WO2021093221A1 - 一种基于超声波电机调节的磁流变隔振器 - Google Patents

一种基于超声波电机调节的磁流变隔振器 Download PDF

Info

Publication number
WO2021093221A1
WO2021093221A1 PCT/CN2020/076996 CN2020076996W WO2021093221A1 WO 2021093221 A1 WO2021093221 A1 WO 2021093221A1 CN 2020076996 W CN2020076996 W CN 2020076996W WO 2021093221 A1 WO2021093221 A1 WO 2021093221A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic motor
permanent magnet
magnetorheological
cavity
damping
Prior art date
Application number
PCT/CN2020/076996
Other languages
English (en)
French (fr)
Inventor
张激扬
罗睿智
张强
卿涛
周刚
吴金涛
田利梅
樊亚洪
王舒雁
王虹
Original Assignee
北京控制工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京控制工程研究所 filed Critical 北京控制工程研究所
Priority to US17/776,967 priority Critical patent/US20220412431A1/en
Publication of WO2021093221A1 publication Critical patent/WO2021093221A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3271Assembly or repair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3292Sensor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/06Magnetic or electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/045Fluids magnetorheological
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • F16F2226/048Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0005Attachment, e.g. to facilitate mounting onto confer adjustability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0047Measuring, indicating

