WO2021093657A1 - 一种led显示屏 - Google Patents

一种led显示屏 Download PDF

Info

Publication number
WO2021093657A1
WO2021093657A1 PCT/CN2020/126548 CN2020126548W WO2021093657A1 WO 2021093657 A1 WO2021093657 A1 WO 2021093657A1 CN 2020126548 W CN2020126548 W CN 2020126548W WO 2021093657 A1 WO2021093657 A1 WO 2021093657A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel unit
sub
light
display screen
led chip
Prior art date
Application number
PCT/CN2020/126548
Other languages
English (en)
French (fr)
Inventor
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021093657A1 publication Critical patent/WO2021093657A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the invention relates to the field of LED light sources, in particular to an LED display screen.
  • the existing LED display screen is composed of a plurality of pixel points distributed in an array, and each pixel point is composed of LED lamp beads that can emit RGB color light, and each pixel point is realized by adjusting the current of each LED lamp bead to control its brightness value.
  • Color display the existing LED display has the advantages of high brightness and high contrast.
  • LED lamp beads to achieve color display has the following problems: On the one hand, because the input voltages of the LED lamp beads are different from each other, the control logic of the LED display screen is cumbersome and the circuit design is complicated. On the other hand, when the LED display screen has been working for a period of time, the attenuation of different colors of LED lamp beads at high temperatures is not consistent. Among them, the red light LED lamp beads have the largest light attenuation degree, making the image emitted by the LED display screen blue. Color distortion.
  • the red LED lamp bead is replaced by the blue LED lamp bead to excite the red fluorescent layer.
  • the problem with this solution is that the red fluorescent layer will increase the effect of the adjacent blue LED lamp bead and the green LED lamp bead.
  • the absorption of the emitted light reduces the luminous efficiency of the blue LED lamp beads and the green LED lamp beads, which is not conducive to the improvement of the overall display effect.
  • the present invention provides an LED display screen, which is used to solve the problem of low light efficiency of the LED display screen in the prior art.
  • the present invention provides an LED display screen, which is characterized in that it includes:
  • the light-shielding member includes a hollow area corresponding to the first sub-pixel unit, the second sub-pixel unit, or the third sub-pixel unit, wherein the first sub-pixel unit, the second sub-pixel unit, and the third sub-pixel unit are arranged in The hollow area of the shading member.
  • the shading member is composed of a plastic material doped with glass fiber, and the content of the glass fiber in the shading member is 39%-60%.
  • the thickness of the sidewall of the hollow area gradually increases in a direction away from the substrate.
  • a light-absorbing layer is provided on a surface of the light-shielding member facing away from the substrate, and the light-absorbing layer includes light-absorbing particles that absorb visible light.
  • it further includes a protective layer disposed on the light emitting side of the pixel unit.
  • the area of the hollow area corresponding to the first sub-pixel unit, the second sub-pixel unit, or the third sub-pixel unit is equal.
  • the area of the hollow area corresponding to the first sub-pixel unit, the second sub-pixel unit, or the third sub-pixel unit is not equal, and the area of the hollow area corresponding to the third sub-pixel unit is smaller than The area of the hollow area corresponding to the first sub-pixel unit or the second sub-pixel unit.
  • the pixel unit further includes a fourth sub-pixel unit, and the shading member includes a hollow area corresponding to the fourth sub-pixel unit, and the fourth sub-pixel unit includes a hollow area disposed in the hollow area.
  • the shading member includes a hollow area corresponding to the fourth sub-pixel unit, and the fourth sub-pixel unit includes a hollow area disposed in the hollow area.
  • One or more LED chips are included in the pixel unit.
  • the third sub-pixel unit further includes a scattering layer located on the light path of the blue LED chip, wherein the scattering layer includes scattering particles.
  • the first sub-pixel unit and/or the second sub-pixel unit further includes a blue light absorption layer located on the light path of the fluorescent layer, wherein the blue light absorption layer is used to absorb unexcited blue light in the fluorescent layer .
  • the LED display screen of the present application includes a substrate and a plurality of pixel units arranged in an array arranged on the substrate.
  • the pixel units include a plurality of sub-pixel units separated by a light shield, at least part of which The sub-pixel unit adopts fluorescence conversion to emit light, and the light-shielding structure is arranged between the sub-pixel units to solve the problem of light absorption of the adjacent LED chips by the fluorescent layer during the sub-pixel light-emitting process, and to achieve precise modulation of the color coordinates of the primary color of the sub-pixel unit. To further improve the display effect of the LED display.
  • FIG. 1 is a schematic diagram of pixel distribution of Embodiment 1 of the LED display screen of this application;
  • FIG. 2 is a schematic diagram of the pixel unit structure of the first embodiment of the LED display screen of this application;
  • FIG. 3 is a schematic plan view of a pixel unit of the first embodiment of the LED display screen of this application;
  • Figure 4 is the relationship curve between glass fiber content and reflectivity and flexural modulus in the shading part of the application
  • FIG. 5 is a schematic plan view of the pixel unit of the second embodiment of the LED display screen of this application.
  • FIG. 6 is a schematic plan view of a pixel unit of Embodiment 3 of the LED display screen of this application;
  • FIG. 7 is a schematic diagram of the pixel unit structure of the fourth embodiment of the LED display screen of this application.
  • Embodiment 8 is a schematic diagram of the pixel unit structure of Embodiment 5 of the LED display screen of this application;
  • FIG. 9 is a schematic diagram of the pixel unit structure of the sixth embodiment of the LED display screen of this application.
  • FIG. 10 is a schematic diagram of the pixel unit structure of the seventh embodiment of the LED display screen of this application.
  • the present invention provides an LED display screen, which includes a substrate and a plurality of pixel units arranged in an array arranged on the substrate.
  • the pixel unit at least includes a first sub-pixel unit, a second sub-pixel unit, and a third sub-pixel unit.
  • the light-shielding member, the first sub-pixel unit includes an LED chip and a red fluorescent layer arranged on the light emitting path of the LED chip, the second sub-pixel unit includes an LED chip and a green fluorescent layer arranged on the light emitting path of the LED chip, so
  • the third sub-pixel unit includes a blue LED chip, and the light shielding member includes a plurality of hollow areas corresponding to the first sub-pixel unit, the second sub-pixel unit, and the third sub-pixel unit one-to-one.
  • the LED display screen includes a substrate 1 and a plurality of pixel units 11 arranged in an array arranged on the substrate.
  • the pixel units 11 include a first A sub-pixel unit 111, a second sub-pixel unit 112, and a third sub-pixel unit 113.
  • the first sub-pixel unit 111 includes an LED chip 111b and a red fluorescent layer 111a arranged on the light emitting path of the LED chip.
  • the second sub-pixel unit 112 includes an LED chip 112b and a green fluorescent layer 112a arranged on the light emitting path of the LED chip.
  • the third sub-pixel unit 113 is an LED chip that can emit blue light; it should be noted that in the first sub-pixel unit and the second sub-pixel unit The LED chip can emit UV light, blue light or other excitation light that can be used for fluorescence conversion.
