WO2021093474A1 - 一种割草机导航方法、装置和割草机 - Google Patents

一种割草机导航方法、装置和割草机 Download PDF

Info

Publication number
WO2021093474A1
WO2021093474A1 PCT/CN2020/117795 CN2020117795W WO2021093474A1 WO 2021093474 A1 WO2021093474 A1 WO 2021093474A1 CN 2020117795 W CN2020117795 W CN 2020117795W WO 2021093474 A1 WO2021093474 A1 WO 2021093474A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
path
signal
signal quality
location point
Prior art date
Application number
PCT/CN2020/117795
Other languages
English (en)
French (fr)
Inventor
何明明
盛蕴霞
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2021093474A1 publication Critical patent/WO2021093474A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks

Definitions

  • the present disclosure relates to the field of automation control technology, and in particular to a lawn mower navigation method, device and lawn mower.
  • the present disclosure provides a method and device for automatic text generation.
  • a lawn mower navigation method including:
  • the satellite positioning signal it is determined whether the location point is a signal quality turning point, and the satellite positioning signal quality of the signal quality turning point is greater than a preset threshold and the satellite positioning of the previous location point adjacent to the signal quality turning point The quality of the signal is less than or equal to the preset threshold;
  • the location point is a signal quality turning point, compare the distance between the location point and each planned route, and use the planned route with the smallest distance as the target driving route, and the planned route is composed of a plurality of ordered location points .
  • the judging whether the location point is a signal quality turning point according to the satellite positioning signal includes:
  • the position point is a signal quality turning point.
  • the judging whether the location point is a signal quality turning point according to the satellite positioning signal includes:
  • the position point is a signal quality turning point.
  • the judging whether the location point is a signal quality turning point according to the satellite positioning signal includes:
  • the coordinate information of the location point is compared with the coordinate information of the location point of the planned path corresponding to the location point. If the difference distance between the two coordinates is greater than the second preset length, the location point is a signal quality turning point.
  • it also includes:
  • the traveled path is compared with the planned path to determine the untraveled area, include:
  • a non-driving area is determined.
  • the determining a non-driving area based on the signal quality boundary includes:
  • the non-driving area is determined based on the signal quality boundary line and the boundary line.
  • the traveled path is compared with the planned path to determine the untraveled area, include:
  • a plurality of non-driving areas are determined.
  • the driving according to the second planned route includes:
  • it also includes:
  • the location point on the secondary planning path with the smallest distance from the end point of the target driving path to the secondary planning path is used as the starting point of driving the secondary planning path.
  • a lawn mower navigation device including:
  • Satellite signal receiver used to receive the satellite positioning signal of the location point on the driving path
  • the processor is used to execute the following methods:
  • the satellite positioning signal it is determined whether the location point is a signal quality turning point, and the satellite positioning signal quality of the signal quality turning point is greater than a preset threshold and the satellite positioning of the previous location point adjacent to the signal quality turning point The quality of the signal is less than or equal to the preset threshold;
  • the location point is a signal quality turning point, compare the distance between the location point and each planned route, and use the planned route with the smallest distance as the target driving route, and the planned route is composed of a plurality of ordered location points .
  • the implementation step of the processor includes:
  • the position point is a signal quality turning point.
  • the implementation step of the processor includes:
  • the position point is a signal quality turning point.
  • the implementation step of the processor includes:
  • the coordinate information of the location point is compared with the coordinate information of the location point of the planned path corresponding to the location point. If the difference distance between the two coordinates is greater than the second preset length, the location point is a signal quality turning point.
  • the processor is further configured to execute the following method:
  • the processor compares the traveled path with the planned path in the case of determining that the lawn mower has traveled to the end of the target travel path to determine When the area is not driving, include:
  • a non-driving area is determined.
  • the method when the processor executes the determination of the non-driving area based on the signal quality boundary, the method includes:
  • the non-driving area is determined based on the signal quality boundary line and the boundary line.
  • the processor compares the traveled path with the planned path in the case of determining that the lawn mower has traveled to the end of the target travel path to determine When the area is not driving, it includes:
  • a plurality of non-driving areas are determined.
  • the method when the processor executes driving according to the secondary planning route, the method includes:
  • the processor is further configured to execute the following method:
  • the location point on the secondary planning path with the smallest distance from the end point of the target driving path to the secondary planning path is used as the starting point of driving the secondary planning path.
  • a lawn mower including:
  • a main body of the lawnmower which is provided with a cutting blade, a wheel, and a drive motor for driving the rotation of the wheel;
  • a navigation device for a lawn mower according to any embodiment of the present disclosure.
  • a non-transitory computer-readable storage medium When instructions in the storage medium are executed by a processor, the processor can execute the instructions according to any one of the embodiments of the present disclosure. Methods.
  • the present disclosure realizes the determination of the boundary between the shadow area and the non-shaded area by setting the signal quality turning point, and selecting a distance from the signal quality turning point around the signal quality turning point The closest planned route is used as the target driving route. It solves the problem that the mowing area is not continuous and the unmowing area is difficult to determine in the traditional method. Therefore, the present disclosure has the advantages of high mowing efficiency and strong continuity, and the boundary of the shadow area can be effectively determined by setting the quality signal turning point, which provides effective data for determining the boundary of the unmowed area, and ensures the maximum coverage. The smallest repetitive path.
  • Fig. 1(a) is an application scenario diagram of the prior art according to an exemplary embodiment.
  • Fig. 1(b) is an application scene diagram of a lawn mower navigation method according to an exemplary embodiment.
  • Fig. 2(a) is a flow chart showing a method for navigating a lawn mower according to an exemplary embodiment.
  • Fig. 2(b) is a flow chart showing a method for navigating a lawn mower according to an exemplary embodiment.
  • Fig. 2(c) is a flow chart showing a method for navigating a lawn mower according to an exemplary embodiment.
  • Fig. 2(d) is a flow chart showing a method for navigating a lawn mower according to an exemplary embodiment.
  • Fig. 2(e) is a flowchart showing a method for navigating a lawn mower according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a method for navigating a lawn mower according to an exemplary embodiment.
  • Fig. 4 is a block diagram showing a navigation device for a lawn mower according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram showing the structure of a lawn mower according to an exemplary embodiment.
  • the automatic mowing robot can perform autonomous mowing work, freeing people from the heavy mowing work, and has a good development prospect.
  • information perception including sensors suitable for different application scenarios, multi-sensor integration and fusion
  • movement control including how to use which positioning technology to locate the robot in real time, Control the movement of the lawn mower robot
  • path planning including full coverage path planning, that is, in a given mowing area, let the lawn mower robot achieve the maximum coverage and the smallest repetitive path to clean all the mowing areas.
  • path planning including full coverage path planning, that is, in a given mowing area, let the lawn mower robot achieve the maximum coverage and the smallest repetitive path to clean all the mowing areas.
  • obstructions such as high walls, big trees or hedges.
  • the satellite positioning signal is weak, which can be called Shaded area.
  • Shaded area the mower slowly deviates from the planned mowing path, and when the shaded area ends, it suddenly looks for the next location point in the planned path. The current location point may be farther away from the next location point. Therefore, the traditional path navigation method has discontinuity, and even cannot achieve full coverage cutting, and cannot meet the goal of minimum repeated path under maximum coverage.
  • the present disclosure provides a lawn mower navigation method, device and lawn mower.
  • FIG. 1 is an application scenario diagram of a lawn mower navigation method provided by the present disclosure.
  • the lawn mower 100 starts from the starting point A and travels along the pre-planned planned route 101.
  • the arrow direction indicates the driving direction of the lawn mower Or plan the driving direction.
  • the planned path 101 is composed of a plurality of orderly position points, that is, the lawn mower 100 starts from a starting point and traverses all the position points on the planned path 101 in turn.
  • many obstructions, such as tall trees 104 or buildings 106 will inevitably appear in the mowing area 107.
  • the lawn mower 100 calculates the distance of the planned path of different nearby locations at the position coming out of the shaded area 105. Refer to Figure 1(b) to select a location point on the planned path that is closer, such as a location. Point C is used as the target location point, which can not only drive to the planned route 101 faster, maintain the continuity of mowing, improve the efficiency of mowing, but also facilitate the determination of the non-driving area in the later stage, and ensure the smallest repetition under the maximum coverage. path.
  • Figs. 2(a) to 2(e) are flowcharts of a lawn mower navigation method according to an exemplary embodiment, refer to Figs. 2(a) to 2(e).
  • the present disclosure shows only one shaded area 105 in Figures 2(a) to 2(e). In the case of multiple shaded areas, the principle is the same.
  • a virtual planned path 101 is set in the mowing area 107 in advance, and the mowing area 107 also includes a shadow area 105.
  • the lawn mower travels along the planned path to the shadow area 105. Due to the weak satellite positioning signal, the positioning deviation occurs, resulting in the actual travel path 102 being different from the planned path 101.
  • the lawn mower calculates the distance from the current position point D to the nearby planned path.
  • the distance X2 to the first planned path 209 is less than the distance to the second planned path 208 Distance X1
  • the lawnmower selects the closer first planned path 209, and drives to the shaded area 105 according to the first planned path 209; when the lawnmower walks out of the shaded area 105 again, it reaches the position E, and cuts the grass.
  • Opportunity to calculate the distance from the current location point E to the nearby planned route is possible.
  • the lawnmower selects the closer third planned route 211 to drive , And enter the shadow area 105; when the lawn mower walks out of the shadow area 105 again and reaches the location point F, the lawn mower calculates the distance from the current location point F to the nearby planned path, such as the distance to the fifth planned path 212 X5 is less than the distance to the sixth planned path 113, and the lawnmower selects the closer fifth planned path 212 to continue driving, and completes the mowing work of the first path traversal.
  • the distance X4 to the third planned route 211 is less than the distance X3 to the fourth planned route 210
  • the mowing area 107 includes the actual travel route 102 and the untraveled area 215, and the untraveled area 215 needs to be re-planned.
  • the secondary planned route 216 represents a new planned route for the untraveled area 215.
  • a point closer to the end point of the first travel path is selected from the secondary planning path 216 as the starting point, and the lawn mower travels from the end point of the first travel path to the starting point. And traverse the entire secondary planning path 216, and the entire actual travel path 102 is shown in FIG. 2(e).
  • Fig. 3 is a flow chart showing a method for navigating a lawn mower according to an exemplary embodiment.