Definitions

  • the invention relates to a magnetorheological vibration isolator based on the adjustment of an ultrasonic motor, which belongs to the technical field of vibration control.
  • Inertial attitude actuators such as control moment gyroscopes have been widely used in high-precision spacecraft such as remote sensing satellites and space laboratories, and are key products for rapid attitude maneuvering and attitude stability of the spacecraft where they are located.
  • spacecraft such as remote sensing satellites and space laboratories
  • rapid attitude maneuvering and attitude stability of the spacecraft where they are located With the rapid development of aerospace science and technology, users have higher and higher requirements for satellite performance (such as camera resolution), and the payload that realizes these performances has higher and higher requirements for the attitude accuracy and stability of the spacecraft platform.
  • the rotor of the inertial attitude actuator will produce broadband and micro-amplitude vibration during high-speed rotation, which will become one of the main vibration sources of the spacecraft, which will affect the attitude accuracy and stability of the spacecraft and the superstatic performance of the platform, and to a certain extent
  • the above affects the realization of the performance indicators of the load. Therefore, a stable working platform becomes a prerequisite for the normal operation of high-performance sensors and other payloads.
  • Micro-vibration control is an effective way to improve the stability of the platform.
  • it is difficult to achieve better micro-vibration suppression effect for the structural vibration reduction of inertial attitude actuators such as control moment gyroscopes, and the micro-vibration isolation from the vibration transmission path is relatively simple and effective.
  • spring-rubber damper or metal spring-metal rubber damper is used for vibration isolation, but rubber is greatly affected by temperature and frequency, and is not resistant to space radiation and atomic oxygen.
  • Metal rubber has strong The damping coefficient and stiffness at large and small amplitudes are different, which is inconvenient to design; and once their structure is determined, their damping coefficient cannot be changed basically, which is difficult to meet the needs of different environments and different working conditions; traditional magnetic Rheological and electrorheological liquid dampers can actively adjust the damping according to needs, but they require long-term power supply, which increases the cost of on-orbit applications; therefore, the damping and stiffness design are decoupled, the damping is adjustable, the power consumption is low, and the ground is different from the on-orbit Variable damping vibration isolators that are environmentally, resistant to radiation and atomic oxygen are in urgent need of research and development.
  • the traditional fluid damper mainly uses a single rod or a double rod to push the piston to move and squeeze the flow of fluid, thereby generating a certain amount of liquid damping.
  • liquid micro-leakage which not only reduces the liquid damping performance, but also may pollute the environment on the planet, making it difficult to meet the long-life working requirements.
  • magnetorheological fluid for damping energy consumption mainly uses an energized coil to generate a magnetic field, and the magnitude of the current is used to adjust the strength of the magnetic field, thereby changing the dynamic viscosity of the magnetorheological fluid in the orifice and adjusting the damping; when the current in the coil If it disappears, the magnetic field also disappears, and the magnetic field required by the magnetorheological fluid cannot be maintained. Therefore, the coil needs to be powered all the time, so it consumes more electric energy.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a magnetorheological vibration isolator based on ultrasonic motor adjustment, which can better adapt to the space environment, and at the expense of smaller weight and power consumption, Realize the variable damping of the vibration isolator, and suppress the wide-frequency vibration generated or endured by inertial actuators such as the control moment gyroscope under different environments and different working conditions.
  • the technical scheme adopted by the present invention is: a magnetorheological vibration isolator based on ultrasonic motor adjustment, including a base, a number of magnetorheological dampers, and a number of adapter plates; each adapter plate passes through a number of magnetorheological dampers The adapter is connected to the base, and the adapter plate is connected to the vibration-isolated equipment;
  • Magnetorheological damper includes lower cover, lower cavity, connecting ring, permanent magnet, throttle, upper cavity, upper cover, upper thrust rod, upper gland, paramagnet, lower gland, and permeable ring , Fixed ring, shell, ultrasonic motor, lower thrust rod;
  • One end of the upper thrust rod is connected with the connecting ring as the output or input end of vibration isolation, and the upper thrust rod is connected to the adapter plate; the lower thrust rod is installed in the middle of the lower cover plate as the input or output end of vibration isolation; the lower thrust rod is connected to the base ;
  • the lower cover plate and the upper cover plate are connected by the shell; the connecting ring and the bellows are welded to form a lower cavity and an upper cavity, and the cavity is filled with magnetorheological fluid;
  • the connecting ring is equally divided into n central angles along the circumference of ⁇ /n area, n is a natural number.
  • the magnetic permeable ring is installed on the outside of the connecting ring; the inner side of the connecting ring is installed at intervals Permanent magnets and paramagnets; permanent magnets and paramagnets are installed on the output shaft of the ultrasonic motor through the upper and lower glands; the corrugated tube forming the lower cavity is located outside the ultrasonic motor; the two ends of the lower cavity and the upper cavity pass through the lower The cover plate and the upper cover plate are compressed to realize the parallel connection of the two bellows of the lower cavity and the upper cavity; under the action of the load, when there is relative movement between the input end and the output end of the vibration isolation, the connecting ring moves up and down relative to the housing , Pushing the magnetorheological fluid in the lower cavity and the upper cavity to squeeze from one cavity into the other cavity along the orifice.
  • the magnetic field lines of the permanent magnet pass through the connecting ring and form a loop through the permeable ring; the ultrasonic motor drives the permanent magnet and the paramagnet to rotate; when the permanent magnet and the orifice overlap in the circumferential direction, the magnetic field between the permanent magnet and the permeable ring passes through the segment
  • the orifice strengthens the magnetic field at the orifice in the overlap area, so that the dynamic viscosity of the magnetorheological fluid in the orifice in the overlap area is increased; by adjusting the number of orifices in the magnetic field, it is achieved Adjustment of the damping size of the vibration isolator.
  • the ultrasonic motor works in continuous mode or step mode, and uses angular displacement sensor feedback; when the ultrasonic motor works in step mode, the angular position of the rotor of the ultrasonic motor is calibrated by the zero position sensor, and the steps taken by the ultrasonic motor are counted Calculate the rotation angle of the permanent magnet, obtain the circumferential overlap between the permanent magnet and the orifice, and obtain the damping coefficient of the damping isolator.
