WO2017194012A1 - 极化码处理方法及装置、节点 - Google Patents

极化码处理方法及装置、节点 Download PDF

Info

Publication number
WO2017194012A1
WO2017194012A1 PCT/CN2017/084220 CN2017084220W WO2017194012A1 WO 2017194012 A1 WO2017194012 A1 WO 2017194012A1 CN 2017084220 W CN2017084220 W CN 2017084220W WO 2017194012 A1 WO2017194012 A1 WO 2017194012A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
information
indication information
value
noise
Prior art date
Application number
PCT/CN2017/084220
Other languages
English (en)
French (fr)
Inventor
陈泽为
许进
徐俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610451966.6A external-priority patent/CN107370564B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017194012A1 publication Critical patent/WO2017194012A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • the present invention relates to the field of communications, and in particular, to a polarization code processing method and apparatus, and a node.
  • the uplink needs to transmit control signaling including Channel State Information (CSI).
  • CSI includes a Channel Quality Indication (CQI), a Pre-coding Matrix Indicator (PMI), and a Rank Indicator (RI).
  • CQI Channel Quality Indication
  • PMI Pre-coding Matrix Indicator
  • RI Rank Indicator
  • the CSI reflects the state of the downlink physical channel.
  • the base station performs downlink scheduling by using CSI, and performs code modulation and modulation on the data.
  • CQI is an indicator used to measure the quality of downlink channels.
  • CQI is represented by an integer value index of 0-15, which respectively represent different CQI levels, and different CQIs correspond to respective Modulation and Coding Schemes (MCS).
  • MCS Modulation and Coding Schemes
  • the CQI level selected by the User Equipment (UE) shall be such that the Physical Downlink Shared Channel (PDSCH) Transport Block (TB) is a block of the MCS corresponding to the CQI.
  • PDSCH Physical Downlink Shared Channel
  • Transport Block Transport Block
  • the rate does not exceed 0.1 and the selected CQI is the maximum CQI index that satisfies this condition.
  • the base station performs scheduling according to the CSI reported by the terminal, and determines a Modulation and Coding Scheme (MCS) index and resource allocation information.
  • MCS Modulation and Coding Scheme
  • the LTE protocol of the Rel-8 defines a modulation and transport block size table (Modulation and TBS index table for PDSCH) for the Physical Downlink Shared Channel (PDSCH).
  • the following may also be referred to as a downlink MCS table.
  • the table has a total of 32 levels, basically each level corresponds to one MCS index, and each MCS index essentially corresponds to one MCS.
  • the resource allocation information indicates the number of physical resource blocks (NPRBs) that need to be occupied by the downlink transmission.
  • the LTE standard also provides a TBS forms.
  • the transport block size (TBS) can be obtained after the MCS index and the NPRB are given.
  • the base station can perform coded modulation of downlink data for downlink transmission.
  • the terminal After receiving the downlink transmission data, the terminal needs to obtain the MCS index and resource allocation information of the downlink transmission for data processing.
  • the base station sends the MCS index and resource allocation information by using Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the base station uses a specific Radio Network Temporary Identity (RNTI) to scramble the cyclic redundancy check (CRC) bit corresponding to the downlink control information.
  • the downlink control information is sent in a specific downlink control information format (DCI format) through a physical downlink control channel (PDCCH).
  • the terminal performs blind search in the Common Search Space (CSS) and the UE-specific Search Space (USS) to obtain downlink control information.
  • the terminal After acquiring the downlink control information, the terminal obtains the TBS according to the TBS table, and is used for demodulation and decoding.
  • the DCI formats related to the PDSCH include the following: DCI format1, DCI format 1A, DCI format 1B, DCI format 1C, DCI format 1D, DCI format 2, DCI format 2A, DCI format 2B, DCI format 2C, DCI format 2D, etc. .
  • the uplink adaptive code modulation has a similar process.
  • the base station performs channel estimation and scheduling by using pilots sent by the terminal, and determines an uplink coded modulation and coding scheme index and resource allocation information.
  • the base station sends the MCS index and resource allocation information through the DCI, and is used for modulation and coding processing of the terminal.
  • the base station After receiving the data of the terminal, the base station performs demodulation and decoding according to the relevant coded modulation parameter (MCS/NPRB/TBS).
  • polarization codes In the LTE standard of the Rel-13 version, the physical shared channel mainly uses Turbo codes and convolutional codes, and the fifth generation wireless communication technology research introduces more new coding schemes, such as polarization codes.
  • a polarization code is an encoding method that utilizes channel polarization and is theoretically proven to approach the symmetric binary discrete memoryless channel (B-DMC) capacity.
  • B-DMC binary discrete memoryless channel
  • N is a power of two. The choice of N also depends on parameters such as the number of bits and the modulation order that the time-frequency resource can carry.
  • the embodiment of the invention provides a method, a device and a node for processing a polarization code to solve at least the problem that the polarization code encoding or decoding cannot be solved in the related art.
  • a polarization code processing method including: acquiring parameter information from a signaling sent by a first node, where the parameter information includes at least one of the following: first power indication information, a number of resources allocated by the first node, a modulation order; determining an encoding parameter according to the parameter information and/or the locally stored second power indication information, wherein the encoding parameter comprises at least one of: for performing polarization code encoding or polarization Bit position information, generation matrix, and code length of code decoding.
  • determining, according to the parameter information and/or the second power indication information, the encoding parameter includes at least one of: determining an encoding code length according to the number of resources and a modulation order; and according to the first power indication information, the encoding code length, and The modulation order determines bit position information and/or a generation matrix; bit position information and/or a generation matrix is determined based on the second power indication information, the code length and the modulation order.
  • the method further includes: acquiring the modulation order according to the first power indication information.
  • the first power indication information is used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal to interference and noise ratio (Signal to Interference plus Noise Ratio (SINR), noise variance;
  • SINR Signal to Interference plus Noise Ratio
  • the second power indication information is used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, a signal to interference and noise ratio SINR, and a noise variance.
  • the code length is the bit sequence length of the coded output of the polarization code encoder.
  • the code length has at least one of the following characteristics: when the specified condition is met, the code length is N1, otherwise the code length is N2; wherein N1 is a minimum of 2 that is greater than a preset threshold. On the power side, N2 takes the value of the largest power of 2 less than the preset threshold, and the preset threshold is determined by the number of allocated resources and the modulation order.
  • the specified condition is: N0>f(N1, N2); wherein f(N1, N2) is a function of N1 and/or N2.
  • the first power indication information includes: a modulation and coding scheme MCS index.
  • the method before the obtaining the parameter information from the signaling sent by the first node, the method further includes: sending the second power indication information to the first node, where the second power indication information corresponds to the second power information .
  • the second power indication information includes: a channel quality indicator CQI.
  • the first power indication information and/or the second power indication information includes at least one of the following: explicit power indication information, implicit power indication information, where the explicit power indication information has at least one of the following Feature: Explicit power indication information is represented by M1 bits, and one value represented by M1 bits corresponds to one first power information and/or second power information; explicit power indication information is represented by M1 bits, M1 bits One of the values represented corresponds to a first power information and/or second power information and a power information interval; M1 is a positive integer.
  • the implicit power indication information includes at least one of the following: an MCS index, a CQI index, where one value of the MCS index or the CQI index corresponds to a first function. Rate information / or second power information.
  • the first power information and/or the second power information have at least one of the following characteristics: when the power information interval belongs to the interval (a1, + ⁇ ), the first power information and/or the second power information The value is the first specified value; when the power information interval belongs to the interval (0, a2) or (- ⁇ , a2), the first power information and/or the second power information take the second specified value; wherein, a1 , a2 is a real number, and a1 ⁇ a2.
  • another method for processing a polarization code including: sending signaling to a second node, where the signaling carries parameter information for determining an encoding parameter, where the parameter information includes at least the following One of: first power indication information, number of resources allocated by the first node, modulation order; the coding parameter includes at least one of: bit position information for performing polarization code coding or polarization code decoding, generation matrix, coding Code length.
  • the method before the sending the signaling to the second node, the method further includes: receiving the second power indication information sent by the second node, where the second power indication information corresponds to the second power information, where the second The power indication information is used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, a signal to interference and noise ratio SINR, and a noise variance.
  • the first power indication information is used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal dry noise. Specific SINR, noise variance.
  • the first power indication information includes: a modulation and coding scheme MCS index.
  • the second power indication information includes: a channel quality indicator CQI.
  • the first power indication information and/or the second power indication information includes at least one of the following: explicit power indication information, implicit power indication information, where the explicit power indication information has at least one of the following Feature: Explicit power indication information is represented by M1 bits, and one value represented by M1 bits corresponds to one first power information and/or second power information; explicit power indication information is represented by M1 bits, M1 bits One value represented corresponds to one First power information and/or second power information and a power information interval; M1 is a positive integer; the implicit power indication information includes at least one of: an MCS index, a CQI index; wherein, one value of the MCS index or the CQI index Corresponding to one first power information and/or second power information.
  • the first power information and/or the second power information have at least one of the following characteristics: when the power information interval belongs to the interval (a1, + ⁇ ), the first power information and/or the second power information The value is the first specified value; when the power information interval belongs to the interval (0, a2) or (- ⁇ , a2), the first power information and/or the second power information take the second specified value; wherein, a1 , a2 is a real number, and a1 ⁇ a2.
  • a polarization code processing apparatus including: an obtaining module, configured to acquire parameter information from signaling sent by a first node, where the parameter information includes at least one of the following: a power indication information, a number of resources allocated by the first node, a modulation order, and a determining module, configured to determine the encoding parameter according to the parameter information and/or the locally stored second power indication information, wherein the encoding parameter includes at least one of the following: Bit position information, generation matrix, and code length for performing polarization code coding or polarization code decoding.
  • the determining module is further configured to perform at least one of: determining an encoding code length according to the number of resources and the modulation order; and according to the first power indication information, the encoding code length and Determining the bit position information and/or the generation matrix; determining the bit position information and/or the generation matrix according to the second power indication information, the code length and the modulation order .
  • the device further includes: an acquiring module, configured to: obtain, according to the first power indication information, the first power indication information and the number of resources in the parameter information, The modulation order.
  • the first power indication information is used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal dry noise.
  • Ratio SINR noise variance
  • the second power indication information is used to indicate at least one of the following power information: signal power value, signal power offset value, noise power value, noise power offset value, signal to interference and noise ratio SINR, noise variance .
  • the code length is the bit sequence length of the encoder code output.
  • the first power indication information includes: a modulation and coding scheme MCS index.
  • the device further includes: a sending module, configured to send second power indication information to the first node; wherein the second power indication information corresponds to the second power information.
  • the second power indication information includes: a channel quality indicator CQI.
  • another polarization code processing apparatus comprising: a sending module, configured to send signaling to a second node, where the signaling carries parameter information for determining an encoding parameter, the parameter
  • the information includes at least one of the following: the first power indication information, the number of resources allocated by the first node, and the modulation order; and the encoding parameter includes at least one of: bit position information used for performing polarization code encoding or polarization code decoding. , generate matrix, code length.
  • the device further includes: a receiving module, configured to receive the second power indication information sent by the second node; wherein the second power indication information corresponds to the second power; the second power indication information is used to indicate At least one of the following power information: signal power value, signal power offset value, noise power value, noise power offset value, signal to interference and noise ratio SINR, noise variance.
  • a receiving module configured to receive the second power indication information sent by the second node; wherein the second power indication information corresponds to the second power; the second power indication information is used to indicate At least one of the following power information: signal power value, signal power offset value, noise power value, noise power offset value, signal to interference and noise ratio SINR, noise variance.
  • the first power indication information is used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal dry noise. Specific SINR, noise variance.
  • a node comprising: the above-described polarization code processing apparatus.
  • a node comprising: the above-described polarization code processing apparatus.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the parameter information is obtained from the signaling sent by the first node, where the parameter information includes at least one of the following: the first power indication information, the number of resources allocated by the first node, and the modulation order; Determining an encoding parameter according to the parameter information and/or the locally stored second power indication information, wherein the encoding parameter comprises at least one of: bit position information for performing polarization code encoding or polarization code decoding, a generation matrix, an encoding code long.
  • the encoding parameter can be determined according to the parameter information acquired from the signaling sent from the first node, wherein at least one of the following encoding parameters: bit position information for performing polarization code encoding or polarization code decoding
  • bit position information for performing polarization code encoding or polarization code decoding The generation matrix and the encoding code length can further realize the decoding or encoding of the polarization code. Therefore, the problem that the polarization code encoding or decoding cannot be solved in the related art can be solved.
  • FIG. 1 is a schematic diagram of a network architecture in accordance with an embodiment of the present invention.
  • FIG. 2 is a flowchart 1 of a polarization code processing method according to an embodiment of the present invention
  • FIG. 3 is a second flowchart of a polarization code processing method according to an embodiment of the present invention.
  • FIG. 4 is a block diagram 1 of a structure of a polarization code processing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a block diagram 2 of a structure of a polarization code processing apparatus according to an embodiment of the present invention.
  • the embodiment of the present application can be run on the network architecture shown in FIG. 1, as shown in FIG.
  • the network architecture includes: a first node, a second node, wherein the first node and the second node can interact with each other.
  • first node may be a terminal, a base station, but is not limited thereto
  • second node may also be a terminal, a base station, but is not limited thereto.
  • FIG. 2 is a flowchart 1 of a polarization code processing method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps. :
  • the parameter information is obtained from the signaling sent by the first node, where the parameter information includes at least one of the following: the first power indication information, the number of resources allocated by the first node, and the modulation order;
  • Step S204 determining an encoding parameter according to the parameter information and/or the locally stored second power indication information, where the encoding parameter includes at least one of: bit position information for performing polarization code encoding or polarization code decoding, and a generation matrix.
  • the code length is long.
  • the encoding parameter may be determined according to the parameter information acquired from the signaling sent from the first node and/or the locally stored second power indicating information, where the encoding parameter includes at least one of the following: The bit position information, the generation matrix, and the code length of the coded code or the polarization code are decoded, and the polarization code can be decoded or encoded. Therefore, the problem of encoding or decoding the polarization code cannot be solved in the related art.
  • bit position information may be information bit position information or frozen bit position information.
  • the bit sequence of length N entering the polarization code encoder comprises information bits of length K and N-K known bits, which are also referred to as freeze bits.
  • the output of the polarization code encoder is a sequence of coded bits of length N. For the specified polarization code generation matrix, it is necessary to properly arrange the information bits or the position order of the frozen bits, that is, select a good channel for the information bits to obtain the performance of the better code.
  • the number of allocated resources may be a physical downlink shared channel PDSCH or a physical uplink shared channel PUSCH resource allocation physical resource block number NPRB, a control channel resource allocation unit, or a narrowband Internet of Things NB. - Number of Resource Units in the IoT NRU.
