WO2021093861A1 - 一种传输数据的方法及相关装置 - Google Patents

一种传输数据的方法及相关装置 Download PDF

Info

Publication number
WO2021093861A1
WO2021093861A1 PCT/CN2020/128745 CN2020128745W WO2021093861A1 WO 2021093861 A1 WO2021093861 A1 WO 2021093861A1 CN 2020128745 W CN2020128745 W CN 2020128745W WO 2021093861 A1 WO2021093861 A1 WO 2021093861A1
Authority
WO
WIPO (PCT)
Prior art keywords
constellation
base station
uplink data
codeword
category
Prior art date
Application number
PCT/CN2020/128745
Other languages
English (en)
French (fr)
Inventor
郑小金
林捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021093861A1 publication Critical patent/WO2021093861A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3416Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a method and related devices for transmitting data.
  • 5G mainly puts forward requirements on the capabilities of future mobile networks from three dimensions, namely, peak rate (corresponding to capacity at the same time), number of connections, and delay.
  • peak rate corresponding to capacity at the same time
  • 5G requires 10Gbps or even 20Gbps.
  • there may be higher speed requirements which means a comprehensive increase in peak speed, capacity, and cell edge speed.
  • the cell size will have to be further reduced, and a large number of base stations will be added at the same time, which will cause great interference between various cells.
  • the coordinated multiple points transmission scheme (Coordinated Multiple Points, CoMP) is to introduce cooperation between multiple base stations, and through the sharing of transmission-related information between cooperative base stations, such as channel state information, scheduling information, and user data information, through Execute corresponding algorithms to feedback and control this information, reduce inter-cell signal interference in the LTE system, and improve the received signal-to-noise ratio of cell users, especially cell edge users, thereby increasing the system throughput of these users and improving user communication quality.
  • base stations cooperate to provide services for all users in a cell. Multiple base stations transmit data for multiple users in the same time and frequency, and convert inter-cell interference signals into useful signals to improve the performance of cell edge users.
  • the embodiments of the present application provide a data transmission method and related devices, which are used to reduce the backhaul link load.
  • the first aspect of the embodiments of the present application provides a data transmission method, including:
  • the first base station first receives first uplink data, and the first uplink data corresponds to the second uplink data sent by the terminal device;
  • the first base station may determine the first category to which the first uplink data belongs in the preset first constellation diagram according to the amplitude and phase of the first uplink data, and all constellation points in the first constellation diagram are divided into multiple
  • the first category, each first category includes at least one constellation point, and each constellation point corresponds to a type of second uplink data;
  • the first base station encodes the first uplink data into the first codeword according to the first mapping relationship between the category and the codeword, and the first category;
  • the first base station sends the first codeword to the second base station.
  • the first base station Since the first base station encodes the first uplink data into the first codeword and transmits it, the load of the backhaul link is reduced and the complexity is low.
  • the embodiments of the present application also provide the first implementation manner of the first aspect:
  • the first base station Before the first base station determines the first category to which the first uplink data belongs in the preset first constellation diagram, the first base station presets the first constellation through a preset clustering algorithm and a preset number of coding bits N All constellation points in the figure are divided into 2 N first categories, where N is a positive integer.
  • the clustering algorithm is used to classify the constellation points, which can reduce the algorithm complexity in the entire data transmission process.
  • the embodiments of the present application also provide a second implementation manner of the first aspect:
  • the first base station Before dividing all the constellation points in the preset first constellation diagram into 2 N first categories through the preset clustering algorithm and the preset coding bit number N, the first base station is based on the preset channel coefficients and the first category. The minimum number of bits of the second uplink data determines the first constellation diagram.
  • the second aspect of the embodiments of the present application provides a data transmission method, including:
  • the second base station first receives the third uplink data, and the third uplink data corresponds to the second uplink data sent by the terminal device;
  • the second base station may determine the second category to which the third uplink data belongs in the preset second constellation diagram according to the amplitude and phase of the third uplink data. All constellation points in the second constellation diagram are divided into multiple second constellation points. Category, each second category includes at least one constellation point, and each constellation point corresponds to a type of second uplink data;
  • the second base station then encodes the second uplink data into a second codeword according to the second mapping relationship between the category and the codeword, and the second category;
  • the second base station receives the first codeword from the first base station
  • the second base station determines the decoding constellation point according to the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword;
  • the second base station determines the second uplink data corresponding to the decoded constellation point.
  • the second base station determines the second uplink data according to the first codeword and the second codeword sent by the first base station, which reduces the load of the backhaul link and has a lower complexity.
  • the embodiments of the present application also provide the first implementation of the second aspect:
  • the second base station determining the decoding constellation point according to the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword includes:
  • the second base station determines the unique constellation point as the decoding Constellation point.
  • the embodiments of the present application also provide a second implementation manner of the second aspect:
  • the second base station determining the decoding constellation point according to the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword includes:
  • the second base station passes through the at least two identical constellation points.
  • the constellation point performs maximum likelihood ratio detection, and selects one constellation point from at least two identical constellation points as the decoding constellation point.
  • the embodiments of the present application also provide a third implementation manner of the second aspect:
  • the second base station determining the decoding constellation point according to the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword includes:
  • the second base station performs maximum likelihood according to the third uplink data Decode to get the decoded constellation point.
  • the embodiments of the present application also provide a fourth implementation manner of the second aspect:
  • the second base station Before the second base station determines the second category to which the third uplink data belongs in the preset second constellation diagram, the second base station presets the second constellation through a preset clustering algorithm and a preset number of coding bits N All constellation points in the figure are divided into 2 N second categories, where N is a positive integer.
  • the clustering algorithm is used to classify the constellation points, which can reduce the algorithm complexity in the entire data transmission process.
  • the embodiments of the present application also provide a fifth implementation manner of the second aspect:
  • the second base station Before dividing all the constellation points in the preset second constellation diagram into 2 N second categories through the preset clustering algorithm and the preset number of coding bits N, the second base station according to the preset channel coefficients and the first The minimum bit number of the two uplink data determines the second constellation diagram.
  • a third aspect of the embodiments of the present application provides a data transmission device, including:
  • a receiving unit configured to receive first uplink data, where the first uplink data corresponds to second uplink data sent by the terminal device;
  • the processing unit is configured to determine the first category to which the first uplink data belongs in the preset first constellation diagram. All constellation points in the first constellation diagram are divided into multiple first categories, and each first category contains at least One constellation point, and each constellation point corresponds to a kind of second uplink data;
  • the processing unit is further configured to encode the first uplink data into the first codeword according to the first mapping relationship between the category and the codeword, and the first category;
  • the sending unit is used to send the first codeword to the second base station.
  • the embodiments of the present application also provide the first implementation manner of the third aspect:
  • the processing unit is further configured to divide all constellation points in the preset first constellation graph into 2 N first categories through a preset clustering algorithm and a preset coding bit number N, where N is a positive integer.
  • the embodiments of the present application also provide the second implementation manner of the third aspect:
  • the processing unit is further configured to determine the first constellation diagram according to the preset channel coefficients and the minimum number of bits of the second uplink data.
  • a fourth aspect of the embodiments of the present application provides a device for receiving data, including:
  • a receiving unit configured to receive third uplink data, where the third uplink data corresponds to the second uplink data sent by the terminal device;
  • the processing unit is configured to determine the second category to which the third uplink data belongs in the preset second constellation diagram. All constellation points in the second constellation diagram are divided into multiple second categories, and each second category contains at least One constellation point, and each constellation point corresponds to a kind of second uplink data;
  • the processing unit is further configured to encode the second uplink data into a second codeword according to the second mapping relationship between the category and the codeword, and the second category;
  • the receiving unit is further configured to receive the first codeword from the first base station;
  • the processing unit is further configured to determine the decoding constellation point according to the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword;
  • the processing unit is further configured to determine the second uplink data according to the correspondence between the constellation point and the uplink data, and the decoding constellation point.
  • the embodiments of the present application also provide the first implementation manner of the fourth aspect:
  • the processing unit is configured to determine the unique constellation point when there is a unique constellation point between the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword It is the decoding constellation point.
  • the embodiments of the present application also provide a second implementation manner of the fourth aspect:
  • the processing unit is configured to: when there are at least two identical constellation points between the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword, by comparing at least two constellation points The same constellation point performs maximum likelihood ratio detection, and one constellation point is selected from at least two identical constellation points as the decoding constellation point.
  • the embodiments of the present application also provide a third implementation manner of the fourth aspect:
  • the processing unit is configured to perform maximum processing according to the third uplink data when the same constellation point does not exist between the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword Likelihood decoding, the decoded constellation point is obtained.
  • the embodiments of the present application also provide Fourth embodiment:
  • the processing unit is further configured to divide all constellation points in the preset second constellation graph into 2 N second categories through a preset clustering algorithm and a preset number of coding bits N, where N is a positive integer.
  • the embodiments of the present application also provide the fifth implementation manner of the fourth aspect:
  • the processing unit is further configured to determine the second constellation diagram according to the preset channel coefficients and the minimum bit number of the second uplink data.
  • a fifth aspect of the embodiments of the present application provides a communication device, including: at least one processor and a memory, the memory stores computer-executable instructions that can run on the processor, and when the computer-executable instructions are executed by the processor , The communication device executes the method for transmitting data as in any one of the above-mentioned first aspect.
  • the sixth aspect of the embodiments of the present application provides a communication device, including: at least one processor and a memory, the memory stores computer-executable instructions that can run on the processor, and when the computer-executable instructions are executed by the processor , The communication device executes the method for transmitting data as in any one of the above-mentioned second aspect.
  • a seventh aspect of the embodiments of the present application provides a communication system, and the communication system includes: a first base station and a second base station;
  • the first base station is configured to execute the method for transmitting data according to any one of the foregoing first aspect
  • the second base station is configured to execute the method for transmitting data according to any one of the above-mentioned second aspects.
  • the eighth aspect of the embodiments of the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions. , In order to implement the data transmission method of any one of the first aspect to the second aspect above.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the embodiments of the present application further provide the first implementation manner of the eighth aspect.
  • the chip or chip system described above in the present application further includes at least one memory, and the at least one memory stores instructions.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • the ninth aspect of the embodiments of the present application provides a computer-readable storage medium storing one or more computer-executable instructions.
  • the computer storage medium is used to store computer software instructions used by a communication device.
  • the designed program is used to store computer software instructions used by a communication device.
  • the communication device may be the same as the method for transmitting data in any one of the aforementioned first aspect to the second aspect.
  • the tenth aspect of the embodiments of the present application provides a computer program product storing one or more computer-executable instructions.
  • the processor executes the first aspect to the second aspect above.
  • the first base station first receives the first uplink data, and the first uplink data corresponds to the second uplink data sent by the terminal equipment; and then determines the first category to which the first uplink data belongs in the first constellation diagram, and all the data in the first constellation diagram
  • the constellation points are divided into multiple first categories, and each first category contains at least one constellation point, and each constellation point corresponds to a type of second uplink data; then according to the first mapping relationship between the category and the codeword, and the first category
  • the first uplink data is encoded into the first codeword; finally the first codeword is sent to the second base station, so that the second base station decodes the second uplink data according to the first codeword, because the first base station encodes the first uplink data as The first codeword is transmitted afterwards, so the load on the backhaul link is reduced.
  • FIG. 1 is a schematic diagram of a network architecture under a coordinated multi-point transmission scheme in an embodiment of the application
  • FIG. 2 is a schematic diagram of an embodiment of a method for transmitting data provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of an embodiment of a first constellation diagram in an embodiment of this application.
  • FIG. 4 is a schematic diagram of an embodiment of a second constellation diagram in an embodiment of the application.
  • FIG. 5 is a schematic diagram of comparison of algorithm time complexity in an embodiment of the application.
  • FIG. 6 is a schematic diagram of comparison of coding time complexity in an embodiment of this application.
  • FIG. 7 is a schematic diagram of comparison of decoding time complexity in an embodiment of this application.
  • FIG. 8 is a schematic diagram of comparison of bit error rates in the embodiments of this application.
  • FIG. 9 is a schematic diagram of bit error rates in different scenarios in an embodiment of the application.
  • FIG. 10 is a schematic diagram of a first embodiment of a data transmission device in an embodiment of this application.
  • FIG. 11 is a schematic diagram of a second embodiment of a data transmission device in an embodiment of this application.
  • FIG. 12 is a schematic diagram of an embodiment of a communication device in an embodiment of this application.
  • FIG. 13 is a schematic diagram of another embodiment of a communication device in an embodiment of this application.
  • FIG. 14 is a schematic diagram of an embodiment of a communication system in an embodiment of this application.