  • the present disclosure provides method operation steps as shown in the following embodiments or drawings, more or less operation steps may be included in the method based on conventional or without creative labor. In steps where there is no necessary causality logically, the execution order of these steps is not limited to the execution order provided by the embodiments of the present disclosure.
  • FIG. 3 an embodiment of the lawn mower navigation method provided by the present disclosure is shown in FIG. 3.
  • the method can be applied to the path navigation of the lawn mower, including:
  • Step S31 Receive the satellite positioning signal of the location point on the travel path.
  • the satellite positioning signal may include signals sent from a combined global navigation satellite system GNSS, or signals sent by independent navigation satellite systems, such as GPS in the United States, Glonass in Russia, and Galileo in Europe. As well as China's Beidou satellite navigation system, it can also include related augmentation systems, such as WAAS (Wide Area Augmentation System) in the United States, EGNOS (European Geographic Navigation Overlapping System) and MSAS (Multi-Function Transport Satellite Augmentation System) in Europe. It can also include signals sent by other satellite navigation systems under construction and in the future.
  • the position points on the driving path include a series of points with different coordinates on the driving path.
  • the lawn mower drives according to a pre-planned path during actual driving, and the planned path It is composed of multiple orderly position points. Therefore, the position points on the driving path correspond to the position points on the planned path.
  • the lawn mower obtains the coordinates of the next position point and determines its own driving direction and distance according to the coordinates of the current position point. In the process of traveling, the lawn mower continuously receives the satellite positioning signal of the location point on the driving path for self-positioning, and at the same time, it is also preparing for the judgment of whether the location point is the turning point of the quality signal.
  • Step S32 judging whether the location point is a signal quality turning point according to the satellite positioning signal, the quality of the satellite positioning signal of the signal quality turning point is greater than a preset threshold and the previous location point adjacent to the signal quality turning point The quality of the satellite positioning signal is less than or equal to the preset threshold.
  • the signal quality turning point includes a point where the quality of the satellite positioning signal changes suddenly. It can be determined that the quality of the satellite positioning signal at the signal quality turning point is greater than a preset threshold and is adjacent to the signal quality turning point. The quality of the satellite positioning signal at the previous location point is less than or equal to the preset threshold for judgment. In the shadow area affected by the obstruction, the satellite positioning signal of the lawn mower is weak, resulting in inaccurate positioning. However, the satellite positioning signal suddenly increases at the location point just out of the shadow area. Therefore, these satellite positioning signals are artificially set The point where the signal changes suddenly can be used to determine the boundary between the shadowed area and the non-shaded area to prepare for the next correction navigation.
  • Step S33 If the location point is a signal quality turning point, compare the distance between the location point and each planned route, and use the planned route with the smallest distance as the target driving route.
  • the planned route consists of a plurality of ordered routes. Location point composition.
  • the planned path is composed of a plurality of ordered location points.
  • the planned path can be a bow-shaped path formed by a Boustrophedon coverage method, or a back-shaped path formed by an internal spiral coverage (ISC, Internal Spiral Coverage) method, or STC (Spanning Tree Covering). )
  • ISC Internal Spiral Coverage
  • STC Shortning Tree Covering
  • each planned path includes a planned path around the signal quality turning point, which may be an irregular planned path in the front-to-back direction, the left-right direction, or other directions, depending on the planned path.
  • the distance from the location point to each planned path can be calculated by a distance formula from a point to a straight line.
  • the present disclosure realizes the determination of the boundary between the shaded area and the non-shaded area by setting the signal quality turning point, and selects a planned route closest to the signal quality turning point around the signal quality turning point as the target driving path. It solves the problem that the mowing area is not continuous and the unmowing area is difficult to determine in the traditional method. Therefore, the present disclosure has the advantages of high mowing efficiency and strong continuity, and the boundary of the shadow area can be effectively determined by setting the quality signal turning point, which provides effective data for determining the boundary of the unmowed area, and ensures the maximum coverage. The smallest repetitive path.
  • the step S32 the judging whether the location point is a signal quality turning point according to the satellite positioning signal, includes:
  • Step S321 judging whether the number of receiving satellites is greater than a preset value and/or judging whether the signal-to-noise ratio of the satellite positioning signal is greater than the preset signal-to-noise ratio value;
  • Step S322 if the number of receiving satellites at the location point is greater than the preset threshold and/or the signal-to-noise ratio of the received satellite positioning signal is greater than the preset signal-to-noise ratio value and the previous location point adjacent to the location point receives The number of satellites is less than or equal to the preset threshold and/or the signal-to-noise ratio of the received satellite positioning signal is less than or equal to the preset signal-to-noise ratio value, then the location point is a signal quality turning point.
  • the principle of satellite positioning of position points includes: multiplying the signal propagation time by the signal propagation speed, where the signal propagation speed is close to the speed of light in vacuum, in order to reduce the time error, at least 4
  • the distance data from each satellite to the measurement point is obtained through equations to obtain the three-dimensional position data and time information of the measurement point. It can be seen that the number of satellites has a greater impact on the coordinates of the location point. Therefore, in one example, the strength of the satellite positioning signal can be determined according to whether the number of satellites is greater than a preset threshold, that is, by receiving satellites at the location point.
  • the signal quality turning point is determined in a manner that the number of received satellites is greater than the preset threshold and the number of receiving satellites at the previous location point adjacent to the location point is less than or equal to the preset threshold.
  • the signal-to-noise ratio of the satellite positioning signal includes the signal-to-noise ratio of the RTK signal.
  • Combining the satellite positioning technology with the RTK technology includes: placing another satellite navigation positioning receiver on the reference station, continuously Receive satellite positioning signals, and send the position information of the reference station and the received satellite positioning signals to the wireless receiving device installed on the lawn mower through radio transmission equipment in real time, and use the satellite positioning received by the lawn mower's satellite navigation positioning receiver According to the principle of relative positioning, the three-dimensional coordinates of the position point can be settled in real time based on the signal and the position information about the reference station and the satellite positioning signal data received by the wireless receiving device.
  • the satellite positioning signal received by the receiver and the position information about the reference station and the satellite positioning signal data received by the wireless receiving device also have a greater impact on the positioning result, so the satellite can be judged based on the signal-to-noise ratio of the RTK signal.
  • the strength of the positioning signal That is, whether the signal-to-noise ratio of the RTK signal received at the position point is greater than the preset signal-to-noise ratio value and the signal-to-noise ratio of the RTK signal received at the previous position point adjacent to the position point is less than or equal to the preset signal-to-noise ratio Value to determine the signal quality turning point.
  • the step S32 the judging whether the location point is a signal quality turning point according to the satellite positioning signal, includes:
  • Step S323 Determine the coordinate information of the location point and the previous location point adjacent to the location point according to the satellite positioning signal
  • Step S324 Obtain the distance between the position point and the previous position point adjacent to the position point according to the coordinate information
  • Step S325 If the distance is greater than the first preset length, the position point is a signal quality turning point.
  • the method for determining the coordinate information of the position points by the satellite positioning signal has been described in the above embodiments, and will not be repeated here, and the principle of the embodiments of the present disclosure will now be described.
  • the location points are divided into two categories, one is in the shaded area, and the other is in the non-shaded area.
  • the obtained coordinate information of the position point deviates from the actual coordinate information.
  • the coordinates of the position point are determined by the satellite positioning signal. When the coordinates deviate from the actual coordinates, there is no other positioning method for verification. Therefore, the actual coordinates are difficult to determine.
  • the lawnmower determines that the coordinates are consistent with the coordinates of the location points on the planned path planned in advance. Therefore, in the shaded area , The distance between the position point determined by the satellite positioning signal and the coordinates of the last position point adjacent to the position point, and the corresponding position point on the planned path and the last position point adjacent to the corresponding position point The distance between the coordinates of is the same, therefore, we can set this distance as the first preset length, for example, the preset length is [0.3m, 0.5m].
  • the inertial navigation sensor can be used to position the lawn mower. It should be noted that the coordinates of the position point determined by the inertial navigation sensor and the actual coordinates There is still a deviation.
  • the positioning path performed by the inertial navigation sensor in the shadow area deviates from the preset planned path by a smaller extent, and the position point determined by the inertial navigation sensor is not the same as the position point.
  • the distance between the coordinates of the adjacent previous location point is consistent with the distance between the corresponding location point on the planned path and the coordinate of the previous location point adjacent to the corresponding location point. Therefore, we can still set Set this distance as the first preset length, for example, the preset length is [0.3m, 0.5m].
  • the coordinate information of the position point can be accurately determined through the received satellite positioning signal.
  • the coordinate information of the mower is the accumulation of the position deviation of the mower in the shadow area.
  • the distance from the coordinate information of the last position point (in the shadow area) will suddenly increase, exceeding the first preset length, so it can be adjusted by
  • the signal quality turning point is determined by comparing the distance with the first preset length, that is, if the distance is greater than the first preset length, the position point is the signal quality turning point.
  • determining the signal quality turning point has the beneficial effects of simple calculation and easy judgment .
  • the step S32 the judging whether the location point is a signal quality turning point according to the satellite positioning signal, includes:
  • Step S326 Determine the coordinate information of the location point according to the satellite positioning signal
  • Step S327 Compare the coordinate information of the location point with the coordinate information of the location point of the planned path corresponding to the location point. If the difference between the two coordinates is greater than the second preset length, the location point is of signal quality Turning point.
  • the planned path is composed of a plurality of orderly position points, and the lawn mower is positioned by satellite or other positioning methods to follow the planned path.