  • the ultrasonic motor drives the permanent magnet to a set angle, it can lock itself after power off.
  • the damping vibration isolator works in a passive vibration isolation state, and almost no longer consumes electrical energy.
  • the number and inclination angle of magnetorheological dampers are determined according to the characteristics of the object to be isolated and the requirements of vibration isolation.
  • the permanent magnets and paramagnets are fan-shaped structures, and the side section is U-shaped.
  • the central angles of permanent magnets and paramagnets in each area are both ⁇ /n.
  • the present invention uses a bellows cavity to store magnetorheological fluid, and uses the middle section and both ends of the cavity as the input and output ends of vibration. Under the action of vibration, the input end and the output end move relative to each other, and the middle section moves relative to the two ends.
  • the squeezing liquid flows in the upper and lower cavities, which realizes the function of simulating piston movement by the damper without static and dynamic gaps. The fluid damping is avoided, and the liquid leakage caused by the static and dynamic gap of the traditional damper is avoided, so it is suitable for space long-life applications.
  • the magnetic particles suspended in the magnetorheological fluid are easy to precipitate, and special surface modification treatment is required for the magnetic particles; and the present invention applies the magnetorheological fluid to space products to make them in weightlessness.
  • the suspended magnetic particles are not easy to settle, and the uniformity of the magnetorheological fluid can be better maintained, and the performance of the active damping adjustment of the magnetorheological fluid can be better exerted.
  • the damper of the present invention uses an ultrasonic motor to drive the permanent magnet to rotate, adjust the number of orifices that enter the magnetic field, so as to realize the near-linear adjustment of the damping of the magnetorheological damper; in view of the fact that the magnetic field involved in the present invention originates from the permanent magnet.
  • the magnet does not need to use current to generate the magnetic field; and the ultrasonic motor only drives the permanent magnet to rotate, changing the distribution of the magnetic field relative to the orifice. After it drives the permanent magnet to a certain angle, it can be powered off and self-locked, almost no need for consumption Electric energy, at this time the damper works in a passive vibration isolation state. Effectively reduce energy consumption and save precious energy for the spacecraft.
  • the damper of the present invention uses an ultrasonic motor to drive the permanent magnet to rotate.
  • the coincidence degree is a linear function of the angle
  • the approximate linear adjustment of the damping of the damper can be realized.
  • the ultrasonic motor used uses traveling wave vibration for crawling and does not depend on the action of the rotating magnetic field, it is not affected by the magnetic field of the permanent magnet, and the electromagnetic motor is susceptible to the influence of the permanent magnet. And the ultrasonic motor can work in step mode.
  • the damping control is not high, the angular displacement sensor is not needed, and only a zero position sensor is needed for simple control, which simplifies the structure of the damper.
  • the vibration isolator of the present invention can dissipate the vibration energy transmitted from the satellite platform in the launching section to the control moment gyro and other products to protect the product; it can also reduce the micro-vibration generated during the operation of the product in the orbit section. The impact of satellite platforms.
  • the permanent magnet in the process of controlling the torque gyro maneuver, can be driven by the ultrasonic motor to increase the damping force of the magnetorheological fluid, increase the vibration energy dissipation, and improve the stability of the system; when the vibration is small, such as the control moment gyro lock Or during slow maneuvering, the permanent magnet can be adjusted to reduce the damping force and increase the attenuation rate of the vibration isolator to high-frequency vibration. In this way, the vibration isolator can actively adjust the damping according to different application conditions and vibration conditions, and has good vibration isolation performance.
  • the magnetorheological damper of the present invention stores magnetorheological fluid in the cavity of the bellows, and uses the middle section and both ends of the cavity as the input and output ends of vibration to realize the simulated piston motion of the damper without dynamic and static gaps. Push fluid flow and provide fluid damping.
  • the invention integrates fluid damping, magnetic damping and magnetorheological damping, and realizes the use of an ultrasonic motor to drive permanent magnets to rotate and adjust the magnitude of magnetorheological damping.
  • Figure 1 is a schematic structural diagram of the variable damping vibration isolator of the present invention
  • Figure 2 is a longitudinal sectional view of the variable damper structure of the present invention.
  • Figure 3 is a cross-sectional view of the variable damper structure of the present invention.
  • Figure 4 (a) is a schematic diagram of the structure of the permanent magnet and the paramagnetic body of the present invention.
  • Figure 4(b) is a schematic structural diagram of the upper gland of the present invention.
  • Figure 4(c) is a schematic structural diagram of the lower gland of the present invention.
  • the vibration isolation effect of a vibration isolator is closely related to its damping. Among them, small damping vibration isolation can effectively isolate high-frequency vibration, while large damping vibration isolation can quickly dissipate vibration energy with large amplitude such as resonance, so it can effectively suppress the emission
  • the segment satellite platform transmits the vibration of the actuators such as the control moment gyroscope to protect the product; at the same time, it can also suppress the relatively large vibration of the actuators such as the control moment gyroscope on the orbit during the maneuvering process.
  • the present invention proposes a method of using an ultrasonic motor to drive the permanent magnet to rotate, adjust the overlap between the magnetic field and the orifice, so that the viscosity of the magnetorheological fluid in the orifice entering the magnetic field is greatly increased, thereby realizing the vibration isolator
  • the variable damping vibration isolation method provides a magnetorheological vibration isolator based on ultrasonic motor adjustment.
  • a magnetorheological vibration isolator based on ultrasonic motor adjustment proposed by the present invention includes a base 1, a magnetorheological damper 2, an adapter plate 3; the structure of the base 1 needs to be based on The installation form of the spacecraft deck is coordinated and determined; the structural form of the adapter plate 3 needs to be determined according to the interface form of the vibration isolation object such as the control moment gyroscope; the base 1 and the adapter plate 3 are respectively passed through the magnetorheological damper 2
  • the threaded connection of the lower thrust rod 19 and the upper thrust rod 11; parameters such as the number and inclination angle of the magnetorheological dampers 2 are optimized and determined according to the characteristics of the vibration isolation object and the requirements of vibration isolation.