  • the parameter information may be in various forms, for example, the parameter information may include first power indication information and the number of resources, and may include first power indication information, a resource allocation number, and a modulation order, but The method is not limited thereto, and the parameter information may include the first power indication information.
  • the parameter information includes the first power indication information, the number of resources, and the modulation order
  • the foregoing step S202 may perform at least one of: determining an encoding code length according to the number of resources and a modulation order;
  • the first power indication information, the coded code length and the modulation order determine bit position information and/or a generation matrix; the bit position information and/or the generation matrix are determined according to the second power indication information, the coded code length, and the modulation order.
  • the method may further include: acquiring the modulation order according to the first power indication information.
  • the foregoing first power indication information is used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal to interference and noise ratio SINR. , noise variance.
  • the above power offset value refers to an offset value of the above power with respect to a specified reference signal power.
  • the signal power value, the signal power offset value, the noise power value, the noise power offset value, the SINR, and the noise variance are equivalent in effect, and are used to obtain the channel state and acquire signal power and noise.
  • the relationship of power is used to determine the position order of information bits or frozen bits when the code is compiled.
  • the foregoing second power indication information may also be used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal dry noise. Specific SINR, noise variance. For the interpretation of the power information, The interpretation of the first power indication information is not repeated here.
  • the code length is the bit sequence length of the coded output of the polarization code encoder.
  • the foregoing code length may have at least one of the following characteristics: when the specified condition is met, the code length is N1, otherwise the code length is N2; wherein N1 is a minimum power of 2 greater than a preset threshold N0, N2 takes the value of the largest power of 2 less than N0, and N0 is determined by the number of allocated resources and the modulation order.
  • the above specified condition may be: N0>f(N1, N2); wherein f(N1, N2) is a function of N1 and/or N2.
  • the output of the polarization code encoder will be punctured, that is, part of the bits output by the polarization code encoder are discarded without being transmitted; if the code length is N2, Then, the bits output by the polarization code encoder will be repeatedly transmitted, and then a bit sequence matching the time-frequency resource can be obtained.
  • the bit error rate of the polarization code can be improved and the complexity of encoding or decoding can be reduced.
  • the first power indication information may include: a modulation and coding scheme MCS index, and indicating the power information by using the MCS index may ensure that the polarization code is correctly performed, and does not add new signaling overhead.
  • the method may further include: sending, to the first node, second power indication information; wherein the second power indication information corresponds to the second power information.
  • the first node may also obtain power information (second power information) according to the second power indication information, which helps to better select a good channel corresponding to the polarization code information bit. In turn, the performance of the polarization code can be improved.
  • second power information helps to better select a good channel corresponding to the polarization code information bit. In turn, the performance of the polarization code can be improved.
  • the foregoing second power indication information may include a channel quality indicator CQI.
  • the first power indication information and/or the second power indication information may include at least one of the following: explicit power indication information, implicit power indication information; wherein the explicit power indication information has At least one of the following features: the explicit power indication information is represented by M1 bits, and one value represented by the M1 bits corresponds to one first power information and/or second power information; the explicit power indication information is represented by M1 bits One value represented by M1 bits corresponds to one first power information and/or second power information and one power information interval; M1 is a positive integer.
  • the foregoing implicit power indication information may include at least one of the following: an MCS index, a CQI index, where one value of the MCS index or the CQI index corresponds to one first power information and/or second power information. That is, the first power information and/or the second power information are corresponding to the first power information and/or the second power information, and the first power information and/or the second power indication information may be used to obtain the first power information and / or second power information.
  • the first power information and/or the second power information have at least one of the following characteristics: when the power information interval belongs to the interval (a1, + ⁇ ), the first power information and/or the second power information take values. a first specified value; when the power information interval belongs to the interval (0, a2) or (- ⁇ , a2), the first power information and/or the second power information takes a second specified value; wherein, a1, a2 Is a real number, and a1 ⁇ a2.
  • the power or signal-to-noise ratio used by the polarization code is expanded (
  • the Signal Noise Ratio (SNR) interval is used to encode or decode a polarization code in a larger SNR range.
  • FIG. 3 is a flowchart 2 of a polarization code processing method according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps. step:
  • Step S302 Receive second power indication information sent by the second node, where the second power indication information corresponds to the second power.
  • Step S304 sending signaling to the second node, where the signaling carries parameter information for determining an encoding parameter, where the parameter information includes at least one of the following: first power indication information, number of resources allocated by the first node, and modulation
  • the order parameter includes at least one of bit position information for performing polarization code encoding or polarization code decoding, a generation matrix, and an encoding code length.
  • the parameter information carrying the determined coding parameter may be sent to the second node, where the coding parameter includes at least one of: bit position information for performing polarization code coding or polarization code decoding, a generation matrix,
  • the encoding code is long, and the decoding or encoding of the polarization code can be realized. Therefore, the problem that the polarization code encoding or decoding cannot be solved in the related art can be solved.
  • step S304 may be performed with the foregoing step S302.
  • the step S302 may not be performed, and the technical problem may be solved, and is not limited thereto.
  • bit position information may be information bit position information or frozen bit position information.
  • the bit sequence of length N entering the polarization code encoder comprises information bits of length K and N-K known bits, which are also referred to as freeze bits.
  • the output of the polarization code encoder is a sequence of coded bits of length N. For the specified polarization code generation matrix, it is necessary to properly arrange the information bits or the position order of the frozen bits, that is, select a good channel for the information bits to obtain the performance of the better code.
  • the foregoing first power indication information is used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal to interference and noise ratio SINR. , noise variance.
  • the above power offset value refers to an offset value of the above power with respect to a specified reference signal power.
  • the signal power value, the signal power offset value, the noise power value, the noise power offset value, the SINR, and the noise variance are equivalent in effect. Both are used to obtain the channel state, and obtain the relationship between the signal power and the noise power, and determine the position order of the information bits or the frozen bits when the polarization code is compiled.
  • the foregoing second power indication information may also be used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal dry noise.
  • a signal power value a signal power value
  • a signal power offset value a noise power value
  • a noise power offset value a signal dry noise.
  • Specific SINR noise variance.
  • the second power indication information may also be used as the first variance indication information.
  • the foregoing first power indication information may include, but is not limited to, a modulation and coding scheme MCS index.
  • the foregoing second power indication information may include, but is not limited to, a channel quality indicator CQI. It should be noted that the second power indication information corresponds to the second power, and the first power indication information corresponds to the first power.
  • the second power can be obtained by using the foregoing second power indication information, which helps to better select a good channel corresponding to the polarization code information bits, and improves the performance of the polarization code.
  • the first power indication information and/or the second power indication information includes at least one of the following: explicit power indication information, implicit power indication information, where the explicit power indication information has the following At least one feature: the explicit power indication information is represented by M1 bits, and one value represented by the M1 bits corresponds to one first power information and/or second power information; the explicit power indication information is represented by M1 bits, One value represented by the M1 bits corresponds to a first power information and/or second power information and a power information interval; M1 is a positive integer; and the implicit power indication information includes at least one of: an MCS index, a CQI index; The value of the MCS index or the CQI index corresponds to one first power information and/or second power information.
  • the first power information and/or the second power information have at least one of the following characteristics: when the power information interval belongs to the interval (a1, + ⁇ ), the first power information and/or the second power information take the first designation a value; when the power information interval belongs to the interval (0, a2) or (- ⁇ , a2), the first power information and/or the second power information take a second specified value; wherein a1, a2 are real numbers, and A1 ⁇ a2.
  • the power information or the SNR interval used by the polarization code is expanded.
  • a polarization code can also be used for encoding or decoding over a larger SNR range.
  • the base station performs encoding processing using the polarization code and transmits the data to the terminal.
  • the terminal receives the downlink control signaling DCI sent by the base station, and reads an IMCS (Index of Modulation and Coding Scheme, IMCS, which is equivalent to the MCS index in the foregoing embodiment) and resource allocation information from the DCI.
  • IMCS Index of Modulation and Coding Scheme
  • IMCS Index of Modulation and Coding Scheme
  • the terminal obtains first power indication information according to DCI signaling sent by the base station, where the first power indication information indicates a first noise variance.
  • the first power indication information is an IMCS, which is implicit power indication information.
  • the terminal can also obtain the equivalent noise variance a according to the IMCS lookup MCS table.
  • An example of the MCS table is shown in Table 1.
  • each IMCS level corresponds to a combination of coded modulation schemes corresponding to an equivalent signal to noise ratio SNR interval or also to an equivalent noise variance interval A. Within the equivalent noise variance interval A, the coded modulation scheme has a maximum spectral efficiency such that the block error rate (BLER) is not greater than 0.1.
  • each IMCS corresponds to a noise variance a. This noise variance a is used for the code structure at the time of polarization code encoding.
  • the terminal obtains the physical resource block size NPRB allocated by the base station according to the resource allocation information.
  • the terminal determines the bit sequence length N of the coded output of the polarization code encoder according to the NPRB and the modulation order.
  • N0 be the number of bits carried on the time-frequency resource
  • N0 NPRB*REperRB*M.
  • the REperRB is the number of resource elements RE (Resource Element) of one physical resource block PRB.
  • N is taken as a power of 2 and the possible values of N are ⁇ N1, N2 ⁇ .
  • N N1
  • N2 the bits output by the polarization code encoder will be transmitted repeatedly. Thereby a bit sequence matching the time-frequency resource is obtained.
  • N N1
  • N2 the bits output by the polarization code encoder will be transmitted repeatedly. Thereby a bit sequence matching the time-frequency resource is obtained.
  • N N1
  • N2 the advantage of selecting one of them according to the conditions is to improve the performance of the polarization code block rate and reduce the coding complexity. For example, when N0 is close to N1, the puncturing method is better for puncturing the code length N1; when N0 is close to N2, N2 is selected as the code length and repeated transmission, and the complexity is lower and the performance is better.
  • the terminal further obtains a transport block size TBS according to the ITBS and NPRB lookup transport block size table.
  • the terminal determines the information bit position information according to the modulation order M and the noise variance a, and the code length N. Specifically, the terminal obtains information bit positions of length TBS according to the polarization code construction method, and these positions correspond to TBS good polarization channels. A good channel can be obtained by Gaussian approximation. Equivalently, the terminal can also determine the polarization code generation matrix based on the modulation order M and the noise variance a, and the code length N.
  • the terminal performs decoding of the polarization code according to N, information bit position information (or generation matrix), noise variance a, and modulation order M to obtain decoded data.
  • the IMCS indicates the noise variance, and the polarization code decoding can be ensured to be performed correctly. Nor does it add new signaling overhead.
  • the preferred embodiment is different from the preferred embodiment 1 in that the terminal obtains the first power indication information according to the DCI signaling sent by the base station.
  • the first power indication information is not an IMCS, but an explicit power indication information Iad.
  • the first power indication information indicates a first noise variance.
  • An example of the correspondence between the Iad value and the a/A is shown in Table 2.
  • the terminal looks up Table 2 according to Iad, and can obtain the corresponding a.
  • the noise variance a is used for the code structure at the time of polarization code encoding, and is also a parameter known for terminal decoding.
  • a is obtained according to the interval A and the table 2 in which the actual noise variance is located, and is encoded according to a.
  • the first power indication information may further indicate one of: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and an equivalent SINR.
  • each value of the noise variance indication information (explicit power indication information) Iad in Table 2 corresponds to one power value/power offset value/SINR, and one power/power offset value/SINR interval.
  • Corresponding power value according to different definitions of power value/power offset value/SINR The value of the /power offset value / SINR may be negative infinity to positive infinity. It should be noted that the power value or the offset value and the SINR can be used to obtain the information bits or the position information of the frozen bits when the code is compiled.
  • the base station performs encoding processing using a polarization code. Before performing polarization code encoding, the base station needs to obtain downlink equivalent second power indication information, which can be used for code structure in polarization code encoding.
  • the terminal sends second power indication information to the base station, where the second power indication information is explicit power indication information Iad. Used to indicate the second noise variance.
  • An example of the correspondence between the Iad value and a/A is as shown in Table 2 above.
  • the terminal performs channel estimation to obtain a second noise variance of the actual link, obtains a corresponding interval A according to the obtained noise variance, and obtains Iad according to Table 2.
  • the base station obtains the corresponding A and the second noise variance a according to the Iad lookup table 2.
  • the base station obtains the noise variance by using the second power indication information sent by the terminal, which helps to better select a good channel corresponding to the polarization code information bit, and improves the performance of the code.
  • the base station may also use the second power indication information sent by the terminal as the first power indication information.
  • the second power indication information may further indicate one of the following: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and an equivalent SINR.
  • each value of the noise variance indication information (explicit power indication information) Iad in Table 2 corresponds to one power value/power offset value/SINR, and one power/power offset value/SINR interval.
  • the power value or the offset value and the SINR can be used to obtain the information bits or the position information of the frozen bits when the code is compiled.
  • the preferred embodiment is different from the preferred embodiment 4 in that the second power indication information obtained by the base station is implicit power indication information indicating a second noise variance and is a channel quality indicator.
  • CQI An example of the correspondence table between the CQI and the second noise variance a is shown in Table 3.
  • the base station can obtain the corresponding a according to the CQI lookup table 3.
  • the CQI may also indicate one of the following: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and an equivalent SINR.
  • each value of the CQI in Table 3 corresponds to one power value/power offset value/SINR, and one power/power offset value/SINR interval.
  • the power value or the offset value and the SINR can be used to obtain the information bits or the position information of the frozen bits when the code is compiled.
  • the preferred embodiment differs from the preferred embodiment 1 in the determination of NO.
  • the coded bits of the polarization code are modulated by M-QAM modulation, where M is an even number. And there are a total of M/2 polarization code encoders, and the output of each encoder corresponds to M-QAM
  • the REperRB is the number of resource elements RE (Resource Element) of one physical resource block PRB.
  • the terminal performs encoding processing using a polarization code and transmits the data to the base station.
  • the terminal receives the DCI sent by the base station.
  • the coded modulation scheme index IMCS and resource allocation information are read from the DCI.
  • the modulation order M and the transport block size index ITBS are obtained according to the IMCS lookup MCS table.
  • the terminal obtains the first power indication information according to the DCI signaling sent by the base station.
  • the first power indication information is an IMCS, which is implicit power indication information, indicating a first noise variance.
  • the terminal can also obtain the equivalent noise variance a according to the IMCS lookup MCS table.
  • An example of the MCS table is shown in Table 1.
  • each IMCS level corresponds to a combination of coded modulation schemes corresponding to an equivalent signal to noise ratio SNR interval, and also corresponds to an equivalent noise variance interval A. Within the equivalent noise variance interval A, the coded modulation scheme has a maximum spectral efficiency such that the BLER is no greater than 0.1.
