WO2020121485A1 - Electric motor, compressor, and refrigeration cycle device - Google Patents

Electric motor, compressor, and refrigeration cycle device Download PDF

Info

Publication number
WO2020121485A1
WO2020121485A1 PCT/JP2018/045897 JP2018045897W WO2020121485A1 WO 2020121485 A1 WO2020121485 A1 WO 2020121485A1 JP 2018045897 W JP2018045897 W JP 2018045897W WO 2020121485 A1 WO2020121485 A1 WO 2020121485A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
iron core
rotor
permanent magnet
hole
Prior art date
Application number
PCT/JP2018/045897
Other languages
French (fr)
Japanese (ja)
Inventor
義和 藤末
浩二 矢部
和史 森島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CZ2021-265A priority Critical patent/CZ2021265A3/en
Priority to PCT/JP2018/045897 priority patent/WO2020121485A1/en
Priority to JP2020559643A priority patent/JP7080345B2/en
Priority to CN201880099849.5A priority patent/CN113169601A/en
Publication of WO2020121485A1 publication Critical patent/WO2020121485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to an electric motor, a compressor, and a refrigeration cycle device.
  • it relates to the rotor of a permanent magnet embedded motor.
  • a permanent magnet embedded type electric motor in which a permanent magnet is arranged in the magnet insertion hole of the rotor has been known.
  • Some rotors of a permanent magnet embedded type electric motor have a permanent magnet embedded so as to penetrate the laminated iron core in the axial direction.
  • an excessive eddy current is generated on the surface of the permanent magnet, which becomes a factor of reducing the efficiency of the electric motor.
  • a rotor of a permanent magnet embedded motor in which a magnet is arranged in a magnet insertion hole provided in a rotor, a plurality of axially divided rotor members having the magnet insertion hole and the rotor members
  • a rotor of a permanent magnet embedded type electric motor that is provided with a partition plate disposed between them and is integrally formed by stacking the plurality of rotor members and the partition plate in the axial direction (for example, Patent Document 1). reference).
  • This rotor is composed of three rotor members that are divided in the axial direction and a separator that serves as a partition plate.
  • the rotor member is formed by stacking annular electromagnetic steel plates. Near the outer peripheral surface of the rotor member, a magnet hole for installing a magnet having an opening on the side surface of the rotor member is formed along the axial direction.
  • the separator is coated with an insulating layer to separate the rotor members from each other.
  • an electromagnetic steel plate which has the same annular shape as the rotor member and is formed into a thin plate is used.
  • the rotor member and the separator are laminated in the axial direction with the separator interposed between the rotor members, and the rotor member and the separator are integrally coupled to form a rotor body.
  • the inner peripheral edge and the outer peripheral edge of the separator are uniformly arranged on the inner peripheral surface and the outer peripheral surface of the rotor member, respectively.
  • the iron core is formed with a plurality of magnet insertion holes into which magnets are inserted, and the iron core is provided on both side surfaces of the iron core.
  • a rotor provided with an end plate that is fixed to a shaft together with an iron core and blocks magnetic flux. Then, the rotor, in the middle of the length direction of the iron core, a disk-shaped separator having no magnet insertion hole is disposed, and the separator and at least the end surface of each magnet are bonded (for example, See Patent Document 2).
  • one end plate of a disk shape made of a non-magnetic material is inserted and fixed to the shaft, and a pair of left and right half iron cores made of a thin steel sheet laminate are sandwiched between the shafts so as to sandwich the separator. insert. Further, the other end plate made of a non-magnetic material is inserted into the shaft and fixed. The pair of half plates and the separator are clamped by the pair of end plates. That is, an iron core is formed by a pair of half iron cores.
  • the separator may be of any type of magnetic material and non-magnetic material.
  • the separator for separating the rotor members is made of a magnetic material and a non-magnetic material, and the separator and the end surface of the magnet are bonded to each other. Therefore, leakage magnetic flux from the magnet to the separator is generated. Therefore, measures against the surface eddy current loss of the magnet are not sufficient.
  • an object of the present invention is to provide an electric motor, a compressor, and a refrigeration cycle device that reduce surface eddy current loss generated on the surface of a permanent magnet.
  • An electric motor is an electric motor including a stator and a rotor, and the rotor has a shaft serving as a rotating shaft and a first iron core group having a magnet insertion hole into which a permanent magnet that generates magnetic flux is inserted. And a second core group that is in communication with the magnet insertion hole and has a through hole formed in a shape that prevents passage of the permanent magnet, and an end plate that covers the iron core fixed to the shaft and both end surfaces of the iron core. And have.
  • the compressor of the present invention is a hermetically-sealed container that serves as an outer shell, a compression mechanism unit that is installed in the hermetically-sealed container and compresses a refrigerant, and discharges the refrigerant to the outside. And with.
  • the above-mentioned compressor, condenser, decompression device and evaporator are connected by piping to circulate the refrigerant.
  • the permanent magnets inserted into the magnet insertion holes of each first iron core group are separated by the second iron core group having a through hole formed in a shape that prevents passage of the permanent magnets. Is provided. Therefore, the magnetic resistance of the permanent magnet increases, and the eddy current generated on the surface of the permanent magnet can be suppressed. Therefore, the device efficiency can be improved.
  • FIG. 1 is a diagram illustrating an internal configuration of an electric motor 1 according to Embodiment 1 of the present invention.
  • the electric motor 1 is viewed from the front side.
  • a permanent magnet embedded type electric motor 1 will be described.
  • the electric motor 1 has a stator 20 and a rotor 10.
  • the stator 20 has a plurality of teeth 21 and windings 22.
  • a plurality of teeth 21 are arranged in the circumferential direction and have an annular shape.
  • a winding wire 22 is wound around each tooth 21.
  • An annular rotor 10 is arranged radially inward of the stator 20 at a position facing the teeth 21 so as to be rotatable in the circumferential direction.
  • FIG. 2 is a diagram showing a configuration of the rotor 10 of the electric motor 1 according to the first embodiment of the present invention.
  • the rotor 10 of the first embodiment has an iron core 11, a shaft 12, a plurality of permanent magnets 13 and an end plate 16.
  • the shaft 12 serves as a rotation axis when rotating.
  • the iron core 11 is fixed to the shaft 12.
  • the iron core 11 according to the first embodiment has a first iron core group 11a and a second iron core group 11b that are divided into a plurality in the rotation axis direction.
  • the iron core 11 of the first embodiment has three first iron core groups 11a and two second iron core groups 11b, and the second iron core group 11b is sandwiched between the two first iron core groups 11a. ..
  • the first iron core group 11a is composed of a laminated body in which thin circular disk-shaped electromagnetic steel sheets are laminated. Therefore, the first iron core group 11a has a columnar shape.
  • Each electromagnetic steel plate in the first iron core group 11a has a plurality of penetrating slits corresponding to the rotation direction in a portion near the outer peripheral surface of the cylinder.
  • the slit forms the magnet insertion hole 14a.
  • the permanent magnet 13 is inserted into each magnet insertion hole 14a.
  • the permanent magnet 13 is made of rare earth or ferrite.
  • the permanent magnet 13 generates a magnetic field by a magnetic force such that the magnetic flux is directed to the outer peripheral side of the rotor 10.
  • FIG. 3 is a diagram illustrating a configuration of the second iron core group 11b in the iron core 11 according to the first embodiment of the present invention.
  • the second iron core group 11b has a through hole 14b at a position communicating with the magnet insertion hole 14a of the first iron core group 11a.
  • the second iron core group 11b has at least one convex portion 15 in the through hole 14b portion.
  • the protrusion 15 is provided so as to project toward the space side of the through hole 14b, so that the space distance of the portion of the through hole 14b where the protrusion 15 is provided is narrowed, and the through hole 14b is It is formed in a shape that prevents the permanent magnet 13 from passing through.
  • the convex portion 15 functions as a stopper that prevents the permanent magnet 13 inserted into the magnet insertion hole 14a from passing through the through hole 14b. Therefore, the permanent magnets 13 in the iron core 11 are arranged separately in the magnet insertion holes 14a of each first iron core group 11a.
  • the projection 15 that is a part of the electromagnetic steel sheet be as small as possible.
  • the distance d between the through holes 14b in the radial direction of the shaft 12, which serves as the rotation axis of the portion where the convex portion 15 is provided, is the stator 20 and the rotor.
  • a distance equal to or larger than the air gap G is secured with respect to 10.
  • the distance d is set to 2 times or more and 3 times or less of the air gap G.
  • the second core group 11b has three convex portions 15.
  • the three convex portions 15 are provided at positions that do not face each other in the horizontal direction that is the radial direction of the shaft 12 that is the rotation axis.
  • the number of electromagnetic steel plates forming the second iron core group 11b is one.
  • it may be formed of a laminated body in which a plurality of electromagnetic steel sheets are laminated.
  • the end plates 16 are installed at both ends of the iron core 11.
  • the end plate 16 blocks the magnetic flux generated by the permanent magnet 13.
  • FIG. 4 is a diagram illustrating a relationship between the permanent magnet 13 and the convex portion 15 according to the first embodiment of the present invention.
  • FIG. 4 shows the positional relationship between the permanent magnet 13 inserted into the magnet insertion hole 14a and the plurality of convex portions 15.
  • the permanent magnet 13 inserted into the magnet insertion hole 14a is locked by the convex portion 15 and is prevented from passing through the through hole 14b.