  • the magnetorheological damper 2 includes a lower cover 4, a lower cavity 5, a connecting ring 6, a permanent magnet 7, an orifice 8, an upper cavity 9, and an upper Cover plate 10, upper thrust rod 11, upper gland 12, paramagnet 13, lower gland 14, magnetic permeable ring 15, fixed ring 16, housing 17, ultrasonic motor 18, and lower thrust rod 19.
  • the connecting ring 6 and the two sections of corrugated tubes corresponding to the lower cavity 5 and the upper cavity 9 are connected by electron beam welding to form a lower cavity 5 and an upper cavity 9 respectively, and the cavity is filled with a magneto-rheological fluid.
  • a magnetic permeable ring 15 is installed on the outer side of the connecting ring 6; a permanent magnet 7 and a paramagnet 13 are installed at intervals on the inner side of the connecting ring 6, and the central angles of the permanent magnet 7 and the paramagnetic body 13 in each area are ⁇ /n; the permanent magnet 7 and the paramagnetic body 13
  • the magnet 13 is installed on the output shaft of the ultrasonic motor 18 through the upper pressing cover 12 and the lower pressing cover 14.
  • the magnetic field lines of the U-shaped permanent magnet 7 will pass through the connecting ring 6 and form a loop through the magnetic ring 15.
  • its dynamic viscosity is only that of a general fluid, and the damping performance of the damper It is general fluid damping and magnetic damping; when the magnetorheological fluid is in a magnetic field, it will be affected by the magnetic field, its kinematic viscosity will be greatly increased, and its damping performance is magnetorheological damping and magnetic damping. Damping is much greater than magnetic damping.
  • the present invention uses the ultrasonic motor 18 to drive the permanent magnet 7 and the paramagnet 13 to rotate; when the permanent magnet 7 and the orifice 8 overlap in the circumferential direction, the lines of magnetic force between the permanent magnet 7 and the magnetic permeable ring 15 will pass through the orifice 8, so that The magnetic field at the orifice 8 in these overlapping regions is greatly strengthened, so that the dynamic viscosity of the magnetorheological fluid in the orifice 8 in the overlapping region is greatly increased. Adjusting the size of the overlapping area, that is, adjusting the number of orifices 8 in the magnetic field, realizes the adjustment of the damping size.
  • the number of orifices 8 in the magnetic field is the largest, and the damping is the largest; when the permanent magnet 7 and the orifice 8 do not overlap in the circumferential direction, they are in the magnetic field.
  • the number of orifices 8 in the middle is the least, and the damping is the least at this time.
  • the magnetorheological fluid damper based on the ultrasonic motor driving the permanent magnet to rotate and adjusting the coincidence degree of the permanent magnet and the orifice has approximately linear damping adjustment Function.
  • the ultrasonic motor 18 can work in a continuous mode or a stepping mode, and an angular displacement sensor can be used to measure the angle that the rotor of the ultrasonic motor 18 has rotated, and perform angular displacement feedback.
  • the damping control is not high, it can work in step mode.
  • the angular position of the rotor of the ultrasonic motor 18 can be calibrated by using only the zero position sensor; it can be estimated by counting the number of steps taken by the ultrasonic motor 18 Obtain the angle that the permanent magnet 7 has rotated, estimate the degree of overlap between the permanent magnet 7 and the orifice 8 in the circumferential direction, and estimate the size of the damping coefficient of the damper. Therefore, open-loop control can be performed according to instructions, and closed-loop control can also be performed based on the amount of vibration, which simplifies the structure of the vibration isolator.
  • the lower cover plate 4 and the upper cover plate 10 are connected into one body through the housing 17, and the two ends of the lower cavity body 5 and the upper cavity body 9 are compressed by the lower cover plate 4 and the upper cover plate 10 to realize the lower cavity body 5 and the upper cavity body. 9 Parallel connection of two bellows.
  • the lower cover plate 4 and the lower thrust rod 19 are connected by threads, and the outer thread of the lower thrust rod 19 provides an external installation interface as an input or output end for vibration isolation.
  • the connecting ring 6 in the middle is connected with the upper thrust rod 11 through threads, and the outer thread of the upper thrust rod 11 provides an external installation interface as an output or input end for vibration isolation.
  • the magnetorheological damper 2 uses an ultrasonic motor 18 to drive the permanent magnet 7 to change the distribution of the magnetic field relative to the orifice 8, and adjust the coincidence degree of the permanent magnet 7 and the orifice 8, that is, by adjusting the throttle entering the magnetic field of the permanent magnet 7
  • the number of holes changes the damping size of the damper.
  • the magnetic field is derived from the permanent magnet 7, and there is no need to generate a magnetic field through current; the ultrasonic motor 18 only drives the permanent magnet 7 to rotate to change the magnetic field distribution. After the permanent magnet 7 is rotated to a specified angle, it can be powered off and self-locked, almost no more consumption. Electricity. At this time, the damper works in a passive vibration isolation state. Effectively reduce power consumption and save energy for the spacecraft.
  • the suspended magnetic particles in the magnetorheological fluid are not easy to precipitate, can better maintain the uniformity of the magnetorheological fluid, and can better exert the damping adjustment performance of the magnetorheological fluid damper.
  • the permanent magnet 7 can be driven by the ultrasonic motor 18 to increase the circumferential overlap between the permanent magnet 7 and the orifice 8, increase the damping force of the magnetorheological fluid, and increase Dissipation of vibration energy improves the stability of the system; when the vibration is small, such as the control moment gyro lock or slow maneuvering process, the permanent magnet 7 can be adjusted to reduce the circumferential overlap between the permanent magnet 7 and the orifice 8. Reduce the damping force of the magnetorheological fluid, reduce the damping ratio, and improve the attenuation rate of the vibration isolator to high-frequency vibration.
  • the ultrasonic motor 18 drives the permanent magnet 7 to a certain angle, the power can be cut off.
  • the damper works in a passive vibration isolation state. It can be seen that, in the whole process, in addition to the power consumption of the ultrasonic motor 18 to drive the permanent magnet 7 to rotate, when the permanent magnet 7 does not need to rotate, the ultrasonic motor 18 is powered off and self-locks, which hardly consumes energy. Therefore, the power consumption of the damper Smaller, effectively reducing energy consumption. It not only realizes the function of actively adjustable damping, but also effectively reduces the precious electric energy consumed by the damper.
  • the permanent magnet 7 and the paramagnet 13 have a fan-shaped structure, and the side section is U-shaped.
  • the ultrasonic motor 18 uses the vibration of the traveling wave to crawl, and does not rely on the action of the rotating magnetic field, so it is not affected by the magnetic field, and overcomes the problem that the electromagnetic motor is susceptible to permanent magnets. In addition, the ultrasonic motor 18 has no magnetic elements and no coils, so it will not generate a large magnetic field and will not affect the damping performance of the magnetorheological damper 2.
  • the unspecified part of the present invention belongs to the well-known technology of those skilled in the art.

