WO2021092894A1 - 无线接收装置、无线充电系统和无线充电方法 - Google Patents

无线接收装置、无线充电系统和无线充电方法 Download PDF

Info

Publication number
WO2021092894A1
WO2021092894A1 PCT/CN2019/118785 CN2019118785W WO2021092894A1 WO 2021092894 A1 WO2021092894 A1 WO 2021092894A1 CN 2019118785 W CN2019118785 W CN 2019118785W WO 2021092894 A1 WO2021092894 A1 WO 2021092894A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
wireless
conversion module
receiving
Prior art date
Application number
PCT/CN2019/118785
Other languages
English (en)
French (fr)
Inventor
杨军
张俊
万世铭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19952618.7A priority Critical patent/EP4047786A4/en
Priority to CN201980100245.2A priority patent/CN114365383A/zh
Priority to PCT/CN2019/118785 priority patent/WO2021092894A1/zh
Publication of WO2021092894A1 publication Critical patent/WO2021092894A1/zh
Priority to US17/734,659 priority patent/US20220263351A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the embodiments of the present application relate to the field of charging technology, and in particular to a wireless receiving device, a wireless charging system, and a wireless charging method.
  • the power adapter In the process of wireless charging, the power adapter is generally connected to the wireless charging base, and the output power of the power adapter is transmitted wirelessly (such as electromagnetic signals or electromagnetic waves) to the electronic device through the wireless charging base to wirelessly charge the electronic device .
  • wirelessly such as electromagnetic signals or electromagnetic waves
  • the embodiments of the present application provide a wireless receiving device, a wireless charging system, and a wireless charging method to solve charging problems in related technologies.
  • a wireless receiving device including: a plurality of receiving coils, respectively coupled with the transmitting coil, for receiving the wireless charging signal transmitted by the transmitting coil;
  • the wireless charging signals received by the multiple receiving coils are subjected to voltage and/or current processing for charging the battery; wherein, one end of each of the wireless receiving processing modules is received by one of the multiple receiving coils.
  • the coil is connected, and the other end is connected to the battery.
  • a wireless receiving device including: a plurality of receiving coils, respectively coupled with the transmitting coil, for receiving the wireless charging signal transmitted by the transmitting coil; and a plurality of AC/DC conversion modules, respectively, for connecting The wireless charging signals received from the plurality of receiving coils are subjected to voltage and/or current processing to obtain a direct current voltage and a direct current; a voltage conversion module is connected to the plurality of AC/DC conversion modules for connecting the The DC voltage is boosted or stepped down to obtain the target DC voltage for charging the battery; wherein, one end of each of the AC/DC conversion modules is connected to one of the plurality of receiving coils, and the other end is connected to The voltage conversion module is connected.
  • a wireless charging system including: a wireless transmitting device and a wireless receiving device;
  • the wireless transmitting device includes: an inverter circuit for converting input direct current into alternating current; a transmitting coil for converting the The alternating current is converted into a wireless charging signal that can be transmitted through the electromagnetic domain;
  • the wireless receiving device includes: a plurality of receiving coils, respectively coupled with the transmitting coil, for receiving the wireless charging signal transmitted by the transmitting coil;
  • the receiving and processing modules are respectively used to perform voltage and/or current processing on the wireless charging signals received from the plurality of receiving coils for charging the battery; wherein, one end of each of the wireless receiving and processing modules is connected to the One of the multiple receiving coils is connected, and the other end is connected to the battery.
  • a wireless charging method which includes: a plurality of receiving coils respectively receive wireless charging signals transmitted by a transmitting coil; and a plurality of wireless receiving processing modules respectively voltage the wireless charging signals received from the plurality of receiving coils. And/or current processing for charging the battery together; wherein, one end of each of the wireless receiving and processing modules is connected to one of the multiple receiving coils, and the other end is connected to the battery.
  • a wireless charging method includes: a plurality of receiving coils respectively receive wireless charging signals transmitted by a transmitting coil; a plurality of AC/DC conversion modules respectively voltage the wireless charging signals received from the plurality of receiving coils And/or current processing to obtain a direct current voltage and a direct current; the voltage conversion module performs step-up or step-down processing of the direct current voltage to obtain a target direct current voltage for charging the battery; wherein, each of the AC/DC conversion One end of the module is connected to one of the plurality of receiving coils, and the other end is connected to the voltage conversion module.
  • a wireless charging method including: converting input direct current into alternating current; converting the alternating current into a wireless charging signal that can be transmitted through the electromagnetic domain; and multiple receiving coils respectively receiving wireless charging signals transmitted by the transmitting coils Multiple wireless receiving and processing modules respectively perform voltage and/or current processing on the wireless charging signals received from the multiple receiving coils for charging the battery; wherein, one end of each of the wireless receiving and processing modules is connected to One of the multiple receiving coils is connected, and the other end is connected to the battery.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned fourth to sixth aspects or any one of the implementation modes thereof Methods.
  • a computer program product is provided, which is characterized by comprising computer program instructions that cause a computer to execute any one of the foregoing fourth to sixth aspects or any one of its implementation modes. The method described.
  • the wireless receiving device since the wireless receiving device includes multiple receiving coils and multiple wireless receiving processing modules, the charging speed and efficiency of wireless charging can be improved; and since multiple wireless receiving processing modules are used for The voltage and current received by multiple receiving coils are processed, which can avoid the disorder of the rectifier circuit.
  • FIG. 1 is a schematic diagram of a wireless charging system provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of a wireless receiving device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a wireless receiving device provided by another embodiment of the present application.
  • FIG. 4 is a schematic diagram of a wireless receiving device provided by another embodiment of the present application.
  • FIG. 5a is a schematic diagram of charging current changes during charging of a device to be charged according to an embodiment of the present application.
  • FIG. 5b is a schematic diagram of a charging voltage change during charging of a device to be charged according to an embodiment of the present application.
  • Fig. 6a is a schematic diagram of a wireless receiving device provided by still another embodiment of the present application.
  • FIG. 6b is a schematic diagram of a wireless receiving device provided by another embodiment of the present application.
  • Fig. 7a is a schematic diagram of a wireless receiving device provided by still another embodiment of the present application.
  • FIG. 7b is a schematic diagram of a wireless receiving device provided by another embodiment of the present application.
  • FIG. 7c is a schematic diagram of a wireless receiving device provided by still another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a wireless receiving device provided by still another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a wireless charging system provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a wireless charging method provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a wireless charging method provided by another embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a wireless charging method provided by another embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a wireless charging method provided by still another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a wireless charging system provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of a wireless charging system provided by another embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a wireless charging system provided by another embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a wireless receiving device according to still another embodiment of the present application.
  • FIG. 1 shows the wireless charging system provided by an embodiment of the application.
  • the wireless charging method will be briefly introduced below in conjunction with FIG. 1.
  • the wireless charging system may include a power supply device 110, a wireless transmitting device 120, and a device to be charged 130.
  • the wireless transmitting device 120 may be, for example, a wireless charging base, and the device to be charged 130 may be a terminal, for example.
  • the wireless transmitting device 120 can convert the output voltage and output current of the power supply device 110 into a wireless charging signal (for example, an electromagnetic signal) for transmission through an internal wireless transmitting circuit 122.
  • the wireless transmitting circuit 122 can convert the output current of the power supply device 110 into alternating current, and convert the alternating current into a wireless charging signal through a transmitting coil or a transmitting antenna (not shown in the figure).
  • the voltage conversion circuit can convert the voltage output by the power supply device 110, and the micro-control unit 123 can control the voltage of the voltage conversion circuit 121 and the wireless transmitting circuit 122.
  • the device to be charged 130 can receive the wireless charging signal transmitted by the wireless transmitting circuit 122 through the wireless receiving circuit 131, and convert the wireless charging signal into the output voltage and output current of the wireless receiving circuit 131.
  • the wireless receiving circuit 131 can convert the electromagnetic signal emitted by the wireless transmitting circuit 122 into alternating current through a receiving coil or a receiving antenna (not shown in the figure), and perform operations such as rectification and/or filtering on the alternating current, and the alternating current Converted into the output voltage and output current of the wireless receiving circuit 131, the output voltage and output current received by the wireless receiving circuit 131 are adjusted by the voltage conversion module 132 or the charging management circuit 136, so as to obtain the expectations of the battery 133 in the device to be charged 130
  • the charging voltage and/or charging current requirements can be realized to charge the battery 133.
  • the charging management circuit 136 may be, for example, a charging integrated circuit (Integrated Circuit, IC).
  • the detection module 135 in the implementation of this application can detect the information of the battery 133, such as battery temperature, battery voltage and battery current, etc., and can also detect the output current and output voltage of the voltage conversion module 132 or the charging management circuit 136 and the wireless receiving circuit 131. Output voltage and output current, etc.
  • the wireless charging power can be increased by adding a receiving coil.
  • a receiving coil After the receiving coil is added, in some embodiments, a shared rectification circuit can be used to rectify the electric energy received by multiple receiving coils. This method is not suitable for higher power transmission due to severe heating of the coil; the control logic of the rectifier circuit is complicated, which limits its ability to further improve the wireless transmission power.
  • the embodiments of the present application provide a wireless receiving device, a wireless charging system, and a wireless charging method, which can avoid the disorder of the rectifier circuit in the working process, and can also improve the wireless charging power capability and charging speed.
  • the device to be charged used in the embodiments of this application may refer to a terminal, and the “terminal” may include, but is not limited to, set to be connected via a wired line (such as via a public switched telephone network (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular networks, Wireless Local Area Network (WLAN), Digital TV networks such as Digital Video Broadcasting Handheld (DVB-H) networks, satellite networks, AM-FM (Amplitude Modulation-Frequency Modulation) broadcast transmitters, and/or another communication terminal )
  • a device for receiving/sending communication signals through a wireless interface may be referred to as a "wireless communication terminal", a "wireless terminal", and/or a "mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; Personal Communication System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal Digital Assistant (PDA) with intranet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • the device to be charged may refer to that the mobile terminal is a device or a handheld terminal device, such as a mobile phone, a pad, and so on.
  • the device to be charged mentioned in the embodiments of this application may refer to a chip system. In this embodiment, the battery of the device to be charged may or may not belong to the chip system.
  • the devices to be charged can also include other devices that require charging, such as mobile phones, mobile power sources (such as power banks, travel chargers, etc.), electric cars, laptops, drones, tablets, e-books, and e-cigarettes. , Smart standby charging equipment and small electronic products, etc. Smart devices to be charged can include, for example, watches, bracelets, smart glasses, and sweeping robots. Small electronic products may include, for example, wireless headsets, Bluetooth speakers, electric toothbrushes, and rechargeable wireless mice.
  • the wireless receiving device 200 provided by the embodiment of the present application will be described in detail below in conjunction with FIG. 2.
  • a wireless receiving device 200 provided by an embodiment of this application, wherein the wireless receiving device 200 may include multiple receiving coils 210, multiple wireless receiving processing modules 220 and a battery 230.
  • the wireless receiving apparatus 200 in the embodiment of the present application may be the device to be charged 130 in FIG. 1.
  • the multiple receiving coils 210 are respectively coupled with the transmitting coils, and are used to respectively receive the wireless charging signals transmitted by the transmitting coils.
  • the wireless charging signal in the embodiments of the present application may be transmitted through the transmitting coil (or transmitting antenna) of the wireless transmitting device.
  • the wireless transmitting device may include a wireless transmitting drive circuit and a transmitting coil.
  • the wireless transmission drive circuit can be used to generate higher-frequency alternating current, and the transmitting coil or transmitting antenna can be used to convert the higher-frequency alternating current into electromagnetic signals for transmission.
  • the multiple receiving coils in the embodiment of the present application may include two or three or more receiving coils, which is not specifically limited in the present application.
  • the multiple receiving coils may simultaneously receive the wireless signals transmitted by the wireless transmitting device, or may not receive the wireless signals transmitted by the wireless transmitting device at the same time.
  • a plurality of wireless receiving processing modules 220 are respectively used to perform voltage and/or current processing on the wireless charging signals received from the plurality of receiving coils 210 for charging the battery 230, wherein each of the wireless receiving One end of the processing module is connected to one of the multiple receiving coils, and the other end is connected to the battery.
  • the multiple wireless receiving processing modules 220 may correspond to the multiple receiving coils 210 one-to-one, and respectively process the voltage and/or current of the wireless charging signals received by the multiple receiving coils 210.
  • the multiple voltages and currents processed by multiple wireless receiving processing modules 210 can be used to charge the battery 230 together.
  • the wireless receiving device since the wireless receiving device includes multiple receiving coils and multiple wireless receiving processing modules, the charging speed and efficiency of wireless charging can be improved; and since multiple wireless receiving processing modules are used for The voltage and current received by multiple receiving coils are processed, which can avoid the disorder of the rectifier circuit.
  • FIG. 3 it is a schematic diagram of another wireless receiving apparatus provided in an embodiment of this application.
  • the multiple receiving coils include: a first receiving coil 311, which is coupled to the transmitting coil, and configured to receive a first wireless charging signal from the transmitting coil; and a second receiving coil 321, which is connected to the transmitting coil.
  • the transmitting coil is coupled to receive the second wireless charging signal from the transmitting coil.
  • the first receiving coil 311 and the second receiving coil 321 may simultaneously receive the wireless charging signal transmitted by the transmitting coil, or may not receive the wireless charging signal transmitted by the wireless transmitting coil at the same time.
  • the first receiving coil 311 and the second receiving coil 321 in the embodiment of the present application may be multiple receiving coils 210 in FIG. 2.
  • FIG. 3 only schematically shows that the wireless receiving device 300b may include two receiving coils.
  • the wireless receiving device may further include a third receiving coil, or even more, so that the voltage and/current processed by multiple wireless receiving processing modules can be used to jointly charge the battery.
  • the first receiving coil and the second receiving coil are arranged overlappingly, so that the first receiving coil and the second receiving coil can be simultaneously connected to the The transmitting coils are aligned.
  • the first receiving coil 311 and the second receiving coil 321 can be overlapped.