  • there is a gap between the magnet insertion hole 14a and the permanent magnet 13 and the permanent magnet 13 in the magnet insertion hole 14a is tilted in the magnet insertion hole 14a because the entire lower surface is not supported. It becomes a state. Due to the inclination of the permanent magnet 13, part of the permanent magnet 13 protrudes into the space formed in the through hole 14b.
  • the length of the magnet insertion hole 14a in the rotation axis direction is L
  • the length of the permanent magnet 13 in the rotation axis direction is l
  • the thickness of the permanent magnet 13 is T.
  • the length of the convex portion 15 in the direction of the rotation axis is y
  • the maximum tilt angle at which the permanent magnet 13 is inclined by the convex portion 15 is ⁇ .
  • the permanent magnets 13 inserted into the magnet insertion holes 14a of the first iron core groups 11a into which the magnets can be inserted are included in the second iron core group 11b. It is separated by the convex portion 15. Therefore, the magnetic resistance of the permanent magnet 13 increases, and the eddy current generated on the surface of the permanent magnet 13 can be suppressed. Therefore, the highly efficient electric motor 1 can be obtained.
  • the second iron core group 11b has a plurality of convex portions 15, the plurality of convex portions 15 are arranged at positions that do not face each other in the radial direction of the shaft 12 that serves as the rotation axis. For this reason, the convex portions 15 face each other without narrowing the space of the through hole 14b, and it is difficult for a magnetic path to be formed between the convex portions 15 and the generation of leakage magnetic flux can be suppressed. Therefore, the efficiency of the electric motor 1 can be further increased.
  • the distance d in the radial direction of the shaft 12 at the portion where the convex portion 15 is provided is ensured by ensuring a distance equal to or greater than the air gap G between the stator 20 and the rotor 10, and The magnetic flux interlinking with the line 22 is not disturbed. Therefore, the efficiency of the electric motor 1 can be further increased.
  • the length L of the magnet insertion hole 14a in the rotation axis direction, the length l and thickness T of the permanent magnet 13 in the rotation axis direction, and the length of the permanent magnet 13 in the magnet insertion hole 14a have the convex portion 15 that satisfies the relationship of 1 ⁇ cos ⁇ +T ⁇ sin ⁇ L+y. Therefore, physical contact between the permanent magnets 13 included in the adjacent first iron core groups 11a can be avoided.
  • the convex portion 15 is small, but by suppressing the generation of the eddy current generated on the surface of the permanent magnet 13 by forming the convex portion 15 small after satisfying the above relationship, It is possible to prevent damage such as cracking of the permanent magnet 13.
  • FIG. 5 is a diagram illustrating an effect obtained by the configuration of the rotor 10 of the electric motor 1 according to the first embodiment of the present invention.
  • (a) represents the torque of the conventional rotor configured without dividing the iron core and the magnet and the surface eddy current loss of the permanent magnet.
  • (b) shows the torque and the surface eddy current loss of the permanent magnet of the conventional rotor that is configured by dividing it into two without having the through hole 14b like the rotor 10 of the first embodiment. ..
  • (c) represents the torque of the rotor 10 and the surface eddy current loss of the permanent magnet according to the first embodiment.
  • the rotor of the first embodiment can suppress the surface eddy current loss of the permanent magnet while maintaining the same torque as the conventional rotor.
  • FIG. 6 is a diagram showing the configuration of the rotor 10 of the electric motor 1 according to the second embodiment of the present invention.
  • the first iron core group 11a provided with the magnet insertion hole 14a in which the permanent magnet 13 is inserted is arranged on one end surface side.
  • the second iron core group 11b provided with the through hole 14b for blocking the passage of the permanent magnet 13 by the convex portion 15 described in the first embodiment is arranged.
  • the end plates 16 are arranged and integrated on both end surfaces.
  • the electric motor 1 according to the second embodiment is installed in a compressor that compresses and discharges a refrigerant in a refrigeration cycle device.
  • FIG. 7 is a diagram illustrating a configuration of a compressor 110 equipped with the electric motor 1 according to the second embodiment of the present invention.
  • the shell 111 serving as an outer shell is a closed container that houses the electric motor 1, the compression mechanism unit 113, and the like inside.
  • the suction pipe 112 is installed in the shell 111.
  • the suction pipe 112 is a pipe for guiding the refrigerant to be compressed, which is sucked from the suction muffler 116, into the shell 111.
  • the compression mechanism section 113 has a compression chamber formed by combining a fixed scroll and an orbiting scroll.
  • the orbiting scroll is connected to a main shaft 114 that is rotated by the electric motor 1 mounted in the compressor 110, and rotates with the rotation of the main shaft 114 to receive the power supply and remove the refrigerant that has flowed into the compression chamber. Compress and send to the outside.
  • the discharge pipe 115 is a pipe through which the compressed refrigerant is discharged.
  • the drive driver 117 is electrically connected to the electric motor 1 in the compressor 110, supplies electric power to the electric motor 1, and controls the driving of the compressor 110.
  • the permanent magnet 13 in the rotor 10 of the electric motor 1 according to the second embodiment will be described.
  • a magnet having a strong magnetic force is cheaper in price. Therefore, it is considered to use a magnet having a strong magnetic force for the permanent magnet 13 to reduce the cost.
  • a method of reducing the volume of the permanent magnet 13 by shortening the dimension of the permanent magnet 13 in the rotation axis direction is adopted.
  • the displacement occurs between the magnetic center of the permanent magnet 13 and the center of the stator 20.
  • the maximum magnetic thrust increases and the minimum decreases. Therefore, for example, when used as an electric motor for a compressor, when the magnetic thrust increases, the frictional force of the compression mechanism component increases. Further, when the magnetic thrust decreases, the vibration of the compressor mechanism component in the rotation axis direction increases.
  • the magnetic thrust generated by the deviation between the magnetic center of the permanent magnet 13 and the center of the stator 20 is generated by the first iron core group 11a, the permanent magnets 13, and the second iron core group 11b. Adjust by changing the length. More specifically, according to the dimension of the permanent magnet 13 shortened by increasing the magnetic force in the direction of the rotation axis, the direction of the rotation axis of the first iron core group 11a having the magnet insertion hole 14a into which the permanent magnet 13 is inserted. Stipulate the dimensions of.
  • the through hole 14b into which the permanent magnet 13 is not inserted is provided so that the dimension of the first iron core group 11a and the second iron core group 11b in the rotation axis direction becomes the dimension of the iron core in the conventional rotor in the rotation axis direction.
  • the dimension of the second iron core group 11b in the rotation axis direction is defined. Therefore, the length of the iron core 11 of the rotor 10 in the direction of the rotation axis is the same as that of the conventional rotor as a whole. Therefore, the conventional drive driver can be used in the compressor.
  • the rotor core 10 of the first iron core group 11a and the second iron core group 11b is adjusted in the rotational axis direction according to the length of the permanent magnet 13 in the rotational axis direction.
  • the length was adjusted and specified. Therefore, the dimension of the iron core 11 in the rotation axis direction can be made the same as that of the conventional rotor. Therefore, the drive driver used in the conventional compressor can be used. Further, since a magnet having a strong magnetic force can be used as the permanent magnet 13, the cost of the rotor 10 and the electric motor 1 can be reduced.
  • FIG. 8 is a figure showing the structural example of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 8 shows an air conditioner as a refrigeration cycle device.
  • the outdoor unit 100 and the indoor unit 200 are connected by a gas refrigerant pipe 300 and a liquid refrigerant pipe 400 to form a refrigerant circuit for circulating a refrigerant.
  • the outdoor unit 100 has a compressor 110, a four-way valve 120, an outdoor heat exchanger 130, an expansion valve 140, and an outdoor blower 150.
  • the indoor unit 200 also has an indoor heat exchanger 210 and an indoor blower 220.
  • the compressor 110 is equipped with the electric motor 1 described in the first and second embodiments.
  • the compressor 110 compresses the drawn refrigerant and discharges it.
  • the drive frequency of the compressor 110 can be arbitrarily changed by, for example, the drive driver 117 described in the second embodiment.
  • the four-way valve 120 is a valve that switches the flow of the refrigerant depending on the cooling operation and the heating operation.
  • the outdoor heat exchanger 130 exchanges heat between the refrigerant and the outdoor air. For example, during heating operation, it functions as an evaporator to evaporate and vaporize the refrigerant. Further, it functions as a condenser during the cooling operation, condensing and liquefying the refrigerant. Then, the outdoor blower 150 sends outdoor air to the outdoor heat exchanger 130.
  • An expansion valve 140 such as a throttle device (flow rate control means) serving as a decompression device decompresses and expands the refrigerant.
  • a throttle device flow rate control means
  • the indoor heat exchanger 210 exchanges heat between the air to be air-conditioned and the refrigerant, for example. It functions as a condenser during heating operation and condenses and liquefies the refrigerant. In addition, during cooling operation, it functions as an evaporator to evaporate and vaporize the refrigerant. Then, the indoor blower 220 sends the air to be air-conditioned to the indoor heat exchanger 210.
  • the compressor 110 having the electric motor 1 described in the first and second embodiments since the compressor 110 having the electric motor 1 described in the first and second embodiments is included as a device, the efficiency of the entire apparatus is improved. You can drive well.
  • the same length as the rotation axis direction of the conventional rotor iron core is obtained. Can be Therefore, it is possible to divert the drive driver 117 in the compressor 110 and reduce the cost of the compressor 110.