Abstract

一种基于超声波电机调节的变阻尼隔振器,包括基座(1)、磁流变阻尼器(2)、转接板(3),主要利用磁流变阻尼器支撑并消化振动的能量;磁流变阻尼器包括上腔体(9)、下腔体(5)、连接环(6)、永磁体(7)、节流孔(8)、导磁环(15)、超声波电机(18)等;在由波纹管构成的上下腔体内存储磁流变液,利用腔体的中段和两端作为振动的输入输出端,实现阻尼器的无动静间隙的模拟活塞运动,推动流体流动,提供流体阻尼,可长期在轨工作时无泄漏。磁流变阻尼器采用超声波电机(18)驱动永磁体(7)转动,调节永磁体(7)与节流孔(8)的重合度,即调节进入永磁体磁场内的节流孔(8)数,来改变阻尼器的阻尼大小。超声波电机(18)转动到位后,即可断电自锁。

Description

一种基于超声波电机调节的磁流变隔振器
本申请要求于2019年11月15日提交中国专利局、申请号为201911121220.9、发明名称为“一种基于超声波电机调节的变阻尼隔振器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种基于超声波电机调节的磁流变隔振器,属于振动控制技术领域。
背景技术
控制力矩陀螺等惯性姿态执行机构已被广泛应用于遥感卫星和空间实验室等高精度航天器,是其所在航天器实现快速姿态机动与姿态稳定的关键产品。随着航天科技的飞速发展,用户对卫星性能(如相机的分辨率)需求越来越高,实现这些性能的有效载荷对航天器平台的姿态精度和稳定性要求也越来越高。可是惯性姿态执行机构的转子在高速旋转过程中,将产生宽频微幅振动,成为航天器的主要振源之一,影响到航天器姿态精度、稳定度和平台的超静性能,进而在一定程度上影响到载荷的性能指标的实现。因此稳定的工作平台成为高性能敏感器等有效载荷正常工作的前提。
微振动控制是提高平台稳定性的有效途径,可是针对控制力矩陀螺等惯性姿态执行机构的结构减振难以取得较好的微振动抑制效果,而从振动传递路径上的微振动隔离较为简单有效。一般采用弹簧-橡胶阻尼器隔振或者金属弹簧-金属橡胶阻尼器隔振,可是橡胶受温度和频率的影响较大,且不耐受空间辐照和原子氧等侵蚀;而金属橡胶具有较强的非线性,在大振幅和小振幅时的阻尼系数和刚度都不相同,不便设计;且它们的结构一旦确定,其阻尼系数基本无法改变,难以满足不同环境不同工况的需求;传统的磁流变和电流变液体阻尼器可根据需要主动调节阻尼,但是其需要长期供电,增加 了在轨应用成本;因此阻尼和刚度设计解耦、阻尼可调、功耗低、适应地面与在轨不同环境、耐辐照和原子氧侵蚀的可变阻尼隔振器亟待研发。
传统的流体阻尼器主要采用单出杆或者双出杆推动活塞运动,挤压流体的流动,从而产生一定的液体阻尼。鉴于出杆与密封腔之间难免存在一定的间隙,不可避免地存在液体微漏,既降低了液体阻尼性能,又可能污染星上环境,使之难以满足长寿命工作要求。
传统的利用磁流变液进行阻尼耗能主要是采用通电线圈产生磁场,利用电流的大小调节磁场的强弱,进而改变节流孔内磁流变液的动粘度,调节阻尼;当线圈中电流消失,则磁场也消失,无法维持磁流变液所需的磁场,因此线圈需要一直供电,因此消耗的电能较多。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种基于超声波电机调节的磁流变隔振器,可较好地适应空间环境,以较小的重量和功耗等代价,实现隔振器变阻尼,抑制控制力矩陀螺等惯性执行机构在不同环境和不同工况下所产生或所承受的宽频振动。
本发明所采用的技术方案是:一种基于超声波电机调节的磁流变隔振器,包括基座、若干磁流变阻尼器、若干转接板;每个转接板通过若干磁流变阻尼器连接基座,转接板连接被隔振的设备;
磁流变阻尼器包括下盖板、下腔体、连接环、永磁体、节流孔、上腔体、上盖板、上推力杆、上压盖、顺磁体、下压盖、导磁环、固定环、外壳、超声波电机、下推力杆;
上推力杆一端与连接环连接,作为隔振的输出或输入端,上推力杆连接转接板;下推力杆安装在下盖板中部,作为隔振的输入或输出端;下推力杆连接基座;下盖板和上盖板通过外壳连接;连接环与波纹管通过焊接形成下腔体和上腔体,腔内充满磁流变液;连接环沿周向等分为n个圆心角为π/n的区域,n为自然数,相邻的两个区域中,其中一个区域内分布若干节流孔, 另一个区域内没有节流孔;连接环外侧安装导磁环;连接环内侧间隔安装有永磁体和顺磁体;永磁体和顺磁体通过上压盖和下压盖安装于超声波电机的输出轴上;构成下腔体的波纹管位于超声波电机外侧;下腔体和上腔体的两端通过下盖板和上盖板压紧,实现下腔体和上腔体两波纹管的并联;在载荷的作用下,隔振的输入端和输出端之间存在相对运动时,连接环相对外壳上下移动,推动下腔体和上腔体内磁流变液沿节流孔从一个腔体挤入另一个腔体。
永磁体的磁力线穿过连接环,经过导磁环形成回路;超声波电机带动永磁体和顺磁体转动;当永磁体与节流孔在周向重叠时,永磁体和导磁环之间的磁场穿过节流孔,使得该重叠区域内的节流孔处的磁场加强,使得重叠区域内的节流孔中的磁流变液的动粘度提高;通过调节处于磁场中的节流孔数量的多少,实现隔振器阻尼大小的调节。
超声波电机工作在连续模式或步进模式,利用角位移传感器反馈;当超声波电机工作在步进模式时,利用零位传感器对超声波电机的转子的角位置进行标定,通过计数超声波电机走过的步数,计算永磁体转过的角度,获得永磁体与节流孔在周向的重叠度,得到阻尼隔振器的阻尼系数的大小。
超声波电机将永磁体驱动到设定的角度后,能够断电自锁,此时,所述阻尼隔振器工作于被动隔振状态,几乎不再消耗电能。
磁流变阻尼器的个数与倾角依据被隔振对象特性和隔振要求确定。
永磁体和顺磁体为扇形结构,侧截面为U形。
每个区域内永磁体和顺磁体的圆心角皆为π/n。
本发明与现有技术相比的优点在于:
(1)本发明利用波纹管腔体存储磁流变液,且利用腔体的中段和两端作为振动的输入输出端。在振动作用下,导致输入端和输出端相对运动,使得中段相对于两端运动,挤压液体在上、下两腔体内流动,实现了阻尼器在无动静间隙情况下模拟活塞运动功能,提供了流体阻尼,避免了传统阻尼器 的动静间隙引起的液体泄漏,因此适用于空间长寿命应用。
(2)在地面等重力场中,磁流变液中悬浮的磁性颗粒容易沉淀,需要磁性颗粒进行特殊的表面改性处理;而本发明将磁流变液应用于空间产品,使之处于失重状态下,其中的悬浮磁性颗粒不易沉淀,能够较好地保持磁流变液的均匀性,可更好地发挥磁流变液主动阻尼调节的性能。
(3)本发明的阻尼器采用超声波电机驱动永磁体转动,调节进入磁场中的节流孔数量,从而实现磁流变阻尼器的阻尼近线性调节;鉴于本发明中所涉及的磁场源于永磁体,无需利用电流产生磁场;且超声波电机仅驱动永磁体转动,改变磁场相对于的节流孔的分布,它将永磁体驱动到一定的角度后,即可断电自锁,几乎无需再消耗电能,这时阻尼器工作于被动隔振状态。有效减少了能量消耗,为航天器节省了宝贵的能源。
(4)本发明的阻尼器采用超声波电机驱动永磁体转动,通过调节永磁体和节流孔的重合度,鉴于重合度是角度的线性函数,可实现了阻尼器阻尼的近似线性调节。由于所用超声波电机是利用行波的振动进行爬行,不依赖于旋转磁场的作用,故不受永磁体磁场的影响,而电磁电机易受永磁体影响。且超声波电机可工作在步进模式,在对阻尼控制不高时,可无需角位移传感器,只需一个零位传感器即可进行简单的控制,简化了阻尼器的结构。
