WO2020225872A1 - Electric motor stator, electric motor, hermetic compressor, and refrigeration cycle device - Google Patents

Electric motor stator, electric motor, hermetic compressor, and refrigeration cycle device Download PDF

Info

Publication number
WO2020225872A1
WO2020225872A1 PCT/JP2019/018380 JP2019018380W WO2020225872A1 WO 2020225872 A1 WO2020225872 A1 WO 2020225872A1 JP 2019018380 W JP2019018380 W JP 2019018380W WO 2020225872 A1 WO2020225872 A1 WO 2020225872A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
winding
stator
electric motor
end insulator
Prior art date
Application number
PCT/JP2019/018380
Other languages
French (fr)
Japanese (ja)
Inventor
諒 石田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/018380 priority Critical patent/WO2020225872A1/en
Priority to JP2021518248A priority patent/JP7170855B2/en
Publication of WO2020225872A1 publication Critical patent/WO2020225872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation

Definitions

  • the present invention relates to a stator of an electric motor having a through groove in the core back of the stator core, an electric motor, a closed compressor, and a refrigeration cycle device.
  • the electric motor part has a rotor and a stator.
  • the rotor is connected to the compression mechanism via a spindle.
  • the stator is fixed to a closed container by a method such as shrink fitting.
  • the compression mechanism unit compresses the refrigerant and supplies the compressed refrigerant to a refrigeration cycle device provided outside the closed container. During the supply process of the refrigerant compressed by the compression mechanism, the refrigerant may entrain the lubricating oil of the compression mechanism and pass through the space of the electric motor.
  • the stator windings are exposed to the high temperature gas refrigerant compressed by the compression mechanism.
  • the winding of the stator heats itself by the secondary current.
  • the winding of the stator becomes a high temperature state. Therefore, the winding of the stator is a target to be cooled from the viewpoint of the heat resistant temperature of the winding or the winding resistance.
  • the upper limit of the discharge temperature is 115 ° C
  • the upper limit of the heat resistant temperature of the winding is 130 ° C.
  • the discharge temperature of the gas refrigerant is usually controlled to be less than the upper limit of the heat resistant temperature of the winding.
  • One of the effective methods for cooling the stator winding is to increase the amount of refrigerant passing through the space of the electric motor portion to promote heat exchange between the stator winding and the refrigerant.
  • a technique for providing a refrigerant passage for an electric motor having a stator in which a conductor such as a copper wire is wound through an insulating paper in a slot of a stator core in which a plurality of electromagnetic steel sheets are laminated.
  • the refrigerant passage extends a through groove along the central axial direction in the core back, which is an annular core portion formed on the outer periphery of the stator core, in the vicinity of the winding of the stator.
  • Patent Document 1 when the technique of Patent Document 1 is applied to the stator of a closed compressor for a refrigerating air conditioner, the lubricating oil that has passed through the refrigerant passage together with the refrigerant is wound up in the upper space of the closed container. As a result, the lubricating oil is easily taken out of the compressor together with the refrigerant, the oil circulation rate in the refrigeration cycle device increases, and the reliability of the compressor decreases due to oil depletion in the closed compressor. is there.
  • the present invention is for solving the above problems, and while maintaining the function of cooling the windings of the stator, it is possible to suppress the taking out of the lubricating oil to the outside of the compressor, and the reliability of the compressor can be ensured. It is an object of the present invention to provide a stator of an electric motor, an electric motor, a closed compressor, and a refrigeration cycle device.
  • the stator of the electric motor according to the present invention has a stator core having a plurality of teeth on the circumference and a slot formed between the adjacent teeth, a winding wound around the teeth, and the winding.
  • An insulating film that insulates between the wire and the inner peripheral portion of the slot, and a lower end insulator that insulates between the winding and the lower end portion of the teeth in the distributed circumference of the plurality of teeth in the central axial direction.
  • an upper end insulator that insulates between the winding and the upper end of the teeth in the central axis direction, and the stator core comes into contact with the insulating film on the outer side in the circumferential direction of the slot.
  • the upper end insulator has a partition surface portion that blocks the upward penetration of the through groove, and has a first communication groove extending over both ends in the direction.
  • the electric motor according to the present invention includes the stator of the above electric motor.
  • the closed compressor according to the present invention includes the above-mentioned electric motor.
  • the refrigeration cycle device according to the present invention is provided with the above-mentioned sealed compressor.
  • the contact surface portion of the core back with the insulating film has through grooves extending in both vertical directions along the central axial direction.
  • the lower end insulator has a first communication groove that communicates with the through groove and extends over both ends in the vertical direction.
  • the upper end insulator has a partition surface portion that partitions the upward penetration of the through groove.
  • the refrigerant that has flowed into the through groove is blocked by the partition surface from the through groove in the upper end insulator, and the lubricating oil that has flowed into the through groove together with the refrigerant flows upward from the partition surface. Can be prevented. Therefore, while maintaining the function of cooling the windings of the stator, it is possible to prevent the lubricating oil from being taken out of the compressor, and the reliability of the compressor can be ensured.
  • FIG. 5 is a lower end view showing the stator core according to the first embodiment as viewed from below in which the compression mechanism portion is arranged.
  • FIG. 5 is a correlation diagram showing a winding and a through groove according to the first embodiment. It is a perspective view which shows the stator core of the state before mounting the winding and the insulating film which concerns on Embodiment 1.
  • FIG. 5 is a perspective view showing a stator core in a state before mounting the winding and the insulating film according to the second embodiment.
  • FIG. 5 is a correlation diagram showing an angle ⁇ formed by the through groove and the first communication groove according to the second embodiment. It is a correlation diagram which shows Wmin and W in the tee score which concerns on Embodiment 3. It is explanatory drawing which shows the stator core which concerns on Embodiment 4 in the vertical cross section of the line AA of FIG.
  • FIG. 1 is an explanatory view showing a sealed compressor 100 according to the first embodiment in a vertical cross section.
  • the illustrated U is upward and D is downward.
  • the closed type compressor 100 includes a closed container 1, a compression mechanism unit 2, and an electric motor 3.
  • the closed container 1 has an oil storage portion 1a that forms an outer shell of the closed compressor 100 and stores lubricating oil at the bottom thereof.
  • a compression mechanism portion 2 is arranged in the lower part of the closed container 1.
  • An electric motor 3 is arranged in the upper part of the closed container 1.
  • the closed container 1 is composed of a cylindrical central container 11 and an upper container 12 and a lower container 13 that are fitted in the upper and lower openings of the central container 11 in a closed state.
  • a suction pipe 15 having a suction muffler 14 is connected to the central container 11 in the middle.
  • the suction pipe 15 is a connection pipe that sends the inflowing low-temperature low-pressure gas refrigerant into the compression mechanism unit 2.
  • a discharge pipe 16 is connected to the upper container 12.
  • the discharge pipe 16 is a connecting pipe that allows the refrigerant in the closed container 1 compressed by the compression mechanism unit 2 to flow into the refrigerant pipe.
  • the refrigerant sucked from the suction pipe 15 having the suction muffler 14 is compressed to a high pressure by the compression mechanism unit 2 and discharged from the discharge pipe 16 to the outside of the compressor.
  • the compression mechanism portion 2 includes a rotating shaft 21, a main bearing 22, an auxiliary bearing 23, a rolling piston 24, a cylindrical cylinder 25, and a vane (not shown).
  • the rotating shaft 21 is fixed to the rotor 32 of the electric motor 3.
  • the rotating shaft 21 is held by a main bearing 22 and an auxiliary bearing 23.
  • the rolling piston 24 is fixed to the rotating shaft 21 and is eccentrically and rotatably housed in the cylindrical cylinder 25.
  • the inside of the cylindrical cylinder 25 is divided into compression chambers by vanes.
  • the vane moves the compression chamber following the movement of the rolling piston 24.
  • the refrigerant that has become high pressure in the compression chamber is sent from the compression mechanism unit 2 to the space inside the closed container 1.
  • the refrigerant delivered from the compression mechanism unit 2 passes through the gap portion of the electric motor 3 and is discharged to the outside of the compressor from the discharge pipe 16 connected to the upper container 12. At this time, the lubricating oil is wound up together with the refrigerant in the upward direction U where the upper container 12 is present. Then, a part of the lubricating oil is taken out of the compressor from the discharge pipe 16.
  • FIG. 2 is an explanatory view showing a cross section of the electric motor 3 according to the first embodiment.
  • FIG. 3 is a lower end view showing the stator 31 of the electric motor 3 according to the first embodiment as viewed from the downward direction D in which the compression mechanism portion 2 is arranged.
  • FIG. 4 is a lower end view showing the stator core 301 according to the first embodiment as viewed from the downward direction D in which the compression mechanism portion 2 is arranged.
  • the electric motor 3 is a brushless DC motor.
  • the electric motor 3 includes a stator 31 and a rotor 32.
  • the rotor 32 is arranged on the inner circumference of the stator 31.
  • the rotor 32 is a 6-pole permanent magnet type rotor, and is an embedded type permanent magnet type rotor in which a permanent magnet is inserted into a magnet insertion hole.
  • the stator 31 includes a stator core 301, a winding 302, an insulating film 303, a lower end insulator 304, and an upper end insulator 305. Be prepared.
  • the stator core 301 has a plurality of tee scores 301a which are divided cores distributed on the circumference.
  • the plurality of tee scores 301a are arranged in an annular shape with the rotation axis 21 as the central axis. That is, the central axis means the central axis of the distributed circumferences of the plurality of teeth 301b.
  • the tee score 301a is provided with a tee 301b extending inward in the direction of the central axis.
  • a slot 301c is formed between two adjacent teeth 301b.
  • the stator core 301 has a core back 301d on the outer side in the circumferential direction of the slot 301c.
  • a plurality of core backs 301d are arranged in the circumferential direction to form an outer shell of a stator core 301 composed of a plurality of tee scores 301a arranged in a ring shape.
  • the tea score 301a is formed by laminating a predetermined number of thin electromagnetic steel plates having a thickness of 0.25 mm, which are punched into a predetermined shape, and fixing them by caulking or the like.
  • the stator core 301 may be an integral core in which each tee score is integrally formed. Further, the stator core 301 also has a joint wrap structure in which the tee score 301a is rotatably connected by caulking formed by forming irregularities on an electronic steel plate between two adjacent teeth 301b in the core back 301d. good.
  • the winding 302 is wound around the teeth 301b.
  • the winding 302 is a conductive electric wire. Specifically, the winding 302 is wound around the body of the teeth 301b surrounded by the tee score 301a, the insulating film 303, the lower end insulator 304, and the upper end insulator 305 without any disturbance.
  • the insulating film 303 insulates the stator core 301 and the winding 302. Specifically, the insulating film 303 insulates between the winding 302 and the inner peripheral portion of the slot 301c.
  • the insulating film 303 is made of, for example, a PET (polyethylene terephthalate) film.
  • the insulating film 303 is fixed by a method such as fitting, bonding, or welding in which a groove for sandwiching the PET film is provided in the lower end insulator 304 and the upper end insulator 305.
  • the thickness of the insulating film 303 is as thin as about 0.1 to 0.2 mm. Therefore, the cross-sectional area of the insulating film 303 occupying the area of the slot 301c is very small. As a result, the insulating film 303 can be wound with many windings 302.
  • the lower end insulator 304 insulates between the winding 302 and the lower end of the teeth 301b in the central axial direction.
  • the lower end insulator 304 is arranged in the downward direction D on the compression mechanism portion 2 side of the stator core 301.
  • the upper end insulator 305 insulates between the winding 302 and the upper end of the teeth 301b in the central axis direction.
  • the upper end insulator 305 is located on the opposite side of the stator core 301 from the lower end insulator 304.
  • the lower end insulator 304 and the upper end insulator 305 are made of, for example, LCP (liquid crystal polymer).
  • the lower end insulator 304 and the upper end insulator 305 are fixed by a method such as fitting, bonding, or welding with the end of the tee score 301a.
  • FIG. 5 is a correlation diagram showing the winding 302 and the through groove 301a-1 according to the first embodiment.
  • FIG. 6 is a perspective view showing the stator core 301 in the state before mounting the winding 302 and the insulating film 303 according to the first embodiment.
  • FIG. 7 is an explanatory view showing the stator core 301 according to the first embodiment in a vertical cross section of the line AA of FIG.
  • FIG. 8 is an enlarged view showing a part of the stator core 301 according to the first embodiment in the A1 region of FIG.
  • the contact surface portion of the core back 301d with the insulating film 303 penetrates across both ends of the upward direction U and the downward direction D along the central axis direction. It has a groove 301a-1.
  • the through groove 301a-1 is a straight line having a constant width along the central axis direction.
  • a plurality of through grooves 301a-1 are arranged in parallel.
  • a plurality of through grooves 301a-1 in one stator core 301 extend radially outward from the central axis at the center of the winding portion of the winding 302 which is the center of the teeth 301b. It is configured to be line-symmetrical with respect to the virtual center line T.
  • four through grooves 301a-1 are provided on one side of the virtual center line T on the contact surface portion of the core back 301d of the tee score 301a with the insulating film 303.
  • the width B in the circumferential direction which is a direction orthogonal to the central axis direction of the through groove 301a-1, is smaller than the diameter 2R of the winding 302. That is, the relationship of B ⁇ 2R is satisfied.
  • the lower end insulator 304 communicates with the through groove 301a-1 and forms a first communication groove 304-1 extending at both ends in the upward direction U and the downward direction D.
  • the first communication groove 304-1 matches the groove shape of the through groove 301a-1 at the joint between the lower end insulator 304 and the tee score 301a.
  • the upper end insulator 305 has a lower end surface portion 305a which is a partition surface portion that blocks the penetration of the through groove 301a-1 in the upward direction U. That is, the partition surface portion is formed as a part of the flat lower end surface portion 305a of the upper end portion insulator 305.
  • the lower end surface portion 305a of the upper end portion insulator 305 has no groove and closes the through groove 301a-1. Specifically, the through groove 301a-1 is interrupted and closed at the joint portion between the upper end insulator 305 and the tee score 301a.
  • the refrigerant and lubricating oil delivered to the space inside the closed container 1 by the compression mechanism unit 2 are introduced from the downward direction D into the first communication groove 304-1 provided in the lower end insulator 304.
  • the refrigerant and lubricating oil introduced into the first communication groove 304-1 pass through the through groove 301a-1 provided in the tee score 301a.
  • the tee score 301a and the winding 302 can be cooled by the refrigerant.