  • the embodiments of the present application provide a data transmission method and related devices, which are used to reduce the backhaul link load.
  • the data transmission method provided in the embodiments of the present application can be applied to a communication network under a coordinated multipoint transmission scheme, and the communication network includes at least two base stations and at least one terminal device.
  • terminal equipment is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, etc.) And satellite class).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • any terminal device in the communication network sends uplink data, which will be received by all base stations.
  • uplink data due to the difference of channel coefficients and the influence of noise, different base stations receive different uplink data indirectly.
  • the base stations in the same network architecture need to exchange uplink data through the back-to-city link.
  • FIG. 1 is a schematic diagram of a network architecture under a coordinated multipoint transmission scheme in an embodiment of the present application.
  • the first base station and the second base station need to exchange the uplink signals received with each other. Specifically, the first base station needs to connect to each other through the backhaul link.
  • the uplink signal y1 is sent to the second base station, and the second base station needs to send the uplink signal y2 to the first base station through the backhaul link, and then both the first base station and the second base station need to determine the uplink signal s1 and the uplink signal based on the uplink signals y1 and y2 s2.
  • the embodiment of the application provides a data transmission method for exchanging uplink data between base stations. Before exchanging uplink data, the base station will determine the type of uplink data in the constellation diagram, and then convert it according to the type. The uplink data is encoded into a codeword, and the codeword is finally sent to other base stations, so that the other base stations determine the uplink data sent by the terminal device according to the codeword and the codeword encoded by the other base station itself.
  • FIG. 2 is a schematic diagram of an embodiment of a method for transmitting data provided in an embodiment of the present application; as shown in FIG. 2, an embodiment of the present application provides an embodiment of a method for transmitting data, including:
  • a first base station receives first uplink data, where the first uplink data corresponds to second uplink data sent by a terminal device.
  • the first base station will receive the first uplink data accordingly; if the second uplink data sent by the terminal device is different, the first uplink data received by the first base station The data is also different; among them, the number of terminal devices can be one or more.
  • the second uplink data s1 and s2 sent by the two terminal devices each have four possibilities of 00, 01, 10, and 11, then 16 combinations can be formed, including S1 ⁇ s1:00, s2:00 ⁇ , S2 ⁇ s1:00, s2:01 ⁇ , S3 ⁇ s1:00, s2:10 ⁇ , S4 ⁇ s1:00, s2: 11 ⁇ , S5 ⁇ s1:01, s2:00 ⁇ , S6 ⁇ s1:01, s2:01 ⁇ , S7 ⁇ s1:01, s2:10 ⁇ , S8 ⁇ s1:01, s2:11 ⁇ , S9 ⁇ s1 :10, s2:00 ⁇ , S10 ⁇ s1:10, s2:01 ⁇ , S11 ⁇ s1:10, s2:10 ⁇ , S12 ⁇ s1:10, s2:11 ⁇ , S13 ⁇ s1:11, s2:00 ⁇ , S14 ⁇ s1:
  • the first uplink data received by the first base station there are also 16 cases for the first uplink data received by the first base station, which can be specifically determined according to the channel coefficient and Gaussian white noise, which will not be described in detail here.
  • the first base station determines a first category to which the first uplink data belongs in a preset first constellation diagram.
  • the embodiment of the present application modulates the first constellation diagram of the first base station according to the second uplink data, and each constellation point in the first constellation diagram corresponds to a type of second uplink.
  • Data, and all constellation points in the first constellation diagram are divided into multiple first categories, and each first category includes at least one constellation point.
  • there are multiple methods for classifying the first category which are not limited in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of an embodiment of the first constellation diagram in the embodiment of the present application.
  • the first constellation diagram shown in FIG. 3 is based on 16 combined modulations of the second uplink data in operation 101, where the modulation mode is Quadrature Phase Shift Keying (Quadrature Phase Shift Keying, QPSK), in Figure 3 *1 represents the constellation point S1, *2 represents the constellation point S2, and so on.
  • the first constellation diagram contains a total of 16 constellation points, and these 16 constellation points are divided into 4 first categories, and each first category includes 4 constellation points.
  • one of the first categories includes four constellation points S1, S5, S9, and S13.
  • each constellation point in the first constellation diagram corresponds to a type of first uplink data. Accordingly, the first uplink data received by the first base station also belongs to the first uplink data.
  • the first base station has multiple methods for determining the first category to which the first uplink data belongs. For example, the first category can be determined according to the amplitude and phase of the first uplink data. When the first category is determined, it is equivalent to determining the data sent by the terminal device.
  • the range of the second uplink data is the second uplink data corresponding to a constellation point in the first category.
  • the first base station encodes the first uplink data pair into the first codeword according to the first mapping relationship between the category and the codeword, and the first category.
  • each category corresponds to a codeword. If the first category corresponds to the first codeword, the first base station will encode the first uplink data into the first codeword; the first mapping relationship can be performed according to actual needs. Set up.
  • the codeword corresponding to the first category containing the four constellation points S1, S5, S9 and S13 can be determined as 00, and the codewords corresponding to the four constellation points S3, S7, S11 and S15 can be determined.
  • the codeword corresponding to the first category of the four constellation points is determined to be 01, and the codeword corresponding to the first category of the four constellation points S0, S4, S8, and S12 is determined to be 10, which will include S2, S6, S10, and S14.
  • the codeword corresponding to the first category of the constellation points is determined to be 11.
  • Operation 104 The first base station sends the first codeword to the second base station.
  • the second base station receives the first codeword from the first base station.
  • the second uplink data is S1 ⁇ s1:00, s2:00 ⁇ .
  • the first uplink data will be encoded as the first codeword 00, and finally the first base station will send to the second base station When the first codeword 00 is sent, compared to directly sending the first uplink data, the number sent by the first base station is smaller.
  • Operation 105 The second base station receives third uplink data, and the third uplink data corresponds to the second uplink data sent by the terminal device.
  • the second base station will receive the third uplink data.
  • Operation 106 The second base station determines a second category to which the third uplink data belongs in a preset second constellation diagram, and the second category corresponds to at least one constellation point in the second constellation diagram.
  • the embodiment of the present application modulates the second constellation diagram of the second base station according to the second uplink data.
  • All constellation points in the second constellation diagram are divided into multiple second categories, and each second category includes at least one constellation. Point, each constellation point corresponds to a kind of second uplink data.
  • the arrangement of the constellation points in the second constellation diagram is the same as the arrangement of the constellation points in the first constellation diagram.
  • the number of constellation points contained in the second category may be different from the number of constellation points contained in the first category, and the type of constellation points contained in the second category may also be different from the constellation points contained in the first category.
  • FIG. 4 is a schematic diagram of an embodiment of the second constellation diagram in the embodiment of the present application.
  • the second constellation diagram shown in FIG. 4 is also based on 16 combined modulations of the second uplink data in operation 101, and the modulation method is also It is quadrature phase shift keying (Quadrature Phase Shift Keying, QPSK), in Figure 4 *1 represents the constellation point S1, *2 represents the constellation point S2, and so on.
  • QPSK Quadrature Phase Shift Keying
  • the second constellation diagram contains 16 constellation points, and these 16 constellation points are divided into 4 second categories, each second category contains 4 constellation points, but the constellations contained in the second category
  • the types of points are different from the types of constellation points included in the first category.
  • a second category in the second constellation diagram includes four constellation points S1, S6, S7, and S12.
  • the constellation points S1 and S5, S9, S13 belong to a first category
  • the constellation points S1 and S6, S7, S12 These three constellation points belong to a second category.
  • the second base station encodes the second uplink data into a second codeword according to the second mapping relationship between the category and the codeword, and the second category.
  • each category corresponds to a codeword. If the second category corresponds to the second codeword, the second base station will encode the second uplink data into the second codeword; the second mapping relationship can be performed according to actual needs. Set up.
  • the codeword corresponding to the second category containing the four constellation points S0, S4, S5, and S13 can be determined as 00, which will include S1, S6, S7, and S12.
  • the codeword corresponding to the second category of the constellation points is determined to be 01, and the codeword corresponding to the second category of the four constellation points S3, S8, S9, and S14 is determined to be 10, which will include S2, S10, S11, and S15.
  • the codeword corresponding to the second category of constellation points is determined to be 11.
  • the second base station determines a decoding constellation point according to the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword.
  • the first category corresponding to the first codeword is determined based on the first uplink signal, which means that the second uplink signal corresponding to the first uplink signal also belongs to the first category, that is, the second uplink signal corresponds to the first uplink signal.
  • a constellation point in the first category; similarly, the second category corresponding to the second codeword is determined based on the third uplink signal, which means that the second uplink signal corresponding to the third uplink signal also belongs to the second category, that is, the first The two uplink signals correspond to a constellation point in the second category.
  • the decoding constellation point can be determined according to the intersection of the constellation point corresponding to the first category and the constellation point corresponding to the second category, and the decoded constellation point can be used as the constellation point corresponding to the second uplink signal.
  • intersection there are many cases of intersection.
  • decoding constellation points There are also multiple corresponding methods for determining decoding constellation points, which are not limited in the embodiment of the present application.
  • the second base station needs to use the constellation points in the first category corresponding to the first codeword. Therefore, before performing operation 106, the first base station needs to pre-set the constellation points in the first category corresponding to the first codeword. The constellation points are sent to the second base station.
  • Operation 109 The second base station determines the second uplink data corresponding to the decoded constellation point.
  • the second uplink data can be determined according to the correspondence between the decoded constellation points and the second uplink data.
  • the first base station does not directly send the first uplink data to the second base station, but determines the first category corresponding to the first uplink data, and then encodes the first uplink data into the first code according to the first category
  • the second base station can determine the second uplink data according to the first codeword from the first base station and the second codeword obtained locally, so the amount of data sent to the second base station can be reduced, thereby reducing the backhaul link load.
  • the second base station is taken as an example to introduce the determination process of the second uplink data.
  • the second base station can also send the second codeword to the first base station, so that the first base station can use the second code
  • the word and the first code word determine the second uplink data, and the determination process is similar to that of the second base station, so it will not be described in detail here.
  • the second base station is based on the constellation point in the first category corresponding to the first codeword and the constellation in the second category corresponding to the second codeword.
  • Point determination decoding constellation points include:
  • the second base station determines the unique constellation point as the decoding Constellation point.
  • the second uplink signal corresponds to a constellation point in the first category
  • the second uplink signal also corresponds to a constellation point in the second category. Therefore, if the first codeword corresponds to a constellation point in the first category, There is a unique constellation point between the constellation point and the constellation point in the second category corresponding to the second codeword, and the unique constellation point can be considered as the constellation point corresponding to the second uplink signal. The only identical constellation point is determined as the decoding constellation point.
  • the second base station is based on the constellation point in the first category corresponding to the first codeword and the constellation in the second category corresponding to the second codeword.
  • Point determination decoding constellation points include:
  • the second base station passes through the at least two identical constellation points
  • the constellation point performs maximum likelihood ratio detection, and selects one constellation point from at least two identical constellation points as the decoding constellation point.
  • the first base station will encode the first uplink data into a first code word of 11, and the corresponding The constellation points are four constellation points S2, S6, S10 and S14.
  • the second base station will encode the second uplink data into a second code word of 11.
  • the corresponding constellation points in the second category are S2, S10, S11 and S15.
  • the maximum likelihood ratio detection is performed on the same constellation point, so as to determine the decoded constellation point from the same constellation point.
  • the maximum likelihood ratio detection is a relatively mature technology, so it will not be described in detail here.
  • the second base station is based on the constellation point in the first category corresponding to the first codeword and the constellation in the second category corresponding to the second codeword.
  • Point determination decoding constellation points include:
  • the second base station performs maximum likelihood according to the third uplink data Decode to get the decoded constellation point.
  • the channel noise between the first base station and the terminal device when the channel noise between the first base station and the terminal device is too large, it may cause the first category to be determined based on the first uplink signal to be wrong. Similarly, when the channel noise between the second base station and the terminal device is When it is too large, it may cause the second category error determined according to the second uplink signal. Regardless of the first category error or the second category error, it may cause the difference between the constellation point corresponding to the first codeword and the constellation point corresponding to the second codeword. The same constellation point does not exist between.
  • the embodiment of the present application selects the maximum likelihood based on the third uplink data. Decoding to determine the decoding constellation point.
  • the maximum likelihood decoding is a relatively mature technology, so it will not be described in detail here.
  • the constellation points in the first constellation diagram and the second constellation diagram in advance, and there are multiple methods for classifying, for example, the Euclidean distance method can be used to divide the constellation points.
  • the clustering method can also be used to divide the constellation points. The classification process of the first constellation diagram and the second constellation diagram will be described in detail below.
  • the method before the first base station determines the first category to which the first uplink data belongs in the preset first constellation diagram, the method further includes:
  • the first base station divides all constellation points in the preset first constellation diagram into 2 N first categories through a preset clustering algorithm and a preset number of coding bits N, where N is a positive integer.
  • dividing the first category of constellation points by clustering algorithm can better distinguish the constellation points included in different first categories than using the Euclidean distance method to divide the first category of constellation points. This makes the finally determined decoding constellation point more accurate, thereby more accurately determining the second uplink signal.
  • clustering algorithms which are not limited in the embodiment of the present application, and an improved hierarchical clustering algorithm can be used.