  • the light-shielding member 114 includes a plurality of hollow areas corresponding to the first sub-pixel unit, the second sub-pixel unit, and the third sub-pixel unit, as shown in FIG. 3, wherein the first sub-pixel unit and the second sub-pixel unit
  • the pixel unit and the third sub-pixel unit have the same area corresponding to the hollow area and are linearly distributed, and the pixel units surrounded by the light shielding member and the plurality of sub-pixel units are rectangularly distributed.
  • the shading member 114 can solve the problem of light absorption among the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit, and realize the precise modulation of the color coordinates of the primary colors of the sub-pixel units. On the other hand, it can shield light.
  • the member 114 can also be used as a structural member for stacking and supporting the fluorescent layer. Since the first sub-pixel unit and the second sub-pixel unit emit light by using the LED chip to excite the fluorescent layer, and the third sub-pixel unit uses the LED chip to directly emit light, in the prior art, the fluorescent layer of the first sub-pixel unit can not only emit light.
  • the present application solves the problem of light absorption of the emitted light from the LED chip in the adjacent sub-pixel unit by the phosphor layer by arranging the light-shielding member in the pixel unit, and realizes precise control of the primary color light of each sub-pixel unit, thereby improving the display effect of the LED display.
  • the first sub-pixel unit 111 includes an LED chip 111b and a red fluorescent layer 111a arranged on the light path of the LED chip.
  • the wavelength of the light emitted by the LED chip is in the shortwave range of 440-455nm, and the shortwave blue light excites the red color.
  • the fluorescent layer has higher excitation efficiency.
  • the red fluorescent layer 111a is made of a mixture of red fluorescent material and adhesive material.
  • the red fluorescent material can be phosphor or quantum dot material, and the adhesive can be silica gel. Said that the red fluorescent layer 111a in this case is composed of red fluorescent powder and silica gel.
  • the ideal red base color light color coordinate can be obtained by selecting the type of fluorescent material and changing the ratio of fluorescent material and adhesive.
  • the second sub-pixel unit 112 includes an LED chip 112b and a green fluorescent layer 112a arranged on the light path of the LED chip.
  • the wavelength of the light emitted by the LED chip is in the shortwave range of 440-455nm.
  • the shortwave blue light has a higher value when exciting the red fluorescent layer.
  • the green fluorescent layer 112a is made of a mixture of green fluorescent materials and adhesive materials.
  • the green fluorescent material can be fluorescent powder or quantum dot material, and the adhesive can be silica gel.
  • the layer 112a is composed of green phosphor and silica gel.
  • the ideal green color coordinate can be obtained by selecting the type of phosphor material and changing the ratio of the phosphor material to the adhesive; it should be noted that the first The LED chips included in the sub-pixel unit and the second sub-pixel unit may also be ultraviolet LED chips, and the wavelength of light emitted by the LED chip is less than 420 nm.
  • the third sub-pixel unit includes a blue LED chip, wherein the wavelength of the light emitted by the blue LED chip is a long-wavelength range of 460-480nm, and blue light in the long-wave range has better primary color light display characteristics.
  • the substrate 1 may be a PCB substrate made of a rigid printed circuit board, a high thermal conductivity aluminum substrate, a ceramic substrate, a flexible printed circuit board, a metal composite substrate, or the like.
  • the LED chip may be one of a vertical chip, a flip chip or a face chip. The LED chip is electrically connected to the substrate 110 through the electrode layer.
  • the light-shielding member 114 is made of a plastic material. Specifically, it can be a polyethylene terephthalate white plastic plate or polyimide plastic.
  • the plastic contains a certain amount of glass fiber, plastic
  • glass fiber glass fiber
  • the addition of glass fiber (glass fiber) is beneficial to enhance the strength of the plastic, and is beneficial to mechanical processing thereof to obtain a light-shielding member 114 including a plurality of hollow areas.
  • the content of glass fiber will enhance the mechanical strength of the plastic, and on the other hand, it will affect the flatness of the sidewalls of the hollowed-out area of the shading member formed by machining, thereby affecting the reflectivity of the sidewalls of the hollowed-out area.
  • the content of glass fiber in the plastic needs to take into account both the flexural modulus of the plastic plate and the reflectivity of the sidewall of the hollow area.
  • the content of glass fiber is preferably 39% to 60%; when the content of glass fiber in the plastic is low At 39%, the flexural modulus of the plastic is less than 20GPa. At this time, the bending resistance of the plastic is weak and cannot be machined and punched; when the content of glass fiber is higher than 60%, the light-shielding made of plastic material
  • the reflectivity of the sidewall of the hollow area of the component is less than 88%, and the light reflection characteristics of the shading component cannot be realized, resulting in light crosstalk between the sub-pixel units.
  • the glass fibers in the plastic are arranged in a direction perpendicular to the substrate, which can further improve the mechanical processing characteristics of the plastic and achieve better surface flatness of the sidewall of the shading member.
  • One side of the shading member 114 is connected to the substrate 110, and the specific connection method may be glued on the substrate 110 with silicone glue, so that each sub-pixel unit including the LED chip is located in the center of the hollow area of the shading member 114. It can be understood that, In other embodiments, the shading member 114 can also be connected to the base plate 110 by screw locking or the positioning post inverted.
  • the corresponding areas of the base plate and the shading member are provided with locking holes, Screw locking realizes the assembly of the substrate and the spacer; when the positioning pillar is inverted, a positioning pillar is provided on the side of the shading member opposite to the substrate, and the side of the substrate and the shading member is connected, and the area corresponding to the positioning pillar is provided with The keyhole is assembled by inserting the positioning post of the shading member into the keyhole of the substrate.
  • the LED display screen also includes a protective layer 115 disposed on the light-emitting side of the pixel unit.
  • the protective layer is used to isolate air and moisture, prevent air and moisture from entering the pixel unit, ensure the normal operation of the pixel unit, and also The service life of the LED chip and the fluorescent layer can be prolonged;
  • the protective layer 150 can be a single-layer or multi-layer composite film including polyurethane, epoxy resin, parylene, etc., or an inorganic film such as silicon oxide, silicon nitride, etc. It can be understood that, the protective layer may be one pixel unit corresponding to one protective layer, or a plurality of integrally formed pixel units may share one protective layer.
  • FIG. 5 is a schematic plan view of the pixel unit of the second embodiment; the difference between the second embodiment and the first embodiment is that the hollow area enclosed by the shading member is different (that is, the distribution of the sub-pixel units is different), the second embodiment
  • the light-shielding member 114 includes a plurality of hollow areas corresponding to the first sub-pixel unit, the second sub-pixel unit and the third sub-pixel unit one-to-one, wherein the first sub-pixel unit, the second sub-pixel unit and the third sub-pixel unit The area of the hollow area corresponding to the pixel unit is different.
  • the blue sub-pixel unit (the third sub-pixel unit)