  • the upper end insulator 305 blocks the outlets of the refrigerant and the lubricating oil flowing through the through groove 301a-1 to the upward direction U. Therefore, the lubricating oil flowing through the through groove 301a-1 is not wound up in the upper space of the closed container 1, and the increase in the oil circulation rate can be suppressed.
  • the number of the through groove 301a-1 of the tee score 301a and the first communication groove 304-1 of the lower end insulator 304 is plural.
  • the insulating film 303 spreads across the plurality of grooves, and the insulating film 303 is pressed into the plurality of grooves by the winding 302 and can be reliably held.
  • the pitch which is the width B of each groove, can be reduced, and it is difficult for the winding 302 to enter the through groove 301a-1 and the first communication groove 304-1.
  • a high-density winding 302 that maintains alignment can be performed, and the electric motor 3 can be configured with higher efficiency.
  • stator core 301 a gap is secured by the through groove 301a-1 between the tee score 301a and the winding 302.
  • the contact area between the winding 302 and the stator core 301 is reduced, the distance between the winding 302 and the stator core 301 is increased, and the floating static between the winding 302 and the stator core 301 is increased.
  • the electric capacity can be reduced.
  • the stator 31 of the electric motor 3 has a plurality of teeth 301b distributed on the periphery, and includes a stator core 301 in which a slot 301c is formed between adjacent teeth 301b.
  • the stator 31 of the electric motor 3 includes a winding 302 wound around the teeth 301b.
  • the stator 31 of the electric motor 3 includes an insulating film 303 that insulates between the winding 302 and the inner peripheral portion of the slot 301c.
  • the stator 31 of the electric motor 3 includes a lower end insulator 304 that insulates between the winding 302 and the lower end of the plurality of teeth 301b in the teeth 301b in the central axial direction.
  • the stator 31 of the electric motor 3 includes an upper end insulator 305 that insulates between the winding 302 and the upper end of the plurality of teeth 301b in the teeth 301b in the central axial direction.
  • the stator core 301 has an arc-shaped core back 301d that contacts the insulating film 303 on the outer side in the circumferential direction of the slot 301c.
  • the contact surface portion of the core back 301d with the insulating film 303 has through grooves 301a-1 extending at both ends in the upward direction U and the downward direction D along the central axial direction.
  • the lower end insulator 304 has a first communication groove 304-1 communicating with the through groove 301a-1 and extending at both ends in the upward direction U and the downward direction D.
  • the upper end insulator 305 has a lower end surface portion 305a which is a partition surface portion that blocks the penetration of the through groove 301a-1 in the upward direction U.
  • the refrigerant flowing into the through groove 301a-1 from the first communication groove 304-1 cools the winding 302 of the stator 31.
  • the refrigerant flowing into the through groove 301a-1 is blocked by the lower end surface portion 305a from penetrating the through groove 301a-1 to the upward direction U in the upper end insulator 305. That is, it is possible to prevent the lubricating oil that has flowed into the through groove 301a-1 together with the refrigerant from flowing upward from the lower end surface portion 305a.
  • a through groove 301a-1 is provided in the core back 301d, a distance between the winding 302 and the stator core 301 in the core back 301d can be secured, and the floating capacitance is maintained even if a thin insulating film 303 is interposed. Can be reduced.
  • the partition surface portion is the lower end surface portion 305a of the upper end portion insulator 305.
  • the flat lower end surface portion 305a of the upper end portion insulator 305 also serves as a partition surface portion, and the processing of the upper end portion insulator 305 is minimized.
  • the through groove 301a-1 is a straight line having a constant width along the central axis direction.
  • a plurality of through grooves 301a-1 are arranged.
  • the refrigerant flowing into the plurality of through grooves 301a-1 from the plurality of first communication grooves 304-1 cools the winding 302 of the stator 31.
  • the cooling effect of the stator 31 on the winding 302 can be obtained in a wide area of the core back 301d.
  • the plurality of through grooves 301a-1 are configured to be line-symmetrical with respect to the virtual center line T extending radially outward from the central axis at the center of the winding portion of the winding 302. ing.
  • the refrigerant flowing into the plurality of through grooves 301a-1 from the plurality of first communication grooves 304-1 cools the winding 302 of the stator 31 in a line-symmetrical and well-balanced manner with respect to the virtual center line T. To do. As a result, the cooling effect of the stator 31 on the winding 302 can be obtained more effectively in a wide area of the core back 301d.
  • the width B in the direction orthogonal to the central axis direction of the through groove 301a-1 is smaller than the diameter R2 of the winding 302.
  • the winding 302 does not fit into the through groove 301a-1, and the winding 302 can be easily wound.
  • the electric motor 3 includes the stator 31 of the electric motor 3 described above.
  • the electric motor 3 since the electric motor 3 includes the stator 31 of the electric motor 3, it is possible to suppress the removal of the lubricating oil to the outside of the compressor while maintaining the function of cooling the winding 302 of the stator 31. The reliability of the sealed compressor 100 can be ensured.
  • the sealed compressor 100 includes the above-mentioned electric motor 3.
  • the sealed compressor 100 includes the above-mentioned electric motor 3, it is possible to prevent the lubricating oil from being taken out of the compressor while maintaining the function of cooling the winding 302 of the stator 31, and it is sealed. The reliability of the mold compressor 100 can be guaranteed.
  • FIG. 9 is a perspective view showing the stator core 301 in the state before mounting the winding 302 and the insulating film 303 according to the second embodiment.
  • FIG. 10 is a correlation diagram showing an angle ⁇ formed by the through groove 301a-1 and the first communication groove 304-1 according to the second embodiment.
  • the description of the same items as in the first embodiment is omitted, and only the characteristic portion thereof is described.
  • the extension angle ⁇ of the first communication groove 304-1 of the lower end insulator 304 has an inclination of a predetermined angle with respect to the central axis direction in which the through groove 301a-1 extends.
  • the extension angle ⁇ of the first communication groove 304-1 of the lower end insulator 304 is the angle at which the winding 302 is separated from the winding position with respect to the central axis direction in which the through groove 301a-1 extends.
  • the first communication groove 304-1 communicates with the through groove 301a-1 and has the same groove shape.
  • the first communication groove 304-1 of the lower end insulator 304 is provided parallel to the central axis direction. Therefore, the insulating film 303 may enter the first communication groove 304-1 of the lower end insulator 304. Therefore, when winding the winding 302 in the central axis direction, there is a possibility that the winding 302 may enter the first communication groove 304-1 in which the insulating film 303 has entered.
  • the first communication groove 304-1 has an angle ⁇ with respect to the central axis direction. Therefore, it becomes difficult for the winding 302 to enter the first communication groove 304-1 when the winding 302 is wound.
  • the extension angle of the first communication groove 304-1 of the lower end insulator 304 is ⁇
  • the extension angle of ⁇ in the central axis direction of the through groove 301a-1 is 180 °. At this time, it is preferable that 150 ° ⁇ ⁇ ⁇ 180 ° is satisfied.
  • the extension angle ⁇ of the first communication groove 304-1 of the lower end insulator 304 has an inclination of a predetermined angle with respect to the central axis direction in which the through groove 301a-1 extends.
  • the extending angle ⁇ of the first communication groove 304-1 of the lower end insulator 304 is separated from the winding portion of the winding 302 with respect to the central axis direction in which the through groove 301a-1 extends. It has an inclination of the angle to go.
  • the extending angle ⁇ of the first communication groove 304-1 is opposite to that of the winding 302 around which the winding 302 is wound, and the winding 302 is rotated by the first communication groove 304-1 when the winding 302 is wound. This makes it difficult to enter and makes it easier to wind the winding 302.
  • the extension angle of the first communication groove 304-1 of the lower end insulator 304 is ⁇ and the extension angle of ⁇ in the central axis direction of the through groove 301a-1 is 180 °, 150 ° ⁇ ⁇ ⁇ 180 ° is satisfied.
  • the extension angle ⁇ of the first communication groove 304-1 can be set in the optimum opposite direction range from the winding 302 around which the winding 302 is wound, and the winding 302 is first communicated when the winding 302 is wound.
  • the groove 304-1 makes it difficult to enter, and makes it easier to wind the winding 302.
  • FIG. 11 is a correlation diagram showing Wmin and W in the tee score 301a according to the third embodiment.
  • the description of the same items as those in the first and second embodiments is omitted, and only the characteristic portion thereof is described.
  • the stator core 301 has the role of a magnetic path through which the magnetic field received from the rotor 32 passes. However, if the stator core 301 is provided with the through groove 301a-1, the magnetic path in the core back 301d is narrowed and the magnetic characteristics are deteriorated.
  • the ease of passage of the magnetic flux in the core back 301d is determined by the narrowest portion Wmin in the radial direction of the core back 301d shown in FIG. Therefore, the width of the portion of the core back 301d in which the through groove 301a-1 is formed is defined as W, and the width of the narrowest portion of the core back 301d in the radial direction is defined as Wmin. At this time, W ⁇ Wmin is satisfied.
  • stator core 301 is an iron core dividing surface as shown in FIG. 11, it is preferable to form the outermost diameter portion of the through groove 301a-1 on an arc passing through an intersection inside the iron core dividing surface or inside the arc.
  • the magnetic characteristics are not significantly impaired, the cooling effect of the stator 31 and the effect of reducing the floating capacitance can be further improved, and the electric motor 3 having excellent efficiency can be configured.
  • the radial width of the portion of the core back 301d where the through groove 301a-1 is formed is W, and the width of the core back 301d in the radial direction is the narrowest.
  • the width of the portion is Wmin. At this time, W ⁇ Wmin is satisfied.
  • the ease with which the magnetic flux passes in the core back 301d is determined by the narrowest portion Wmin in the radial direction of the core back 301d.
  • the width in the radial direction of the portion where the through groove 301a-1 is formed in the core back 301d is set to W, and W ⁇ Wmin is satisfied. Therefore, there is no portion of the core back 301d that is more difficult to pass the magnetic flux than Wmin, and the magnetic characteristics of the core back 301d are not significantly impaired.
  • the through groove 301a-1 can be formed deeply within the range where W ⁇ Wmin is satisfied, and the cooling effect of the stator 31 and the effect of reducing the floating capacitance can be further improved. As described above, the electric motor 3 having excellent efficiency can be configured.
  • FIG. 12 is an explanatory view showing the stator core 301 according to the fourth embodiment in a vertical cross section of the line AA of FIG.
  • FIG. 13 is an enlarged view showing a part of the stator core 301 according to the fourth embodiment in the A2 region of FIG.
  • the groove for introducing the refrigerant is provided only in the lower end insulator 304 on the compression mechanism side.
  • the upper end insulator 305 on the opposite side may also be provided with grooves having an adjusted shape or number.
  • the groove of the upper end insulator 305 needs to be closed by the partition surface portion.
  • the upper end insulator 305 communicates with the through groove 301a-1 and is formed halfway between the upper direction U and the lower direction D of the upper end insulator 305.
  • the second communication groove 305-1 is formed up to U in the upward direction from the winding portion of the winding 302.
  • the partition surface portion is the upper groove end surface portion 305b of the second communication groove 305-1.
  • the upper groove end face portion 305b has a flat surface along the horizontal direction.
  • An opening 305c opened in a direction orthogonal to the central axial direction along the upward direction U and the downward direction D is formed between the upper groove end surface portion 305b which is a partition surface portion and the winding portion of the winding 302. Has been done.
  • the opening 305c allows the refrigerant outlet to be formed in the horizontal direction. Therefore, the circulation rate of the refrigerant is increased, and the cooling effect of the stator 31 is further improved.
  • the upper end insulator 305 communicates with the through groove 301a-1 and forms a second communication groove 305-1 formed halfway between the upper direction U and the lower direction D of the upper end insulator 305.
  • the second communication groove 305-1 is formed up to U in the upward direction from the winding portion of the winding 302.
  • the partition surface portion is the upper groove end surface portion 305b of the second communication groove 305-1.
  • the refrigerant flowing through the through groove 301a-1 reaches the second communication groove 305-1 formed up to the winding point U of the winding 302, so that the refrigerant flows to the upper end insulator 305.
  • a cooling effect can be obtained for all of the wound windings 302.
  • the partition surface portion is the upper groove end surface portion 305b of the second communication groove 305-1
  • the direction U is higher than the upper groove end surface portion 305b which is the partition surface portion of the lubricating oil that has flowed into the through groove 301a-1 together with the refrigerant. Can be prevented from flowing out.
  • an opening 305c opened in a direction orthogonal to the central axis direction is formed between the upper groove end surface portion 305b which is a partition surface portion and the winding portion of the winding 302. ..
  • the refrigerant and the lubricating oil that have risen upward to the second communication groove 305-1 are directed not toward the upward direction U but toward the opening 305c opened in the direction orthogonal to the central axis direction, and the lubricating oil.
  • the outflow to the upward U can be prevented.
  • the refrigerant and the lubricating oil circulate efficiently in this order in the first communication groove 304-1, the through groove 301a-1, and the second communication groove 305-1, and the lubricant 31 is wound without the lubricating oil accumulating in the middle.
  • the cooling effect of the wire 302 can be efficiently obtained.
  • first embodiment, the second embodiment, the third embodiment and the fourth embodiment may be combined or applied to other parts.
  • FIG. 14 is a refrigerant circuit diagram showing a refrigerating cycle device 101 to which the sealed compressor 100 according to the fifth embodiment is applied.
  • the refrigeration cycle device 101 includes a closed compressor 100, a condenser 102, an expansion valve 103, and an evaporator 104. These sealed compressor 100, condenser 102, expansion valve 103 and evaporator 104 are connected by a refrigerant pipe to form a refrigerant circuit. Then, the refrigerant flowing out of the evaporator 104 is sucked into the closed compressor 100 and becomes high temperature and high pressure. The high temperature and high pressure refrigerant is condensed in the condenser 102 to become a liquid. The liquid refrigerant is decompressed and expanded by the expansion valve 103 to become a low-temperature low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant heat exchanges in the evaporator 104.
  • the closed compressor 100 of the first embodiment, the second embodiment, the third embodiment and the fourth embodiment can be applied to such a refrigeration cycle device 101.
  • the refrigeration cycle device 101 include an air conditioner, a refrigeration device, a water heater, and the like.
  • the refrigeration cycle device 101 includes the above-mentioned sealed compressor 100.
  • the refrigerating cycle device 101 since the refrigerating cycle device 101 includes the above-mentioned sealed compressor 100, it is possible to suppress the taking out of the lubricating oil to the outside of the compressor while maintaining the function of cooling the winding 302 of the stator 31. , The reliability of the sealed compressor 100 can be guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