  • the first codeword When the number of coding bits is N, that is, the first codeword corresponds to N-bit binary, the first codeword has 2 N forms, so the first codeword can represent 2 N first categories.
  • the method before the second base station determines the second category to which the third uplink data belongs in the preset second constellation diagram, the method further include:
  • the second base station divides all constellation points in the preset second constellation diagram into 2 N second categories through a preset clustering algorithm and a preset number of coding bits N, where N is a positive integer.
  • clustering algorithms which are not limited in the embodiment of the present application, and an improved hierarchical clustering algorithm can be used.
  • division method of the second category is the same as the division method of the first category, and can be understood with reference to the division method of the first category.
  • the foregoing embodiment specifically introduces the classification of the first constellation diagram and the second constellation diagram. It can be understood that before the classification is performed, the first constellation diagram and the second constellation diagram need to be determined first.
  • all constellation points in the preset first constellation diagram are divided by a preset clustering algorithm and a preset number of coding bits N Before being 2 N first categories, the method also includes:
  • the first base station determines the first constellation diagram according to the preset channel coefficient and the minimum bit number of the second uplink data.
  • the minimum number of bits determines the number of constellation points in the first constellation diagram; for example, assuming that the minimum number of bits of the second uplink data is 2 bits, according to the foregoing embodiment, it can be known that the second uplink data s1 and s1 and s2 has four possibilities of 00, 01, 10, and 11, correspondingly, 16 combinations can be formed, so the number of constellation points in the first constellation diagram is 16.
  • the minimum bit number of the second uplink data is 3 bits, and the second uplink data sent by two terminal devices each have 8 possibilities, correspondingly can form 64 combinations, so the number of constellation points in the first constellation diagram Is 64.
  • the channel coefficient includes the uplink channel coefficient between any terminal device and any base station in the same network architecture under the coordinated multipoint transmission scheme. In the case that the minimum number of bits is determined, the channel coefficient remains unchanged, and the corresponding first constellation diagram remains unchanged. If the channel coefficient changes, the first constellation diagram needs to be re-determined.
  • the first constellation diagram can be determined by using a quadrature phase shift keying QPSK modulation method, or binary phase shift keying (BPSK) can be used.
  • the first constellation diagram is determined by other modulation methods, which is not limited in the embodiment of the present application.
  • all the data in the second constellation diagram are preset through the preset clustering algorithm and the preset coding bit number N.
  • the method also includes:
  • the second base station determines the second constellation diagram according to the preset channel coefficient and the minimum bit number of the second uplink data.
  • the method for determining the second constellation diagram is the same as the method for determining the first constellation diagram. Specifically, the process of determining the second constellation diagram can be understood with reference to the process of determining the first constellation diagram.
  • the method for transmitting data in the embodiment of this application has been specifically introduced above. In order to reflect the beneficial effects of the method for transmitting data provided by the embodiment of this application, the following will compare the method for transmitting data in the embodiment of this application with the existing encoding-based method. The physical layer network coding scheme of the matrix is compared.
  • the constellation diagram is classified by clustering algorithm.
  • the clustering algorithm as an improved hierarchical clustering algorithm as an example, the corresponding algorithm time complexity is
  • the existing network coding method based on the coding matrix needs to traverse A coding matrix, and the distance between all constellation points is required, so the corresponding algorithm time complexity is
  • p is the modulation order, that is, the number of coding bits N in the foregoing embodiment.
  • the distance to 2 p encoding centroids needs to be calculated during encoding, and then the encoding codeword is obtained according to the minimum distance and the mapping relationship table, so the encoding time complexity is T(2 p ); while the existing network coding method based on the coding matrix needs to calculate the product of a p ⁇ 2p matrix and a 2p ⁇ 1 matrix during coding, so the coding time complexity is T(4p 3 ).
  • the intersection between the constellation points corresponding to the first category and the constellation points corresponding to the second category needs to be calculated during decoding, and it is necessary to traverse the constellation points corresponding to the first category and
  • the constellation points corresponding to the second category, the constellation points corresponding to the first category and the constellation points corresponding to the second category are both 2 p , so the corresponding decoding time complexity is
  • the existing network coding method based on the coding matrix needs to calculate the inverse matrix of the 2p ⁇ 2p coding matrix during decoding, and also needs to calculate the product of a 2p ⁇ 2p matrix and a 2p ⁇ 1 matrix, so the decoding time complexity Is T(16p 3 ).
  • FIG. 5 is a schematic diagram of comparison of algorithm time complexity in an embodiment of this application
  • FIG. 6 is a schematic diagram of comparison of coding time complexity in an embodiment of this application
  • FIG. 7 is an implementation of this application.
  • the comparison diagram of the decoding time complexity in the example Among them, in FIG. 5 to FIG. 7, the curve A represents the method of transmitting data in the embodiment of the present application, and the curve B represents the existing physical layer network coding method based on the coding matrix.
  • the coding time complexity in the method for transmitting data in the embodiment of the present application is always lower than that of the existing physical layer based on the coding matrix.
  • the decoding time complexity in the method for transmitting data in the embodiment of the present application is higher than that of the existing physical layer network based on the encoding matrix.
  • the decoding time complexity of the encoding method is high, but the high degree is limited.
  • the data transmission method provided by the embodiment of this application is compared with the existing network coding method based on the coding matrix from the perspective of complexity.
  • the following is a comparison of the method for transmitting data provided by the embodiment of this application from the perspective of bit error rate.
  • Some network coding methods based on coding matrix are compared.
  • FIG. 8 a schematic diagram of the comparison of bit error rates in the embodiments of the present application, where curve A represents the data transmission method in the embodiment of the present application, and curve B represents the existing physical layer network coding method based on the coding matrix.
  • Figure 8 is obtained by simulating under the condition of time-varying channel, so the average bit error rate of curve A and curve B under different channels. It can be seen that the average bit error rate of the method for transmitting data provided in the embodiment of the present application is lower than the average bit error rate of the existing network coding method based on the coding matrix.
  • FIG. 9 is a schematic diagram of bit error rates in different scenarios in the embodiment of the present application.
  • the communication network includes a first base station and a second base station and two terminal devices, and the channels between the first base station and the two terminal devices, and the second base station and the two terminal devices are fixed.
  • the first scenario is ideal CoMP, and maximum likelihood (ML) detection is used to determine the uplink data sent by two terminal devices
  • the second scenario is non-ideal CoMP, and the first base station is receiving Before demodulation, the first uplink signal is 4bit quantized and then sent to the second base station, and then the second base station performs ML detection
  • the third scenario is non-ideal CoMP, and the first uplink signal received by the first base station is not Before demodulation, perform 8bit quantization and send to the second base station, and then the second base station performs ML detection
  • the fourth scenario is non-ideal CoMP, the first base station performs LLR calculation on the received first uplink signal, and then calculates the result
  • the Logarithm Likelihood Ratio (LLR) is detected for 2bit quantization and sent to
  • FIG. 9 only shows the curves of the seventh scene. It can be seen from Figure 9:
  • the top two are the first scene and the third scene.
  • the first scene is impossible to achieve in practical applications, and the third scene is The bit error rate is relatively close to the bit error rate of the first scenario. Since the quantization level of 8bit quantization can reach 28 , the quantization error is particularly small, but the amount of data required for backhaul link transmission is relatively large.
  • the bit error rate is also small, and as the signal-to-noise ratio increases, the error rate gradually decreases as in the first scenario.
  • the number of bits transmitted on the backhaul link for each 2bit uplink data sent by the terminal device is as follows:
  • the data transmission method of the embodiment of the present application can reduce the data volume of the backhaul link, thereby reducing the delay of the system and improving the performance of the system.
  • FIG. 10 is a schematic diagram of a first embodiment of an apparatus for transmitting data in an embodiment of the present application.
  • an embodiment of the present application provides an embodiment of a data transmission device, including:
  • the receiving unit 201 is configured to receive first uplink data, where the first uplink data corresponds to the second uplink data sent by the terminal device;
  • the processing unit 202 is configured to determine the first category to which the first uplink data belongs in the preset first constellation diagram. All constellation points in the first constellation diagram are divided into multiple first categories, and each first category includes At least one constellation point, and each constellation point corresponds to a type of second uplink data;
  • the processing unit 202 is further configured to encode the first uplink data into the first codeword according to the first mapping relationship between the category and the codeword, and the first category;
  • the sending unit 203 is configured to send the first codeword to the second base station.
  • the processing unit 202 is further configured to preset the data in the first constellation diagram through a preset clustering algorithm and a preset number of coding bits N All constellation points are divided into 2 N first categories, where N is a positive integer.
  • the processing unit 202 is further configured to determine the first constellation diagram according to the preset channel coefficient and the minimum bit number of the second uplink data.
  • FIG. 11 is a schematic diagram of a second embodiment of an apparatus for transmitting data in an embodiment of the present application.
  • an embodiment of the present application provides another embodiment of a data transmission device, including:
  • the receiving unit 301 is configured to receive third uplink data, where the third uplink data corresponds to the second uplink data sent by the terminal device;
  • the processing unit 302 is configured to determine the second category to which the third uplink data belongs in the preset second constellation diagram. All constellation points in the second constellation diagram are divided into multiple second categories, and each second category includes At least one constellation point, and each constellation point corresponds to a type of second uplink data;
  • the processing unit 302 is further configured to encode the second uplink data into a second codeword according to the second mapping relationship between the category and the codeword, and the second category;
  • the receiving unit 301 is further configured to receive the first codeword from the first base station;
  • the processing unit 302 is further configured to determine the decoding constellation point according to the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword;
  • the processing unit 302 is further configured to determine the second uplink data according to the correspondence between the constellation point and the uplink data, and decode the constellation point.
  • the processing unit 302 is configured to: when the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword When there is a unique constellation point between the constellation points, the unique constellation point is determined as the decoding constellation point.
  • the processing unit 302 is configured to: when the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword When there are at least two identical constellation points between the constellation points, by performing maximum likelihood ratio detection on the at least two identical constellation points, one constellation point from the at least two identical constellation points is selected as the decoding constellation point.
  • the processing unit 302 is configured to: when the constellation point in the first category corresponding to the first codeword and the constellation point in the second category corresponding to the second codeword When the same constellation point does not exist between the constellation points, the maximum likelihood decoding is performed according to the third uplink data to obtain the decoded constellation point.
  • the processing unit 302 is further configured to preset the data in the second constellation diagram through a preset clustering algorithm and a preset number of coding bits N All constellation points are divided into 2 N second categories, where N is a positive integer.
  • the processing unit 302 is further configured to determine a second constellation diagram according to a preset channel coefficient and a minimum bit number of the second uplink data.
  • an embodiment of the communication device in the embodiment of the present application may include one or more processors 401, a memory 402, and a communication interface 403.
  • the memory 402 may be short-term storage or persistent storage. Further, the processor 401 may be configured to communicate with the memory 402, and execute a series of instruction operations in the memory 402 on the communication device.
  • the processor 401 may perform the operations performed by the first base station in the embodiment shown in FIG. 2, and details are not described herein again.
  • the specific functional module division in the processor 401 may be similar to the functional module division of the receiving unit, the processing unit, and the sending unit described in FIG. 10, and will not be repeated here.
  • an embodiment of the communication device in the embodiment of the present application may include one or more processors 501, a memory 502, and a communication interface 503.
  • the memory 502 may be short-term storage or persistent storage. Furthermore, the processor 501 may be configured to communicate with the memory 502, and execute a series of instruction operations in the memory 502 on the communication device.
  • the processor 501 may perform operations performed by the second base station in the foregoing embodiment shown in FIG. 2, and details are not described herein again.
  • the specific functional module division in the processor 501 may be similar to the functional module division of the receiving unit and the processing unit described in FIG. 11, and will not be repeated here.
  • FIG. 14 a schematic diagram of an embodiment of a communication system in an embodiment of the present application.
  • an embodiment of the present application provides an embodiment of a communication system.
  • the communication system includes: Base station 601 and second base station 602;
  • the first base station 601 is configured to perform operations performed by the first base station in the embodiment shown in FIG. 2, and details are not described herein again.
  • the second base station 601 is configured to perform operations performed by the second base station in the embodiment shown in FIG. 2, and details are not described herein again.
  • the embodiment of the present application also provides a computer-readable storage medium storing one or more computer-executable instructions.
  • the computer storage medium is used to store computer software instructions used by a communication device, including instructions designed for executing a communication device. program of.
  • the communication device may be the communication device described in the aforementioned FIG. 12 or FIG. 13.
  • the embodiment of the present application also provides a computer program product, the computer program product includes computer software instructions, and the computer software instructions can be loaded by a processor to implement the process in any one of the above-mentioned data transmission methods in FIG. 2.
  • the embodiments of the present application also provide a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions to The operations performed by the first base station or the second base station in the embodiment shown in FIG. 2 are performed, and the details are not repeated here.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the embodiment of the present application also provides a first implementation of the chip or the chip system.
  • the chip or the chip system described above in the present application further includes at least one memory, and the at least one memory stores instructions.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种传输数据的方法及相关装置,用于降低回程链路负载。本申请实施例方法包括:第一基站先接收第一上行数据,第一上行数据与终端设备发送的第二上行数据对应;然后确定第一上行数据在第一星座图中所属的第一类别;再根据类别与码字的第一映射关系,以及第一类别将第一上行数据编码为第一码字;最后向第二基站发送第一码字,使得第二基站根据第一码字解码得到第二上行数据,由于第一基站将第一上行数据编码为第一码字后传输,所以降低了回程链路的负载,并且复杂度较低。