Abstract

This electric motor is provided with a stator and a rotor. The rotor has: a shaft that serves as a rotating axis; an iron core that has a first iron core group having magnet insertion holes into which are inserted permanent magnets that produce magnetic flux, and a second iron core group having through-holes that communicate with the magnet insertion holes and are formed in a shape that impedes the passage of the permanent magnets, the iron core being fixed to the shaft; and end plates that respectively cover both end surfaces of the iron core.

Description

電動機、圧縮機および冷凍サイクル装置Electric motor, compressor and refrigeration cycle device
 この発明は、電動機、圧縮機および冷凍サイクル装置に係るものである。特に、永久磁石埋め込み型電動機の回転子などに関わるものである。 The present invention relates to an electric motor, a compressor, and a refrigeration cycle device. In particular, it relates to the rotor of a permanent magnet embedded motor.
 従来から、回転子の磁石挿入孔に永久磁石を配置した永久磁石埋め込み型の電動機が知られている。永久磁石埋め込み型電動機の回転子の中には、軸方向に積層鉄心を貫通するように永久磁石が埋め込まれているものがある。ここで、永久磁石の軸長が長い場合、永久磁石の表面に過大な渦電流が発生し、電動機の効率を低下させる要因となる。 Conventionally, a permanent magnet embedded type electric motor in which a permanent magnet is arranged in the magnet insertion hole of the rotor has been known. Some rotors of a permanent magnet embedded type electric motor have a permanent magnet embedded so as to penetrate the laminated iron core in the axial direction. Here, when the axial length of the permanent magnet is long, an excessive eddy current is generated on the surface of the permanent magnet, which becomes a factor of reducing the efficiency of the electric motor.
 そこで、回転子に設けた磁石挿入孔に磁石を配置する永久磁石埋め込み型電動機の回転子において、前記磁石挿入孔を有する軸方向に分割された複数の回転子部材と、前記各回転子部材の間に配置される仕切り板とを備え、前記複数の回転子部材と仕切り板とを軸方向に積層して一体的に形成される永久磁石埋め込み型電動機の回転子がある(たとえば、特許文献1参照)。 Therefore, in a rotor of a permanent magnet embedded motor in which a magnet is arranged in a magnet insertion hole provided in a rotor, a plurality of axially divided rotor members having the magnet insertion hole and the rotor members There is a rotor of a permanent magnet embedded type electric motor that is provided with a partition plate disposed between them and is integrally formed by stacking the plurality of rotor members and the partition plate in the axial direction (for example, Patent Document 1). reference).
 この回転子は、軸方向に分割された3つの回転子部材と仕切り板となるセパレータとで構成されている。回転子部材は、円環状の電磁鋼鈑を積層して形成する。回転子部材の外周面近傍には、回転子部材の側面に開口部を有した磁石を設置する磁石孔が軸方向に沿って形成されている。一方、セパレータは、絶縁層がコーティングされ、各回転子部材の間を離間する。セパレータには、回転子部材と同様の円環状で、且つ、薄板状に形成された電磁鋼鈑を用いている。そして、各回転子部材の間にセパレータを介して、回転子部材とセパレータとを軸方向に積層し、一体的に結合して、回転子本体が構成されている。ここで、セパレータの内周縁と外周縁とは、回転子部材の内周面と外周面とにそれぞれ画一に配置されている。  This rotor is composed of three rotor members that are divided in the axial direction and a separator that serves as a partition plate. The rotor member is formed by stacking annular electromagnetic steel plates. Near the outer peripheral surface of the rotor member, a magnet hole for installing a magnet having an opening on the side surface of the rotor member is formed along the axial direction. On the other hand, the separator is coated with an insulating layer to separate the rotor members from each other. As the separator, an electromagnetic steel plate which has the same annular shape as the rotor member and is formed into a thin plate is used. Then, the rotor member and the separator are laminated in the axial direction with the separator interposed between the rotor members, and the rotor member and the separator are integrally coupled to form a rotor body. Here, the inner peripheral edge and the outer peripheral edge of the separator are uniformly arranged on the inner peripheral surface and the outer peripheral surface of the rotor member, respectively.
 また、回転子の軸方向における中央部での鉄心の遠心膨張または変形を抑制することを目的に、磁石が挿入される複数の磁石挿入孔が形成された鉄心と、鉄心の両側面に配設され、鉄心とともにシャフトに固定されて磁束を遮断する端板を備える回転子がある。そして、回転子は、鉄心の長さ方向の途中部分に、磁石挿入孔を有さない円板状のセパレータを配設し、このセパレータと少なくとも各磁石の端面とを接着している(たとえば、特許文献2参照)。 Further, for the purpose of suppressing centrifugal expansion or deformation of the iron core at the central portion in the axial direction of the rotor, the iron core is formed with a plurality of magnet insertion holes into which magnets are inserted, and the iron core is provided on both side surfaces of the iron core. There is a rotor provided with an end plate that is fixed to a shaft together with an iron core and blocks magnetic flux. Then, the rotor, in the middle of the length direction of the iron core, a disk-shaped separator having no magnet insertion hole is disposed, and the separator and at least the end surface of each magnet are bonded (for example, See Patent Document 2).
 この回転子では、シャフトに対し、非磁性体からなる円板状の一方の端板を挿入して固定した上、セパレータを挟むように薄板鋼鈑積層体からなる左右一対のハーフ鉄心をシャフトに挿入する。さらに、もう一方の非磁性体からなる端板をシャフトに挿入して固定する。一対の端板をもって、一対のハーフ鉄心とセパレータとを圧締している。すなわち、一対のハーフ鉄心をもって、鉄心が形成される。ここで、セパレータは磁性体および非磁性体のうちいずれのタイプのものであってもよい。 In this rotor, one end plate of a disk shape made of a non-magnetic material is inserted and fixed to the shaft, and a pair of left and right half iron cores made of a thin steel sheet laminate are sandwiched between the shafts so as to sandwich the separator. insert. Further, the other end plate made of a non-magnetic material is inserted into the shaft and fixed. The pair of half plates and the separator are clamped by the pair of end plates. That is, an iron core is formed by a pair of half iron cores. Here, the separator may be of any type of magnetic material and non-magnetic material.
特開2006-158037号公報JP 2006-158037 A 特開2002-191143号公報JP 2002-191143 A
 しかしながら、特許文献1の電動機における回転子では、回転子部材の間を離間するセパレータに絶縁層がコーティングされているが、磁石とセパレータとが接触し得る構造になっている。このため、磁石からセパレータへの漏れ磁束が発生する。特許文献1では、漏れ磁束の低減を目的として、セパレータに開口部を設ける対策を施しているが、充分な漏れ磁束対策ではない。 However, in the rotor of the electric motor of Patent Document 1, the separator that separates the rotor members is coated with the insulating layer, but the structure is such that the magnet and the separator can contact each other. Therefore, leakage magnetic flux from the magnet to the separator is generated. In Patent Document 1, although measures are taken to provide an opening in the separator for the purpose of reducing the leakage flux, this is not a sufficient countermeasure against leakage flux.
 また、特許文献2の電動機における回転子の構造では、回転子部材の間を離間するためのセパレータは、磁性体および非磁性体のいずれにおいても、セパレータと磁石の端面とが接着されている。このため、磁石からセパレータへの漏れ磁束が発生する。よって、磁石の表面渦電流損失への対策は、充分ではない。 Further, in the structure of the rotor in the electric motor of Patent Document 2, the separator for separating the rotor members is made of a magnetic material and a non-magnetic material, and the separator and the end surface of the magnet are bonded to each other. Therefore, leakage magnetic flux from the magnet to the separator is generated. Therefore, measures against the surface eddy current loss of the magnet are not sufficient.
 この発明は、上記のような問題点を解消するため、永久磁石表面に発生する表面渦電流損失を低減させる電動機、圧縮機および冷凍サイクル装置の提供を目的とするものである。 In order to solve the above problems, an object of the present invention is to provide an electric motor, a compressor, and a refrigeration cycle device that reduce surface eddy current loss generated on the surface of a permanent magnet.
 この発明に係る電動機は、固定子と回転子とを備える電動機であって、回転子は、回転軸となるシャフトと、磁束を発生させる永久磁石が挿入される磁石挿入孔を有する第一鉄心群および磁石挿入孔に連通しており、永久磁石の通過を阻む形状に形成された貫通孔を有する第二鉄心群を有し、シャフトに固定される鉄心と、鉄心の両端面をそれぞれ覆う端板とを有するものである。 An electric motor according to the present invention is an electric motor including a stator and a rotor, and the rotor has a shaft serving as a rotating shaft and a first iron core group having a magnet insertion hole into which a permanent magnet that generates magnetic flux is inserted. And a second core group that is in communication with the magnet insertion hole and has a through hole formed in a shape that prevents passage of the permanent magnet, and an end plate that covers the iron core fixed to the shaft and both end surfaces of the iron core. And have.
 また、この発明の圧縮機は、外殻となる密閉容器と、密閉容器内に設置され、冷媒を圧縮して外部に吐出する圧縮機構部と、圧縮機構部に動力供給を行う、上述した電動機とを備えるものである。 Further, the compressor of the present invention is a hermetically-sealed container that serves as an outer shell, a compression mechanism unit that is installed in the hermetically-sealed container and compresses a refrigerant, and discharges the refrigerant to the outside. And with.
 そして、この発明の冷凍サイクル装置は、上述した圧縮機、凝縮器、減圧装置および蒸発器が配管接続され、冷媒の循環が行われるものである。 In the refrigeration cycle apparatus of the present invention, the above-mentioned compressor, condenser, decompression device and evaporator are connected by piping to circulate the refrigerant.
 この発明によれば、電動機の回転子において、各第一鉄心群の磁石挿入孔に挿入された永久磁石は、永久磁石の通過を阻む形状に形成された貫通孔を有する第二鉄心群により分離されて設けられる。このため、永久磁石の磁気抵抗が増加し、永久磁石の表面に発生する渦電流を抑制することができる。したがって、装置効率を高めることができる。 According to the present invention, in the rotor of the electric motor, the permanent magnets inserted into the magnet insertion holes of each first iron core group are separated by the second iron core group having a through hole formed in a shape that prevents passage of the permanent magnets. Is provided. Therefore, the magnetic resistance of the permanent magnet increases, and the eddy current generated on the surface of the permanent magnet can be suppressed. Therefore, the device efficiency can be improved.