This electric motor stator is provided with a stator core, a winding, an insulating film, a lower end insulator, and an upper end insulator. The stator core has a core back making contact with the insulating film outside a slot in the circumferential direction. A contact surface portion with the insulating film in the core back has a penetration groove along the central axis direction over both ends in an up-down direction. The lower end insulator has a first communication groove in communication with the penetration groove over both ends in the up-down direction. The upper end insulator has a partition surface portion for sealing the penetration of the penetration groove in the up-down direction.

Description

電動機の固定子、電動機、密閉型圧縮機及び冷凍サイクル装置Stator of electric motor, electric motor, closed compressor and refrigeration cycle device
 本発明は、固定子鉄心のコアバックに貫通溝を有する電動機の固定子、電動機、密閉型圧縮機及び冷凍サイクル装置に関する。 The present invention relates to a stator of an electric motor having a through groove in the core back of the stator core, an electric motor, a closed compressor, and a refrigeration cycle device.
 一般的に、密閉容器内に圧縮機構部と電動機部とが収容された密閉型電動圧縮機では、電動機部が回転子と固定子とを有する。回転子は、圧縮機構部と主軸を介して接続されている。固定子は、密閉容器に焼嵌めなどの方法によって固定されている。圧縮機構部は、冷媒を圧縮し、圧縮された冷媒を密閉容器の外部に設けられた冷凍サイクル装置に供給する。圧縮機構部で圧縮された冷媒の供給過程中では、冷媒が圧縮機構部の潤滑油を巻き込んで電動機部の空間部を通過する場合がある。 Generally, in a closed type electric compressor in which a compression mechanism part and an electric motor part are housed in a closed container, the electric motor part has a rotor and a stator. The rotor is connected to the compression mechanism via a spindle. The stator is fixed to a closed container by a method such as shrink fitting. The compression mechanism unit compresses the refrigerant and supplies the compressed refrigerant to a refrigeration cycle device provided outside the closed container. During the supply process of the refrigerant compressed by the compression mechanism, the refrigerant may entrain the lubricating oil of the compression mechanism and pass through the space of the electric motor.
 圧縮機運転時には、固定子の巻線は、圧縮機構部にて圧縮された高温ガス冷媒に晒される。また、固定子の巻線は、2次電流によって自身を発熱させる。これにより、固定子の巻線は、高温状態になる。このため、固定子の巻線は、巻線の耐熱温度又は巻線抵抗の観点から冷却すべき対象である。 During compressor operation, the stator windings are exposed to the high temperature gas refrigerant compressed by the compression mechanism. In addition, the winding of the stator heats itself by the secondary current. As a result, the winding of the stator becomes a high temperature state. Therefore, the winding of the stator is a target to be cooled from the viewpoint of the heat resistant temperature of the winding or the winding resistance.
 たとえば吐出温度の上限が115℃であることに対し、巻線の耐熱温度の上限が130℃である。このように、通常、ガス冷媒の吐出温度は、巻線の耐熱温度の上限未満に制御されている。固定子の巻線を冷却する有効な方法の一つとしては、電動機部の空間部を通過する冷媒量を増やし、固定子巻線と冷媒間の熱交換を促すことが挙げられる。 For example, the upper limit of the discharge temperature is 115 ° C, whereas the upper limit of the heat resistant temperature of the winding is 130 ° C. As described above, the discharge temperature of the gas refrigerant is usually controlled to be less than the upper limit of the heat resistant temperature of the winding. One of the effective methods for cooling the stator winding is to increase the amount of refrigerant passing through the space of the electric motor portion to promote heat exchange between the stator winding and the refrigerant.
 複数枚の電磁鋼板を積層した固定子鉄心のスロット内に絶縁紙を介して銅線などの導体が巻線された固定子を有する電動機では、冷媒通路を設ける技術が知られている。冷媒通路は、固定子鉄心の外周に形成される環状の鉄心部分であるコアバックに、固定子の巻線に近接して中心軸方向に沿って貫通溝を延出している。冷媒通路に冷媒が流通することにより、電動機の出力が低下せずに、固定子の巻線を冷却できている(たとえば、特許文献1参照)。 A technique for providing a refrigerant passage is known for an electric motor having a stator in which a conductor such as a copper wire is wound through an insulating paper in a slot of a stator core in which a plurality of electromagnetic steel sheets are laminated. The refrigerant passage extends a through groove along the central axial direction in the core back, which is an annular core portion formed on the outer periphery of the stator core, in the vicinity of the winding of the stator. By flowing the refrigerant through the refrigerant passage, the windings of the stator can be cooled without reducing the output of the electric motor (see, for example, Patent Document 1).
特開2003-125547号公報Japanese Unexamined Patent Publication No. 2003-125547
 しかし、特許文献1の技術を冷凍空調装置用の密閉型圧縮機の固定子に適用した場合には、冷媒とともに冷媒通路を通過した潤滑油が密閉容器の上部空間に巻き上げられる。これにより、潤滑油が冷媒と一緒に圧縮機外へ持ち出され易く、冷凍サイクル装置内での油循環率が増加し、密閉型圧縮機内での油枯渇による圧縮機の信頼性が低下する課題がある。 However, when the technique of Patent Document 1 is applied to the stator of a closed compressor for a refrigerating air conditioner, the lubricating oil that has passed through the refrigerant passage together with the refrigerant is wound up in the upper space of the closed container. As a result, the lubricating oil is easily taken out of the compressor together with the refrigerant, the oil circulation rate in the refrigeration cycle device increases, and the reliability of the compressor decreases due to oil depletion in the closed compressor. is there.
 本発明は、上記課題を解決するためのものであり、固定子の巻線を冷却する機能を維持しつつ、潤滑油の圧縮機外への持ち出しが抑制でき、圧縮機の信頼性が担保できる電動機の固定子、電動機、密閉型圧縮機及び冷凍サイクル装置を提供することを目的とする。 The present invention is for solving the above problems, and while maintaining the function of cooling the windings of the stator, it is possible to suppress the taking out of the lubricating oil to the outside of the compressor, and the reliability of the compressor can be ensured. It is an object of the present invention to provide a stator of an electric motor, an electric motor, a closed compressor, and a refrigeration cycle device.
 本発明に係る電動機の固定子は、周上に複数のティースを有し、隣り合う前記ティースの間にスロットが形成された固定子鉄心と、前記ティースに巻回された巻線と、前記巻線と前記スロットの内周部との間を絶縁する絶縁フィルムと、前記巻線と前記ティースにおける複数の前記ティースの分配された周の中心軸方向の下端部との間を絶縁する下端部インシュレータと、前記巻線と前記ティースにおける前記中心軸方向の上端部との間を絶縁する上端部インシュレータと、を備え、前記固定子鉄心は、前記スロットの周方向外側にて前記絶縁フィルムと接触するコアバックを有し、前記コアバックにおける前記絶縁フィルムとの接触面部は、前記中心軸方向に沿って上下方向両端にわたる貫通溝を有し、前記下端部インシュレータは、前記貫通溝に連通して上下方向両端にわたる第1連通溝を有し、前記上端部インシュレータは、前記貫通溝の上方向への貫通を塞ぐ仕切面部を有するものである。 The stator of the electric motor according to the present invention has a stator core having a plurality of teeth on the circumference and a slot formed between the adjacent teeth, a winding wound around the teeth, and the winding. An insulating film that insulates between the wire and the inner peripheral portion of the slot, and a lower end insulator that insulates between the winding and the lower end portion of the teeth in the distributed circumference of the plurality of teeth in the central axial direction. And an upper end insulator that insulates between the winding and the upper end of the teeth in the central axis direction, and the stator core comes into contact with the insulating film on the outer side in the circumferential direction of the slot. It has a core back, and the contact surface portion of the core back with the insulating film has through grooves extending in both vertical directions along the central axis direction, and the lower end insulator communicates with the through groove to move up and down. The upper end insulator has a partition surface portion that blocks the upward penetration of the through groove, and has a first communication groove extending over both ends in the direction.
 本発明に係る電動機は、上記の電動機の固定子を備えるものである。 The electric motor according to the present invention includes the stator of the above electric motor.
 本発明に係る密閉型圧縮機は、上記の電動機を備えるものである。 The closed compressor according to the present invention includes the above-mentioned electric motor.
 本発明に係る冷凍サイクル装置は、上記の密閉型圧縮機を備えるものである。 The refrigeration cycle device according to the present invention is provided with the above-mentioned sealed compressor.
 本発明に係る電動機の固定子、電動機、密閉型圧縮機及び冷凍サイクル装置によれば、コアバックにおける絶縁フィルムとの接触面部は、中心軸方向に沿って上下方向両端にわたる貫通溝を有する。下端部インシュレータは、貫通溝に連通して上下方向両端にわたる第1連通溝を有する。上端部インシュレータは、貫通溝の上方向への貫通を仕切る仕切面部を有する。これにより、第1連通溝から貫通溝に流入した冷媒が固定子の巻線を冷却する。一方、貫通溝に流入した冷媒が仕切面部によって上端部インシュレータでの貫通溝から上方向への貫通を塞がれ、貫通溝に冷媒とともに流入した潤滑油の仕切面部よりも上方向への流出が防止できる。したがって、固定子の巻線を冷却する機能を維持しつつ、潤滑油の圧縮機外への持ち出しが抑制でき、圧縮機の信頼性が担保できる。 According to the stator of the electric motor, the electric motor, the closed compressor, and the refrigeration cycle device according to the present invention, the contact surface portion of the core back with the insulating film has through grooves extending in both vertical directions along the central axial direction. The lower end insulator has a first communication groove that communicates with the through groove and extends over both ends in the vertical direction. The upper end insulator has a partition surface portion that partitions the upward penetration of the through groove. As a result, the refrigerant flowing from the first communication groove into the through groove cools the winding of the stator. On the other hand, the refrigerant that has flowed into the through groove is blocked by the partition surface from the through groove in the upper end insulator, and the lubricating oil that has flowed into the through groove together with the refrigerant flows upward from the partition surface. Can be prevented. Therefore, while maintaining the function of cooling the windings of the stator, it is possible to prevent the lubricating oil from being taken out of the compressor, and the reliability of the compressor can be ensured.
実施の形態1に係る密閉型圧縮機を縦断面にて示す説明図である。It is explanatory drawing which shows the closed type compressor which concerns on Embodiment 1 in the vertical cross section. 実施の形態1に係る電動機を横断面にて示す説明図である。It is explanatory drawing which shows the electric motor which concerns on Embodiment 1 in the cross section. 実施の形態1に係る電動機の固定子を圧縮機構部の配置された下方向から見て示す下端面図である。It is a lower end view which shows the stator of the electric motor which concerns on Embodiment 1 as seen from the lower direction in which the compression mechanism part is arranged. 実施の形態1に係る固定子鉄心を圧縮機構部の配置された下方向から見て示す下端面図である。FIG. 5 is a lower end view showing the stator core according to the first embodiment as viewed from below in which the compression mechanism portion is arranged. 実施の形態1に係る巻線と貫通溝とを示す相関図である。FIG. 5 is a correlation diagram showing a winding and a through groove according to the first embodiment. 実施の形態1に係る巻線及び絶縁フィルムの装着前状態の固定子鉄心を示す斜視図である。It is a perspective view which shows the stator core of the state before mounting the winding and the insulating film which concerns on Embodiment 1. FIG. 実施の形態1に係る固定子鉄心を図4のA-A線の縦断面にて示す説明図である。It is explanatory drawing which shows the stator core which concerns on Embodiment 1 in the vertical cross section of the line AA of FIG. 実施の形態1に係る固定子鉄心の一部を図7のA1領域にて示す拡大図である。It is an enlarged view which shows a part of the stator core which concerns on Embodiment 1 in the A1 region of FIG. 実施の形態2に係る巻線及び絶縁フィルムの装着前状態の固定子鉄心を示す斜視図である。FIG. 5 is a perspective view showing a stator core in a state before mounting the winding and the insulating film according to the second embodiment. 実施の形態2に係る貫通溝と第1連通溝とのなす角度θを示す相関図である。FIG. 5 is a correlation diagram showing an angle θ formed by the through groove and the first communication groove according to the second embodiment. 実施の形態3に係るティースコアにおけるWminとWとを示す相関図である。It is a correlation diagram which shows Wmin and W in the tee score which concerns on Embodiment 3. 実施の形態4に係る固定子鉄心を図4のA-A線の縦断面にて示す説明図である。It is explanatory drawing which shows the stator core which concerns on Embodiment 4 in the vertical cross section of the line AA of FIG. 実施の形態4に係る固定子鉄心の一部を図12のA2領域にて示す拡大図である。It is an enlarged view which shows a part of the stator core which concerns on Embodiment 4 in the A2 region of FIG. 実施の形態5に係る密閉型圧縮機を適用した冷凍サイクル装置を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerating cycle apparatus which applied the closed type compressor which concerns on Embodiment 5.
 以下には、図面に基づいて実施の形態が説明されている。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングが省略されている。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。 The embodiments are described below based on the drawings. In each figure, those having the same reference numerals are the same or equivalent thereof, and they are common in the entire text of the specification. Further, in the cross-sectional view, hatching is appropriately omitted in view of visibility. Furthermore, the forms of the components shown in the full text of the specification are merely examples and are not limited to these descriptions.
実施の形態1.
<密閉型圧縮機100の構成>
 図1は、実施の形態1に係る密閉型圧縮機100を縦断面にて示す説明図である。ここで、以下の説明では、図示されたUが上方向であり、Dが下方向である。図1に示すように、密閉型圧縮機100は、密閉容器1、圧縮機構部2及び電動機3を備える。
Embodiment 1.
<Structure of sealed compressor 100>
FIG. 1 is an explanatory view showing a sealed compressor 100 according to the first embodiment in a vertical cross section. Here, in the following description, the illustrated U is upward and D is downward. As shown in FIG. 1, the closed type compressor 100 includes a closed container 1, a compression mechanism unit 2, and an electric motor 3.
<密閉容器1の構成>
 密閉容器1は、密閉型圧縮機100の外郭を形成し、底部に潤滑油を貯留する油貯留部1aを有する。密閉容器1内の下部には、圧縮機構部2が配置されている。密閉容器1内の上部には、電動機3が配置されている。
<Structure of closed container 1>
The closed container 1 has an oil storage portion 1a that forms an outer shell of the closed compressor 100 and stores lubricating oil at the bottom thereof. A compression mechanism portion 2 is arranged in the lower part of the closed container 1. An electric motor 3 is arranged in the upper part of the closed container 1.
 密閉容器1は、円筒形状の中央容器11と、中央容器11の上下の各開口内に密閉状態で嵌入された上容器12及び下容器13と、によって構成されている。 The closed container 1 is composed of a cylindrical central container 11 and an upper container 12 and a lower container 13 that are fitted in the upper and lower openings of the central container 11 in a closed state.
 中央容器11には、途中に吸入マフラー14を有する吸入管15が接続されている。吸入管15は、流入する低温低圧状態のガス冷媒を圧縮機構部2内に送り込む接続管である。 A suction pipe 15 having a suction muffler 14 is connected to the central container 11 in the middle. The suction pipe 15 is a connection pipe that sends the inflowing low-temperature low-pressure gas refrigerant into the compression mechanism unit 2.
 上容器12には、吐出管16が接続されている。吐出管16は、圧縮機構部2によって圧縮された密閉容器1内の冷媒を冷媒配管に流入させる接続管である。 A discharge pipe 16 is connected to the upper container 12. The discharge pipe 16 is a connecting pipe that allows the refrigerant in the closed container 1 compressed by the compression mechanism unit 2 to flow into the refrigerant pipe.