Description

一种传输数据的方法及相关装置
本申请要求于2019年11月15日提交中国专利局、申请号为201911124199.8、发明名称为“一种传输数据的方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种传输数据的方法及相关装置。
背景技术
近年来,随着移动数据流量的快速增长和物联网技术的飞速发展,5G移动通信技术5G的概念被提出。5G主要从3个维度对未来移动网络的能力提出了要求,即峰值速率(同时对应容量)、连接数和时延。在峰值速率方面,5G要求达到10Gbps甚至20Gbps,在某些应用中可能有更高的速率需求,这意味着峰值速率、容量和小区边缘速率的综合提升。这使得小区尺寸将不得不进一步减小,同时增设大量的基站,这会造成各个小区之间产生很大的干扰。
协作多点传输方案(Coordinated Multiple Points,CoMP)是在多个基站之间引入协作,并通过在协作基站之间共享与传输相关的信息,如信道状态信息、调度信息和用户数据信息等,通过执行相应的算法对这些信息进行反馈控制,减少LTE系统中的小区间信号干扰,提高小区用户特别是小区边缘用户的接收信噪比,从而提升这些用户的系统吞吐量,改善用户通信质量。在CoMP中,基站合作共同为小区中的所有用户提供服务,多个基站在同一时频内为多个用户传输数据,将小区间的干扰信号转换为有用信号来提升小区边缘用户的性能。但是由于基站之间需要通过回程链路交换数据,例如,基站天线处接收的信号必须被采样传输,同时所有基站和所有用户终端之间的信道状态信息等也必须通过回程链路传输,所以这种方式会产生非常大的回程链路负载,又由于回程链路的容量有限,协作基站之间较大的数据量传输会导致较大的时延,从而造成系统性能的下降。
因此,需要一种能够降低回程链路负载的传输数据的方法。
发明内容
本申请实施例提供了一种传输数据的方法及相关装置,用于降低回程链路负载。
本申请实施例第一方面提供了一种传输数据的方法,包括:
第一基站先接收第一上行数据,第一上行数据与终端设备发送的第二上行数据对应;
然后,第一基站可以根据第一上行数据的幅值和相位确定第一上行数据在预置的第一星座图中所属的第一类别,第一星座图中的所有星座点被划分为多个第一类别,每个第一类别包含至少一个星座点,每个星座点对应一种第二上行数据;
接着,第一基站根据类别与码字的第一映射关系,以及第一类别将第一上行数据编码为第一码字;
最后第一基站向第二基站发送第一码字。
由于第一基站将第一上行数据编码为第一码字后传输,所以降低了回程链路的负载,并且复杂度较低。
基于本申请实施例第一方面,本申请实施例还提供了第一方面的第一实施方式:
在第一基站确定第一上行数据在预置的第一星座图中所属的第一类别之前,第一基站通过预设的聚类算法和预置的编码位数N,将预置第一星座图中的所有星座点划分为2 N个第一类别,其中N为正整数。
在该实施方式中,采用聚类算法对星座点进行分类,能够降低整个数据发送过程中的算法复杂度。
基于本申请实施例第一方面的第一种实施方式,本申请实施例还提供了第一方面的第二实施方式:
在通过预设的聚类算法和预置的编码位数N,将预置第一星座图中的所有星座点划分为2 N个第一类别之前,第一基站根据预置的信道系数和第二上行数据的最小比特位数确定第一星座图。
在该实施方式中,提供了一种确定第一星座图的可行方案。
本申请实施例第二方面提供了一种传输数据的方法,包括:
第二基站先接收第三上行数据,第三上行数据与终端设备发送的第二上行数据对应;
第二基站可以根据第三上行数据的幅值和相位确定第三上行数据在预置的第二星座图中所属的第二类别,第二星座图中的所有星座点被划分为多个第二类别,每个第二类别包含至少一个星座点,每个星座点对应一种第二上行数据;
第二基站再根据类别与码字的第二映射关系,以及第二类别将第二上行数据编码为第二码字;
第二基站接收来自第一基站的第一码字;
第二基站根据第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点确定解码星座点;
第二基站确定解码星座点对应的第二上行数据。
第二基站根据第一基站发送的第一码字和第二码字确定第二上行数据,降低了回程链路的负载,同时复杂度较低。
基于本申请实施例第二方面,本申请实施例还提供了第二方面的第一实施方式:
第二基站根据第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点确定解码星座点包括:
若第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间存在唯一相同的星座点,则第二基站将唯一相同的星座点确定为解码星座点。
在该实施例方式中,提供了确定解码星座点的其中一种方案。
基于本申请实施例第二方面,本申请实施例还提供了第二方面的第二实施方式:
第二基站根据第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点确定解码星座点包括:
若第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间存在至少两个相同的星座点,则第二基站通过对至少两个相同的星座点进行最大似然比检测,从至少两个相同的星座点中选择一个星座点作为解码星座点。
在该实施例方式中,提供了确定解码星座点的另一种方案。
基于本申请实施例第二方面,本申请实施例还提供了第二方面的第三实施方式:
第二基站根据第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点确定解码星座点包括:
若第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间不存在相同的星座点,则第二基站根据第三上行数据进行最大似然解码,得到解码星座点。
在该实施例方式中,提供了确定解码星座点的第三种方案。
基于本申请实施例第二方面,或本申请实施例第二方面的第一实施方式,或本申请实施例第二方面的第二实施方式,或本申请实施例第二方面的第三种实施方式,本申请实施例还提供了第二方面的第四实施方式:
在第二基站确定第三上行数据在预置的第二星座图中所属的第二类别之前,第二基站通过预设的聚类算法和预置的编码位数N,将预置第二星座图中的所有星座点划分为2 N个第二类别,其中N为正整数。
在该实施方式中,采用聚类算法对星座点进行分类,能够降低整个数据发送过程中的算法复杂度。
基于本申请实施例第二方面的第四种实施方式,本申请实施例还提供了第二方面的第五实施方式:
在通过预设的聚类算法和预置的编码位数N,将预置第二星座图中的所有星座点划分为2 N个第二类别之前,第二基站根据预置的信道系数和第二上行数据的最小比特位数确定第二星座图。
在该实施方式中,提供了一种确定第一星座图的可行方案。
本申请实施例第三方面提供了一种传输数据的装置,包括:
接收单元,用于接收第一上行数据,第一上行数据与终端设备发送的第二上行数据对应;
处理单元,用于确定第一上行数据在预置的第一星座图中所属的第一类别,第一星座图中的所有星座点被划分为多个第一类别,每个第一类别包含至少一个星座点,每个星座点对应一种第二上行数据;
处理单元,还用于根据类别与码字的第一映射关系,以及第一类别将第一上行数据编码为第一码字;
发送单元,用于向第二基站发送第一码字。
基于本申请实施例第三方面,本申请实施例还提供了第三方面的第一实施方式:
处理单元,还用于通过预设的聚类算法和预置的编码位数N,将预置第一星座图中的所有星座点划分为2 N个第一类别,其中N为正整数。
基于本申请实施例第三方面的第一种实施方式,本申请实施例还提供了第三方面的第二实施方式:
处理单元,还用于根据预置的信道系数和第二上行数据的最小比特位数确定第一星座图。
本申请实施例第四方面提供了一种接收数据的装置,包括:
接收单元,用于接收第三上行数据,第三上行数据与终端设备发送的第二上行数据对应;
处理单元,用于确定第三上行数据在预置的第二星座图中所属的第二类别,第二星座图中的所有星座点被划分为多个第二类别,每个第二类别包含至少一个星座点,每个星座点对应一种第二上行数据;
处理单元,还用于根据类别与码字的第二映射关系,以及第二类别将第二上行数据编码为第二码字;
接收单元,还用于接收来自第一基站的第一码字;
处理单元,还用于根据第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点确定解码星座点;
处理单元,还用于根据星座点与上行数据的对应关系,以及解码星座点确定第二上行数据。
基于本申请实施例第四方面,本申请实施例还提供了第四方面的第一实施方式:
处理单元,用于当第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间存在唯一相同的星座点时,将唯一相同的星座点确定为解码星座点。
基于本申请实施例第四方面,本申请实施例还提供了第四方面的第二实施方式:
处理单元,用于当第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间存在至少两个相同的星座点时,通过对至少两个相同的星座点进行最大似然比检测,从至少两个相同的星座点中选择一个星座点作为解码星座点。
基于本申请实施例第四方面,本申请实施例还提供了第四方面的第三实施方式:
处理单元,用于当第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间不存在相同的星座点时,根据第三上行数据进行最大似然解码,得到解码星座点。
基于本申请实施例第四方面,或第四方面的第一实施方式,或第四方面的第二实施方式,或第四方面的第三实施方式,本申请实施例还提供了第四方面的第四实施方式:
处理单元,还用于通过预设的聚类算法和预置的编码位数N,将预置第二星座图中的所有星座点划分为2 N个第二类别,其中N为正整数。
基于本申请实施例第四方面的第四实施方式,本申请实施例还提供了第四方面的第五实施方式:
处理单元,还用于根据预置的信道系数和第二上行数据的最小比特位数确定第二星座图。
本申请实施例第五方面提供了一种通信装置,包括:至少一个处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述通信装置执行如上述第一方面中任意一项的传输数据的方法。
本申请实施例第六方面提供了一种通信装置,包括:至少一个处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行 时,所述通信装置执行如上述第二方面中任意一项的传输数据的方法。
本申请实施例第七方面提供了一种通信系统,通信系统包括:第一基站和第二基站;
所述第一基站用于执行如上述第一方面中任意一项的传输数据的方法;
所述第二基站用于执行如上述第二方面中任意一项的传输数据的方法。
本申请实施例第八方面提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行如上第一方面至第二方面中任意一项的传输数据的方法。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
基于第八方面,本申请实施例还提供了第八方面的第一种实施方式,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例第九方面提供了一种存储一个或多个计算机执行指令的计算机可读存储介质,该计算机存储介质用于储存为通信装置所用的计算机软件指令,其包括用于执行为通信装置所设计的程序。
该通信装置可以如前述第一方面至第二方面中任意一项的传输数据的方法。
本申请实施例第十方面提供了一种存储一个或多个计算机执行指令的计算机程序产品,当所述计算机执行指令被所述处理器执行时,所述处理器执行如上第一方面至第二方面中任意一项的传输数据的方法中的流程。
从以上技术方案可以看出,本申请实施例具有以下优点:
第一基站先接收第一上行数据,第一上行数据与终端设备发送的第二上行数据对应;然后确定第一上行数据在第一星座图中所属的第一类别,第一星座图中的所有星座点被划分为多个第一类别,每个第一类别包含至少一个星座点,每个星座点对应一种第二上行数据;再根据类别与码字的第一映射关系,以及第一类别将第一上行数据编码为第一码字;最后向第二基站发送第一码字,使得第二基站根据第一码字解码得到第二上行数据,由于第一基站将第一上行数据编码为第一码字后传输,所以降低了回程链路的负载。
附图说明
图1为本申请实施例中协作多点传输方案下的网络架构示意图;
图2为本申请实施例提供的一种传输数据的方法的实施例示意图;
图3为本申请实施例中第一星座图的实施例示意图;
图4为本申请实施例中第二星座图的实施例示意图;
图5为本申请实施例中算法时间复杂度的对比示意图;
图6为本申请实施例中编码时间复杂度的对比示意图;
图7为本申请实施例中解码时间复杂度的对比示意图;
图8为本申请实施例中误码率的对比示意图;
图9为本申请实施例中不同场景下的误码率示意图;
图10为本申请实施例中传输数据的装置的第一实施例示意图;
图11为本申请实施例中传输数据的装置的第二实施例示意图;
图12为本申请实施例中通信装置的一个实施例示意图;
图13为本申请实施例中通信装置的另一个实施例示意图;
图14为本申请实施例中通信系统的实施例示意图。
具体实施方式
本申请实施例提供了一种传输数据的方法及相关装置,用于降低回程链路负载。
本申请实施例提供的传输数据的方法可以应用于协作多点传输方案下的通信网络,通信网络中包含至少两个基站和至少一个终端设备。
其中终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
在协作多点传输方案中,通信网络中的任意一个终端设备发送上行数据,均会被所有基站接收到,但由于信道系数的不同及噪声的影响,不同基站间接收到的上行数据不同。为了能够准确解调出终端设备发送的上行数据,同一网络架构中的基站之间需要通过回城链路交换上行数据。