  • the order of the position points The order is: A (X 1 , Y 1 ), B (X 2 , Y 2 ), C (X 3 , Y 3 ), the current position of the lawn mower is point A, according to the planned path, the lawn mower needs to travel to Position point B, then the actual position of position point B is determined by satellite positioning or other positioning methods. After confirmation, the lawn mower will drive to position point B, and accordingly, the actual position of position point C is calculated.
  • the satellite positioning signal is weak in the shadow area, the actual position of the location point gradually deviates from the planned path, and the error information is continuously accumulated until the satellite positioning signal suddenly changes after the lawn mower comes out of the shadow area.
  • the location coordinates obtained through the satellite positioning signal will be quite different from the coordinates corresponding to the planned path. Therefore, it can be used to compare the coordinate information of the location point and the planned path corresponding to the location point If the difference distance between the two coordinates is greater than the second preset length, the position point is the signal quality turning point, and the signal quality turning point is determined.
  • the embodiment of the present disclosure determines the signal quality turning point by comparing the coordinate information of the location point and the coordinate information of the location point of the planned path corresponding to the location point, which has the beneficial effects of simple calculation and easy implementation.
  • the lawn mower navigation method further includes:
  • Step S34 in the case where it is determined that the lawn mower has traveled to the end of the target travel path, compare the traveled path with the planned path to determine the untraveled area;
  • Step S35 Perform path planning on the non-driving area to generate a second planned path, where the second planned path is composed of a plurality of ordered location points;
  • Step S36 driving according to the second planned route.
  • the end point of the target travel path includes the end point of the planned path
  • the method for determining the end point of the target travel path by the lawn mower may include using the lawn mower in the process of traveling. Continually compare the coordinates of the location points on the target travel path to be driven and the end coordinates of the planned path. If they are the same, it means that the lawn mower has traveled to the end of the target travel path. When the lawn mower travels to the end of the target driving path, it indicates that the first traversal of the lawn mower is completed. By comparing the traveled path and the planned path, the coordinates of the location points that are not traveled are determined, thereby determining the untraveled area.
  • the path planning for the untraveled area includes, but is not limited to, the following path planning method to generate a secondary planning path: a bow-shaped path formed by a Boustrophedon covering method can be used, or The return-shaped path formed by the internal spiral coverage (ISC, Internal Spiral Coverage) method can also be the tree-shaped path formed by the STC (Spanning Tree Covering) coverage method.
  • ISC Internal Spiral Coverage
  • STC Shortning Tree Covering
  • the lawnmower can drive according to the second planned route.
  • the untraveled area after the untraveled area is determined, it can also continue to drive along the original untraveled planned route during the first mowing process. In this embodiment, the boundary of the shadow area needs to be determined to avoid entering the shadow area twice.
  • the present disclosure ensures the full coverage of the mowing area by determining the non-driving area and re-planning the non-driving area.
  • step S34 when it is determined that the lawn mower has traveled to the end of the target travel path, the traveled path is compared with the planned path to determine that it has not Driving area, including:
  • Step S341 in a case where it is determined that the lawn mower has traveled to the end of the target travel path, connect the signal quality turning point to form a signal quality dividing line;
  • Step S342 Determine a non-driving area based on the signal quality boundary.
  • the signal quality turning point is the point where the satellite positioning signal changes abruptly, and the signal quality turning points are connected to obtain a signal quality boundary line, and the signal quality boundary line can reflect the shadow area Borders.
  • the signal quality boundary is taken as a boundary of the untraveled area, and together with other planned routes that have been traveled, the untraveled area is formed.
  • the present disclosure establishes the signal quality boundary line and regards it as a boundary line of the non-driving area, which can effectively block the lawn mower from entering the shadow area again during the second driving process, thereby ensuring the effectiveness of mowing.
  • the step S342 determining the non-driving area based on the signal quality boundary, includes:
  • Step S3421 Obtain the traveled route recorded by the lawn mower
  • Step S3422 comparing the traveled route with the planned route, and determining the boundary of the untraveled area
  • Step S3423 Determine the non-driving area based on the signal quality boundary line and the boundary line.
  • the lawn mower continuously saves the coordinates of the location point that has been driven during the first path travel.
  • the lawn mower reaches the end of the target travel path, all the coordinates of the traveled location are saved
  • the location points on the driving route can be compared with the planned route to get the untraveled location points in the planned route.
  • the location points that are not traveling in the planned route can be classified according to the following method, and the abscissa and ordinate of the location points are compared, and the row of location points with the same abscissa and the smallest abscissa value is taken as For the left boundary of the untraveled area, the row of location points with the same abscissa and the largest abscissa value is taken as the right boundary of the untraveled area, and the row of location points with the same ordinate and the smallest ordinate value as the lower boundary of the untraveled area A column of position points with the same ordinate and the largest ordinate value is used as the upper boundary of the untraveled area. Combine the determined boundary of the undriving area with the signal quality boundary, and replace the boundary of the area with the satellite on the same side as the signal quality boundary with the signal quality boundary to obtain the final undriving area.
  • the present disclosure determines the boundary line of the non-driving area by comparing the traveled route and the planned route, which has the beneficial effect that the algorithm is simple and easy to implement.
  • step S34 when it is determined that the lawn mower has traveled to the end of the target travel path, the traveled path is compared with the planned path to determine that it has not Driving area, including:
  • step S343 when it is determined that the lawn mower has traveled to the end of the target driving path, connect the signal quality turning points whose distance between adjacent signal quality turning points is less than a third preset length to generate a plurality of signals Quality boundary
  • Step S344 Determine multiple untraveled areas based on the multiple signal quality boundary lines.
  • the signal quality turning points need to be classified.
  • the signal quality turning points can be classified as follows , Dividing the signal quality turning points with the distance between adjacent signal quality turning points less than the third preset length into one type, that is, the signal quality turning points with a shorter distance are generated by the same shaded area. Connect the signal quality turning points of the same analogy to obtain multiple signal quality dividing lines. Similar to the above-mentioned embodiment, by comparing the traveled target route with the planned route, other boundaries of the multiple untraveled areas are obtained to determine Multiple untraveled areas.
  • step S36 driving according to the second planned route, includes:
  • Step S361 arranging the multiple untraveled areas in ascending order of the distance from the end point of the target travel path;
  • Step S362 sequentially driving according to the secondary planned routes corresponding to the multiple untraveled areas.
  • the multiple undriving areas are sorted.
  • the distances between the end points of the driving paths are arranged in ascending order.
  • the distance between the end points of the non-driving area and the end point of the target driving path may be sorted, for example, the target There are two untraveled areas on the left side of the end point of the travel path, then the distance between the right end of the untraveled area and the end point of the target travel path is compared.
  • the lawn mower navigation method further includes:
  • step S37 the location point on the secondary planning path with the smallest distance from the end point of the target driving path to the secondary planning path is used as the starting point of driving the secondary planning path.
  • the distance formula from the point to the straight line can be used to calculate the end point of the target driving path to the location point with the smallest distance from the secondary planning path;
  • the starting point can be determined by the tangent distance from the end point to the position on the curve in the curve.
  • the present disclosure calculates the distance from the end point of the target driving path to the secondary planning path, and selects the location point with the smallest distance and located on the secondary planning path as the starting point for driving the secondary planning path, which has a saving path The beneficial effects.
  • Fig. 4 is a block diagram showing a navigation device 400 for a lawn mower according to an exemplary embodiment. 4, the device includes a satellite signal receiver 401 and a processor 402.
  • the satellite signal receiver 401 is used to receive the satellite positioning signal of the position point on the driving path;
  • the processor 402 is configured to execute the following methods:
  • the satellite positioning signal it is determined whether the location point is a signal quality turning point, and the satellite positioning signal quality of the signal quality turning point is greater than a preset threshold and the satellite positioning of the previous location point adjacent to the signal quality turning point The quality of the signal is less than or equal to the preset threshold;
  • the location point is a signal quality turning point, compare the distance between the location point and each planned route, and use the planned route with the smallest distance as the target driving route, and the planned route is composed of a plurality of ordered location points .
  • the implementation step of the processor 402 includes:
  • the position point is a signal quality turning point.
  • the implementation step of the processor 402 includes:
  • the position point is a signal quality turning point.
  • the implementation step of the processor 402 includes:
  • the coordinate information of the location point is compared with the coordinate information of the location point of the planned path corresponding to the location point. If the difference distance between the two coordinates is greater than the second preset length, the location point is a signal quality turning point.
  • the processor 402 is further configured to execute the following method:
  • the processor 402 compares the traveled path with the planned path in the case of determining that the lawn mower has traveled to the end of the target travel path, When determining the non-driving area, include:
  • a non-driving area is determined.
  • the method when the processor 402 executes the determination of the non-driving area based on the signal quality boundary, the method includes:
  • the non-driving area is determined based on the signal quality boundary line and the boundary line.
  • the processor 402 compares the traveled path with the planned path in the case of determining that the lawn mower has traveled to the end of the target travel path, When determining the non-driving area, include:
  • a plurality of non-driving areas are determined.
  • the method when the processor 402 executes driving according to the second planned route, the method includes:
  • the processor 402 is further configured to execute the following method:
  • the location point on the secondary planning path with the smallest distance from the end point of the target driving path to the secondary planning path is used as the starting point of driving the secondary planning path.
  • Fig. 5 is a schematic diagram showing the structure of a lawn mower according to an exemplary embodiment.
  • the lawn mower includes:
  • the lawn mower body 500 is provided with a cutting blade 502, wheels 501, and a driving motor 503 for driving the cutting blade 502 to rotate, and a lawn mower navigation device 400 according to any embodiment of the present disclosure.
  • non-transitory computer-readable storage medium including instructions, such as a memory including instructions, which may be executed by a processor of a device to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Navigation (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Harvester Elements (AREA)