  • the area of the hollow area corresponding to the pixel unit) is the smallest, so the corresponding blue LED chip arranged in the hollow area has a smaller light-emitting area; while the red and green light emitted by the pixel unit excites the fluorescent layer through the LED chip, because There must be a certain amount of heat loss in the process of fluorescence conversion, and the demand for red primary color light and green primary color light in image display is relatively large, so the red photo sub-pixel (the first sub-pixel unit) and the green photo sub-pixel (the second sub-pixel unit) )
  • the corresponding hollow area area is also larger, so the corresponding amount of red fluorescent layer and green fluorescent layer arranged in the hollow area is also larger, and the red primary color light and green primary color light generated by the wavelength conversion conversion are also more. Meet the actual image display requirements.
  • first sub-pixel unit, the second sub-pixel unit, and the third sub-pixel unit in the second embodiment are arranged in a non-linear manner, wherein the first sub-pixel unit, the second sub-pixel unit, and the third sub-pixel unit correspond to the hollow area
  • the formed pixel unit is square or rectangular, that is, the pixel unit formed by the three sub-pixel units corresponding to the light-emitting area is square or rectangular.
  • FIG. 6 is a schematic plan view of the pixel unit of the third embodiment; the difference between the third embodiment and the second embodiment is that the number and shape of the hollow areas enclosed by the shading member are different (that is, the distribution of the sub-pixel units is different) ,
  • the light-shielding member of the third embodiment includes 4 hollow areas corresponding to the sub-pixel units one-to-one, and each hollow area is rectangular or square.
  • the newly-added hollow area is provided with a fourth sub-pixel unit, and the fourth sub-pixel
  • the unit serves as a spare sub-pixel, and provides an emergency spare light source when the other three red, green, and blue sub-pixels fail or their brightness is attenuated.
  • the fourth sub-pixel unit includes a blue LED chip, a red LED chip and a green LED chip.
  • the fourth sub-pixel unit is in the off state.
  • the system detects the other three One or more of the primary color photo sub-pixels fails.
  • the system automatically turns on the corresponding color light in the fourth sub-pixel unit to realize emergency processing of LED display.
  • the LED screen is used for a period of time, The light emitted by the three primary color photo sub-pixels is attenuated, and the color coordinates of each primary color light are deviated from the standard color coordinates.
  • the system will automatically turn on the fourth sub-pixel.
  • the corresponding color light can realize the correction of the color coordinate of the primary color light.
  • FIG. 7 is a schematic structural diagram of the pixel unit of the LED display screen of the fourth embodiment.
  • the difference between the fourth embodiment and the first embodiment is that the thickness of the sidewall of the hollowed-out area is different.
  • the thickness of the sidewall of the hollowed-out area of the fourth embodiment is from The direction away from the substrate gradually increases, that is, the cross-sectional view of the thickness direction of the sidewall of the hollow area is an inverted trapezoid.
  • the advantage of this design is that it can increase the volume of the phosphor layer on the light emitting path of the LED chip, thereby increasing the fluorescence conversion efficiency; in addition, the inverted trapezoid
  • the thickness of one end of the side wall structure connected with the substrate is small, which can further reduce the positioning and bonding error of the shading member and reduce the difficulty of assembly.
  • FIG. 8 is a schematic diagram of the pixel unit structure of the fifth embodiment.
  • the difference between the fifth embodiment and the first embodiment is that the light-absorbing layer is provided on the side surface of the shading member away from the substrate, that is, the side surface of the shading member away from the substrate
  • a light-absorbing layer 116 is provided, and the light-absorbing layer 116 contains light-absorbing particles that absorb visible light and a binder.
  • the light-absorbing layer is used to absorb incident ambient light and primary color light leaked from adjacent sub-pixels to improve the contrast of the LED display. Further, the thickness of the light-absorbing layer is 0.01-10um.
  • FIG. 9 is a schematic diagram of the pixel unit structure of the sixth embodiment.
  • the third sub-pixel unit includes a blue LED chip 113 and a scattering layer 113a on the light path of the blue LED chip.
  • the scattering layer 113a includes scattering particles and a silicone adhesive, and the third sub-pixel unit is provided with the scattering layer to improve the uniformity of light emitted by the blue LED chip.
  • FIG. 10 is a schematic diagram of the structure of the LED display screen of the seventh embodiment.
  • the difference between the seventh embodiment and the first embodiment is that the first sub-pixel unit and the second sub-pixel unit also include a blue light absorption layer 117.
  • the absorbing layer 117 is disposed on the light-emitting surface of the fluorescent layer, that is, between the fluorescent layer and the protective layer.
  • the blue absorbing layer is used to absorb the unexcited remaining blue light in the fluorescent layer, so that the first sub-pixel unit and the second sub-pixel unit can be The primary color light with higher purity is emitted, and the color gamut range of the LED display screen is further improved.
  • the blue light absorbing layer 117 is formed by mixing a blue light absorbing agent and a resin material, and the blue light absorbing agent may be an azo dye.
  • This application also provides the above-mentioned assembling method of the LED display screen, and the specific assembly process is as follows:
  • the first step is to provide a PCB substrate 1 containing a plurality of blue LED chips and a plastic plate, and the plastic plate is opened by mechanical processing to obtain a plurality of light-shielding members 114 that include hollow areas corresponding to the positions of the LED chips; wherein the plastic plate
  • the design of the opening should match the LED chip on the PCB substrate.
  • an adhesive such as silicone glue
  • each hollow area of the shading member 114 is aligned with each blue LED chip on the PCB substrate 1.
  • the shading member 114 is fixedly connected to the PCB substrate 1.
  • a light-absorbing layer may be coated on the other side of the light-shielding member 114.
  • green phosphor, red phosphor and silica gel are used to prepare red phosphor paste and green phosphor paste in a certain proportion, and the red phosphor paste and green phosphor paste are combined by a glue or printing process.
  • the slurry is filled into the corresponding hollow area, and the fluorescent slurry is cured by heating or light to form a fluorescent layer.
  • a blue light absorbing layer can also be provided on the surface of the fluorescent layer.
  • a blue light absorbing material made of a mixture of blue light absorbent and silica gel is applied on the fluorescent layer by dispensing or printing.
  • the blue light absorbing layer is formed on the surface, and the blue light absorbing layer is cured by heating or lighting.
  • a protective layer is potted on the surface of the fluorescent layer and heated and cured to form the final sub-pixel unit.
  • the LED display screen is prepared by the above method and the process is simple.
  • the present application provides an LED display screen, which includes a substrate and a plurality of pixel units arranged in an array arranged on the substrate.
  • the pixel unit includes a first sub-pixel unit, a second sub-pixel unit, and a third sub-pixel.
  • Unit and light-shielding member the first sub-pixel unit includes an LED chip and a red fluorescent layer arranged on the light emitting path of the LED chip, and the second sub-pixel unit includes an LED chip and a green fluorescent layer arranged on the light emitting path of the LED chip
  • the third sub-pixel unit includes a blue LED chip, and the light shielding member includes a plurality of hollow areas corresponding to the first sub-pixel unit, the second sub-pixel unit, and the third sub-pixel unit one-to-one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Led Device Packages (AREA)