この発明の実施の形態1に係る電動機1の内部における構成を説明する図である。It is a figure explaining the structure inside the electric motor 1 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る電動機1の回転子10の構成を示す図である。It is a figure which shows the structure of the rotor 10 of the electric motor 1 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る鉄心11における第二鉄心群11bの構成を説明する図である。It is a figure explaining the structure of the 2nd iron core group 11b in the iron core 11 which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る永久磁石13と凸部15との関係を説明する図である。It is a figure explaining the relationship between the permanent magnet 13 and the convex part 15 which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る電動機1の回転子10の構成により得られる効果について説明する図である。It is a figure explaining the effect acquired by the structure of the rotor 10 of the electric motor 1 which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る電動機1の回転子10の構成を示す図である。It is a figure which shows the structure of the rotor 10 of the electric motor 1 which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る電動機1を搭載した圧縮機110の構成を説明する図である。It is a figure explaining the structure of the compressor 110 which mounts the electric motor 1 which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る冷凍サイクル装置の構成例を表す図である。It is a figure showing the example of composition of the refrigerating cycle device concerning Embodiment 3 of this invention.
 以下、発明の実施の形態について、図面などを参照しながら説明する。図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、図における上方を「上側」とし、下方を「下側」として説明する。そして、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the invention will be described with reference to the drawings. In the drawings, the components denoted by the same reference numerals are the same or equivalent, and are common to all the texts of the embodiments described below. Further, the forms of the constituent elements shown in the entire specification are merely examples, and the forms are not limited to the forms described in the specification. In particular, the combination of components is not limited to the combination in each embodiment, and the components described in other embodiments can be applied to another embodiment. Further, the upper side in the drawing will be referred to as "upper side" and the lower side will be referred to as "lower side". Further, in the drawings, the relationship of the size of each component may be different from the actual one.
実施の形態1.
 図1は、この発明の実施の形態1に係る電動機1の内部における構成を説明する図である。図1では、電動機1を正面側から見た図である。実施の形態1では、永久磁石埋め込み型の電動機1について説明する。電動機1は、固定子20および回転子10を有する。固定子20は、複数のティース21および巻線22を有する。固定子20において、複数のティース21が周方向に配置され、円環状をなしている。各ティース21には、それぞれ巻線22が巻かれている。固定子20の径方向内側には、ティース21に対向する位置に、円環状の回転子10が周方向に回転可能に配置される。
Embodiment 1.
FIG. 1 is a diagram illustrating an internal configuration of an electric motor 1 according to Embodiment 1 of the present invention. In FIG. 1, the electric motor 1 is viewed from the front side. In the first embodiment, a permanent magnet embedded type electric motor 1 will be described. The electric motor 1 has a stator 20 and a rotor 10. The stator 20 has a plurality of teeth 21 and windings 22. In the stator 20, a plurality of teeth 21 are arranged in the circumferential direction and have an annular shape. A winding wire 22 is wound around each tooth 21. An annular rotor 10 is arranged radially inward of the stator 20 at a position facing the teeth 21 so as to be rotatable in the circumferential direction.
 図2は、この発明の実施の形態1に係る電動機1の回転子10の構成を示す図である。図2に示すように、実施の形態1の回転子10は、鉄心11、シャフト12、複数の永久磁石13および端板16を有する。シャフト12は、回転する際の回転軸となる。鉄心11は、シャフト12に固定される。実施の形態1の鉄心11は、回転軸方向に複数に分割された第一鉄心群11aおよび第二鉄心群11bを有する。実施の形態1の鉄心11は、3つの第一鉄心群11aと2つの第二鉄心群11bとを有し、2つの第一鉄心群11aの間に第二鉄心群11bが挟まれる構成である。 FIG. 2 is a diagram showing a configuration of the rotor 10 of the electric motor 1 according to the first embodiment of the present invention. As shown in FIG. 2, the rotor 10 of the first embodiment has an iron core 11, a shaft 12, a plurality of permanent magnets 13 and an end plate 16. The shaft 12 serves as a rotation axis when rotating. The iron core 11 is fixed to the shaft 12. The iron core 11 according to the first embodiment has a first iron core group 11a and a second iron core group 11b that are divided into a plurality in the rotation axis direction. The iron core 11 of the first embodiment has three first iron core groups 11a and two second iron core groups 11b, and the second iron core group 11b is sandwiched between the two first iron core groups 11a. ..
 第一鉄心群11aは、薄円板状の電磁鋼板を積層した積層体で構成されている。したがって、第一鉄心群11aは、円柱状をなしている。第一鉄心群11aにおける各電磁鋼板は、円筒外周面に近い部分に、回転方向に対応して、貫通したスリットを複数有する。電磁鋼板が積層された積層体においては、スリットにより、磁石挿入孔14aが形成される。各磁石挿入孔14aには、永久磁石13が挿入される。永久磁石13は、希土類またはフェライトなどを材料とする。永久磁石13は、回転子10の外周側に磁束が向かうような磁力による磁界を発生させる。 The first iron core group 11a is composed of a laminated body in which thin circular disk-shaped electromagnetic steel sheets are laminated. Therefore, the first iron core group 11a has a columnar shape. Each electromagnetic steel plate in the first iron core group 11a has a plurality of penetrating slits corresponding to the rotation direction in a portion near the outer peripheral surface of the cylinder. In the laminated body in which the electromagnetic steel sheets are laminated, the slit forms the magnet insertion hole 14a. The permanent magnet 13 is inserted into each magnet insertion hole 14a. The permanent magnet 13 is made of rare earth or ferrite. The permanent magnet 13 generates a magnetic field by a magnetic force such that the magnetic flux is directed to the outer peripheral side of the rotor 10.
 図3は、この発明の実施の形態1に係る鉄心11における第二鉄心群11bの構成を説明する図である。第二鉄心群11bは、第一鉄心群11aの磁石挿入孔14aに対応して連通する位置に、貫通孔14bを有する。第二鉄心群11bは、貫通孔14b部分に、少なくとも1つの凸部15を有する。第二鉄心群11bにおいて、凸部15が貫通孔14bの空間側に突出して設けられることによって、貫通孔14bにおいて、凸部15が設けられた部分の空間の距離が狭められ、貫通孔14bは、永久磁石13の通過を阻む形状に形成される。したがって、凸部15は、磁石挿入孔14aに挿入された永久磁石13が貫通孔14bを通過させないようにするストッパとして機能する。このため、鉄心11内の永久磁石13は、各第一鉄心群11aの磁石挿入孔14a内に分離して配置されることになる。ここで、磁路形成防止の観点から、電磁鋼板の一部となる凸部15は、できるだけ小さい方がよい。 FIG. 3 is a diagram illustrating a configuration of the second iron core group 11b in the iron core 11 according to the first embodiment of the present invention. The second iron core group 11b has a through hole 14b at a position communicating with the magnet insertion hole 14a of the first iron core group 11a. The second iron core group 11b has at least one convex portion 15 in the through hole 14b portion. In the second iron core group 11b, the protrusion 15 is provided so as to project toward the space side of the through hole 14b, so that the space distance of the portion of the through hole 14b where the protrusion 15 is provided is narrowed, and the through hole 14b is It is formed in a shape that prevents the permanent magnet 13 from passing through. Therefore, the convex portion 15 functions as a stopper that prevents the permanent magnet 13 inserted into the magnet insertion hole 14a from passing through the through hole 14b. Therefore, the permanent magnets 13 in the iron core 11 are arranged separately in the magnet insertion holes 14a of each first iron core group 11a. Here, from the viewpoint of preventing the formation of a magnetic path, it is preferable that the projection 15 that is a part of the electromagnetic steel sheet be as small as possible.
 ここで、後述する図4に示すように、貫通孔14bにおいて、凸部15が設けられた部分の回転軸となるシャフト12の径方向における貫通孔14bの距離dは、固定子20と回転子10との間におけるエアギャップG以上の距離を確保する。たとえば、距離dは、エアギャップGの2倍以上3倍以下とする。このため、実施の形態1の回転子10は、凸部15により、巻線22に鎖交する磁束を妨げられない。 Here, as shown in FIG. 4, which will be described later, in the through hole 14b, the distance d between the through holes 14b in the radial direction of the shaft 12, which serves as the rotation axis of the portion where the convex portion 15 is provided, is the stator 20 and the rotor. A distance equal to or larger than the air gap G is secured with respect to 10. For example, the distance d is set to 2 times or more and 3 times or less of the air gap G. For this reason, in the rotor 10 of the first embodiment, the magnetic flux interlinking with the winding wire 22 is not prevented by the convex portion 15.
 図3に示すように、実施の形態1の第二鉄心群11bは、3つの凸部15を有している。3つの凸部15は、回転軸となるシャフト12の径方向となる水平方向において、それぞれ対向しない位置に設けられる。ここで、実施の形態1の回転子10の鉄心11では、第二鉄心群11bを構成する電磁鋼鈑の枚数は、1枚であるものとする。ただし、複数枚の電磁鋼板を積層した積層体で構成されてもよい。 As shown in FIG. 3, the second core group 11b according to the first embodiment has three convex portions 15. The three convex portions 15 are provided at positions that do not face each other in the horizontal direction that is the radial direction of the shaft 12 that is the rotation axis. Here, in the iron core 11 of the rotor 10 of the first embodiment, it is assumed that the number of electromagnetic steel plates forming the second iron core group 11b is one. However, it may be formed of a laminated body in which a plurality of electromagnetic steel sheets are laminated.
 端板16は、鉄心11の両端に設置される。端板16は、永久磁石13により発生する磁束を遮断する。 The end plates 16 are installed at both ends of the iron core 11. The end plate 16 blocks the magnetic flux generated by the permanent magnet 13.
 図4は、この発明の実施の形態1に係る永久磁石13と凸部15との関係を説明する図である。図4では、磁石挿入孔14aに挿入された永久磁石13と複数の凸部15との位置関係を示す。磁石挿入孔14aに挿入された永久磁石13は、凸部15により係止され、貫通孔14bの通過を阻まれる。ここで、磁石挿入孔14aと永久磁石13との間に隙間があり、また、磁石挿入孔14a内の永久磁石13は、下面の全面が支持されていないため、磁石挿入孔14a内において傾いた状態となる。永久磁石13が傾くことにより、永久磁石13の一部が、貫通孔14bにできた空間にはみ出す。 FIG. 4 is a diagram illustrating a relationship between the permanent magnet 13 and the convex portion 15 according to the first embodiment of the present invention. FIG. 4 shows the positional relationship between the permanent magnet 13 inserted into the magnet insertion hole 14a and the plurality of convex portions 15. The permanent magnet 13 inserted into the magnet insertion hole 14a is locked by the convex portion 15 and is prevented from passing through the through hole 14b. Here, there is a gap between the magnet insertion hole 14a and the permanent magnet 13, and the permanent magnet 13 in the magnet insertion hole 14a is tilted in the magnet insertion hole 14a because the entire lower surface is not supported. It becomes a state. Due to the inclination of the permanent magnet 13, part of the permanent magnet 13 protrudes into the space formed in the through hole 14b.