请参阅图1,本申请实施例中协作多点传输方案下的网络架构示意图。该网络架构包含至少两个基站和两个终端设备。以图1所示的网络架构为例,假设第一终端设备和第二终端设备分别发送上行信号s1和s2,那么第一基站接收到的上行信号为y1=h11s1+h21s2+x,第二基站接收到的上行信号为y2=h12s1+h22s2+x,其中h11表示第一基站与第一终端设备之间的上行信道系数,h21表示第一基站与第二终端设备之间的上行信道系数,h12表示第二基站与第一终端设备之间的上行信道系数,h22表示第二基站与第二终端设备之间的上行信道系数,x表示高斯白噪声。
为了确定第一终端设备发送的上行信号s1和第二终端设备发送的上行信号s2,第一基站和第二基站需要交换彼此接收到的上行信号,具体地,第一基站需要通过回程链路将上行信号y1发送至第二基站,第二基站需要通过回程链路将上行信号y2发送至第一基站,然后第一基站和第二基站均需要根据上行信号y1和y2确定上行信号s1和上行信号s2。
然而,随着终端设备数量的增多,基站数量的增多,以及上行信号的增多,基站之间需要交换的数据量很大,而且回程链路还需要传送信道状态信息等其他数据,所以必然会给回程链路造成较大负载。为了降低回程链路负载,本申请实施例提供了传输数据的方法,用于基站之间交换上行数据,在交换上行数据前,基站会确定上行数据在星座图中的类别,然后根据该类别将上行数据编码为码字,最终将该码字发送给其他基站,使得其他基站根 据该码字和其他基站自身编码得到的码字确定终端设备发送的上行数据。
具体地,请参阅图2,本申请实施例提供的一种传输数据的方法的实施例示意图;如图2所示,本申请实施例提供了一种传输数据的方法的一个实施例,包括:
操作101,第一基站接收第一上行数据,第一上行数据与终端设备发送的第二上行数据对应。
可以理解的是,当终端设备发送第二上行数据时,相应地,第一基站会接收到第一上行数据;若终端设备发送的第二上行数据不同,则第一基站接收到的第一上行数据也不同;其中,终端设备的数量可以为一个,也可以为多个。
以两个终端设备为例,假设第二上行数据对应的最小比特数为2bit,则两个终端设备各自发送的第二上行数据s1和s2均有00、01、10和11四种可能,那么则可以构成16种组合,具体包括S1{s1:00,s2:00}、S2{s1:00,s2:01}、S3{s1:00,s2:10}、S4{s1:00,s2:11}、S5{s1:01,s2:00}、S6{s1:01,s2:01}、S7{s1:01,s2:10}、S8{s1:01,s2:11}、S9{s1:10,s2:00}、S10{s1:10,s2:01}、S11{s1:10,s2:10}、S12{s1:10,s2:11}、S13{s1:11,s2:00}、S14{s1:11,s2:01}、S15{s1:11,s2:10}、S16{s1:11,s2:11}。
相应地,第一基站接收到的第一上行数据也存在16种情况,具体可以根据信道系数和高斯白噪声确定,此处不做详述。
操作102,第一基站确定第一上行数据在预置的第一星座图中所属的第一类别。
基于操作101可知,第二上行数据有多种情况,本申请实施例根据第二上行数据调制了第一基站的第一星座图,第一星座图中的每个星座点对应一种第二上行数据,并且第一星座图中的所有星座点被划分为多个第一类别,每个第一类别包含至少一个星座点。其中,划分第一类别的方法有多种,本申请实施例对此不做限定。
例如,请参阅图3,本申请实施例中第一星座图的实施例示意图,图3所示的第一星座图是基于操作101中第二上行数据的16种组合调制的,其中调制方式为正交相移键控(Quadrature Phase Shift Keying,QPSK),图3中的*1表示星座点S1,*2表示星座点S2,依次类推。可以看出,第一星座图中共包含16个星座点,并且这16个星座点被划分为4个第一类别,每个第一类别包含4个星座点。例如,其中一个第一类别包含S1、S5、S9和S13四个星座点。
由于第一上行数据是与第二上行数据一一对应的,第一星座图中的每个星座点对应一种第一上行数据,相应地,第一基站接收到第一上行数据也属于第一星座图中的一个第一类别。第一基站确定第一上行数据所属的第一类别有多种方法,例如可以根据第一上行数据的幅值和相位确定第一类别,当确定第一类别后,相当于确定了终端设备发送的第二上行数据的范围,即为第一类别中的一个星座点对应的第二上行数据。
操作103,第一基站根据类别与码字的第一映射关系,以及第一类别将第一上行数据对编码为第一码字。
可以理解的是,每个类别对应一个码字,若第一类别对应第一码字,则第一基站会将第一上行数据编码为第一码字;其中第一映射关系可以根据实际需要进行设置。
以图3所示的的第一星座图为例,可以将包含S1、S5、S9和S13四个星座点的第一类 别对应的码字确定为00,将包含S3、S7、S11和S15四个星座点的第一类别对应的码字确定为01,将包含S0、S4、S8和S12四个星座点的第一类别对应的码字确定为10,将包含S2、S6、S10和S14四个星座点的第一类别对应的码字确定为11。
操作104,第一基站向第二基站发送第一码字。
相应地,第二基站接收来自第一基站的第一码字。
本申请实施例中,假设第二上行数据为S1{s1:00,s2:00},对应地,则会将第一上行数据编码为第一码字00,最终第一基站会向第二基站发送第一码字00,相比于直接发送第一上行数据,第一基站发送的数量较少。
操作105,第二基站接收第三上行数据,第三上行数据与终端设备发送的第二上行数据对应。
同理,当终端设备发送第二上行数据时,第二基站会接收到第三上行数据。
操作106,第二基站确定第三上行数据在预置的第二星座图中所属的第二类别,第二类别对应第二星座图中的至少一个星座点。
同样地,本申请实施例根据第二上行数据调制了第二基站的第二星座图,第二星座图中的所有星座点被划分为多个第二类别,每个第二类别包含至少一个星座点,每个星座点对应一种第二上行数据。然而,由于第二基站与终端设备之间的信道系数,不同于第一基站与终端设备之间的信道系数,所以第二星座图中星座点的排布与第一星座图中星座点的排布不同,相应地,第二类别中包含的星座点数量可能与第一类别中包含的星座点数量不同,第二类别中包含的星座点种类也可能与第一类别中包含的星座点种类不同。
例如,请参阅图4,本申请实施例中第二星座图的实施例示意图,图4所示的第二星座图也是基于操作101中第二上行数据的16种组合调制的,其中调制方式也为正交相移键控(Quadrature Phase Shift Keying,QPSK),图4中的*1表示星座点S1,*2表示星座点S2,依次类推。由此可以看出,第二星座图包含16个星座点,并且这16个星座点被划分为4个第二类别,每个第二类别包含4个星座点,但第二类别中包含的星座点的种类与第一类别中包含的星座点的种类不同,例如第二星座图中的一个第二类别包含S1、S6、S7和S12四个星座点。
由此可以看出,在第一星座图中,星座点S1与S5、S9、S13这三个星座点属于一个第一类别,而在第二星座图中,星座点S1与S6、S7、S12这三个星座点属于一个第二类别。
操作107,第二基站根据类别与码字的第二映射关系,以及第二类别将第二上行数据编码为第二码字。
可以理解的是,每个类别对应一个码字,若第二类别对应第二码字,则第二基站会将第二上行数据编码为第二码字;其中第二映射关系可以根据实际需要进行设置。
以图4所示的的第二星座图为例,可以将包含S0、S4、S5和S13四个星座点的第二类别对应的码字确定为00,将包含S1、S6、S7和S12四个星座点的第二类别对应的码字确定为01,将包含S3、S8、S9和S14四个星座点的第二类别对应的码字确定为10,将包含S2、S10、S11和S15四个星座点的第二类别对应的码字确定为11。
操作108,第二基站根据第一码字对应的第一类别中的星座点和第二码字对应的第二 类别中的星座点确定解码星座点。
可以理解的是,第一码字对应的第一类别是根据第一上行信号确定,意味着与第一上行信号对应的第二上行信号也属于该第一类别,即第二上行信号对应该第一类别中的一个星座点;同样地,第二码字对应的第二类别是根据第三上行信号确定,意味着与第三上行信号对应的第二上行信号也属于该第二类别,即第二上行信号对应该第二类别中的一个星座点。
所以,可以根据第一类别对应的星座点和第二类别对应的星座点的交集确定解码星座点,并将该解码星座点作为第二上行信号对应的星座点,然而交集的情况有多种,对应的确定解码星座点的方法也有多种,本申请实施例对此不做限定。
在本申请实施例中,第二基站需要利用第一码字对应的第一类别中的星座点,所以在执行操作106前,需要第一基站预先将第一码字对应的第一类别中的星座点发送至第二基站。
操作109,第二基站确定解码星座点对应的第二上行数据。
由于星座点与第二上行数据是一一对应的,所以根据解码星座点和第二上行数据的对应关系,可以确定第二上行数据。
在本申请实施例中,第一基站未直接向第二基站发送第一上行数据,而是判断第一上行数据对应的第一类别,然后根据第一类别将第一上行数据编码为第一码字进行发送,使得第二基站根据来自第一基站的第一码字和本地得到的第二码字确定第二上行数据,所以可以减少向第二基站发送的数据量,从而降低回程链路的负载。
上述实施例中,以第二基站为例介绍了第二上行数据的确定过程,除此之外,第二基站也可以将第二码字发送至第一基站,使得第一基站根据第二码字和第一码字确定第二上行数据,其中确定过程与第二基站类似,故在此不做详述。
根据上述实施例可知,确定解码星座点的方法有多种,下面将根据第一码字对应的星座点和第二码字对应的星座点的交集情况,对确定解码星座点的过程进行具体介绍。
在本申请实施例提供的一种传输数据的方法的另一个实施例中,第二基站根据第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点确定解码星座点包括:
若第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间存在唯一相同的星座点,则第二基站将唯一相同的星座点确定为解码星座点。
基于前述实施例可知,第二上行信号对应该第一类别中的一个星座点,第二上行信号也对应该第二类别中的一个星座点,所以若第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间存在唯一相同的星座点,则可以认为该唯一相同的星座点为第二上行信号对应的星座点,所以本申请实施例将唯一相同的星座点确定为解码星座点。
在本申请实施例提供的一种传输数据的方法的另一个实施例中,第二基站根据第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点确定解码星座点包括:
若第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间存在至少两个相同的星座点,则第二基站通过对至少两个相同的星座点进行最大似然比检测, 从至少两个相同的星座点中选择一个星座点作为解码星座点。
例如,假设第二上行数据为S2{s1:00,s2:01},基于前述实施例可知,第一基站会将第一上行数据编码为第一码字为11,对应的第一类别中的星座点为S2、S6、S10和S14四个星座点,第二基站会将第二上行数据编码为第二码字为11,对应的第二类别中的星座点为S2、S10、S11和S15四个星座点,由此可以看出,第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间存在S2和S10这两个相同的星座点,但实际第二上行数据只对应S2这一星座点。因此需要对解码星座点进行进一步确定。
在本申请实施例中,对相同的星座点进行最大似然比检测,从而从相同的星座点中确定出解码星座点。
其中,最大似然比检测属于较成熟的技术,故在此不做详述。
在本申请实施例提供的一种传输数据的方法的另一个实施例中,第二基站根据第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点确定解码星座点包括:
若第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间不存在相同的星座点,则第二基站根据第三上行数据进行最大似然解码,得到解码星座点。
可以理解的是,当第一基站与终端设备之间信道的噪声过大时,可能导致根据第一上行信号确定的第一类别错误,同样地,当第二基站与终端设备之间信道的噪声过大时,可能导致根据第二上行信号确定的第二类别错误,无论第一类别错误还是第二类别错误,均可能导致第一码字对应的星座点与第二码字对应的星座点之间不存在相同的星座点。
又由于无法确认具体是第一基站与终端设备之间信道的噪声过大,还是第二基站与终端设备之间信道的噪声过大,所以本申请实施例选择根据第三上行数据进行最大似然解码,从而确定解码星座点。
可以理解的是,若第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间不存在相同的星座点,基站需要确定解码星座点时,则会对第一上行数据进行最大似然解码。
其中,最大似然解码属于较成熟的技术,故在此不做详述。
根据上述实施例可知,需要预先对第一星座图和第二星座图中的星座点进行类别划分,而类别划分有多种方法,例如可以采用欧式距离法对星座点进行划分,除此之外,还可以采用聚类法对星座点进行划分。下面对第一星座图和第二星座图的类别划分过程进行具体说明。
在本申请实施例提供的一种传输数据的方法的另一个实施例中,在第一基站确定第一上行数据在预置的第一星座图中所属的第一类别之前,方法还包括:
第一基站通过预设的聚类算法和预置的编码位数N,将预置第一星座图中的所有星座点划分为2 N个第一类别,其中N为正整数。
需要说明的是,通过聚类算法将星座点的第一类别进行划分,相比于采用欧式距离法对星座点的第一类别进行划分,能够更好的区分不同第一类别包含的星座点,使得最终确定的解码星座点更准确,从而更准确地确定第二上行信号。其中聚类算法有多种选择,本申请实施例对此不做限定,可以采用改进的层次聚类算法。
当编码位数为N时,即第一码字对应N位二进制,则第一码字有2 N形式,因此第一码字可以表示2 N个第一类别。