  • each IMCS corresponds to a noise variance a. This noise variance a is used for the code structure at the time of polarization code encoding.
  • the terminal obtains the physical resource block size NPRB allocated by the base station according to the resource allocation information.
  • the terminal determines the bit sequence length N of the coded output of the polarization code encoder according to the NPRB and the modulation order.
  • N0 be the number of bits carried on the time-frequency resource
  • N0 NPRB*REperRB*M.
  • the REperRB is the number of resource elements RE (Resource Element) of one physical resource block PRB.
  • N is taken as a power of 2 and the possible values of N are ⁇ N1, N2 ⁇ .
  • N1 is the power of the smallest 2 of N1 greater than N0
  • N N1
  • N2 the bits output by the polarization code encoder will be transmitted repeatedly. Thereby getting A sequence of bits matched by time-frequency resources.
  • N N1
  • the puncturing method is better for puncturing the code length N1; when N0 is close to N2, N2 is selected as the code length and repeated transmission, the complexity is lower, and the performance is not There is a big drop.
  • the terminal further obtains a transport block size TBS according to the ITBS and NPRB lookup transport block size table.
  • the terminal determines the information bit position information according to the modulation order M and the noise variance a, and the code length N. Specifically, the terminal obtains information bit positions of length TBS according to the polarization code construction method, and these positions correspond to TBS good polarization channels. A good channel can be obtained by Gaussian approximation. Equivalently, the terminal can also determine the polarization code generation matrix based on the modulation order M and the noise variance a, and the code length N.
  • the terminal performs encoding of the polarization code according to N, information bit position information (or generation matrix), noise variance a, and modulation order M.
  • the IMCS indicates the noise variance, and the polarization code encoding can be ensured to be performed correctly. Nor does it add new signaling overhead.
  • the preferred embodiment differs from the preferred embodiment 1 in that the method of obtaining the bit sequence length N of the coded output of the polarization code encoder is different.
  • the terminal obtains the physical resource block size NPRB allocated by the base station according to the resource allocation information.
  • the terminal determines the bit sequence length N of the coded output of the polarization code encoder according to the NPRB and the modulation order.
  • the terminal refers to the mapping table of NPRB/M to N according to the NPRB and the modulation order M to obtain N.
  • An example of the mapping table is shown in Table 4. Of course, Table 4 may be just a part of the form.
  • the preferred embodiment differs from the preferred embodiment 8 in the difference in mapping tables.
  • the terminal obtains the physical resource block size NPRB allocated by the base station according to the resource allocation information.
  • the terminal determines the bit sequence length N of the coded output of the polarization code encoder according to the NPRB and the modulation order.
  • the terminal refers to the NPRB/IMCS to N mapping table according to the NPRB and the IMCS to obtain N.
  • An example of the mapping table is shown in Table 5.
  • Table 5 may be just a part of the form.
  • the IMCS implies a modulation order M.
  • An interval of IMCS corresponds to an M.
  • the IMCS of Table 5 can also be replaced by ITBS, which also implies M.
  • the preferred embodiment differs from the preferred embodiment 8 in the difference in mapping tables.
  • the terminal obtains the number of resources according to the resource allocation information, that is, the physical resource block size NPRB allocated by the base station. End
  • the terminal determines the bit sequence length N of the coded output of the polarization code encoder according to the NPRB and the modulation order.
  • the terminal obtains the product M*NPRB according to NPRB and M, and then obtains N by referring to the mapping table of NPRB*M to N.
  • An example of the mapping relationship table is shown in Table 6.
  • Table 6 lists only a limited number.
  • M 1/2 / 3 / 4 corresponds to the QPSK / 16QAM / 64QAM / 256QAM modulation mode.
  • the preferred embodiment is different from the first embodiment in that the terminal obtains first power indication information according to the DCI signaling sent by the base station, where the first power indication information is used to indicate an equivalent signal to interference and noise ratio SINR.
  • the first power indication information is an IMCS, which is an implicit first power indication information.
  • the terminal can obtain the equivalent signal to interference and noise ratio according to the IMCS looking up the MCS table.
  • An example of the MCS table is referred to Table 7. Similar to Table 1, in Table 7, each IMCS corresponds to an equivalent SINR.
  • the SINR is used to obtain information bits or position information of frozen bits when the code is compiled.
  • the first power indication information may further indicate one of the following: a signal power value, a signal power offset value, a noise power value, and a noise power offset value. It should be noted that the power value or the offset value can be used to obtain the information bit or the position information of the frozen bit when the code is compiled.
  • the channel condition parameters required for the polarization code encoding and decoding code are determined by signaling, and the length of the polarization code encoding output bit sequence is also flexibly determined, and the performance of the code and the compiled code are complicated. Degree, at the expense of smaller signaling overhead, realizes the coding code of the polarization code even without increasing the signaling overhead. It is beneficial to improve spectrum efficiency, improve system throughput, and meet the needs of next-generation wireless communication.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be through hardware, but in many cases the former is a better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a polarization code processing device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a structural block diagram 1 of a polarization code processing apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes:
  • the obtaining module 42 is configured to obtain the parameter information from the signaling sent by the first node, where the parameter information includes at least one of the following: the first power indication information, the number of resources allocated by the first node, and the modulation order;
  • the determining module 44 is connected to the obtaining module 42 and configured to determine the encoding parameter according to the parameter information and/or the locally stored second power indication information, where the encoding parameter comprises at least one of: for performing polarization code encoding or Bit position information, generation matrix, and code length of the decoded code.
  • the above-mentioned determining module 44 may determine the encoding parameter according to the parameter information acquired by the obtaining module 42 from the signaling sent by the first node and/or the locally stored second power indicating information, where the encoding parameter includes at least the following One: bit position information, generation matrix, and code length for performing polarization code coding or polarization code decoding, and thus decoding or encoding of the polarization code can be realized. Therefore, the polarization code cannot be solved in the related art. Coding or translating The problem with the code.
  • the parameter information may be in various forms.
  • the parameter information may include the first power indication information and the number of the foregoing resources, and may also include the first power indication information, the number of resources, and the modulation order, but to be limited thereto, for example, the parameter information may include first power indication information.
  • bit position information may be information bit position information or frozen bit position information.
  • the bit sequence of length N entering the polarization code encoder comprises information bits of length K and N-K known bits, which are also referred to as freeze bits.
  • the output of the polarization code encoder is a sequence of coded bits of length N. For the specified polarization code generation matrix, it is necessary to properly arrange the information bits or the position order of the frozen bits, that is, select a good channel for the information bits to obtain the performance of the better code.
  • the foregoing first power indication information is used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal to interference and noise ratio SINR. , noise variance.
  • the above power offset value refers to an offset value of the above power with respect to a specified reference signal power.
  • the signal power value, the signal power offset value, the noise power value, the noise power offset value, the SINR, and the noise variance are equivalent in effect, and are used to obtain the channel state and acquire signal power and noise.
  • the relationship of power is used to determine the position order of information bits or frozen bits when the code is compiled.
  • the foregoing second power indication information may also be used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal dry noise.
  • a signal power value a signal power value
  • a signal power offset value a noise power value
  • a noise power offset value a signal dry noise.
  • Specific SINR noise variance.
  • the determining module 44 is further configured to perform at least the following: One: determining an encoding code length according to the number of resources and the modulation order; determining the bit position information and/or a generation matrix according to the first power indication information, the encoding code length, and the modulation order And determining the bit position information and/or the generation matrix according to the second power indication information, the encoding code length, and the modulation order. .
  • the apparatus may further include: an acquiring module, connected to the determining module 44, configured to be in the parameter
  • the information includes: in the case of the first power indication information and the number of resources, acquiring the modulation order according to the first power indication information.
  • the code length is the bit sequence length of the encoder code output.
  • the foregoing code length may have at least one of the following characteristics: the code length is N1 when the specified condition is satisfied, and the code length is N2; wherein N1 is a minimum power of 2 greater than a predetermined threshold N0, N2 The value is the largest power of 2 less than N0, and N0 is determined by the number of allocated resources and the modulation order.
  • the above specified condition may be: N0>f(N1, N2); wherein f(N1, N2) is a function of N1 and/or N2.
  • N can be made more inclined to be selected as N2, which is advantageous to reduce the coding complexity.
  • N can be preset according to actual needs.
  • the output of the polarization code encoder will be punctured, that is, part of the bits output by the polarization code encoder are discarded without being transmitted; if the code length is N2, Then, the bits output by the polarization code encoder will be repeatedly transmitted, and then a bit sequence matching the time-frequency resource can be obtained.
  • the bit error rate of the polarization code can be improved and the complexity of encoding or decoding can be reduced.
  • the foregoing first power indication information may include: modulation Code scheme MCS index. Indicating power information through the MCS index can ensure that the polarization code is correctly performed without adding new signaling overhead.
  • the apparatus may further include: a sending module, connected to the acquiring module 42, configured to send second power indication information to the first node; wherein, the second power indicating information and the second power information correspond.
  • the second power indication information includes: a channel quality indicator CQI.
  • the foregoing second power indication information may include a channel quality indicator CQI.
  • the first power indication information and/or the second power indication information may include at least one of the following: explicit power indication information, implicit power indication information; wherein the explicit power indication information has At least one of the following features: the explicit power indication information is represented by M1 bits, and one value represented by the M1 bits corresponds to one first power information and/or second power information; the explicit power indication information is represented by M1 bits One value represented by M1 bits corresponds to one first power information and/or second power information and one power information interval; M1 is a positive integer.
  • the foregoing implicit power indication information may include at least one of the following: an MCS index, a CQI index, where one value of the MCS index or the CQI index corresponds to one first power information and/or second power information. That is, the first power information and/or the second power information are corresponding to the first power information and/or the second power information, and the first power information and/or the second power indication information may be used to obtain the first power information and / or second power information.
  • the first power information and/or the second power information have at least one of the following characteristics: when the power information interval belongs to the interval (a1, + ⁇ ), the first power information and/or the second power information take values. a first specified value; when the power information interval belongs to the interval (0, a2) or (- ⁇ , a2), the first power information and/or the second power information takes a second specified value; wherein, a1, a2 Is a real number, and a1 ⁇ a2.
  • Polarization codes can also be used for encoding or decoding within a large SNR range.
  • FIG. 5 is a root
  • the apparatus includes:
  • the receiving module 52 is configured to receive second power indication information sent by the second node, where the second power indication information corresponds to the second power information.
  • the sending module 54 is connected to the receiving module 52, and is configured to send signaling to the second node, where the signaling carries parameter information for determining the encoding parameter, where the parameter information includes at least one of the following: the first power indicating information And the number of resources allocated by the first node, the modulation order; the coding parameter includes at least one of the following: bit position information, a generation matrix, and an encoding code length used for performing polarization code coding or polarization code decoding.
  • the transmitting module 54 may send the parameter information carrying the determined encoding parameter to the second node, where the encoding parameter includes at least one of: bit position information for performing polarization code encoding or polarization code decoding, The matrix and the code length are generated, and the decoding or encoding of the polarization code can be realized. Therefore, the problem that the polarization code encoding or decoding cannot be solved in the related art can be solved.
  • the foregoing apparatus may include only the transmitting module 54 or the transmitting module 54 and the receiving module 52, but is not limited thereto.
  • bit position information may be information bit position information or frozen bit position information.
  • the bit sequence of length N entering the polarization code encoder comprises information bits of length K and N-K known bits, which are also referred to as freeze bits.
  • the output of the polarization code encoder is a sequence of coded bits of length N. For the specified polarization code generation matrix, it is necessary to properly arrange the information bits or the position order of the frozen bits, that is, select a good channel for the information bits to obtain the performance of the better code.
  • the foregoing first power indication information may include, but is not limited to, modulation coding.
  • Solution MCS index may include, but is not limited to, a channel quality indicator CQI.
  • the foregoing first power indication information is used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal to interference and noise ratio SINR. , noise variance.
  • the above power offset value refers to an offset value of the above power with respect to a specified reference signal power.
  • the signal power value, the signal power offset value, the noise power value, the noise power offset value, the SINR, and the noise variance are equivalent in effect, and are used to obtain the channel state and acquire signal power and noise.
  • the relationship of power is used to determine the position order of information bits or frozen bits when the code is compiled.
  • the foregoing second power indication information may also be used to indicate at least one of the following power information: a signal power value, a signal power offset value, a noise power value, a noise power offset value, and a signal dry noise.
  • a signal power value a signal power value
  • a signal power offset value a noise power value
  • a noise power offset value a signal dry noise.
  • Specific SINR noise variance.
  • the first power indication information and/or the second power indication information includes at least one of the following: explicit power indication information, implicit power indication information, where the explicit power indication information has the following At least one feature: the explicit power indication information is represented by M1 bits, and one value represented by the M1 bits corresponds to one first power information and/or second power information; the explicit power indication information is represented by M1 bits, One value represented by the M1 bits corresponds to a first power information and/or second power information and a power information interval; M1 is a positive integer; and the implicit power indication information includes at least one of: an MCS index, a CQI index; The value of the MCS index or the CQI index corresponds to one first power information and/or second power information.
  • the first power information and/or the second power information have at least one of the following characteristics: when the power information interval belongs to the interval (a1, + ⁇ ), the first power information and/or the second power information take the first designation a value; when the power information interval belongs to the interval (0, a2) or (- ⁇ , a2), the first power information and/or the second power information take a second specified value; wherein a1, a2 are real numbers, and A1 ⁇ a2.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a node comprising: the polarization code processing apparatus shown in FIG. 4 above.
  • the polarization code processing apparatus described in FIG. 4 reference may be made to the explanation of Embodiment 2, and details are not described herein again.
  • another node comprising: the polarization code processing apparatus shown in FIG. 5 above.
  • the polarization code processing apparatus shown in FIG. 5 above.
  • FIG. 5 For the explanation of the polarization code processing apparatus described in FIG. 5, reference may be made to the explanation of Embodiment 2, and details are not described herein again.
  • Embodiments of the present invention also provide a storage medium including a stored program, wherein the program is executed while performing the method of any of the above
  • the above storage medium may be set to store program code for executing the steps of the method in Embodiment 1.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present invention also provide a processor for running a program, wherein the program is executed to perform the steps of any of the above methods.
  • the above program is used to perform the steps of the method in Embodiment 1.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the coding parameter may be determined according to the parameter information acquired by the signaling sent from the first node, where the coding parameter is at least one of the following: used for performing polarization code coding or
  • the bit position information, the generation matrix, and the code length of the decoded code can further realize the decoding or encoding of the polarization code. Therefore, the problem that the polarization code encoding or decoding cannot be solved in the related art can be solved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种极化码处理方法及装置、节点;其中,该方法包括:从第一节点发送的信令中获取参数信息,其中,参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;根据参数信息和/或本地存储的第二功率指示信息确定编码参数,其中,编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。通过本发明,解决了相关技术中无法解决极化码编码或译码的问题。