  • the first receiving coil 311 and the second receiving coil 321 can be superimposed to form a magnetic shielding material structure, so that The first receiving coil 311 and the second receiving coil 321 can be aligned with the transmitting coil at the same time, that is, the first receiving coil 311 and the second receiving coil 321 can receive the signal transmitted by the transmitting coil to the maximum.
  • the first receiving coil and the second receiving coil are disposed on the same flexible printed circuit (FPC) substrate, and are separated by a shielding layer.
  • FPC flexible printed circuit
  • the first receiving coil 311 and the second receiving coil 321 are both made of a wire whose surface is covered with an insulating material.
  • the first receiving coil 311 and the second receiving coil 321 can be located on the same FPC substrate, which can save space to the greatest extent. At the same time, they are separated by a shielding layer, so that the two receiving coils are in the process of receiving wireless charging signals. China can not interfere with each other.
  • the first receiving coil 311 and the second receiving coil 321 may be wound by a wire whose surface is covered with an insulating material, for example, it may be an enameled wire or the like.
  • the multiple wireless reception processing modules include: a first alternating current/direct current (Alternating Current/Direct Current, AC/DC) conversion module 312, and the second A receiving coil 311 is connected to convert the first wireless charging signal into a first direct current voltage and a first direct current; a second AC/DC conversion module is connected to the second receiving coil to convert the The second wireless charging signal is converted into a second direct current voltage and a second direct current.
  • a first alternating current/direct current (Alternating Current/Direct Current, AC/DC) conversion module 312 and the second A receiving coil 311 is connected to convert the first wireless charging signal into a first direct current voltage and a first direct current
  • a second AC/DC conversion module is connected to the second receiving coil to convert the The second wireless charging signal is converted into a second direct current voltage and a second direct current.
  • the wireless receiving device further includes:
  • the control module 340 is configured to control the operation of the first AC/DC conversion module 312 and the first voltage conversion module 313 according to the charging stage of the battery, and/or control the second AC/DC conversion module 322 And the second voltage conversion module 323 work; wherein, the charging phase of the battery includes at least one of the following charging phases: a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the first receiving coil 311 and the second receiving coil 321 in the embodiment of the present application may be the multiple receiving coils 210 in FIG. 2, the first AC/DC conversion module 312, the first voltage conversion module 313, and the second AC/DC
  • the module jointly formed by the conversion module 322 and the second voltage conversion module 323 may be a plurality of wireless reception processing modules 220 in FIG. 2.
  • FIG. 3 only schematically shows that the wireless receiving device may include two receiving coils, two AC/DC conversion modules, and two voltage conversion modules.
  • the wireless receiving device may further include a third receiving coil, a third AC/DC conversion module, and a third voltage conversion module, or even more, so that the multiple voltage conversion modules can be used for conversion. The subsequent voltage and/current together charge the battery.
  • the current output by the first AC/DC conversion module 312 may be the current output by the first receiving coil 311, or it may be detected on the charging path from the first receiving coil 311 to the first AC/DC conversion module 312
  • the present application does not specifically limit the current, etc., as long as the current of the first receiving coil 311 can be reflected in the embodiment of the present application; similarly, the current output by the second AC/DC conversion module 322 may be the first
  • the current output by the second receiving coil 321 may also be the current detected on the charging path from the second receiving coil 321 to the second AC/DC conversion module 322, etc.
  • This application is not specifically limited, as long as it can reflect the second The current of the receiving coil 321 can be applied to the embodiments of the present application.
  • control module 340 can control the rectification work included in the first AC/DC conversion module 312, can also control the rectification work included in the second AC/DC conversion module 322, and can also control the first AC/DC conversion module 322 at the same time.
  • the AC/DC conversion module 312 and the second AC/DC conversion module 322 include the rectification work; alternatively, the control module 340 may control the filtering work included in the first AC/DC conversion module 312, or may control the second AC/DC
  • the filtering work included in the conversion module 322 may also simultaneously control the filtering work included in the first AC/DC conversion module 312 and the second AC/DC conversion module 322; or, the control module 340 may control the conversion work of the first voltage conversion module 313 .
  • the conversion work of the second voltage conversion module 323 can also be controlled, and the conversion work of the first voltage conversion module 313 and the second voltage conversion module 323 can also be controlled at the same time, which is not specifically limited in this application.
  • the control module 340 in the embodiment of the present application may be controlled by a micro control unit (MCU) and/or an application processor (AP).
  • MCU micro control unit
  • AP application processor
  • the operations of controlling the first AC/DC conversion module 312 and the second AC/DC conversion module 322, and the first voltage conversion module 313 and the second voltage conversion module 323 can be performed by different control modules.
  • the wireless receiving device 300b may include a first control module 340a and a second control module 340b.
  • the first control module 340a is used to control the operations of the first AC/DC conversion module 312 and the first voltage conversion module 313, and the second control module 340b is used to control the operations of the second AC/DC conversion module 322 and the second voltage conversion module 323.
  • the first AC/DC conversion module 312 and the second AC/DC conversion module 322 included for rectification may also be a rectifier with a rectification function, etc.
  • the filtering function included in the second AC/DC conversion module 322 may also be a filter with filtering function, etc., which is not specifically limited in this application.
  • two identical receiving coils are taken as an example for description. That is, the impedance, number of turns, and material of the first receiving coil 311 and the second receiving coil 321 may be the same. Assuming that the power transmitted by the wireless transmitting device is 10W, that is, the voltage transmitted by the wireless transmitting device is 5V and the current is 2A.
  • the gain of the transmitting coil and the receiving coil is 1, in the case of no energy loss, because the magnetic field generated by the transmitting coil is in The magnetic flux on each of the multiple receiving coils is the same, so the voltage is also the same, that is, the maximum voltage amplitude of the alternating current received by the first receiving coil 311 and the second receiving coil 321 can also be 5V; and
  • the current on the receiving coil since the respective currents on the two receiving coils are the same, they are provided by the transmitting coil after being superimposed. Therefore, the current on the transmitting coil should have double current passing through, that is, the current on the transmitting coil When the current is 2A, the maximum current amplitude of the first receiving coil 311 and the second receiving coil 321 may be 1A, respectively.
  • the first AC/DC conversion module 312 can rectify and filter the AC power received by the first receiving coil 311 to obtain DC power.
  • the first voltage conversion module 313 can perform processing on the DC power processed by the first AC/DC conversion module 312. Perform conversion processing; similarly, the second AC/DC conversion module 322 can rectify and filter the AC power received by the second receiving coil 321 to obtain a relatively stable DC power.
  • the second voltage conversion module 323 can The DC power processed by the AC/DC conversion module 322 is converted.
  • the DC power obtained after processing by the first voltage conversion module 313 and the second voltage conversion module 323 can be used to charge the battery 330.
  • the gain of the transmitting coil and the receiving coil may be other values, for example, it may be n, and the value of n may be 2 or 3 or 4, etc. Take the gain of 2 as an example for description.
  • the gain of the transmitting coil and the receiving coil is 2, assuming that the power transmitted by the wireless transmitting device is 10W, that is, the voltage transmitted by the wireless transmitting device is 5V and the current is 2A.
  • the gain of the transmitter coil and the receiver coil is 2, that is, the magnetic flux on each of the multiple receiver coils is twice the magnetic flux generated by the transmitter coil, so the voltage is also twice, that is, the first receiver coil
  • the maximum voltage amplitude of the alternating current received by the 311 and the second receiving coil 321 can also be 10V; for the current on the receiving coil, since the respective currents on the multiple receiving coils are the same, they will be provided by the transmitting coil after being superimposed. Therefore, the current on the transmitting coil should be doubled, that is, when the current on the transmitting coil is 2A, the maximum current amplitude on the first receiving coil 311 and the second receiving coil 321 can be 2A respectively.
  • the wireless receiving device since the wireless receiving device includes a plurality of AC/DC conversion modules and a plurality of voltage conversion modules, which are respectively connected to a plurality of receiving coils, the plurality of AC/DC conversion modules and the plurality of voltage conversion modules can be connected to each other. Rectify, filter and step-down/boost the voltage and current received by multiple receiving coils, so as to avoid the disorder of the rectifier circuit. At the same time, the current received on multiple receiving coils passes through multiple AC/DC conversions. The module performs processing, within the voltage and current range that the battery can be charged, and further, can improve the battery charging power and charging speed.
  • FIG. 4 another wireless charging device provided in an embodiment of this application is provided.
  • the wireless transmitting device 300a may also include multiple transmitting coils.
  • the wireless transmitting device includes two transmitting coils as an example for description.
  • the wireless charging signal transmitted by the first transmitting coil 363 can be received by the first receiving coil 311 and the second receiving coil 321 in the path A and the path B; the wireless charging signal transmitted by the second transmitting coil 366 can be received by the first receiving coil 311 and the second receiving coil 321 in the path C and the path D.
  • a receiving coil 311 and a second receiving coil 321 receive.
  • the voltage converted by the first voltage conversion module 313 and the second voltage conversion module 323 in 300b-1 can be used to charge the battery 330 in the battery 300b-1, and the voltage after the first voltage conversion module 313 and the second voltage conversion module 323 in 300b-1
  • the voltages converted by the first voltage conversion module 313 and the second voltage conversion module 323 can be used to charge the battery 330 in 300b-2.
  • the voltage can also be used to charge the same battery, which is not specifically limited in this application.
  • the charging process generally includes three stages: trickle charging stage, constant current charging stage and constant voltage charging stage. Take the charging process of lithium ion as an example.
  • FIG. 5a shows a schematic diagram of the change of the charging current during the charging of the device to be charged according to an embodiment of the application
  • FIG. 5b shows the charging voltage during the charging of the device to be charged according to an embodiment of the application. Schematic diagram of changes.
  • the charging device can be the trickle charging stage.
  • the charging current and the charging voltage are gradually increasing at a small rate; when the charging voltage is greater than a certain voltage
  • the threshold When the threshold is reached, it enters the constant current charging stage, which is (t1-t2 section) in Figure 5a and Figure 5b.
  • the charging device can be charged with a constant large current, for example, it can be 6.5A.
  • the charging voltage gradually increases; when the charging voltage is greater than a certain voltage threshold, it can enter the constant voltage charging stage, that is, the period (t2-t3) in Figure 5a and Figure 5b.
  • the power of the charging device is about to be fully charged. Therefore, the charging current can be gradually reduced, and the charging device is charged with the gradually reduced charging current until the charging is cut off.
  • multiple wireless receiving processing modules may include multiple voltage conversion modules.
  • the voltage conversion module may include a boost circuit and a step-down circuit.
  • the booster circuit may include a booster circuit with a fixed booster ratio and a booster circuit without a fixed booster ratio
  • the buck circuit may include a circuit with a fixed booster ratio and a circuit without a fixed booster ratio.
  • the first voltage conversion module 313 includes a DC-DC Buck Circuit (Direct Current-Direct Current Buck Circuit, DC-DC Buck Circuit), and a Buck-Boost (Buck-Boost) circuit. ) Circuit or charging integrated circuit (Integrated Circuit, IC).
  • DC-DC Buck Circuit Direct Current-Direct Current Buck Circuit, DC-DC Buck Circuit
  • Buck-Boost Buck-Boost circuit
  • Circuit or charging integrated circuit Integrated Circuit, IC
  • control module 340 is configured to control the first voltage conversion module to operate in one or more of the following charging phases: the trickle charging phase, the constant current charging phase The charging phase and the constant voltage charging phase.
  • the first voltage conversion module 313 may be a Buck circuit or a Buck-Boost circuit or a charging IC without a fixed step-down ratio.
  • Path A and Path B can use Buck circuit or Buck-Boost circuit or charging IC without a fixed step-down ratio to convert the rectified and filtered voltage; or Path A can use no
  • the Buck circuit or Buck-Boost circuit or charging IC with a fixed step-down ratio step-down the rectified and filtered voltage, and a circuit with a fixed step-down ratio can be used in path B to convert the rectified and filtered voltage deal with.
  • path A may include a first receiving coil 311, a first AC/DC conversion module 312, a first voltage conversion module 313, and a battery 330;
  • path B may include a second receiving coil 321, a second AC/DC conversion module 322 , The second voltage conversion module 323 and the battery 330.
  • control module 340 may control the circuits used by the first voltage conversion module 313 and the second voltage conversion module 323 during the charging process based on the charging stage of the battery.
  • the DC-DC Buck circuit can work in any of the trickle charging phase, the constant current charging phase, and the constant voltage charging phase in the above-mentioned charging process.
  • the rated voltage of the battery is 4.4V
  • the first voltage conversion module 313 and the second voltage conversion module 323 can step down the rectified and filtered DC power.
  • DC-DC Buck or charging IC circuit can be used to step down the rectified and filtered voltage.
  • the first voltage conversion module 313 can use a DC-DC Buck circuit or a charging IC to pass through the path A
  • the voltage processed by the first AC/DC conversion module 312 is subjected to a step-down process.
  • the first voltage conversion module 313 may use a DC-DC Buck circuit to step down the voltage on the path A that has been processed by the first AC/DC conversion module 312.
  • the voltage entering the first voltage conversion module 313 can be greater than any voltage value of 3.4V, for example, it can be 6V; if the expected charging voltage of the battery is 3.8V, enter The voltage of the first voltage conversion module 313 may be any voltage value greater than 3.8V, for example, it may be 7.6V.
  • a DC-DC Buck circuit may be used, or a DC-DC charge pump (Direct Current-Direct Current Charge Pump, DC-DC Charge Pump) may be used, so as to pass through the first voltage conversion module 313 and the first voltage conversion module 313.
  • the second voltage conversion module 323 can meet the expected charging voltage of the battery.
  • the battery voltage When the battery voltage reaches a certain voltage value, for example, when the battery voltage reaches 4.2V, it can enter the constant voltage charging stage. At this stage, a DC-DC Buck or charging IC circuit can be used to charge the battery.
  • a DC-DC Buck or charging IC circuit can be used to charge the battery.
  • the second voltage conversion module includes a charge pump circuit.
  • control module 340 is configured to control the operation of the charge pump circuit in the constant current charging stage.
  • the second voltage conversion module 323 may be a charge pump circuit with a fixed step-down ratio.