 図4に示すように、磁石挿入孔14aの回転軸方向長さをLとし、永久磁石13の回転軸方向長さをlとする。また、永久磁石13の厚みをTとする。凸部15の回転軸方向の長さをy、永久磁石13が凸部15により傾く最大傾き角度をθとする。このとき、実施の形態1の第二鉄心群11bが有する複数の凸部15は、l×cosθ+T×sinθ<L+yの関係が成り立つように形成されている。このため、第二鉄心群11bの両側にある第一鉄心群11aにおける磁石挿入孔14a内の永久磁石13の一部が、それぞれ貫通孔14bの空間側にはみ出しても、永久磁石13同士が物理的に接触しない。 As shown in FIG. 4, the length of the magnet insertion hole 14a in the rotation axis direction is L, and the length of the permanent magnet 13 in the rotation axis direction is l. Further, the thickness of the permanent magnet 13 is T. The length of the convex portion 15 in the direction of the rotation axis is y, and the maximum tilt angle at which the permanent magnet 13 is inclined by the convex portion 15 is θ. At this time, the plurality of convex portions 15 included in the second iron core group 11b of the first embodiment are formed so that the relationship of 1×cos θ+T×sin θ<L+y is established. Therefore, even if some of the permanent magnets 13 in the magnet insertion holes 14a of the first iron core group 11a on both sides of the second iron core group 11b protrude to the space side of the through hole 14b, the permanent magnets 13 are physically separated from each other. Do not contact each other.
 このように、実施の形態1における電動機1の回転子10によれば、磁石挿入可能な各第一鉄心群11aの磁石挿入孔14aに挿入された永久磁石13は、第二鉄心群11bが有する凸部15により分離される。このため、永久磁石13の磁気抵抗が増加し、永久磁石13の表面に発生する渦電流を抑制することができる。したがって、高効率の電動機1を得ることができる。 As described above, according to the rotor 10 of the electric motor 1 in the first embodiment, the permanent magnets 13 inserted into the magnet insertion holes 14a of the first iron core groups 11a into which the magnets can be inserted are included in the second iron core group 11b. It is separated by the convex portion 15. Therefore, the magnetic resistance of the permanent magnet 13 increases, and the eddy current generated on the surface of the permanent magnet 13 can be suppressed. Therefore, the highly efficient electric motor 1 can be obtained.
 また、第二鉄心群11bが複数の凸部15を有するとき、複数の凸部15は、それぞれ、回転軸となるシャフト12の径方向において対向しない位置に配置されている。このため、凸部15同士が対向して貫通孔14bの空間を狭めずにすみ、凸部15同士で磁路が形成されにくく、漏れ磁束の発生を抑制することができる。したがって、電動機1の効率をさらに高くすることができる。 Further, when the second iron core group 11b has a plurality of convex portions 15, the plurality of convex portions 15 are arranged at positions that do not face each other in the radial direction of the shaft 12 that serves as the rotation axis. For this reason, the convex portions 15 face each other without narrowing the space of the through hole 14b, and it is difficult for a magnetic path to be formed between the convex portions 15 and the generation of leakage magnetic flux can be suppressed. Therefore, the efficiency of the electric motor 1 can be further increased.
 また、貫通孔14bにおいて、凸部15が設けられた部分のシャフト12の径方向における距離dは、固定子20と回転子10との間におけるエアギャップG以上の距離を確保することで、巻線22に鎖交する磁束を妨げずにすむ。したがって、電動機1の効率をさらに高くすることができる。 Further, in the through hole 14b, the distance d in the radial direction of the shaft 12 at the portion where the convex portion 15 is provided is ensured by ensuring a distance equal to or greater than the air gap G between the stator 20 and the rotor 10, and The magnetic flux interlinking with the line 22 is not disturbed. Therefore, the efficiency of the electric motor 1 can be further increased.
 さらに、実施の形態1の第二鉄心群11bは、磁石挿入孔14aの回転軸方向長さL、永久磁石13の回転軸方向長さlおよび厚みT、磁石挿入孔14a内の永久磁石13の最大傾き角度θ並びに凸部15の回転軸方向長さyについて、l×cosθ+T×sinθ<L+yの関係を満たす凸部15を有する。このため、隣接する第一鉄心群11aにそれぞれ含まれる永久磁石13同士の物理的接触を回避することができる。前述したように、凸部15は小さい方がよいが、上述した関係を満たした上で、凸部15を小さく形成することで、永久磁石13の表面に発生する渦電流の発生を抑制し、永久磁石13の割れなどのダメージを防ぐことができる。 Further, in the second iron core group 11b of the first embodiment, the length L of the magnet insertion hole 14a in the rotation axis direction, the length l and thickness T of the permanent magnet 13 in the rotation axis direction, and the length of the permanent magnet 13 in the magnet insertion hole 14a. The maximum inclination angle θ and the length y of the convex portion 15 in the rotation axis direction have the convex portion 15 that satisfies the relationship of 1×cos θ+T×sin θ<L+y. Therefore, physical contact between the permanent magnets 13 included in the adjacent first iron core groups 11a can be avoided. As described above, it is preferable that the convex portion 15 is small, but by suppressing the generation of the eddy current generated on the surface of the permanent magnet 13 by forming the convex portion 15 small after satisfying the above relationship, It is possible to prevent damage such as cracking of the permanent magnet 13.
 図5は、この発明の実施の形態1に係る電動機1の回転子10の構成により得られる効果について説明する図である。図5において、(a)は、鉄心および磁石を分割しないで構成した従来の回転子のトルクと永久磁石の表面渦電流損失を表す。また、(b)は、実施の形態1の回転子10のような貫通孔14bを有しておらず、2分割して構成した従来の回転子のトルクと永久磁石の表面渦電流損失を表す。そして、(c)は、実施の形態1に係る回転子10のトルクと永久磁石の表面渦電流損失を表す。図5に示すように、実施の形態1の回転子は、従来の回転子と同様のトルクを維持しつつ、永久磁石の表面渦電流損失を抑えることができる。 FIG. 5 is a diagram illustrating an effect obtained by the configuration of the rotor 10 of the electric motor 1 according to the first embodiment of the present invention. In FIG. 5, (a) represents the torque of the conventional rotor configured without dividing the iron core and the magnet and the surface eddy current loss of the permanent magnet. Further, (b) shows the torque and the surface eddy current loss of the permanent magnet of the conventional rotor that is configured by dividing it into two without having the through hole 14b like the rotor 10 of the first embodiment. .. Then, (c) represents the torque of the rotor 10 and the surface eddy current loss of the permanent magnet according to the first embodiment. As shown in FIG. 5, the rotor of the first embodiment can suppress the surface eddy current loss of the permanent magnet while maintaining the same torque as the conventional rotor.
実施の形態2.
 図6は、この発明の実施の形態2に係る電動機1の回転子10の構成を示す図である。図6において、図1などと同じ符号を付している部材などについては、実施の形態1において説明したことと同様である。実施の形態2の回転子10は、永久磁石13が挿入された磁石挿入孔14aが設けられた第一鉄心群11aが一方の端面側に配置される。そして、もう一方の端面側に、実施の形態1で説明した凸部15により永久磁石13の通過を阻む貫通孔14bが設けられた第二鉄心群11bが配置される。そして、両端面には、端板16が配置され、一体化されている。ここで、実施の形態2の電動機1は、冷凍サイクル装置において、冷媒を圧縮して吐出する圧縮機内に搭載されるものとする。
Embodiment 2.
FIG. 6 is a diagram showing the configuration of the rotor 10 of the electric motor 1 according to the second embodiment of the present invention. 6, members and the like denoted by the same reference numerals as those in FIG. 1 and the like are the same as those described in the first embodiment. In the rotor 10 of the second embodiment, the first iron core group 11a provided with the magnet insertion hole 14a in which the permanent magnet 13 is inserted is arranged on one end surface side. Then, on the other end face side, the second iron core group 11b provided with the through hole 14b for blocking the passage of the permanent magnet 13 by the convex portion 15 described in the first embodiment is arranged. The end plates 16 are arranged and integrated on both end surfaces. Here, the electric motor 1 according to the second embodiment is installed in a compressor that compresses and discharges a refrigerant in a refrigeration cycle device.
 図7は、この発明の実施の形態2に係る電動機1を搭載した圧縮機110の構成を説明する図である。圧縮機110において、外殻となるシェル111は、電動機1、圧縮機構部113などを内部に収容する密閉容器である。吸入管112は、シェル111に設置される。吸入管112は、吸入マフラ116から吸入された圧縮対象の冷媒を、シェル111内に導く管である。圧縮機構部113は、固定スクロールと揺動スクロールとを組み合わせて形成した圧縮室を有する。揺動スクロールは、圧縮機110内に搭載された電動機1により回転される主軸114と連結しており、主軸114の回転とともに回転することで、動力供給を受けて、圧縮室に流入した冷媒を圧縮して外部に送る。吐出管115は、圧縮された冷媒が吐出される管である。そして、駆動ドライバ117は、圧縮機110内の電動機1と電気的に接続し、電動機1に電力供給を行って、圧縮機110の駆動を制御する。 FIG. 7 is a diagram illustrating a configuration of a compressor 110 equipped with the electric motor 1 according to the second embodiment of the present invention. In the compressor 110, the shell 111 serving as an outer shell is a closed container that houses the electric motor 1, the compression mechanism unit 113, and the like inside. The suction pipe 112 is installed in the shell 111. The suction pipe 112 is a pipe for guiding the refrigerant to be compressed, which is sucked from the suction muffler 116, into the shell 111. The compression mechanism section 113 has a compression chamber formed by combining a fixed scroll and an orbiting scroll. The orbiting scroll is connected to a main shaft 114 that is rotated by the electric motor 1 mounted in the compressor 110, and rotates with the rotation of the main shaft 114 to receive the power supply and remove the refrigerant that has flowed into the compression chamber. Compress and send to the outside. The discharge pipe 115 is a pipe through which the compressed refrigerant is discharged. Then, the drive driver 117 is electrically connected to the electric motor 1 in the compressor 110, supplies electric power to the electric motor 1, and controls the driving of the compressor 110.
 ここで、実施の形態2における電動機1の回転子10における永久磁石13について説明する。磁石においては、一般的に、磁力が強い磁石の方が価格が安い。このため、磁力が強い磁石を永久磁石13に用いて原価低減をはかることを考える。磁力が強い磁石を永久磁石13に用いても、従来と同程度の磁界発生などを維持するため、磁石挿入孔14aに挿入する永久磁石13の体積を減少させる。このとき、回転子10のコア型の流用を考慮すると、一般的には、永久磁石13の回転軸方向における寸法を短くすることにより、永久磁石13の体積を減らす方法が採られる。 Here, the permanent magnet 13 in the rotor 10 of the electric motor 1 according to the second embodiment will be described. In terms of magnets, generally, a magnet having a strong magnetic force is cheaper in price. Therefore, it is considered to use a magnet having a strong magnetic force for the permanent magnet 13 to reduce the cost. Even if a magnet having a strong magnetic force is used as the permanent magnet 13, the volume of the permanent magnet 13 inserted into the magnet insertion hole 14a is reduced in order to maintain the generation of a magnetic field to the same extent as in the conventional case. At this time, in consideration of diversion of the core type of the rotor 10, in general, a method of reducing the volume of the permanent magnet 13 by shortening the dimension of the permanent magnet 13 in the rotation axis direction is adopted.