同样地,在本申请实施例提供的一种传输数据的方法的另一个实施例中,在第二基站确定第三上行数据在预置的第二星座图中所属的第二类别之前,方法还包括:
第二基站通过预设的聚类算法和预置的编码位数N,将预置第二星座图中的所有星座点划分为2 N个第二类别,其中N为正整数。
其中聚类算法有多种选择,本申请实施例对此不做限定,可以采用改进的层次聚类算法。
需要说明的是,第二类别的划分方法与第一类别的划分方法相同,具体可参照第一类别的划分方法进行理解。
前述实施例对第一星座图和第二星座图的类别划分进行了具体介绍,可以理解的是,在进行类别划分之前,还需要先确定第一星座图和第二星座图。
在本申请实施例提供的一种传输数据的方法的另一个实施例中,在通过预设的聚类算法和预置的编码位数N,将预置第一星座图中的所有星座点划分为2 N个第一类别之前,方法还包括:
第一基站根据预置的信道系数和第二上行数据的最小比特位数确定第一星座图。
最小比特位数决定了第一星座图中星座点的数量;例如,假设第二上行数据的最小比特位数为2bit,根据前述实施例可知,两个终端设备各自发送的第二上行数据s1和s2均有00、01、10和11四种可能,对应地可以构成16种组合,所以第一星座图中的星座点数量为16。
再例如,第二上行数据的最小比特位数为3bit,两个终端设备各自发送的第二上行数据均有8种可能,对应地可以构成64种组合,所以第一星座图中的星座点数量为64。
该信道系数包含协作多点传输方案下,同一网络架构中任意一个终端设备和任意一个基站之间的上行信道系数。在最小比特位数确定的情况下,信道系数不变,对应的第一星座图不变,若信道系数改变,则需要重新确定第一星座图。
需要说明的是,确定第一星座图的方法有多种,例如可以采用正交相移键控QPSK调制方式确定第一星座图,也可以采用二进制相移键控(Binary Phase Shift Keying,BPSK)等其他调制方式确定第一星座图,本申请实施例对此不做限定。
同样地,在本申请实施例提供的一种传输数据的方法的另一个实施例中,在通过预设的聚类算法和预置的编码位数N,将预置第二星座图中的所有星座点划分为2 N个第二类别之前,方法还包括:
第二基站根据预置的信道系数和第二上行数据的最小比特位数确定第二星座图。
需要说明的是,确定第二星座图的方法与确定第一星座图的方法相同,具体可参照确定第一星座图的过程对确定第二星座图的过程进行理解。
上面对本申请实施例中的传输数据的方法进行了具体介绍,为了体现本申请实施例提供的传输数据的方法的有益效果,下面将本申请实施例中的传输数据的方法与现有的基于编码矩阵的物理层网络编码方案进行对比。
第一,在本申请实施例提供的传输数据的方法中,通过聚类算法对星座图进行类别划 分,以聚类算法为改进的层次聚类算法为例,对应的算法时间复杂度为
Figure PCTCN2020128745-appb-000001
而现有的基于编码矩阵的网络编码方法,由于需要遍历
Figure PCTCN2020128745-appb-000002
个编码矩阵,且需要求所有星座点之间的距离,因此对应的算法时间复杂度为
Figure PCTCN2020128745-appb-000003
其中p为调制阶数,即前述实施例中的编码位数N。
第二,在本申请实施例提供的传输数据的方法中,在编码时需要计算与2 p个编码质心的距离,然后根据最小距离和映射关系表得出编码码字,所以编码时间复杂度为T(2 p);而现有的基于编码矩阵的网络编码方法,在编码时需要计算一个p×2p的矩阵和2p×1的矩阵的乘积,因此编码时间复杂度为T(4p 3)。
第三,在本申请实施例提供的传输数据的方法中,解码时需要计算第一类别对应的星座点与第二类别对应的星座点之间的交集,需要遍历第一类别对应的星座点和第二类别对应的星座点,第一类别对应的星座点和第二类别对应的星座点均为2 p个,因此对应的解码时间复杂度为
Figure PCTCN2020128745-appb-000004
而现有的基于编码矩阵的网络编码方法,在解码时需要计算2p×2p的编码矩阵的逆矩阵,且需要计算一个2p×2p的矩阵和2p×1的矩阵的乘积,因此解码时间复杂度为T(16p 3)。
为了更形象地将本申请实施例提供的传输数据的方法与现有的基于编码矩阵的网络编码方法之间的复杂度进行对比,本申请实施例以一定的调制阶数进行了仿真,仿真结果请参阅图5、图6和图7,其中图5为本申请实施例中算法时间复杂度的对比示意图,图6为本申请实施例中编码时间复杂度的对比示意图,图7为本申请实施例中解码时间复杂度的对比示意图。其中,在图5至图7中,曲线A表示本申请实施例中传输数据的方法,曲线B表示现有的基于编码矩阵的物理层网络编码方法。
从算法时间复杂度的计算结果以及图5可以看出,现有的基于编码矩阵的物理层网络编码方法,随着调制阶数的增加,算法时间复杂度会变得非常高,所以在调制阶数较高的情况下会不实用;而本申请实施例中传输数据的方法中的算法时间复杂度较现有的基于编码矩阵的物理层网络编码方法的算法时间复杂度低,并且随着调制阶数的增长,本申请实施例中传输数据的方法中的算法时间复杂度增长速度较慢。
从编码时间复杂度的计算结果以及图6可以看出,随着调制阶数的变化,本申请实施例中传输数据的方法中的编码时间复杂度一直低于现有的基于编码矩阵的物理层网络编码方法的编码时间复杂度。
从解码时间复杂度的计算结果以及图7可以看出,只有调制阶数较高时,本申请实施例中传输数据的方法中的解码时间复杂度才比现有的基于编码矩阵的物理层网络编码方法的解码时间复杂度高,但高的程度有限。
上面从复杂度的角度对本申请实施例提供的传输数据的方法与现有的基于编码矩阵的网络编码方法进行了对比,下面从误码率的角度对本申请实施例提供的传输数据的方法与现有的基于编码矩阵的网络编码方法进行对比。
请参阅图8,本申请实施例中误码率的对比示意图,其中曲线A表示本申请实施例中传输数据的方法,曲线B表示现有的基于编码矩阵的物理层网络编码方法。
图8是在时变信道的条件下进行仿真得到的,因此曲线A和曲线B的在不同信道下的 平均误码率。可以看出,本申请实施例供的传输数据的方法的平均误码率与现有的基于编码矩阵的网络编码方法的平均误码率低。
另外,本申请实施例针对不同的场景进行了仿真,具体请参阅图9,本申请实施例中不同场景下的误码率示意图。
首先假设通信网络中包含第一基站和第二基站和两个终端设备,且第一基站与两个终端设备、第二基站与两个终端设备之间的信道是固定的。再假设七种场景,第一种场景为理想CoMP,采用最大似然(Maximum Likelihood,ML)检测确定两个终端设备发送的上行数据;第二种场景为非理想CoMP,第一基站在接收到的第一上行信号在未解调前进行4bit量化后发送至第二基站,然后第二基站进行ML检测;第三种场景为非理想CoMP,第一基站在接收到的第一上行信号在未解调前进行8bit量化后发送至第二基站,然后第二基站进行ML检测;第四种场景为非理想CoMP,第一基站对接收到的第一上行信号进行LLR的计算,然后将计算得到的对数似然比(Logarithm Likelihood Ratio,LLR)检测进行2bit量化后发送至第二基站,最后第二基站进行解码;第五种场景为非理想CoMP,然后将计算得到的LLR进行4bit量化后发送至第二基站,最后第二基站进行解码;第六种场景为使用现有的基于编码矩阵的物理层网络编码方法解码得到终端设备发送的上行信号;第七种场景为使用本申请实施例中传输数据的方法解码得到终端设备发送的上行信号。
针对上述其中场景,分别进行了仿真,得到如图9所示的误码率。需要说明的是,由于第六种场景和第七种场景的曲线重合,因此图9仅示出了第七种场景的曲线。从图9中可以看出:
按照误码率从小到大排列,排在前两位的依次是第一种场景和第三种场景,然而第一种场景在实际应用中这种场景是不可能达到的,第三种场景的误码率比较接近第一种场景的误码率,由于8bit量化的量化级能达到2 8,量化误差特别小,但回程链路传输所需的数据量较大。而第七种场景下,误码率也较小,并且,随着信噪比的增加,误差率逐渐降低至于第一种场景相同。
更重要的是,除第一种场景外,其余六种场景下,终端设备每发送2bit的上行数据回程链路上传输的比特数如下表:
场景 比特数
第二种场景 4bit
第三种场景 8bit
第四种场景 4bit
第五种场景 8bit
第六种场景 2bit
第七种场景 2bit
由上表可以看出,本申请实施例的传输数据的方法能够减少回程链路的数据量,从而可以减小系统的时延,提高系统的性能。
请参阅图10,本申请实施例中传输数据的装置的第一实施例示意图。如图10所示,本申请实施例提供了一种传输数据的装置的一个实施例,包括:
接收单元201,用于接收第一上行数据,第一上行数据与终端设备发送的第二上行数据对应;
处理单元202,用于确定第一上行数据在预置的第一星座图中所属的第一类别,第一星座图中的所有星座点被划分为多个第一类别,每个第一类别包含至少一个星座点,每个星座点对应一种第二上行数据;
处理单元202,还用于根据类别与码字的第一映射关系,以及第一类别将第一上行数据编码为第一码字;
发送单元203,用于向第二基站发送第一码字。
本申请实施例提供的一种传输数据的装置的另一个实施例,处理单元202,还用于通过预设的聚类算法和预置的编码位数N,将预置第一星座图中的所有星座点划分为2 N个第一类别,其中N为正整数。
本申请实施例提供的一种传输数据的装置的另一个实施例,处理单元202,还用于根据预置的信道系数和第二上行数据的最小比特位数确定第一星座图。
请参阅图11,本申请实施例中传输数据的装置的第二实施例示意图。如图11所示,本申请实施例提供了一种传输数据的装置的另一个实施例,包括:
接收单元301,用于接收第三上行数据,第三上行数据与终端设备发送的第二上行数据对应;
处理单元302,用于确定第三上行数据在预置的第二星座图中所属的第二类别,第二星座图中的所有星座点被划分为多个第二类别,每个第二类别包含至少一个星座点,每个星座点对应一种第二上行数据;
处理单元302,还用于根据类别与码字的第二映射关系,以及第二类别将第二上行数据编码为第二码字;
接收单元301,还用于接收来自第一基站的第一码字;
处理单元302,还用于根据第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点确定解码星座点;
处理单元302,还用于根据星座点与上行数据的对应关系,以及解码星座点确定第二上行数据。
本申请实施例提供的一种传输数据的装置的另一个实施例,处理单元302,用于当第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间存在唯一相同的星座点时,将唯一相同的星座点确定为解码星座点。
本申请实施例提供的一种传输数据的装置的另一个实施例,处理单元302,用于当第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间存在至少两个相同的星座点时,通过对至少两个相同的星座点进行最大似然比检测,从至少两个相同的星座点中选择一个星座点作为解码星座点。
本申请实施例提供的一种传输数据的装置的另一个实施例,处理单元302,用于当第一码字对应的第一类别中的星座点和第二码字对应的第二类别中的星座点之间不存在相同的星座点时,根据第三上行数据进行最大似然解码,得到解码星座点。
本申请实施例提供的一种传输数据的装置的另一个实施例,处理单元302,还用于通过预设的聚类算法和预置的编码位数N,将预置第二星座图中的所有星座点划分为2 N个第二类别,其中N为正整数。
本申请实施例提供的一种传输数据的装置的另一个实施例,处理单元302,还用于根据预置的信道系数和第二上行数据的最小比特位数确定第二星座图。
请参阅图12,本申请实施例中通信装置一个实施例可以包括一个或一个以上处理器401,存储器402,通信接口403。
存储器402可以是短暂存储或持久存储。更进一步地,处理器401可以配置为与存储器402通信,在通信装置上执行存储器402中的一系列指令操作。
本实施例中,处理器401可以执行前述图2所示实施例中第一基站所执行的操作,具体此处不再赘述。
本实施例中,处理器401中的具体功能模块划分可以前述图10中所描述的接收单元、处理单元和发送单元的功能模块划分方式类似,此处不再赘述。
请参阅图13,本申请实施例中通信装置一个实施例可以包括一个或一个以上处理器501,存储器502,通信接口503。
存储器502可以是短暂存储或持久存储。更进一步地,处理器501可以配置为与存储器502通信,在通信装置上执行存储器502中的一系列指令操作。
本实施例中,处理器501可以执行前述图2所示实施例中第二基站所执行的操作,具体此处不再赘述。
本实施例中,处理器501中的具体功能模块划分可以前述图11中所描述的接收单元和处理单元的功能模块划分方式类似,此处不再赘述。
请参阅图14,本申请实施例中通信系统的实施例示意图,如图14所示,本申请实施例提供了一种通信系统的一个实施例,在该实施例中,通信系统包括:第一基站601和第二基站602;
第一基站601用于执行前述图2所示实施例中第一基站所执行的操作,具体此处不再赘述。
第二基站601用于执行前述图2所示实施例中第二基站所执行的操作,具体此处不再赘述。
本申请实施例还提供了一种存储一个或多个计算机执行指令的计算机可读存储介质,该计算机存储介质用于储存为通信装置所用的计算机软件指令,其包括用于执行为通信装置所设计的程序。
该通信装置可以如前述图12或图13中所描述的通信装置。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述图2中任意一项的传输数据的方法中的流程。
本申请实施例还提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算 机程序或指令,以执行前述图2所示实施例中第一基站或第二基站所执行的操作,具体此处不再赘述。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
本申请实施例还提供了芯片或者芯片系统的第一种实施方式,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (18)