Description

极化码处理方法及装置、节点 技术领域
本发明涉及通信领域,具体而言,涉及一种极化码处理方法及装置、节点。
背景技术
在长期演进(Long Term Evolution,简称LTE)系统中,为实现下行的自适应编码调制技术,上行需要传输包括信道状态信息(Channel State Information,简称CSI)在内的控制信令。CSI包括信道质量指示(Channel quality indication,简称CQI)、预编码矩阵指示(Pre-coding Matrix Indicator,简称PMI)和秩指示(Rank Indicator,简称RI)。CSI反映了下行物理信道状态。基站利用CSI进行下行调度,进行数据的编码调制。
CQI是用来衡量下行信道质量好坏的一个指标。在36-213协议中CQI用0~15的整数值索引来表示,分别代表了不同的CQI等级,不同CQI对应着各自的调制编码方案(Modulation and Coding Scheme,简称MCS)。用户设备(User Equiment,简称UE)所选择的CQI等级,应使得物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)传输块(Transport Block,简称TB)在该CQI所相应的MCS下的误块率不超过0.1,且所选CQI为满足该条件的最大CQI索引。
基站结合终端上报的CSI进行调度,并确定下行调制编码方案(Modulation and Coding Scheme,简称MCS)索引和资源分配信息。具体来说,Rel-8的LTE协议为物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)定义了一个调制和传输块大小表格(Modulation and TBS index table for PDSCH,以下也可称为下行MCS表)。表格共有32个等级,基本上每一等级对应一个MCS索引,而每一个MCS索引本质上对应一种MCS。而资源分配信息给出了下行传输需要占用的物理资源块个数(Number of Physical Resource Block,简称NPRB)。LTE标准还提供了一 个TBS表格。根据所述表格,给定MCS索引和NPRB后就可以得到传输块大小(Transport block size,简称TBS)。有了这些编码调制参数(MCS/NPRB/TBS)基站就可以进行下行数据的编码调制,进行下行传输。
终端接收下行传输的数据后,需要获取下行传输的MCS索引和资源分配信息用于数据的处理。而基站通过下行控制信息(Downlink Control Information,简称DCI)发送MCS索引和资源分配信息。基站采用特定的无线网络临时标识(Radio Network Temporary Identity,简称RNTI)加扰下行控制信息对应的循环冗余校验(CRC)比特。并通过物理下行控制信道(Physical Downlink Control Channel,简称PDCCH),以特定的下行控制信息格式(DCI format)发送下行控制信息。终端在公共搜索空间(Common Search Space,简称CSS)和用户设备专有搜索空间(UE-specific Search Space,简称USS)进行盲检索以获取下行控制信息。终端获取下行控制信息后根据TBS表格得到TBS,并用于解调解码。
无线网络临时标识有多种,包括半持续调度(Semi-persistent Scheduling,简称SPS)小区无线网络临时标识(Semi-persistent Scheduling Cell RNTI,简称SPS C-RNTI),小区无线网络临时标识(Cell RNTI,简称C-RNTI)等等。与PDSCH相关的DCI格式包括以下多种:DCI format1、DCI format 1A、DCI format 1B、DCI format 1C、DCI format 1D、DCI format 2、DCI format 2A、DCI format 2B、DCI format 2C、DCI format 2D等。
而上行的自适应编码调制也有类似的过程。基站利用终端发送的导频进行信道估计和调度,确定上行编码调制编码方案索引和资源分配信息。基站通过DCI下发MCS索引和资源分配信息,用于终端的调制编码处理。基站接收终端的数据后,根据相关编码调制参数(MCS/NPRB/TBS)进行解调译码。
在Rel-13版本的LTE标准中,物理共享信道主要采用Turbo码和卷积码,第五代无线通信技术研究则引入了更多新的编码方案,如极化码 (Polar Code)。极化码是一种利用信道极化并被理论证明能趋近对称二进制离散无记忆信道(B-DMC)容量的编码方式。极化码的构造中,需要利用噪声相关信息和信道条件相关信息为信息比特选择更好的极化信道。在标准的极化码编码器中,编码器输出比特序列长度N是2的幂次。N的选择还取决于时频资源能承载的比特数目和调制阶数等参数。
极化码的构造和编译码需要相关编码参数和信道相关信息。而具体如何解决极化码编码或者译码的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种极化码处理方法及装置、节点,以至少解决相关技术中无法解决极化码编码或译码的问题。
根据本发明的一个实施例,提供了一种极化码处理方法,包括:从第一节点发送的信令中获取参数信息,其中,参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;根据参数信息和/或本地存储的第二功率指示信息确定编码参数,其中,编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
在本发明实施例中,根据参数信息和/或第二功率指示信息确定编码参数包括以下至少之一:根据资源数目和调制阶数确定编码码长;根据第一功率指示信息、编码码长和调制阶数确定比特位置信息和/或生成矩阵;根据第二功率指示信息、编码码长和调制阶数确定比特位置信息和/或生成矩阵。
在本发明实施例中,在参数信息中包括:第一功率指示信息和资源数目的情况下,在根据参数信息确定编码参数之前,上述方法还包括:根据第一功率指示信息获取调制阶数。
在本发明实施例中,上述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比(Signal to Interference plus Noise Ratio,简称SINR)、噪声方差; 上述第二功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
在本发明实施例中,编码码长为极化码编码器编码输出的比特序列长度。
在本发明实施例中,编码码长具有以下至少之一特征:在满足指定条件时编码码长取N1,否则编码码长取N2;其中,N1取值为大于预设阈值的最小的2的幂次方,N2取值为小于预设阈值的最大的2的幂次方,预设阈值由分配的资源数目和调制阶数确定。
在本发明实施例中,指定条件为:N0>f(N1,N2);其中,f(N1,N2)为N1和/或N2的函数。
在本发明实施例中,f(N1,N2)包括以下至少之一:f(N1,N2)=sqrt(N1*N2),其中,sqrt表示取根号;f(N1,N2)=(N1+N2)/2。
在本发明实施例中,第一功率指示信息包括:调制编码方案MCS索引。
在本发明实施例中,在从第一节点发送的信令中获取参数信息之前,方法还包括,向第一节点发送第二功率指示信息;其中,第二功率指示信息与第二功率信息对应。
在本发明实施例中,第二功率指示信息包括:信道质量指示CQI。
在本发明实施例中,第一功率指示信息和/或第二功率指示信息包括以下至少之一:显式功率指示信息,隐式功率指示信息;其中,显式功率指示信息具有以下至少之一特征:显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息;显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息和一个功率信息区间;M1为正整数。
在本发明实施例中,隐式功率指示信息包括以下至少之一:MCS索引,CQI索引;其中,MCS索引或CQI索引的一个取值对应一个第一功 率信息/或第二功率信息。
在本发明实施例中,第一功率信息和/或第二功率信息具有以下至少之一特征:当功率信息区间属于区间(a1,+∞)时,第一功率信息和/或第二功率信息取值为第一指定值;当功率信息区间属于区间(0,a2)或者(-∞,a2)时,第一功率信息和/或第二功率信息取值为第二指定值;其中,a1,a2为实数,且a1≥a2。
根据本发明的一个实施例,提供了另一种极化码处理方法,包括:向第二节点发送信令,其中,信令中携带用于确定编码参数的参数信息,参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
在本发明实施例中,在向第二节点发送信令之前,方法还包括,接收第二节点发送的第二功率指示信息;其中,第二功率指示信息与第二功率信息对应,上述第二功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
在本发明实施例中,上述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
在本发明实施例中,第一功率指示信息包括:调制编码方案MCS索引。
在本发明实施例中,第二功率指示信息包括:信道质量指示CQI。
在本发明实施例中,第一功率指示信息和/或第二功率指示信息包括以下至少之一:显式功率指示信息,隐式功率指示信息;其中,显式功率指示信息具有以下至少之一特征:显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息;显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个 第一功率信息和/或第二功率信息和一个功率信息区间;M1为正整数;隐式功率指示信息包括以下至少之一:MCS索引,CQI索引;其中,MCS索引或CQI索引的一个取值对应一个第一功率信息/或第二功率信息。
在本发明实施例中,第一功率信息和/或第二功率信息具有以下至少之一特征:当功率信息区间属于区间(a1,+∞)时,第一功率信息和/或第二功率信息取值为第一指定值;当功率信息区间属于区间(0,a2)或者(-∞,a2)时,第一功率信息和/或第二功率信息取值为第二指定值;其中,a1,a2为实数,且a1≥a2。
根据本发明的一个实施例,提供了一种极化码处理装置,包括:获取模块,设置为从第一节点发送的信令中获取参数信息,其中,参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;确定模块,设置为根据参数信息和/或本地存储的第二功率指示信息确定编码参数,其中,编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
在本发明实施例中,确定模块,还设置为执行以下至少之一:根据所述资源数目和所述调制阶数确定编码码长;根据所述第一功率指示信息、所述编码码长和所述调制阶数确定所述比特位置信息和/或生成矩阵;根据所述第二功率指示信息、所述编码码长和所述调制阶数确定所述比特位置信息和/或所述生成矩阵。
在本发明实施例中,上述装置还包括:获取模块,设置为在所述参数信息中包括:所述第一功率指示信息和所述资源数目的情况下,根据所述第一功率指示信息获取所述调制阶数。
在本发明实施例中,上述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差;上述第二功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
在本发明实施例中,编码码长为编码器编码输出的比特序列长度。
在本发明实施例中,第一功率指示信息包括:调制编码方案MCS索引。
在本发明实施例中,装置还包括:发送模块,设置为向第一节点发送第二功率指示信息;其中,第二功率指示信息与第二功率信息对应。
在本发明实施例中,第二功率指示信息包括:信道质量指示CQI。
根据本发明的一个实施例,提供了另一种极化码处理装置,包括:发送模块,设置为向第二节点发送信令,其中,信令中携带用于确定编码参数的参数信息,参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
在本发明实施例中,装置还包括:接收模块,设置为接收第二节点发送的第二功率指示信息;其中,第二功率指示信息与第二功率对应;上述第二功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
在本发明实施例中,上述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
根据本发明的又一个实施例,提供了一种节点,包括:上述的极化码处理装置。