Abstract

一种割草机导航方法、装置和割草机。方法包括:接收行驶路径上位置点的卫星定位信号(S31);根据卫星定位信号,判断位置点是否为信号质量转折点(S32),若位置点为信号质量转折点,则比较位置点到各规划路径的距离大小,将距离最小的规划路径作为目标行驶路径,规划路径由多个有序的位置点构成(S33)。本方法具有割草效率高、连续性强的优点,并且通过设置质量信号转折点能够有效的确定阴影区域的边界,为未割草区域边界的确定提供了有效的数据,保证了最大覆盖率下最小的重复路径。

Description

一种割草机导航方法、装置和割草机
本申请要求了申请日为2019年11月12日,申请号为201911101419.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及自动化控制技术领域,尤其涉及一种割草机导航方法、装置和割草机。
背景技术
随着科学技术的发展,自动割草机器人能够在无人员参与的情况下按照规划的路径自主的进行割草工作,给人们的生产生活提供了极大的便利。实际应用中,由于受房屋建筑、高墙、大树等遮挡物的影响,造成卫星定位信号较弱的阴影区域,自动割草机器人在此阴影区域中定位精度受到影响,使得自动割草机器人割草时逐渐偏离已规划的割草路径,在从阴影区域走出时,可能出现位置突变的情况,影响割草的连贯性,甚至不能实现全覆盖式的切割,最终影响割草质量。
发明内容
为克服相关技术中存在的问题,节省文章创作的人力成本,本公开提供一种文本自动生成方法和装置。
根据本公开实施例的第一方面,提供一种割草机导航方法,包括:
接收行驶路径上位置点的卫星定位信号;
根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,所述信号质量转折点的卫星定位信号的质量大于预设阈值且与所述信号质量转折点相邻的上一位置点的卫星定位信号的质量小于或等于所述预设阈值;
若所述位置点为信号质量转折点,则比较所述位置点到各规划路径的距离大小,将所述距离最小的规划路径作为目标行驶路径,所述规划路径由多个有序的位置点构成。
在一种可能的实现方式中,所述根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,包括:
判断接收卫星的数量是否大于预设数值和/或判断所述卫星定位信号的信噪比是否大于预设信噪比值;
若所述位置点接收卫星的数量大于预设阈值和/或接收所述卫星定位信号的信噪比大 于预设信噪比值且与所述位置点相邻的上一位置点接收卫星的数量小于或等于预设阈值和/或接收所述卫星定位信号的信噪比小于或等于预设信噪比值,则所述位置点为信号质量转折点。
在一种可能的实现方式中,所述根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,包括:
根据所述卫星定位信号,确定所述位置点以及与所述位置点相邻的上一位置点的坐标信息;
根据所述坐标信息,得到所述位置点以及与所述位置点相邻的上一位置点之间的距离;
若所述距离大于第一预设长度,则所述位置点为信号质量转折点。
在一种可能的实现方式中,所述根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,包括:
根据所述卫星定位信号,确定所述位置点的坐标信息;
比较所述位置点的坐标信息以及与所述位置点对应的规划路径的位置点的坐标信息,若两坐标的差值距离大于第二预设长度,则所述位置点为信号质量转折点。
在一种可能的实现方式中,还包括:
在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域;
对所述未行驶区域进行路径规划,生成二次规划路径,所述二次规划路径由多个有序的位置点构成;
按照所述二次规划路径行驶。
在一种可能的实现方式中,所述在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域,包括:
在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将所述信号质量转折点连接成信号质量分界线;
基于所述信号质量分界线,确定未行驶区域。
在一种可能的实现方式中,所述基于所述信号质量分界线,确定未行驶区域,包括:
获取割草机记录的已行驶路径;
比较所述已行驶路径以及所述规划路径,确定所述未行驶区域的边界线;
基于所述信号质量分界线以及所述边界线确定所述未行驶区域。
在一种可能的实现方式中,所述在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域,包括:
在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将相邻信号质量转折点之间的距离小于第三预设长度的信号质量转折点相连接,生成多个信号质量分界线;
基于所述多个信号质量分界线,确定多个未行驶区域。
在一种可能的实现方式中,所述按照所述二次规划路径行驶,包括:
将所述多个未行驶区域按照与所述目标行驶路径的终点之间的距离由小到大的顺序进行排列;
依次按照所述多个未行驶区域对应的二次规划路径行驶。
在一种可能的实现方式中,还包括:
将所述目标行驶路径的终点到所述二次规划路径的距离最小的且位于所述二次规划路径上的位置点作为行驶二次规划路径的起始点。
根据本公开实施例的第二方面,提供一种割草机导航装置,包括:
卫星信号接收器,用于接收行驶路径上位置点的卫星定位信号;
处理器,用于执行下述方法:
根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,所述信号质量转折点的卫星定位信号的质量大于预设阈值且与所述信号质量转折点相邻的上一位置点的卫星定位信号的质量小于或等于所述预设阈值;
若所述位置点为信号质量转折点,则比较所述位置点到各规划路径的距离大小,将所述距离最小的规划路径作为目标行驶路径,所述规划路径由多个有序的位置点构成。
在一种可能的实现方式中,所述处理器在实现步骤根据所述卫星定位信号,判断所述位置点是否为信号质量转折点时,包括:
判断接收卫星的数量是否大于预设数值和/或判断所述卫星定位信号的信噪比是否大于预设信噪比值;
若所述位置点接收卫星的数量大于预设阈值和/或接收所述卫星定位信号的信噪比大于预设信噪比值且与所述位置点相邻的上一位置点接收卫星的数量小于或等于预设阈值和/或接收所述卫星定位信号的信噪比小于或等于预设信噪比值,则所述位置点为信号质量转折点。
在一种可能的实现方式中,所述处理器在实现步骤根据所述卫星定位信号,判断所述位置点是否为信号质量转折点时,包括:
根据所述卫星定位信号,确定所述位置点以及与所述位置点相邻的上一位置点的坐标信息;
根据所述坐标信息,得到所述位置点以及与所述位置点相邻的上一位置点之间的距离;
若所述距离大于第一预设长度,则所述位置点为信号质量转折点。
在一种可能的实现方式中,所述处理器在实现步骤根据所述卫星定位信号,判断所述位置点是否为信号质量转折点时,包括:
根据所述卫星定位信号,确定所述位置点的坐标信息;
比较所述位置点的坐标信息以及与所述位置点对应的规划路径的位置点的坐标信息,若两坐标的差值距离大于第二预设长度,则所述位置点为信号质量转折点。
在一种可能的实现方式中,所述处理器还用于执行下述方法:
在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域;
对所述未行驶区域进行路径规划,生成二次规划路径,所述二次规划路径由多个有序的位置点构成;
按照所述二次规划路径行驶。
在一种可能的实现方式中,所述处理器在执行在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域时,包括:
在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将所述信号质量转折点连接成信号质量分界线;
基于所述信号质量分界线,确定未行驶区域。
在一种可能的实现方式中,所述处理器在执行基于所述信号质量分界线,确定未行驶区域时,包括:
获取割草机记录的已行驶路径;
比较所述已行驶路径以及所述规划路径,确定所述未行驶区域的边界线;
基于所述信号质量分界线以及所述边界线确定所述未行驶区域。
在一种可能的实现方式中,所述处理器在执行在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域时,包括:
在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将相邻信号质量转折点之间的距离小于第三预设长度的信号质量转折点相连接,生成多个信号质量分界线;
基于所述多个信号质量分界线,确定多个未行驶区域。
在一种可能的实现方式中,所述处理器在执行按照所述二次规划路径行驶时,包括:
将所述多个未行驶区域按照与所述目标行驶路径的终点之间的距离由小到大的顺序进行排列;
依次按照所述多个未行驶区域对应的二次规划路径行驶。
在一种可能的实现方式中,所述处理器还用于执行下述方法:
将所述目标行驶路径的终点到所述二次规划路径的距离最小的且位于所述二次规划路径上的位置点作为行驶二次规划路径的起始点。
根据本公开实施例的第三方面,提供一种割草机,包括:
割草机主体,所述割草机主体上设有切割刀片、车轮以及驱动车轮转动的驱动电机;
根据本公开任一实施例所述的割草机导航装置。
根据本公开实施例的第四方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据本公开任一实施例所述的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:本公开通过设置信号质量转折点,实现阴影区域与非阴影区域边界的确定,通过在所述信号质量转折点的周围选择一个距离该信号质量转折点最近的规划路径,作为目标行驶路径。解决了传统方法中割草区域不连续及未割草区域难以确定的问题。因此,本公开具有割草效率高、连续性强的优点,并且通过设置质量信号转折点能够有效的确定阴影区域的边界,为未割草区域边界的确定提供了有效的数据,保证了最大覆盖率下最小的重复路径。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1(a)是根据一示例性实施例示出的现有技术的应用场景图。
图1(b)是根据一示例性实施例示出的一种割草机导航方法的应用场景图。
图2(a)是根据一示例性实施例示出的一种割草机导航方法的流程图。
图2(b)是根据一示例性实施例示出的一种割草机导航方法的流程图。
图2(c)是根据一示例性实施例示出的一种割草机导航方法的流程图。
图2(d)是根据一示例性实施例示出的一种割草机导航方法的流程图。
图2(e)是根据一示例性实施例示出的一种割草机导航方法的流程图。
图3是根据一示例性实施例示出的一种割草机导航方法的流程图。
图4是根据一示例性实施例示出的一种割草机导航装置的框图。
图5是根据一示例性实施例示出的一种割草机的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
为了方便本领域技术人员理解本公开实施例提供的技术方案,下面先对技术方案实现的技术环境进行说明。
自动割草机器人能够进行自主的割草工作,使人们从繁重的割草工作中解脱出来,具有很好的发展前景。近年来,对自动割草机器人的研究体现在以下方面:信息感知,包括适用不同应用场景的传感器,多传感器集成和融合方面;移动控制,包括如何采用何种定位技术实时的对机器人进行定位,控制割草机器人的移动;路径规划,包括全覆盖路径规划,即在给定的割草区域内让割草机器人实现最大的覆盖率和最小的重复路径前提下清扫所有的割草区域。在实际应用中,用户的住宅环境存在差异性,有些割草区域往往存在遮挡物,比如高墙、大树或树篱,处于上述遮挡物的割草区域,卫星定位信号较弱,可以称之为阴影区域。在阴影区域内,割草机会慢慢偏离已规划的割草路径,又在阴影区域结束时,突然去寻找规划路径中的下一位置点,当前位置点与下一位置点可能存在较远的距离,因此,传统的路径导航方法存在不连续性,甚至不能实现全覆盖式切割,不能满足最大覆盖率下最小重复路径的目标。
基于类似于上文所述的实际技术需求,本公开提供了一种割草机导航方法、装置和割草机。