  • the first voltage conversion module 313 can use a Buck circuit with no fixed step-down ratio to step down the voltage processed by the first AC/DC conversion module 312; in path B
  • the second voltage conversion module 323 may use a voltage conversion module with a fixed step-down ratio to perform step-down processing on the voltage processed by the second AC/DC conversion module 322.
  • control module 340 may control the circuits used by the first voltage conversion module 313 and the second voltage conversion module 323 during the charging process based on the charging stage of the battery.
  • control module 340 may control the charge pump circuit to work in the constant current charging stage of the charging process.
  • the rectified and filtered DC power can be stepped down.
  • the DC-DC Buck circuit or charging IC can be used to step down the rectified and filtered voltage.
  • the second voltage conversion module 323 can use the DC-DC Charge Pump circuit to pass the second
  • the voltage processed by the AC/DC conversion module 322 is stepped down, and for the voltage on the path A, a DC-DC Buck circuit can still be used.
  • the first voltage conversion module 313 may use a DC-DC Buck circuit to step down the voltage on the path A that has been processed by the first AC/DC conversion module 312, and the second voltage conversion module 323 may The DC-DC Charge Pump is used to step down the voltage processed by the second AC/DC conversion module 322 on the path B.
  • the step-down ratio of the DC-DC Charge Pump is 2
  • the voltage entering the DC-DC Charge Pump can be 6.8V
  • the expected charging voltage of the battery is 3.8V
  • the voltage that enters the DC-DC Charge Pump can be 7.6V. Therefore, the expected charging voltage of the battery can be met after DC-DC Charge Pump.
  • the battery voltage When the battery voltage reaches a certain voltage value, for example, when the battery voltage reaches 4.2V, it can enter the constant voltage charging stage. At this stage, the DC-DC Buck circuit or charging IC can be used to charge the battery.
  • the first voltage conversion module and the second voltage conversion module each include a charge pump circuit; the multiple voltage conversion modules further include: A third voltage conversion module 314 connected to the first AC/DC conversion module or the second AC/DC conversion module; the control module 340 is used to control the first voltage conversion module and the second AC/DC conversion module
  • the voltage conversion module works in a constant current charging phase, and the third voltage conversion module is controlled to work in a trickle charging phase and/or a constant voltage charging phase.
  • the third voltage conversion module includes a Buck circuit, a Buck-Boost circuit, or a charging IC.
  • the third voltage conversion module 314 can be connected in parallel with the first voltage conversion module 313, so that in the process of charging the battery 330, if the first voltage conversion module 313 includes DC- In the DC Charge Pump circuit, the third voltage conversion module 314 can be used as an auxiliary module to manage voltage; in another implementation, as shown in FIG. 6b, the third voltage conversion module 314 can be combined with the first voltage conversion module 313 and the first voltage conversion module 313.
  • the two voltage conversion modules 323 are connected in parallel, so that in the process of charging the battery 330, if the first voltage conversion module 313 and the second voltage conversion module 323 include a DC-DC Charge Pump circuit, the third voltage conversion module 314 can be used as an auxiliary module Manage the voltage.
  • the third voltage conversion module 314 can also only be connected in parallel with the second voltage conversion module 323, so that in the process of charging the battery 330, if the second voltage conversion module 323 includes a DC-DC Charge Pump circuit, the first The three-voltage conversion module 314 can be used as an auxiliary module to manage the voltage.
  • the control module 340 in the embodiment of the present application can control multiple AC/DC conversion modules, and can also control voltage conversion modules.
  • the control module 340 can control the operations of the first AC/DC conversion module and the second AC/DC conversion module. It is also possible to control the operations of the first voltage conversion module 313, the second voltage conversion module 323, and the third voltage conversion module 314.
  • both the first voltage conversion module 313 and the second voltage conversion module 323 may use circuits with a fixed step-down ratio.
  • the first voltage conversion module 313 may use DC-DC Charge Pump1 to pass through the path A
  • the voltage processed by the first AC/DC conversion module 312 is stepped down
  • the second voltage conversion module 323 can use DC-DC Charge Pump2 to step down the voltage processed by the second AC/DC conversion module 322 on path B. ⁇ Pressure treatment. Assuming that the step-down ratio of DC-DC Charge Pump1 and DC-DC Charge Pump2 are both 2.
  • the expected charging voltage of the battery is 3.4V, the voltage entering DC-DC Charge Pump1 and DC-DC Charge Pump2 can be 6.8V ; If the expected charging voltage of the battery is 3.8V, the voltage entering DC-DC Charge Pump1 and DC-DC Charge Pump2 can be 7.6V. Therefore, the expected charging voltage of the battery can be met after DC-DC Charge Pump1 and DC-DC Charge Pump2.
  • the third voltage conversion module 314 may be used to perform step-down processing on the rectified and filtered voltage.
  • the battery voltage When the battery voltage reaches a certain voltage value, for example, when the battery voltage reaches 3V, it can enter the constant current charging stage. At this stage, multiple voltage conversion modules can use DC-DC Charge Pump to separately charge the AC on different paths.
  • the voltage processed by the /DC conversion module is stepped down. As shown in FIG. 6, for example, the first voltage conversion module 313 may use the DC-DC Charge Pump1 circuit to step down the voltage on the path A that has been processed by the first AC/DC conversion module 312, and the second voltage conversion module 323
  • the DC-DC Charge Pump2 circuit may be used to step down the voltage on the path B that has been processed by the second AC/DC conversion module 322.
  • the step-down ratio of the DC-DC Charge Pump is 2
  • the voltage entering the DC-DC Charge Pump can be 6.8V
  • the expected charging voltage of the battery is 3.8V
  • the voltage that enters the DC-DC Charge Pump can be 7.6V. Therefore, the expected charging voltage of the battery can be met after DC-DC Charge Pump.
  • the constant voltage charging stage can be entered.
  • the third voltage conversion module 314 can be used to pass through the first AC/DC conversion module 312 and/ Or the voltage processed by the second AC/DC conversion module 322 is converted.
  • the third voltage conversion module 314 may be used to perform a step-down process on the rectified and filtered voltage.
  • multiple voltage conversion modules with a fixed step-down ratio can also be used in the trickle charging stage and the constant voltage charging stage in the charging process, and multiple voltage conversion modules without a fixed step-down ratio It can also be used in the constant current charging stage of the charging process, which is not specifically limited in this application.
  • control module can determine the conversion circuit that can be used by the voltage conversion module according to the charging stage of the battery, and the control module can also determine the conversion circuit that the voltage conversion module can use according to the charging mode of the battery, which will be described in detail below.
  • the multiple wireless receiving processing modules include: a first AC/DC conversion module, connected to the first receiving coil, and configured to convert the first wireless charging signal into a first A direct current voltage and a first direct current; a second AC/DC conversion module, connected to the second receiving coil, for converting the second wireless charging signal into a second direct current voltage and a second direct current.
  • a first voltage conversion module connected to the first AC/DC conversion module, a second voltage conversion module connected to the second AC/DC conversion module; the first voltage conversion module and the second voltage conversion The modules are respectively used for boosting or stepping down the first DC voltage and the second DC voltage to obtain a third DC voltage for charging the battery.
  • the wireless receiving device further includes: a control module for controlling the operation of the first AC/DC conversion module and the first voltage conversion module according to the charging mode of the battery, and/or controlling the second AC /DC conversion module and the second voltage conversion module work; wherein the charging mode of the battery includes a first charging mode and a second charging mode, and the charging speed of the first charging mode is greater than that of the second charging mode Charging speed.
  • the control module 340 may select the conversion circuit included in the voltage conversion module based on the charging mode of the battery.
  • the charging mode of the battery includes a first charging mode and a second charging mode.
  • the charging speed of the first charging mode is greater than the charging speed of the second charging mode.
  • the first charging mode can be a fast charging mode with a voltage of 9V and a current of 2A
  • the second charging mode can be a voltage of 5V and a circuit of 1A.
  • the standard charging mode is a fast charging mode with a voltage of 9V and a current of 2A.
  • the first voltage conversion module includes a Buck circuit or a Buck-Boost circuit or a charging IC.
  • control module is used to control the Buck circuit or the Buck-Boost circuit or the charging IC to work in the second charging mode.
  • the control module 340 can control the Buck circuit or the Buck-Boost circuit or the charging IC to work at all In the second charging mode, that is, the control module 340 can control the Buck circuit, Buck-Boost circuit, or charging IC to work in a charging mode with a lower voltage and current.
  • the second voltage conversion module includes a charge pump circuit.
  • control module is configured to control the charge pump circuit to work in the first charging mode.
  • the control module 340 can control the charge pump circuit to work in the first charging mode. In this charging mode, the battery can be charged with a relatively large current and voltage.
  • the charging speeds of the first charging mode and the second charging mode in the embodiments of the present application are relative, and the voltage and current of the first charging mode and the second charging mode are not limited, as long as the charging speed of the first charging mode is greater than The charging speed of the second charging mode can be applied to the embodiments of the present application.
  • each of the first voltage conversion module and the second voltage conversion module includes a charge pump circuit; the plurality of voltage conversion modules further include: and the first AC/DC conversion Module and/or a third voltage conversion module connected to the second AC/DC conversion module; the control module is used to control the first voltage conversion module and the second voltage conversion module to work in the first In the charging mode, and controlling the third voltage conversion module to work in the second charging mode.
  • the third voltage conversion module includes a Buck circuit, a Buck-Boost circuit, or a charging IC.
  • the control module 340 can control the charge pump circuit to work in the first charging mode
  • the third voltage conversion module connected to the first voltage conversion module 313 or the second voltage conversion module 323 can adopt a Buck circuit, a Buck-Boost circuit or a charging IC
  • the control module 340 can control a Buck circuit, a Buck-Boost circuit or a charging IC to work in In the second charging mode.
  • the battery in the wireless receiving device may include a single cell, multiple cells connected in parallel, or multiple cells connected in series.
  • the battery may include multiple cells connected in parallel or multiple cells connected in series, which will be described in detail below.
  • the voltage conversion module included in the plurality of wireless receiving processing modules is configured to perform a voltage conversion module that has passed through the wireless receiving processing module when the battery includes a plurality of battery cells connected in parallel.
  • the DC voltage processed by the included AC/DC conversion module is stepped down.
  • the voltage conversion module included in the plurality of wireless receiving processing modules is configured to separately perform the processing of the wireless receiving processing module when the battery includes a plurality of battery cells connected in series.
  • the DC voltage processed by the included AC/DC conversion module is boosted.
  • the battery in the device may include two battery cells, namely a battery core 330a and a battery core 330b, and the two battery cells may be connected in parallel.
  • the first voltage conversion module 313 and the second voltage conversion module 323 may adopt a step-down circuit to meet the expected battery voltage of the battery.
  • the rated voltage of the battery is 4.4V
  • the rated voltage of the two cells in parallel is still 4.4V. If the voltage processed by the first AC/DC conversion module 312 and the second AC/DC conversion module 322 is 8.8V, Then the first voltage conversion module 313 and the second voltage conversion module 323 may both use a step-down circuit with a fixed step-down ratio of 2, and the voltage after being boosted by the first voltage conversion module 313 and the second voltage conversion module 323 is 4.4V can meet the expected voltage of the battery. Therefore, the battery 330 can be charged based on this voltage.
  • the battery in the device may also include two battery cells, namely a battery cell 330c and a battery cell 330d, and the two battery cells may also be connected in parallel.
  • the voltage converted by the first voltage conversion module 313 can be used to charge the battery cell 330c
  • the voltage converted by the second voltage conversion module 323 can be used to charge the battery cell 330d.
  • the battery in the device may also include two battery cells, namely a battery cell 330e and a battery cell 330f, and the two battery cells may also be connected in series.
  • the first voltage conversion module 313 and the second voltage conversion module 323 may use a boost circuit to meet the expected battery voltage of the battery.
  • the first voltage conversion module 313 and the second voltage conversion module 323 may be a boost circuit, or may have a fixed boost ratio. Charge Pump circuit.
  • the first voltage conversion module 313 and the second voltage conversion module 323 may both use a boost circuit with a fixed boost ratio of 2, and the voltage after being boosted by the first voltage conversion module 313 and the second voltage conversion module 323 is 8.8V ,
  • the expected voltage of the battery can be met, and therefore, the battery cell 330e and the battery cell 330f can be charged based on the voltage.
  • each wireless receiving processing module includes: an AC/DC AC/DC conversion module for converting the wireless charging signal received by the receiving coil connected to it into a DC voltage And a direct current; a voltage conversion module for boosting or stepping down the DC voltage output by the AC/DC conversion module to obtain a charging voltage that meets the charging requirements of the battery.
  • the voltage conversion module may perform conversion processing on the voltage output by the AC/DC conversion module. For example, it may perform step-down processing on the filtered voltage of the filter module included in the AC/DC conversion module, or perform the filtering process on the filtered voltage.
  • the voltage is boosted, which is not specifically limited in this application.
  • the AC/DC conversion module in the embodiment of the present application may be controlled by the MCU and/or AP.
  • the wireless receiving device may feed back a signal to the wireless transmitting device, and the wireless transmitting device may adjust the transmitting power based on the voltage and/or current corresponding to the feedback signal, which will be described in detail below.
  • the wireless receiving device further includes: a control module 340, configured to generate feedback information according to at least one of the following charging parameters and feed it back to the wireless transmitting device: the voltage across the battery , The charging current of the battery, the output current of each AC/DC conversion module, and the output voltage of each AC/DC conversion module; wherein the feedback information is used to instruct the wireless transmitting device to adjust the wireless charging signal transmitted The transmit power.
  • a control module 340 configured to generate feedback information according to at least one of the following charging parameters and feed it back to the wireless transmitting device: the voltage across the battery , The charging current of the battery, the output current of each AC/DC conversion module, and the output voltage of each AC/DC conversion module; wherein the feedback information is used to instruct the wireless transmitting device to adjust the wireless charging signal transmitted The transmit power.
  • control module in the wireless receiving device may feed back the feedback information to the wireless transmitting device. After receiving the feedback information, the wireless transmitting device can adjust the transmission power based on the feedback information.
  • the feedback information includes: the voltage across the battery, the charging current of the battery, the output current of each AC/DC conversion module, and the output of each AC/DC conversion module. Voltage.