 吸入マフラー14を有する吸入管15から吸入された冷媒は、圧縮機構部2によって高圧に圧縮され、吐出管16から圧縮機外に吐出される。 The refrigerant sucked from the suction pipe 15 having the suction muffler 14 is compressed to a high pressure by the compression mechanism unit 2 and discharged from the discharge pipe 16 to the outside of the compressor.
<圧縮機構部2の構成>
 圧縮機構部2は、回転軸21と、主軸受22と、副軸受23と、ローリングピストン24と、円筒シリンダ25と、図示しないベーンと、を有する。回転軸21は、電動機3の回転子32に固定されている。回転軸21は、主軸受22と副軸受23とによって保持されている。ローリングピストン24は、回転軸21に固定され、円筒シリンダ25内に偏芯回転可能に収容されている。円筒シリンダ25は、内部をベーンによって圧縮室毎に区切られている。ベーンは、ローリングピストン24の動きに追従して圧縮室を移動させる。これにより、圧縮室内にて高圧になった冷媒は、圧縮機構部2から密閉容器1内の空間に送出される。
<Structure of compression mechanism 2>
The compression mechanism portion 2 includes a rotating shaft 21, a main bearing 22, an auxiliary bearing 23, a rolling piston 24, a cylindrical cylinder 25, and a vane (not shown). The rotating shaft 21 is fixed to the rotor 32 of the electric motor 3. The rotating shaft 21 is held by a main bearing 22 and an auxiliary bearing 23. The rolling piston 24 is fixed to the rotating shaft 21 and is eccentrically and rotatably housed in the cylindrical cylinder 25. The inside of the cylindrical cylinder 25 is divided into compression chambers by vanes. The vane moves the compression chamber following the movement of the rolling piston 24. As a result, the refrigerant that has become high pressure in the compression chamber is sent from the compression mechanism unit 2 to the space inside the closed container 1.
 圧縮機構部2から送出された冷媒は、電動機3の空隙部を通過して上容器12に接続された吐出管16から圧縮機外に吐出される。この際に、冷媒とともに潤滑油は、上容器12の存在する上方向Uに巻き上げられる。そして、潤滑油の一部は、吐出管16から圧縮機外に持ち出される。 The refrigerant delivered from the compression mechanism unit 2 passes through the gap portion of the electric motor 3 and is discharged to the outside of the compressor from the discharge pipe 16 connected to the upper container 12. At this time, the lubricating oil is wound up together with the refrigerant in the upward direction U where the upper container 12 is present. Then, a part of the lubricating oil is taken out of the compressor from the discharge pipe 16.
<電動機3の構成>
 図2は、実施の形態1に係る電動機3を横断面にて示す説明図である。図3は、実施の形態1に係る電動機3の固定子31を圧縮機構部2の配置された下方向Dから見て示す下端面図である。図4は、実施の形態1に係る固定子鉄心301を圧縮機構部2の配置された下方向Dから見て示す下端面図である。
<Structure of motor 3>
FIG. 2 is an explanatory view showing a cross section of the electric motor 3 according to the first embodiment. FIG. 3 is a lower end view showing the stator 31 of the electric motor 3 according to the first embodiment as viewed from the downward direction D in which the compression mechanism portion 2 is arranged. FIG. 4 is a lower end view showing the stator core 301 according to the first embodiment as viewed from the downward direction D in which the compression mechanism portion 2 is arranged.
 図2に示すように、電動機3は、ブラシレスDCモータである。電動機3は、固定子31と回転子32とを備える。 As shown in FIG. 2, the electric motor 3 is a brushless DC motor. The electric motor 3 includes a stator 31 and a rotor 32.
 回転子32は、固定子31の内周に配置されている。回転子32は、6極の永久磁石型回転子であり、磁石挿入孔に永久磁石が挿入された埋込型永久磁石型回転子である。 The rotor 32 is arranged on the inner circumference of the stator 31. The rotor 32 is a 6-pole permanent magnet type rotor, and is an embedded type permanent magnet type rotor in which a permanent magnet is inserted into a magnet insertion hole.
 図1、図2、図3及び図4に示すように、固定子31は、固定子鉄心301と、巻線302と、絶縁フィルム303と、下端部インシュレータ304と、上端部インシュレータ305と、を備える。 As shown in FIGS. 1, 2, 3 and 4, the stator 31 includes a stator core 301, a winding 302, an insulating film 303, a lower end insulator 304, and an upper end insulator 305. Be prepared.
 図2に示すように、固定子鉄心301は、周上に分配された分割鉄心である複数のティースコア301aを有する。複数のティースコア301aは、回転軸21を中心軸として環状に並べられている。すなわち、中心軸とは、複数のティース301bの分配された周の中心軸を意味する。 As shown in FIG. 2, the stator core 301 has a plurality of tee scores 301a which are divided cores distributed on the circumference. The plurality of tee scores 301a are arranged in an annular shape with the rotation axis 21 as the central axis. That is, the central axis means the central axis of the distributed circumferences of the plurality of teeth 301b.
 ティースコア301aには、中心軸方向である内向きに延出されたティース301bが設けられている。隣り合う2つのティース301bの間には、スロット301cが形成されている。固定子鉄心301は、スロット301cの周方向外側にコアバック301dを有する。複数のコアバック301dが周方向に並び、環状に並んだ複数のティースコア301aからなる固定子鉄心301の外郭を構成している。 The tee score 301a is provided with a tee 301b extending inward in the direction of the central axis. A slot 301c is formed between two adjacent teeth 301b. The stator core 301 has a core back 301d on the outer side in the circumferential direction of the slot 301c. A plurality of core backs 301d are arranged in the circumferential direction to form an outer shell of a stator core 301 composed of a plurality of tee scores 301a arranged in a ring shape.
 ティースコア301aは、所定の形状に打ち抜かれた、たとえば、板厚0.25mmの薄い電磁鋼板を所定枚数だけ積層し、カシメなどによって固定されて形成されている。なお、固定子鉄心301は、各ティースコアが一体で形成された一体コアでも良い。また、固定子鉄心301は、コアバック301dにおける隣り合う2つのティース301bの間の電子鋼板に凹凸が形成されて作られたカシメにより、ティースコア301aが回転自在に連結されたジョイントラップ方式構造でも良い。 The tea score 301a is formed by laminating a predetermined number of thin electromagnetic steel plates having a thickness of 0.25 mm, which are punched into a predetermined shape, and fixing them by caulking or the like. The stator core 301 may be an integral core in which each tee score is integrally formed. Further, the stator core 301 also has a joint wrap structure in which the tee score 301a is rotatably connected by caulking formed by forming irregularities on an electronic steel plate between two adjacent teeth 301b in the core back 301d. good.
 図2、図3及び図4に示すように、巻線302は、ティース301bに巻回されている。巻線302は、導電性の電線である。具体的には、巻線302は、ティースコア301a、絶縁フィルム303、下端部インシュレータ304及び上端部インシュレータ305に囲まれたティース301bの胴部に巻乱れなく巻回されている。 As shown in FIGS. 2, 3 and 4, the winding 302 is wound around the teeth 301b. The winding 302 is a conductive electric wire. Specifically, the winding 302 is wound around the body of the teeth 301b surrounded by the tee score 301a, the insulating film 303, the lower end insulator 304, and the upper end insulator 305 without any disturbance.
 絶縁フィルム303は、固定子鉄心301と巻線302とを絶縁する。具体的には、絶縁フィルム303は、巻線302とスロット301cの内周部との間を絶縁する。 The insulating film 303 insulates the stator core 301 and the winding 302. Specifically, the insulating film 303 insulates between the winding 302 and the inner peripheral portion of the slot 301c.
 絶縁フィルム303は、たとえばPET(ポリエチレンテレフタレート)フィルムで構成されている。絶縁フィルム303は、下端部インシュレータ304及び上端部インシュレータ305にPETフィルムを挟み込む溝を設けた嵌合い、接着又は溶接などの方法によって固定されている。絶縁フィルム303の厚さは、0.1~0.2mm程度の薄厚である。このため、スロット301cの面積に占める絶縁フィルム303の断面積は、微小である。これにより、絶縁フィルム303は、多くの巻線302を巻込められる。 The insulating film 303 is made of, for example, a PET (polyethylene terephthalate) film. The insulating film 303 is fixed by a method such as fitting, bonding, or welding in which a groove for sandwiching the PET film is provided in the lower end insulator 304 and the upper end insulator 305. The thickness of the insulating film 303 is as thin as about 0.1 to 0.2 mm. Therefore, the cross-sectional area of the insulating film 303 occupying the area of the slot 301c is very small. As a result, the insulating film 303 can be wound with many windings 302.
 図1、図3及び図4に示すように、下端部インシュレータ304は、巻線302とティース301bにおける中心軸方向の下端部との間を絶縁する。下端部インシュレータ304は、固定子鉄心301の圧縮機構部2側である下方向Dに配置されている。 As shown in FIGS. 1, 3 and 4, the lower end insulator 304 insulates between the winding 302 and the lower end of the teeth 301b in the central axial direction. The lower end insulator 304 is arranged in the downward direction D on the compression mechanism portion 2 side of the stator core 301.
 図1に示すように、上端部インシュレータ305は、巻線302とティース301bにおける中心軸方向の上端部との間を絶縁する。上端部インシュレータ305は、固定子鉄心301を挟んで下端部インシュレータ304とは反対側に位置している。 As shown in FIG. 1, the upper end insulator 305 insulates between the winding 302 and the upper end of the teeth 301b in the central axis direction. The upper end insulator 305 is located on the opposite side of the stator core 301 from the lower end insulator 304.
 下端部インシュレータ304及び上端部インシュレータ305は、たとえばLCP(液晶ポリマー)で構成されている。下端部インシュレータ304及び上端部インシュレータ305は、ティースコア301aの端部との嵌め合い、接着又は溶接などの方法によって固定されている。 The lower end insulator 304 and the upper end insulator 305 are made of, for example, LCP (liquid crystal polymer). The lower end insulator 304 and the upper end insulator 305 are fixed by a method such as fitting, bonding, or welding with the end of the tee score 301a.
<巻線302の冷却構造>
 図5は、実施の形態1に係る巻線302と貫通溝301a-1とを示す相関図である。図6は、実施の形態1に係る巻線302及び絶縁フィルム303の装着前状態の固定子鉄心301を示す斜視図である。図7は、実施の形態1に係る固定子鉄心301を図4のA-A線の縦断面にて示す説明図である。図8は、実施の形態1に係る固定子鉄心301の一部を図7のA1領域にて示す拡大図である。
<Cooling structure of winding 302>
FIG. 5 is a correlation diagram showing the winding 302 and the through groove 301a-1 according to the first embodiment. FIG. 6 is a perspective view showing the stator core 301 in the state before mounting the winding 302 and the insulating film 303 according to the first embodiment. FIG. 7 is an explanatory view showing the stator core 301 according to the first embodiment in a vertical cross section of the line AA of FIG. FIG. 8 is an enlarged view showing a part of the stator core 301 according to the first embodiment in the A1 region of FIG.
 図2、図5、図6、図7及び図8に示すように、コアバック301dにおける絶縁フィルム303との接触面部は、中心軸方向に沿って上方向Uと下方向Dとの両端にわたる貫通溝301a-1を有する。 As shown in FIGS. 2, 5, 6, 7, and 8, the contact surface portion of the core back 301d with the insulating film 303 penetrates across both ends of the upward direction U and the downward direction D along the central axis direction. It has a groove 301a-1.
 図6に示すように、貫通溝301a-1は、中心軸方向に沿って一定幅の直線状である。貫通溝301a-1は、複数並列に配列されている。 As shown in FIG. 6, the through groove 301a-1 is a straight line having a constant width along the central axis direction. A plurality of through grooves 301a-1 are arranged in parallel.
 図2に示すように、1つの固定子鉄心301における複数の貫通溝301a-1は、ティース301bの中心である巻線302の巻回し箇所の中央にて、中心軸から半径方向外側に延出される仮想中心線Tに対して線対称に構成されている。ここでは、ティースコア301aのコアバック301dにおける絶縁フィルム303との接触面部には、仮想中心線Tの片側に4つの貫通溝301a-1が設けられている。 As shown in FIG. 2, a plurality of through grooves 301a-1 in one stator core 301 extend radially outward from the central axis at the center of the winding portion of the winding 302 which is the center of the teeth 301b. It is configured to be line-symmetrical with respect to the virtual center line T. Here, four through grooves 301a-1 are provided on one side of the virtual center line T on the contact surface portion of the core back 301d of the tee score 301a with the insulating film 303.
 図5に示すように、貫通溝301a-1の中心軸方向と直交する方向である周方向の幅Bは、巻線302の直径2Rよりも小さい。すなわち、B<2Rの関係が満たされている。 As shown in FIG. 5, the width B in the circumferential direction, which is a direction orthogonal to the central axis direction of the through groove 301a-1, is smaller than the diameter 2R of the winding 302. That is, the relationship of B <2R is satisfied.
 図3、図4、図6及び図7に示すように、下端部インシュレータ304は、貫通溝301a-1に連通して上方向Uと下方向Dとの両端にわたる第1連通溝304-1を有する。第1連通溝304-1は、下端部インシュレータ304とティースコア301aとの接合部において貫通溝301a-1の溝形状と一致している。 As shown in FIGS. 3, 4, 6 and 7, the lower end insulator 304 communicates with the through groove 301a-1 and forms a first communication groove 304-1 extending at both ends in the upward direction U and the downward direction D. Have. The first communication groove 304-1 matches the groove shape of the through groove 301a-1 at the joint between the lower end insulator 304 and the tee score 301a.
 図6、図7及び図8に示すように、上端部インシュレータ305は、貫通溝301a-1の上方向Uへの貫通を塞ぐ仕切面部である下端面部305aを有する。すなわち、仕切面部は、上端部インシュレータ305の一平面状の下端面部305aの一部として形成されている。上端部インシュレータ305の下端面部305aには、溝が無く、貫通溝301a-1を塞ぐ。具体的には、貫通溝301a-1は、上端部インシュレータ305とティースコア301aとの接合部において途切れて塞がれている。 As shown in FIGS. 6, 7 and 8, the upper end insulator 305 has a lower end surface portion 305a which is a partition surface portion that blocks the penetration of the through groove 301a-1 in the upward direction U. That is, the partition surface portion is formed as a part of the flat lower end surface portion 305a of the upper end portion insulator 305. The lower end surface portion 305a of the upper end portion insulator 305 has no groove and closes the through groove 301a-1. Specifically, the through groove 301a-1 is interrupted and closed at the joint portion between the upper end insulator 305 and the tee score 301a.
<作用>
 圧縮機構部2により、密閉容器1内の空間に送出された冷媒及び潤滑油は、下端部インシュレータ304に設けた第1連通溝304-1に下方向Dから導入される。第1連通溝304-1に導入された冷媒及び潤滑油は、ティースコア301aに設けた貫通溝301a-1を通過する。これにより、ティースコア301a及び巻線302が冷媒によって冷却できる。また、上端部インシュレータ305により、貫通溝301a-1を流通する冷媒及び潤滑油の上方向Uへの出口が塞がれている。このため、貫通溝301a-1を流通する潤滑油は、密閉容器1の上部空間に巻き上げられず、油循環率の増加が抑制できる。
<Action>
The refrigerant and lubricating oil delivered to the space inside the closed container 1 by the compression mechanism unit 2 are introduced from the downward direction D into the first communication groove 304-1 provided in the lower end insulator 304. The refrigerant and lubricating oil introduced into the first communication groove 304-1 pass through the through groove 301a-1 provided in the tee score 301a. As a result, the tee score 301a and the winding 302 can be cooled by the refrigerant. Further, the upper end insulator 305 blocks the outlets of the refrigerant and the lubricating oil flowing through the through groove 301a-1 to the upward direction U. Therefore, the lubricating oil flowing through the through groove 301a-1 is not wound up in the upper space of the closed container 1, and the increase in the oil circulation rate can be suppressed.
 また、ティースコア301aの貫通溝301a-1及び下端部インシュレータ304の第1連通溝304-1の数が複数である。これにより、絶縁フィルム303が複数の溝を横切って広がり、絶縁フィルム303が複数の溝に巻線302によって押え込まれて確実に保持できる。またそれとともに、1つあたりの溝の幅Bであるピッチが低減でき、巻線302が貫通溝301a-1及び第1連通溝304-1に入り込み難い。これにより、整列性を保った高密度な巻線302が行え、電動機3がより高効率に構成できる。 Further, the number of the through groove 301a-1 of the tee score 301a and the first communication groove 304-1 of the lower end insulator 304 is plural. As a result, the insulating film 303 spreads across the plurality of grooves, and the insulating film 303 is pressed into the plurality of grooves by the winding 302 and can be reliably held. At the same time, the pitch, which is the width B of each groove, can be reduced, and it is difficult for the winding 302 to enter the through groove 301a-1 and the first communication groove 304-1. As a result, a high-density winding 302 that maintains alignment can be performed, and the electric motor 3 can be configured with higher efficiency.