Abstract

本发明提供一种LED显示屏,包括:基板、及设置于基板上的多个阵列分布的像素单元,像素单元至少包括第一子像素单元、第二子像素单元、第三子像素单元,第一子像素单元包括LED芯片及设置于LED芯片出光光路上的红色荧光层,第二子像素单元包括LED芯片及设置于LED芯片出光光路上的绿色荧光层,第三子像素单元包括蓝光LED芯片;遮光件,其包括多个镂空区,其中第一子像素单元、第二子像素单元和第三子像素单元设置于遮光件的镂空区内。本发明通过在子像素单元之间设置遮光结构,以解决子像素发光过程中荧光层对相邻LED芯片的光吸收问题,实现子像素单元基色光色坐标的精准调制,以进一步提高LED显示屏的显示效果。

Description

一种LED显示屏 技术领域
本发明涉及LED光源领域,特别是涉及LED显示屏。
背景技术
现有LED显示屏由多个阵列分布的像素点组成,其中每个像素点由可出射RGB颜色光的LED灯珠组成,通过调节每个LED灯珠的电流控制其亮度值实现每个像素点的色彩显示,现有的LED显示屏具有高亮度和高对比度的优点。
然而,利用LED灯珠实现色彩显示存在以下问题:一方面,由于LED灯珠的输入电压互不相同,使得LED显示屏的控制逻辑繁琐,电路设计复杂。另一方面,当LED显示屏在工作一段时间后,不同颜色LED灯珠在高温下的衰减不一致,其中,红光LED灯珠的光衰减程度最大,使得该LED显示屏出射的图像偏蓝,色彩失真。
现有技术中,通过采用蓝光LED灯珠激发红色荧光层的方式替代红光LED灯珠,但此方案存在的问题是红色荧光层会增加对相邻的蓝光LED灯珠和绿光LED灯珠出射光的吸收,使得蓝光LED灯珠和绿光LED灯珠的光效降低,不利于整体的显示效果提升。
发明内容
为解决上述问题,本发明提供一种LED显示屏,用于解决现有技术中LED显示屏光效低的问题。
具体,本发明提供一种LED显示屏,其特征在于,包括:
基板、及设置于基板上的多个阵列分布的像素单元,所述像素单元至少包括第一子像素单元、第二子像素单元、第三子像素单元,所述第一子像素单元包括LED芯片及设置于LED芯片出光光路上的红色荧光层,所述第二子像素单元包括LED芯片及设置于LED芯片出光光路上的绿色 荧光层,所述第三子像素单元包括蓝光LED芯片;
遮光件,其包括与第一子像素单元、第二子像素单元或第三子像素单元对应的镂空区,其中所述第一子像素单元、第二子像素单元和第三子像素单元设置于所述遮光件的镂空区内。
在一实施方式中,所述遮光件由掺杂有玻纤的塑料材料组成,其中所述遮光件中玻纤的含量为39%~60%。
在一实施方式中,所述镂空区的侧壁厚度沿远离基板的方向逐渐增大。
在一实施方式中,所述遮光件背向基板的一侧表面设置吸光层,所述吸光层包含吸收可见光的光吸收粒子。
在一实施方式中,还包括设置于所述像素单元出光侧的保护层。
在一实施方式中,与所述第一子像素单元、第二子像素单元或第三子像素单元对应的所述镂空区面积相等。
在一实施方式中,与所述第一子像素单元、第二子像素单元或第三子像素单元对应的所述镂空区面积不等,且所述第三子像素单元对应的镂空区面积小于所述第一子像素单元或第二子像素单元对应的镂空区面积。
在一实施方式中,所述像素单元还包括第四子像素单元,且所述遮光件包括与所述第四子像素单元对应的镂空区,所述第四子像素单元包括设置于镂空区内的一个或一个以上的LED芯片。
在一实施方式中,所述第三子像素单元还包括位于蓝光LED芯片出光光路上的散射层,其中所述散射层包括散射粒子。
在一实施方式中,所述第一子像素单元和/或第二子像素单元还包括位于荧光层出光光路上的蓝光吸收层,其中蓝光吸收层用于吸收所述荧光层中未激发的蓝光。
相较于现有技术,本申请的LED显示屏,包括基板、及设置于基板上的多个阵列分布的像素单元,其像素单元包括多个通过遮光件隔离的的子像素单元,其中至少部分子像素单元采用荧光转换发光,通过在子像素单元之间设置遮光结构,以解决子像素发光过程中荧光层对相邻 LED芯片的光吸收问题,实现子像素单元基色光色坐标的精准调制,以进一步提高LED显示屏的显示效果。
附图说明
图1为本申请的LED显示屏的实施例一的像素分布示意图;
图2为本申请的LED显示屏的实施例一的像素单元结构示意图;
图3为本申请的LED显示屏的实施例一的像素单元平面示意图;
图4为本申请的遮光件中玻纤含量与反射率及弯曲模量的关系曲线
图;
图5为本申请的LED显示屏的实施例二的像素单元平面示意图;
图6为本申请的LED显示屏的实施例三的像素单元平面示意图;
图7为本申请的LED显示屏的实施例四的像素单元结构示意图;
图8为本申请的LED显示屏的实施例五的像素单元结构示意图;
图9为本申请的LED显示屏的实施例六的像素单元结构示意图;
图10为本申请的LED显示屏的实施例七的像素单元结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外, 各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本发明提供一种LED显示屏,包括基板、及设置于基板上的多个阵列分布的像素单元,所述像素单元至少包括第一子像素单元、第二子像素单元、第三子像素单元和遮光件,所述第一子像素单元包括LED芯片及设置于LED芯片出光光路上的红色荧光层,所述第二子像素单元包括LED芯片及设置于LED芯片出光光路上的绿色荧光层,所述第三子像素单元包括蓝光LED芯片,所述遮光件包括多个与第一子像素单元、第二子像素单元和第三子像素单元一一对应的镂空区。