  • the voltage at both ends of the battery and the charging current of the battery are used for the wireless transmitting device to determine the transmission power; the output current of each AC/DC conversion module and the output current of each AC/DC conversion module The output voltage of is used for the wireless transmitting device to determine the transmitting voltage of the wireless charging signal when the transmitting power of the wireless charging signal is determined.
  • control module 340 is further configured to: determine the charging power required by the battery according to the voltage across the battery and/or the charging current of the battery; The charging power of is fed back to the wireless transmitting device as the feedback information, so that the wireless transmitting device adjusts the transmitting power of the wireless charging signal.
  • one of the multiple charging paths in the process of charging the battery, can feed back the actual received power into the battery to the wireless transmitting device, and the other can not feed back; or the multiple charging paths can be staggered The actual received power that enters the battery is fed back to the wireless transmitting device.
  • the control module 340 may feed back the actual received power of the path A into the battery to the wireless transmitting device, and may not feed back the actual received power of the path B into the battery to the wireless transmitting device; or the control module 340 may feedback the actual received power of the path B into the battery. If the received power is fed back to the wireless transmitting device, the actual received power into the battery from the channel A may not be fed back to the wireless transmitting device; or the actual received power into the battery may be fed back to the wireless during the trickle charging stage of the channel A during the charging process.
  • the transmitting device feeds back the actual received power into the battery during the constant current charging stage and/or the constant voltage charging stage of the path B during the charging process to the wireless transmitting device. This application does not specifically limit this.
  • multiple charging paths can be staggered to feed back the actual received power into the battery to the wireless transmitting device, it is not necessary to determine which charging path feeds back the actual received power into the battery to the wireless transmitting device based on the charging stage during the charging process. Power, multiple charging paths can be staggered based on the charging time to feed back the actual received power into the battery to the wireless transmitting device.
  • the control module 340 may feed back to the wireless transmitting device the actual received power of path A into the battery, and may not feed back the actual received power of path B into the battery to the wireless transmitting device; the charging time reaches In the charging process at and after 5 minutes, the actual received power into the battery from the channel B may be fed back to the wireless transmitting device, and the actual received power into the battery from the channel A may not be fed back to the wireless transmitting device.
  • the transmitting power can be adjusted based on the actual power. For example, if the feedback power of the wireless receiving device received by the wireless transmitting device is 20W, which is greater than the preset target value, the control unit in the wireless transmitting device can reduce the voltage and/or current of the transmitting circuit to reduce the wireless transmitting device.
  • the control unit in the wireless transmitting device can increase the voltage and/or current of the transmitting circuit to improve the wireless transmitting device If the power of the wireless receiving device received by the wireless transmitting device is 10W, which is equal to the preset target value, the control unit in the wireless transmitting device may not adjust the transmitting power.
  • the charging power may not be fed back to the wireless transmitting device in a way of feeding back a power signal, or other methods may be used.
  • the charging power of the battery may be fed back to the wireless transmitting device through Bluetooth, Wi-Fi, or the like.
  • the wireless receiving device further includes a control module 340, configured to determine the required current of the battery according to the output current and/or output voltage of the multiple AC/DC conversion modules; And feeding back the demand current to the wireless transmission device, so that the wireless transmission device adjusts the transmission power of the wireless charging signal according to the demand current.
  • a control module 340 configured to determine the required current of the battery according to the output current and/or output voltage of the multiple AC/DC conversion modules; And feeding back the demand current to the wireless transmission device, so that the wireless transmission device adjusts the transmission power of the wireless charging signal according to the demand current.
  • the control module 340 may feed back the charging current required by the battery to the wireless transmitting device. For example, assuming that the preset current threshold of the receiving coil is 5A, and the current received by the receiving coil is 8A, which is greater than the preset current threshold, the control module 340 can feed back the required current of 5A to the wireless transmitting device to reduce the receiving coil. After receiving the feedback from the wireless receiving device, the wireless transmitting device can adjust the wireless transmitting current, that is, adjusting the wireless transmitting power.
  • the control module can feed back the required current required by the battery to the wireless transmitting device, the wireless transmitting device can adjust the transmitting current according to the feedback required current, and further, the wireless receiving device can be reduced. Fever.
  • the wireless receiving device further includes: a control module 340, configured to determine the required charging power according to the information of the battery, and according to the output current of the plurality of AC/DC conversion modules , Determine the required current of the battery; and determine the required voltage of the battery according to the required charging power and the required current; feedback the required voltage to the wireless transmitting device, or send the required voltage The voltage difference between the output voltage of any AC/DC conversion module and any one of the plurality of AC/DC conversion modules is fed back to the wireless transmitting device.
  • a control module 340 configured to determine the required charging power according to the information of the battery, and according to the output current of the plurality of AC/DC conversion modules , Determine the required current of the battery; and determine the required voltage of the battery according to the required charging power and the required current; feedback the required voltage to the wireless transmitting device, or send the required voltage The voltage difference between the output voltage of any AC/DC conversion module and any one of the plurality of AC/DC conversion modules is fed back to the wireless transmitting device.
  • the required voltage required by the battery can be determined, so that the required voltage can be fed back to the wireless transmitting device, and the wireless transmitting device receives the data transmitted by the wireless receiving device.
  • the emission voltage can be adjusted according to the required voltage.
  • the battery information in the embodiments of the present application may include information such as the voltage at both ends of the battery, the charging current of the battery, or the temperature of the battery.
  • the voltage difference between the required voltage and the output voltage of any AC/DC conversion module in the AC/DC conversion module can be fed back to the wireless transmitting device, and the wireless transmitting device receives the After the voltage difference, the emission voltage can be adjusted according to the voltage difference.
  • the transmitting power can be adjusted based on the difference. For example, if the voltage difference feedback from the wireless receiving device received by the wireless transmitting device is greater than 0, it means that the transmitting voltage transmitted by the wireless transmitting device is greater than the expected voltage of the battery. In this case, the wireless transmitting device can reduce the transmitting voltage; If the difference between the wireless receiving device feedback received by the wireless transmitting device is less than 0, it means that the transmitting voltage transmitted by the wireless transmitting device is less than the expected charging voltage of the battery.
  • the wireless transmitting device can increase the transmitting voltage;
  • the difference between the wireless receiving device feedback received by the device is equal to 0, indicating that the transmitting voltage emitted by the wireless transmitting device is equal to the expected voltage of the battery.
  • the wireless transmitting device may not adjust the transmitting voltage.
  • the difference between the expected received power of the battery and the actual received power may also be fed back to the wireless transmitting device.
  • the expected received power in the embodiment of the present application may be the product of the expected charging voltage and the charging current of the battery
  • the actual received power may be the product of the actual charging voltage and the charging current of the battery.
  • control module 340 may feed back the difference between the expected received power of one of the multiple charging paths and the actual received power into the battery to the wireless transmitting device, and the other path may not feedback. ; Or the control module 340 may stagger to feed back the difference between the expected received power of the multiple charging paths and the actual received power into the battery to the wireless transmitting device.
  • control module 340 may feed back the difference between the expected received power into the battery and the actual received power to the wireless transmitting device.
  • the control module 340 may not transmit wirelessly. The device feeds back the difference between the expected received power into the battery and the actual received power; or the control module 340 may feed back the difference between the expected received power into the battery and the actual received power of the channel B to the wireless transmitting device, and may not send it to the wireless transmitting device.
  • Feedback path A is the difference between the expected received power into the battery and the actual received power; or the control module 340 can calculate the difference between the expected received power and the actual received power of the path A in the trickle charging phase of the charging process
  • the difference between the expected received power and the actual received power into the battery in the constant current charging phase and/or the constant voltage charging phase of the path B during the charging process can be fed back to the wireless transmitting device. This application does not specifically limit this.
  • the control module 340 may feed back to the wireless transmitting device the difference between the expected received power of the channel A and the actual received power, and may not feed the wireless transmitting device back to the wireless transmitting device.
  • the transmitting device feeds back the difference between the expected received power into the battery and the actual received power in the path A.
  • the transmitting power can be adjusted based on the difference. For example, if the difference between the wireless receiving device feedback received by the wireless transmitting device is greater than 0, it means that the transmitting power transmitted by the wireless transmitting device is greater than the expected charging power of the battery. In this case, the wireless transmitting device can reduce the transmitting power. For example, the transmit current and/or transmit voltage can be reduced; if the difference between the wireless receiving device feedback received by the wireless transmitting device is less than 0, it means that the transmitting power transmitted by the wireless transmitting device is less than the expected charging power of the battery.
  • the wireless transmitting device can increase the transmission power, for example, the transmission current and/or the transmission voltage can be increased; if the difference in the feedback of the wireless receiving device received by the wireless transmitting device is equal to 0, it means that the transmission power transmitted by the wireless transmitting device is equal to the battery
  • the expected charging power in this case, the wireless transmitting device may not adjust the transmitting power.
  • the feedback information instructs the wireless transmitting device to increase the transmission voltage or decrease the transmission voltage.
  • the wireless receiving device after the wireless receiving device determines the current received voltage and/or current, based on the battery information, it can send feedback information to increase the transmission voltage or decrease the transmission voltage to the wireless transmission device; the wireless transmission device is in After receiving the feedback information, the transmit voltage can be adjusted based on the feedback information to meet the expected voltage of the battery.
  • the wireless transmitting device after the wireless transmitting device receives the feedback information sent by the wireless receiving device, it can be adjusted according to a certain adjustment level. For example, the wireless transmitting device receives the first feedback information and the second feedback information sent by the wireless receiving device. , The first feedback information is the information of the main coil fed back by the control module 340, and the second feedback information is the information of the secondary coil fed back by the control module 340. The wireless transmitting device can first adjust the transmission voltage based on the first feedback information, and then based on the second feedback information. The feedback information adjusts the transmit voltage.
  • the wireless receiving device After the wireless receiving device receives the adjusted power, it can feed back to the wireless transmitting device in real time, so that the wireless transmitting device can adjust the transmitting voltage in real time based on the feedback information sent by the wireless receiving device, so as to meet the expected voltage of the battery.
  • the wireless receiving device uses any one or more of the multiple receiving coils to transmit feedback information to the wireless transmitting device; or the wireless receiving device uses out-of-band communication Send feedback information to the wireless transmitter.
  • the wireless receiving device may use one receiving coil of the multiple receiving coils to send feedback information to the wireless transmitting device, and may also send feedback information to the wireless transmitting device through multiple receiving coils of the multiple receiving coils.
  • the feedback information may be sent to the wireless transmitting device through out-of-band communication, for example, the feedback information may be sent to the wireless transmitting device through Bluetooth, Wi-Fi, or the like.
  • the power received by the multiple receiving coils is the same.
  • the wireless receiving device further includes: a control module, configured to control the power received by the multiple receiving coils, respectively.
  • the first receiving coil 311 and the second receiving coil 321 are the same, under the condition of a certain wireless transmission power, the first receiving coil 311 and the second receiving coil 321
  • the received power can be the same.
  • the control module 340 can control the power allocated to the first receiving coil 311 and the second receiving coil 321.
  • the transmit power transmitted by the wireless transmitting device is 10W.
  • the control module 340 can control the power allocated to the first receiving coil 311 and the second receiving coil 321.
  • the power received by the first receiving coil 311 is controlled to be 7W, and the power received by the second receiving coil 321 is 3W.
  • control module is specifically configured to control the power respectively received by the multiple receiving coils according to the difference in impedance of the multiple receiving coils.
  • the current required by the main coil can be fed back to the wireless transmitting device, or the demand current of the coil with more severe heat can be fed back to the wireless transmitting device.
  • the first receiving coil 311 is the primary coil and the second receiving coil 321 is the secondary coil
  • the current required by the first receiving coil 311 can be fed back to the wireless transmitting device; if the heat on the first receiving coil 311 is severe , The current required by the first receiving coil 311 can be fed back to the wireless transmitting device. If the heat on the second receiving coil 321 is severe, the current required by the second receiving coil 321 can be fed back to the wireless transmitting device.
  • the wireless receiving device further includes: a control module 340, configured to control and adjust when the impedances of the multiple receiving coils or the multiple wireless receiving processing modules are different At least part of the plurality of receiving coils receives the output current of the coil.
  • a control module 340 configured to control and adjust when the impedances of the multiple receiving coils or the multiple wireless receiving processing modules are different At least part of the plurality of receiving coils receives the output current of the coil.
  • the receiving coils or rectifier circuits or filter circuits or transformer circuits on different charging paths are different, for example, the coils in multiple receiving coils may be different, and the impedance of the coils is different due to the difference in materials. Or the impedance of the coil is different due to the number of turns of the coil; or the impedance of the rectifier circuit in multiple rectifier circuits may also be different, for example, the impedance is different due to different circuit forms or different components included in the rectifier circuit Wait. Since the impedances of different charging paths are different, the heat generated on different charging paths during the wireless charging process may also be different. Therefore, in this case, the charging path can be adjusted based on the impedance of the devices included in the charging path. Current and voltage.
  • the wireless charging path includes two paths, where the paths of the first receiving coil 311, the first AC/DC conversion module 312, and the first voltage conversion module 313 included in the charging path A If the impedance is greater than the path impedance of the second receiving coil 321, the second AC/DC conversion module 322, and the second voltage conversion module 323 included in the charging path B, the heat generation on the charging path A may exceed the heat generation on the charging path B Therefore, the communication control circuit can control to reduce the charging current on the charging path A, so that the heat on the path A can be minimized.
  • the communication control circuit in the embodiment of the present application may include a micro control unit MCU and/or AP.
  • the adjustment of the charging current through the communication control circuit may be implemented by the MCU, or by the AP, or jointly by the MCU and the AP, which is not specifically limited in this application.
  • the wireless receiving device further includes: a control module 340, configured to control some of the multiple receiving coils to receive the wireless charging signal transmitted by the wireless transmitting device, and to communicate with the wireless charging signal transmitted by the wireless transmitting device.
  • the part of the wireless receiving and processing module corresponding to the part of the receiving coil performs voltage and/or current processing on the received wireless charging signal; wherein the part of the receiving coil is at least one of the plurality of receiving coils.