  1. 一种传输数据的方法,其特征在于,包括:
    第一基站接收第一上行数据,所述第一上行数据与终端设备发送的第二上行数据对应;
    所述第一基站确定所述第一上行数据在预置的第一星座图中所属的第一类别,所述第一星座图中的所有星座点被划分为多个第一类别,每个所述第一类别包含至少一个星座点,每个星座点对应一种第二上行数据;
    所述第一基站根据类别与码字的第一映射关系,以及所述第一类别将所述第一上行数据对编码为第一码字;
    所述第一基站向第二基站发送所述第一码字。
  2. 根据权利要求1所述的方法,其特征在于,在所述第一基站确定所述第一上行数据在预置的第一星座图中所属的第一类别之前,所述方法还包括:
    所述第一基站通过预设的聚类算法和预置的编码位数N,将预置第一星座图中的所有星座点划分为2 N个第一类别,其中N为正整数。
  3. 根据权利要求2所述的方法,其特征在于,在所述通过预设的聚类算法和预置的编码位数N,将预置第一星座图中的所有星座点划分为2 N个第一类别之前,所述方法还包括:
    所述第一基站根据预置的信道系数和所述第二上行数据的最小比特位数确定所述第一星座图。
  4. 一种传输数据的方法,其特征在于,包括:
    第二基站接收第三上行数据,所述第三上行数据与终端设备发送的第二上行数据对应;
    所述第二基站确定所述第三上行数据在预置的第二星座图中所属的第二类别,所述第二星座图中的所有星座点被划分为多个第二类别,每个所述第二类别包含至少一个星座点,每个星座点对应一种第二上行数据;
    所述第二基站根据类别与码字的第二映射关系,以及所述第二类别将所述第二上行数据编码为第二码字;
    所述第二基站接收来自第一基站的第一码字;
    所述第二基站根据所述第一码字对应的第一类别中的星座点和所述第二码字对应的第二类别中的星座点确定解码星座点;
    所述第二基站确定所述解码星座点对应的所述第二上行数据。
  5. 根据权利要求4所述的方法,其特征在于,所述第二基站根据所述第一码字对应的第一类别中的星座点和所述第二码字对应的第二类别中的星座点确定解码星座点包括:
    若所述第一码字对应的第一类别中的星座点和所述第二码字对应的第二类别中的星座点之间存在唯一相同的星座点,则所述第二基站将所述唯一相同的星座点确定为解码星座点。
  6. 根据权利要求4所述的方法,其特征在于,所述第二基站根据所述第一码字对应的第一类别中的星座点和所述第二码字对应的第二类别中的星座点确定解码星座点包括:
    若所述第一码字对应的第一类别中的星座点和所述第二码字对应的第二类别中的星座点之间存在至少两个相同的星座点,则所述第二基站通过对所述至少两个相同的星座点进 行最大似然比检测,从所述至少两个相同的星座点中选择一个星座点作为解码星座点。
  7. 根据权利要求4所述的方法,其特征在于,所述第二基站根据所述第一码字对应的第一类别中的星座点和所述第二码字对应的第二类别中的星座点确定解码星座点包括:
    若所述第一码字对应的第一类别中的星座点和所述第二码字对应的第二类别中的星座点之间不存在相同的星座点,则所述第二基站根据所述第三上行数据进行最大似然解码,得到解码星座点。
  8. 根据权利要求4至7中任意一项所述的方法,其特征在于,在所述第二基站确定所述第三上行数据在预置的第二星座图中所属的第二类别之前,所述方法还包括:
    所述第二基站通过预设的聚类算法和预置的编码位数N,将预置第二星座图中的所有星座点划分为2 N个第二类别,其中N为正整数。
  9. 根据权利要求8的方法,其特征在于,在所述通过预设的聚类算法和预置的编码位数N,将预置第二星座图中的所有星座点划分为2 N个第二类别之前,所述方法还包括:
    所述第二基站根据预置的信道系数和所述第二上行数据的最小比特位数确定所述第二星座图。
  10. 一种传输数据的装置,其特征在于,包括:
    接收单元,用于接收第一上行数据,所述第一上行数据与终端设备发送的第二上行数据对应;
    处理单元,用于确定所述第一上行数据在预置的第一星座图中所属的第一类别,所述第一星座图中的所有星座点被划分为多个第一类别,每个所述第一类别包含至少一个星座点,每个星座点对应一种第二上行数据;
    所述处理单元,还用于根据类别与码字的第一映射关系,以及所述第一类别将所述第一上行数据编码为第一码字;
    发送单元,用于向第二基站发送所述第一码字。
  11. 一种接收数据的装置,其特征在于,包括:
    接收单元,用于接收第三上行数据,所述第三上行数据与终端设备发送的第二上行数据对应;
    处理单元,用于确定所述第三上行数据在预置的第二星座图中所属的第二类别,所述第二星座图中的所有星座点被划分为多个第二类别,每个所述第二类别包含至少一个星座点,每个星座点对应一种第二上行数据;
    所述处理单元,还用于根据类别与码字的第二映射关系,以及所述第二类别将所述第二上行数据编码为第二码字;
    所述接收单元,还用于接收来自第一基站的第一码字;
    所述处理单元,还用于根据所述第一码字对应的第一类别中的星座点和所述第二码字对应的第二类别中的星座点确定解码星座点;
    所述处理单元,还用于根据星座点与上行数据的对应关系,以及所述解码星座点确定所述第二上行数据。
  12. 一种通信装置,其特征在于,包括:至少一个处理器和存储器,存储器存储有可 在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述终端设备执行如上述权利要求1-3中任意一项所述的方法。
  13. 一种通信装置,其特征在于,包括:至少一个处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述终端设备执行如上述权利要求4-9中任意一项所述的方法。
  14. 一种通信系统,其特征在于,所述通信系统包括:第一基站和第二基站;
    所述第一基站用于执行如上述权利要求1-3中任意一项所述的方法;
    所述第二基站用于执行如上述权利要求4-9中任意一项所述的方法。
  15. 一种存储一个或多个计算机执行指令的计算机可读存储介质,其特征在于,当所述计算机执行指令被处理器执行时,所述处理器执行如上述权利要求1-9任一所述的方法。
  16. 一种芯片或者芯片系统,其特征在于,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行如权利要求1至9中任一项所述方法。
  17. 一种计算机程序产品,其特征在于,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现如权利要求1至9中任一项所述的方法中的流程。
  18. 一种信号处理的装置,其特征在于,所述装置用于执行如权利要求1至9中任一项所述方法。
PCT/CN2020/128745 2019-11-15 2020-11-13 一种传输数据的方法及相关装置 WO2021093861A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911124199.8 2019-11-15
CN201911124199.8A CN112822140B (zh) 2019-11-15 2019-11-15 一种传输数据的方法及相关装置

