubricating oil flows is provided in the vertical direction. The lubricating oil flowing through the oil supply passage 4d is guided to the main bearing 5, the swivel bearing 6, the auxiliary bearing 10, and the like in addition to the compression mechanism portion 2.
 電動機7は、クランク軸4を回転させる駆動源であり、フレーム3の下側に配置されている。図1に示すように、電動機7は、固定子7aと、回転子7bと、巻線7cと、を備えている。固定子7aは、電磁鋼板が積層されてなる円筒状の部材であり、筒チャンバ1aの内周壁に固定されている。回転子7bは、電磁鋼板が積層されてなる円筒状の部材であり、固定子7aの径方向内側に配置されている。なお、回転子7bには、クランク軸4が圧入等で固定されている。巻線7cは、電流が流れる配線であり、所定に巻回されて固定子7aに設置されている。 The motor 7 is a drive source for rotating the crankshaft 4, and is arranged below the frame 3. As shown in FIG. 1, the electric motor 7 includes a stator 7a, a rotor 7b, and a winding 7c. The stator 7a is a cylindrical member formed by laminating electromagnetic steel sheets, and is fixed to the inner peripheral wall of the tubular chamber 1a. The rotor 7b is a cylindrical member formed by laminating electromagnetic steel sheets, and is arranged inside the stator 7a in the radial direction. The crankshaft 4 is fixed to the rotor 7b by press fitting or the like. The winding 7c is a wiring through which an electric current flows, is wound in a predetermined manner, and is installed in the stator 7a.
 オルダムリング8は、偏心部4cの偏心回転を受けて、旋回スクロール22を自転させることなく旋回させる輪状部材である。オルダムリング8は、旋回スクロール22とフレーム3との間に設けられている。 The Oldam ring 8 is a ring-shaped member that receives the eccentric rotation of the eccentric portion 4c and rotates the swivel scroll 22 without rotating. The old dam ring 8 is provided between the swivel scroll 22 and the frame 3.
 バランスウェイト11,12は、圧縮機構部2によって生じる回転のアンバランスを緩和する円弧状の部材である。図1の例では、一方のバランスウェイト11が鍔部4bの外周壁に設置され、他方のバランスウェイト12が電動機7の回転子7bの下側に設置されている。なお、バランスウェイト11,12の相対的な位置関係は、事前の実験やシミュレーションに基づいて適宜に設定される。本実施形態の主な特徴は、回転子7bの下側に設置されているバランスウェイト12の構成にあるが、このバランスウェイト12の詳細については後記する。 The balance weights 11 and 12 are arc-shaped members that alleviate the unbalance of rotation caused by the compression mechanism unit 2. In the example of FIG. 1, one balance weight 11 is installed on the outer peripheral wall of the flange portion 4b, and the other balance weight 12 is installed below the rotor 7b of the motor 7. The relative positional relationship between the balance weights 11 and 12 is appropriately set based on prior experiments and simulations. The main feature of this embodiment is the configuration of the balance weight 12 installed under the rotor 7b, and the details of the balance weight 12 will be described later.
 図1に示すサブフレーム9は、クランク軸4の下部を回転自在に軸支するものであり、密閉容器1の内周壁に固定されている。
 副軸受10は、クランク軸4の下部を回転自在に軸支するものであり、サブフレーム9の孔(符号は図示せず)の周壁面に固定されている。
The subframe 9 shown in FIG. 1 rotatably supports the lower portion of the crankshaft 4, and is fixed to the inner peripheral wall of the closed container 1.
The sub-bearing 10 rotatably supports the lower portion of the crankshaft 4, and is fixed to the peripheral wall surface of a hole (not shown) of the sub-frame 9.
 また、図1には図示していないが、クランク軸4の給油路4dの上流端(つまり、クランク軸4の下端付近)には、所定に捻じ曲げられた薄板状の金属片(図示せず)が設置されている。そして、前記した金属片がクランク軸4と一体で回転することで、給油路4dを介して、潤滑油が汲み上げられるようになっている。 Further, although not shown in FIG. 1, a thin plate-shaped metal piece (not shown) twisted and bent at an upstream end (that is, near the lower end of the crankshaft 4) of the oil supply passage 4d of the crankshaft 4 ) Is installed. Then, the metal piece is rotated integrally with the crankshaft 4, so that the lubricating oil is pumped up through the oil supply passage 4d.
 そして、電動機7の駆動によって旋回スクロール22が旋回すると、これに伴って次々に形成される圧縮室Cの容積が縮小し、ガス状の冷媒が圧縮される。圧縮された冷媒は、固定スクロール21の吐出口Vを介して、密閉容器1内の上部空間に吐出され、さらに、フレーム3と筒チャンバ1aとの間の隙間を介して、圧縮機構部2の下側に導かれる。したがって、圧縮機構部2の上側・下側の空間では、それぞれ、吐出圧力に略等しいガス状の冷媒が充満している。圧縮機構部2の下側に導かれた冷媒は、吐出パイプPb等を介して凝縮器(図示せず)に導かれ、所定の冷凍サイクルで循環する。
 なお、図1に示す圧縮機100の構成は一例であり、これに限定されるものではない。
Then, when the swivel scroll 22 is swiveled by the drive of the electric motor 7, the volume of the compression chambers C formed one after another is reduced accordingly, and the gaseous refrigerant is compressed. The compressed refrigerant is discharged into the upper space in the closed container 1 through the discharge port V of the fixed scroll 21, and further, through the gap between the frame 3 and the cylinder chamber 1a, the compression mechanism unit 2 Guided to the bottom. Therefore, the spaces above and below the compression mechanism 2 are filled with gaseous refrigerants that are substantially equal to the discharge pressure, respectively. The refrigerant guided to the lower side of the compression mechanism portion 2 is guided to a condenser (not shown) via a discharge pipe Pb or the like, and circulates in a predetermined refrigeration cycle.
The configuration of the compressor 100 shown in FIG. 1 is an example, and the present invention is not limited to this.
 図2は、電動機7の回転子7bの横断面図である。
 図2に示す円筒状の回転子7bは、軸方向に積層された複数の電磁鋼板71bと、6つの永久磁石72b(磁石)と、一対の端板72c,72d(図3参照)と、を備えている。複数の電磁鋼板71bの外周縁付近には、薄板矩形状の永久磁石72bが挿入される6つの磁石挿入孔h1が、周方向で略等間隔に設けられている。また、回転子7bには、後記するリベット13を貫通させるためのリベット貫通孔h2が、磁石挿通孔h1よりも径方向内側に複数(図2の例では6つ)設けられている。
FIG. 2 is a cross-sectional view of the rotor 7b of the motor 7.
The cylindrical rotor 7b shown in FIG. 2 includes a plurality of electromagnetic steel sheets 71b laminated in the axial direction, six permanent magnets 72b (magnets), and a pair of end plates 72c and 72d (see FIG. 3). I have. Six magnet insertion holes h1 into which thin plate rectangular permanent magnets 72b are inserted are provided near the outer peripheral edges of the plurality of electromagnetic steel plates 71b at substantially equal intervals in the circumferential direction. Further, the rotor 7b is provided with a plurality of rivet through holes h2 (six in the example of FIG. 2) for penetrating the rivet 13, which will be described later, in the radial direction with respect to the magnet insertion hole h1.
 図3は、電動機7やバランスウェイト12を含む縦断面図である。
 図3に示すように、回転子7bの上面(設置位置が最も高い電磁鋼板71bの上面)には、円環状の端板72cが設置されている。一方、回転子7bの下面(設置位置が最も低い電磁鋼板71bの下面)には、円環状の別の端板72dが設置されている。これらの一対の端板72c,72dによって磁石挿入孔h1(図2参照)が塞がれ、回転子7bから永久磁石72bが抜けることを防止するようになっている。
FIG. 3 is a vertical cross-sectional view including the motor 7 and the balance weight 12.
As shown in FIG. 3, an annular end plate 72c is installed on the upper surface of the rotor 7b (the upper surface of the electromagnetic steel sheet 71b having the highest installation position). On the other hand, another annular end plate 72d is installed on the lower surface of the rotor 7b (the lower surface of the electromagnetic steel sheet 71b having the lowest installation position). The pair of end plates 72c and 72d close the magnet insertion hole h1 (see FIG. 2) to prevent the permanent magnet 72b from coming off the rotor 7b.
 バランスウェイト12は、圧縮機構部2によって生じる回転のアンバランスを緩和し、圧縮機100の振動を抑制する部材であり、端板72dの下面に設置されている。本実施形態では、バランスウェイト12の構成材料として、密度が比較的高くて安価な鉄材(磁性体)を用いる場合について説明する。 The balance weight 12 is a member that alleviates the unbalance of rotation caused by the compression mechanism portion 2 and suppresses the vibration of the compressor 100, and is installed on the lower surface of the end plate 72d. In the present embodiment, a case where an iron material (magnetic material) having a relatively high density and being inexpensive is used as a constituent material of the balance weight 12 will be described.
 図3に示すリベット13は、端板72c,72dやバランスウェイト12を回転子7bに固定するものである。これらのリベット13は、前記したリベット貫通孔h2等(図2参照)を貫通して、加締め固定されている。次に、図4等を用いて、バランスウェイト12の構成について説明する。 The rivet 13 shown in FIG. 3 fixes the end plates 72c and 72d and the balance weight 12 to the rotor 7b. These rivets 13 penetrate the above-mentioned rivet through holes h2 and the like (see FIG. 2) and are crimped and fixed. Next, the configuration of the balance weight 12 will be described with reference to FIG. 4 and the like.
 図4は、圧縮機が備えるバランスウェイト12の斜視図である。
 図4に示すように、バランスウェイト12は、円弧状を呈し、高さ方向に所定の厚みを有している。また、バランスウェイト12は、上面Tから回転子7bの軸方向に凹んでなる3つの凹部12aを備えるとともに、外周面から径方向内側に凹んでなる3つの切欠部12bを備えている。
 なお、バランスウェイト12の上面Tとは、回転子7b側(図3参照)の端面であって、その少なくとも一部が端板72d(図3参照)に接触している。一方、バランスウェイト12の下面B(図5B参照)とは、回転子7b(図3参照)とは反対側の端面であって、平面状を呈している。
FIG. 4 is a perspective view of the balance weight 12 included in the compressor.
As shown in FIG. 4, the balance weight 12 has an arc shape and has a predetermined thickness in the height direction. Further, the balance weight 12 includes three recesses 12a recessed from the upper surface T in the axial direction of the rotor 7b, and three notches 12b recessed radially inward from the outer peripheral surface.
The upper surface T of the balance weight 12 is an end surface on the rotor 7b side (see FIG. 3), and at least a part thereof is in contact with the end plate 72d (see FIG. 3). On the other hand, the lower surface B (see FIG. 5B) of the balance weight 12 is an end face on the opposite side of the rotor 7b (see FIG. 3) and has a flat shape.
 別の観点から説明すると、バランスウェイト12は、概ね次のような構成になっている。すなわち、バランスウェイト12は、所定の厚みを有する仮想的な円筒状の部材(図示せず)を、中心軸線Z(図3参照)に平行な所定の平面(図示せず)で略半分に切断し、さらに、凹部12aや切欠部12bを設けた構成になっている。さらに、バランスウェイト12は、リブ12c(第1リブ)と、油逃がし孔h3(第1孔)と、リベット貫通孔h4と、を備えている。 Explaining from another point of view, the balance weight 12 has the following configuration. That is, the balance weight 12 cuts a virtual cylindrical member (not shown) having a predetermined thickness in substantially half on a predetermined plane (not shown) parallel to the central axis Z (see FIG. 3). Further, the structure is provided with a recess 12a and a notch 12b. Further, the balance weight 12 includes a rib 12c (first rib), an oil escape hole h3 (first hole), and a rivet through hole h4.
 凹部12aは、前記したように、バランスウェイト12の上面Tから軸方向下側に凹んだ部分であり、主に、バランスウェイト12の重量調整に用いられる。例えば、バランスウェイト12の重量を軽くする際には、バランスウェイト12の上面Tを基準として凹部12aの底面が深くなるように、設計段階で適宜に設計される。 As described above, the recess 12a is a portion recessed downward in the axial direction from the upper surface T of the balance weight 12, and is mainly used for adjusting the weight of the balance weight 12. For example, when the weight of the balance weight 12 is reduced, it is appropriately designed at the design stage so that the bottom surface of the recess 12a becomes deeper with respect to the upper surface T of the balance weight 12.
 なお、切欠部12bの深さでもバランスウェイト12の重量の調整は可能であるが、後記するように、切欠部12bは、主として、ミスト状の潤滑油に横方向の力を作用させる機能や、永久磁石72bの磁束の漏れを抑制する機能を担っている。 The weight of the balance weight 12 can be adjusted by adjusting the depth of the notch 12b, but as will be described later, the notch 12b mainly has a function of applying a lateral force to the mist-like lubricating oil. It has a function of suppressing leakage of magnetic flux of the permanent magnet 72b.
 図4に示す例では、凹部12aの内壁面は、一対の周壁面121a,122aと、一対の側面123a,124aと、底面125aと、を含んでいる。前記した一対の周壁面121a,122aは、回転子7b(図3参照)の中心軸線Zを中心として、平面視で円弧状を呈している。なお、一方の周壁面121aよりも他方の周壁面122aの方が、径方向外側に位置している。 In the example shown in FIG. 4, the inner wall surface of the recess 12a includes a pair of peripheral wall surfaces 121a, 122a, a pair of side surfaces 123a, 124a, and a bottom surface 125a. The pair of peripheral wall surfaces 121a and 122a described above have an arc shape in a plan view with the central axis Z of the rotor 7b (see FIG. 3) as the center. The other peripheral wall surface 122a is located on the outer side in the radial direction than the one peripheral wall surface 121a.
 一対の側面123a,124aは、周壁面121a,122aに連なる平面状の壁面であり、回転子7b(図3参照)の中心軸線Zを基準として平面視で径方向に設けられている。一方、凹部12aの底面125aは、平面状になっている。図4の例では、3つの凹部12aが、それぞれ、同様の形状になっている。 The pair of side surfaces 123a and 124a are planar wall surfaces connected to the peripheral wall surfaces 121a and 122a, and are provided in the radial direction in a plan view with reference to the central axis Z of the rotor 7b (see FIG. 3). On the other hand, the bottom surface 125a of the recess 12a is flat. In the example of FIG. 4, each of the three recesses 12a has the same shape.
 図4に示すように、3つの凹部12aは、周方向で略等間隔に設けられ、また、切欠部12b(第1切欠部)の径方向内側に設けられている。また、凹部12aと切欠部12bとが径方向で並んでいる。そして、バランスウェイト12の回転子7b側の端面(つまり、上面T)は、凹部12aの周囲において回転子7bに接触している(図3参照)。 As shown in FIG. 4, the three recesses 12a are provided at substantially equal intervals in the circumferential direction, and are provided inside the notch 12b (first notch) in the radial direction. Further, the recess 12a and the notch 12b are arranged in the radial direction. The end surface (that is, the upper surface T) of the balance weight 12 on the rotor 7b side is in contact with the rotor 7b around the recess 12a (see FIG. 3).