  • the first receiving coil 311 may receive the wireless charging signal transmitted by the wireless transmitting device, and the second receiving coil 321 may not receive the wireless charging signal transmitted by the wireless transmitting device; or The receiving coil 311 may not receive the wireless charging signal transmitted by the wireless transmitting device, and the second receiving coil 321 may receive the wireless charging signal transmitted by the wireless transmitting device.
  • the first receiving coil 311 can receive the wireless charging signal transmitted by the wireless transmitting device, and the second receiving coil 321 may not receive the wireless charging signal transmitted by the wireless transmitting device, the first AC/DC conversion module 312 and the first voltage conversion The module 313 may not work; or when the first receiving coil 311 may not receive the wireless charging signal transmitted by the wireless transmitting device, and the second receiving coil 321 may receive the wireless charging signal transmitted by the wireless transmitting device, the second AC/DC conversion The module 322 and the second voltage conversion module 323 may not work.
  • control module 340 is specifically configured to: when one or more of the following conditions are met, control some of the multiple receiving coils to receive the wireless signal transmitted by the wireless transmitting device.
  • a charging signal, a part of the wireless receiving and processing module corresponding to the part of the receiving coil performs voltage and/or current processing on the received wireless charging signal: the power transmitted by the wireless transmitting device is less than a preset power threshold; the multiple The temperature of any one of the receiving coils is greater than a preset temperature threshold; the voltage or current output by any one of the plurality of wireless receiving processing modules is greater than the preset voltage/current threshold.
  • the control module 340 can control some of the multiple receiving coils to receive the wireless charging signal, for example, it can control The first receiving coil 311 receives the wireless charging signal, and accordingly, can control the wireless receiving processing module connected to the first receiving coil 311 to work; or control the second receiving coil 321 to receive the wireless charging signal, and correspondingly, it can control the connection with the second receiving coil.
  • the wireless receiving and processing module connected to the coil 311 works.
  • the control module 340 may control some of the receiving coils in the plurality of receiving coils to receive the wireless charging signal, for example, if the first If the temperature of the receiving coil is greater than 50° C., the second receiving coil 321 can be controlled to receive the wireless charging signal, and accordingly, the wireless receiving processing module connected to the second receiving coil 311 can be controlled to work. Or if the temperature of the second receiving coil is greater than 50° C., the first receiving coil 311 can be controlled to receive the wireless charging signal, and accordingly, the wireless receiving processing module connected to the first receiving coil 311 can be controlled to work.
  • the control module 340 may control the wireless receiving processing module whose output voltage or current is greater than the preset threshold.
  • the connected receiving coil is not working, or if the output voltage or current of multiple wireless receiving processing modules is greater than a preset voltage/current threshold, the control module 340 may control to stop charging the battery.
  • the control module 340 can control the second receiving coil 321 to receive the wireless charging signal, and accordingly, can control the signal connected to the second receiving coil 311
  • the second wireless receiving and processing module works.
  • the control module 340 may control the first receiving coil 311 and the second receiving coil 321 to stop receiving wireless signals.
  • the charging signal that is, the control module 340 can control to stop charging the battery.
  • the battery includes a plurality of battery cells; each of the plurality of wireless receiving and processing modules is connected to a battery cell to charge the battery cell connected thereto.
  • each wireless receiving processing module in the wireless receiving processing can be connected to a battery cell included in the battery, as shown in FIG.
  • the voltage can be used to charge the battery cell 330c included in the battery, and the voltage converted by the second voltage conversion module 323 on the path B can be used to charge the battery cell 330d included in the battery.
  • the multiple cells in the embodiment of the present application may be in a serial state or in a parallel state.
  • FIG. 8 is a wireless receiving device 800 provided by an embodiment of the present application.
  • the device may include a plurality of receiving coils 810, a plurality of AC/DC conversion modules 820, a voltage conversion module 830, and a battery 840.
  • the multiple receiving coils 810 are respectively coupled with the transmitting coils, and are used to respectively receive the wireless charging signals transmitted by the transmitting coils.
  • the multiple AC/DC conversion modules 820 are respectively used to perform voltage and/or current processing on the wireless charging signals received from the multiple receiving coils to obtain a direct current voltage and a direct current.
  • the voltage conversion module 830 is connected to the plurality of AC/DC conversion modules, and is configured to perform a step-up or step-down process on the DC voltage to obtain a target DC voltage for charging the battery 840.
  • one end of each of the AC/DC conversion modules is connected to one of the plurality of receiving coils, and the other end is connected to the voltage conversion module.
  • the voltage conversion module 830 in the embodiment of the present application can perform step-down or step-up processing on the voltage processed by multiple AC/DC conversion modules 820, because the wireless receiving device includes multiple AC/DC conversion modules, which are used for The voltage and/or current received by multiple receiving coils are processed, so as to avoid the disorder of the rectifier circuit; at the same time, the current received on multiple receiving coils is processed by multiple AC/DC conversion modules.
  • the charging voltage and current range can be allowed, and further, the charging voltage and charging current of the battery can be increased, so that the charging power and charging speed can be improved.
  • the plurality of receiving coils includes: a first receiving coil coupled to the transmitting coil and configured to receive a first wireless charging signal from the transmitting coil; a second receiving coil, and The transmitting coil is coupled to receive a second wireless charging signal from the transmitting coil.
  • the first receiving coil and the second receiving coil are arranged overlappingly, so that the first receiving coil and the second receiving coil can be aligned with the transmitting coil at the same time .
  • the first receiving coil and the second receiving coil are arranged on the same flexible printed circuit FPC substrate, and are separated by a shielding layer.
  • the first receiving coil and the second receiving coil are both made of a wire whose surface is covered with an insulating material.
  • the multiple AC/DC conversion modules include: a first AC/DC conversion module, connected to the first receiving coil, and configured to convert the first wireless charging signal into A first direct current voltage and a first direct current; a second AC/DC conversion module, connected to the second receiving coil, for converting the second wireless charging signal into a second direct current voltage and a second direct current.
  • the voltage conversion module includes a first voltage conversion module for: boosting or stepping down the first DC voltage and the second DC voltage to obtain the target DC voltage for charging the battery
  • the wireless receiving device further includes: a control module for controlling the operation of the first AC/DC conversion module and the first voltage conversion module according to the charging stage of the battery, and/or controlling the second AC/ The DC conversion module and the first voltage conversion module work; wherein the charging phase of the battery includes at least one of the following charging phases: a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the first voltage conversion module includes a Buck circuit or a Buck-Boost circuit or a charging integrated circuit IC.
  • control module is used to control the Buck circuit or the Buck-Boost circuit or the charging IC to work in one or more of the following charging stages: the trickle charging stage , The constant current charging stage and the constant voltage charging stage.
  • the first voltage conversion module includes a Charge pump circuit; the voltage conversion module further includes: the first AC/DC conversion module and/or the second AC/DC The second voltage conversion module connected to the conversion module; the control module is used to control the first voltage conversion module to work in the constant current charging phase, and to control the second voltage conversion module to work in the trickle charging phase and/or Constant voltage charging stage.
  • the second voltage conversion module includes a Buck circuit, a Buck-Boost circuit, or a charging IC.
  • the multiple wireless receiving processing modules include: a first AC/DC conversion module, connected to the first receiving coil, and configured to convert the first wireless charging signal into a first A direct current voltage and a first direct current; a second AC/DC conversion module, connected to the second receiving coil, for converting the second wireless charging signal into a second direct current voltage and a second direct current.
  • the voltage conversion module includes a first voltage conversion module, specifically configured to: boost or step down the first direct current voltage and the second direct current voltage to obtain the target direct current for charging the battery Voltage;
  • the wireless receiving device further includes: a control module for controlling the operation of the first AC/DC conversion module and the first voltage conversion module included in the voltage conversion module according to the charging mode of the battery, and/ Or control the operation of the second AC/DC conversion module and the first voltage conversion module included in the voltage conversion module; wherein the charging mode of the battery includes a first charging mode and a second charging mode, and the first charging The charging speed of the mode is greater than the charging speed of the second charging mode.
  • the first voltage conversion module includes a Buck circuit or a Buck-Boost circuit or a charging integrated circuit IC.
  • control module is used to control the Buck circuit or Buck-Boost circuit or charging IC to work in the second charging mode.
  • the first voltage conversion module includes a Charge pump circuit; the voltage conversion module further includes: the first AC/DC conversion module and/or the second AC/DC A second voltage conversion module connected to the conversion module; the control module is used to control the first voltage conversion module to work in the first charging mode, and to control the second voltage conversion module to work in the second In charging mode.
  • the second voltage conversion module includes a Buck circuit, a Buck-Boost circuit, or a charging IC.
  • the battery includes a plurality of battery cells connected in parallel or a plurality of battery cells connected in series.
  • the voltage conversion module is configured to perform processing on the DC voltage processed by the multiple AC/DC conversion modules when the battery includes a plurality of battery cells connected in parallel. Depressurization treatment.
  • the voltage conversion module is configured to perform processing on the DC voltage processed by the plurality of AC/DC conversion modules when the battery includes a plurality of battery cells connected in series. Boost processing.
  • the wireless receiving device further includes: a control module, configured to generate feedback information according to at least one of the following charging parameters and feed it back to the wireless charging device: the voltage across the battery , The charging current of the battery, the output current of each AC/DC conversion module, and the output voltage of each AC/DC conversion module; wherein the feedback information is used to instruct the wireless charging device to adjust the wireless charging signal transmitted The transmit power.
  • a control module configured to generate feedback information according to at least one of the following charging parameters and feed it back to the wireless charging device: the voltage across the battery , The charging current of the battery, the output current of each AC/DC conversion module, and the output voltage of each AC/DC conversion module; wherein the feedback information is used to instruct the wireless charging device to adjust the wireless charging signal transmitted The transmit power.
  • the feedback information includes: the voltage across the battery, the charging current of the battery, the output current of each AC/DC conversion module, and the output of each AC/DC conversion module. Voltage; wherein the voltage across the battery and the charging current of the battery are used for the wireless transmitting device to determine the transmission power; the output current of each AC/DC conversion module, the output current of each AC/DC The output voltage of the conversion module is used for the wireless transmitting device to determine the transmitting voltage of the wireless charging signal when the transmitting power of the wireless charging signal is determined.
  • the wireless receiving device further includes: a control module configured to determine the charging power required by the battery according to the voltage across the battery and/or the charging current of the battery; and The required charging power is fed back to the wireless transmission device as the feedback information, so that the wireless transmission device adjusts the transmission power of the wireless charging signal.
  • a control module configured to determine the charging power required by the battery according to the voltage across the battery and/or the charging current of the battery; and The required charging power is fed back to the wireless transmission device as the feedback information, so that the wireless transmission device adjusts the transmission power of the wireless charging signal.
  • the wireless receiving device further includes: a control module configured to determine the required current of the battery according to the output current and/or output voltage of the plurality of AC/DC conversion modules; And feeding back the demand current as the feedback information to the wireless transmitting device, so that the wireless transmitting device adjusts the transmitting power of the wireless charging signal according to the demand current.
  • a control module configured to determine the required current of the battery according to the output current and/or output voltage of the plurality of AC/DC conversion modules; And feeding back the demand current as the feedback information to the wireless transmitting device, so that the wireless transmitting device adjusts the transmitting power of the wireless charging signal according to the demand current.
  • the wireless receiving device further includes: a control module, configured to determine the required charging power according to the battery information, and according to the output currents of the multiple AC/DC conversion modules, Determine the required current of the battery; and determine the required voltage of the battery according to the required charging power and the required current; feed back the required voltage to the wireless transmitting device, or combine the required voltage with The voltage difference of the output voltage of any AC/DC conversion module in the plurality of AC/DC conversion modules is fed back to the wireless transmitting device as the feedback information.
  • a control module configured to determine the required charging power according to the battery information, and according to the output currents of the multiple AC/DC conversion modules, Determine the required current of the battery; and determine the required voltage of the battery according to the required charging power and the required current; feed back the required voltage to the wireless transmitting device, or combine the required voltage with The voltage difference of the output voltage of any AC/DC conversion module in the plurality of AC/DC conversion modules is fed back to the wireless transmitting device as the feedback information.
  • the feedback information instructs the wireless transmitting device to increase the transmission voltage or decrease the transmission voltage.
  • the wireless receiving device uses any one or more of the multiple receiving coils to send feedback information to the wireless transmitting device; or the wireless receiving device uses out-of-band communication Send feedback information to the wireless transmitting device.
  • the power received by the multiple receiving coils is the same.
  • the wireless receiving device further includes: a control module, configured to control the power received by the multiple receiving coils, respectively.
  • control module is specifically configured to control the power respectively received by the multiple receiving coils according to the difference in impedance of the multiple receiving coils.
  • the wireless receiving device further includes: a control module, configured to control and adjust the impedance of the multiple receiving coils or the multiple wireless receiving processing modules when the impedances of the multiple receiving coils or the multiple wireless receiving processing modules are different At least part of the plurality of receiving coils receives the output current of the coil.
  • a control module configured to control and adjust the impedance of the multiple receiving coils or the multiple wireless receiving processing modules when the impedances of the multiple receiving coils or the multiple wireless receiving processing modules are different At least part of the plurality of receiving coils receives the output current of the coil.
  • the wireless receiving device further includes: a control module for controlling some of the multiple receiving coils to receive the wireless charging signal transmitted by the wireless transmitting device, and The part of the wireless receiving and processing module corresponding to the part of the receiving coil performs voltage and/or current processing on the received wireless charging signal; wherein the part of the receiving coil is at least one of the plurality of receiving coils.
  • control module is specifically configured to: when one or more of the following conditions are met, control part of the receiving coils of the plurality of receiving coils to receive the wireless charging transmitted by the wireless transmitting device Signal, the part of the wireless receiving processing module corresponding to the part of the receiving coil performs voltage and/or current processing on the received wireless charging signal: the power transmitted by the wireless transmitting device is less than a preset power threshold; the multiple receiving coils The temperature of any one of the receiving coils is greater than a preset temperature threshold; the voltage or current output by any one of the plurality of wireless receiving processing modules is greater than the preset voltage/current threshold.