 さらに、巻線302と固定子鉄心301との間の静電容量Cは、次のような関係がある。すなわち、巻線302と固定子31との間の誘電率がεとされ、巻線302と固定子31の接触面積がSとされ、巻線302と固定子31との距離がdとされる。このとき、C=εS/dの関係が成り立つ。すなわち、絶縁フィルム303にPETフィルムのような薄い絶縁材を用いると、巻線302と固定子31との間の距離dが縮まり、静電容量Cが大きくなる。漏洩電流をiとすると、i∝Cの関係が成り立つ。このため、静電容量Cが大きくなると、漏洩電流が流れ易くなる。 Further, the capacitance C between the winding 302 and the stator core 301 has the following relationship. That is, the dielectric constant between the winding 302 and the stator 31 is ε, the contact area between the winding 302 and the stator 31 is S, and the distance between the winding 302 and the stator 31 is d. .. At this time, the relationship of C = εS / d holds. That is, when a thin insulating material such as a PET film is used for the insulating film 303, the distance d between the winding 302 and the stator 31 is shortened, and the capacitance C is increased. Assuming that the leakage current is i, the relationship of i∝C holds. Therefore, when the capacitance C becomes large, the leakage current tends to flow.
 しかし、固定子鉄心301には、ティースコア301aと巻線302との間に、貫通溝301a-1による空隙が確保される。それにより、巻線302と固定子鉄心301との接触面積が低減し、巻線302と固定子鉄心301との間の距離が拡大され、巻線302と固定子鉄心301との間の浮遊静電容量が低減できる。 However, in the stator core 301, a gap is secured by the through groove 301a-1 between the tee score 301a and the winding 302. As a result, the contact area between the winding 302 and the stator core 301 is reduced, the distance between the winding 302 and the stator core 301 is increased, and the floating static between the winding 302 and the stator core 301 is increased. The electric capacity can be reduced.
<実施の形態1の効果>
 実施の形態1によれば、電動機3の固定子31は、周上に分配された複数のティース301bを有し、隣り合うティース301bの間にスロット301cが形成された固定子鉄心301を備える。電動機3の固定子31は、ティース301bに巻回された巻線302を備える。電動機3の固定子31は、巻線302とスロット301cの内周部との間を絶縁する絶縁フィルム303を備える。電動機3の固定子31は、巻線302とティース301bにおける複数のティース301bの分配された周の中心軸方向の下端部との間を絶縁する下端部インシュレータ304を備える。電動機3の固定子31は、巻線302とティース301bにおける複数のティース301bの分配された周の中心軸方向の上端部との間を絶縁する上端部インシュレータ305を備える。固定子鉄心301は、スロット301cの周方向外側にて絶縁フィルム303と接触する円弧状のコアバック301dを有する。コアバック301dにおける絶縁フィルム303との接触面部は、中心軸方向に沿って上方向Uと下方向Dとの両端にわたる貫通溝301a-1を有する。下端部インシュレータ304は、貫通溝301a-1に連通して上方向Uと下方向Dとの両端にわたる第1連通溝304-1を有する。上端部インシュレータ305は、貫通溝301a-1の上方向Uへの貫通を塞ぐ仕切面部である下端面部305aを有する。
<Effect of Embodiment 1>
According to the first embodiment, the stator 31 of the electric motor 3 has a plurality of teeth 301b distributed on the periphery, and includes a stator core 301 in which a slot 301c is formed between adjacent teeth 301b. The stator 31 of the electric motor 3 includes a winding 302 wound around the teeth 301b. The stator 31 of the electric motor 3 includes an insulating film 303 that insulates between the winding 302 and the inner peripheral portion of the slot 301c. The stator 31 of the electric motor 3 includes a lower end insulator 304 that insulates between the winding 302 and the lower end of the plurality of teeth 301b in the teeth 301b in the central axial direction. The stator 31 of the electric motor 3 includes an upper end insulator 305 that insulates between the winding 302 and the upper end of the plurality of teeth 301b in the teeth 301b in the central axial direction. The stator core 301 has an arc-shaped core back 301d that contacts the insulating film 303 on the outer side in the circumferential direction of the slot 301c. The contact surface portion of the core back 301d with the insulating film 303 has through grooves 301a-1 extending at both ends in the upward direction U and the downward direction D along the central axial direction. The lower end insulator 304 has a first communication groove 304-1 communicating with the through groove 301a-1 and extending at both ends in the upward direction U and the downward direction D. The upper end insulator 305 has a lower end surface portion 305a which is a partition surface portion that blocks the penetration of the through groove 301a-1 in the upward direction U.
 この構成によれば、第1連通溝304-1から貫通溝301a-1に流入した冷媒が固定子31の巻線302を冷却する。一方、貫通溝301a-1に流入した冷媒が下端面部305aによって上端部インシュレータ305での貫通溝301a-1から上方向Uへの貫通を塞がれる。つまり、貫通溝301a-1に冷媒とともに流入した潤滑油の下端面部305aよりも上方向Uへの流出が防止できる。したがって、固定子31の巻線302を冷却する機能を維持しつつ、潤滑油の圧縮機外への持ち出しが抑制でき、密閉型圧縮機100の信頼性が担保できる。また、コアバック301dに貫通溝301a-1が設けられ、コアバック301dにおける巻線302と固定子鉄心301との間の距離が確保でき、薄厚の絶縁フィルム303を介在させても浮遊静電容量が低減できる。 According to this configuration, the refrigerant flowing into the through groove 301a-1 from the first communication groove 304-1 cools the winding 302 of the stator 31. On the other hand, the refrigerant flowing into the through groove 301a-1 is blocked by the lower end surface portion 305a from penetrating the through groove 301a-1 to the upward direction U in the upper end insulator 305. That is, it is possible to prevent the lubricating oil that has flowed into the through groove 301a-1 together with the refrigerant from flowing upward from the lower end surface portion 305a. Therefore, while maintaining the function of cooling the winding 302 of the stator 31, it is possible to prevent the lubricating oil from being taken out of the compressor, and the reliability of the sealed compressor 100 can be ensured. Further, a through groove 301a-1 is provided in the core back 301d, a distance between the winding 302 and the stator core 301 in the core back 301d can be secured, and the floating capacitance is maintained even if a thin insulating film 303 is interposed. Can be reduced.
 実施の形態1によれば、仕切面部は、上端部インシュレータ305の下端面部305aである。 According to the first embodiment, the partition surface portion is the lower end surface portion 305a of the upper end portion insulator 305.
 この構成によれば、上端部インシュレータ305の一平面状の下端面部305aが仕切面部を兼ね、上端部インシュレータ305の加工が必要最小限になる。 According to this configuration, the flat lower end surface portion 305a of the upper end portion insulator 305 also serves as a partition surface portion, and the processing of the upper end portion insulator 305 is minimized.
 実施の形態1によれば、貫通溝301a-1は、中心軸方向に沿って一定幅の直線状である。 According to the first embodiment, the through groove 301a-1 is a straight line having a constant width along the central axis direction.
 この構成によれば、ティース301bが複数重ねられた電磁鋼板に対して、各電磁鋼板において貫通溝301a-1の箇所を同じ形状に形成すれば良く、固定子31の製造が容易である。 According to this configuration, it is sufficient to form the portion of the through groove 301a-1 in each electromagnetic steel sheet in the same shape with respect to the electromagnetic steel sheet in which a plurality of teeth 301b are stacked, and the stator 31 can be easily manufactured.
 実施の形態1によれば、貫通溝301a-1は、複数配列されている。 According to the first embodiment, a plurality of through grooves 301a-1 are arranged.
 この構成によれば、複数の第1連通溝304-1から複数の貫通溝301a-1にそれぞれ流入した冷媒が固定子31の巻線302を冷却する。これにより、固定子31の巻線302への冷却効果がコアバック301dの広い領域で得られる。 According to this configuration, the refrigerant flowing into the plurality of through grooves 301a-1 from the plurality of first communication grooves 304-1 cools the winding 302 of the stator 31. As a result, the cooling effect of the stator 31 on the winding 302 can be obtained in a wide area of the core back 301d.
 実施の形態1によれば、複数の貫通溝301a-1は、巻線302の巻回し箇所の中央にて中心軸から半径方向外側に延出される仮想中心線Tに対して線対称に構成されている。 According to the first embodiment, the plurality of through grooves 301a-1 are configured to be line-symmetrical with respect to the virtual center line T extending radially outward from the central axis at the center of the winding portion of the winding 302. ing.
 この構成によれば、複数の第1連通溝304-1から複数の貫通溝301a-1にそれぞれ流入した冷媒が仮想中心線Tに対して線対称にバランス良く固定子31の巻線302を冷却する。これにより、固定子31の巻線302への冷却効果がコアバック301dの広い領域でより効果的に得られる。 According to this configuration, the refrigerant flowing into the plurality of through grooves 301a-1 from the plurality of first communication grooves 304-1 cools the winding 302 of the stator 31 in a line-symmetrical and well-balanced manner with respect to the virtual center line T. To do. As a result, the cooling effect of the stator 31 on the winding 302 can be obtained more effectively in a wide area of the core back 301d.
 実施の形態1によれば、貫通溝301a-1の中心軸方向と直交する方向の幅Bは、巻線302の直径R2よりも小さい。 According to the first embodiment, the width B in the direction orthogonal to the central axis direction of the through groove 301a-1 is smaller than the diameter R2 of the winding 302.
 この構成によれば、巻線302が貫通溝301a-1に嵌まり込まず、巻線302の巻回しが容易になる。 According to this configuration, the winding 302 does not fit into the through groove 301a-1, and the winding 302 can be easily wound.
 実施の形態1によれば、電動機3は、上記の電動機3の固定子31を備える。 According to the first embodiment, the electric motor 3 includes the stator 31 of the electric motor 3 described above.
 この構成によれば、電動機3が上記の電動機3の固定子31を備えるので、固定子31の巻線302を冷却する機能を維持しつつ、潤滑油の圧縮機外への持ち出しが抑制でき、密閉型圧縮機100の信頼性が担保できる。 According to this configuration, since the electric motor 3 includes the stator 31 of the electric motor 3, it is possible to suppress the removal of the lubricating oil to the outside of the compressor while maintaining the function of cooling the winding 302 of the stator 31. The reliability of the sealed compressor 100 can be ensured.
 実施の形態1によれば、密閉型圧縮機100は、上記の電動機3を備える。 According to the first embodiment, the sealed compressor 100 includes the above-mentioned electric motor 3.
 この構成によれば、密閉型圧縮機100が上記の電動機3を備えるので、固定子31の巻線302を冷却する機能を維持しつつ、潤滑油の圧縮機外への持ち出しが抑制でき、密閉型圧縮機100の信頼性が担保できる。 According to this configuration, since the sealed compressor 100 includes the above-mentioned electric motor 3, it is possible to prevent the lubricating oil from being taken out of the compressor while maintaining the function of cooling the winding 302 of the stator 31, and it is sealed. The reliability of the mold compressor 100 can be guaranteed.
実施の形態2.
 図9は、実施の形態2に係る巻線302及び絶縁フィルム303の装着前状態の固定子鉄心301を示す斜視図である。図10は、実施の形態2に係る貫通溝301a-1と第1連通溝304-1とのなす角度θを示す相関図である。実施の形態2では、上記実施の形態1と同事項の説明が省略され、その特徴部分のみが説明されている。
Embodiment 2.
FIG. 9 is a perspective view showing the stator core 301 in the state before mounting the winding 302 and the insulating film 303 according to the second embodiment. FIG. 10 is a correlation diagram showing an angle θ formed by the through groove 301a-1 and the first communication groove 304-1 according to the second embodiment. In the second embodiment, the description of the same items as in the first embodiment is omitted, and only the characteristic portion thereof is described.
 図9に示すように、下端部インシュレータ304の第1連通溝304-1の延びる角度θは、貫通溝301a-1の延びる中心軸方向に対して所定角度の傾きを有する。具体的には、下端部インシュレータ304の第1連通溝304-1の延びる角度θは、貫通溝301a-1の延びる中心軸方向に対して、巻線302の巻回箇所から離間していく角度の傾きを有する。ただし、第1連通溝304-1は、貫通溝301a-1に連通し、同一の溝形状を有する。 As shown in FIG. 9, the extension angle θ of the first communication groove 304-1 of the lower end insulator 304 has an inclination of a predetermined angle with respect to the central axis direction in which the through groove 301a-1 extends. Specifically, the extension angle θ of the first communication groove 304-1 of the lower end insulator 304 is the angle at which the winding 302 is separated from the winding position with respect to the central axis direction in which the through groove 301a-1 extends. Has an inclination of. However, the first communication groove 304-1 communicates with the through groove 301a-1 and has the same groove shape.
 図6に示す実施の形態1では、下端部インシュレータ304の第1連通溝304-1は中心軸方向に対して平行に設けられていた。このため、絶縁フィルム303は、下端部インシュレータ304の第1連通溝304-1に入り込むおそれがあった。このため、巻線302を中心軸方向に巻く際に、絶縁フィルム303が入り込んだ第1連通溝304-1に巻線302が入り込むおそれがあった。 In the first embodiment shown in FIG. 6, the first communication groove 304-1 of the lower end insulator 304 is provided parallel to the central axis direction. Therefore, the insulating film 303 may enter the first communication groove 304-1 of the lower end insulator 304. Therefore, when winding the winding 302 in the central axis direction, there is a possibility that the winding 302 may enter the first communication groove 304-1 in which the insulating film 303 has entered.
 これに対し、実施の形態2の下端部インシュレータ304では、第1連通溝304-1は、中心軸方向に対して角度θを有する。このため、巻線302の巻回し時に巻線302が第1連通溝304-1に入り込み難くなる。たとえば、下端部インシュレータ304の第1連通溝304-1の延びる角度がθとされ、θが貫通溝301a-1の延びる中心軸方向への延びる角度が180°とされる。このとき、150°≦θ<180°が満たされると良い。 On the other hand, in the lower end insulator 304 of the second embodiment, the first communication groove 304-1 has an angle θ with respect to the central axis direction. Therefore, it becomes difficult for the winding 302 to enter the first communication groove 304-1 when the winding 302 is wound. For example, the extension angle of the first communication groove 304-1 of the lower end insulator 304 is θ, and the extension angle of θ in the central axis direction of the through groove 301a-1 is 180 °. At this time, it is preferable that 150 ° ≦ θ <180 ° is satisfied.
<実施の形態2の効果>
 実施の形態2によれば、下端部インシュレータ304の第1連通溝304-1の延びる角度θは、貫通溝301a-1の延びる中心軸方向に対して所定角度の傾きを有する。
<Effect of Embodiment 2>
According to the second embodiment, the extension angle θ of the first communication groove 304-1 of the lower end insulator 304 has an inclination of a predetermined angle with respect to the central axis direction in which the through groove 301a-1 extends.
 この構成によれば、巻線302の巻回し時に巻線302が第1連通溝304-1に入り込み難くなり、巻線302の巻回しが容易になる。 According to this configuration, it becomes difficult for the winding 302 to enter the first communication groove 304-1 when the winding 302 is wound, and the winding 302 can be easily wound.
 実施の形態2によれば、下端部インシュレータ304の第1連通溝304-1の延びる角度θは、貫通溝301a-1の延びる中心軸方向に対して、巻線302の巻回箇所から離間していく角度の傾きを有する。 According to the second embodiment, the extending angle θ of the first communication groove 304-1 of the lower end insulator 304 is separated from the winding portion of the winding 302 with respect to the central axis direction in which the through groove 301a-1 extends. It has an inclination of the angle to go.
 この構成によれば、第1連通溝304-1の延びる角度θが巻回される巻線302とは逆向きになり、巻線302の巻回し時に巻線302が第1連通溝304-1により入り込み難くなり、巻線302の巻回しがより容易になる。 According to this configuration, the extending angle θ of the first communication groove 304-1 is opposite to that of the winding 302 around which the winding 302 is wound, and the winding 302 is rotated by the first communication groove 304-1 when the winding 302 is wound. This makes it difficult to enter and makes it easier to wind the winding 302.
 実施の形態2によれば、下端部インシュレータ304の第1連通溝304-1の延びる角度をθとし、θが貫通溝301a-1の延びる中心軸方向への延びる角度を180°とすると、150°≦θ<180°が満たされる。 According to the second embodiment, assuming that the extension angle of the first communication groove 304-1 of the lower end insulator 304 is θ and the extension angle of θ in the central axis direction of the through groove 301a-1 is 180 °, 150 ° ≤ θ <180 ° is satisfied.