 それぞれの凹部12aには、所定の径を有する油逃がし孔h3(第1孔)がひとつずつ設けられている。これらの油逃がし孔h3は、凹部12aに溜まった油を逃がすための孔であり、凹部12aから回転子7bの軸方向に貫通している。なお、油逃がし孔h3の径は、後記するリベット貫通孔h4の径よりも小さく、また、リベット13(図3参照)の径(回転子7bを貫通している部分の径)よりも小さい。
 油逃がし孔h3は、凹部12aと回転子7bとの間の空間Ga(図3参照)に開口するとともに、密閉容器1内の空間G1(図1参照)にも開口し、または、バランスウェイト12の下面B(回転子7bと接触する面である上面Tとは反対側の面)に開口している。したがって、凹部12aと回転子7bとの間の空間Ga(図3参照)は、油逃がし孔h3を介して、密閉容器1内の空間G1に連通している。
Each recess 12a is provided with one oil relief hole h3 (first hole) having a predetermined diameter. These oil relief holes h3 are holes for releasing oil accumulated in the recess 12a, and penetrate the recess 12a in the axial direction of the rotor 7b. The diameter of the oil relief hole h3 is smaller than the diameter of the rivet through hole h4 described later, and is smaller than the diameter of the rivet 13 (see FIG. 3) (the diameter of the portion penetrating the rotor 7b).
The oil release hole h3 opens in the space Ga (see FIG. 3) between the recess 12a and the rotor 7b, and also in the space G1 (see FIG. 1) in the closed container 1, or the balance weight 12 It is open to the lower surface B (the surface opposite to the upper surface T, which is the surface in contact with the rotor 7b). Therefore, the space Ga (see FIG. 3) between the recess 12a and the rotor 7b communicates with the space G1 in the closed container 1 through the oil escape hole h3.
 このような油逃がし孔h3を設けることで、バランスウェイト12と端板72d(図3参照)との間の微小な隙間を介して、凹部12aに潤滑油が入り込んでも、この潤滑油が油逃がし孔h3を介して、凹部12aからバランスウェイト12の下側に流れ落ちる。したがって、凹部12aに入り込んだ潤滑油の重量によって、バランスウェイト12の機能(回転のアンバランスを緩和)に悪影響が及ぶことを抑制できる。 By providing such an oil release hole h3, even if the lubricating oil enters the recess 12a through a minute gap between the balance weight 12 and the end plate 72d (see FIG. 3), the lubricating oil releases the oil. It flows down from the recess 12a to the lower side of the balance weight 12 through the hole h3. Therefore, it is possible to prevent the weight of the lubricating oil that has entered the recess 12a from adversely affecting the function of the balance weight 12 (alleviating the imbalance in rotation).
 図4に示す3つの切欠部12bは、それぞれ、バランスウェイト12の外周面よりも径方向内側に凹んだ部分であり、バランスウェイト12の回転子7b側(図3参照)の外周縁部に設けられている。すなわち、3つの切欠部12bは、それぞれ、バランスウェイト12の周方向に設けられ、密閉容器1内の空間に開口している。図4の例では、凹部12aの壁面は、周壁面121bと、一対の側面122b,123bと、底面124bと、を含んでいる。 Each of the three notched portions 12b shown in FIG. 4 is a portion recessed radially inward from the outer peripheral surface of the balance weight 12, and is provided on the outer peripheral edge portion of the balance weight 12 on the rotor 7b side (see FIG. 3). Has been done. That is, each of the three notches 12b is provided in the circumferential direction of the balance weight 12 and opens into the space inside the closed container 1. In the example of FIG. 4, the wall surface of the recess 12a includes a peripheral wall surface 121b, a pair of side surfaces 122b and 123b, and a bottom surface 124b.
 まず、周壁面121bは、回転子7b(図3参照)の中心軸線Zを中心として、平面視で円弧状を呈している。一対の側面122b,123bは、前記した周壁面121bに連なっており、また、回転子7b(図3参照)の中心軸線Zを基準として平面視で径方向に設けられている。また、切欠部12bの底面124bは、平面状になっている。図4の例では、3つの切欠部12bが、それぞれ、同様の形状になっている。 First, the peripheral wall surface 121b has an arc shape in a plan view with the central axis Z of the rotor 7b (see FIG. 3) as the center. The pair of side surfaces 122b and 123b are connected to the peripheral wall surface 121b described above, and are provided in the radial direction in a plan view with reference to the central axis Z of the rotor 7b (see FIG. 3). Further, the bottom surface 124b of the notch portion 12b is flat. In the example of FIG. 4, each of the three notches 12b has the same shape.
 また、それぞれの切欠部12bにおいて、回転子7b(図3参照)の中心軸線Zに最も近い壁面(つまり、周壁面121b)は、バランスウェイト12の内周面よりも径方向外側に位置している。このような構成によれば、切欠部12bの径方向内側の部分がバランスウェイト12の重量の一部を占めるため、バランスウェイト12の軸方向の長さを比較的短くできる。また、切欠部12bの径方向内側の部分において、バランスウェイト12が安定的に保持される。 Further, in each notch portion 12b, the wall surface closest to the central axis Z of the rotor 7b (see FIG. 3) (that is, the peripheral wall surface 121b) is located radially outside the inner peripheral surface of the balance weight 12. There is. According to such a configuration, since the radial inner portion of the notch portion 12b occupies a part of the weight of the balance weight 12, the axial length of the balance weight 12 can be made relatively short. Further, the balance weight 12 is stably held in the radial inner portion of the notch portion 12b.
 なお、図4の例では、凹部12aの軸方向の深さと、切欠部12bの軸方向の深さと、が同一になっているが、これらが異なっていてもよい。
 図4に示すように、周方向において3つの切欠部12bが、略等間隔で設けられている。また、バランスウェイト12の回転子7b側(図3参照)の外周縁部において、切欠部12bが設けられている箇所と、回転子7bと、の間に所定の空隙Gb(図3参照)が設けられている。
In the example of FIG. 4, the axial depth of the recess 12a and the axial depth of the notch 12b are the same, but they may be different.
As shown in FIG. 4, three notches 12b are provided at substantially equal intervals in the circumferential direction. Further, in the outer peripheral edge portion of the balance weight 12 on the rotor 7b side (see FIG. 3), a predetermined gap Gb (see FIG. 3) is formed between the portion where the notch portion 12b is provided and the rotor 7b. It is provided.
 詳細については後記するが、回転子7bの永久磁石72bを軸方向で投影した場合の領域R(図5A参照)が、切欠部12bに含まれている。これによって、バランスウェイト12を鉄材等の磁性体で構成した場合でも、回転子7bの永久磁石72bの磁束が、端板72d(図3参照)を介してバランスウェイト12側に洩れることを抑制できる。なぜなら、切欠部12bと端板72d(図3参照)との間は空隙Gb(図3参照)になっており、磁束が通りにくいからである。その結果、電動機7からの磁束の漏れが抑制されるため、電動機7を高効率で駆動させることができる。なお、切欠部12bの軸方向の深さは、電動機7からの磁束の漏れが抑制される程度に設計段階で適宜に調整される。 Although details will be described later, the notch 12b includes a region R (see FIG. 5A) when the permanent magnet 72b of the rotor 7b is projected in the axial direction. As a result, even when the balance weight 12 is made of a magnetic material such as an iron material, it is possible to prevent the magnetic flux of the permanent magnet 72b of the rotor 7b from leaking to the balance weight 12 side via the end plate 72d (see FIG. 3). .. This is because there is a gap Gb (see FIG. 3) between the notch 12b and the end plate 72d (see FIG. 3), which makes it difficult for magnetic flux to pass through. As a result, leakage of magnetic flux from the electric motor 7 is suppressed, so that the electric motor 7 can be driven with high efficiency. The axial depth of the notch portion 12b is appropriately adjusted at the design stage to the extent that leakage of magnetic flux from the electric motor 7 is suppressed.
 図4に示すように、周方向で隣り合う凹部12aの間、及び、周方向で隣り合う切欠部12bの間には、径方向に延びる2つのリブ12c(第1リブ)が設けられている。これらのリブ12cの径方向外側の壁面は、バランスウェイト12の外周面と面一になっている。また、バランスウェイト12の周方向の両端部にも、それぞれ、リブ12cが設けられている。それぞれのリブ12cの回転子7b側の端面(つまり、上面Tの一部)は、回転子7bに接触している。より詳しく説明すると、それぞれのリブ12cの上面は、回転子7bの端板72d(図3参照)の下面に接触している。また、図4の例では、リベット13(図3参照)を貫通させるためのリベット貫通孔h4が、4つのリブ12cにひとつずつ設けられている。 As shown in FIG. 4, two ribs 12c (first ribs) extending in the radial direction are provided between the recesses 12a adjacent to each other in the circumferential direction and between the notches 12b adjacent to each other in the circumferential direction. .. The radial outer wall surface of these ribs 12c is flush with the outer peripheral surface of the balance weight 12. Ribs 12c are also provided at both ends of the balance weight 12 in the circumferential direction. The end face of each rib 12c on the rotor 7b side (that is, a part of the upper surface T) is in contact with the rotor 7b. More specifically, the upper surface of each rib 12c is in contact with the lower surface of the end plate 72d (see FIG. 3) of the rotor 7b. Further, in the example of FIG. 4, one rivet through hole h4 for penetrating the rivet 13 (see FIG. 3) is provided in each of the four ribs 12c.
 図4の例では、リブ12cの周方向の長さ(周方向の肉厚)が、凹部12aの周方向の長さよりも短く、また、切欠部12bの周方向の長さよりも短くなっている。なお、凹部12aの周方向の長さとは、凹部12aの底面125aの外周側の縁(円弧)の長さである。また、切欠部12bの周方向の長さとは、切欠部12bの底面124bの外周側の縁(円弧)の長さである。
 また、図4の例では、リブ12cにおいて、凹部12aと切欠部12bとの間の部分の径方向の長さが、凹部12aの径方向の長さよりも短く、また、切欠部12bの径方向の長さよりも短くなっている。
In the example of FIG. 4, the circumferential length of the rib 12c (thickness in the circumferential direction) is shorter than the circumferential length of the recess 12a and shorter than the circumferential length of the notch 12b. .. The circumferential length of the recess 12a is the length of the outer peripheral edge (arc) of the bottom surface 125a of the recess 12a. The circumferential length of the notch portion 12b is the length of the outer peripheral side edge (arc) of the bottom surface 124b of the notch portion 12b.
Further, in the example of FIG. 4, in the rib 12c, the radial length of the portion between the recess 12a and the notch 12b is shorter than the radial length of the recess 12a, and the radial length of the notch 12b is short. It is shorter than the length of.
 このようなリブ12cを設けることで、バランスウェイト12を安定して保持できる。また、回転子7bとともにバランスウェイト12が回転しているとき、リブ12cによって(言い換えれば、切欠部12bによって)、ミスト状の潤滑油に横方向の力が作用し、潤滑油の速度ベクトルにおける縦方向・横方向の速度成分の比率が変わる。次に、このような潤滑油の流れについて詳細に説明する。 By providing such a rib 12c, the balance weight 12 can be stably held. Further, when the balance weight 12 is rotating together with the rotor 7b, a lateral force acts on the mist-like lubricating oil by the rib 12c (in other words, by the notch 12b), and the vertical force in the velocity vector of the lubricating oil is applied. The ratio of velocity components in the direction and lateral direction changes. Next, the flow of such lubricating oil will be described in detail.
 回転子7bとともにバランスウェイト12が回転すると、電動機7(図1参照)の下側に存在しているミスト状の潤滑油に、切欠部12bの壁面(特に、回転の向きとは反対側の側面)から横方向の力が作用する。ここで、ミスト状の潤滑油の速度ベクトルに着目すると、縦方向の速度成分に対して、横方向の速度成分が相対的に大きくなる。つまり、ミスト状の潤滑油が、密閉容器1内(図1参照)において所定の大きさの速度ベクトルで移動しているとすると、前記した速度ベクトルの大きさに占める横方向の速度成分が大きくなる一方、縦方向の速度成分が小さくなる。 When the balance weight 12 rotates together with the rotor 7b, the mist-like lubricating oil existing under the motor 7 (see FIG. 1) is exposed to the wall surface of the notch 12b (particularly, the side surface opposite to the direction of rotation). ), A lateral force acts. Here, focusing on the velocity vector of the mist-like lubricating oil, the velocity component in the horizontal direction becomes relatively large with respect to the velocity component in the vertical direction. That is, assuming that the mist-like lubricating oil is moving in the closed container 1 (see FIG. 1) with a velocity vector of a predetermined magnitude, the lateral velocity component occupying the magnitude of the velocity vector is large. On the other hand, the velocity component in the vertical direction becomes smaller.
 そうすると、固定子7a(図1参照)と回転子7b(同図参照)との間の隙間を介して、ミスト状の潤滑油が上向きに移動する、という流れが生じにくくなる。その結果、吐出パイプPb(図1参照)を介した潤滑油の流出が抑制されるため、圧縮機構部2の各摺動部が良好に潤滑され、また、圧縮室Cのシール性が確保される。 Then, the flow that the mist-like lubricating oil moves upward through the gap between the stator 7a (see FIG. 1) and the rotor 7b (see FIG. 1) is less likely to occur. As a result, the outflow of lubricating oil through the discharge pipe Pb (see FIG. 1) is suppressed, so that each sliding portion of the compression mechanism portion 2 is satisfactorily lubricated, and the sealing property of the compression chamber C is ensured. Lubrication.
 図5Aは、バランスウェイト12の凹部12a、切欠部12b、油逃がし孔h3等の配置に関する説明図(平面図)である。
 以下では、径方向における凹部12aの中間位置の点の集まりを含む所定の円弧を中間円弧J(図5Aの二点鎖線)という。図5Aに示す例では、3つの凹部12aは、それぞれの中間円弧Jが略一致するように、周方向に並んで配置されている。また、凹部12aに設けられた油逃がし孔h3は、中間円弧Jよりも径方向外側に配置されている。言い換えると、油逃がし孔h3は、径方向における凹部12aの中間位置よりも径方向外側に設けられている。
FIG. 5A is an explanatory view (plan view) regarding the arrangement of the recess 12a of the balance weight 12, the notch 12b, the oil relief hole h3, and the like.
Hereinafter, a predetermined arc including a group of points at an intermediate position of the concave portion 12a in the radial direction is referred to as an intermediate arc J (two-dot chain line in FIG. 5A). In the example shown in FIG. 5A, the three recesses 12a are arranged side by side in the circumferential direction so that their intermediate arcs J substantially coincide with each other. Further, the oil relief hole h3 provided in the recess 12a is arranged radially outside the intermediate arc J. In other words, the oil relief hole h3 is provided radially outside the intermediate position of the recess 12a in the radial direction.