  • FIG. 9 is a wireless charging system 900 provided by an embodiment of the present application.
  • the system 900 may include a wireless transmitting device 910 and a wireless receiving device 920; wherein, the wireless transmitting device 910 may include an inverter circuit 911 and a transmitting coil 912, which can receive wirelessly.
  • the device 920 may include a plurality of receiving coils 921, a plurality of wireless receiving processing modules 922, and a battery 923.
  • the wireless transmitting device 910 may include:
  • the inverter circuit 911 is used to convert the input direct current into alternating current.
  • the transmitting coil 912 is used to convert the alternating current into a wireless charging signal that can be transmitted through the electromagnetic domain.
  • the wireless receiving device 920 may include:
  • a plurality of receiving coils 921 are coupled to the transmitting coil and used for receiving the wireless charging signal transmitted by the transmitting coil.
  • the wireless charging signal in the embodiments of the present application may be transmitted through the transmitting coil (or transmitting antenna) of the wireless transmitting device.
  • the wireless transmitting device may include a wireless transmitting drive circuit and a transmitting coil.
  • the wireless transmission drive circuit can be used to generate higher-frequency alternating current, and the transmitting coil or transmitting antenna can be used to convert the higher-frequency alternating current into electromagnetic signals for transmission.
  • the multiple receiving coils in the embodiment of the present application may include two or three or more receiving coils, which is not specifically limited in the present application.
  • the multiple receiving coils may simultaneously receive the wireless signals transmitted by the wireless transmitting device, or may not receive the wireless signals transmitted by the wireless transmitting device at the same time.
  • the multiple wireless receiving processing modules 922 are respectively configured to perform voltage and/or current processing on the wireless charging signals received from the multiple receiving coils, so as to charge the battery 923.
  • each wireless receiving processing module is connected to one receiving coil of the plurality of receiving coils, and the other end is connected to the battery.
  • the multiple wireless receiving processing modules 922 may correspond to the multiple receiving coils 911 one-to-one, and respectively process the voltage and/or current of the wireless charging signal received by the multiple receiving coils 911.
  • the multiple voltages and currents processed by multiple wireless receiving processing modules 922 can be used together to charge the battery 923.
  • the wireless receiving device since the wireless receiving device includes multiple receiving coils and multiple wireless receiving processing modules, the charging speed and efficiency of wireless charging can be improved; and because multiple wireless receiving processing modules are used for The voltage and current received by multiple receiving coils are processed, which can avoid the disorder of the rectifier circuit.
  • the plurality of receiving coils 921 includes: a first receiving coil coupled to the transmitting coil and configured to receive a first wireless charging signal from the transmitting coil; and a second receiving coil, It is coupled with the transmitting coil and used for receiving a second wireless charging signal from the transmitting coil.
  • a first AC/DC AC/DC conversion module is connected to the first receiving coil, and is configured to convert the first wireless charging signal into a first DC voltage and a first DC voltage. Current; a second AC/DC conversion module, connected to the second receiving coil, for converting the second wireless charging signal into a second direct current voltage and a second direct current; and the first AC/DC conversion A first voltage conversion module connected to the module, a second voltage conversion module connected to the second AC/DC conversion module; the first voltage conversion module and the second voltage conversion module are respectively used to connect the first The direct current voltage and the second direct current voltage are boosted or lowered to obtain a third direct current voltage for charging the battery; the wireless receiving device further includes: a control module, which is used for charging according to the charging stage or charging of the battery Mode, controlling the operation of the first AC/DC conversion module and the first voltage conversion module, and/or controlling the operation of the second AC/DC conversion module and the second voltage conversion module; wherein the battery The charging phase includes at least one of the following charging phases:
  • the voltage conversion module may perform conversion processing on the voltage output by the AC/DC conversion module. For example, it may perform step-down processing on the filtered voltage of the filter module included in the AC/DC conversion module, or perform the filtering process on the filtered voltage.
  • the voltage is boosted, which is not specifically limited in this application.
  • the AC/DC conversion module in the embodiment of the present application may be controlled by the MCU and/or AP.
  • the first receiving coil and the second receiving coil may simultaneously receive the wireless charging signal transmitted by the transmitting coil, or may not receive the wireless charging signal transmitted by the transmitting coil at the same time; one end of the first AC/DC conversion module is connected to The first receiving coil is connected, the other end is connected to the battery, one end of the second AC/DC conversion module is connected to the second receiving coil, and the other end is connected to the battery.
  • the two AC/DC conversion modules can respectively process the voltage and/or current corresponding to the received power of the wireless charging signal received by the receiving coils connected to them.
  • the first AC/DC conversion module can perform processing on the first receiving coil.
  • the received first wireless charging signal is rectified and filtered;
  • the second AC/DC conversion module can perform rectification and filtering on the second wireless charging signal received by the second receiving coil.
  • the first receiving coil and the second receiving coil in the embodiment of the present application may be the multiple receiving coils 921 in FIG. 9, the first AC/DC conversion module, the first voltage conversion module, the second AC/DC conversion module, and the first The module jointly formed by the two voltage conversion modules may be multiple wireless receiving processing modules 922 in FIG. 9.
  • the current output by the first AC/DC conversion module may be the current output by the first receiving coil, or the current detected on the charging path from the first receiving coil to the first AC/DC conversion module, etc.
  • This application does not specifically limit this, as long as it can reflect the current of the first receiving coil, the embodiments of this application can be applied; similarly, the current output by the second AC/DC conversion module can be the current output by the second receiving coil , It can also be the current detected on the charging path from the second receiving coil to the second AC/DC conversion module, etc.
  • This application is not specifically limited, as long as it can reflect the current of the second receiving coil, this application can be applied Examples.
  • the wireless receiving device since the wireless receiving device includes multiple receiving coils and multiple wireless receiving processing modules, the charging speed and efficiency of wireless charging can be improved; and because multiple wireless receiving processing modules are used for The voltage and current received by multiple receiving coils are processed, which can avoid the disorder of the rectifier circuit.
  • the battery includes a plurality of battery cells; each of the plurality of wireless receiving and processing modules is connected to a battery cell to charge the battery cell connected thereto.
  • FIG. 10 is a schematic flowchart of a wireless charging method 1000 provided by an embodiment of the present application.
  • the method 1000 can be applied to a wireless receiving device, for example, it can be any one of the wireless receiving device 200 or 300b or 800 described above.
  • the method of FIG. 10 may include steps S1010-S1020.
  • the multiple receiving coils receive wireless charging signals transmitted by the transmitting coils.
  • the multiple wireless receiving processing modules respectively perform voltage and/or current processing on the wireless charging signals received from the multiple receiving coils, so as to jointly charge the battery.
  • each wireless receiving processing module is connected to one of the multiple receiving coils, and the other end is connected to the battery.
  • the multiple receiving coils include a first receiving coil and a second receiving coil; the multiple receiving coils respectively receiving wireless charging signals transmitted by the transmitting coils include: the first receiving coil The coil receives the first wireless charging signal transmitted by the transmitting coil; the second receiving coil receives the second wireless charging signal transmitted by the transmitting coil.
  • the first receiving coil and the second receiving coil are arranged overlappingly, so that the first receiving coil and the second receiving coil can be aligned with the transmitting coil at the same time .
  • the first receiving coil and the second receiving coil are arranged on the same FPC substrate and separated by a shielding layer.
  • the first receiving coil and the second receiving coil are both made of a wire whose surface is covered with an insulating material.
  • the multiple wireless receiving processing modules include: a first AC/DC conversion module connected to the first receiving coil, and a second AC/DC conversion module connected to the second receiving coil.
  • DC conversion module the method further includes: the first AC/DC conversion module converts the first wireless charging signal into a first direct current voltage and a first direct current; the second AC/DC conversion module converts the The second wireless charging signal is converted into a second direct current voltage and a second direct current;
  • the wireless receiving and processing module further includes: a first voltage conversion module connected to the first AC/DC conversion module, and the second A second voltage conversion module connected to the AC/DC conversion module;
  • the method further includes: the first voltage conversion module and the second voltage conversion module perform the first DC voltage and the second DC voltage, respectively Step-up or step-down processing to obtain a third DC voltage for charging the battery;
  • the wireless receiving device further includes: a control module; the method further includes: the control module controls the battery according to the charging stage of the battery The first AC/DC conversion module and the first voltage conversion module work, and/or the
  • the first voltage conversion module includes a Buck circuit or a Buck-Boost circuit or a charging integrated circuit IC.
  • the first AC/DC conversion module and the first voltage conversion module are controlled to work, and/or the second AC/DC conversion module and the second AC/DC conversion module are controlled to operate.
  • the operation of the voltage conversion module includes: controlling the Buck circuit or the Buck-Boost circuit or the charging IC to work in one or more of the following charging stages: the trickle charging stage, the constant current charging stage And the constant voltage charging stage.
  • the second voltage conversion module includes a charge pump circuit.
  • the first AC/DC conversion module and the first voltage conversion module are controlled to work, and/or the second AC/DC conversion module and the second AC/DC conversion module are controlled to operate.
  • the operation of the voltage conversion module includes: controlling the operation of the charge pump circuit in the constant current charging stage.
  • the first voltage conversion module and the second voltage conversion module are both Charge pump circuits; the voltage conversion module further includes: and the first AC/DC conversion module and / Or the third voltage conversion module connected to the second AC/DC conversion module; said controlling the operation of the first AC/DC conversion module and the first voltage conversion module, and/or controlling the second AC
  • the operation of the DC conversion module and the second voltage conversion module includes: controlling the first voltage conversion module and the second voltage conversion module to work in a constant current charging stage; the method further includes: controlling the third The voltage conversion module works in trickle charging stage and constant voltage charging stage.
  • the third voltage conversion module includes a Buck circuit or a Buck-Boost circuit or a charging integrated circuit IC.
  • the multiple wireless receiving processing modules include: a first AC/DC conversion module connected to the first receiving coil, and a second AC/DC conversion module connected to the second receiving coil.
  • DC conversion module the method further includes: the first AC/DC conversion module converts the first wireless charging signal into a first direct current voltage and a first direct current; the second AC/DC conversion module converts the The second wireless charging signal is converted into a second direct current voltage and a second direct current;
  • the wireless receiving and processing module further includes: a first voltage conversion module connected to the first AC/DC conversion module, and the second The AC/DC conversion module is connected to a second voltage conversion module;
  • the method further includes: the first voltage conversion module and the second voltage conversion module respectively perform the first DC voltage and the second DC voltage Step-up or step-down processing to obtain a third DC voltage for charging the battery;
  • the wireless receiving device further includes a control module; the method further includes: the control module controls the first battery according to the charging mode of the battery An AC/DC conversion module and the first voltage conversion module work, and/or control
  • the first voltage conversion module includes a Buck circuit or a Buck-Boost circuit or a charging IC.
  • the first AC/DC conversion module and the first voltage conversion module are controlled to work, and/or the second AC/DC conversion module and the second AC/DC conversion module are controlled to operate.
  • the operation of the voltage conversion module includes: controlling the Buck circuit or the Buck-Boost circuit and the charging IC to work in the second charging mode.
  • the second voltage conversion module includes a charge pump circuit.
  • the first AC/DC conversion module and the first voltage conversion module are controlled to work, and/or the second AC/DC conversion module and the second AC/DC conversion module are controlled to operate.
  • the operation of the voltage conversion module includes: controlling the charge pump circuit to work in the first charging mode.
  • the first voltage conversion module and the second voltage conversion module each include a charge pump circuit; the voltage conversion module further includes: and the first AC/DC conversion module and / Or the third voltage conversion module connected to the second AC/DC conversion module; said controlling the operation of the first AC/DC conversion module and the first voltage conversion module, and/or controlling the second AC /The operation of the DC conversion module and the second voltage conversion module includes: controlling the first voltage conversion module and the second voltage conversion module to work in the first charging mode; the method further includes: controlling the The third voltage conversion module works in the second charging mode.
  • the third voltage conversion module includes a Buck circuit or a Buck-Boost circuit or a charging IC.
  • the battery includes a plurality of battery cells connected in parallel or a plurality of battery cells connected in series.
  • the first AC/DC conversion module and the first voltage conversion module are controlled to work, and/or the second AC/DC conversion module and the second AC/DC conversion module are controlled to operate.
  • the operation of the voltage conversion module includes: controlling the first voltage conversion module and the second voltage conversion module to respectively perform the correction of the AC power included in the wireless receiving processing module when the battery includes a plurality of battery cells connected in parallel.
  • the DC voltage processed by the /DC conversion module is stepped down.
  • the first voltage conversion module and the second voltage conversion module included in the wireless reception processing module are boost circuits; and the control of the first AC/DC conversion module and the first AC/DC conversion module A voltage conversion module works, and/or controls the second AC/DC conversion module and the second voltage conversion module to work, including: controlling the first voltage conversion module and the second voltage conversion module to operate in the In the case where the battery includes a plurality of battery cells connected in series, the DC voltage processed by the AC/DC conversion module included in the wireless receiving processing module is respectively boosted.
  • the multiple wireless receiving processing modules respectively perform voltage and/or current processing on the wireless charging signals received from the multiple receiving coils, including: the multiple wireless receiving processing Each of the multiple AC/DC AC/DC conversion modules included in the module converts the wireless charging signal received by the receiving coil connected to the AC/DC AC/DC conversion module into a DC voltage and a DC current; Each of the plurality of voltage conversion modules included in the plurality of wireless receiving and processing modules performs step-up or step-down processing on the DC voltage output by the AC/DC conversion module to obtain a charge that meets the charging requirements of the battery Voltage.
  • the method further includes: generating feedback information according to at least one of the following charging parameters and feeding it back to the wireless charging device: the voltage across the battery, the charging current of the battery The output current of each AC/DC conversion module and the output voltage of each AC/DC conversion module; wherein the feedback information is used to instruct the wireless charging device to adjust the transmission power of the wireless charging signal transmitted.