 しかしながら、永久磁石13の回転軸方向の寸法を短小化するのに合わせて、固定子20および回転子10の回転軸方向の寸法を短小化すると、電動機1の制御定数である、巻線22の抵抗およびインダクタンスが変わる。このため、従来の回転子における回転軸方向の寸法に基づいて駆動設計をしていた駆動ドライバを流用することができなくなる。 However, if the dimensions of the stator 20 and the rotor 10 in the rotation axis direction are shortened in accordance with the reduction of the dimension of the permanent magnet 13 in the rotation axis direction, the winding constant of the winding 22, which is a control constant of the electric motor 1, is reduced. Resistance and inductance change. For this reason, it becomes impossible to divert a drive driver that has been designed based on the dimension of the conventional rotor in the direction of the rotation axis.
 一方で、回転子10の回転軸方向の寸法は変更せず、永久磁石13のみ、回転軸方向寸法を短小化した場合、永久磁石13の磁気中心と固定子20の中心とのずれにより発生する磁気推力の最大値は増加し、最小値は減少する。このため、たとえば、圧縮機用の電動機として使用した場合、磁気推力が増加すると、圧縮機構部品の摩擦力が増加する。また、磁気推力が低下すると、圧縮機機構部品の回転軸方向に対する振動が大きくなる。 On the other hand, when the dimension of the rotor 10 in the direction of the rotation axis is not changed and only the dimension of the permanent magnet 13 in the direction of the rotation axis is shortened, the displacement occurs between the magnetic center of the permanent magnet 13 and the center of the stator 20. The maximum magnetic thrust increases and the minimum decreases. Therefore, for example, when used as an electric motor for a compressor, when the magnetic thrust increases, the frictional force of the compression mechanism component increases. Further, when the magnetic thrust decreases, the vibration of the compressor mechanism component in the rotation axis direction increases.
 そこで、実施の形態2の電動機1では、永久磁石13の磁気中心と、固定子20の中心とのずれにより発生する磁気推力を、第一鉄心群11aと永久磁石13、第二鉄心群11bの長さを変更することで調節する。より具体的には、磁力を増加させることで短小化した永久磁石13の回転軸方向の寸法に合わせて、永久磁石13が挿入される磁石挿入孔14aを有する第一鉄心群11aの回転軸方向の寸法を規定する。そして、第一鉄心群11aと第二鉄心群11bとによる回転軸方向の寸法が、従来の回転子における鉄心の回転軸方向の寸法となるように、永久磁石13が挿入されない貫通孔14bを有する第二鉄心群11bの回転軸方向の寸法を規定する。このため、回転子10の鉄心11における回転軸方向の長さは、全体として、従来の回転子とは変わらない。したがって、圧縮機において、従来の駆動ドライバを流用することができる。 Therefore, in the electric motor 1 according to the second embodiment, the magnetic thrust generated by the deviation between the magnetic center of the permanent magnet 13 and the center of the stator 20 is generated by the first iron core group 11a, the permanent magnets 13, and the second iron core group 11b. Adjust by changing the length. More specifically, according to the dimension of the permanent magnet 13 shortened by increasing the magnetic force in the direction of the rotation axis, the direction of the rotation axis of the first iron core group 11a having the magnet insertion hole 14a into which the permanent magnet 13 is inserted. Stipulate the dimensions of. The through hole 14b into which the permanent magnet 13 is not inserted is provided so that the dimension of the first iron core group 11a and the second iron core group 11b in the rotation axis direction becomes the dimension of the iron core in the conventional rotor in the rotation axis direction. The dimension of the second iron core group 11b in the rotation axis direction is defined. Therefore, the length of the iron core 11 of the rotor 10 in the direction of the rotation axis is the same as that of the conventional rotor as a whole. Therefore, the conventional drive driver can be used in the compressor.
 以上のように、実施の形態2の電動機1の回転子10によれば、永久磁石13の回転軸方向の長さに合わせて、第一鉄心群11aおよび第二鉄心群11bにおける回転軸方向の長さを調整して規定するようにした。このため、鉄心11の回転軸方向の寸法を、従来の回転子と同じにすることができる。したがって、従来の圧縮機に用いていた駆動ドライバを流用することができる。そして、永久磁石13に磁力の強い磁石を用いることができるので、回転子10および電動機1における原価低減をはかることができる。 As described above, according to the rotor 10 of the electric motor 1 of the second embodiment, the rotor core 10 of the first iron core group 11a and the second iron core group 11b is adjusted in the rotational axis direction according to the length of the permanent magnet 13 in the rotational axis direction. The length was adjusted and specified. Therefore, the dimension of the iron core 11 in the rotation axis direction can be made the same as that of the conventional rotor. Therefore, the drive driver used in the conventional compressor can be used. Further, since a magnet having a strong magnetic force can be used as the permanent magnet 13, the cost of the rotor 10 and the electric motor 1 can be reduced.
実施の形態3.
 図8は、この発明の実施の形態3に係る冷凍サイクル装置の構成例を表す図である。ここで、図8は冷凍サイクル装置として空気調和装置を示している。図8の空気調和装置は、室外ユニット100と室内ユニット200とをガス冷媒配管300、液冷媒配管400により配管接続し、冷媒を循環させる冷媒回路を構成する。室外ユニット100は、圧縮機110、四方弁120、室外熱交換器130、膨張弁140および室外送風機150を有している。また、室内ユニット200は、室内熱交換器210および室内送風機220を有している。
Embodiment 3.
FIG. 8: is a figure showing the structural example of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention. Here, FIG. 8 shows an air conditioner as a refrigeration cycle device. In the air conditioner of FIG. 8, the outdoor unit 100 and the indoor unit 200 are connected by a gas refrigerant pipe 300 and a liquid refrigerant pipe 400 to form a refrigerant circuit for circulating a refrigerant. The outdoor unit 100 has a compressor 110, a four-way valve 120, an outdoor heat exchanger 130, an expansion valve 140, and an outdoor blower 150. The indoor unit 200 also has an indoor heat exchanger 210 and an indoor blower 220.
 圧縮機110は、実施の形態1および実施の形態2において説明した電動機1を搭載する。圧縮機110は、吸入した冷媒を圧縮して吐出する。ここでは、圧縮機110を、たとえば、実施の形態2で説明した駆動ドライバ117などにより、駆動周波数を任意に変化できるものとする。 The compressor 110 is equipped with the electric motor 1 described in the first and second embodiments. The compressor 110 compresses the drawn refrigerant and discharges it. Here, it is assumed that the drive frequency of the compressor 110 can be arbitrarily changed by, for example, the drive driver 117 described in the second embodiment.
 四方弁120は、冷房運転時と暖房運転時とによって冷媒の流れを切り換える弁である。室外熱交換器130は、冷媒と室外の空気との熱交換を行う。たとえば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。そして、室外送風機150は、室外熱交換器130に室外の空気を送る。 The four-way valve 120 is a valve that switches the flow of the refrigerant depending on the cooling operation and the heating operation. The outdoor heat exchanger 130 exchanges heat between the refrigerant and the outdoor air. For example, during heating operation, it functions as an evaporator to evaporate and vaporize the refrigerant. Further, it functions as a condenser during the cooling operation, condensing and liquefying the refrigerant. Then, the outdoor blower 150 sends outdoor air to the outdoor heat exchanger 130.
 減圧装置となる絞り装置(流量制御手段)などの膨張弁140は冷媒を減圧して膨張させるものである。たとえば電子式膨張弁などで構成した場合には、制御手段(図示せず)などの指示に基づいて開度調整を行う。室内熱交換器210は、たとえば空調対象となる空気と冷媒との熱交換を行う。暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。そして、室内送風機220は、室内熱交換器210に空調対象となる空気を送る。 An expansion valve 140 such as a throttle device (flow rate control means) serving as a decompression device decompresses and expands the refrigerant. For example, when the electronic expansion valve is used, the opening degree is adjusted based on an instruction from a control means (not shown). The indoor heat exchanger 210 exchanges heat between the air to be air-conditioned and the refrigerant, for example. It functions as a condenser during heating operation and condenses and liquefies the refrigerant. In addition, during cooling operation, it functions as an evaporator to evaporate and vaporize the refrigerant. Then, the indoor blower 220 sends the air to be air-conditioned to the indoor heat exchanger 210.
 以上のように、実施の形態3の冷凍サイクル装置によれば、実施の形態1および実施の形態2で説明した電動機1を有する圧縮機110を機器として有しているので、装置全体として効率のよい運転を行うことができる。特に、実施の形態2で説明したように、第一鉄心群11aおよび第二鉄心群11bにおける回転軸方向の長さを調整することで、従来の回転子の鉄心における回転軸方向の長さと同じにすることができる。このため、圧縮機110における駆動ドライバ117の流用および圧縮機110の原価低減をはかることができる。 As described above, according to the refrigeration cycle apparatus of the third embodiment, since the compressor 110 having the electric motor 1 described in the first and second embodiments is included as a device, the efficiency of the entire apparatus is improved. You can drive well. In particular, as described in the second embodiment, by adjusting the length of the first iron core group 11a and the second iron core group 11b in the rotation axis direction, the same length as the rotation axis direction of the conventional rotor iron core is obtained. Can be Therefore, it is possible to divert the drive driver 117 in the compressor 110 and reduce the cost of the compressor 110.
 1 電動機、10 回転子、11 鉄心、11a 第一鉄心群、11b 第二鉄心群、12 シャフト、13 永久磁石、14a 磁石挿入孔、14b 貫通孔、15 凸部、16 端板、20 固定子、21 ティース、22 巻線、100 室外ユニット、110 圧縮機、111 シェル、112 吸入管、113 圧縮機構部、114 主軸、115 吐出管、116 吸入マフラ、117 駆動ドライバ、120 四方弁、130 室外熱交換器、140 膨張弁、150 室外送風機、200 室内ユニット、210 室内熱交換器、220 室内送風機、300 ガス冷媒配管、400 液冷媒配管。 1 electric motor, 10 rotor, 11 iron core, 11a first iron core group, 11b second iron core group, 12 shaft, 13 permanent magnet, 14a magnet insertion hole, 14b through hole, 15 convex portion, 16 convex plate, 16 end plate, 20 stator, 21 teeth, 22 windings, 100 outdoor unit, 110 compressor, 111 shell, 112 suction pipe, 113 compression mechanism part, 114 main shaft, 115 discharge pipe, 116 suction muffler, 117 drive driver, 120 four-way valve, 130 outdoor heat exchange Device, 140 expansion valve, 150 outdoor blower, 200 indoor unit, 210 indoor heat exchanger, 220 indoor blower, 300 gas refrigerant pipe, 400 liquid refrigerant pipe.