下面结合附图1(a)和图1(b)对本公开所述的割草机导航方法进行详细的说明。图1是本公开提供的一种割草机导航方法的应用场景图。参考图1(a)或图1(b)所示,割草机100从起点A处出发,沿着预先规划好的规划路径101向前行驶,图中,箭头方向表示割草机的行驶方向或规划行驶方向。所述规划路径101由多个有序的位置点构成, 即割草机100从起点出发,依次遍历规划路径101上所有的位置点。但割草区域107中难免会出现许多遮挡物,比如高大的树木104或建筑物106,这些遮挡物会影响卫星定位信号的接收,从而导致割草机100在行驶的过程中定位出现偏差,在这些信号较弱的阴影区域105中,割草机逐渐偏离规划路径,并且在阴影区域105中由于无法准确定位,误认为自己仍然按照规划路径101上行驶,直至从阴影区域105出来的位置点,通过卫星信号获得自己真实的位置坐标,并且发现真实位置点与规划路径的位置点,比如位置点B相差很远,如果按照传统的方法,参考图1(a),割草机寻找规划路径101中下一位置点的坐标,需要割草机100从当前位置直接行驶到位置点B。不仅导致实际割草路径不连续,而且导致未割草的区域不容易确定,影响割草效率和割草质量。为此,本公开提出了割草机100在从阴影区域105出来的位置处对附近的不同位置的规划路径进行计算距离,参考图1(b)选择较近的规划路径上的位置点比如位置点C作为目标位置点,不仅可以较快的行驶到规划路径101上,保持割草的连续性,提高割草效率,而且方便后期对未行驶区域的确定,保证了最大覆盖率下最小的重复路径。
图2(a)至图2(e)是根据一示例性实施例示出的一种割草机导航方法的流程图,参考图2(a)至图2(e)所示。为了简化描述,本公开在图2(a)至图2(e)中仅示出了一处阴影区域105,在存在多个阴影区域的情况下,原理是相同的,本公开在此处不再举例。在图2(a)中,预先在割草区域107中设置了虚拟的规划路径101,所述割草区域107中还包括了阴影区域105。在图2(b)中,割草机沿规划路径行驶至阴影区域105中,由于卫星定位信号较弱,定位出现偏差,导致实际行驶路径102与规划路径101不同,当割草机从阴影区域105中走出来时,到达位置点D,根据本方案,割草机计算一下当前位置点D到附近规划路径的距离,比如,到第一规划路径209的距离X2小于到第二规划路径208的距离X1,则割草机选择较近的第一规划路径209,并按照第一规划路径209行驶至阴影区域105;当割草机再次从阴影区域105中走出来,到达位置点E,割草机会计算一下当前位置点E到附近规划路径的距离,比如,到第三规划路径211的距离X4小于到第四规划路径210的距离X3,则割草机选择较近的第三规划路径211行驶,并进入阴影区域105;当割草机再次从阴影区域105中走出来,到达位置点F,割草机会计算一下当前位置点F到附近规划路径的距离,比如到第五规划路径212的距离X5小于到第六规划路径113的距离,则割草机选择较近的第五规划路径212继续行驶,完成第一的路径遍历的割草工作。在图2(c)中,割草区域107中包括实际行驶路径102和未行驶区域215,对于未行驶区域215需要重新进行路径规划。在图2(d)中,二次规划路径216表示对 未行驶区域215的新的规划的路径。在图2(e)中,从二次规划路径216中选择一个距离第一次行驶路径的终点较近的点作为起点,割草机从所述第一次行驶路径的终点行驶到所述起点的并遍历整个二次规划路径216,并且图2(e)中显示了整个实际行驶路径102。
图3是根据一示例性实施例示出的一种割草机导航方法的流程图。虽然本公开提供了如下述实施例或附图所示的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本公开实施例提供的执行顺序。
具体的,本公开提供的割草机导航方法一种实施例如图3所示,所述方法可以应用于割草机的路径导航,包括:
步骤S31,接收行驶路径上位置点的卫星定位信号。
本公开实施例中,所述卫星定位信号既可以包括来自组合的全球导航卫星系统GNSS发送的信号,又可以包括独立的导航卫星系统发送的信号,如美国的GPS、俄罗斯的Glonass、欧洲的Galileo以及中国的北斗卫星导航系统,还可以包括相关的增强系统,如美国的WAAS(广域增强系统)、欧洲的EGNOS(欧洲静地导航重叠系统)和日本的MSAS(多功能运输卫星增强系统)等,还可以包括在建和以后要建设的其他卫星导航系统所发送的信号。在一个示例中,所述行驶路径上的位置点包括在行驶路径上一系列不同坐标的点,由于,割草机在实际行驶的过程中,是按照预先的规划路径进行行驶的,而规划路径是由多个有序的位置点构成,因此,行驶路径上的位置点与规划路径上的位置点相对应的。所述割草机通过获取下一位置点的坐标并根据当前位置点的坐标确定自身的行驶方向和距离。割草机在行进过程中,不停的接收行驶路径上位置点的卫星定位信号,用于自身定位的同时,也在为位置点是否为质量信号转折点的判断做准备。
步骤S32,根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,所述信号质量转折点的卫星定位信号的质量大于预设阈值且与所述信号质量转折点相邻的上一位置点的卫星定位信号的质量小于或等于所述预设阈值。
本公开实施例中,所述信号质量转折点包括卫星定位信号的质量发生突变的位置点,可以通过判断所述信号质量转折点的卫星定位信号的质量大于预设阈值且与所述信号质量转折点相邻的上一位置点的卫星定位信号的质量小于或等于所述预设阈值进行判断。由于,在受遮挡物影响的阴影区域内,割草机的卫星定位信号较弱,导致定位不准确,而刚走出阴影区域的位置点,卫星定位信号突然增强,因此,通过人为设置这些卫星定位信号发生突变的位置点,可以确定阴影区域与非阴影区域的边界,为接下来的修正导航做准备。
步骤S33,若所述位置点为信号质量转折点,则比较所述位置点到各规划路径的距离大小,将所述距离最小的规划路径作为目标行驶路径,所述规划路径由多个有序的位置点构成。
本公开实施例中,所述规划路径由多个有序的位置点构成。所述规划路径可以采用牛耕式(Boustrophedon)覆盖方法形成的弓字型路径,也可以采用内螺旋覆盖(ISC,Internal Spiral Coverage)方法形成的回字型路径,还可以采用STC(Spanning Tree Covering)覆盖方法形成的树型路径,需要说明的是,所述规划路径的生成方式不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。在一个示例中,所述各规划路径包括在所述信号质量转折点的周围的规划路径,可以是前后方向、左右方向或其他方向上不规则的规划路径,根据已规划而定。在另一个示例中,所述位置点到各规划路径的距离可以通过点到直线的距离公式计算。割草机在行驶的过程中,若检测到信号质量转折点,则在所述信号质量转折点的周围计算一个距离该信号质量转折点最近的规划路径,作为接下来要行驶的目标行驶路径。
本公开通过设置信号质量转折点,实现阴影区域与非阴影区域边界的确定,通过在所述信号质量转折点的周围选择一个距离该信号质量转折点最近的规划路径,作为目标行驶路径。解决了传统方法中割草区域不连续及未割草区域难以确定的问题。因此,本公开具有割草效率高、连续性强的优点,并且通过设置质量信号转折点能够有效的确定阴影区域的边界,为未割草区域边界的确定提供了有效的数据,保证了最大覆盖率下最小的重复路径。
在一种可能的实现方式中,所述步骤S32,所述根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,包括:
步骤S321,判断接收卫星的数量是否大于预设数值和/或判断所述卫星定位信号的信噪比是否大于预设信噪比值;
步骤S322,若所述位置点接收卫星的数量大于预设阈值和/或接收所述卫星定位信号的信噪比大于预设信噪比值且与所述位置点相邻的上一位置点接收卫星的数量小于或等于预设阈值和/或接收所述卫星定位信号的信噪比小于或等于预设信噪比值,则所述位置点为信号质量转折点。
本公开实施例中,由于位置点的卫星定位原理包括:通过信号传播时间差乘以信号的传播速度,其中,所述信号传播速度接近于真空中的光速,为了降低时间上的误差,需要 至少4颗卫星至测量点的距离数据,通过方程式,得到测量点的三维位置数据和时间信息。可以看出,卫星的数量对位置点的坐标影响较大,因此,在一个示例中,可以根据卫星数量是否大于预设阈值来判定卫星定位信号的强弱,即通过在所述位置点接收卫星的数量大于预设阈值并且与所述位置点相邻的上一位置点接收卫星的数量小于或等于预设阈值的方式来确定信号质量转折点。
在另一个示例中,所述卫星定位信号的信噪比包括RTK信号的信噪比,将卫星定位技术与RTK技术相结合,包括:在基准站上安置另外一台卫星导航定位接收机,连续接收卫星定位信号,并将基准站位置信息和接收到的卫星定位信号通过无线电传输设备实时地发送给割草机上安装的无线接收设备,利用割草机的卫星导航定位接收机接收到的卫星定位信号以及利用无线接收设备接收到的关于基准站的位置信息和卫星定位信号数据,根据相对定位的原理,实时结算出位置点的三维坐标。可以看,接收机接收到的卫星定位信号以及无线接收设备接收到的关于基准站的位置信息和卫星定位信号数据对定位结果的影响也比较大,因此可以根据RTK信号的信噪比进行判断卫星定位信号的强弱。即通过在所述位置点接收RTK信号的信噪比是否大于预设信噪比值且与所述位置点相邻的上一位置点接收RTK信号的信噪比小于或等于预设信噪比值来确定信号质量转折点。
在一种可能的实现方式中,所述步骤S32,所述根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,包括:
步骤S323,根据所述卫星定位信号,确定所述位置点以及与所述位置点相邻的上一位置点的坐标信息;
步骤S324,根据所述坐标信息,得到所述位置点以及与所述位置点相邻的上一位置点之间的距离;
步骤S325,若所述距离大于第一预设长度,则所述位置点为信号质量转折点。
本公开实施例中,通过卫星定位信号确定位置点的坐标信息的方法已在上述实施例中进行表述,在此不再赘述,现就本公开实施例的原理进行说明。在本公开实施例中,位置点被划分成两类,一类是处于阴影区域的,一类是处于非阴影区域的。当所述位置点处于阴影区域中时,由于卫星定位信号较弱,得到的位置点的坐标信息与实际坐标信息有偏差,在一个示例中,通过卫星定位信号确定位置点的坐标,当所述坐标与实际坐标有偏差时,没有别的定位方式进行验证,因此,实际坐标难以确定,割草机则判定所述坐标和预先规划的规划路径上的位置点坐标一致,因此,在阴影区域中,通过卫星定位信号确定的所述位置点与所述位置点相邻的上一个位置点的坐标之间的距离,与规划路径上对应位置点与 所述对应位置点相邻的上一个位置点的坐标之间的距离是一致的,因此,我们可以设定这个距离为第一预设长度,比如所述预设长度为[0.3m,0.5m]。在另一个示例中,当所述位置点处于阴影区域中时,可以利用惯导传感器对所述割草机进行位置定位,需要说明的是,利用惯导传感器确定的位置点的坐标与实际坐标仍然有偏差,相较于卫星定位,采用惯导传感器在阴影区域中进行的定位路径要较小幅度的偏离预设规划路径,并且通过惯导传感器确定的所述位置点与所述位置点相邻的上一个位置点的坐标之间的距离,与规划路径上对应位置点与所述对应位置点相邻的上一个位置点的坐标之间的距离是一致的,因此,我们可以仍然可以设定这个距离为第一预设长度,比如所述预设长度为[0.3m,0.5m]。
本公开实施例中,当割草机从阴影区域出来后,卫星定位信号突然变强时对应的位置点,可以通过接收到的卫星定位信号,准确的确定所述位置点的坐标信息,此时的坐标信息正是割草机在阴影区域内的位置偏差的积累,与上一位置点(阴影区域内)的坐标信息的距离会突然增加,超出第一预设长度,因此可以通过将所述距离与第一预设长度进行对比的方式,确定信号质量转折点,即若所述距离大于第一预设长度,则所述位置点为信号质量转折点。
本公开实施例通过将所述位置点与所述位置点相邻的上一位置点之间的距离与第一预设长度做对比的方式,确定信号质量转折点具有计算简单,容易判断的有益效果。
在一种可能的实现方式中,所述步骤S32,所述根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,包括:
步骤S326,根据所述卫星定位信号,确定所述位置点的坐标信息;
步骤S327,比较所述位置点的坐标信息以及与所述位置点对应的规划路径的位置点的坐标信息,若两坐标的差值距离大于第二预设长度,则所述位置点为信号质量转折点。