下面结合具体的图示对本案的技术方案进行说明。
实施例一
请参阅图1和图2,本申请的LED显示屏的实施例一的结构示意图,LED显示屏包括基板1以及设置于基板上的多个阵列分布的像素单元11,所述像素单元11包括第一子像素单元111、第二子像素单元112和第三子像素单元113,其中第一子像素单元111包括LED芯片111b以及设置于LED芯片出光光路上的红色荧光层111a,第二子像素单元112包括LED芯片112b以及设置于LED芯片出光光路上的绿色荧光层112a,第三子像素单元113为可发光蓝光的LED芯片;需要说明的是,第一子像素单元和第二子像素单元中的LED芯片为可出射UV光、蓝光或其它可用于荧光转换的激发光。
其中遮光件114包括多个与第一子像素单元、第二子像素单元和第三子像素单元一一对应的镂空区,如图3所示,其中所述第一子像素单元、第二子像素单元和第三子像素单元对应镂空区的面积相等,且呈线性分布,遮光件与多个子像素单元围成的像素单元为矩形分布。可以理解的是,遮光件114一方面可以解决第一发光单元、第二发光单元和第三发光单元之间光吸收的问题,实现子像素单元基色光色坐标的精准调制,另一方面,遮光件114也可以作为结构件,用于实现荧光层的堆叠 支撑。由于第一子像素单元和第二子像素单元采用LED芯片激发荧光层的方式发光,而第三子像素单元采用LED芯片直接发光,在现有技术中,第一子像素单元的荧光层不仅可吸收本身子像素单元内的LED芯片出色光,同时也会吸收相邻的子像素单元内的LED芯片出射光,例如第三子像素单元中LED芯片的出射光,使得第一子像素单元经荧光转换出射的基色光量增加,同时也会导致第三子像素单元出射的基色光光量减少,增加了后续的基色光色坐标系统校准难度。而本申请通过在像素单元中设置遮光件,解决荧光层对相邻子像素单元内LED芯片出射光光吸收问题,实现各子像素单元基色光的精准控制,进而提高LED显示的显示效果。
在本实施例中,第一子像素单元111包括LED芯片111b以及设置于LED芯片出光光路上的红色荧光层111a,其中LED芯片出射光的波长为440-455nm的短波范围,短波蓝光在激发红色荧光层时具有更高的激发效率,红色荧光层111a是由红色荧光材料和粘接剂材料混合而成,其中红色荧光材料可以是荧光粉或量子点材料,粘接剂可以是硅胶,具体来说,本案的红色荧光层111a由红色荧光粉和硅胶组成,另外可以理解的是,通过选择荧光材料的种类及改变荧光材料与粘接剂的配比来获得理想的红基色光色坐标。
第二子像素单元112包括LED芯片112b以及设置于LED芯片出光光路上的绿色荧光层112a,其中LED芯片出射光的波长为440-455nm的短波范围,短波蓝光在激发红色荧光层时具有更高的激发效率,绿色荧光层112a是由绿色荧光材料和粘接剂材料混合而成,其中绿色荧光材料可以是荧光粉或量子点材料,粘接剂可以是硅胶,具体来说,本案的绿色荧光层112a由绿色荧光粉和硅胶组成,另外可以理解的是,通过选择荧光材料的种类及改变荧光材料与粘接剂的配比来获得理想的绿基色光色坐标;需要说明的是,第一子像素单元和第二子像素单元包含的LED芯片也可以为紫外光LED芯片,此时LED芯片出射光的波长小于420nm。
第三子像素单元包括蓝光LED芯片,其中蓝光LED芯片出射光的波长为460-480nm的长波范围,长波范围的蓝光具有更好基色光显示特 性。
在本实施方式中,基板1可以是硬式印刷电路板、高热导系数铝基板、陶瓷基板、软式印刷电路板、金属复合材料基板等制成的PCB基板。该LED芯片可以是垂直型芯片、倒装芯片或正装芯片中的一种。该LED芯片通过电极层与基板110电连接。
在本实施方式中,遮光件114由一塑料材质制成,具体可以是聚对苯二甲酸乙二醇酯白色塑料板或聚酰亚胺塑料等,该塑料中包含有一定量的玻纤,塑料中增加玻纤(玻璃纤维)有利于增强塑料的强度,有利于对其进行机械加工,获得包括多个镂空区的遮光件114。玻纤的含量一方面会增强塑料的机械强度,另一方面会影响机械加工形成的遮光件的镂空区的侧壁的平整度,进而影响镂空区的侧壁的反射率。如图4所示,塑料中玻纤的含量需同时兼顾塑料板的弯曲模量和镂空区的侧壁的反射率,玻纤的含量优选39%~60%;当塑料中玻纤的含量低于39%时,塑料的弯曲模量低于20GPa,此时塑料的抗弯折能力较弱,无法进行机械加工打孔;当玻纤的含量高于60%时,由塑料材材质组成的遮光件的镂空区的侧壁的反射率小于88%,无法实现遮光件的光反射特性,造成子像素单元之间的光串扰。且通过进一步的实验验证,塑料中的玻纤沿垂直于基板的方向排列,还可进一步提高塑料的机械加工特性,实现更优秀的遮光件侧壁表面平整度。