根据本发明的又一个实施例,提供了一种节点,包括:上述的极化码处理装置。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
从第一节点发送的信令中获取参数信息,其中,参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;根 据参数信息和/或本地存储的第二功率指示信息确定编码参数,其中,编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
通过本发明,由于可以根据从第一节点发送的信令获取的参数信息来确定编码参数,其中,该编码参数以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长,进而可以实现极化码的解码或者编码,因此,可以解决相关技术中无法解决极化码编码或译码的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的网络架构的示意图;
图2是根据本发明实施例的极化码处理方法的流程图一;
图3是根据本发明实施例的极化码处理方法的流程图二;
图4是根据本发明实施例的极化码处理装置的结构框图一;
图5是根据本发明实施例的极化码处理装置的结构框图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例可以运行于图1所示的网络架构上,如图1所示,该网 络架构包括:第一节点,第二节点,其中,第一节点与第二节点之间可以进行交互。
需要说明的是,上述第一节点可以是终端,基站,但并不限于此,第二节点也可以是终端,基站,但并不限于此。
在本实施例中提供了一种运行于网络架构的极化码处理方法,图2是根据本发明实施例的极化码处理方法的流程图一,如图2所示,该流程包括如下步骤:
步骤S202,从第一节点发送的信令中获取参数信息,其中,参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;
步骤S204,根据参数信息和/或本地存储的第二功率指示信息确定编码参数,其中,编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
通过上述步骤,由于可以根据从第一节点发送的信令获取的参数信息和/或本地存储的第二功率指示信息来确定编码参数,其中,该编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长,进而可以实现极化码的解码或者编码,因此,可以解决相关技术中无法解决极化码编码或译码的问题。
需要说明的是,上述比特位置信息可以是信息比特位置信息,也可以是冻结比特位置信息。进入极化码编码器的长度为N的比特序列包括长度为K的信息比特和N-K个已知比特,这N-K个已知比特也称为冻结比特。极化码编码器的输出则是长度为N的编码比特序列。对于指定的极化码生成矩阵,需要适当安排信息比特或者冻结比特的位置顺序,也就是为信息比特选择好的信道,才能获得比较好的码的性能。关于极化码编译码原理,可以参考论文:Erdal Arikan,Channel Polarization:A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels,IEEE Transactions on Information Theory,Vol.55,No. 7,July 2009。
需要说明的是,上述分配的资源数目,可以是物理下行共享信道PDSCH或者物理上行共享信道PUSCH资源分配时的物理资源块数目NPRB,也可以是控制信道资源分配单元,也可以是窄带物联网NB-IoT中的资源单元(Resource Unit)数目NRU。
需要说明的是,上述参数信息的表现形式有多种,比如上述参数信息可以包括第一功率指示信息和上述资源数目,也可以包括第一功率指示信息、资源分配数目和调制阶数,但并不限于此,比如上述参数信息可以包括第一功率指示信息。
在本发明的一个实施例中,在上述参数信息包括第一功率指示信息、资源数目和调制阶数,上述步骤S202可以表现以下至少之一:根据资源数目和调制阶数确定编码码长;根据第一功率指示信息、编码码长和调制阶数确定比特位置信息和/或生成矩阵;根据第二功率指示信息、编码码长和调制阶数确定比特位置信息和/或生成矩阵。
在上述参数信息中包括:第一功率指示信息和资源分配信息的情况下,在上述步骤S202之前,上述方法还可以包括:根据第一功率指示信息获取调制阶数。
需要说明的是,上述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。上述功率偏移值指上述功率相对于指定参考信号功率的偏移值。需要说明的是,这里信号功率值、信号功率偏移值,噪声功率值、噪声功率偏移值,SINR、噪声方差在效果上是等价的,都用于获得信道状态,获取信号功率与噪声功率的关系,用于极化码编译码时确定信息比特或者冻结比特的位置顺序。
需要说明的是,上述第二功率指示信息也可以用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。对于该功率信息的解释,参 考对第一功率指示信息的解释,此处不再赘述。
需要说明的是,编码码长为极化码编码器编码输出的比特序列长度。上述编码码长可以具有以下至少之一特征:在满足指定条件时编码码长取N1,否则编码码长取N2;其中,N1取值为大于预设阈值N0的最小的2的幂次方,N2取值为小于N0的最大的2的幂次方,N0由分配的资源数目和调制阶数确定。
需要说明的是,上述指定条件可以为:N0>f(N1,N2);其中,f(N1,N2)为N1和/或N2的函数。比如,上述f(N1,N2)包括以下至少之一:f(N1,N2)=sqrt(N1*N2),其中,sqrt表示取根号;f(N1,N2)=(N1+N2)/2,但并不限于此。
需要说明的是,相对于N1和N2的几何平均数f(N1,N2)=sqrt(N1*N2),采用N1和N2的算数平均数=(N1+N2)/2作为上述指定条件,可以使得N更倾向于选择为N2,进而有利于降低编译码复杂度。至于采用哪种指定条件可以根据实际需要进行预先设定。
需要说明的是,在上述编码码长取N1时,极化码编码器的输出将进行打孔,即将极化码编码器输出的部分比特进行舍弃,而不发送;如果上述编码码长取N2,则极化码编码器输出的比特将进行重复发送,进而可以得到与时频资源匹配的比特序列。通过根据指定条件确定编码码长的取值,可以提高极化码误块率和降低编码或者译码的复杂度。
在本发明的一个实施例中,上述第一功率指示信息可以包括:调制编码方案MCS索引,通过MCS索引指示功率信息可以保证极化码正确进行,也不增加新的信令开销。
在本发明的一个实施例中,在上述步骤S202之前,上述方法还可以包括:向第一节点发送第二功率指示信息;其中,第二功率指示信息与第二功率信息对应。
需要说明的是,第一节点也可以根据第二功率指示信息获取功率信息(第二功率信息),有助于更佳地选择极化码信息比特对应的好的信道, 进而可以提升极化码的性能。
需要说明的是,上述第二功率指示信息可以包括信道质量指示CQI。
在本发明的一个实施例中,上述第一功率指示信息和/或第二功率指示信息可以包括以下至少之一:显式功率指示信息,隐式功率指示信息;其中,显式功率指示信息具有以下至少之一特征:显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息;显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息和一个功率信息区间;M1为正整数。
需要说明的是,上述隐式功率指示信息可以包括以下至少之一:MCS索引,CQI索引;其中,MCS索引或CQI索引的一个取值对应一个第一功率信息/或第二功率信息。即通过第一功率指示信息和/第二功率指示信息对应一个第一功率信息和/或第二功率信息,进而可以通过第一功率指示信息和/第二功率指示信息来获取第一功率信息和/或第二功率信息。
需要说明的是,第一功率信息和/或第二功率信息具有以下至少之一特征:当功率信息区间属于区间(a1,+∞)时,第一功率信息和/或第二功率信息取值为第一指定值;当功率信息区间属于区间(0,a2)或者(-∞,a2)时,第一功率信息和/或第二功率信息取值为第二指定值;其中,a1,a2为实数,且a1≥a2。通过设定在功率信息区间属于区间(a1,+∞)或区间(0,a2)或者(-∞,a2)时功率信息的取值,进而扩展了极化码使用的功率或者信噪比(Signal Noise Ratio,简称SNR)区间,从而在更大的SNR范围内也能采用极化码来编码或者解码。
在本实施例中还提供了一种运行于网络架构的极化码处理方法,图3是根据本发明实施例的极化码处理方法的流程图二,如图3所示,该流程包括如下步骤:
步骤S302,接收第二节点发送的第二功率指示信息;其中,第二功率指示信息与第二功率对应;
步骤S304,向第二节点发送信令,其中,信令中携带用于确定编码参数的参数信息,参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
通过上述步骤,由于可以向第二节点发送携带确定编码参数的参数信息,其中,该编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长,进而可以实现极化码的解码或者编码,因此,可以解决相关技术中无法解决极化码编码或译码的问题。
需要说明的是,上述步骤S304可以与上述步骤S302,比如在上述步骤S304之前可以不执行步骤S302,也可以解决上述技术问题,并不限于此。
需要说明的是,上述比特位置信息可以是信息比特位置信息,也可以是冻结比特位置信息。进入极化码编码器的长度为N的比特序列包括长度为K的信息比特和N-K个已知比特,这N-K个已知比特也称为冻结比特。极化码编码器的输出则是长度为N的编码比特序列。对于指定的极化码生成矩阵,需要适当安排信息比特或者冻结比特的位置顺序,也就是为信息比特选择好的信道,才能获得比较好的码的性能。关于极化码编译码原理,可以参考论文:Erdal Arikan,Channel Polarization:A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels,IEEE Transactions on Information Theory,Vol.55,No.7,July 2009。
需要说明的是,上述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。上述功率偏移值指上述功率相对于指定参考信号功率的偏移值。需要说明的是,这里信号功率值、信号功率偏移值,噪声功率值、噪声功率偏移值,SINR、噪声方差在效果上是等价 的,都用于获得信道状态,获取信号功率与噪声功率的关系,用于极化码编译码时确定信息比特或者冻结比特的位置顺序。
需要说明的是,上述第二功率指示信息也可以用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。对于该功率信息的解释,参考对第一功率指示信息的解释,此处不再赘述。
需要说明的是,上述第二功率指示信息也可以作为上述第一方差指示信息使用。
需要说明的是,上述第一功率指示信息可以包括但不限于:调制编码方案MCS索引。上述第二功率指示信息可以包括但不限于:信道质量指示CQI。需要说明的是,第二功率指示信息与第二功率对应,第一功率指示信息与第一功率对应。
需要说明的是,也可以利用上述第二功率指示信息获取第二功率,有助于更好地选择极化码信息比特对应的好的信道,提高极化码的性能。
在本发明的一个实施例中,上述第一功率指示信息和/或第二功率指示信息包括以下至少之一:显式功率指示信息,隐式功率指示信息;其中,显式功率指示信息具有以下至少之一特征:显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息;显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息和一个功率信息区间;M1为正整数;隐式功率指示信息包括以下至少之一:MCS索引,CQI索引;其中,MCS索引或CQI索引的一个取值对应一个第一功率信息/或第二功率信息。
上述第一功率信息和/或第二功率信息具有以下至少之一特征:当功率信息区间属于区间(a1,+∞)时,第一功率信息和/或第二功率信息取值为第一指定值;当功率信息区间属于区间(0,a2)或者(-∞,a2)时,第一功率信息和/或第二功率信息取值为第二指定值;其中,a1,a2为实数,且a1 ≥a2。通过设定在功率信息区间属于区间(a1,+∞)或区间(0,a2)或者(-∞,a2)时功率信息的取值,进而扩展了极化码使用的功率信息或者SNR区间,从而在更大的SNR范围内也能采用极化码来编码或者解码。
为了更好地理解本发明以下结合优选的实施例对本发明做进一步解释。
优选实施例1