 凹部12aに潤滑油が溜まっている状態で、回転子7bとともにバランスウェイト12が回転すると(図5Aの回転の向きを示す矢印を参照)、それに伴って、潤滑油が遠心力で径方向外向きに移動する。ここで、油逃がし孔h3が凹部12aの中間円弧Jよりも径方向外側に設けられているため、遠心力で径方向外向きに移動した潤滑油が、油逃がし孔h3を介して、バランスウェイト12の下側に逃がされやすくなる。 When the balance weight 12 rotates together with the rotor 7b while the lubricating oil is accumulated in the recess 12a (see the arrow indicating the direction of rotation in FIG. 5A), the lubricating oil is centrifugally outward in the radial direction. Move to. Here, since the oil relief hole h3 is provided radially outside the intermediate arc J of the recess 12a, the lubricating oil that has moved outward in the radial direction due to centrifugal force passes through the oil relief hole h3 and is a balance weight. It is easy to escape to the lower side of 12.
 また、前記したように、回転子7bに埋設されている永久磁石72b(磁石)を回転子7bの軸方向に投影した場合の領域Rが、切欠部12b(第1切欠部)に含まれている。したがって、バランスウェイト12を鉄材等の磁性体で構成した場合でも、永久磁石72bの磁束がバランスウェイト12側に洩れることを抑制できる。
 なお、永久磁石72bと切欠部12bとの位置関係は、これに限定されるものではない。例えば、永久磁石72bを回転子7bの軸方向に投影した場合の領域Rが、切欠部12bの少なくとも一部に(望ましくは全部に)含まれているようにしてもよい。このように領域Rが切欠部12bの少なくとも一部に含まれる場合において、領域Rの周方向の両端部が切欠部12bに含まれる一方、領域Rの周方向の中央部が切欠部12bに含まれない構成であってもよい。このような構成でも、永久磁石72bの磁束の漏れを抑制できる。
Further, as described above, the notch 12b (first notch) includes the region R when the permanent magnet 72b (magnet) embedded in the rotor 7b is projected in the axial direction of the rotor 7b. There is. Therefore, even when the balance weight 12 is made of a magnetic material such as an iron material, it is possible to prevent the magnetic flux of the permanent magnet 72b from leaking to the balance weight 12 side.
The positional relationship between the permanent magnet 72b and the notch 12b is not limited to this. For example, the region R when the permanent magnet 72b is projected in the axial direction of the rotor 7b may be included in at least a part (preferably all) of the notch portion 12b. When the region R is included in at least a part of the notch portion 12b in this way, both ends in the circumferential direction of the region R are included in the notch portion 12b, while the central portion in the circumferential direction of the region R is included in the notch portion 12b. It may not be configured. Even with such a configuration, leakage of magnetic flux of the permanent magnet 72b can be suppressed.
 なお、永久磁石72bを軸方向で投影した場合の領域Rが、切欠部12b(第1切欠部)の径方向内側の縁に近接していることが好ましい。図5Aの例では、永久磁石72bを軸方向で投影した場合の領域Rが、切欠部12bの縁に接している。より詳しく説明すると、永久磁石72bの中心軸線Z側の側面において、回転子7bの中心軸線Zに最も近い位置Fが、切欠部12bの径方向内側の縁に接している。このような構成も、「永久磁石72bを軸方向で投影した場合の領域Rが、切欠部12bに含まれている」、という事項に含まれる。 It is preferable that the region R when the permanent magnet 72b is projected in the axial direction is close to the radial inner edge of the notch portion 12b (first notch portion). In the example of FIG. 5A, the region R when the permanent magnet 72b is projected in the axial direction is in contact with the edge of the notch portion 12b. More specifically, on the side surface of the permanent magnet 72b on the central axis Z side, the position F closest to the central axis Z of the rotor 7b is in contact with the radial inner edge of the notch 12b. Such a configuration is also included in the matter that "the region R when the permanent magnet 72b is projected in the axial direction is included in the notch portion 12b".
 このように切欠部12bと永久磁石72bとの位置関係を規定することで、永久磁石72bからの磁束の漏れを抑制しつつ、切欠部12bが径方向内側に凹む長さを最小限に抑えることができる。したがって、バランスウェイト12を設計する際、バランスウェイト12の軸方向の長さが短くてすむため、圧縮機100(図1参照)のコンパクト化を図ることができる。 By defining the positional relationship between the notch 12b and the permanent magnet 72b in this way, it is possible to minimize the length of the notch 12b denting inward in the radial direction while suppressing the leakage of magnetic flux from the permanent magnet 72b. Can be done. Therefore, when designing the balance weight 12, the length of the balance weight 12 in the axial direction can be short, so that the compressor 100 (see FIG. 1) can be made compact.
 なお、バランスウェイト12の軸方向全長に亘って切欠部12bを形成するよりも、図4に示すように、回転子7b側(図3参照)の外周縁部に切欠部12bが形成されているほうが好ましい。バランスウェイト12において径方向外側に位置する領域ほど、回転中の慣性モーメントが大きく、回転バランスを良好に保つというバランスウェイト12の機能に寄与する程度が大きいからである。 As shown in FIG. 4, the notch portion 12b is formed on the outer peripheral edge portion on the rotor 7b side (see FIG. 3) rather than forming the notch portion 12b over the entire axial length of the balance weight 12. Is preferable. This is because the region located on the outer side of the balance weight 12 in the radial direction has a larger moment of inertia during rotation and contributes more to the function of the balance weight 12 to maintain a good rotational balance.
 図5Bは、圧縮機が備えるバランスウェイト12の下面図である。
 図5Bに示すように、バランスウェイト12の下面Bは、平面状になっている。また、バランスウェイト12の下面Bには、前記した油逃がし孔h3が開口するとともに、リベット貫通孔h4が開口している。
FIG. 5B is a bottom view of the balance weight 12 included in the compressor.
As shown in FIG. 5B, the lower surface B of the balance weight 12 is flat. Further, the oil escape hole h3 described above is opened on the lower surface B of the balance weight 12, and the rivet through hole h4 is opened.
<効果>
 第1実施形態によれば、バランスウェイト12(図4参照)の切欠部12bの壁面からミスト状の潤滑油に対して横方向の力が作用するため、潤滑油が縦方向に移動しにくくなる。その結果、潤滑油が縦方向に吹き上げられる流れが抑制されるため、吐出パイプPbを介した潤滑油の流出を抑制できる。
<Effect>
According to the first embodiment, since a lateral force acts on the mist-like lubricating oil from the wall surface of the notch 12b of the balance weight 12 (see FIG. 4), it becomes difficult for the lubricating oil to move in the vertical direction. .. As a result, the flow of the lubricating oil blown up in the vertical direction is suppressed, so that the outflow of the lubricating oil through the discharge pipe Pb can be suppressed.
 また、バランスウェイト12にいおいて切欠部12b(図3参照)が設けられている箇所と回転子7bとの間に所定の空隙Gbが設けられ、さらに、永久磁石72bを軸方向で投影した場合の領域R(図5A参照)が切欠部12bに含まれている。したがって、鉄材等の磁性体のバランスウェイト12を用いた場合でも、磁束の漏れを抑制できる。このように、第1実施形態によれば、電動機7(図1参照)の効率の低下を抑制しつつ、圧縮機100(図1参照)の製造コストを削減できる。さらに、端板72d(図3参照)の肉厚を厚くせずとも、磁束の漏れを抑制できるため、圧縮機100のサイズが大きくなるおそれもほとんどない。 Further, a predetermined gap Gb is provided between the portion of the balance weight 12 where the notch 12b (see FIG. 3) is provided and the rotor 7b, and the permanent magnet 72b is projected in the axial direction. The region R of the case (see FIG. 5A) is included in the notch 12b. Therefore, even when the balance weight 12 of a magnetic material such as an iron material is used, the leakage of magnetic flux can be suppressed. As described above, according to the first embodiment, it is possible to reduce the manufacturing cost of the compressor 100 (see FIG. 1) while suppressing the decrease in the efficiency of the electric motor 7 (see FIG. 1). Further, since the leakage of magnetic flux can be suppressed without increasing the wall thickness of the end plate 72d (see FIG. 3), there is almost no possibility that the size of the compressor 100 will increase.
 また、バランスウェイト12の凹部12a(図4参照)に油逃がし孔h3を設けることで、凹部12aに入り込んだ潤滑油をバランスウェイト12の下側に逃がすことができる。また、油逃がし孔h3が、中間円弧J(図5A参照)よりも径方向外側にを設けられているため、遠心力で径方向外向きに移動した潤滑油が、油逃がし孔h3を介して、凹部12aから逃がされやすくなる。 Further, by providing the oil relief hole h3 in the recess 12a (see FIG. 4) of the balance weight 12, the lubricating oil that has entered the recess 12a can be released to the lower side of the balance weight 12. Further, since the oil relief hole h3 is provided on the outer side in the radial direction from the intermediate arc J (see FIG. 5A), the lubricating oil that has moved outward in the radial direction by centrifugal force passes through the oil relief hole h3. , It becomes easy to escape from the recess 12a.
≪第1実施形態に関する第1の変形例≫
 図6は、第1の変形例に係る圧縮機が備えるバランスウェイト12Aの説明図(平面図)である。
 図6に示すように、バランスウェイト12Aの凹部12aに設けられた油逃がし孔h3(第1孔)が、凹部12a内において、周方向で回転子7bが回転する向きとは反対側に設けられているようにしてもよい。ここで、「反対側」とは、凹部12a内における周方向での中間位置と、凹部12aにおいて回転子7bが回転する向きとは反対側の側面と、の間の領域を意味している。
<< First Modification Example Regarding the First Embodiment >>
FIG. 6 is an explanatory view (plan view) of the balance weight 12A included in the compressor according to the first modification.
As shown in FIG. 6, the oil relief hole h3 (first hole) provided in the recess 12a of the balance weight 12A is provided in the recess 12a on the side opposite to the direction in which the rotor 7b rotates in the circumferential direction. You may do so. Here, the "opposite side" means a region between an intermediate position in the concave portion 12a in the circumferential direction and a side surface in the concave portion 12a opposite to the direction in which the rotor 7b rotates.
 これによって、回転子7b(図3参照)と一体でバランスウェイト12Aが回転しているとき、凹部12aに溜まった潤滑油が、その慣性によって、回転子7bの回転する向きとは反対側に偏って分布する。したがって、凹部12aにおいて、回転子7bが回転する向きとは反対側に油逃がし孔h3を設けることで、この油逃がし孔h3を介して、凹部12aから潤滑油が逃がされやすくなる。 As a result, when the balance weight 12A is rotating integrally with the rotor 7b (see FIG. 3), the lubricating oil accumulated in the recess 12a is biased to the side opposite to the direction in which the rotor 7b rotates due to its inertia. Is distributed. Therefore, by providing the oil release hole h3 in the recess 12a on the side opposite to the direction in which the rotor 7b rotates, the lubricating oil can be easily released from the recess 12a through the oil release hole h3.
 なお、第1実施形態の図5Aで説明した油逃がし孔h3の配置と、第1の変形例として図6で説明した油逃がし孔h3の配置と、を組み合わせてもよい。すなわち、凹部12aにおいて、中間円弧J(図5A参照)よりも径方向外側であり、さらに、回転子7bが回転する向きとは反対側に油逃がし孔h3を設けるようにしてもよい。これによって、遠心力で径方向外側に移動し、さらに、慣性によって回転子7bの回転する向きとは反対側に偏って分布する潤滑油が、油逃がし孔h3を介して、凹部12aから逃がされやすくなる。 The arrangement of the oil relief hole h3 described in FIG. 5A of the first embodiment may be combined with the arrangement of the oil relief hole h3 described in FIG. 6 as a first modification. That is, in the recess 12a, the oil escape hole h3 may be provided on the radial side of the intermediate arc J (see FIG. 5A) and on the side opposite to the direction in which the rotor 7b rotates. As a result, the lubricating oil that moves outward in the radial direction by centrifugal force and is distributed unevenly in the direction opposite to the direction of rotation of the rotor 7b due to inertia escapes from the recess 12a through the oil relief hole h3. It becomes easy to be done.
≪第1実施形態に関する第2の変形例≫
 図7は、第2の変形例に係る圧縮機が備えるバランスウェイト12Bの分解斜視図である。
 図7に示すように、バランスウェイト12Bが、全体として一体成形されるのではなく、回転子7bの軸方向に積層される複数の鋼板として、例えば、3枚の第1鋼板121と、6枚の第2鋼板122と、を有するようにしてもよい。
<< Second variant of the first embodiment >>
FIG. 7 is an exploded perspective view of the balance weight 12B included in the compressor according to the second modification.
As shown in FIG. 7, the balance weight 12B is not integrally formed as a whole, but as a plurality of steel plates laminated in the axial direction of the rotor 7b, for example, three first steel plates 121 and six. The second steel plate 122 of the above may be provided.
 第1鋼板121には、切欠部12bやリベット貫通孔h4が設けられ、さらに、凹部12a(図4参照)を形成するための孔h5や、リブ12c(図4参照)を形成するための突出部121cが設けられている。
 なお、突出部121cは、回転子7b(図3参照)との接触面積や強度の確保の他、第1鋼板121や第2鋼板122を積層する際の周方向・径方向の位置決めや、径方向の加圧力を受けるのに用いられる。図7に示すように、3枚の第1鋼板121は、それぞれ、同様の形状になっている。
The first steel plate 121 is provided with a notch 12b and a rivet through hole h4, and further, a hole h5 for forming a recess 12a (see FIG. 4) and a protrusion for forming a rib 12c (see FIG. 4). A portion 121c is provided.
In addition to ensuring the contact area and strength of the protrusion 121c with the rotor 7b (see FIG. 3), the protrusion 121c can be positioned in the circumferential direction and the radial direction when the first steel plate 121 and the second steel plate 122 are laminated, and has a diameter. Used to receive directional pressure. As shown in FIG. 7, each of the three first steel plates 121 has the same shape.
 第2鋼板122には、油逃がし孔h3やリベット貫通孔h4が設けられている。第2鋼板122には、第1鋼板121のような切欠部12bが設けられておらず、また、凹部12a(図4参照)を形成するための孔h5も設けられていない。なお、6枚の第2鋼板122は、それぞれ、同様の形状になっている。 The second steel plate 122 is provided with an oil escape hole h3 and a rivet through hole h4. The second steel plate 122 is not provided with a notch 12b like the first steel plate 121, and is not provided with a hole h5 for forming a recess 12a (see FIG. 4). The six second steel plates 122 each have the same shape.