遮光件114的一侧与基板110连接,具体的连接方式可以是通过硅胶胶水粘接在基板110上,使得各子像素单元包含LED芯片位于遮光件114镂空区的中心位置,可以理解的是,在其它的实施方式中,遮光件114还可以通过螺丝锁附或定位柱倒扣的方式与基板110连接,当采用螺丝锁附的方式,基板和遮光件的对应区域设置有锁附孔,通过螺丝锁紧实现基板和间隔件的组装;当采用定位柱倒扣的方式时,遮光件与基板相对的一面设置有定位柱,基板与遮光件连接的一面,且与定位柱对应的区域设置有锁孔,通过将遮光件的定位柱插入基板锁孔的方式实现组装。
在本实施方式中,LED显示屏还包括设置于像素单元出光侧的保护层115,该保护层用于隔绝空气和水分,防止空气和水分进入像素单元 内部,确保像素单元的正常工作,同时也可以延长LED芯片及荧光层的使用寿命;进一步,该保护层150可以是包括聚氨酯、环氧树脂、派瑞林等单层或者多层复合膜,也可以是氧化硅、氮化硅等无机膜等,可以理解的是,该保护层可以是一个像素单元对应一个保护层,也可以是一体成型的多个像素单元共用一个保护层。
实施例二
如图5所示,图5为实施例二的像素单元的平面示意图;实施例二与实施例一的区别在于遮光件围成的镂空区不同(即子像素单元的分布不同),实施例二的遮光件114包括多个与第一子像素单元、第二子像素单元和第三子像素单元一一对应的镂空区,其中所述第一子像素单元、第二子像素单元和第三子像素单元对应镂空区的面积不同,具体来说,由于像素单元的蓝光出射光是直接通过LED芯片发光,且图像显示中对蓝基色光的需求量最少,因此蓝色子像素单元(第三子像素单元)对应的镂空区面积最小,那么相应的在镂空区内设置的蓝光LED芯片的发光面积也较小;而像素单元的红光和绿光出射光是通过LED芯片激发光荧光层,由于荧光转换过程中必然有一定的热损失,且图像显示中对红基色光和绿基色光的需求量较大,因此红光子像素(第一子像素单元)和绿光子像素(第二子像素单元)对应的镂空区面积也较大,那么相应的在镂空区内设置的红色荧光层和绿色荧光层的量也较大,通过波长转换转换产生的红基色光和绿基色光也较多,以满足实际的图像显示要求。
另外,实施例二的第一子像素单元、第二子像素单元和第三子像素单元呈非线性排布,其中第一子像素单元、第二子像素单元和第三子像素单元对应镂空区组成的像素单元为正方形或矩形,即三个子像素单元对应发光区组成的像素单元为正方形或矩形。
可以理解的是,本实施例中未描述的各结构件的功能和特性均可参考其它实施例,即未描述的其它实施例的结构件都可以应用在本实施例中,在此不作赘述。
实施例三
如图6所示,图6为实施例三的像素单元的平面示意图;实施例三与实施例二的区别在于遮光件围成的镂空区个数及形状不同(即子像素单元的分布不同),实施例三的遮光件包括4个与子像素单元一一对应的镂空区,且每个镂空区为矩形或正方形分布,其中新增的镂空区内设置第四子像素单元,第四子像素单元作为备用子像素,在其它三个红绿蓝子像素出现故障或亮度衰减时,提供一个紧急的备用光源。具体来讲,第四子像素单元包括蓝光LED芯片、红光LED芯片和绿光LED芯片,在其它三个基色光子像素正常工作时,第四子像素单元处于关闭状态,当系统检测到其它三个基色光子像素中的一个或多个出现故障,此时系统自动开启第四子像素单元内对应的颜色光,实现LED显示的紧急处理,可以理解的是,当LED屏幕在使用一段时间后,三个基色光子像素出射光有所衰减,且各基色光对应的色坐标与标准色坐标有所偏差,此时虽各基色光子像素仍处于开启状态,但系统还是会自动开启第四子像素内的对应颜色光,实现基色光色坐标的校正。
可以理解的是,本实施例中未描述的各结构件的功能和特性均可参考其它实施例,即未描述的其它实施例的结构件都可以应用在本实施例中,在此不作赘述。
实施例四
如图7所示,图7为实施例四的LED显示屏像素单元的结构示意图,实施例四与实施例一的区别在于镂空区侧壁厚度不同,实施例四的镂空区的侧壁厚度从远离基板的方向逐渐增大,即镂空区的侧壁厚度方向截面图为一倒梯形,此种设计的优势在于可以增加LED芯片出光光路上的荧光层体积,进而增加荧光转换效率;另外倒梯形的侧壁结构与基板连接的一端厚度较小,可进一步减少遮光件的定位粘接误差,降低组装难度。
可以理解的是,本实施例中未描述的各结构件的功能和特性均可参考其它实施例,即未描述的其它实施例的结构件都可以应用在本实施例中,在此不作赘述。
实施例五
如图8所示,图8为实施例五的像素单元结构示意图,实施例五与实施例一的区别在于遮光件背向基板的一侧表面设置吸光层,即遮光件远离基板的一侧表面设置吸光层116,该吸光层116内包含吸收可见光的光吸收粒子及粘结剂,其中吸光层用于吸收入射的环境光和相邻子像素泄漏的基色光,以提高LED显示屏的对比度。进一步吸光层的厚度为0.01-10um。
可以理解的是,本实施例中未描述的各结构件的功能和特性均可参考其它实施例,即未描述的其它实施例的结构件都可以应用在本实施例中,在此不作赘述。
实施例六
如图9所示,图9为实施例六的像素单元结构示意图,实施例六与实施例一的区别在于第三子像素单元包括蓝光LED芯片113及蓝光LED芯片出射光光路上的散射层113a,其中散射层113a包括散射粒子和硅胶粘接剂,第三子像素单元设置散射层的作用在于提高蓝光LED芯片出射光的均匀性。
可以理解的是,本实施例中未描述的各结构件的功能和特性均可参考其它实施例,即未描述的其它实施例的结构件都可以应用在本实施例中,在此不作赘述。
实施例七