本优选实施例中,基站采用极化码进行编码处理,并把数据发送给终端。终端接收基站发送的下行控制信令DCI,从DCI中读取编码调制方案索引IMCS(Index of Modulation and Coding Scheme,简称IMCS,相当于上述实施例中的MCS索引)以及资源分配信息。根据IMCS查找MCS表获取调制阶数M以及传输块大小索引(Index of Transport Block Size,简称ITBS)。
本优选实施例中,终端根据基站发送的DCI信令得到第一功率指示信息,所述第一功率指示信息指示第一噪声方差。所述第一功率指示信息即是IMCS,为隐式功率指示信息。终端根据IMCS查找MCS表还可以获得等效噪声方差a。所述MCS表格的一个例子见表1。表1中,每个IMCS等级对应一个编码调制方案组合,该编码调制方案组合对应一个等效信噪比SNR区间或者也对应一个等效噪声方差区间A。在该等效噪声方差区间A内,该编码调制方案具有使块差错率(BLER)不大于0.1的最大频谱效率。表1中,每个IMCS对应一个噪声方差a。该噪声方差a用于极化码编码时的码构造。
本优选实施中,终端根据资源分配信息获得基站分配的物理资源块大小NPRB。终端根据NPRB和调制阶数确定极化码编码器编码输出的比特序列长度N。
具体地,令N0为时频资源上承载的比特数目,且N0=NPRB*REperRB*M。其中,REperRB为一个物理资源块PRB的资源单元RE(Resource Element)数目。N取为2的幂次且N的可能取值为{N1,N2}。 N1为大于N0的最小2的幂次,N2为小于N0的最大2的幂次。如果N0≥sqrt(N1*N2),则N=N1,否则N=N2。其中,sqrt表示取根号。如果N=N1,那么极化码编码器输出将进行打孔,即舍弃部分比特不发送;如果N=N2,那么极化码编码器输出的比特将进行重复发送。从而得到与时频资源匹配的比特序列。为N的取值提供两种可能,并根据条件选择其中之一的好处在于提高极化码误块率性能和降低编译码复杂度。比如,当N0接近N1时,采用打孔的方式对码长N1进行打孔性能更优;当N0接近N2时,选择N2作为码长并重复发送,复杂度更低,性能更好。
本优选实施例中,N0≥sqrt(N1*N2),所以N=N1。本实施中,终端还根据ITBS和NPRB查找传输块大小表得到传输块大小TBS。
进一步地,终端根据调制阶数M和噪声方差a,以及码长N确定信息比特位置信息。具体地,终端根据极化码构造方法获得长度为TBS的信息比特位置,这些位置对应TBS个好的极化信道。好信道的获取可以采用高斯近似法。等价地,终端也可以根据调制阶数M和噪声方差a,以及码长N确定极化码生成矩阵。
进一步地,终端根据N,信息比特位置信息(或者生成矩阵),噪声方差a和调制阶数M进行极化码的解码并得到译码数据。
本优选实施中,通过IMCS指示噪声方差,可以保证极化码译码正确进行。也不增加新的信令开销。
表1
Figure PCTCN2017084220-appb-000001
优选实施例2
本优选实施例与优选实施例1的不同之处在于,终端根据基站发送的DCI信令得到第一功率指示信息。所述第一功率指示信息不是IMCS,而是显式功率指示信息Iad。所述第一功率指示信息指示第一噪声方差。
Iad用M1=5个比特共32个等级表示。5个比特的取值为0~31。每一个取值对应一个第一噪声方差数值a和一个噪声方差区间A。所述Iad取值和a/A的对应关系的一个例子如表2所示。终端根据Iad查找表2,即可以得到对应的a。该噪声方差a用于极化码编码时的码构造,也是终端译码所需知道的参数。
另外,在基站侧,基站进行极化码编码时,根据实际噪声方差所在区间A和表2得到a,并根据a进行编码。
表2中,当A为(1.4380,+∞)和[0,0.0011)时,a的取值分别为1.7982和0.0011。这样做扩展了极化码适用的噪声方差或者SNR区间,从而在更大的SNR范围内也能采用极化码来编译码。
表2
Figure PCTCN2017084220-appb-000002
本实施例中,所述第一功率指示信息还可以指示以下之一:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、等效SINR。对应地,表2中的噪声方差指示信息(显式功率指示信息)Iad的每一个取值对应一个功率值/功率偏移值/SINR,以及一个功率/功率偏移值/SINR区间。根据功率值/功率偏移值/SINR的不同定义,对应的功率值 /功率偏移值/SINR的取值可能是负无穷到正无穷。需要说明的是,所述的功率值或者偏移值,SINR都可用于极化码编译码时获得信息比特或者冻结比特的位置信息。
优选实施例3
本优选实施例中,基站采用极化码进行编码处理。在进行极化码编码前,基站需要获得下行链路等效的第二功率指示信息,该功率信息可用于极化码编码时的码构造。
终端向基站发送第二功率指示信息,所述第二功率指示信息是显式功率指示信息Iad。用于指示第二噪声方差。所述Iad用M1=5个比特共32个等级表示。5个比特的取值为0~31。每一个取值对应一个噪声方差数值a和一个噪声方差区间A。所述Iad取值和a/A的对应关系的一个例子如上述表2所示。
终端进行信道估计获得实际链路的第二噪声方差,根据获取的噪声方差得到对应的区间A,并根据表2得到Iad。
基站根据Iad查找表2即可得到对应的A和第二噪声方差a。
基站通过终端发送的第二功率指示信息获取噪声方差,有助于更好地选择极化码信息比特对应的好信道,提升码的性能。事实上,基站也可以使用终端发送的第二功率指示信息作为第一功率指示信息。
本实施例中,所述第二功率指示信息还可以指示以下之一:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、等效SINR。对应地,表2中的噪声方差指示信息(显式功率指示信息)Iad的每一个取值对应一个功率值/功率偏移值/SINR,以及一个功率/功率偏移值/SINR区间。需要说明的是,所述的功率值或者偏移值,SINR都可用于极化码编译码时获得信息比特或者冻结比特的位置信息。
优选实施例4
本优选实施例与优选实施例4的不同之处在于,基站获得的第二功率指示信息是隐式功率指示信息,指示第二噪声方差,且是信道质量指示 CQI。CQI与第二噪声方差a的对应关系表的一个例子如表3所示。基站根据CQI查找表3即可得到对应的a。
表3
Figure PCTCN2017084220-appb-000003
本实施例中,所述CQI还可以指示以下之一:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、等效SINR。对应地,表3中的CQI的每一个取值对应一个功率值/功率偏移值/SINR,以及一个功率/功率偏移值/SINR区间。需要说明的是,所述的功率值或者偏移值,SINR都可用于极化码编译码时获得信息比特或者冻结比特的位置信息。
优选实施例5
本优选实施例与优选实施例5的不同之处在于,终端根据NPRB和调制阶数确定极化码编码器编码输出的比特序列长度N时,如果N0≥(N1+N2)/2,则N=N1,否则N=N2。相对于N1和N2的几何平均数,采用N1和N2的算术平均数作为判别条件,可以使N更倾向于选择为N2,从而有利于降低编译码复杂度。
优选实施例6
本优选实施例与优选实施例1的不同之处在于N0的确定。本优选实施例中极化码编码后比特采用M-QAM调制方式进行调制处理,此处M为偶数。且总共有M/2个极化码编码器,每个编码器的输出对应M-QAM 星座点M个比特中的两个。因此N0满足N0=NPRB*REperRB*M/(M/2)=2*NPRB*REperRB。其中,REperRB为一个物理资源块PRB的资源单元RE(Resource Element)数目。
优选实施例7
本优选实施例中,终端采用极化码进行编码处理,并把数据发送给基站。
本优选实施例中,终端接收基站发送的DCI。从DCI中读取编码调制方案索引IMCS以及资源分配信息。根据IMCS查找MCS表获取调制阶数M以及传输块大小索引ITBS。
本优选实施例中,终端根据基站发送的DCI信令得到第一功率指示信息。所述第一功率指示信息即是IMCS,为隐式功率指示信息,指示第一噪声方差。终端根据IMCS查找MCS表还可以获得等效噪声方差a。所述MCS表格的一个例子见表1。表1中,每个IMCS等级对应一个编码调制方案组合,该编码调制方案组合对应一个等效信噪比SNR区间,也对应一个等效噪声方差区间A。在该等效噪声方差区间A内,该编码调制方案具有使BLER不大于0.1的最大频谱效率。表1中,每个IMCS对应一个噪声方差a。该噪声方差a用于极化码编码时的码构造。
本优选实施中,终端根据资源分配信息获得基站分配的物理资源块大小NPRB。终端根据NPRB和调制阶数确定极化码编码器编码输出的比特序列长度N。
具体地,令N0为时频资源上承载的比特数目,且N0=NPRB*REperRB*M。其中,REperRB为一个物理资源块PRB的资源单元RE(Resource Element)数目。N取为2的幂次且N的可能取值为{N1,N2}。N1为大于N0的最小2的幂次N1,N2为小于N0的最大2的幂次。如果N0≥sqrt(N1*N2),则N=N1,否则N=N2。其中,sqrt表示取根号。如果N=N1,那么极化码编码器输出将进行打孔,即舍弃部分比特不发送;如果N=N2,那么极化码编码器输出的比特将进行重复发送。从而得到与 时频资源匹配的比特序列。为N的取值提供两种可能,并根据条件选择其中之一的好处在于提高极化码误块率性能和降低编译码复杂度。比如,当N0和接近N1时,采用打孔的方式对码长N1进行打孔性能更优;当N0和接近N2时,选择N2作为码长并重复发送,复杂度更低,性能也不会有大的下降。
本优选实施例中,N0≥sqrt(N1*N2),所以N=N1。本实施中,终端还根据ITBS和NPRB查找传输块大小表得到传输块大小TBS。
进一步地,终端根据调制阶数M和噪声方差a,以及码长N确定信息比特位置信息。具体地,终端根据极化码构造方法获得长度为TBS的信息比特位置,这些位置对应TBS个好的极化信道。好信道的获取可以采用高斯近似法。等价地,终端也可以根据调制阶数M和噪声方差a,以及码长N确定极化码生成矩阵。
进一步地,终端根据N,信息比特位置信息(或者生成矩阵),噪声方差a和调制阶数M进行极化码的编码。
本优选实施中,通过IMCS指示噪声方差,可以保证极化码编码正确进行。也不增加新的信令开销。
优选实施例8
本优选实施例与优选实施例1的不同之处在于获取极化码编码器编码输出的比特序列长度N的方法不同。
终端根据资源分配信息获得基站分配的物理资源块大小NPRB。终端根据NPRB和调制阶数确定极化码编码器编码输出的比特序列长度N。具体地,终端根据NPRB和调制阶数M,查阅NPRB/M到N的映射表格得到N。所述映射表格的一个例子如表4所示。当然,表4可能只是所述表格的一个部分。
表4
Figure PCTCN2017084220-appb-000004
表4中,M=1/2/3/4分别对应QPSK/16QAM/64QAM/256QAM调制方式。
优选实施例9
本优选实施例与优选实施例8的不同之处在于映射表格的不同。终端根据资源分配信息获得基站分配的物理资源块大小NPRB。终端根据NPRB和调制阶数确定极化码编码器编码输出的比特序列长度N。具体地,终端根据NPRB和IMCS,查阅NPRB/IMCS到N的映射表格得到N。所述映射表格的一个例子如表5所示。当然,表5可能只是所述表格的一个部分。
表5
Figure PCTCN2017084220-appb-000005
本优选实施例中,IMCS隐含了调制阶数M。IMCS的一个区间与一个M相对应。
在另一个优选实施例中,表5的IMCS也可以被ITBS所替代,ITBS也隐含了M。
优选实施例10
本优选实施例与优选实施例8的不同之处在于映射表格的不同。终端根据资源分配信息获得资源数目即基站分配的物理资源块大小NPRB。终 端根据NPRB和调制阶数确定极化码编码器编码输出的比特序列长度N。
具体地,终端根据NPRB和M得到两者乘积M*NPRB,再查阅NPRB*M到N的映射表格得到N。所述映射关系表格的一个例子如表6所示。这里,表6只列出有限的等级。
表6
M*NPRB 2 4 6 8 10 12 14 16 18 20
N 256 512 1024 1024 2048 2048 2048 2048 4096 4096
表6中,M=1/2/3/4分别对应QPSK/16QAM/64QAM/256QAM调制方式。
优选实施例11
本优选实施例与实施例1的不同之处在于,终端根据基站发送的DCI信令得到第一功率指示信息,所述第一功率指示信息用于指示等效信干噪比SINR。所述第一功率指示信息即是IMCS,为隐式第一功率指示信息。终端根据IMCS查找MCS表可以获得等效信干噪比。所述MCS表格的一个例子参照表7。类似于表1,表7中,每个IMCS对应一个等效SINR。该SINR用于极化码编译码时获得信息比特或者冻结比特的位置信息。
表7
Figure PCTCN2017084220-appb-000006