Publications (1)

Publication Number Publication Date
WO2021093861A1 true WO2021093861A1 (zh) 2021-05-20

Family

ID=75852191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128745 WO2021093861A1 (zh) 2019-11-15 2020-11-13 一种传输数据的方法及相关装置

Country Status (2)

Country Link
CN (1) CN112822140B (zh)
WO (1) WO2021093861A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959240A (zh) * 2009-07-13 2011-01-26 中兴通讯股份有限公司 一种中继链路的物理广播信道映射及发射的方法及装置
CN102195700A (zh) * 2011-06-10 2011-09-21 西安交通大学 一种针对下行链路小区边缘用户的协作小区调度传输方法
CN102438250A (zh) * 2011-11-10 2012-05-02 北京邮电大学 采用协作模拟网络编码技术抑制小区间干扰的方法
US20150229373A1 (en) * 2014-02-11 2015-08-13 Samsung Electronics Co., Ltd. Interference cancellation scheme using constellation diagram

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2219312A1 (en) * 2009-02-11 2010-08-18 NTT DoCoMo, Inc. Apparatus for providing a combined digital signal
CN103516661B (zh) * 2012-06-27 2016-09-28 华为技术有限公司 一种高阶调制方法、解映射方法以及相应装置
CN110176962B (zh) * 2019-05-17 2020-08-14 北京邮电大学 基于tcm-概率成形的光信号处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959240A (zh) * 2009-07-13 2011-01-26 中兴通讯股份有限公司 一种中继链路的物理广播信道映射及发射的方法及装置
CN102195700A (zh) * 2011-06-10 2011-09-21 西安交通大学 一种针对下行链路小区边缘用户的协作小区调度传输方法
CN102438250A (zh) * 2011-11-10 2012-05-02 北京邮电大学 采用协作模拟网络编码技术抑制小区间干扰的方法
US20150229373A1 (en) * 2014-02-11 2015-08-13 Samsung Electronics Co., Ltd. Interference cancellation scheme using constellation diagram

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TEXAS INSTRUMENTS: "Consideration on CoMP signaling for non-ideal backhaul", 3GPP DRAFT; R1-134280 COMP NON-IDEAL BACKHAUL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Guangzhou, China; 20131007 - 20131011, 28 September 2013 (2013-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050717439 *

Also Published As

Publication number Publication date
CN112822140A (zh) 2021-05-18
CN112822140B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN111954982B (zh) 无线通信系统和广播系统中使用极性码进行编码和解码的装置和方法
CN105409260B (zh) 用于用户设备协作的系统和方法
WO2022161201A1 (zh) 编码调制与解调解码方法及装置
TWI822722B (zh) 建構極化碼的方法、通信方法以及通信裝置
CN106982086B (zh) 一种基于收发天线选择的空间调制方法
JP7301168B2 (ja) コーディングおよび変調方法、復調および復号方法、装置、ならびにデバイス
CN106788626B (zh) 一种能够获得二阶发射分集的改进正交空间调制传输方法
CN107204831B (zh) 一种用于mimo-scma系统的低复杂度检测方法
WO2021143426A1 (zh) 编码方法及装置、调制编码方法及装置、设备、存储介质
CN108809495B (zh) 数据的传输方法和设备
US20240073066A1 (en) Devices and methods for a dirty paper coding scheme
CN110365414A (zh) 一种适合于对数正态湍流信道的增强型光空间调制方法
CN102447667B (zh) 基于网络编码的数据处理方法和系统
WO2021093861A1 (zh) 一种传输数据的方法及相关装置
CN110611525A (zh) 一种基于速率分拆的信号传输、接收方法及装置
CN107370564A (zh) 极化码处理方法及装置、节点
US11387870B2 (en) MIMO detector selection
WO2017194012A1 (zh) 极化码处理方法及装置、节点
CN113541698B (zh) 编码、译码方法、装置及设备
CN116366416A (zh) 调制方法、解调方法以及相关装置
CN112787733B (zh) 一种双向中继方案自适应选择方法、系统、存储介质及终端
CN108900450A (zh) Esl系统、无线通信系统及其接收端和信号接收方法
CN218276733U (zh) 联合空间调制与scma动态译码检测仿真装置
WO2023236932A1 (zh) Llr值的量化方法、装置、电子设备及存储介质
KR20070113679A (ko) 통신 시스템에서 데이터 송수신 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887867

Country of ref document: EP

Kind code of ref document: A1