如图10所示,如图10为实施例七的LED显示屏的结构示意图,实施例七和实施例一的区别在于第一子像素单元和第二子像素单元还包括蓝光吸收层117,蓝光吸收层117设置于荧光层的出光表面,即荧光层和保护层之间,蓝光吸收层用于吸收荧光层中未激发剩余的蓝色光,以使得第一子像素单元和第二子像素单元可出射纯度更高的基色光,进一步提高LED显示屏的色域范围。其中蓝光吸收层117由蓝光吸收剂和树脂材料混合而成,其中蓝光吸收剂可以是偶氮类染料。
可以理解的是,本实施例中未描述的各结构件的功能和特性均可参 考其它实施例,即未描述的其它实施例的结构件都可以应用在本实施例中,在此不作赘述。
本申请还提供上述一种LED显示屏的组装方法,其具体组装过程如下:
第一步,提供包含多个蓝光LED芯片的PCB基板1和塑料板,采用机械加工的方式对塑料板进行开孔,获得包括多个与LED芯片位置对应镂空区的遮光件114;其中塑料板的开孔设计应该与PCB基板上的LED芯片相匹配。
第二步,在遮光件114的一侧涂覆粘结剂,如硅胶胶水等,将遮光件114的每一镂空区对准PCB基板1上的每一蓝光LED芯片,粘结剂固化后使得遮光件114与PCB基板1之间固定连接。可选地,可在遮光件114的另一侧涂覆吸光层。
第三步,分别采用绿光荧光粉、红光荧光粉和硅胶按一定比例制备红光荧光浆料和绿光荧光浆料,采用点胶工艺或者印刷工艺将红光荧光浆料和绿光荧光浆料填入与之对应的镂空区内,通过加热或光照等方式使荧光浆料固化形成荧光层。
需要说明的是,在一实施方式中,还可以在荧光层表面设置蓝光吸收层,具体来说,将蓝光吸收剂和硅胶混合而成的蓝光吸收材料,通过点胶或印刷的方式在荧光层的表面形成蓝光吸收层,通过加热或光照等方式使蓝光吸收层完成固化。
第四步,在荧光层表面灌封一层保护层,并加热固化,形成最终的子像素单元。
通过以上方式制备LED显示屏,工艺简单。
综上,本申请提供一种LED显示屏,包括基板、及设置于基板上的多个阵列分布的像素单元,所述像素单元包括第一子像素单元、第二子像素单元、第三子像素单元和遮光件,所述第一子像素单元包括LED芯片及设置于LED芯片出光光路上的红色荧光层,所述第二子像素单元包括LED芯片及设置于LED芯片出光光路上的绿色荧光层,所述第三子像素单元包括蓝光LED芯片,所述遮光件包括多个与第一子像素单元、第 二子像素单元和第三子像素单元一一对应的镂空区。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种LED显示屏,其特征在于,包括:
    基板、及设置于基板上的多个阵列分布的像素单元,所述像素单元至少包括第一子像素单元、第二子像素单元、第三子像素单元,所述第一子像素单元包括LED芯片及设置于LED芯片出光光路上的红色荧光层,所述第二子像素单元包括LED芯片及设置于LED芯片出光光路上的绿色荧光层,所述第三子像素单元包括蓝光LED芯片;
    遮光件,其包括与第一子像素单元、第二子像素单元或第三子像素单元对应的镂空区,其中所述第一子像素单元、第二子像素单元和第三子像素单元设置于所述遮光件的镂空区内。
  2. 根据权利要求1所述的LED显示屏,其特征在于,所述遮光件由掺杂有玻纤的塑料材料组成,其中所述遮光件中玻纤的含量为39%~60%。
  3. 根据权利要求2所述的LED显示屏,其特征在于,所述镂空区的侧壁厚度沿远离基板的方向逐渐增大。
  4. 根据权利要求2所述的LED显示屏,其特征在于,所述遮光件背向基板的一侧表面设置吸光层,所述吸光层包含吸收可见光的光吸收粒子。
  5. 根据权利要求1所述的LED显示屏,其特征在于,还包括设置于所述像素单元出光侧的保护层。
  6. 根据权利要求1所述的LED显示屏,其特征在于,与所述第一子像素单元、第二子像素单元或第三子像素单元对应的所述镂空区面积相等。
  7. 根据权利要求1所述的LED显示屏,其特征在于,与所述第一子像素单元、第二子像素单元或第三子像素单元对应的所述镂空区面积不等,且所述第三子像素单元对应的镂空区面积小于所述第一子像素单元或第二子像素单元对应的镂空区面积。
  8. 根据权利要求1所述的LED显示屏,其特征在于,所述像素单元还包括第四子像素单元,且所述遮光件包括与所述第四子像素单元对应的镂空区,所述第四子像素单元包括设置于镂空区内的一个或一个以上的LED芯片。
  9. 根据权利要求1所述的LED显示屏,其特征在于,所述第三子像素单元还包括位于蓝光LED芯片出光光路上的散射层,其中所述散射层包括散射粒子。
  10. 根据权利要求1所述的LED显示屏,其特征在于,所述第一子像素单元和/或第二子像素单元还包括位于荧光层出光光路上的蓝光吸收层,其中蓝光吸收层用于吸收所述荧光层中未激发的蓝光。
PCT/CN2020/126548 2019-11-13 2020-11-04 一种led显示屏 WO2021093657A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911106450.8A CN112885821A (zh) 2019-11-13 2019-11-13 一种led显示屏
CN201911106450.8 2019-11-13