本优选实施例中,所述第一功率指示信息还可以指示以下之一:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值。需要说明的是,所述的功率值或者偏移值都可用于极化码编译码时获得信息比特或者冻结比特的位置信息。
通过上述优选实施例提供的编码或者译码处理方案,通过信令确定极化码编译码所需的信道条件参数,还灵活确定极化码编码输出比特序列长度,兼顾码的性能和编译码复杂度,以较小的信令开销为代价,甚至在不增加信令开销的情况下实现极化码的编译码。有利于提升频谱效率,提升系统吞吐量,满足新一代无线通信需求。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根 据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种极化码处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的极化码处理装置的结构框图一,如图4所示,该装置包括:
获取模块42,设置为从第一节点发送的信令中获取参数信息,其中,参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;
确定模块44,与上述获取模块42连接,设置为根据参数信息和/或本地存储的第二功率指示信息确定编码参数,其中,编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
通过上述装置,由于上述确定模块44可以根据获取模块42从第一节点发送的信令获取的参数信息和/或本地存储的第二功率指示信息来确定编码参数,其中,该编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长,进而可以实现极化码的解码或者编码,因此,可以解决相关技术中无法解决极化码编码或译 码的问题。
需要说明的是,上述参数信息的表现形式有多种,比如上述参数信息可以包括第一功率指示信息和上述资源数目,也可以包括第一功率指示信息、资源数目和调制阶数,但并不限于此,比如上述参数信息可以包括第一功率指示信息。
需要说明的是,上述比特位置信息可以是信息比特位置信息,也可以是冻结比特位置信息。进入极化码编码器的长度为N的比特序列包括长度为K的信息比特和N-K个已知比特,这N-K个已知比特也称为冻结比特。极化码编码器的输出则是长度为N的编码比特序列。对于指定的极化码生成矩阵,需要适当安排信息比特或者冻结比特的位置顺序,也就是为信息比特选择好的信道,才能获得比较好的码的性能。关于极化码编译码原理,可以参考论文:Erdal Arikan,Channel Polarization:A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels,IEEE Transactions on Information Theory,Vol.55,No.7,July 2009。
需要说明的是,上述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。上述功率偏移值指上述功率相对于指定参考信号功率的偏移值。需要说明的是,这里信号功率值、信号功率偏移值,噪声功率值、噪声功率偏移值,SINR、噪声方差在效果上是等价的,都用于获得信道状态,获取信号功率与噪声功率的关系,用于极化码编译码时确定信息比特或者冻结比特的位置顺序。
需要说明的是,上述第二功率指示信息也可以用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。对于该功率信息的解释,参考对第一功率指示信息的解释,此处不再赘述。
在本发明的一个实施例中,上述确定模块44,还设置为执行以下至少 之一:根据所述资源数目和所述调制阶数确定编码码长;根据所述第一功率指示信息、所述编码码长和所述调制阶数确定所述比特位置信息和/或生成矩阵;根据所述第二功率指示信息、所述编码码长和所述调制阶数确定所述比特位置信息和/或所述生成矩阵。。
在本发明的一个实施例中,在上述参数信息中包括:第一功率指示信息和资源数目的情况下,上述装置还可以包括:获取模块,与上述确定模块44连接,设置为在所述参数信息中包括:所述第一功率指示信息和所述资源数目的情况下,根据所述第一功率指示信息获取所述调制阶数。
在本发明实施例中,编码码长为编码器编码输出的比特序列长度。
上述编码码长可以具有以下至少之一特征:在满足指定条件时编码码长取N1,否则编码码长取N2;其中,N1取值为大于预定阈值N0的最小的2的幂次方,N2取值为小于N0的最大的2的幂次方,N0由分配的资源数目和调制阶数确定。
需要说明的是,上述指定条件可以为:N0>f(N1,N2);其中,f(N1,N2)为N1和/或N2的函数。比如,上述f(N1,N2)包括以下至少之一:f(N1,N2)=sqrt(N1*N2),其中,sqrt表示取根号;f(N1,N2)=(N1+N2)/2,但并不限于此。
需要说明的是,相对于N1和N2的几何平均数f(N1,N2)=sqrt(N1*N2),采用N1和N2的算数平均数f(N1,N2)=(N1+N2)/2作为上述指定条件,可以使得N更倾向于选择为N2,进而有利于降低编译码复杂度。至于采用哪种指定条件可以根据实际需要进行预先设定。
需要说明的是,在上述编码码长取N1时,极化码编码器的输出将进行打孔,即将极化码编码器输出的部分比特进行舍弃,而不发送;如果上述编码码长取N2,则极化码编码器输出的比特将进行重复发送,进而可以得到与时频资源匹配的比特序列。通过根据指定条件确定编码码长的取值,可以提高极化码误块率和降低编码或者译码的复杂度。
在本发明的一个实施例中,上述第一功率指示信息可以包括:调制编 码方案MCS索引。通过MCS索引指示功率信息可以保证极化码正确进行,也不增加新的信令开销。
在本发明的一个实施例中,上述装置还可以包括:发送模块,与上述获取模块42连接,设置为向第一节点发送第二功率指示信息;其中,第二功率指示信息与第二功率信息对应。
在本发明实施例中,第二功率指示信息包括:信道质量指示CQI。
需要说明的是,上述第二功率指示信息可以包括信道质量指示CQI。
在本发明的一个实施例中,上述第一功率指示信息和/或第二功率指示信息可以包括以下至少之一:显式功率指示信息,隐式功率指示信息;其中,显式功率指示信息具有以下至少之一特征:显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息;显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息和一个功率信息区间;M1为正整数。
需要说明的是,上述隐式功率指示信息可以包括以下至少之一:MCS索引,CQI索引;其中,MCS索引或CQI索引的一个取值对应一个第一功率信息/或第二功率信息。即通过第一功率指示信息和/第二功率指示信息对应一个第一功率信息和/或第二功率信息,进而可以通过第一功率指示信息和/第二功率指示信息来获取第一功率信息和/或第二功率信息。
需要说明的是,第一功率信息和/或第二功率信息具有以下至少之一特征:当功率信息区间属于区间(a1,+∞)时,第一功率信息和/或第二功率信息取值为第一指定值;当功率信息区间属于区间(0,a2)或者(-∞,a2)时,第一功率信息和/或第二功率信息取值为第二指定值;其中,a1,a2为实数,且a1≥a2。通过设定在功率信息区间属于区间(a1,+∞)或区间(0,a2)或者(-∞,a2)时功率信息的取值,进而扩展了极化码使用的SINR区间,从而在更大的SNR范围内也能采用极化码来编码或者解码。
根据本发明的一个实施例,提供了另一种极化码处理装置,图5是根 据本发明实施例的极化码处理装置的结构框图二,如图5所示,该装置包括:
接收模块52,设置为接收第二节点发送的第二功率指示信息;其中,第二功率指示信息与第二功率信息对应。
发送模块54,与上述接收模块52连接,设置为向第二节点发送信令,其中,信令中携带用于确定编码参数的参数信息,参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
通过上述装置,由于发送模块54可以向第二节点发送携带确定编码参数的参数信息,其中,该编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长,进而可以实现极化码的解码或者编码,因此,可以解决相关技术中无法解决极化码编码或译码的问题。
需要说明的是,上述装置中可以只包括发送模块54,也可以包括发送模块54和接收模块52,但并不限于此。
需要说明的是,上述比特位置信息可以是信息比特位置信息,也可以是冻结比特位置信息。进入极化码编码器的长度为N的比特序列包括长度为K的信息比特和N-K个已知比特,这N-K个已知比特也称为冻结比特。极化码编码器的输出则是长度为N的编码比特序列。对于指定的极化码生成矩阵,需要适当安排信息比特或者冻结比特的位置顺序,也就是为信息比特选择好的信道,才能获得比较好的码的性能。关于极化码编译码原理,可以参考论文:Erdal Arikan,Channel Polarization:A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels,IEEE Transactions on Information Theory,Vol.55,No.7,July 2009。
需要说明的是,上述第一功率指示信息可以包括但不限于:调制编码 方案MCS索引。上述第二功率指示信息可以包括但不限于:信道质量指示CQI。
需要说明的是,上述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。上述功率偏移值指上述功率相对于指定参考信号功率的偏移值。需要说明的是,这里信号功率值、信号功率偏移值,噪声功率值、噪声功率偏移值,SINR、噪声方差在效果上是等价的,都用于获得信道状态,获取信号功率与噪声功率的关系,用于极化码编译码时确定信息比特或者冻结比特的位置顺序。
需要说明的是,上述第二功率指示信息也可以用于指示以下至少之一功率信息:信号功率值、信号功率偏移值(power offset)、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。对于该功率信息的解释,参考对第一功率指示信息的解释,此处不再赘述。
在本发明的一个实施例中,上述第一功率指示信息和/或第二功率指示信息包括以下至少之一:显式功率指示信息,隐式功率指示信息;其中,显式功率指示信息具有以下至少之一特征:显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息;显式功率指示信息用M1个比特表示,M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息和一个功率信息区间;M1为正整数;隐式功率指示信息包括以下至少之一:MCS索引,CQI索引;其中,MCS索引或CQI索引的一个取值对应一个第一功率信息/或第二功率信息。
上述第一功率信息和/或第二功率信息具有以下至少之一特征:当功率信息区间属于区间(a1,+∞)时,第一功率信息和/或第二功率信息取值为第一指定值;当功率信息区间属于区间(0,a2)或者(-∞,a2)时,第一功率信息和/或第二功率信息取值为第二指定值;其中,a1,a2为实数,且a1≥a2。通过设定在功率信息区间属于区间(a1,+∞)或区间(0,a2)或者 (-∞,a2)时功率信息的取值,进而扩展了极化码使用的SINR区间,从而在更大的SNR范围内也能采用极化码来编码或者解码。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
根据本发明的一个实施例,提供了一种节点,包括:上述图4所示的极化码处理装置。对于图4所述的极化码处理装置的解释可以参考实施例2的解释,此处不再赘述。
根据本发明的一个实施例,提供了另一种节点,包括:上述图5所示的极化码处理装置。对于图5所述的极化码处理装置的解释可以参考实施例2的解释,此处不再赘述。
实施例4
本发明的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行实施例1中的方法的步骤的程序代码。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本发明的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,在本实施例中,上述程序用于执行实施例1中的方法的步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,由于可以根据从第一节点发送的信令获取的参数信息来确定编码参数,其中,该编码参数以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长,进而可以实现极化码的解码或者编码,因此,可以解决相关技术中无法解决极化码编码或译码的问题。