 図7の例では、3枚の第1鋼板121が積層されてなる第1積層体12sの下側に、6枚の第2鋼板122が積層されてなる第2積層体12tが重ね合わされることで、第1実施形態(図4参照)と同様の形状のバランスウェイト12Bが形成される。 In the example of FIG. 7, the second laminated body 12t formed by laminating six second steel plates 122 is superposed on the lower side of the first laminated body 12s formed by laminating three first steel plates 121. Then, the balance weight 12B having the same shape as that of the first embodiment (see FIG. 4) is formed.
 このように、バランスウェイト12Bが積層鋼板で構成されているため、例えば、第1鋼板121の積層枚数を適宜に変えることで、凹部12a(図4参照)の深さを調整したり、回転子7b(図3参照)と切欠部12bの底面との間の空隙Gbの長さ(図3参照)を調整できる。したがって、圧縮機100(図1参照)の仕様に応じて、バランスウェイト12Bの凹部12a(図1参照)や切欠部12bの深さを変更する際、第1鋼板121や第2鋼板122として共通のものを用いることができるため、バランスウェイト12Bの製造コストを削減できる。 Since the balance weight 12B is made of laminated steel plates in this way, for example, the depth of the recess 12a (see FIG. 4) can be adjusted or the rotor can be adjusted by appropriately changing the number of laminated steel plates 121. The length of the gap Gb between 7b (see FIG. 3) and the bottom surface of the notch 12b (see FIG. 3) can be adjusted. Therefore, when changing the depth of the recess 12a (see FIG. 1) and the notch 12b of the balance weight 12B according to the specifications of the compressor 100 (see FIG. 1), it is common to the first steel plate 121 and the second steel plate 122. Can be used, so that the manufacturing cost of the balance weight 12B can be reduced.
 なお、図7に示す第1鋼板121とは別種類の第1鋼板(図示せず)として、切欠部12bが設けられているものの、凹部12a(図4参照)に相当する孔h5が設けられていない鋼板を、第1鋼板121と第2鋼板122との間に挿入してもよい。また、図7に示す第2鋼板122とは別種類の第2鋼板(図示せず)として、切欠部12bが設けられていないものの、凹部12a(図4参照)に相当する孔h5が設けられた鋼板を、第1鋼板121と第2鋼板122との間に挿入してもよい。これによって、切欠部12bの深さと、凹部12aの深さと、をそれぞれ独立に調整できる。 As a first steel plate (not shown) of a type different from the first steel plate 121 shown in FIG. 7, a notch 12b is provided, but a hole h5 corresponding to a recess 12a (see FIG. 4) is provided. A steel plate that has not been used may be inserted between the first steel plate 121 and the second steel plate 122. Further, as a second steel plate (not shown) of a type different from the second steel plate 122 shown in FIG. 7, although the notch 12b is not provided, the hole h5 corresponding to the recess 12a (see FIG. 4) is provided. The steel plate may be inserted between the first steel plate 121 and the second steel plate 122. Thereby, the depth of the notch portion 12b and the depth of the recess 12a can be adjusted independently.
≪第2実施形態≫
 第2実施形態に係るバランスウェイト12C(図8A、図8B参照)は、前記した第1鋼板121と第2鋼板122とが軸方向で交互に積層されている点が、第1実施形態の第2の変形例(図7参照)とは異なっている。なお、圧縮機100(図1参照)の全体的な構成の他、第1鋼板121・第2鋼板122のそれぞれの構成については、第1実施形態の第2の変形例(図7参照)と同様である。したがって、第1実施形態の第2の変形例とは異なる部分について説明し、重複する部分については説明を省略する。
<< Second Embodiment >>
The balance weight 12C (see FIGS. 8A and 8B) according to the second embodiment is the first embodiment in that the first steel plate 121 and the second steel plate 122 are alternately laminated in the axial direction. It is different from the modification of No. 2 (see FIG. 7). In addition to the overall configuration of the compressor 100 (see FIG. 1), the configurations of the first steel plate 121 and the second steel plate 122 are the same as those of the second modification of the first embodiment (see FIG. 7). The same is true. Therefore, a part different from the second modification of the first embodiment will be described, and the description of the overlapping part will be omitted.
 図8Aは、第2実施形態に係る圧縮機が備えるバランスウェイト12Cの斜視図である。
 図8Aに示すように、バランスウェイト12Cは、第1鋼板121と、第2鋼板122と、が回転子7bの軸方向で交互に積層された構成になっている。図8Aの例では、バランスウェイト12Cを構成する各鋼板として、8枚の第1鋼板121、及び、8枚の第2鋼板122が用いられているが、各鋼板の枚数はこれに限定されるものではない。
FIG. 8A is a perspective view of the balance weight 12C included in the compressor according to the second embodiment.
As shown in FIG. 8A, the balance weight 12C has a configuration in which the first steel plate 121 and the second steel plate 122 are alternately laminated in the axial direction of the rotor 7b. In the example of FIG. 8A, eight first steel plates 121 and eight second steel plates 122 are used as the steel plates constituting the balance weight 12C, but the number of each steel plate is limited to this. It's not a thing.
 前記したように、第1鋼板121には、切欠部12bやリベット貫通孔h4、突出部121c(第1リブ)が設けられるとともに、凹部12a(図4参照)を形成するための孔h5が設けられている。一方、第2鋼板122には、油逃がし孔h3やリベット貫通孔h4が設けられているが、切欠部12bや孔h5は設けられていない。 As described above, the first steel plate 121 is provided with a notch 12b, a rivet through hole h4, a protruding portion 121c (first rib), and a hole h5 for forming a recess 12a (see FIG. 4). Has been done. On the other hand, the second steel plate 122 is provided with an oil escape hole h3 and a rivet through hole h4, but is not provided with a notch 12b or a hole h5.
 このような構成のバランスウェイト12Cが回転子7b(図1参照)とともに回転すると、それぞれの第1鋼板121の切欠部12bの壁面(回転の向きとは逆側の側面)がミスト状の潤滑油に衝突し、バランスウェイト12Cから潤滑油に横方向の力が作用する。その結果、潤滑油の縦方向の流れが抑制され、ひいては、吐出パイプPb(図1参照)を介した潤滑油の流出が抑制される。 When the balance weight 12C having such a configuration rotates together with the rotor 7b (see FIG. 1), the wall surface (side surface opposite to the direction of rotation) of the notch portion 12b of each first steel plate 121 becomes a mist-like lubricating oil. A lateral force acts on the lubricating oil from the balance weight 12C. As a result, the vertical flow of the lubricating oil is suppressed, and by extension, the outflow of the lubricating oil through the discharge pipe Pb (see FIG. 1) is suppressed.
 さらに、図8Aに示すバランスウェイト12Cは、第1鋼板121と第2鋼板122とが軸方向で交互に積層されているため、第1実施形態(図4参照)よりもバランスウェイト12Cの表面積が大きくなっている。したがって、電動機7(図1参照)の駆動中、その表面張力でバランスウェイト12Cに付着する潤滑油の量が、第1実施形態よりも多くなる。その結果、バランスウェイト12Cの下側に浮遊するミスト状の潤滑油の量が少なくなり、固定子7a(図1参照)と回転子7b(図1参照)との間の隙間を介した潤滑油の吹き上げが生じにくくなる。したがって、吐出パイプPb(図1参照)を介した潤滑油の流出が抑制される。 Further, in the balance weight 12C shown in FIG. 8A, since the first steel plate 121 and the second steel plate 122 are alternately laminated in the axial direction, the surface area of the balance weight 12C is larger than that of the first embodiment (see FIG. 4). It's getting bigger. Therefore, during the driving of the motor 7 (see FIG. 1), the amount of lubricating oil adhering to the balance weight 12C due to its surface tension is larger than that in the first embodiment. As a result, the amount of mist-like lubricating oil floating under the balance weight 12C is reduced, and the lubricating oil is passed through the gap between the stator 7a (see FIG. 1) and the rotor 7b (see FIG. 1). It becomes difficult for the oil to blow up. Therefore, the outflow of lubricating oil through the discharge pipe Pb (see FIG. 1) is suppressed.
 また、図8Aに示すように、バランスウェイ12Cにおいて、回転子7b(図1参照)の軸方向で回転子7bに最も近い位置(つまり、上端部)には、第1鋼板121が設けられている。このような構成において、軸方向で回転子7b(図1参照)に最も近い位置の第1鋼板121の切欠部12bには、回転子7bに埋設されている永久磁石72b(磁石)を軸方向で投影した場合の領域R(図5A参照)が含まれていることが好ましい。これによって、バランスウェイト12Cを鉄材等の磁性体で構成した場合でも、回転子7bの永久磁石72bの磁束が、端板72d(図3参照)を介してバランスウェイト12C側に洩れることを抑制できる。 Further, as shown in FIG. 8A, in the balance way 12C, the first steel plate 121 is provided at a position (that is, the upper end portion) closest to the rotor 7b in the axial direction of the rotor 7b (see FIG. 1). There is. In such a configuration, a permanent magnet 72b (magnet) embedded in the rotor 7b is axially formed in the notch 12b of the first steel plate 121 located closest to the rotor 7b (see FIG. 1) in the axial direction. It is preferable that the region R (see FIG. 5A) when projected in is included. As a result, even when the balance weight 12C is made of a magnetic material such as an iron material, it is possible to prevent the magnetic flux of the permanent magnet 72b of the rotor 7b from leaking to the balance weight 12C side via the end plate 72d (see FIG. 3). ..
 図8Bは、圧縮機が備えるバランスウェイト12Cの裏側の斜視図である。
 すなわち、図8Bは、図8Aのバランスウェイト12Cを下側から斜め方向に見上げた斜視図である。図8の例では、バランスウェイト12Cにおいて、軸方向で回転子7bから最も遠い位置(つまり、下端部)には第2鋼板122が設置され、バランスウェイト12Cの下面が平面状になっている。
FIG. 8B is a perspective view of the back side of the balance weight 12C provided in the compressor.
That is, FIG. 8B is a perspective view of the balance weight 12C of FIG. 8A looking up obliquely from below. In the example of FIG. 8, in the balance weight 12C, the second steel plate 122 is installed at the position farthest from the rotor 7b in the axial direction (that is, the lower end portion), and the lower surface of the balance weight 12C is flat.
<効果>
 第2実施形態によれば、第1鋼板121と第2鋼板122とが軸方向で交互に積層された構成であるため、バランスウェイト12Cの表面積を大きくすることができる。したがって、電動機7(図1参照)の駆動中、バランスウェイト12Cに多くの潤滑油が付着し、バランスウェイト12Cの下側に浮遊するミスト状の潤滑油の量が少なくなる。これによって、固定子7a(図1参照)と回転子7b(図1参照)との間の隙間を介した潤滑油の吹き上げが生じにくくなり、ひいては、吐出パイプPb(図1参照)を介した潤滑油の流出が抑制される。
<Effect>
According to the second embodiment, since the first steel plate 121 and the second steel plate 122 are alternately laminated in the axial direction, the surface area of the balance weight 12C can be increased. Therefore, while the motor 7 (see FIG. 1) is being driven, a large amount of lubricating oil adheres to the balance weight 12C, and the amount of mist-like lubricating oil floating under the balance weight 12C is reduced. As a result, the lubricating oil is less likely to be blown up through the gap between the stator 7a (see FIG. 1) and the rotor 7b (see FIG. 1), and eventually through the discharge pipe Pb (see FIG. 1). The outflow of lubricating oil is suppressed.
≪第3実施形態≫
 第3実施形態は、バランスウェイト12D(図9A、図9B参照)の下部にも切欠部12d(第2切欠部)及びリブ12e(第2リブ)が設けられている点が、第1実施形態とは異なっている。なお、バランスウェイト12Dの上部・中間部の構成は、第1実施形態(図4参照)と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<< Third Embodiment >>
In the third embodiment, the notch portion 12d (second notch portion) and the rib 12e (second rib) are also provided in the lower portion of the balance weight 12D (see FIGS. 9A and 9B). Is different. The configuration of the upper and middle portions of the balance weight 12D is the same as that of the first embodiment (see FIG. 4). Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
 図9Aは、第3実施形態に係る圧縮機が備えるバランスウェイト12Dの斜視図である。
 図9Aに示すように、バランスウェイト12Dは、軸方向の下部に切欠部12d及びリブ12eを備えている。すなわち、バランスウェイト12Dは、バランスウェイト12Dの回転子7bとは反対側(つまり、下側)の外周縁部に設けられる3つの切欠部12d(第2切欠部)を備えている。複数の切欠部12dは、それぞれ、バランスウェイト12Dの周方向に設けられ、密閉容器1内の空間G1(図1参照)に開口している。また、周方向で隣り合う切欠部12dの間には、径方向に延びるリブ12e(第2リブ)が設けられている。
FIG. 9A is a perspective view of the balance weight 12D included in the compressor according to the third embodiment.
As shown in FIG. 9A, the balance weight 12D is provided with a notch 12d and a rib 12e at the lower part in the axial direction. That is, the balance weight 12D includes three notches 12d (second notch portions) provided on the outer peripheral edge portion on the opposite side (that is, the lower side) of the balance weight 12D to the rotor 7b. Each of the plurality of cutout portions 12d is provided in the circumferential direction of the balance weight 12D, and is open to the space G1 (see FIG. 1) in the closed container 1. Further, ribs 12e (second ribs) extending in the radial direction are provided between the notches 12d adjacent to each other in the circumferential direction.
 また、図9Aの例では、回転子7b(図1参照)の軸方向に投影した場合の切欠部12dの位置は、この切欠部12dの上側の別の切欠部12bの位置に略一致している。これによって、例えば、バランスウェイト12Dを積層鋼板で構成する場合、鋼板の種類が少なくてすむため、バランスウェイト12Dの製造コストを削減できる。具体的には、第1実施形態の第2の変形例(図7参照)で説明した第1鋼板121及び第2鋼板122を用いて、第1鋼板121、第2鋼板122、及び第1鋼板121を、この順で所定枚数ずつ軸方向で積層することで、図9Aに示すバランスウェイト12Dを製造できる。 Further, in the example of FIG. 9A, the position of the notch portion 12d when projected in the axial direction of the rotor 7b (see FIG. 1) substantially coincides with the position of another notch portion 12b above the notch portion 12d. There is. As a result, for example, when the balance weight 12D is made of laminated steel plates, the number of types of steel plates can be reduced, so that the manufacturing cost of the balance weight 12D can be reduced. Specifically, the first steel plate 121, the second steel plate 122, and the first steel plate are used by using the first steel plate 121 and the second steel plate 122 described in the second modification of the first embodiment (see FIG. 7). The balance weight 12D shown in FIG. 9A can be manufactured by laminating a predetermined number of 121 in this order in the axial direction.