Publications (1)

Publication Number Publication Date
WO2021093657A1 true WO2021093657A1 (zh) 2021-05-20

Family

ID=75912517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126548 WO2021093657A1 (zh) 2019-11-13 2020-11-04 一种led显示屏

Country Status (2)

Country Link
CN (1) CN112885821A (zh)
WO (1) WO2021093657A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103503176A (zh) * 2011-04-28 2014-01-08 欧司朗光电半导体有限公司 载体、具有载体的光电子器件和其制造方法
CN103775845A (zh) * 2012-10-17 2014-05-07 欧司朗股份有限公司 Led发光装置及灯具
CN106972093A (zh) * 2016-01-13 2017-07-21 光宝光电(常州)有限公司 发光二极管封装结构
CN109638138A (zh) * 2018-12-03 2019-04-16 惠州市华星光电技术有限公司 一种led显示屏制备方法及led显示屏
CN110211986A (zh) * 2018-02-28 2019-09-06 夏普株式会社 显示元件以及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103503176A (zh) * 2011-04-28 2014-01-08 欧司朗光电半导体有限公司 载体、具有载体的光电子器件和其制造方法
CN103775845A (zh) * 2012-10-17 2014-05-07 欧司朗股份有限公司 Led发光装置及灯具
CN106972093A (zh) * 2016-01-13 2017-07-21 光宝光电(常州)有限公司 发光二极管封装结构
CN110211986A (zh) * 2018-02-28 2019-09-06 夏普株式会社 显示元件以及显示装置
CN109638138A (zh) * 2018-12-03 2019-04-16 惠州市华星光电技术有限公司 一种led显示屏制备方法及led显示屏

Also Published As

Publication number Publication date
CN112885821A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN104979455B (zh) 一种led光源装置及其封装方法及背光模组及显示装置
TWI431371B (zh) 具有發光二極體之背光模組與具有該模組之液晶顯示裝置
JP4931628B2 (ja) 照明装置及びこれを備える表示装置
US7695150B2 (en) Lighting unit, display device, and phosphor film
KR101261461B1 (ko) 액정 표시 장치
US9244209B2 (en) Display device
JP4898332B2 (ja) 表示装置
TWI461793B (zh) 顯示裝置
WO2019080536A1 (zh) 背光模组、显示屏及终端
US7982398B2 (en) Backlight unit and liquid crystal display device including the same
WO2013118653A1 (ja) 表示素子、照明装置
WO2018221081A1 (ja) フルカラーled表示パネル
WO2013005792A1 (ja) 照明装置
JP2009231273A (ja) 照明装置及びこれを備える表示装置
WO2021110042A1 (zh) Led显示装置
JP6638292B2 (ja) 装置光源
CN110031997A (zh) 照明装置及显示装置
WO2021093657A1 (zh) 一种led显示屏
JP2004245996A (ja) 色補正フィルタ及びバックライトユニット、並びに液晶表示装置
CN109599037B (zh) 显示面板及其制备方法
CN210072264U (zh) 一种光学膜、背光模组及显示装置
JP2022152904A (ja) 照明装置、及び表示装置
KR101806870B1 (ko) 색변환용 형광체층이 패터닝된 도광판, 이를 포함하는 디스플레이 소자 및 디스플레이 패널
CN211528862U (zh) 彩色滤光片及液晶显示装置
TWI763547B (zh) 顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886675

Country of ref document: EP

Kind code of ref document: A1