 この構成によれば、第1連通溝304-1の延びる角度θが巻回される巻線302とは最適な逆向き範囲に設定でき、巻線302の巻回し時に巻線302が第1連通溝304-1により入り込み難くなり、巻線302の巻回しがより容易になる。 According to this configuration, the extension angle θ of the first communication groove 304-1 can be set in the optimum opposite direction range from the winding 302 around which the winding 302 is wound, and the winding 302 is first communicated when the winding 302 is wound. The groove 304-1 makes it difficult to enter, and makes it easier to wind the winding 302.
実施の形態3.
 図11は、実施の形態3に係るティースコア301aにおけるWminとWとを示す相関図である。実施の形態3では、上記実施の形態1及び実施の形態2と同事項の説明が省略され、その特徴部分のみが説明されている。
Embodiment 3.
FIG. 11 is a correlation diagram showing Wmin and W in the tee score 301a according to the third embodiment. In the third embodiment, the description of the same items as those in the first and second embodiments is omitted, and only the characteristic portion thereof is described.
 固定子鉄心301は、回転子32から受ける磁界を通す磁路の役割を持つ。しかし、固定子鉄心301に貫通溝301a-1が設けられると、コアバック301dにおける磁路が狭まり、磁気特性が悪化する。 The stator core 301 has the role of a magnetic path through which the magnetic field received from the rotor 32 passes. However, if the stator core 301 is provided with the through groove 301a-1, the magnetic path in the core back 301d is narrowed and the magnetic characteristics are deteriorated.
 ここで、コアバック301dにおける磁束の通り易さは、図11に示すコアバック301dの半径方向の幅の最も狭い部分Wminで決まる。そこで、コアバック301dにおける貫通溝301a-1が形成された箇所の半径方向の幅がWとされ、コアバック301dの半径方向の幅の最も狭い部分の幅がWminとされる。このとき、W≧Wminが満たされる。 Here, the ease of passage of the magnetic flux in the core back 301d is determined by the narrowest portion Wmin in the radial direction of the core back 301d shown in FIG. Therefore, the width of the portion of the core back 301d in which the through groove 301a-1 is formed is defined as W, and the width of the narrowest portion of the core back 301d in the radial direction is defined as Wmin. At this time, W ≧ Wmin is satisfied.
 これにより、固定子鉄心301と巻線302との間の空隙が大きくとれる。たとえば、図11のようにWminが鉄心分割面の場合には、鉄心分割面の内側の交点を通る円弧上又は円弧の内側に貫通溝301a-1の最外径箇所を形成すると良い。これにより、磁気特性が大きく損なわれず、固定子31の冷却効果及び浮遊静電容量の低減効果がより向上して得られ、効率面で優れた電動機3が構成できる。 As a result, a large gap can be secured between the stator core 301 and the winding 302. For example, when Wmin is an iron core dividing surface as shown in FIG. 11, it is preferable to form the outermost diameter portion of the through groove 301a-1 on an arc passing through an intersection inside the iron core dividing surface or inside the arc. As a result, the magnetic characteristics are not significantly impaired, the cooling effect of the stator 31 and the effect of reducing the floating capacitance can be further improved, and the electric motor 3 having excellent efficiency can be configured.
<実施の形態3の効果>
 実施の形態3によれば、電動機3の固定子31は、コアバック301dにおける貫通溝301a-1が形成された箇所の半径方向の幅をWとし、コアバック301dの半径方向の幅の最も狭い部分の幅をWminとする。このとき、W≧Wminが満たされる。
<Effect of Embodiment 3>
According to the third embodiment, in the stator 31 of the electric motor 3, the radial width of the portion of the core back 301d where the through groove 301a-1 is formed is W, and the width of the core back 301d in the radial direction is the narrowest. The width of the portion is Wmin. At this time, W ≧ Wmin is satisfied.
 コアバック301dにおける磁束の通り易さは、コアバック301dの半径方向の幅の最も狭い部分Wminで決まる。この構成によれば、コアバック301dにおける貫通溝301a-1が形成された箇所の半径方向の幅をWとし、W≧Wminが満たされる。このため、コアバック301dにおけるWminよりも磁束の通り難い箇所が生じず、コアバック301dの磁気特性が大きく損なわれない。加えて、W≧Wminが満たされる範囲で貫通溝301a-1が深く形成でき、固定子31の冷却効果及び浮遊静電容量の低減効果がより向上して得られる。以上により、効率面で優れた電動機3が構成できる。 The ease with which the magnetic flux passes in the core back 301d is determined by the narrowest portion Wmin in the radial direction of the core back 301d. According to this configuration, the width in the radial direction of the portion where the through groove 301a-1 is formed in the core back 301d is set to W, and W ≧ Wmin is satisfied. Therefore, there is no portion of the core back 301d that is more difficult to pass the magnetic flux than Wmin, and the magnetic characteristics of the core back 301d are not significantly impaired. In addition, the through groove 301a-1 can be formed deeply within the range where W ≧ Wmin is satisfied, and the cooling effect of the stator 31 and the effect of reducing the floating capacitance can be further improved. As described above, the electric motor 3 having excellent efficiency can be configured.
実施の形態4.
 図12は、実施の形態4に係る固定子鉄心301を図4のA-A線の縦断面にて示す説明図である。図13は、実施の形態4に係る固定子鉄心301の一部を図12のA2領域にて示す拡大図である。実施の形態4では、上記実施の形態1、実施の形態2及び実施の形態3と同事項の説明が省略され、その特徴部分のみが説明されている。上記実施の形態1、実施の形態2及び実施の形態3では、圧縮機構側の下端部インシュレータ304のみに冷媒導入用の溝が設けられていた。しかし、たとえば反対側の上端部インシュレータ305にも形状又は個数を調整した溝が設けられても良い。ただし、上端部インシュレータ305の溝が仕切面部で閉塞される必要がある。
Embodiment 4.
FIG. 12 is an explanatory view showing the stator core 301 according to the fourth embodiment in a vertical cross section of the line AA of FIG. FIG. 13 is an enlarged view showing a part of the stator core 301 according to the fourth embodiment in the A2 region of FIG. In the fourth embodiment, the description of the same items as those in the first, second and third embodiments is omitted, and only the characteristic portion thereof is described. In the first embodiment, the second embodiment, and the third embodiment, the groove for introducing the refrigerant is provided only in the lower end insulator 304 on the compression mechanism side. However, for example, the upper end insulator 305 on the opposite side may also be provided with grooves having an adjusted shape or number. However, the groove of the upper end insulator 305 needs to be closed by the partition surface portion.
 図12及び図13に示すように、上端部インシュレータ305は、貫通溝301a-1に連通して上端部インシュレータ305の上方向Uと下方向Dとの途中まで形成された第2連通溝305-1を有する。第2連通溝305-1は、巻線302の巻回箇所よりも上方向Uまで形成されている。 As shown in FIGS. 12 and 13, the upper end insulator 305 communicates with the through groove 301a-1 and is formed halfway between the upper direction U and the lower direction D of the upper end insulator 305. Has 1. The second communication groove 305-1 is formed up to U in the upward direction from the winding portion of the winding 302.
 図13に示すように、仕切面部は、第2連通溝305-1の上側溝端面部305bである。上側溝端面部305bは、水平方向に沿った平坦面を有する。仕切面部である上側溝端面部305bと巻線302の巻回箇所との間には、上方向Uと下方向Dとに沿った中心軸方向とは直交方向に開放された開口部305cが形成されている。開口部305cにより、冷媒の出口が水平方向に形成できる。このため、冷媒の循環率が高まり、固定子31の冷却効果がより向上して得られる。 As shown in FIG. 13, the partition surface portion is the upper groove end surface portion 305b of the second communication groove 305-1. The upper groove end face portion 305b has a flat surface along the horizontal direction. An opening 305c opened in a direction orthogonal to the central axial direction along the upward direction U and the downward direction D is formed between the upper groove end surface portion 305b which is a partition surface portion and the winding portion of the winding 302. Has been done. The opening 305c allows the refrigerant outlet to be formed in the horizontal direction. Therefore, the circulation rate of the refrigerant is increased, and the cooling effect of the stator 31 is further improved.
<実施の形態4の効果>
 実施の形態4によれば、上端部インシュレータ305は、貫通溝301a-1に連通して上端部インシュレータ305の上方向Uと下方向Dとの途中まで形成された第2連通溝305-1を有する。
<Effect of Embodiment 4>
According to the fourth embodiment, the upper end insulator 305 communicates with the through groove 301a-1 and forms a second communication groove 305-1 formed halfway between the upper direction U and the lower direction D of the upper end insulator 305. Have.
 この構成によれば、貫通溝301a-1を流通する冷媒が上端部インシュレータ305の第2連通溝305-1まで至るので、上端部インシュレータ305まで巻回された巻線302に対しても冷却効果が得られる。 According to this configuration, since the refrigerant flowing through the through groove 301a-1 reaches the second communication groove 305-1 of the upper end insulator 305, the cooling effect is also applied to the winding 302 wound up to the upper end insulator 305. Is obtained.
 実施の形態4によれば、第2連通溝305-1は、巻線302の巻回箇所よりも上方向Uまで形成されている。仕切面部は、第2連通溝305-1の上側溝端面部305bである。 According to the fourth embodiment, the second communication groove 305-1 is formed up to U in the upward direction from the winding portion of the winding 302. The partition surface portion is the upper groove end surface portion 305b of the second communication groove 305-1.
 この構成によれば、貫通溝301a-1を流通する冷媒が巻線302の巻回箇所よりも上方向Uまで形成された第2連通溝305-1まで至るので、上端部インシュレータ305まで巻回された巻線302の全部に冷却効果が得られる。また、仕切面部が第2連通溝305-1の上側溝端面部305bであるので、貫通溝301a-1に冷媒とともに流入した潤滑油の仕切面部である上側溝端面部305bよりも上方向Uへの流出が防止できる。 According to this configuration, the refrigerant flowing through the through groove 301a-1 reaches the second communication groove 305-1 formed up to the winding point U of the winding 302, so that the refrigerant flows to the upper end insulator 305. A cooling effect can be obtained for all of the wound windings 302. Further, since the partition surface portion is the upper groove end surface portion 305b of the second communication groove 305-1, the direction U is higher than the upper groove end surface portion 305b which is the partition surface portion of the lubricating oil that has flowed into the through groove 301a-1 together with the refrigerant. Can be prevented from flowing out.
 実施の形態4によれば、仕切面部である上側溝端面部305bと巻線302の巻回箇所との間には、中心軸方向とは直交方向に開放された開口部305cが形成されている。 According to the fourth embodiment, an opening 305c opened in a direction orthogonal to the central axis direction is formed between the upper groove end surface portion 305b which is a partition surface portion and the winding portion of the winding 302. ..
 この構成によれば、第2連通溝305-1まで上方向Uに上昇した冷媒及び潤滑油は、上方向Uではなく中心軸方向とは直交方向に開放された開口部305cに向かい、潤滑油の上方向Uへの流出が防止できる。また、第2連通溝305-1まで上方向Uに上昇した冷媒及び潤滑油が貫通溝301a-1及び第1連通溝304-1を再度下方に降下する必要が無い。すなわち、第2連通溝305-1まで上方向Uに上昇した冷媒及び潤滑油は、開口部305cから順に電動機3の周囲に排出される。すなわち、第1連通溝304-1、貫通溝301a-1及び第2連通溝305-1にこの順に冷媒及び潤滑油が効率良く循環し、潤滑油が途中で溜まることも無く固定子31の巻線302の冷却効果が効率良く得られる。 According to this configuration, the refrigerant and the lubricating oil that have risen upward to the second communication groove 305-1 are directed not toward the upward direction U but toward the opening 305c opened in the direction orthogonal to the central axis direction, and the lubricating oil. The outflow to the upward U can be prevented. Further, it is not necessary for the refrigerant and the lubricating oil that have risen upward to the second communication groove 305-1 to descend the through groove 301a-1 and the first communication groove 304-1 again. That is, the refrigerant and the lubricating oil that have risen upward to the second communication groove 305-1 are discharged to the periphery of the motor 3 in order from the opening 305c. That is, the refrigerant and the lubricating oil circulate efficiently in this order in the first communication groove 304-1, the through groove 301a-1, and the second communication groove 305-1, and the lubricant 31 is wound without the lubricating oil accumulating in the middle. The cooling effect of the wire 302 can be efficiently obtained.
 なお、実施の形態1、実施の形態2、実施の形態3及び実施の形態4は、組み合わせられても良いし、他の部分に適用されても良い。 It should be noted that the first embodiment, the second embodiment, the third embodiment and the fourth embodiment may be combined or applied to other parts.
実施の形態5.
<冷凍サイクル装置101>
 図14は、実施の形態5に係る密閉型圧縮機100を適用した冷凍サイクル装置101を示す冷媒回路図である。
Embodiment 5.
<Refrigeration cycle device 101>
FIG. 14 is a refrigerant circuit diagram showing a refrigerating cycle device 101 to which the sealed compressor 100 according to the fifth embodiment is applied.
 図14に示すように、冷凍サイクル装置101は、密閉型圧縮機100、凝縮器102、膨張弁103及び蒸発器104を備える。これら密閉型圧縮機100、凝縮器102、膨張弁103及び蒸発器104が冷媒配管で接続されて冷媒回路を形成している。そして、蒸発器104から流出した冷媒は、密閉型圧縮機100に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器102において凝縮されて液体になる。液体となった冷媒は、膨張弁103で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器104において熱交換される。 As shown in FIG. 14, the refrigeration cycle device 101 includes a closed compressor 100, a condenser 102, an expansion valve 103, and an evaporator 104. These sealed compressor 100, condenser 102, expansion valve 103 and evaporator 104 are connected by a refrigerant pipe to form a refrigerant circuit. Then, the refrigerant flowing out of the evaporator 104 is sucked into the closed compressor 100 and becomes high temperature and high pressure. The high temperature and high pressure refrigerant is condensed in the condenser 102 to become a liquid. The liquid refrigerant is decompressed and expanded by the expansion valve 103 to become a low-temperature low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant heat exchanges in the evaporator 104.
 実施の形態1、実施の形態2、実施の形態3及び実施の形態4の密閉型圧縮機100は、このような冷凍サイクル装置101に適用できる。なお、冷凍サイクル装置101としては、たとえば空気調和装置、冷凍装置又は給湯器などが挙げられる。 The closed compressor 100 of the first embodiment, the second embodiment, the third embodiment and the fourth embodiment can be applied to such a refrigeration cycle device 101. Examples of the refrigeration cycle device 101 include an air conditioner, a refrigeration device, a water heater, and the like.
<実施の形態5の効果>
 実施の形態5によれば、冷凍サイクル装置101は、上記の密閉型圧縮機100を備える。
<Effect of Embodiment 5>
According to the fifth embodiment, the refrigeration cycle device 101 includes the above-mentioned sealed compressor 100.
 この構成によれば、冷凍サイクル装置101が上記の密閉型圧縮機100を備えるので、固定子31の巻線302を冷却する機能を維持しつつ、潤滑油の圧縮機外への持ち出しが抑制でき、密閉型圧縮機100の信頼性が担保できる。 According to this configuration, since the refrigerating cycle device 101 includes the above-mentioned sealed compressor 100, it is possible to suppress the taking out of the lubricating oil to the outside of the compressor while maintaining the function of cooling the winding 302 of the stator 31. , The reliability of the sealed compressor 100 can be guaranteed.
 1 密閉容器、1a 油貯留部、2 圧縮機構部、3 電動機、11 中央容器、12 上容器、13 下容器、14 吸入マフラー、15 吸入管、16 吐出管、21 回転軸、22 主軸受、23 副軸受、24 ローリングピストン、25 円筒シリンダ、31 固定子、32 回転子、100 密閉型圧縮機、101 冷凍サイクル装置、102 凝縮器、103 膨張弁、104 蒸発器、301 固定子鉄心、301a ティースコア、301a-1 貫通溝、301b ティース、301c スロット、301d コアバック、302 巻線、303 絶縁フィルム、304 下端部インシュレータ、304-1 第1連通溝、305 上端部インシュレータ、305-1 第2連通溝、305a 下端面部、305b 上側溝端面部、305c 開口部。 1 closed container, 1a oil storage part, 2 compression mechanism part, 3 electric motor, 11 central container, 12 upper container, 13 lower container, 14 suction muffler, 15 suction pipe, 16 discharge pipe, 21 rotary shaft, 22 main bearing, 23 Auxiliary bearing, 24 rolling piston, 25 cylindrical cylinder, 31 stator, 32 rotor, 100 sealed compressor, 101 refrigeration cycle device, 102 condenser, 103 expansion valve, 104 evaporator, 301 stator core, 301a tea score , 301a-1 through groove, 301b teeth, 301c slot, 301d core back, 302 winding, 303 insulating film, 304 lower end insulator, 304-1 first communication groove, 305 upper end insulator, 305-1 second communication groove , 305a lower end surface, 305b upper groove end surface, 305c opening.