本公开实施例中,通过卫星定位信号确定位置点的坐标信息的方法已在上述实施例中进行表述,在此不再赘述,现就本公开实施例的原理进行说明。在本公开实施例中,所述规划路径由多个有序的位置点构成,割草机通过卫星或其他定位方式进行定位以按照规划路径行驶,比如,在规划路径中,位置点的排列顺序依次是:A(X 1,Y 1),B(X 2,Y 2),C(X 3,Y 3),割草机当前位置点是A点,按照规划路径,割草机需要行驶到位置点B,那么位置点B的实际位置则通过卫星定位或其他定位方式确定,确定后,割草机则行驶到位置点B,相应的,计算位置点C的实际位置。在本公开实施例中,由于阴影区域内,卫星定位信号较弱,位置点的实际位置逐渐偏离规划路径,误差信息不断的累计,直至当割草机从阴影区域出来后,卫星定位信号突然变强时对应的位置点,通过卫星定位信号得 到的位置坐标将与规划路径对应的坐标具有较大的不同,因此可以通过,比较所述位置点的坐标信息以及与所述位置点对应的规划路径的位置点的坐标信息,若两坐标的差值距离大于第二预设长度,则所述位置点为信号质量转折点的方式,确定信号质量转折点。
本公开实施例通过比较所述位置点的坐标信息以及与所述位置点对应的规划路径的位置点的坐标信息的方式确定信号质量转折点,具有计算简单,易于实现的有益效果。
在一种可能的实现方式中,所述割草机导航方法还包括:
步骤S34,在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域;
步骤S35,对所述未行驶区域进行路径规划,生成二次规划路径,所述二次规划路径由多个有序的位置点构成;
步骤S36,按照所述二次规划路径行驶。
本公开实施例中,所述目标行驶路径的终点包括规划路径的终点,所述确定所述割草机行驶至所述目标行驶路径的终点的方式,可以包括通过割草机在行进的过程中,不断地比较将待行驶的目标行驶路径上的位置点坐标与规划路径的终点坐标做比较,若相同,则表示所述割草机行驶至所述目标行驶路径的终点。当所述割草机行驶至所述目标行驶路径的终点,表示割草机第一次遍历结束,通过比较已行驶路径和规划路径,确定没有行驶的位置点坐标,从而确定未行驶区域。
本公开实施例中,对所述未行驶区域进行路径规划,包括但不限于下述路径规划方法生成二次规划路径:可以采用牛耕式(Boustrophedon)覆盖方法形成的弓字型路径,也可以采用内螺旋覆盖(ISC,Internal Spiral Coverage)方法形成的回字型路径,还可以采用STC(Spanning Tree Covering)覆盖方法形成的树型路径。在一个示例中,割草机可以按照所述二次规划路径行驶,在另一个示例中,当确定完未行驶区域后,也可以按照原始的第一次割草过程中未行驶规划路径继续行驶,在该实施例中,需要确定阴影区域的边界,避免二次进入阴影区域。
本公开通过确定未行驶区域,并对未行驶区域进行重新的路径规划,保证割草区域的全面覆盖。
在一种可能的实现方式中,所述步骤S34,在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域,包括:
步骤S341,在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将所述信号质量转折点连接成信号质量分界线;
步骤S342,基于所述信号质量分界线,确定未行驶区域。
本公开实施例中,由于所述信号质量转折点的定义:所述信号质量转折点的卫星定位信号的质量大于预设阈值且与所述信号质量转折点相邻的上一位置点的卫星定位信号的质量小于或等于所述预设阈值,因此,所述信号质量转折点是卫星定位信号发生突变的点,将所述信号质量转折点相连接,得到信号质量分界线,所述信号质量分界线能够反映阴影区域的边界。在一个示例中,将所述信号质量分界线作为未行驶区域的一个边界,与其他已行驶的规划路径一起,构成了未行驶区域。
本公开通过确立信号质量分界线,并将其作为未行驶区域的一个边界线,能够有效的阻断割草机在第二次行驶过程中再次进入阴影区域,保证了割草的有效性。
在一种可能的实现方式中,所述步骤S342,基于所述信号质量分界线,确定未行驶区域,包括:
步骤S3421,获取割草机记录的已行驶路径;
步骤S3422,比较所述已行驶路径以及所述规划路径,确定所述未行驶区域的边界线;
步骤S3423,基于所述信号质量分界线以及所述边界线确定所述未行驶区域。
本公开实施例中,割草机在进行第一次路径行驶的过程中,不断的将已行驶的位置点坐标进行保存,当割草机行驶至目标行驶路径的终点时,则保存完所有已行驶路径上的位置点,通过与规划路径做比较,可以得到规划路径中未行驶的位置点。在一个示例中,可以对所述规划路径中未行驶的位置点按照如下方法进行坐标分类,比较所述位置点的横坐标以及纵坐标,将横坐标相同且横坐标值最小的一列位置点作为未行驶区域的左边界,将横坐标相同且横坐标值最大的一列位置点作为未行驶区域的右边界,将纵坐标相同且纵坐标值最小的一列位置点作为未行驶区域的下边界,将纵坐标相同且纵坐标值最大的一列位置点作为未行驶区域的上边界。将确定好的未行驶区域的边界与信号质量分界线相结合,将与所述信号质量分界线同侧的卫星是区域的边界替换成所述信号质量分界线,得到最终的未行驶区域。
本公开通过比较所述已行驶路径以及所述规划路径,确定所述未行驶区域的边界线,具有算法简单易于实现的有益效果。
在一种可能的实现方式中,所述步骤S34,在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域,包括:
步骤S343,在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将相邻信号质量转折点之间的距离小于第三预设长度的信号质量转折点相连接,生成多个信号质量 分界线;
步骤S344,基于所述多个信号质量分界线,确定多个未行驶区域。
本公开实施例中,若存在多个阴影区域,则导致多个未行驶区域,这时需要对所述信号质量转折点进行分类,在一个示例中,可以通过如下方式对所述信号质量转折点进行分类,将相邻信号质量转折点之间的距离小于第三预设长度的信号质量转折点划分为一类,即距离较近的信号质量转折点为同一阴影区域产生的。连接相同类比别的所述信号质量转折点得到多个信号质量分界线,与上述实施例相类似,通过比较已行驶的目标路径与规划路径,得到所述多个未行驶区域的其他边界,从而确定多个未行驶区域。
在一种可能的实现方式中,所述步骤S36,按照所述二次规划路径行驶,包括:
步骤S361,将所述多个未行驶区域按照与所述目标行驶路径的终点之间的距离由小到大的顺序进行排列;
步骤S362,依次按照所述多个未行驶区域对应的二次规划路径行驶。
本公开实施例中,在存在多个未行驶区域的情况下,为了节省行驶路径,对所述多个未行驶区域进行排序,在一个示例中,按照所述多个未行驶区域与所述目标行驶路径的终点之间的距离由小到大的顺序进行排列,在一个示例中,可以根据所述未行驶区域的边界端点至距离所述目标行驶路径的终点大小进行排序,比如,所述目标行驶路径的终点的左侧有两个未行驶区域,那么比较所述未行驶区域的右端点距离所述目标行驶路径的终点距离。需要说明的是,所述多个未行驶区域与所述目标行驶路径终点之间的距离计算方式不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
在一种可能的实现方式中,所述割草机导航方法还包括:
步骤S37,将所述目标行驶路径的终点到所述二次规划路径的距离最小的且位于所述二次规划路径上的位置点作为行驶二次规划路径的起始点。
本公开实施例中,若所述二次规划路径为直线时,可以通过点到直线的距离公式计算所述目标行驶路径的终点到所述二次规划路径的距离最小的位置点;若所述二次规划路径为曲线时,可以通过终点到曲线上的位置点在所述曲线中的切线距离确定起始点。本公开通过计算所述目标行驶路径的终点到所述二次规划路径的距离,并选择距离最小的且位于所述二次规划路径上的位置点作为行驶二次规划路径的起始点具有节省路径的有益效果。
图4是根据一示例性实施例示出的一种割草机导航装置400的框图。参照图4,该装置包括卫星信号接收器401,处理器402。
卫星信号接收器401,用于接收行驶路径上位置点的卫星定位信号;
处理器402,用于执行下述方法:
根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,所述信号质量转折点的卫星定位信号的质量大于预设阈值且与所述信号质量转折点相邻的上一位置点的卫星定位信号的质量小于或等于所述预设阈值;
若所述位置点为信号质量转折点,则比较所述位置点到各规划路径的距离大小,将所述距离最小的规划路径作为目标行驶路径,所述规划路径由多个有序的位置点构成。
在一种可能的实现方式中,所述处理器402在实现步骤根据所述卫星定位信号,判断所述位置点是否为信号质量转折点时,包括:
判断接收卫星的数量是否大于预设数值和/或判断所述卫星定位信号的信噪比是否大于预设信噪比值;
若所述位置点接收卫星的数量大于预设阈值和/或接收所述卫星定位信号的信噪比大于预设信噪比值且与所述位置点相邻的上一位置点接收卫星的数量小于或等于预设阈值和/或接收所述卫星定位信号的信噪比小于或等于预设信噪比值,则所述位置点为信号质量转折点。
在一种可能的实现方式中,所述处理器402在实现步骤根据所述卫星定位信号,判断所述位置点是否为信号质量转折点时,包括:
根据所述卫星定位信号,确定所述位置点以及与所述位置点相邻的上一位置点的坐标信息;
根据所述坐标信息,得到所述位置点以及与所述位置点相邻的上一位置点之间的距离;
若所述距离大于第一预设长度,则所述位置点为信号质量转折点。
在一种可能的实现方式中,所述处理器402在实现步骤根据所述卫星定位信号,判断所述位置点是否为信号质量转折点时,包括:
根据所述卫星定位信号,确定所述位置点的坐标信息;
比较所述位置点的坐标信息以及与所述位置点对应的规划路径的位置点的坐标信息,若两坐标的差值距离大于第二预设长度,则所述位置点为信号质量转折点。
在一种可能的实现方式中,所述处理器402还用于执行下述方法:
在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域;
对所述未行驶区域进行路径规划,生成二次规划路径,所述二次规划路径由多个有序的位置点构成;
按照所述二次规划路径行驶。
在一种可能的实现方式中,所述处理器402在执行在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域时,包括:
在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将所述信号质量转折点连接成信号质量分界线;
基于所述信号质量分界线,确定未行驶区域。
在一种可能的实现方式中,所述处理器402在执行基于所述信号质量分界线,确定未行驶区域时,包括:
获取割草机记录的已行驶路径;
比较所述已行驶路径以及所述规划路径,确定所述未行驶区域的边界线;
基于所述信号质量分界线以及所述边界线确定所述未行驶区域。
在一种可能的实现方式中,所述处理器402在执行在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域时,包括:
在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将相邻信号质量转折点之间的距离小于第三预设长度的信号质量转折点相连接,生成多个信号质量分界线;
基于所述多个信号质量分界线,确定多个未行驶区域。
在一种可能的实现方式中,所述处理器402在执行按照所述二次规划路径行驶时,包括:
将所述多个未行驶区域按照与所述目标行驶路径的终点之间的距离由小到大的顺序进行排列;
依次按照所述多个未行驶区域对应的二次规划路径行驶。
在一种可能的实现方式中,所述处理器402还用于执行下述方法:
将所述目标行驶路径的终点到所述二次规划路径的距离最小的且位于所述二次规划路径上的位置点作为行驶二次规划路径的起始点。
关于上述实施例中的装置,其中处理器402执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图5是根据一示例性实施例示出的一种割草机的结构示意图。参照图5,所述割草机包括:
割草机主体500,所述割草机主体500上设有切割刀片502、车轮501以及驱动切割刀片502转动的驱动电机503,根据本公开任一实施例所述的割草机导航装置400。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由装置的处理器执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (19)