 図9Bは、圧縮機が備えるバランスウェイト12Dの裏側の斜視図である。
 すなわち、図9Bは、バランスウェイト12Dを下側から斜め方向に見上げた斜視図である。図9Bの例では、バランスウェイト12Dの下面が平面状になっており、油逃がし孔h3及びリベット貫通孔h4が開口している。
FIG. 9B is a perspective view of the back side of the balance weight 12D included in the compressor.
That is, FIG. 9B is a perspective view of the balance weight 12D looking up obliquely from below. In the example of FIG. 9B, the lower surface of the balance weight 12D is flat, and the oil escape hole h3 and the rivet through hole h4 are opened.
<効果>
 第3実施形態によれば、バランスウェイト12Dの下部に切欠部12d及びリブ12eが設けられているため、回転子7b(図1参照)とともにバランスウェイト12Dが回転しているとき、上側の切欠部12b(図9A参照)の壁面の他、下側の切欠部12d(図9A参照)の壁面もミスト状の潤滑油に衝突する。その結果、バランスウェイト12Dから潤滑油に横方向の力が作用しやすくなり、潤滑油が縦方向に移動しにくくなる。したがって、潤滑油が縦方向に吹き上げられる流れが抑制されるため、吐出パイプPb(図1参照)を介した潤滑油の流出を抑制できる。
<Effect>
According to the third embodiment, since the notch portion 12d and the rib 12e are provided in the lower portion of the balance weight 12D, when the balance weight 12D is rotating together with the rotor 7b (see FIG. 1), the upper notch portion is provided. In addition to the wall surface of 12b (see FIG. 9A), the wall surface of the lower notch 12d (see FIG. 9A) also collides with the mist-like lubricating oil. As a result, a lateral force is likely to be applied to the lubricating oil from the balance weight 12D, and the lubricating oil is less likely to move in the vertical direction. Therefore, since the flow in which the lubricating oil is blown up in the vertical direction is suppressed, the outflow of the lubricating oil through the discharge pipe Pb (see FIG. 1) can be suppressed.
≪第4実施形態≫
 第4実施形態は、バランスウェイト12E(図10参照)が円筒状である点が、第1実施形態(図4参照)等とは異なっている。なお、回転子7bの中心軸線Zと平行な所定の平面K(図10参照)で円筒状のバランスウェイト12E(図10参照)を切断した場合の一方の部分は、第1実施形態(図4参照)と同様の構成になっている。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<< Fourth Embodiment >>
The fourth embodiment is different from the first embodiment (see FIG. 4) in that the balance weight 12E (see FIG. 10) is cylindrical. One portion of the case where the cylindrical balance weight 12E (see FIG. 10) is cut on a predetermined plane K (see FIG. 10) parallel to the central axis Z of the rotor 7b is the first embodiment (FIG. 4). It has the same configuration as (see). Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
 図10は、第4実施形態に係る圧縮機が備えるバランスウェイト12Eの平面図である。つまり、図10は、回転子7b側(図1参照)からバランスウェイト12Eを見下ろした場合の平面図である。また、図10では、回転子7bの永久磁石72b(図1参照)を軸方向に投影した場合の領域Rを破線で示している。 FIG. 10 is a plan view of the balance weight 12E included in the compressor according to the fourth embodiment. That is, FIG. 10 is a plan view when the balance weight 12E is looked down from the rotor 7b side (see FIG. 1). Further, in FIG. 10, the region R when the permanent magnet 72b (see FIG. 1) of the rotor 7b is projected in the axial direction is shown by a broken line.
 図10に示すように、バランスウェイト12Eは、円筒状を呈している。バランスウェイト12Eは、凹部12aと、切欠部12b,12fと、リブ12c,12gと、油逃がし孔h3と、リベット貫通孔h4と、肉抜き孔h6と、を備えている。
 前記したように、回転子7bの中心軸線Zに平行な所定の平面Kで円筒状のバランスウェイト12Eを切断した場合の一方の円弧状の部分S1は、第1実施形態(図4参照)と同様の構成である。したがって、以下では、主に、他方の円弧状の部分S2について説明するが、一方の部分S1についても言及することがある。
As shown in FIG. 10, the balance weight 12E has a cylindrical shape. The balance weight 12E includes recesses 12a, notches 12b and 12f, ribs 12c and 12g, oil escape holes h3, rivet through holes h4, and lightening holes h6.
As described above, one arcuate portion S1 when the cylindrical balance weight 12E is cut on a predetermined plane K parallel to the central axis Z of the rotor 7b is the same as that of the first embodiment (see FIG. 4). It has a similar configuration. Therefore, in the following, the other arcuate portion S2 will be mainly described, but one portion S1 may also be referred to.
 図10に示す例では、バランスウェイト12Eの外周面から径方向内側に凹んでなる3つの切欠部12b、及び、3つの切欠部12fが、周方向で略等間隔に設けられている。3つの切欠部12bは円弧状の部分S1に含まれている一方、残りの3つの切欠部12fは、円弧状の部分S2に含まれている。これらの切欠部12b,12fは、永久磁石72bを軸方向に投影した場合の領域Rを含むように配置されている。これによって、バランスウェイト12Eを鉄材等の磁性体で構成した場合でも、回転子7b(図3参照)の永久磁石72bの磁束が、端板72d(図3参照)を介してバランスウェイト12E側に洩れることを抑制できる。 In the example shown in FIG. 10, three notches 12b and three notches 12f recessed inward in the radial direction from the outer peripheral surface of the balance weight 12E are provided at substantially equal intervals in the circumferential direction. The three notches 12b are included in the arcuate portion S1, while the remaining three notches 12f are included in the arcuate portion S2. These notches 12b and 12f are arranged so as to include a region R when the permanent magnet 72b is projected in the axial direction. As a result, even when the balance weight 12E is made of a magnetic material such as an iron material, the magnetic flux of the permanent magnet 72b of the rotor 7b (see FIG. 3) is moved to the balance weight 12E side via the end plate 72d (see FIG. 3). Leakage can be suppressed.
 また、周方向で隣り合う切欠部12fの間には、径方向に延びるリブ12gが設けられている。このようにリブ12gを設けることで、潤滑油に横方向の力が作用しやすくなり、潤滑油の速度ベクトルの大きさに占める横方向の速度成分の比率が大きくなる。また、表面積が比較的大きいバランスウェイト12Eにミスト状の潤滑油が付着するため、電動機7(図1参照)の下側に浮遊するミスト状の潤滑油の量が少なくなる。したがって、固定子7a(図1参照)と回転子7b(図1参照)との間の隙間を介して上昇する潤滑油の量を少なくすることができる。 Further, ribs 12g extending in the radial direction are provided between the notches 12f adjacent to each other in the circumferential direction. By providing the ribs 12 g in this way, a lateral force is likely to act on the lubricating oil, and the ratio of the lateral velocity component to the magnitude of the velocity vector of the lubricating oil becomes large. Further, since the mist-like lubricating oil adheres to the balance weight 12E having a relatively large surface area, the amount of the mist-like lubricating oil floating on the lower side of the motor 7 (see FIG. 1) is reduced. Therefore, the amount of lubricating oil that rises through the gap between the stator 7a (see FIG. 1) and the rotor 7b (see FIG. 1) can be reduced.
 それぞれのリブ12gの所定位置には、リベット貫通孔h4が設けられている。また、バランスウェイト12Eに含まれる円弧状の部分S1には3つの凹部12aが設けられている一方、他方の円弧状の部分S2には肉抜き孔h6が設けられている。図10の例では、肉抜き孔h6の縁の形状が、凹部12aの縁の形状と同様になっているが、両者が異なっていてもよい。 A rivet through hole h4 is provided at a predetermined position of each rib 12 g. Further, the arc-shaped portion S1 included in the balance weight 12E is provided with three recesses 12a, while the other arc-shaped portion S2 is provided with a lightening hole h6. In the example of FIG. 10, the shape of the edge of the lightening hole h6 is the same as the shape of the edge of the recess 12a, but both may be different.
 これら3つの肉抜き孔h6は、一方の半円弧状の部分S1よりも他方の部分S2の重量を小さくする(つまり、部分S1,S2の慣性モーメントが異なるようにする)ために設けられている。それぞれの肉抜き孔h6は軸方向に貫通し、バランスウェイト12Eの回転子7b側(図1参照)で開口するとともに、回転子7bとは反対側でも開口している。また、他方の部分S2の軽量化を図るために、周方向で隣り合うリブ12gの間の切欠部12fは、バランスウェイト12Eにおける軸方向の全長に亘って設けられている。
 なお、バランスウェイト12Eにおいて、回転子7b(図1参照)とは反対側の面は、平面状であってもよいし、所定の凹凸形状が設けられていてもよい。
These three lightening holes h6 are provided in order to make the weight of the other portion S2 smaller than that of the one semicircular portion S1 (that is, the moments of inertia of the portions S1 and S2 are different). .. Each lightening hole h6 penetrates in the axial direction and opens on the rotor 7b side (see FIG. 1) of the balance weight 12E and also on the side opposite to the rotor 7b. Further, in order to reduce the weight of the other portion S2, the notch portion 12f between the ribs 12g adjacent to each other in the circumferential direction is provided over the entire length in the axial direction of the balance weight 12E.
The surface of the balance weight 12E opposite to the rotor 7b (see FIG. 1) may be flat or may be provided with a predetermined uneven shape.
<効果>
 電動機7(図1参照)の駆動中、表面積が比較的大きいバランスウェイト12Eにミスト状の潤滑油が付着し、また、切欠部12b,12fの壁面からミスト状の潤滑油に横方向の力が作用する。これによって、固定子7a(図1参照)と回転子7b(図1参照)との間の隙間を介して移動する潤滑油の量が少なくなるため、吐出パイプPb(図1参照)を介した潤滑油の流出を抑制できる。
<Effect>
While driving the motor 7 (see FIG. 1), the mist-like lubricating oil adheres to the balance weight 12E having a relatively large surface area, and a lateral force is applied to the mist-like lubricating oil from the wall surfaces of the notches 12b and 12f. It works. As a result, the amount of lubricating oil that moves through the gap between the stator 7a (see FIG. 1) and the rotor 7b (see FIG. 1) is reduced, so that the amount of lubricating oil moves through the discharge pipe Pb (see FIG. 1). The outflow of lubricating oil can be suppressed.
 また、永久磁石72bを軸方向に投影した場合の領域Rを含むように切欠部12b,12fが配置されている。したがって、バランスウェイト12Eを鉄材等の磁性体で構成した場合でも、回転子7b(図3参照)に埋設されている永久磁石72bの磁束が、端板72d(図3参照)を介して洩れることを抑制できる。 Further, the notches 12b and 12f are arranged so as to include the region R when the permanent magnet 72b is projected in the axial direction. Therefore, even when the balance weight 12E is made of a magnetic material such as an iron material, the magnetic flux of the permanent magnet 72b embedded in the rotor 7b (see FIG. 3) leaks through the end plate 72d (see FIG. 3). Can be suppressed.
≪第5実施形態≫
 第5実施形態では、圧縮機100(図11参照)を備える空気調和機W(図11参照)の構成について説明する。なお、圧縮機100の構成については、第1実施形態(図1参照)で説明したものと同様であるから説明を省略する。
<< Fifth Embodiment >>
In the fifth embodiment, the configuration of the air conditioner W (see FIG. 11) including the compressor 100 (see FIG. 11) will be described. Since the configuration of the compressor 100 is the same as that described in the first embodiment (see FIG. 1), the description thereof will be omitted.
 図11は、第5実施形態に係る空気調和機Wの構成図である。
 なお、図11の実線矢印は、暖房運転時における冷媒の流れを示している。
 また、図11の破線矢印は、冷房運転時における冷媒の流れを示している。
 空気調和機Wは、冷房や暖房等の空調を行う機器である。図11に示すように、空気調和機Wは、圧縮機100と、室外熱交換器Eoと、室外ファンFoと、膨張弁Veと、四方弁Vfと、室内熱交換器Eiと、室内ファンFiと、を備えている。
FIG. 11 is a configuration diagram of the air conditioner W according to the fifth embodiment.
The solid line arrow in FIG. 11 indicates the flow of the refrigerant during the heating operation.
Further, the broken line arrow in FIG. 11 indicates the flow of the refrigerant during the cooling operation.
The air conditioner W is a device that performs air conditioning such as cooling and heating. As shown in FIG. 11, the air conditioner W includes a compressor 100, an outdoor heat exchanger Eo, an outdoor fan Fo, an expansion valve Ve, a four-way valve Vf, an indoor heat exchanger Ei, and an indoor fan Fi. And have.
 図11に示す例では、圧縮機100、室外熱交換器Eo、室外ファンFo、膨張弁Ve、及び四方弁Vfが、室外機Woに設けられている。一方、室内熱交換器Ei及び室内ファンFiは、室内機Wiに設けられている。 In the example shown in FIG. 11, the compressor 100, the outdoor heat exchanger Eo, the outdoor fan Fo, the expansion valve Ve, and the four-way valve Vf are provided in the outdoor unit Wo. On the other hand, the indoor heat exchanger Ei and the indoor fan Fi are provided in the indoor unit Wi.
 圧縮機100は、ガス状の冷媒を圧縮する機器であり、第1実施形態(図1参照)と同様の構成を備えている。
 室外熱交換器Eoは、その伝熱管(図示せず)を通流する冷媒と、室外ファンFoから送り込まれる外気と、の間で熱交換が行われる熱交換器である。
The compressor 100 is a device that compresses a gaseous refrigerant, and has the same configuration as that of the first embodiment (see FIG. 1).
The outdoor heat exchanger Eo is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan Fo.
 室外ファンFoは、室外ファンモータMoの駆動によって、室外熱交換器Eoに外気を送り込むファンであり、室外熱交換器Eoの付近に設置されている。 The outdoor fan Fo is a fan that sends outside air to the outdoor heat exchanger Eo by driving the outdoor fan motor Mo, and is installed near the outdoor heat exchanger Eo.
 室内熱交換器Eiは、その伝熱管(図示せず)を通流する冷媒と、室内ファンFiから送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。
 室内ファンFiは、室内ファンモータMiの駆動によって、室内熱交換器Eiに室内空気を送り込むファンであり、室内熱交換器Eiの付近に設置されている。
The indoor heat exchanger Ei is a heat exchanger in which heat is exchanged between the refrigerant passing through the heat transfer tube (not shown) and the indoor air (air in the air conditioning target space) sent from the indoor fan Fi. Is.
The indoor fan Fi is a fan that sends indoor air to the indoor heat exchanger Ei by driving the indoor fan motor Mi, and is installed in the vicinity of the indoor heat exchanger Ei.
 膨張弁Veは、「凝縮器」(室外熱交換器Eo及び室内熱交換器Eiの一方)で凝縮した冷媒を減圧する機能を有している。なお、膨張弁Veによって減圧された冷媒は、「蒸発器」(室外熱交換器Eo及び室内熱交換器Eiの他方)に導かれる。 The expansion valve Ve has a function of reducing the pressure of the refrigerant condensed by the "condenser" (one of the outdoor heat exchanger Eo and the indoor heat exchanger Ei). The refrigerant decompressed by the expansion valve Ve is guided to an "evaporator" (the other of the outdoor heat exchanger Eo and the indoor heat exchanger Ei).