(5)本发明的隔振器可耗散在发射段卫星平台传递到控制力矩陀螺等产品上的振动能量,保护产品;也可在在轨段减小产品工作过程中所产生的微振动对卫星平台的影响。如在控制力矩陀螺机动的过程中,可通过超声波电机驱动永磁体,增大磁流变液的阻尼力,增加振动能量的耗散,提高系统稳定性能;在振动较小,如控制力矩陀螺锁定或慢速机动过程中,可调节永磁体,减小阻尼力,提高隔振器对高频振动的衰减率。从而实现隔振器针对不同的应用工况和振动情况主动调节阻尼,具有较好的振动隔离性能。
(6)本发明的磁流变阻尼器在波纹管腔体内存储磁流变液,且利用腔体的中段和两端作为振动的输入输出端,实现阻尼器的无动静间隙的模拟活塞 运动,推动流体流动,提供流体阻尼。本发明综合了流体阻尼、磁阻尼和磁流变阻尼,实现了利用超声波电机驱动永磁体转动调节磁流变阻尼大小。
附图说明
图1为本发明的的变阻尼隔振器的结构简图;
图2为本发明的的可变阻尼器结构纵剖视图;
图3为本发明的的可变阻尼器结构横剖视图;
图4(a)为本发明的永磁体和顺磁体的结构示意图图;
图4(b)为本发明的上压盖的结构简图。
图4(c)为本发明的下压盖的结构简图。
具体实施方式
隔振器的隔振效果与其阻尼关系密切,其中,小阻尼隔振可有效隔离高频振动,而大阻尼隔振可快速耗散共振等振幅较大的振动能量,因此其可有效抑制在发射段卫星平台传递给控制力矩陀螺等执行机构的振动,从而保护产品;同时也可抑制在轨段控制力矩陀螺等执行机构在机动过程中产生的较大幅度的振动。因此本发明提出了一种利用超声波电机驱动永磁体转动,调节磁场与节流孔的重合度,让进入磁场中的节流孔内的磁流变液的粘度大幅增加,从而实现隔振器的变阻尼隔振方式,提供了一种基于超声波电机调节的磁流变隔振器。
如图1所示,本发明所提出的一种基于超声波电机调节的磁流变隔振器,包括基座1、磁流变阻尼器2、转接板3;基座1的结构形式需要根据航天器舱板等安装形式协调确定;转接板3的结构形式需要依据控制力矩陀螺等被隔振对象的接口形式确定;基座1和转接板3分别通过磁流变阻尼器2中的下推力杆19和上推力杆11的螺纹连接;磁流变阻尼器2的个数与倾角等参数依据被隔振对象特性和隔振要求等具体情况优化确定。
如图2和图3、图4a~4c所示,磁流变阻尼器2包括下盖板4、下腔体5、连接环6、永磁体7、节流孔8、上腔体9、上盖板10、上推力杆11、上压盖12、顺磁体13、下压盖14、导磁环15、固定环16、外壳17、超声波电机18、 下推力杆19。连接环6与下腔体5和上腔体9所对应的两段波纹管通过电子束焊接连接成一体,分别形成下腔体5和上腔体9,腔内充磁流变液。
在连接环6的周向均布着2n个圆心角为π/n的区域,n为自然数,在本实施例中n=2;任意相邻的两个区域中,其中一个区域内分布若干节流孔8;而节流孔分布区域之间的n个π/n区域内无节流孔。在连接环6外侧安装有导磁环15;在连接环6内侧间隔安装有永磁体7和顺磁体13,每个区域内永磁体7和顺磁体13的圆心角皆为π/n;永磁体7和顺磁体13通过上压盖12和下压盖14安装于超声波电机18的输出轴上。
U形的永磁体7的磁力线会穿过连接环6,经过导磁环15形成回路,当磁流变液未处于磁场中时,其动粘度仅为一般流体的动粘度,阻尼器的阻尼表现为一般流体阻尼和磁阻尼;当磁流变液处于磁场中时,将受到磁场的作用,其动粘度将大幅提高,其阻尼表现为磁流变阻尼和磁阻尼,其中磁流变液阻尼比磁阻尼大得多。本发明利用超声波电机18带动永磁体7和顺磁体13转动;当永磁体7与节流孔8在周向重叠时,永磁体7和导磁环15之间的磁力线将穿过节流孔8,使得这些重叠区域的节流孔8处的磁场大幅加强,使得重叠区域的节流孔8内的磁流变液的动粘度大幅提高。调节重叠区域的大小,也就是调节处于磁场中的节流孔8数量的多少,实现阻尼大小的调节。当永磁体7与节流孔8在周向完全重叠时,处于磁场中的节流孔8数量最多,这时阻尼最大;当永磁体7与节流孔8在周向无重叠时,处于磁场中的节流孔8数量最少,这时阻尼最小。鉴于超声波电机18可以转过任意角度,而重叠度是转角的线性函数,因此基于超声波电机驱动永磁体转动、调节永磁体和节流孔的重合度的磁流变液阻尼器具有近似线性阻尼调节的功能。
超声波电机18可工作在连续模式或步进模式,可利用角位移传感器测量超声波电机18转子转过的角度,并进行角位移反馈。在对阻尼控制不高时,可使之工作在步进模式,这时可仅利用零位传感器对超声波电机18转子的角位置进行标定;通过计数超声波电机18走过的步数,即可估计出永 磁体7转过的角度,估计出永磁体7与节流孔8在周向的重叠度,估计出阻尼器的阻尼系数的大小。故可根据指令进行开环控制,也可基于振动量进行闭环控制,简化了隔振器的结构。
下盖板4和上盖板10通过外壳17连接成一体,下腔体5和上腔体9的两端通过下盖板4和上盖板10压紧,实现下腔体5和上腔体9两波纹管的并联。下盖板4和下推力杆19通过螺纹连接,下推力杆19的外端螺纹提供对外安装接口,作为隔振的输入或输出端。中间的连接环6通过螺纹与上推力杆11连接,上推力杆11的外端螺纹提供对外安装接口,作为隔振的输出或输入端。在振动等载荷的作用下,使得输入端和输出端之间存在相对运动时,连接环6会相对外壳17等上下移动,推动磁流变液在下腔体5和上腔体9间流动,磁流变液内部及其与节流孔8之间的摩擦即产生一定的阻尼力。该结构实现了阻尼器在无动静间隙情况下模拟活塞运动,可较好地保证其长期在轨工作时无泄漏。
磁流变阻尼器2采用超声波电机18驱动永磁体7改变磁场相对于节流孔8的分布,调节永磁体7与节流孔8的重合度,即通过调节进入永磁体7磁场内的节流孔数来改变阻尼器的阻尼大小。其磁场源于永磁体7,无需通过电流产生磁场;超声波电机18仅驱动永磁体7转动,改变磁场分布,它将永磁体7转动到指定角度后,即可断电自锁,几乎无需再耗电。这时阻尼器工作于被动隔振状态。有效减少了电能消耗,为航天器节省了能源。
磁流变液在失重状态下,其中的悬浮磁性颗粒不容易沉淀,能够较好地保持磁流变液的均匀性,可更好地发挥磁流变液阻尼器的阻尼调节性能。
在振动较大尤其是在控制力矩陀螺机动等过程中,可通过超声波电机18驱动永磁体7,增加永磁体7与节流孔8的周向重合度,增加磁流变液的阻尼力,增加振动能量的耗散,提高系统稳定性能;在振动较小,如控制力矩陀螺锁定或慢速机动过程中,可调节永磁体7,减小永磁体7与节流孔8的周向重合度,减小磁流变液的阻尼力,减小阻尼比,提高隔振器对高频振动 的衰减率。当超声波电机18将永磁体7驱动到一定的角度后,即可断电,这时阻尼器工作于被动隔振状态。可见,在整个过程中,除了超声波电机18转动驱动永磁体7需要消耗电能外,在永磁体7无需转动时,超声波电机18断电自锁,其几乎无需耗能,因此该阻尼器的功耗较小,有效减少了能量消耗。既实现了阻尼主动可调的功能,又有效减小了阻尼器所消耗的宝贵的电能。永磁体7和顺磁体13为扇形结构,侧截面为U形。
超声波电机18是利用行波的振动进行爬行,不依赖于旋转磁场的作用,故不受磁场的影响,克服了电磁电机易受到永磁体影响的问题。并且超声波电机18不带磁性元件且无线圈,因此不会产生较大的磁场,不会影响磁流变阻尼器2的阻尼性能。
本发明未详细说明部分属于本领域技术人员公知技术。