Claims (16)

  1.  周上に複数のティースを有し、隣り合う前記ティースの間にスロットが形成された固定子鉄心と、
     前記ティースに巻回された巻線と、
     前記巻線と前記スロットの内周部との間を絶縁する絶縁フィルムと、
     前記巻線と前記ティースにおける複数の前記ティースの分配された周の中心軸方向の下端部との間を絶縁する下端部インシュレータと、
     前記巻線と前記ティースにおける前記中心軸方向の上端部との間を絶縁する上端部インシュレータと、
    を備え、
     前記固定子鉄心は、前記スロットの周方向外側にて前記絶縁フィルムと接触するコアバックを有し、
     前記コアバックにおける前記絶縁フィルムとの接触面部は、前記中心軸方向に沿って上下方向両端にわたる貫通溝を有し、
     前記下端部インシュレータは、前記貫通溝に連通して上下方向両端にわたる第1連通溝を有し、
     前記上端部インシュレータは、前記貫通溝の上方向への貫通を塞ぐ仕切面部を有する電動機の固定子。
    A stator core having a plurality of teeth on the circumference and a slot formed between the adjacent teeth,
    The winding wound around the tooth and
    An insulating film that insulates between the winding and the inner peripheral portion of the slot,
    A lower end insulator that insulates between the winding and the lower end in the central axis direction of the plurality of distributed circumferences of the teeth in the teeth.
    An upper end insulator that insulates between the winding and the upper end of the teeth in the central axial direction.
    With
    The stator core has a core back that comes into contact with the insulating film on the outer side in the circumferential direction of the slot.
    The contact surface portion of the core back with the insulating film has through grooves extending in both vertical directions along the central axis direction.
    The lower end insulator has a first communication groove that communicates with the through groove and extends over both ends in the vertical direction.
    The upper end insulator is a stator of an electric motor having a partition surface portion that closes the upward penetration of the through groove.
  2.  前記仕切面部は、前記上端部インシュレータの下端面部である請求項1に記載の電動機の固定子。 The stator of the electric motor according to claim 1, wherein the partition surface portion is a lower end surface portion of the upper end insulator.
  3.  前記貫通溝は、前記中心軸方向に沿って一定幅の直線状である請求項1又は請求項2に記載の電動機の固定子。 The stator of the electric motor according to claim 1 or 2, wherein the through groove is a linear shape having a constant width along the central axis direction.
  4.  前記下端部インシュレータの前記第1連通溝の延びる角度は、前記貫通溝の延びる前記中心軸方向に対して所定角度の傾きを有する請求項1~請求項3のいずれか1項に記載の電動機の固定子。 The electric motor according to any one of claims 1 to 3, wherein the extension angle of the first communication groove of the lower end insulator has an inclination of a predetermined angle with respect to the central axis direction in which the through groove extends. stator.
  5.  前記下端部インシュレータの前記第1連通溝の延びる角度は、前記貫通溝の延びる前記中心軸方向に対して、前記巻線の巻回箇所から離間していく角度の傾きを有する請求項4に記載の電動機の固定子。 The fourth aspect of the present invention, wherein the extension angle of the first communication groove of the lower end insulator has an inclination of an angle away from the winding portion of the winding with respect to the central axis direction in which the through groove extends. Stator of the electric motor.
  6.  前記下端部インシュレータの前記第1連通溝の延びる角度をθとし、θが前記貫通溝の延びる前記中心軸方向への延びる角度を180°とすると、150°≦θ<180°が満たされる請求項4又は請求項5に記載の電動機の固定子。 Claim that 150 ° ≤ θ <180 ° is satisfied, where θ is the extension angle of the first communication groove of the lower end insulator and θ is 180 ° when the extension angle of the through groove in the central axis direction is 180 °. 4 or the stator of the electric motor according to claim 5.
  7.  前記コアバックにおける前記貫通溝が形成された箇所の半径方向の幅をWとし、前記コアバックの半径方向の幅の最も狭い部分の幅をWminとすると、W≧Wminが満たされる請求項1~請求項6のいずれか1項に記載の電動機の固定子。 Claims 1 to 1, wherein W ≧ Wmin is satisfied, where W is the radial width of the portion of the core back where the through groove is formed and Wmin is the width of the narrowest portion of the core back in the radial direction. The stator of the electric motor according to any one of claims 6.
  8.  前記上端部インシュレータは、前記貫通溝に連通して前記上端部インシュレータの上下方向の途中まで形成された第2連通溝を有する請求項1~請求項7のいずれか1項に記載の電動機の固定子。 The fixing of the electric motor according to any one of claims 1 to 7, wherein the upper end insulator has a second communication groove that communicates with the through groove and is formed halfway in the vertical direction of the upper end insulator. Child.
  9.  前記第2連通溝は、前記巻線の巻回箇所よりも上方向まで形成され、
     前記仕切面部は、前記第2連通溝の上側溝端面部である請求項8に記載の電動機の固定子。
    The second communication groove is formed up to the winding position of the winding.
    The stator of the electric motor according to claim 8, wherein the partition surface portion is an upper groove end surface portion of the second communication groove.
  10.  前記仕切面部と前記巻線の巻回箇所との間には、前記中心軸方向とは直交方向に開放された開口部が形成されている請求項9に記載の電動機の固定子。 The stator of the electric motor according to claim 9, wherein an opening opened in a direction orthogonal to the central axis direction is formed between the partition surface portion and the winding portion of the winding.
  11.  前記貫通溝は、複数配列されている請求項1~請求項10のいずれか1項に記載の電動機の固定子。 The stator of the electric motor according to any one of claims 1 to 10, wherein the through groove is a plurality of arranged grooves.
  12.  複数の前記貫通溝は、前記巻線の巻回し箇所の中央にて前記中心軸から半径方向外側に延出される仮想中心線に対して線対称に構成されている請求項11に記載の電動機の固定子。 The electric motor according to claim 11, wherein the plurality of through grooves are formed line-symmetrically with respect to a virtual center line extending radially outward from the central axis at the center of the winding portion of the winding. stator.
  13.  前記貫通溝の前記中心軸方向と直交する方向の幅は、前記巻線の直径よりも小さい請求項1~請求項12のいずれか1項に記載の電動機の固定子。 The stator of the electric motor according to any one of claims 1 to 12, wherein the width of the through groove in the direction orthogonal to the central axis direction is smaller than the diameter of the winding.
  14.  請求項1~請求項13のいずれか1項に記載の電動機の固定子を備える電動機。 An electric motor including the stator of the electric motor according to any one of claims 1 to 13.
  15.  請求項14に記載の電動機を備える密閉型圧縮機。 A sealed compressor including the electric motor according to claim 14.
  16.  請求項15に記載の密閉型圧縮機を備える冷凍サイクル装置。 A refrigeration cycle device including the sealed compressor according to claim 15.
PCT/JP2019/018380 2019-05-08 2019-05-08 Electric motor stator, electric motor, hermetic compressor, and refrigeration cycle device WO2020225872A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/018380 WO2020225872A1 (en) 2019-05-08 2019-05-08 Electric motor stator, electric motor, hermetic compressor, and refrigeration cycle device
JP2021518248A JP7170855B2 (en) 2019-05-08 2019-05-08 Electric motor stators, electric motors, hermetic compressors and refrigeration cycle devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018380 WO2020225872A1 (en) 2019-05-08 2019-05-08 Electric motor stator, electric motor, hermetic compressor, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020225872A1 true WO2020225872A1 (en) 2020-11-12