  • the feedback information includes: the voltage across the battery, the charging current of the battery, the output current of each AC/DC conversion module, and the output of each AC/DC conversion module. Voltage; wherein the voltage across the battery and the charging current of the battery are used for the wireless transmitting device to determine the transmission power; the output current of each AC/DC conversion module, the output current of each AC/DC The output voltage of the conversion module is used for the wireless transmitting device to determine the transmitting voltage of the wireless charging signal when the transmitting power of the wireless charging signal is determined.
  • the method 1000 further includes: determining the charging power required by the battery according to the voltage across the battery and/or the charging current of the battery; and calculating the required charging power It is fed back to the wireless transmitting device as the feedback information, so that the wireless transmitting device adjusts the transmission power of the wireless charging signal.
  • the method 1000 further includes: determining the required current of the battery according to the output current and/or output voltage of the multiple AC/DC conversion modules; and using the required current as The feedback information is fed back to the wireless transmission device, so that the wireless transmission device adjusts the transmission power of the wireless charging signal according to the demand current.
  • the method 1000 further includes: determining the required charging power according to the information of the battery, and determining the demand of the battery according to the output current of the plurality of AC/DC conversion modules Current; determine the required voltage of the battery according to the required charging power and the required current; feed back the required voltage to the wireless transmitting device, or combine the required voltage with the multiple AC/DC The voltage difference of the output voltage of any AC/DC conversion module in the conversion module is fed back to the wireless transmitting device as the feedback information.
  • the method 1000 further includes: sending feedback information to the wireless transmitting device, the feedback information instructing the wireless transmitting device to increase or decrease the transmission voltage.
  • the power received by the multiple receiving coils is the same.
  • the method further includes: controlling the power respectively received by the multiple receiving coils.
  • controlling the power respectively received by the multiple receiving coils includes: controlling the power respectively received by the multiple receiving coils according to the difference in impedance of the multiple receiving coils .
  • the method 1000 may further include step S1030.
  • the method 1000 may further include: controlling part of the receiving coils of the plurality of receiving coils to receive the wireless charging signal transmitted by the wireless transmitting device, and the part corresponding to the part of the receiving coils is wireless
  • the receiving processing module performs voltage and/or current processing on the received wireless charging signal; wherein the part of the receiving coil is at least one receiving coil of the plurality of receiving coils.
  • the controlling part of the receiving coils of the plurality of receiving coils to receive the wireless charging signal transmitted by the wireless transmitting device, and the part of the wireless receiving and processing module corresponding to the part of the receiving coils Performing voltage and/or current processing on the received wireless charging signal includes: controlling some of the multiple receiving coils to receive the wireless charging transmitted by the wireless transmitting device when one or more of the following conditions are met Signal, the part of the wireless receiving and processing module corresponding to the part of the receiving coil performs voltage and/or current processing on the received wireless charging signal: the power transmitted by the wireless transmitting device is less than a preset power threshold; the multiple receiving coils The temperature of any one of the receiving coils is greater than the preset temperature threshold; the voltage or current output by any one of the plurality of wireless receiving processing modules is greater than the preset voltage/current threshold.
  • FIG. 12 is a schematic flowchart of a wireless charging method 1200 provided by an embodiment of the present application.
  • the method 1200 may be applied to a wireless receiving device, for example, it may be any one of the wireless receiving device 200 or 300b or 800 described above.
  • the method in FIG. 12 may include steps S1210-S1230.
  • S1210 The multiple receiving coils respectively receive the wireless charging signal transmitted by the transmitting coil.
  • the multiple AC/DC conversion modules respectively perform voltage and/or current processing on the wireless charging signals received from the multiple receiving coils to obtain a direct current voltage and a direct current.
  • the voltage conversion module performs step-up or step-down processing on the DC voltage to obtain a target DC voltage for charging the battery.
  • one end of each of the AC/DC conversion modules is connected to one of the plurality of receiving coils, and the other end is connected to the voltage conversion module.
  • the multiple receiving coils include a first receiving coil and a second receiving coil; the multiple receiving coils respectively receiving wireless charging signals transmitted by the transmitting coils include: the first receiving coil The coil receives the first wireless charging signal transmitted by the transmitting coil; the second receiving coil receives the second wireless charging signal transmitted by the transmitting coil.
  • the first receiving coil and the second receiving coil are arranged overlappingly, so that the first receiving coil and the second receiving coil can be aligned with the transmitting coil at the same time .
  • the first receiving coil and the second receiving coil are arranged on the same flexible printed circuit FPC substrate, and are separated by a shielding layer.
  • the first receiving coil and the second receiving coil are both made of a wire whose surface is covered with an insulating material.
  • the plurality of AC/DC conversion modules include: a first AC/DC conversion module connected to the first receiving coil, and a second AC/DC conversion module connected to the second receiving coil /DC conversion module; the method 1200 further includes: the first AC/DC conversion module converts the first wireless charging signal into a first direct current voltage and a first direct current; the second AC/DC conversion module Converting the second wireless charging signal into a second direct current voltage and a second direct current; the voltage conversion module performs step-up or step-down processing on the direct-current voltage to obtain a target direct-current voltage for charging the battery, including: The voltage conversion module includes a first voltage conversion module, which performs step-up or step-down processing on the first DC voltage and the second DC voltage to obtain the target DC voltage for charging the battery; The wireless receiving device further includes a control module; the method 1200 further includes: the control module controls the operation of the first AC/DC conversion module and the voltage conversion module, and/or controls the operation of the first AC/DC conversion module and the voltage conversion
  • the first voltage conversion module includes a Buck circuit or a Buck-Boost circuit or a charging integrated circuit IC.
  • the first AC/DC conversion module and the voltage conversion module are controlled to work, and/or the second AC/DC conversion module and the voltage conversion module are controlled to work , Including: controlling the Buck circuit or the Buck-Boost circuit or the charging IC to work in one or more charging stages of the following charging stages: the trickle charging stage, the constant current charging stage, and the constant current charging stage. Voltage charging stage.
  • the first voltage conversion module includes a Charge pump circuit; the voltage conversion module further includes: the first AC/DC conversion module and/or the second AC/DC The second voltage conversion module connected to the conversion module; the method 1200 further includes: controlling the first voltage conversion module to work in the constant current charging phase, and controlling the second voltage conversion module to work in the trickle charging phase and/or Constant voltage charging stage.
  • the second voltage conversion module includes a Buck circuit or a Buck-Boost circuit or a charging IC.
  • the multiple wireless receiving processing modules include: a first AC/DC conversion module connected to the first receiving coil, and a second AC/DC conversion module connected to the second receiving coil.
  • DC conversion module performs step-up or step-down processing of the DC voltage to obtain a target DC voltage for charging the battery, including: the voltage conversion module includes a first voltage conversion module, and the first voltage conversion module A DC voltage and the second DC voltage are boosted or stepped down to obtain the target DC voltage for charging the battery;
  • the wireless receiving device further includes a control module;
  • the method 1200 further includes: The charging mode of the battery controls the operation of the first AC/DC conversion module and the first voltage conversion module included in the voltage conversion module, and/or controls the second AC/DC conversion module and the voltage conversion
  • the first voltage conversion module included in the module works; wherein the charging mode of the battery includes a first charging mode and a second charging mode, and the charging speed of the first charging mode is greater than the charging speed of the second charging mode.
  • the first voltage conversion module includes a Buck circuit or a Buck-Boost circuit or a charging IC.
  • the first AC/DC conversion module and the voltage conversion module are controlled to work, and/or the second AC/DC conversion module and the voltage conversion module are controlled to work , Including: controlling the Buck circuit or the Buck-Boost circuit and the charging IC to work in the second charging mode.
  • the first voltage conversion module includes a Charge pump circuit; the voltage conversion module further includes: the first AC/DC conversion module and/or the second AC/DC The second voltage conversion module connected to the conversion module; the method 1200 further includes: controlling the first voltage conversion module to work in the first charging mode, and controlling the second voltage conversion module to work in the second In charging mode.
  • the second voltage conversion module includes a Buck circuit, a Buck-Boost circuit, or a charging IC.
  • the battery includes a plurality of battery cells connected in parallel or a plurality of battery cells connected in series.
  • the voltage conversion module performs step-up or step-down processing of the DC voltage, including: in the case that the battery includes a plurality of parallel-connected cells, the voltage conversion module The DC voltage is stepped down.
  • the voltage conversion module performs step-up or step-down processing on the DC voltage, including: in the case that the battery includes a plurality of battery cells connected in series, the voltage conversion module The DC voltage is boosted.
  • the method further includes: generating feedback information according to at least one of the following charging parameters and feeding it back to the wireless charging device: the voltage across the battery, the charging current of the battery The output current of each AC/DC conversion module and the output voltage of each AC/DC conversion module; wherein the feedback information is used to instruct the wireless charging device to adjust the transmission power of the wireless charging signal transmitted.
  • the feedback information includes: the voltage across the battery, the charging current of the battery, the output current of each AC/DC conversion module, and the output of each AC/DC conversion module. Voltage; wherein the voltage across the battery and the charging current of the battery are used for the wireless transmitting device to determine the transmission power; the output current of each AC/DC conversion module, the output current of each AC/DC The output voltage of the conversion module is used for the wireless transmitting device to determine the transmitting voltage of the wireless charging signal when the transmitting power of the wireless charging signal is determined.
  • the 1200 method further includes: determining the charging power required by the battery according to the voltage across the battery and/or the charging current of the battery; and calculating the required charging power It is fed back to the wireless transmitting device as the feedback information, so that the wireless transmitting device adjusts the transmission power of the wireless charging signal.
  • the method 1200 further includes: determining the required current of the battery according to the output current and/or output voltage of the plurality of AC/DC conversion modules; and feeding back the required current
  • the wireless transmission device is provided so that the wireless transmission device adjusts the transmission power of the wireless charging signal according to the demand current.
  • the method 1200 further includes: determining the required charging power according to the information of the battery, and determining the demand of the battery according to the output current of the plurality of AC/DC conversion modules Current; determine the required voltage of the battery according to the required charging power and the required current; feed back the required voltage to the wireless transmitting device, or combine the required voltage with the multiple AC/DC The voltage difference of the output voltage of any AC/DC conversion module in the conversion module is fed back to the wireless transmitting device.
  • the 1200 method further includes: sending feedback information to the wireless transmitting device, the feedback information instructing the wireless transmitting device to increase or decrease the transmission voltage.
  • the method 1200 further includes: using a control module or out-of-band communication to send feedback information to the wireless transmitting device.
  • the power received by the multiple receiving coils is the same.
  • the method 1200 further includes: controlling the power respectively received by the multiple receiving coils.
  • controlling the power respectively received by the multiple receiving coils includes: controlling the power respectively received by the multiple receiving coils according to the difference in impedance of the multiple receiving coils .
  • the method 1200 further includes: in the case where the impedances of the multiple receiving coils or the multiple wireless receiving processing modules are different, controlling and adjusting one of the multiple receiving coils At least part of the output current of the coil is received.
  • the method 1200 further includes: controlling part of the receiving coils of the plurality of receiving coils to receive the wireless charging signal transmitted by the wireless transmitting device, and the part corresponding to the part of the receiving coils
  • the wireless receiving processing module performs voltage and/or current processing on the received wireless charging signal; wherein the part of the receiving coil is at least one receiving coil of the plurality of receiving coils.
  • the controlling part of the receiving coils of the plurality of receiving coils to receive the wireless charging signal transmitted by the wireless transmitting device, and the part of the wireless receiving and processing module corresponding to the part of the receiving coils Performing voltage and/or current processing on the received wireless charging signal includes: controlling some of the multiple receiving coils to receive the wireless charging transmitted by the wireless transmitting device when one or more of the following conditions are met Signal, the part of the wireless receiving and processing module corresponding to the part of the receiving coil performs voltage and/or current processing on the received wireless charging signal: the power transmitted by the wireless transmitting device is less than a preset power threshold; the multiple receiving coils The temperature of any one of the receiving coils is greater than the preset temperature threshold; the voltage or current output by any one of the plurality of wireless receiving processing modules is greater than the preset voltage/current threshold.
  • FIG. 13 is a schematic flowchart of a wireless charging method 1300 provided by an embodiment of the present application.
  • the method 1300 may be applied to a wireless charging system, for example, it may be any device in the wireless charging system 900 described above.
  • the method of FIG. 13 may include steps S1310-S1340.
  • S1320 Convert the alternating current into a wireless charging signal that can be transmitted through the electromagnetic domain.
  • S1330 The multiple receiving coils respectively receive the wireless charging signal transmitted by the transmitting coil.
  • the multiple wireless receiving processing modules respectively perform voltage and/or current processing on the wireless charging signals received from the multiple receiving coils, so as to charge the battery.
  • each wireless receiving processing module is connected to one receiving coil of the plurality of receiving coils, and the other end is connected to the battery.
  • the plurality of receiving coils includes a first receiving coil and a second receiving coil, and the plurality of receiving coils respectively receive the wireless charging signal transmitted by the transmitting coil, including: the first receiving coil The coil receives the first wireless charging signal transmitted by the transmitting coil; the second receiving coil receives the second wireless charging signal transmitted by the transmitting coil.
  • the multiple wireless receiving processing modules include: a first AC/DC conversion module connected to the first receiving coil, and a second AC/DC conversion module connected to the second receiving coil.
  • DC conversion module the method 1300 further includes: the first AC/DC conversion module converts the first wireless charging signal into a first direct current voltage and a first direct current; the second AC/DC conversion module converts The second wireless charging signal is converted into a second direct current voltage and a second direct current;
  • the wireless receiving and processing module further includes: a first voltage conversion module connected to the first AC/DC conversion module, and Two AC/DC conversion modules are connected to a second voltage conversion module;
  • the method 1300 further includes: the first voltage conversion module and the second voltage conversion module separately convert the first direct current voltage and the second direct current The voltage is boosted or reduced to obtain a third DC voltage for charging the battery;
  • the wireless receiving device further includes a control module; the method 1300 further includes: the control module controls the battery according to the charging stage of the battery The first AC/DC conversion module and the first voltage conversion module work, and
  • An embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute any one of the above-mentioned wireless charging methods 1000 or 1200 or 1300.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer, the computer program The computer executes any one of the above-mentioned wireless charging methods 1000 or 1200 or 1300.