 四方弁Vfは、空気調和機Wの運転モードに応じて、冷媒の流路を切り替える弁である。なお、圧縮機100、室外ファンFo、膨張弁Ve、室内ファンFi等の機器は、制御装置(図示せず)からの指令に基づいて駆動する。 The four-way valve Vf is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner W. Devices such as the compressor 100, the outdoor fan Fo, the expansion valve Ve, and the indoor fan Fi are driven based on a command from a control device (not shown).
 例えば、冷房運転時(図11の破線矢印を参照)には、圧縮機100、室外熱交換器Eo(凝縮器)、膨張弁Ve、及び室内熱交換器Ei(蒸発器)を順次に介して循環する。
 一方、暖房運転時(図11の実線矢印を参照)には、圧縮機100、室内熱交換器Ei(凝縮器)、膨張弁Ve、及び室外熱交換器Eo(蒸発器)を順次に介して、冷媒が循環する。このように、圧縮機100、「凝縮器」、膨張弁Ve、及び「蒸発器」を順次に介して、冷凍サイクルで冷媒が循環する冷媒回路Qにおいて、「凝縮器」及び「蒸発器」の一方は室外熱交換器Eoであり、他方は室内熱交換器Eiである。
For example, during the cooling operation (see the broken arrow in FIG. 11), the compressor 100, the outdoor heat exchanger Eo (condenser), the expansion valve Ve, and the indoor heat exchanger Ei (evaporator) are sequentially passed through. Circulate.
On the other hand, during the heating operation (see the solid line arrow in FIG. 11), the compressor 100, the indoor heat exchanger Ei (condenser), the expansion valve Ve, and the outdoor heat exchanger Eo (evaporator) are sequentially passed through. , Refrigerant circulates. In this way, in the refrigerant circuit Q in which the refrigerant circulates in the refrigeration cycle via the compressor 100, the "condenser", the expansion valve Ve, and the "evaporator" in that order, the "condenser" and the "evaporator" One is the outdoor heat exchanger Eo and the other is the indoor heat exchanger Ei.
<効果>
 第5実施形態によれば、圧縮機100からの潤滑油の流出を抑制することで、信頼性が高く、また、運転効率の高い空気調和機Wを提供できる。
<Effect>
According to the fifth embodiment, by suppressing the outflow of the lubricating oil from the compressor 100, it is possible to provide the air conditioner W having high reliability and high operating efficiency.
≪変形例≫
 以上、本発明に係る圧縮機100等について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、各実施形態では、回転子7b(図1参照)の下側にバランスウェイト12が設けられる構成について説明したが、これに限らない。すなわち、回転子7bの上側にバランスウェイト(図示せず)を設けてもよいし、また、軸方向において回転子7bの両側にバランスウェイトを設けてもよい。また、回転子7bの軸方向において、吐出パイプPb(図1参照)とは反対側にバランスウェイト12を設け、吐出パイプPb側にはバランスウェイト(図示せず)を設けない構成であってもよい。
≪Modification example≫
Although the compressor 100 and the like according to the present invention have been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.
For example, in each embodiment, the configuration in which the balance weight 12 is provided on the lower side of the rotor 7b (see FIG. 1) has been described, but the present invention is not limited to this. That is, balance weights (not shown) may be provided on the upper side of the rotor 7b, or balance weights may be provided on both sides of the rotor 7b in the axial direction. Further, even if the balance weight 12 is provided on the side opposite to the discharge pipe Pb (see FIG. 1) in the axial direction of the rotor 7b and the balance weight (not shown) is not provided on the discharge pipe Pb side. Good.
 また、各実施形態では、凹部12a(図4参照)に設けられる油逃がし孔h3が軸方向にバランスウェイト12を貫通する構成について説明したが、これに限らない。すなわち、凹部12aの周壁面122a(図4参照)から径方向に設けられた油逃がし孔(図示せず)を介して、凹部12aに溜まった油を遠心力でバランスウェイト12の外側に逃がす構成であってもよい。つまり、バランスウェイト12が、凹部12aから回転子7bを貫通している油逃がし孔(第1孔)を有する構成であってもよい。このような構成において、凹部12aと切欠部12bを径方向で連通させるように、油逃がし孔(又は、径方向のスリット)が設けられていてもよい。 Further, in each embodiment, the configuration in which the oil relief hole h3 provided in the recess 12a (see FIG. 4) penetrates the balance weight 12 in the axial direction has been described, but the present invention is not limited to this. That is, the oil accumulated in the recess 12a is released to the outside of the balance weight 12 by centrifugal force from the peripheral wall surface 122a (see FIG. 4) of the recess 12a through the oil relief hole (not shown) provided in the radial direction. It may be. That is, the balance weight 12 may have an oil escape hole (first hole) penetrating the rotor 7b from the recess 12a. In such a configuration, an oil escape hole (or a slit in the radial direction) may be provided so that the recess 12a and the notch 12b communicate with each other in the radial direction.
 また、各実施形態では、バランスウェイト12が鉄材で構成される例について説明したが、これに限らない。例えば、鉄合金や酸化鉄の他、フェライト、オキサイドといった磁性体でバランスウェイト12が構成されていてもよい。また、真鍮(黄銅)やステンレスといった非磁性体でバランスウェイト12が構成されていてもよい。このような場合でも、各実施形態の構成によって、圧縮機100から潤滑油が流出することを抑制できる。 Further, in each embodiment, an example in which the balance weight 12 is made of an iron material has been described, but the present invention is not limited to this. For example, in addition to iron alloy and iron oxide, the balance weight 12 may be composed of a magnetic material such as ferrite or oxide. Further, the balance weight 12 may be composed of a non-magnetic material such as brass (brass) or stainless steel. Even in such a case, it is possible to prevent the lubricating oil from flowing out from the compressor 100 depending on the configuration of each embodiment.
 また、バランスウェイト12の凹部12aや切欠部12bの形状や個数は、各実施形態で説明されたものに限定されず、適宜に変更可能である。また、バランスウェイト12から凹部12aを省略し、バランスウェイト12に複数の切欠部12bが設けられた構成であってもよい。このような構成でも、圧縮機100からの潤滑油の流出を抑制できる。 Further, the shape and number of the recesses 12a and the notches 12b of the balance weight 12 are not limited to those described in each embodiment, and can be changed as appropriate. Further, the balance weight 12 may be configured by omitting the recess 12a and providing the balance weight 12 with a plurality of notches 12b. Even with such a configuration, the outflow of lubricating oil from the compressor 100 can be suppressed.
 また、各実施形態では、回転子7b(図3参照)の永久磁石72bを軸方向に投影した領域R(図5A参照)が切欠部12bに含まれる構成について説明したが、これに限らない。すなわち、永久磁石72bの位置とは無関係に切欠部12bが配置されていてもよい。 Further, in each embodiment, the configuration in which the region R (see FIG. 5A) on which the permanent magnet 72b of the rotor 7b (see FIG. 3) is projected in the axial direction is included in the notch portion 12b has been described, but the present invention is not limited to this. That is, the notch portion 12b may be arranged regardless of the position of the permanent magnet 72b.
 また、第2実施形態(図8A参照)では、積層鋼板を含むバランスウェイト12Cにおいて、回転子7b(図1参照)に最も近い上端に第1鋼板121が配置される一方、回転子7bから最も遠い下端に第2鋼板122が配置される構成について説明したが、これに限らない。例えば、回転子7bに最も近い上端に第2鋼板122が配置されてもよいし、また、回転子7bから最も遠い下端に第1鋼板121が配置されてもよい。 Further, in the second embodiment (see FIG. 8A), in the balance weight 12C including the laminated steel plate, the first steel plate 121 is arranged at the upper end closest to the rotor 7b (see FIG. 1), while the rotor 7b is the most. The configuration in which the second steel plate 122 is arranged at the far lower end has been described, but the present invention is not limited to this. For example, the second steel plate 122 may be arranged at the upper end closest to the rotor 7b, or the first steel plate 121 may be arranged at the lower end farthest from the rotor 7b.
 また、第2実施形態(図8A参照)では、第1鋼板121及び第2鋼板122が一枚ずつ積層されたバランスウェイト12Cについて説明したが、複数枚ずつの積層であってもよい。すなわち、バランスウェイト12Cは、少なくとも一枚の第1鋼板121と、少なくとも一枚の第2鋼板122と、が回転子7b(図1参照)の軸方向に交互に積層されてなる構成であってもよい。 Further, in the second embodiment (see FIG. 8A), the balance weight 12C in which the first steel plate 121 and the second steel plate 122 are laminated one by one has been described, but a plurality of sheets may be laminated. That is, the balance weight 12C has a configuration in which at least one first steel plate 121 and at least one second steel plate 122 are alternately laminated in the axial direction of the rotor 7b (see FIG. 1). May be good.
 また、第3実施形態(図9A参照)では、バランスウェイト12Dが切欠部12b(第1切欠部)及び切欠部12d(第2切欠部)を備える構成について説明したが、一方の切欠部12bを省略してもよい。 Further, in the third embodiment (see FIG. 9A), the configuration in which the balance weight 12D includes the notch portion 12b (first notch portion) and the notch portion 12d (second notch portion) has been described, but one notch portion 12b is provided. It may be omitted.
 また、各実施形態は、適宜に組み合わせることができる。例えば、第1実施形態の第2の変形例(図7参照)と第3実施形態(図9A参照)とを組み合わせ、バランスウェイト12Dを積層鋼板で構成するようにしてもよい。
 また、例えば、第1実施形態の第1の変形例(図6参照)と第2実施形態(図8A、図8B参照)とを組み合わせ、バランスウェイト12Cの油逃がし孔h3が、回転子7bの回転する向きとは反対側に設けられるようにしてもよい。
 また、例えば、第2実施形態(図8A参照)と第5実施形態(図11参照)とを組み合わせ、空気調和機Wが、バランスウェイト12Cを有する圧縮機100を備えるようにしてもよい。
In addition, each embodiment can be combined as appropriate. For example, the balance weight 12D may be made of a laminated steel plate by combining the second modification (see FIG. 7) and the third embodiment (see FIG. 9A) of the first embodiment.
Further, for example, by combining the first modification (see FIG. 6) and the second embodiment (see FIGS. 8A and 8B) of the first embodiment, the oil relief hole h3 of the balance weight 12C is formed on the rotor 7b. It may be provided on the side opposite to the direction of rotation.
Further, for example, the second embodiment (see FIG. 8A) and the fifth embodiment (see FIG. 11) may be combined so that the air conditioner W includes the compressor 100 having the balance weight 12C.
 また、各実施形態では、スクロール式の圧縮機100(図1参照)について説明したが、これに限らない。すなわち、各実施形態の構成は、ロータリ式等のさまざまな種類の圧縮機にも適用できる。
 また、各実施形態では、圧縮機100が縦置きである場合について説明したが、これに限らない。すなわち、圧縮機100が横置きや斜め置きで配置される場合にも、各実施形態を適用できる。
 また、各実施形態では、バランスウェイト12(図4参照)の凹部12aに油逃がし孔h3が設けられる構成について説明したが、油逃がし孔h3を省略してもよい。また、隣り合う凹部12a,12aを周方向で連通させてもよい。また、隣り合う切欠部12b,12bを周方向で連通させてもよい。
Further, in each embodiment, the scroll type compressor 100 (see FIG. 1) has been described, but the present invention is not limited to this. That is, the configuration of each embodiment can be applied to various types of compressors such as rotary type compressors.
Further, in each embodiment, the case where the compressor 100 is installed vertically has been described, but the present invention is not limited to this. That is, each embodiment can be applied even when the compressor 100 is arranged horizontally or diagonally.
Further, in each embodiment, the configuration in which the oil relief hole h3 is provided in the recess 12a of the balance weight 12 (see FIG. 4) has been described, but the oil relief hole h3 may be omitted. Further, the adjacent recesses 12a and 12a may be communicated with each other in the circumferential direction. Further, the adjacent notches 12b and 12b may be communicated with each other in the circumferential direction.
 また、第5実施形態で説明した空気調和機W(図11参照)は、ルームエアコンやパッケージエアコンの他、ビル用マルチエアコンといったさまざまな種類の空気調和機に適用できる。また、冷凍機や給湯機、給湯空調システム、冷蔵庫といった冷凍サイクル装置にも各実施形態を適用可能である。 Further, the air conditioner W (see FIG. 11) described in the fifth embodiment can be applied to various types of air conditioners such as room air conditioners, package air conditioners, and multi air conditioners for buildings. Further, each embodiment can be applied to a refrigerating cycle device such as a refrigerator, a water heater, a hot water air conditioning system, and a refrigerator.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Further, each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
In addition, the above-mentioned mechanism and configuration show what is considered necessary for explanation, and do not necessarily show all the mechanisms and configurations in the product.
 1 密閉容器
 2 圧縮機構部
 4 クランク軸(駆動軸)
 7 電動機
 7a 固定子
 7b 回転子
 72b 永久磁石(磁石)
 12,12A,12B,12C,12D,12E バランスウェイト
 12a 凹部
 12b 切欠部(第1切欠部)
 12c リブ(第1リブ)
 12d 切欠部(第2切欠部)
 12e リブ(第2リブ)
 121 第1鋼板(鋼板)
 122 第2鋼板(鋼板)
 100 圧縮機
 Eo 室外熱交換器(凝縮器/蒸発器)
 Ei 室内熱交換器(蒸発器/凝縮器)
 G1 空間(密閉容器内の空間)
 Ga 空間(凹部と回転子との間の空間)
 Gb 空隙
 h3 油逃がし孔(第1孔)
 J 中間円弧(凹部の中間位置の点の集合)
 R 領域(磁石を回転子の軸方向に投影した場合の領域)
 Q 冷媒回路
 Ve 膨張弁
 W 空気調和機
1 Closed container 2 Compression mechanism 4 Crankshaft (drive shaft)
7 Motor 7a Stator 7b Rotor 72b Permanent magnet (magnet)
12, 12A, 12B, 12C, 12D, 12E Balance weight 12a Recess 12b Notch (first notch)
12c rib (1st rib)
12d notch (second notch)
12e rib (second rib)
121 First steel plate (steel plate)
122 Second steel plate (steel plate)
100 Compressor Eo Outdoor Heat Exchanger (Condenser / Evaporator)
Ei Indoor Heat Exchanger (Evaporator / Condenser)
G1 space (space inside a closed container)
Ga space (space between the recess and the rotor)
Gb void h3 oil escape hole (first hole)
J Intermediate arc (set of points at intermediate positions of recesses)
R region (region when the magnet is projected in the axial direction of the rotor)
Q Refrigerant circuit Ve expansion valve W air conditioner