  1. 一种割草机导航方法,其特征在于,包括:
    接收行驶路径上位置点的卫星定位信号;
    根据所述卫星定位信号,判断所述位置点是否为信号质量转折点;
    所述根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,包括:
    判断接收卫星的数量是否大于预设数值和/或判断所述卫星定位信号的信噪比是否大于预设信噪比值,若所述位置点接收卫星的数量大于预设阈值和/或接收所述卫星定位信号的信噪比大于预设信噪比值且与所述位置点相邻的上一位置点接收卫星的数量小于或等于预设阈值和/或接收所述卫星定位信号的信噪比小于或等于预设信噪比值,则所述位置点为信号质量转折点;
    或者,根据所述卫星定位信号,确定所述位置点以及与所述位置点相邻的上一位置点的坐标信息,据所述坐标信息,得到所述位置点以及与所述位置点相邻的上一位置点之间的距离,所述距离大于第一预设长度,则所述位置点为信号质量转折点;
    或者,根据所述卫星定位信号,确定所述位置点的坐标信息,较所述位置点的坐标信息以及与所述位置点对应的规划路径的位置点的坐标信息,若两坐标的差值距离大于第二预设长度,则所述位置点为信号质量转折点;
    若所述位置点为信号质量转折点,则比较所述位置点到各规划路径的距离大小,将所述距离最小的规划路径作为目标行驶路径,所述规划路径由多个有序的位置点构成。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域;
    对所述未行驶区域进行路径规划,生成二次规划路径,所述二次规划路径由多个有序的位置点构成;
    按照所述二次规划路径行驶。
  3. 根据权利要求2述的方法,其特征在于,所述在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域,包括:
    在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将所述信号质量转折点连接成信号质量分界线;
    基于所述信号质量分界线,确定未行驶区域。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述信号质量分界线,确定未行驶区域,包括:
    获取割草机记录的已行驶路径;
    比较所述已行驶路径以及所述规划路径,确定所述未行驶区域的边界线;
    基于所述信号质量分界线以及所述边界线确定所述未行驶区域。
  5. 根据权利要求4所述的方法,其特征在于,所述在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域,包括:
    在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将相邻信号质量转折点之间的距离小于第三预设长度的信号质量转折点相连接,生成多个信号质量分界线;
    基于所述多个信号质量分界线,确定多个未行驶区域。
  6. 根据权利要求5所述的方法,其特征在于,所述按照所述二次规划路径行驶,包括:
    将所述多个未行驶区域按照与所述目标行驶路径的终点之间的距离由小到大的顺序进行排列;
    依次按照所述多个未行驶区域对应的二次规划路径行驶。
  7. 根据权利要求6所述的方法,其特征在于,还包括:
    将所述目标行驶路径的终点到所述二次规划路径的距离最小的且位于所述二次规划路径上的位置点作为行驶二次规划路径的起始点。
  8. 一种割草机导航装置,其特征在于,包括:
    卫星信号接收器,用于接收行驶路径上位置点的卫星定位信号;
    处理器,用于执行下述方法:
    根据所述卫星定位信号,判断所述位置点是否为信号质量转折点,所述信号质量转折点的卫星定位信号的质量大于预设阈值且与所述信号质量转折点相邻的上一位置点的卫星定位信号的质量小于或等于所述预设阈值;
    若所述位置点为信号质量转折点,则比较所述位置点到各规划路径的距离大小,将所述距离最小的规划路径作为目标行驶路径,所述规划路径由多个有序的位置点构成。
  9. 根据权利要求8所述的装置,其特征在于,所述处理器在实现步骤根据所述卫星定位信号,判断所述位置点是否为信号质量转折点时,包括:
    判断接收卫星的数量是否大于预设数值和/或判断所述卫星定位信号的信噪比是否大于预设信噪比值;
    若所述位置点接收卫星的数量大于预设阈值和/或接收所述卫星定位信号的信噪比大于预设信噪比值且与所述位置点相邻的上一位置点接收卫星的数量小于或等于预设阈值和/或接收所述卫星定位信号的信噪比小于或等于预设信噪比值,则所述位置点为信号质量转折点。
  10. 根据权利要求9所述的装置,其特征在于,所述处理器在实现步骤根据所述卫星定位信号,判断所述位置点是否为信号质量转折点时,包括:
    根据所述卫星定位信号,确定所述位置点以及与所述位置点相邻的上一位置点的坐标信息;
    根据所述坐标信息,得到所述位置点以及与所述位置点相邻的上一位置点之间的距离;
    若所述距离大于第一预设长度,则所述位置点为信号质量转折点。
  11. 根据权利要求10所述的装置,其特征在于,所述处理器在实现步骤根据所述卫星定位信号,判断所述位置点是否为信号质量转折点时,包括:
    根据所述卫星定位信号,确定所述位置点的坐标信息;
    比较所述位置点的坐标信息以及与所述位置点对应的规划路径的位置点的坐标信息,若两坐标的差值距离大于第二预设长度,则所述位置点为信号质量转折点。
  12. 根据权利要求8所述的装置,其特征在于,所述处理器还用于执行下述方法:
    在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域;
    对所述未行驶区域进行路径规划,生成二次规划路径,所述二次规划路径由多个有序的位置点构成;
    按照所述二次规划路径行驶。
  13. 根据权利要求12所述的装置,其特征在于,所述处理器在执行在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域时,包括:
    在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将所述信号质量转折点连接成信号质量分界线;
    基于所述信号质量分界线,确定未行驶区域。
  14. 根据权利要求13所述的装置,其特征在于,所述处理器在执行基于所述信号质量分界线,确定未行驶区域时,包括:
    获取割草机记录的已行驶路径;
    比较所述已行驶路径以及所述规划路径,确定所述未行驶区域的边界线;
    基于所述信号质量分界线以及所述边界线确定所述未行驶区域。
  15. 根据权利要求12所述的装置,其特征在于,所述处理器在执行在确定所述割草机行驶至所述目标行驶路径的终点的情况下,则将已行驶的路径与所述规划路径做比较,确定未行驶区域时,包括:
    在确定所述割草机行驶至所述目标行驶路径的终点的情况下,将相邻信号质量转折点之间的距离小于第三预设长度的信号质量转折点相连接,生成多个信号质量分界线;
    基于所述多个信号质量分界线,确定多个未行驶区域。
  16. 根据权利要求15所述的装置,其特征在于,所述处理器在执行按照所述二次规划路径行驶时,包括:
    将所述多个未行驶区域按照与所述目标行驶路径的终点之间的距离由小到大的顺序进行排列;
    依次按照所述多个未行驶区域对应的二次规划路径行驶。
  17. 根据权利要求8所述的装置,其特征在于,所述处理器还用于执行下述方法:
    将所述目标行驶路径的终点到所述二次规划路径的距离最小的且位于所述二次规划路径上的位置点作为行驶二次规划路径的起始点。
  18. 一种割草机,其特征在于,包括:
    割草机主体,所述割草机主体上设有切割刀片、车轮以及驱动切割刀片转动的驱动电机;
    根据权利要求8至17中任一项所述的割草机导航装置。
  19. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据权利要求1至7中任一项所述的方法。
PCT/CN2020/117795 2019-11-12 2020-09-25 一种割草机导航方法、装置和割草机 WO2021093474A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911101419.5A CN112857368B (zh) 2019-11-12 2019-11-12 一种割草机导航方法、装置和割草机
CN201911101419.5 2019-11-12