Claims (6)

  1.  固定子と回転子とを備える電動機であって、
     前記回転子は、
     回転軸となるシャフトと、
     磁束を発生させる永久磁石が挿入される磁石挿入孔を有する第一鉄心群および前記磁石挿入孔に連通しており、前記永久磁石の通過を阻む形状に形成された貫通孔を有する第二鉄心群を有し、前記シャフトに固定される鉄心と、
     前記鉄心の両端面をそれぞれ覆う端板と
    を有する電動機。
    An electric motor including a stator and a rotor,
    The rotor is
    A shaft that serves as a rotation axis,
    A first core group having a magnet insertion hole into which a permanent magnet that generates a magnetic flux is inserted, and a second core group having a through hole that is in communication with the magnet insertion hole and has a shape that prevents passage of the permanent magnet. And an iron core fixed to the shaft,
    An electric motor comprising: an end plate that covers both end surfaces of the iron core.
  2.  前記第二鉄心群は、前記シャフトの径方向に対し、前記貫通孔の空間側に向かって突出する複数の凸部を有し、
     複数の前記凸部は、前記貫通孔の前記シャフトの前記径方向において、対向しない位置にそれぞれ設けられる請求項1に記載の電動機。
    The second core group, in the radial direction of the shaft, has a plurality of protrusions protruding toward the space side of the through hole,
    The electric motor according to claim 1, wherein the plurality of convex portions are provided at positions that do not face each other in the radial direction of the shaft of the through hole.
  3.  前記第二鉄心群は、前記シャフトの径方向に対し、前記貫通孔の空間側に向かって突出する凸部を有し、
     前記磁石挿入孔の回転軸方向長さをL、前記永久磁石の前記回転軸方向長さをl、前記永久磁石の厚みをT、前記凸部の前記回転軸方向長さをyおよび前記磁石挿入孔内の前記永久磁石の最大傾き角度をθとしたときに、前記凸部は、l×cosθ+T×sinθ<L+yの関係を有する請求項1または請求項2に記載の電動機。
    The second core group, in the radial direction of the shaft, has a convex portion protruding toward the space side of the through hole,
    The length of the magnet insertion hole in the rotation axis direction is L, the length of the permanent magnet in the rotation axis direction is 1, the thickness of the permanent magnet is T, the length of the protrusion in the rotation axis direction is y, and the magnet is inserted. The electric motor according to claim 1, wherein the convex portion has a relationship of 1×cos θ+T×sin θ<L+y, where θ is a maximum inclination angle of the permanent magnet in the hole.
  4.  前記凸部が設けられた部分における前記貫通孔の前記シャフトの前記径方向における距離は、前記固定子と前記回転子との間の距離よりも長い請求項2または請求項3に記載の電動機。 The electric motor according to claim 2 or 3, wherein a distance in the radial direction of the shaft of the through hole in a portion where the convex portion is provided is longer than a distance between the stator and the rotor.
  5.  外殻となる密閉容器と、
     前記密閉容器内に設置され、冷媒を圧縮して外部に吐出する圧縮機構部と、
     前記圧縮機構部に動力供給を行う請求項1~請求項4のいずれか一項に記載の電動機とを備える圧縮機。
    A closed container that serves as an outer shell,
    A compression mechanism unit installed in the closed container for compressing the refrigerant and discharging it to the outside,
    A compressor provided with the electric motor according to any one of claims 1 to 4, which supplies power to the compression mechanism portion.
  6.  請求項5に記載の圧縮機、凝縮器、減圧装置および蒸発器が配管接続され、冷媒の循環が行われる冷媒回路を有する冷凍サイクル装置。 A refrigeration cycle device having a refrigerant circuit in which the compressor, the condenser, the pressure reducing device, and the evaporator according to claim 5 are connected by piping, and the refrigerant is circulated.
PCT/JP2018/045897 2018-12-13 2018-12-13 Electric motor, compressor, and refrigeration cycle device WO2020121485A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CZ2021-265A CZ2021265A3 (en) 2018-12-13 2018-12-13 Electric engine, Cooling cycle compressor and equipment
PCT/JP2018/045897 WO2020121485A1 (en) 2018-12-13 2018-12-13 Electric motor, compressor, and refrigeration cycle device
JP2020559643A JP7080345B2 (en) 2018-12-13 2018-12-13 Motors, compressors and refrigeration cycle equipment
CN201880099849.5A CN113169601A (en) 2018-12-13 2018-12-13 Motor, compressor, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045897 WO2020121485A1 (en) 2018-12-13 2018-12-13 Electric motor, compressor, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020121485A1 true WO2020121485A1 (en) 2020-06-18