Claims (14)

  1.  固定子及び回転子を有する電動機と、
     前記回転子と一体で回転する駆動軸と、
     前記駆動軸の回転に伴って、冷媒を圧縮する圧縮機構部と、
     前記回転子に設置される円弧状又は円筒状のバランスウェイトと、
     前記電動機、前記駆動軸、前記圧縮機構部、及び前記バランスウェイトを少なくとも収容し、潤滑油が封入されている密閉容器と、を備え、
     前記バランスウェイトは、外周面から径方向内側に凹んでなる複数の切欠部を有し、
     複数の前記切欠部は、それぞれ、前記バランスウェイトの周方向に設けられ、前記密閉容器内の空間に開口している圧縮機。
    An electric motor with a stator and a rotor,
    A drive shaft that rotates integrally with the rotor,
    A compression mechanism that compresses the refrigerant as the drive shaft rotates,
    An arc-shaped or cylindrical balance weight installed on the rotor,
    The motor, the drive shaft, the compression mechanism, and a closed container containing at least the balance weight and containing lubricating oil are provided.
    The balance weight has a plurality of notches recessed inward in the radial direction from the outer peripheral surface.
    A compressor in which the plurality of notches are provided in the circumferential direction of the balance weight and are open to the space in the closed container.
  2.  それぞれの前記切欠部において、前記回転子の中心軸線に最も近い壁面は、前記バランスウェイトの内周面よりも径方向外側に位置していること
     を特徴とする請求項1に記載の圧縮機。
    The compressor according to claim 1, wherein the wall surface closest to the central axis of the rotor in each of the notches is located radially outside the inner peripheral surface of the balance weight.
  3.  複数の前記切欠部には、前記バランスウェイトの前記回転子側の外周縁部に設けられる複数の第1切欠部が含まれ、
     周方向で隣り合う前記第1切欠部の間には、径方向に延びる第1リブが設けられていること
     を特徴とする請求項1に記載の圧縮機。
    The plurality of notches include a plurality of first notches provided on the outer peripheral edge of the balance weight on the rotor side.
    The compressor according to claim 1, wherein a first rib extending in the radial direction is provided between the first notches adjacent to each other in the circumferential direction.
  4.  前記バランスウェイトは、前記回転子側の端面から前記回転子の軸方向に凹んでなる凹部を有し、
     前記凹部は、前記切欠部の径方向内側に設けられ、
     前記凹部と前記切欠部とが径方向で並んでいること
     を特徴とする請求項1に記載の圧縮機。
    The balance weight has a recess formed in the axial direction of the rotor from the end face on the rotor side.
    The recess is provided inside the notch in the radial direction.
    The compressor according to claim 1, wherein the recess and the notch are arranged in the radial direction.
  5.  前記バランスウェイトは、前記回転子側の端面から前記回転子の軸方向に凹んでなる凹部を有し、
     前記バランスウェイトの前記回転子側の前記端面は、前記凹部の周囲において前記回転子に接触していること
     を特徴とする請求項1に記載の圧縮機。
    The balance weight has a recess formed in the axial direction of the rotor from the end face on the rotor side.
    The compressor according to claim 1, wherein the end face of the balance weight on the rotor side is in contact with the rotor around the recess.
  6.  前記凹部に設けられ、前記凹部から前記回転子を貫通している第1孔を有し、
     前記第1孔は、前記凹部と前記回転子との間の空間に開口するとともに、前記密閉容器内の空間にも開口していること
     を特徴とする請求項5に記載の圧縮機。
    It has a first hole provided in the recess and penetrating the rotor from the recess.
    The compressor according to claim 5, wherein the first hole opens in a space between the recess and the rotor and also in a space in the closed container.
  7.  前記第1孔は、径方向における前記凹部の中間位置よりも径方向外側に設けられていること
     を特徴とする請求項6に記載の圧縮機。
    The compressor according to claim 6, wherein the first hole is provided radially outside the intermediate position of the recess in the radial direction.
  8.  前記第1孔は、前記凹部内において、周方向で前記回転子が回転する向きとは反対側に設けられていること
     を特徴とする請求項6に記載の圧縮機。
    The compressor according to claim 6, wherein the first hole is provided in the recess on the side opposite to the direction in which the rotor rotates in the circumferential direction.
  9.  前記第1リブの前記回転子側の端面は、前記回転子に接触しており、
     前記第1リブの径方向外側の壁面は、前記バランスウェイトの前記外周面と面一であること
     を特徴とする請求項3に記載の圧縮機。
    The end face of the first rib on the rotor side is in contact with the rotor.
    The compressor according to claim 3, wherein the radial outer wall surface of the first rib is flush with the outer peripheral surface of the balance weight.
  10.  前記バランスウェイトは、前記回転子の軸方向に積層された複数の鋼板を有し、
     複数の前記鋼板には、少なくとも前記切欠部が設けられた第1鋼板と、前記切欠部が設けられていない第2鋼板と、が含まれていること
     を特徴とする請求項1に記載の圧縮機。
    The balance weight has a plurality of steel plates laminated in the axial direction of the rotor, and has a plurality of steel plates.
    The compression according to claim 1, wherein the plurality of the steel plates include at least a first steel plate provided with the notch portion and a second steel plate not provided with the notch portion. Machine.
  11.  前記バランスウェイトは、少なくとも一枚の前記第1鋼板と、少なくとも一枚の前記第2鋼板と、が前記回転子の軸方向に交互に積層されてなること
     を特徴とする請求項10に記載の圧縮機。
    10. The balance weight according to claim 10, wherein at least one of the first steel plates and at least one of the second steel plates are alternately laminated in the axial direction of the rotor. Compressor.
  12.  前記バランスウェイトにおいて、前記回転子の軸方向で当該回転子に最も近い位置には、前記第1鋼板が設けられ、
     軸方向で前記回転子に最も近い位置の前記第1鋼板の前記切欠部には、前記回転子に埋設されている磁石を軸方向で投影した場合の領域が含まれていること
     を特徴とする請求項10に記載の圧縮機。
    In the balance weight, the first steel plate is provided at a position closest to the rotor in the axial direction of the rotor.
    The notch portion of the first steel plate at a position closest to the rotor in the axial direction includes a region when a magnet embedded in the rotor is projected in the axial direction. The compressor according to claim 10.
  13.  複数の前記切欠部には、前記バランスウェイトの前記回転子とは反対側の外周縁部に設けられる複数の第2切欠部がさらに含まれ、
     周方向で隣り合う前記第2切欠部の間には、径方向に延びる第2リブが設けられること
     を特徴とする請求項1に記載の圧縮機。
    The plurality of notches further include a plurality of second notches provided on the outer peripheral edge of the balance weight opposite to the rotor.
    The compressor according to claim 1, wherein a second rib extending in the radial direction is provided between the second notches adjacent to each other in the circumferential direction.
  14.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して、冷媒が循環する冷媒回路を含み、
     前記圧縮機は、
     固定子及び回転子を有する電動機と、
     前記回転子と一体で回転する駆動軸と、
     前記駆動軸の回転に伴って、冷媒を圧縮する圧縮機構部と、
     前記回転子に設置される円弧状又は円筒状のバランスウェイトと、
     前記電動機、前記駆動軸、前記圧縮機構部、及び前記バランスウェイトを少なくとも収容し、潤滑油が封入されている密閉容器と、を備え、
     前記バランスウェイトは、外周面から径方向内側に凹んでなる複数の切欠部を有し、
     複数の前記切欠部は、それぞれ、前記バランスウェイトの周方向に設けられ、前記密閉容器内の空間に開口している空気調和機。
    Includes a refrigerant circuit in which the refrigerant circulates sequentially through the compressor, condenser, expansion valve, and evaporator.
    The compressor
    An electric motor with a stator and a rotor,
    A drive shaft that rotates integrally with the rotor,
    A compression mechanism that compresses the refrigerant as the drive shaft rotates,
    An arc-shaped or cylindrical balance weight installed on the rotor,
    The motor, the drive shaft, the compression mechanism, and a closed container containing at least the balance weight and containing lubricating oil are provided.
    The balance weight has a plurality of notches recessed inward in the radial direction from the outer peripheral surface.
    An air conditioner in which the plurality of notches are provided in the circumferential direction of the balance weight and are open to the space in the closed container.
PCT/JP2019/044481 2019-11-13 2019-11-13 Compressor and air conditioner WO2021095151A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202211076594.5A CN115324899B (en) 2019-11-13 2019-11-13 Compressor and air conditioner
PCT/JP2019/044481 WO2021095151A1 (en) 2019-11-13 2019-11-13 Compressor and air conditioner
CN201980100738.6A CN114450488B (en) 2019-11-13 2019-11-13 Compressor and air conditioner
JP2020513662A JP6772399B1 (en) 2019-11-13 2019-11-13 Compressor and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044481 WO2021095151A1 (en) 2019-11-13 2019-11-13 Compressor and air conditioner