Claims (7)

  1. 一种基于超声波电机调节的磁流变隔振器,其特征在于:包括基座(1)、若干磁流变阻尼器(2)、若干转接板(3);每个转接板(3)通过若干磁流变阻尼器(2)连接基座(1),转接板(3)连接被隔振的设备;
    磁流变阻尼器(2)包括下盖板(4)、下腔体(5)、连接环(6)、永磁体(7)、节流孔(8)、上腔体(9)、上盖板(10)、上推力杆(11)、上压盖(12)、顺磁体(13)、下压盖(14)、导磁环(15)、固定环(16)、外壳(17)、超声波电机(18)、下推力杆(19);
    上推力杆(11)一端与连接环(6)连接,作为隔振的输出或输入端,上推力杆(11)连接转接板(3);下推力杆(19)安装在下盖板(4)中部,作为隔振的输入或输出端;下推力杆(19)连接基座(1);下盖板(4)和上盖板(10)通过外壳(17)连接;连接环(6)与波纹管通过焊接形成下腔体(5)和上腔体(9),腔内充满磁流变液;连接环(6)沿周向等分为2n个圆心角为π/n的区域,n为自然数,相邻的两个区域中,其中一个区域内分布若干节流孔(8),另一个区域内没有节流孔(8);连接环(6)外侧安装导磁环(15);连接环(6)内侧间隔安装有永磁体(7)和顺磁体(13);永磁体(7)和顺磁体(13)通过上压盖(12)和下压盖(14)安装于超声波电机(18)的输出轴上;构成下腔体(5)的波纹管位于超声波电机(18)外侧;下腔体(5)和上腔体(9)的两端通过下盖板(4)和上盖板(10)压紧,实现下腔体(5)和上腔体(9)两波纹管的并联;在载荷的作用下,隔振的输入端和输出端之间存在相对运动时,连接环(6)相对外壳(17)上下移动,推动下腔体(5)和上腔体(9)内磁流变液沿节流孔(8)从一个腔体挤入另一个腔体。
  2. 根据权利要求1所述的一种基于超声波电机调节的磁流变隔振器,其特征在于:永磁体(7)的磁力线穿过连接环(6),经过导磁环(15)形成回路;超声波电机(18)带动永磁体(7)和顺磁体(13)转动;当永磁体(7)与节 流孔(8)在周向重叠时,永磁体(7)和导磁环(15)之间的磁场穿过节流孔(8),使得该重叠区域内的节流孔(8)处的磁场加强,使得重叠区域内的节流孔(8)中的磁流变液的动粘度提高;通过调节处于磁场中的节流孔(8)数量的多少,实现隔振器阻尼大小的调节。
  3. 根据权利要求1和2所述的一种基于超声波电机调节的磁流变隔振器,其特征在于:超声波电机(18)工作在连续模式或步进模式,利用角位移传感器反馈;当超声波电机(18)工作在步进模式时,利用零位传感器对超声波电机(18)的转子的角位置进行标定,通过计数超声波电机(18)走过的步数,计算永磁体(7)转过的角度,获得永磁体(7)与节流孔(8)在周向的重叠度,得到阻尼隔振器的阻尼系数的大小。
  4. 根据权利要求3所述的一种基于超声波电机调节的磁流变隔振器,其特征在于:超声波电机(18)将永磁体(7)驱动到设定的角度后,能够断电自锁,此时,所述阻尼隔振器工作于被动隔振状态。
  5. 根据权利要求1所述的一种基于超声波电机调节的磁流变隔振器,其特征在于:磁流变阻尼器(2)的个数与倾角依据被隔振对象特性和隔振要求确定。
  6. 根据权利要求1所述的一种基于超声波电机调节的磁流变隔振器,其特征在于:永磁体(7)和顺磁体(13)为扇形结构,侧截面为U形。
  7. 根据权利要求6所述的一种基于超声波电机调节的磁流变隔振器,其特征在于:每个区域内永磁体(7)和顺磁体(13)的圆心角皆为π/n。
PCT/CN2020/076996 2019-11-15 2020-02-27 一种基于超声波电机调节的磁流变隔振器 WO2021093221A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/776,967 US20220412431A1 (en) 2019-11-15 2020-02-27 Ultrasonic motor-based regulated magnetorheological vibration isolator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911121220.9 2019-11-15
CN201911121220.9A CN110985588B (zh) 2019-11-15 2019-11-15 一种基于超声波电机调节的变阻尼隔振器