Family

ID=73050753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018380 WO2020225872A1 (en) 2019-05-08 2019-05-08 Electric motor stator, electric motor, hermetic compressor, and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7170855B2 (en)
WO (1) WO2020225872A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030062780A1 (en) * 2001-10-03 2003-04-03 Nissan Motor Co., Ltd. Rotating electric machine and cooling structure for rotating electric machine
JP2012023818A (en) * 2010-07-12 2012-02-02 Mitsubishi Electric Corp Stator of motor
JP2013013192A (en) * 2011-06-28 2013-01-17 Nissan Motor Co Ltd Stator and insulator
JP2014222977A (en) * 2013-05-14 2014-11-27 日立アプライアンス株式会社 Motor and air conditioner using the same
WO2017146117A1 (en) * 2016-02-26 2017-08-31 Ntn株式会社 Insulation bobbin of rotating electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030062780A1 (en) * 2001-10-03 2003-04-03 Nissan Motor Co., Ltd. Rotating electric machine and cooling structure for rotating electric machine
JP2012023818A (en) * 2010-07-12 2012-02-02 Mitsubishi Electric Corp Stator of motor
JP2013013192A (en) * 2011-06-28 2013-01-17 Nissan Motor Co Ltd Stator and insulator
JP2014222977A (en) * 2013-05-14 2014-11-27 日立アプライアンス株式会社 Motor and air conditioner using the same
WO2017146117A1 (en) * 2016-02-26 2017-08-31 Ntn株式会社 Insulation bobbin of rotating electric machine

Also Published As

Publication number Publication date
JPWO2020225872A1 (en) 2021-10-14
JP7170855B2 (en) 2022-11-14

Similar Documents

Publication Publication Date Title
JP6584513B2 (en) Rotor, rotating electrical machine, electric compressor and refrigeration air conditioner
EP2113987B1 (en) Insulator for motor, stator, motor and compressor
US8912701B2 (en) Induction motor, compressor and refrigerating cycle apparatus
WO2017179115A1 (en) Electric motor, compressor, and refrigeration cycle device
JP2015211603A (en) Motor, sealed type compressor, and refrigerating cycle device
US20120301334A1 (en) Compressor and Refrigerating Cycle Apparatus
JP2017028862A (en) Rotor, rotary electric machine, electrically-driven compressor and refrigeration air conditioner
JP2008101558A (en) Hermetic compressor
WO2020225872A1 (en) Electric motor stator, electric motor, hermetic compressor, and refrigeration cycle device
JP2008148526A (en) Stator for motor, motor and compressor
JP3992071B1 (en) Compressor
JP5135779B2 (en) Compressor
JP7361921B2 (en) Electric motors, compressors and refrigeration cycle equipment
JP5034476B2 (en) Compressor and air conditioner and water heater
JP2008038862A (en) Compressor
JP2008138591A5 (en)
WO2017006454A1 (en) Compressor and refrigeration cycle device
JP2021080918A (en) Compressor and air conditioner
WO2020121485A1 (en) Electric motor, compressor, and refrigeration cycle device
JP2008184931A (en) Motor and compressor
US11378080B2 (en) Compressor
WO2023112078A1 (en) Stator, motor, compressor, and refrigeration cycle device
CN110366809B (en) Rotating electric machine, compressor, and refrigeration cycle device
JP2012223068A (en) Rotary electric machine
KR20180037040A (en) Stator iron core, compressor and refrigeration cycle unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021518248

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928100

Country of ref document: EP

Kind code of ref document: A1