Publications (1)

Publication Number Publication Date
WO2021095151A1 true WO2021095151A1 (en) 2021-05-20

Family

ID=72829246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044481 WO2021095151A1 (en) 2019-11-13 2019-11-13 Compressor and air conditioner

Country Status (3)

Country Link
JP (1) JP6772399B1 (en)
CN (2) CN114450488B (en)
WO (1) WO2021095151A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022144967A1 (en) * 2020-12-28 2022-07-07

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514585U (en) * 1991-06-24 1993-02-26 株式会社東芝 Hermetic compressor
JP2000134882A (en) * 1998-10-21 2000-05-12 Matsushita Electric Ind Co Ltd Rotor of permanent magnet motor and compressor mounting it
JP2000265956A (en) * 1999-03-15 2000-09-26 Sanyo Electric Co Ltd Rotor of motor for compressor
JP2002317775A (en) * 2001-04-20 2002-10-31 Fujitsu General Ltd Scroll compressor
JP2010151070A (en) * 2008-12-26 2010-07-08 Sanden Corp Scroll fluid machine
JP2012047060A (en) * 2010-08-24 2012-03-08 Daikin Industries Ltd Compressor
JP2013036372A (en) * 2011-08-05 2013-02-21 Daikin Industries Ltd Compressor
JP2014080939A (en) * 2012-10-18 2014-05-08 Hitachi Appliances Inc Hermetic electric compressor and freezing air conditioner using the same
JP2016086608A (en) * 2014-10-29 2016-05-19 ダイキン工業株式会社 Motor and compressor employing the same
WO2017130565A1 (en) * 2016-01-26 2017-08-03 東芝キヤリア株式会社 Hermetic-type compressor and refrigeration cycle apparatus
WO2018131088A1 (en) * 2017-01-11 2018-07-19 三菱電機株式会社 Compressor
JP2018119437A (en) * 2017-01-24 2018-08-02 東芝キヤリア株式会社 Hermetic type compressor and refrigeration cycle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320575B2 (en) * 2015-01-26 2018-05-09 三菱電機株式会社 Electric compressor
US20190154037A1 (en) * 2017-11-21 2019-05-23 Emerson Climate Technologies, Inc. Compressor Having Counterweight

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514585U (en) * 1991-06-24 1993-02-26 株式会社東芝 Hermetic compressor
JP2000134882A (en) * 1998-10-21 2000-05-12 Matsushita Electric Ind Co Ltd Rotor of permanent magnet motor and compressor mounting it
JP2000265956A (en) * 1999-03-15 2000-09-26 Sanyo Electric Co Ltd Rotor of motor for compressor
JP2002317775A (en) * 2001-04-20 2002-10-31 Fujitsu General Ltd Scroll compressor
JP2010151070A (en) * 2008-12-26 2010-07-08 Sanden Corp Scroll fluid machine
JP2012047060A (en) * 2010-08-24 2012-03-08 Daikin Industries Ltd Compressor
JP2013036372A (en) * 2011-08-05 2013-02-21 Daikin Industries Ltd Compressor
JP2014080939A (en) * 2012-10-18 2014-05-08 Hitachi Appliances Inc Hermetic electric compressor and freezing air conditioner using the same
JP2016086608A (en) * 2014-10-29 2016-05-19 ダイキン工業株式会社 Motor and compressor employing the same
WO2017130565A1 (en) * 2016-01-26 2017-08-03 東芝キヤリア株式会社 Hermetic-type compressor and refrigeration cycle apparatus
WO2018131088A1 (en) * 2017-01-11 2018-07-19 三菱電機株式会社 Compressor
JP2018119437A (en) * 2017-01-24 2018-08-02 東芝キヤリア株式会社 Hermetic type compressor and refrigeration cycle device

Also Published As

Publication number Publication date
CN115324899B (en) 2024-10-29
JP6772399B1 (en) 2020-10-21
CN114450488B (en) 2022-10-21
CN114450488A (en) 2022-05-06
JPWO2021095151A1 (en) 2021-11-25
CN115324899A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
JP6584513B2 (en) Rotor, rotating electrical machine, electric compressor and refrigeration air conditioner
JP5490251B2 (en) Induction motor rotor, induction motor, compressor, blower and air conditioner
JP3143327B2 (en) Hermetic rotary compressor
JP7510890B2 (en) Compressors and air conditioners
JP2017028862A (en) Rotor, rotary electric machine, electrically-driven compressor and refrigeration air conditioner
JP6772399B1 (en) Compressor and air conditioner
JP2011241750A (en) Hermetic compressor
JP2012246819A (en) Compressor and refrigerating cycle apparatus
JP7454477B2 (en) Compressor and air conditioner
JP7361921B2 (en) Electric motors, compressors and refrigeration cycle equipment
JP2001218411A (en) Motor for driving hermetic sealed compressor
JP7445623B2 (en) Scroll compressor and refrigeration cycle equipment
JP7228730B1 (en) Rotary compressor and air conditioner
JP7157274B2 (en) Scroll compressor and refrigeration cycle device
WO2024218928A1 (en) Compressor and refrigeration cycle device
WO2024147190A1 (en) Rotor of electric motor, electric motor, compressor, and refrigeration cycle device
JP6987295B1 (en) Scroll compressor and refrigeration cycle device
WO2024209552A1 (en) Rotor, electric motor, hermetic compressor, and refrigeration cycle device
JP5157148B2 (en) Compressor
JP2022047333A (en) Rotary compressor and refrigerator
WO2020225872A1 (en) Electric motor stator, electric motor, hermetic compressor, and refrigeration cycle device
JPWO2020039489A1 (en) Compressor and refrigeration cycle apparatus including the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020513662

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952442

Country of ref document: EP

Kind code of ref document: A1