Family

ID=71075755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045897 WO2020121485A1 (en) 2018-12-13 2018-12-13 Electric motor, compressor, and refrigeration cycle device

Country Status (4)

Country Link
JP (1) JP7080345B2 (en)
CN (1) CN113169601A (en)
CZ (1) CZ2021265A3 (en)
WO (1) WO2020121485A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116169808B (en) * 2023-04-26 2023-07-04 四川芯智热控技术有限公司 Motor magnet fixing structure and motor magnet fixing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050331A (en) * 2011-12-05 2012-03-08 Mitsubishi Electric Corp Electric motor
JP2015163006A (en) * 2014-02-28 2015-09-07 三菱電機株式会社 Rotary electric machine and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2961040B1 (en) 2013-02-20 2019-05-08 Mitsubishi Electric Corporation Electric motor having embedded permanent magnets
JP6320860B2 (en) * 2014-07-04 2018-05-09 株式会社三井ハイテック Rotor laminated iron core and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050331A (en) * 2011-12-05 2012-03-08 Mitsubishi Electric Corp Electric motor
JP2015163006A (en) * 2014-02-28 2015-09-07 三菱電機株式会社 Rotary electric machine and method for manufacturing the same

Also Published As

Publication number Publication date
CZ2021265A3 (en) 2021-07-28
JP7080345B2 (en) 2022-06-03
JPWO2020121485A1 (en) 2021-09-02
CN113169601A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
JP6584513B2 (en) Rotor, rotating electrical machine, electric compressor and refrigeration air conditioner
CN110603716B (en) Rotor, motor, compressor, and air conditioner
JP2015122936A (en) Magnet embedded-type motor and method for using magnet embedded-type motor
JP6689449B2 (en) Rotors, electric motors, compressors, blowers, and air conditioners
JP7023408B2 (en) Motors, compressors and air conditioners
WO2019215865A1 (en) Rotor, motor, compressor, and air conditioning device
JP2017028862A (en) Rotor, rotary electric machine, electrically-driven compressor and refrigeration air conditioner
WO2015193963A1 (en) Compressor, refrigeration-cycle equipment, and air conditioner
WO2020121485A1 (en) Electric motor, compressor, and refrigeration cycle device
WO2018011850A1 (en) Rotor, electric motor, air blower, compressor, and air conditioning device
JP6297220B2 (en) Electric motor for compressor, compressor, and refrigeration cycle apparatus
WO2021070353A1 (en) Rotor, electric motor, compressor, and air conditioner
WO2020213081A1 (en) Rotor, motor, compressor, and air conditioner
JP7433420B2 (en) Rotors, motors, compressors and air conditioners
CN111903038B (en) Motor, compressor and air conditioning device
WO2016002002A1 (en) Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device
WO2020089991A1 (en) Rotor, motor, compressor, and refrigeration and air-conditioning device
JP7038891B2 (en) Motors, compressors and air conditioners
US20230216360A1 (en) Electric motor, compressor, blower, refrigerator
JP2017209014A (en) Compressor, refrigeration cycle device and air conditioner
WO2023191104A1 (en) Rotor, motor, compressor, and refrigeration unit
WO2023191103A1 (en) Rotor, motor, compressor, and refrigeration unit
WO2022254678A1 (en) Consequent-pole-type rotor, electric motor, compressor, and air conditioner
WO2022208740A1 (en) Motor, compressor, and refrigeration cycle device
JP7026811B2 (en) Stator, motor, compressor and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559643

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2021-265

Country of ref document: CZ

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942756

Country of ref document: EP

Kind code of ref document: A1