Publications (1)

Publication Number Publication Date
WO2021093474A1 true WO2021093474A1 (zh) 2021-05-20

Family

ID=75911850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117795 WO2021093474A1 (zh) 2019-11-12 2020-09-25 一种割草机导航方法、装置和割草机

Country Status (2)

Country Link
CN (1) CN112857368B (zh)
WO (1) WO2021093474A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759912A (zh) * 2021-09-03 2021-12-07 深圳一清创新科技有限公司 一种全覆盖清扫路径规划方法、装置和清扫车
CN114098534A (zh) * 2021-11-30 2022-03-01 深圳Tcl新技术有限公司 扫地机的清扫区域识别方法、装置、存储介质及电子设备
CN114137961A (zh) * 2021-11-04 2022-03-04 深圳市杉川机器人有限公司 一种智能割草机的定位回环修正方法及系统
CN115291613A (zh) * 2022-09-16 2022-11-04 未岚大陆(北京)科技有限公司 自主移动设备及其控制方法和计算机可读存储介质
CN115309167A (zh) * 2022-09-16 2022-11-08 未岚大陆(北京)科技有限公司 自主移动设备及其控制方法和计算机可读存储介质
CN115443791A (zh) * 2022-08-05 2022-12-09 深圳拓邦股份有限公司 割草机的重定位方法、系统及可读存储介质
CN116203606A (zh) * 2023-03-03 2023-06-02 上海筱珈数据科技有限公司 基于rtk与视觉融合技术的剪草机器人导航方法和装置
CN117044478A (zh) * 2023-08-31 2023-11-14 未岚大陆(北京)科技有限公司 割草机控制方法、装置、割草机、电子设备及存储介质
EP4375710A1 (en) * 2022-11-17 2024-05-29 Techtronic Cordless GP Determining a location to place a base station device used by a robotic garden tool

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740889A (zh) * 2021-08-30 2021-12-03 杭州海康汽车软件有限公司 定位方法及装置、设备、存储介质、定位系统
CN113534823B (zh) * 2021-09-16 2021-12-14 季华实验室 种植机器人路径规划方法、装置、电子设备和存储介质
CN115053690A (zh) * 2022-07-01 2022-09-16 松灵机器人(深圳)有限公司 割草方法、装置、割草机器人以及存储介质
WO2024022204A1 (zh) * 2022-07-27 2024-02-01 格力博(江苏)股份有限公司 园林工具及其控制方法和系统
CN116466382A (zh) * 2023-04-24 2023-07-21 贵州一招信息技术有限公司 一种基于gps的高精度实时定位系统
CN117249834B (zh) * 2023-11-17 2024-01-30 未岚大陆(北京)科技有限公司 路径规划方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016102141A1 (en) * 2014-12-24 2016-06-30 Husqvarna Ab Improved navigation for a robotic work tool
US20170031368A1 (en) * 2013-12-19 2017-02-02 Husqvarna Ab Navigation for a robotic working tool
CN107291077A (zh) * 2016-04-12 2017-10-24 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN108663063A (zh) * 2018-05-09 2018-10-16 宁波拓邦智能控制有限公司 覆盖路径规划方法、装置、设备、计算机装置及存储介质
CN109310042A (zh) * 2016-09-05 2019-02-05 株式会社久保田 作业车自动行驶系统、行驶路径管理装置、行驶路径生成装置、行驶路径决定装置
CN109874110A (zh) * 2017-12-04 2019-06-11 深圳市微能信息科技有限公司 一种自动除草方法、系统及除草机
CN110083152A (zh) * 2019-04-08 2019-08-02 浙江亚特电器有限公司 用于智能割草机的多草坪工作方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213236A (ja) * 2006-02-08 2007-08-23 Sharp Corp 自律走行ロボットの経路計画方法及び自律走行ロボット
US8961695B2 (en) * 2008-04-24 2015-02-24 Irobot Corporation Mobile robot for cleaning
JP5986755B2 (ja) * 2012-02-21 2016-09-06 株式会社 ミックウェア 地図情報処理装置、地図情報処理方法、およびプログラム
WO2013182941A1 (en) * 2012-06-07 2013-12-12 Koninklijke Philips N.V. System and method for guiding a robot cleaner along a path
CN104848866B (zh) * 2014-02-19 2018-02-23 歌乐株式会社 基于视听用无线信号强度值的导航方法以及车载导航装置
EP3064964B1 (en) * 2015-03-04 2018-08-29 AGCO Corporation Path planning based on obstruction mapping
WO2016161637A1 (en) * 2015-04-10 2016-10-13 SZ DJI Technology Co., Ltd. Method, apparatus and system of providing communication coverage to an unmanned aerial vehicle
CN110888437B (zh) * 2016-11-11 2023-02-21 苏州宝时得电动工具有限公司 自动工作系统及其控制方法
WO2018108180A1 (zh) * 2016-12-15 2018-06-21 苏州宝时得电动工具有限公司 自移动设备的工作区域的分区方法、装置和电子设备
CN108762259B (zh) * 2018-05-11 2020-12-15 杭州晶一智能科技有限公司 基于无线信号强度的割草机器人遍历路径规划方法
CN109061690A (zh) * 2018-07-05 2018-12-21 格星微电子科技成都有限公司 一种基于伪卫星的无人机管制方法
CN109101025A (zh) * 2018-08-16 2018-12-28 江苏大学 一种用于遥控农业机器人穿过信号盲区的安全渡越方法
CN109032147A (zh) * 2018-09-10 2018-12-18 扬州方棱机械有限公司 基于卫星定位信号生成割草机器人虚拟边界的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170031368A1 (en) * 2013-12-19 2017-02-02 Husqvarna Ab Navigation for a robotic working tool
WO2016102141A1 (en) * 2014-12-24 2016-06-30 Husqvarna Ab Improved navigation for a robotic work tool
CN107291077A (zh) * 2016-04-12 2017-10-24 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN109310042A (zh) * 2016-09-05 2019-02-05 株式会社久保田 作业车自动行驶系统、行驶路径管理装置、行驶路径生成装置、行驶路径决定装置
CN109874110A (zh) * 2017-12-04 2019-06-11 深圳市微能信息科技有限公司 一种自动除草方法、系统及除草机
CN108663063A (zh) * 2018-05-09 2018-10-16 宁波拓邦智能控制有限公司 覆盖路径规划方法、装置、设备、计算机装置及存储介质
CN110083152A (zh) * 2019-04-08 2019-08-02 浙江亚特电器有限公司 用于智能割草机的多草坪工作方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759912A (zh) * 2021-09-03 2021-12-07 深圳一清创新科技有限公司 一种全覆盖清扫路径规划方法、装置和清扫车
CN114137961A (zh) * 2021-11-04 2022-03-04 深圳市杉川机器人有限公司 一种智能割草机的定位回环修正方法及系统
CN114098534B (zh) * 2021-11-30 2023-02-17 深圳Tcl新技术有限公司 扫地机的清扫区域识别方法、装置、存储介质及电子设备
CN114098534A (zh) * 2021-11-30 2022-03-01 深圳Tcl新技术有限公司 扫地机的清扫区域识别方法、装置、存储介质及电子设备
CN115443791B (zh) * 2022-08-05 2024-03-29 深圳拓邦股份有限公司 割草机的重定位方法、系统及可读存储介质
CN115443791A (zh) * 2022-08-05 2022-12-09 深圳拓邦股份有限公司 割草机的重定位方法、系统及可读存储介质
CN115291613A (zh) * 2022-09-16 2022-11-04 未岚大陆(北京)科技有限公司 自主移动设备及其控制方法和计算机可读存储介质
WO2024055855A1 (en) * 2022-09-16 2024-03-21 Willand (Beijing) Technology Co., Ltd. Autonomous mobile device and method for controlling the same, and computer readable storage medium
CN115309167A (zh) * 2022-09-16 2022-11-08 未岚大陆(北京)科技有限公司 自主移动设备及其控制方法和计算机可读存储介质
EP4375710A1 (en) * 2022-11-17 2024-05-29 Techtronic Cordless GP Determining a location to place a base station device used by a robotic garden tool
CN116203606A (zh) * 2023-03-03 2023-06-02 上海筱珈数据科技有限公司 基于rtk与视觉融合技术的剪草机器人导航方法和装置
CN116203606B (zh) * 2023-03-03 2024-02-20 上海筱珈数据科技有限公司 基于rtk与视觉融合技术的剪草机器人导航方法和装置
CN117044478A (zh) * 2023-08-31 2023-11-14 未岚大陆(北京)科技有限公司 割草机控制方法、装置、割草机、电子设备及存储介质
CN117044478B (zh) * 2023-08-31 2024-03-19 未岚大陆(北京)科技有限公司 割草机控制方法、装置、割草机、电子设备及存储介质

Also Published As

Publication number Publication date
CN112857368A (zh) 2021-05-28
CN112857368B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2021093474A1 (zh) 一种割草机导航方法、装置和割草机
US11112505B2 (en) Navigation for a robotic work tool
US11841710B2 (en) Automatic working system, self-moving device, and methods for controlling same
US10646997B2 (en) Navigation for a robotic working tool
US10136576B2 (en) Navigation for a robotic working tool
US10078336B2 (en) System and method for navigating a robotic working tool
US20110125358A1 (en) Control method for a robot vehicle, and robot vehicle
CN111562602B (zh) 用于土壤耕作的机器人车辆
EP3695701B1 (en) Robotic vehicle for boundaries determination
EP3696639B1 (en) Robotic vehicle for movable operation in a work area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887874

Country of ref document: EP

Kind code of ref document: A1