Claims (37)

  1. 一种极化码处理方法,包括:
    从第一节点发送的信令中获取参数信息,其中,所述参数信息中包括以下至少之一:第一功率指示信息、所述第一节点分配的资源数目、调制阶数;
    根据所述参数信息和/或本地存储的第二功率指示信息确定编码参数,其中,所述编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
  2. 根据权利要求1所述的方法,其中,根据所述参数信息和/或第二功率指示信息确定编码参数包括以下至少之一:
    根据所述资源数目和所述调制阶数确定编码码长;
    根据所述第一功率指示信息、所述编码码长和所述调制阶数确定所述比特位置信息和/或所述生成矩阵;
    根据所述第二功率指示信息、所述编码码长和所述调制阶数确定所述比特位置信息和/或所述生成矩阵。
  3. 根据权利要求2所述的方法,其中,在所述参数信息中包括:所述第一功率指示信息和所述资源数目的情况下,在根据所述参数信息确定编码参数之前,所述方法还包括:根据所述第一功率指示信息获取所述调制阶数。
  4. 根据权利要求1所述的方法,其中,所述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差;所述第二功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
  5. 根据权利要求1所述的方法,其中,所述编码码长为极化码 编码器编码输出的比特序列长度。
  6. 根据权利要求5所述的方法,其中,所述编码码长具有以下至少之一特征:
    在满足指定条件时编码码长取N1,否则所述编码码长取N2;其中,N1取值为大于预设阈值的最小的2的幂次方,N2取值为小于所述预设阈值的最大的2的幂次方。
  7. 根据权利要求6所述的方法,其中,所述预设阈值由所述资源数目和所述调制阶数确定。
  8. 根据权利要求6所述的方法,其中,所述指定条件为:N0>f(N1,N2);其中,f(N1,N2)为N1和/或N2的函数。
  9. 根据权利要求8所述的方法,其中,所述f(N1,N2)包括以下至少之一:
    f(N1,N2)=sqrt(N1*N2),其中,sqrt表示取根号;
    f(N1,N2)=(N1+N2)/2。
  10. 根据权利要求1所述的方法,其中,所述第一功率指示信息包括:调制编码方案MCS索引。
  11. 根据权利要求1所述的方法,其中,在从第一节点发送的信令中获取参数信息之前,所述方法还包括,向所述第一节点发送所述第二功率指示信息;其中,所述第二功率指示信息与第二功率信息对应。
  12. 根据权利要求1所述的方法,其中,所述第二功率指示信息包括:信道质量指示CQI。
  13. 根据权利要求1所述的方法,其中,第一功率指示信息和/或第二功率指示信息包括以下至少之一:显式功率指示信息,隐式功率指示信息;其中,所述显式功率指示信息具有以下至少之一特征:
    所述显式功率指示信息用M1个比特表示,所述M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息;
    所述显式功率指示信息用M1个比特表示,所述M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息和一个功率信息区间;M1为正整数。
  14. 根据权利要求13所述的方法,其中,所述隐式功率指示信息包括以下至少之一:
    MCS索引,CQI索引;其中,所述MCS索引或CQI索引的一个取值对应一个第一功率信息/或第二功率信息。
  15. 根据权利要求13所述的方法,其中,所述第一功率信息和/或第二功率信息具有以下至少之一特征:
    当所述功率信息区间属于区间(a1,+∞)时,所述第一功率信息和/或第二功率信息取值为第一指定值;
    当所述功率信息区间属于区间(0,a2)或者(-∞,a2)时,所述第一功率信息和/或第二功率信息取值为第二指定值;
    其中,a1,a2为实数,且a1≥a2。
  16. 一种极化码处理方法,包括:
    向第二节点发送信令,其中,所述信令中携带用于确定编码参数的参数信息,所述参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;所述编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
  17. 根据权利要求16所述的方法,其中,在向第二节点发送信令之前,所述方法还包括,接收所述第二节点发送的第二功率指示信息;其中,所述第二功率指示信息与第二功率信息对应,所述第二功 率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
  18. 根据权利要求16所述的方法,其中,所述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
  19. 根据权利要求16所述的方法,其中,所述第一功率指示信息包括:调制编码方案MCS索引。
  20. 根据权利要求17所述的方法,其中,所述第二功率指示信息包括:信道质量指示CQI。
  21. 根据权利要求16或17所述的方法,其中,第一功率指示信息和/或第二功率指示信息包括以下至少之一:显式功率指示信息,隐式功率指示信息;
    其中,所述显式功率指示信息具有以下至少之一特征:所述显式功率指示信息用M1个比特表示,所述M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息;所述显式功率指示信息用M1个比特表示,所述M1个比特所表示的一个取值对应一个第一功率信息和/或第二功率信息和一个功率信息区间;M1为正整数;
    所述隐式功率指示信息包括以下至少之一:MCS索引,CQI索引;其中,所述MCS索引或CQI索引的一个取值对应一个第一功率信息/或第二功率信息。
  22. 根据权利要求21所述的方法,其中,所述第一功率信息和/或第二功率信息具有以下至少之一特征:
    当所述功率信息区间属于区间(a1,+∞)时,所述第一功率信息和/或第二功率信息取值为第一指定值;
    当所述功率信息区间属于区间(0,a2)或者(-∞,a2)时,所述第一功率信息和/或第二功率信息取值为第二指定值;
    其中,a1,a2为实数,且a1≥a2。
  23. 一种极化码处理装置,包括:
    获取模块,设置为从第一节点发送的信令中获取参数信息,其中,所述参数信息中包括以下至少之一:第一功率指示信息、所述第一节点分配的资源数目、调制阶数;
    确定模块,设置为根据所述参数信息和/或本地存储的第二功率指示信息确定编码参数,其中,所述编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
  24. 根据权利要求23所述的装置,其中,所述确定模块还设置为执行以下至少之一:
    根据所述资源数目和所述调制阶数确定编码码长;
    根据所述第一功率指示信息、所述编码码长和所述调制阶数确定所述比特位置信息和/或生成矩阵;
    根据所述第二功率指示信息、所述编码码长和所述调制阶数确定所述比特位置信息和/或所述生成矩阵。
  25. 根据权利要求24所述的装置,其中,所述装置还包括:获取模块,设置为在所述参数信息中包括:所述第一功率指示信息和所述资源数目的情况下,根据所述第一功率指示信息获取所述调制阶数。
  26. 根据权利要求23所述的装置,其中,所述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差;所述第二功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方 差。
  27. 根据权利要求23所述的装置,其中,所述编码码长为极化码编码器编码输出的比特序列长度。
  28. 根据权利要求23所述的装置,其中,所述第一功率指示信息包括:调制编码方案MCS索引。
  29. 根据权利要求23或者24所述的装置,其中,所述装置还包括:发送模块,设置为向所述第一节点发送第二功率指示信息;其中,所述第二功率指示信息与第二功率信息对应。
  30. 根据权利要求29所述的装置,其中,所述第二功率指示信息包括:信道质量指示CQI。
  31. 一种极化码处理装置,包括:
    发送模块,设置为向第二节点发送信令,其中,所述信令中携带用于确定编码参数的参数信息,所述参数信息中包括以下至少之一:第一功率指示信息、第一节点分配的资源数目、调制阶数;所述编码参数包括以下至少之一:用于进行极化码编码或者极化码解码的比特位置信息、生成矩阵、编码码长。
  32. 根据权利要求31所述的装置,其中,所述装置还包括:接收模块,设置为接收所述第二节点发送的第二功率指示信息;其中,所述第二功率指示信息与第二功率对应;所述第二功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
  33. 根据权利要求31所述的装置,其中,所述第一功率指示信息用于指示以下至少之一功率信息:信号功率值、信号功率偏移值、噪声功率值、噪声功率偏移值、信干噪比SINR、噪声方差。
  34. 一种节点,包括:权利要求23至30中任一项所述的装置。
  35. 一种节点,包括:权利要求31至33中任一项所述的装置。
  36. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至22中任一项所述的方法。
  37. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至22中任一项所述的方法。
PCT/CN2017/084220 2016-05-13 2017-05-12 极化码处理方法及装置、节点 WO2017194012A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610319347.1 2016-05-13
CN201610319347 2016-05-13
CN201610451966.6A CN107370564B (zh) 2016-05-13 2016-06-21 极化码处理方法及装置、节点
CN201610451966.6 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017194012A1 true WO2017194012A1 (zh) 2017-11-16

Family

ID=60266268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084220 WO2017194012A1 (zh) 2016-05-13 2017-05-12 极化码处理方法及装置、节点

Country Status (2)

Country Link
CN (1) CN113890686B (zh)
WO (1) WO2017194012A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035485A (zh) * 2018-01-11 2019-07-19 华为技术有限公司 上行信息的传输方法和装置
WO2022222726A1 (zh) * 2021-04-21 2022-10-27 华为技术有限公司 一种数据处理的方法以及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694625A (zh) * 2012-06-15 2012-09-26 北京邮电大学 一种循环冗余校验辅助的极化码译码方法
CN103023618A (zh) * 2013-01-11 2013-04-03 北京邮电大学 一种任意码长的极化编码方法
CN103916220A (zh) * 2014-04-15 2014-07-09 电子科技大学 一种基于极化码的网络编码协作通信方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980247B (zh) * 2014-04-04 2019-11-22 北京三星通信技术研究有限公司 自适应调整调制编码方式和参考信号图样的方法、基站、终端和系统
CN104202115B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 高阶编码的调制处理方法及装置、基站、终端
CN105099622B (zh) * 2015-07-01 2018-10-19 北京邮电大学 极化编码调制中信道可靠度的确定方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694625A (zh) * 2012-06-15 2012-09-26 北京邮电大学 一种循环冗余校验辅助的极化码译码方法
CN103023618A (zh) * 2013-01-11 2013-04-03 北京邮电大学 一种任意码长的极化编码方法
CN103916220A (zh) * 2014-04-15 2014-07-09 电子科技大学 一种基于极化码的网络编码协作通信方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035485A (zh) * 2018-01-11 2019-07-19 华为技术有限公司 上行信息的传输方法和装置
CN110035485B (zh) * 2018-01-11 2022-11-22 华为技术有限公司 上行信息的传输方法和装置
US11553435B2 (en) 2018-01-11 2023-01-10 Huawei Technologies Co., Ltd. Uplink information transmission method and apparatus
WO2022222726A1 (zh) * 2021-04-21 2022-10-27 华为技术有限公司 一种数据处理的方法以及装置

Also Published As

Publication number Publication date
CN113890686A (zh) 2022-01-04
CN113890686B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
US10834664B2 (en) Facilitating an enhanced two-stage downlink control channel in a wireless communication system
US11652600B2 (en) Method, device and system for determining coding modulation parameter
CN111954982B (zh) 无线通信系统和广播系统中使用极性码进行编码和解码的装置和方法
JP6678758B2 (ja) データ共有チャネルの伝送パラメーターの決定方法、装置及びシステム
EP3142278B1 (en) Modulation processing method and apparatus for high-order coding, base station, and terminal
JP6830100B2 (ja) Cqi情報受信方法、送信方法、受信装置、及び送信装置
JP6731115B2 (ja) 情報送信方法、送信端デバイス及び受信端デバイス
CN109039344B (zh) 编码输入数据为极性码的方法及设备、解码方法及其设备
RU2658666C2 (ru) Оперирование категориями пользовательского оборудования с поддержкой 256-позиционной квадратурной амплитудной модуляции
CN113242108B (zh) 数据通信处理方法及装置
US11444721B2 (en) Data segmentation method, apparatus, and terminal
CN106922206B (zh) 确定调制编码阶数的方法、装置和设备
CN107370564B (zh) 极化码处理方法及装置、节点
WO2017194012A1 (zh) 极化码处理方法及装置、节点
US11431543B2 (en) Facilitating a two-stage downlink control channel in a wireless communication system
TWI791023B (zh) 編碼輸入資料為極性碼的方法及設備、解碼方法及用以解碼碼字的設備
CN116830503A (zh) 用于有效率地使用下行链路传输资源的方法、无线设备和网络节点
CN115549873A (zh) 一种传输控制信息的方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795630

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795630

Country of ref document: EP

Kind code of ref document: A1