Publications (1)

Publication Number Publication Date
WO2021093221A1 true WO2021093221A1 (zh) 2021-05-20

Family

ID=70084559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076996 WO2021093221A1 (zh) 2019-11-15 2020-02-27 一种基于超声波电机调节的磁流变隔振器

Country Status (3)

Country Link
US (1) US20220412431A1 (zh)
CN (1) CN110985588B (zh)
WO (1) WO2021093221A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114658788A (zh) * 2022-03-17 2022-06-24 佛山仙湖实验室 磁流变液减振器及氢瓶保护支架

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114251411A (zh) * 2020-09-21 2022-03-29 中国科学院长春光学精密机械与物理研究所 一种同轴两反空间光学遥感器的主动段减振结构
CN112855826B (zh) * 2020-12-24 2022-06-21 湖北航天飞行器研究所 节能自锁式磁流变阻尼器
CN112747074B (zh) * 2020-12-28 2022-04-01 武汉理工大学 一种新型磁流变减震器及车辆平顺性控制方法
CN114607722B (zh) * 2022-03-31 2024-04-02 长光卫星技术股份有限公司 用于光学遥感卫星微振动的半主动隔振平台及装配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058358A1 (de) * 2008-11-20 2010-05-27 Fludicon Gmbh Vorrichtung für elektro- oder magnetorheologische Systeme
CN202484184U (zh) * 2012-02-20 2012-10-10 东南大学 磁力转动与轴动电流变体阻尼器
CN105003585A (zh) * 2015-06-12 2015-10-28 重庆材料研究院有限公司 变截面活塞式磁流变减振器
CN107218337A (zh) * 2017-07-12 2017-09-29 南京航空航天大学 一种超声场和磁场耦合作用的旋转型圆筒式磁流变液阻尼器
CN108974382A (zh) * 2018-09-11 2018-12-11 长春工业大学 一种基于磁流变的二级隔振云台

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2551806Y (zh) * 2002-06-26 2003-05-21 重庆大学 汽车磁流变液减振器
JP4371962B2 (ja) * 2004-09-07 2009-11-25 本田技研工業株式会社 可変減衰力ダンパー
CN1312413C (zh) * 2005-01-05 2007-04-25 湖南大学 永磁调节装配式磁流变阻尼器
CN201922881U (zh) * 2010-09-07 2011-08-10 吉林大学 汽车动力总成半主动控制磁流变液压悬置
CN205559672U (zh) * 2016-05-06 2016-09-07 华东交通大学 采用齿轮齿条和锥齿轮传动进行能量采集的磁流变阻尼器
CN106763446B (zh) * 2017-02-14 2018-10-12 崔葆洁 一种变磁阻式磁流变阻尼器
CN107559371B (zh) * 2017-09-07 2020-09-18 北京控制工程研究所 一种基于磁流变技术的半主动隔振器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058358A1 (de) * 2008-11-20 2010-05-27 Fludicon Gmbh Vorrichtung für elektro- oder magnetorheologische Systeme
CN202484184U (zh) * 2012-02-20 2012-10-10 东南大学 磁力转动与轴动电流变体阻尼器
CN105003585A (zh) * 2015-06-12 2015-10-28 重庆材料研究院有限公司 变截面活塞式磁流变减振器
CN107218337A (zh) * 2017-07-12 2017-09-29 南京航空航天大学 一种超声场和磁场耦合作用的旋转型圆筒式磁流变液阻尼器
CN108974382A (zh) * 2018-09-11 2018-12-11 长春工业大学 一种基于磁流变的二级隔振云台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114658788A (zh) * 2022-03-17 2022-06-24 佛山仙湖实验室 磁流变液减振器及氢瓶保护支架
CN114658788B (zh) * 2022-03-17 2023-06-06 佛山仙湖实验室 磁流变液减振器及氢瓶保护支架

Also Published As

Publication number Publication date
CN110985588B (zh) 2020-11-20
US20220412431A1 (en) 2022-12-29
CN110985588A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021093221A1 (zh) 一种基于超声波电机调节的磁流变隔振器
Zhang et al. A new high-static-low-dynamic stiffness vibration isolator based on magnetic negative stiffness mechanism employing variable reluctance stress
US8973724B2 (en) Vibration isolators and isolation systems
JP6317822B2 (ja) 一自由度磁力防振装置
Yuan et al. Tunable negative stiffness spring using maxwell normal stress
Hong et al. Vibration control of a structural system using magneto-rheological fluid mount
US5788029A (en) Vibration isolation system
Liu et al. Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer
CN104500648B (zh) 两参数微振动主被动隔振平台及系统
JP2014052044A (ja) Mrダンパー
Li et al. Design and experiments of an active isolator for satellite micro-vibration
CN101522521A (zh) 硬安装的减震塔架
Hu et al. Semi-active vibration control of two flexible plates using an innovative joint mechanism
US20140090937A1 (en) Magnetorheological fluid elastic lag damper for helicopter rotors
CN112377561B (zh) 基于主动电磁负刚度结构的三自由度隔微振器
Bin et al. Theoretical and experimental investigation on novel 2D maglev servo proportional valve
CN108331877A (zh) 基于四极磁芯与泡沫金属内衬的剪切式磁流变液阻尼器
WO2021012539A1 (zh) 一种基于空间并联机构的低扰振双框架飞轮
JP5591199B2 (ja) 振動絶縁装置
CN112303174B (zh) 一种基于磁流变弹性体的半主动控制隔振器及其控制方法
Oh et al. Flywheel vibration isolation test using a variable-damping isolator
JPH1089406A (ja) 誘導電流を利用した減衰装置
WO2020116344A1 (ja) 渦電流式ダンパ
Unsal Semi-active vibration control of a parallel platform mechanism using magnetorheological damping
CN109027124B (zh) 一种负刚度可调的扭转准零刚度隔振器及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887772

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20887772

Country of ref document: EP

Kind code of ref document: A1