  • Traditional wireless charging technology generally connects a power supply device (such as an adapter) with a wireless charging device (such as a wireless charging base), and wirelessly transmits the output power of the power supply device (such as electromagnetic waves) to the waiting device through the wireless charging device.
  • the device to be charged may be the above electronic device.
  • wireless charging methods are mainly divided into three methods: magnetic coupling (or electromagnetic induction), magnetic resonance, and radio waves.
  • mainstream wireless charging standards include the QI standard, the Power Matters Alliance (PMA) standard, and the Wireless Power Alliance (Alliance for Wireless Power, A4WP). Both the QI standard and the PMA standard use magnetic coupling for wireless charging.
  • the A4WP standard uses magnetic resonance for wireless charging.
  • the wireless charging method of an embodiment will be introduced below with reference to FIG. 14.
  • the wireless charging system includes a power supply device 1010, a wireless charging signal transmitting device 1020, and a charging control device 1030.
  • the transmitting device 1020 may be the unlimited transmitting device 300a or 910 in the embodiment of the present application, for example,
  • the charging control device 1030 may refer to any one of the wireless receiving devices 200 or 300b or 920 in the embodiments of the present application.
  • the output voltage and output current of the power supply device 1010 are transmitted to the transmitting device 1020.
  • the transmitting device 1020 can convert the output voltage and output current of the power supply device 1010 into a wireless charging signal (for example, an electromagnetic signal) through an internal wireless transmitting circuit 1021 for transmission.
  • a wireless charging signal for example, an electromagnetic signal
  • the wireless transmitting circuit 1021 can convert the output current of the power supply device 1010 into alternating current, and convert the alternating current into a wireless charging signal through a transmitting coil or a transmitting antenna.
  • FIG. 14 only exemplarily shows a schematic structural diagram of the wireless charging system, but the embodiment of the present application is not limited thereto.
  • the transmitting device 1020 may also be called a wireless charging signal transmitting device
  • the charging control device 1030 may also be called a wireless charging signal receiving device.
  • the wireless charging signal receiving device may be, for example, a chip with a wireless charging signal receiving function, which can receive the wireless charging signal transmitted by the transmitting device 1020; the wireless charging signal receiving device may also be a device to be charged.
  • the charging control device 1030 can receive the wireless charging signal transmitted by the wireless transmitting circuit 1021 through the wireless receiving circuit 1031, and convert the wireless charging signal into the output voltage and output current of the wireless receiving circuit 131.
  • the wireless receiving circuit 1031 can convert the wireless charging signal transmitted by the wireless transmitting circuit 1021 into alternating current through a receiving coil or a receiving antenna, and perform operations such as rectification and/or filtering on the alternating current to convert the alternating current into the wireless receiving circuit 1031 The output voltage and output current.
  • the transmitting device 1020 and the charging control device 1030 pre-negotiate the transmitting power of the wireless transmitting circuit 1021. Assuming that the power negotiated between the transmitting device 1020 and the charging control device 1030 is 5W, the output voltage and output current of the wireless receiving circuit 1031 are generally 5V and 1A. Assuming that the power negotiated between the transmitting device 1020 and the charging control device 1030 is 10.10W, the output voltage and output current of the wireless receiving circuit 1031 are generally 9V and 1.2A.
  • the output voltage of the wireless receiving circuit 1031 is not suitable for direct loading to both ends of the battery 1033, it is necessary to perform constant voltage and/or constant current control through the conversion circuit 1032 in the charging control device 1030 to obtain the charging control device 1030.
  • the expected charging voltage and/or charging current of the battery 1033 is not suitable for direct loading to both ends of the battery 1033.
  • the conversion circuit 1032 can be used to convert the output voltage of the wireless receiving circuit 1031 so that the output voltage and/or output current of the conversion circuit 1032 meets the expected charging voltage and/or charging current requirements of the battery 1033.
  • the conversion circuit 1032 may be, for example, a charging IC, or may be a power management circuit. During the charging process of the battery 1033, the conversion circuit 1032 can be used to manage the charging voltage and/or charging current of the battery 1033.
  • the conversion circuit 1032 may include a voltage feedback function and/or a current feedback function to realize the management of the charging voltage and/or charging current of the battery 1033.
  • the required charging voltage and/or charging current of the battery may be constantly changing in different charging stages.
  • the output voltage and/or output current of the wireless receiving circuit may need to be continuously adjusted to meet the current charging requirements of the battery. For example, in the constant current charging phase of the battery, during the charging process, the charging current of the battery remains unchanged, but the voltage of the battery is constantly increasing, so the charging voltage required by the battery is also constantly increasing. As the charging voltage required by the battery continues to increase, the charging power required by the battery also continues to increase. When the charging power required by the battery increases, the wireless receiving circuit needs to increase the output power to meet the charging demand of the battery.
  • the communication control circuit may transmit instruction information to the transmitting device to instruct the transmitting device to increase the transmitting power, so as to increase the output power of the wireless receiving circuit. Therefore, during the charging process, the communication control circuit can communicate with the transmitting device, so that the output power of the wireless receiving circuit can meet the charging requirements of the battery in different charging stages.
  • FIG. 15 it is another schematic diagram of the charging system provided by the embodiment of the present application.
  • the embodiment of the present application does not specifically limit the communication mode between the second communication control circuit 1135 and the transmitting device 1120.
  • the second communication control circuit 1135 and the transmitting device 1120 may use Bluetooth communication, Wi-Fi communication, or backscatter modulation (or power load modulation) communication, based on high carrier waves.
  • Communication is carried out by wireless communication methods such as short-range wireless communication, optical communication, ultrasonic communication, ultra-wideband communication, or mobile communication.
  • the short-range wireless communication module based on a high carrier frequency may include an IC chip with an extremely high frequency (EHF) antenna encapsulated inside.
  • the high carrier frequency may be 60 GHz.
  • the optical communication may use an optical communication module for communication.
  • the optical communication module may include an infrared communication module, and the infrared communication module may use infrared to transmit information.
  • the mobile communication may be communication using a mobile communication module.
  • the mobile communication module can use mobile communication protocols such as 5G communication protocol, 4G communication protocol or 3G communication protocol for information transmission.
  • the reliability of communication can be improved, and the voltage ripple caused by the signal coupling method can be avoided. Wave affects the voltage processing process of the step-down circuit.
  • the second communication control circuit 1135 and the transmitting device 1120 may also communicate in a wired communication manner of a data interface.
  • the wireless charging signal transmitting device 1120 may further include a charging interface 1123, and the charging interface 1123 may be used to connect to an external power supply device 1110.
  • the wireless transmitting circuit 1121 can also be used to generate a wireless charging signal according to the output voltage and output current of the power supply device 1110.
  • the first communication control circuit 1122 can also adjust the amount of power that the wireless transmission circuit 1121 extracts from the output power of the power supply device 1110 during the wireless charging process to adjust the transmission power of the wireless transmission circuit 1121 so that the wireless transmission circuit 1121 The power can meet the charging requirements of the battery.
  • the power supply device 1110 can also directly output a relatively large fixed power (such as 40W), and the first communication control circuit 1122 can directly adjust the amount of power drawn by the wireless transmitting circuit 1121 from the fixed power provided by the power supply device 1110.
  • the output power of the power supply device 1110 may be fixed.
  • the power supply device 1110 can directly output a relatively large fixed power (such as 40W), and the power supply device 1110 can provide the wireless charging device 1120 with output voltage and output current according to the fixed output power.
  • the first communication control circuit 1122 can extract a certain amount of power from the fixed power of the power supply device for wireless charging according to actual needs. That is to say, the embodiment of the present application allocates the control right of the transmission power adjustment of the wireless transmission circuit 1121 to the first communication control circuit 1122, and the first communication control circuit 1122 can receive the instruction information sent by the second communication control circuit 1135.
  • the transmission power of the wireless transmission circuit 1121 is adjusted immediately to meet the current charging requirements of the battery, which has the advantages of fast adjustment speed and high efficiency.
  • the embodiment of the present application does not specifically limit the manner in which the first communication control circuit 1122 extracts the amount of power from the maximum output power provided by the power supply device 1110.
  • a voltage conversion circuit 1124 may be provided inside the wireless charging signal transmitting device 1120, and the voltage conversion circuit 1124 may be connected to a transmitting coil or a transmitting antenna for adjusting the power received by the transmitting coil or the transmitting antenna.
  • the voltage conversion circuit 1124 may include a pulse width modulation (Pulse Width Modulation, PWM) controller and a switch unit, for example.
  • PWM pulse width modulation
  • the first communication control circuit 1122 can adjust the transmission power of the wireless transmission circuit 1121 by adjusting the duty cycle of the control signal sent by the PWM controller.
  • the power supply device 1110 may be a device such as an adapter, a power bank, a car charger, or a computer.
  • the charging interface 1123 may be a USB interface.
  • the USB interface may be, for example, a USB 2.0 interface, a micro USB interface, or a USB TYPE-C interface.
  • the charging interface 1123 may also be a lightning interface, or any other type of parallel port and/or serial port that can be used for charging.
  • the embodiment of the present application does not specifically limit the communication mode between the first communication control circuit 1122 and the power supply device 1110.
  • the first communication control circuit 1122 may be connected to the power supply device 1110 through a communication interface other than the charging interface, and communicate with the power supply device 1110 through the communication interface.
  • the first communication control circuit 1122 may communicate with the power supply device 1110 in a wireless manner.
  • the first communication control circuit 1122 may perform Near Field Communication (NFC) with the power supply device 1110.
  • NFC Near Field Communication
  • the first communication control circuit 1122 can communicate with the power supply device 1110 through the charging interface 1123 without setting an additional communication interface or other wireless communication module, which can simplify the implementation of the wireless charging device 1120.
  • the charging interface 1123 is a USB interface, and the first communication control circuit 1122 can communicate with the power supply device 1110 based on the data lines (such as D+ and/or D- lines) in the USB interface.
  • the charging interface 1123 may be a USB interface (such as a USB TYPE-C interface) supporting a power delivery (PD) communication protocol, and the first communication control circuit 1122 and the power supply device 1110 may communicate based on the PD communication protocol.
  • PD power delivery
  • adjusting the transmission power of the wireless charging signal by the first communication control circuit 1122 may refer to that the first communication control circuit 1122 adjusts the transmission power of the wireless charging signal by adjusting the input voltage and/or input current of the wireless transmission circuit 1121.
  • the first communication control circuit may increase the transmission power of the wireless transmission circuit by increasing the input voltage of the wireless transmission circuit.
  • the device to be charged 1130 further includes a first charging channel 1133, through which the output voltage and/or output current of the wireless receiving circuit 1131 can be provided to the battery 1132. 1132 for charging.
  • a voltage conversion circuit 1139 may be further provided on the first charging channel 1133, and the input end of the voltage conversion circuit 1139 is electrically connected to the output end of the wireless receiving circuit 1131, and is used to perform constant voltage on the output voltage of the wireless receiving circuit 1131. And/or constant current control to charge the battery 1132 so that the output voltage and/or output current of the voltage conversion circuit 1139 matches the charging voltage and/or charging current currently required by the battery.
  • increasing the transmitting power of the wireless transmitting circuit 1121 may refer to increasing the transmitting voltage of the wireless transmitting circuit 1121, and increasing the transmitting voltage of the wireless transmitting circuit 1121 may be achieved by increasing the output voltage of the voltage conversion circuit 1124.
  • the first communication control circuit 1122 receives the instruction to increase the transmission power sent by the second communication control circuit 1135, it can increase the transmission power of the wireless transmission circuit 1121 by increasing the output voltage of the voltage conversion circuit 1124.
  • the embodiment of the present application does not specifically limit the manner in which the second communication control circuit 1135 sends instruction information to the first communication control circuit 1122.
  • the second communication control circuit 1135 may periodically send instruction information to the first communication control circuit 1122.
  • the second communication control circuit 1135 may send the instruction information to the first communication control circuit 1122 only when the voltage of the battery reaches the charge cut-off voltage or the charging current of the battery reaches the charge cut-off current.
  • the wireless charging signal receiving device may further include a detection circuit 1134, which can detect the voltage and/or charging current of the battery 1132, and the second communication control circuit 1135 can be based on the voltage and/or charging current of the battery 1132. , Sending instruction information to the first communication control circuit 1122 to instruct the first communication control circuit 1122 to adjust the output voltage and output current corresponding to the transmit power of the wireless transmitting circuit 1121.
  • the transmit power of the wireless charging signal needs to be increased to meet the current charging requirements of the battery.
  • the charging current of the battery may continue to decrease, and the charging power required by the battery will also decrease accordingly.
  • the transmit power of the wireless charging signal needs to be reduced to meet the current charging requirements of the battery.
  • the first communication control circuit 1122 can adjust the transmission power of the wireless charging signal according to the instruction information. It can mean that the first communication control circuit 1122 adjusts the transmission power of the wireless charging signal so that the transmission power of the wireless charging signal is equal to the current required charging voltage of the battery. And/or the charging current.
  • the matching of the transmission power of the wireless transmission circuit 1121 with the charging voltage and/or charging current currently required by the battery 1132 may refer to the configuration of the transmission power of the wireless charging signal by the first communication control circuit 1122 such that the output voltage of the first charging channel 1133 is And/or the output current matches the charging voltage and/or charging current currently required by the battery 1132 (or, the configuration of the transmission power of the wireless charging signal by the first communication control circuit 1122 makes the output voltage of the first charging channel 1133 and/or Or the output current meets the charging requirements of the battery 1132 (including the charging voltage and/or charging current requirements of the battery 1132).
  • the output voltage and/or output current of the first charging channel 1133 matches the charging voltage and/or charging current currently required by the battery 1132
  • the voltage value and/or current value of the output direct current is equal to the charging voltage value and/or charging current value required by the battery 1132 or within a floating preset range (for example, the voltage value fluctuates from 100 mV to 200 mV, the current value Floating up and down 0.001A ⁇ 0.005A, etc.).
  • the second communication control circuit 1135 described above performs wireless communication with the first communication control circuit 1122 based on the voltage and/or charging current of the battery 1132 detected by the detection circuit 1134, so that the first communication control circuit 1122 can perform wireless communication according to the voltage and/or charging current of the battery 1132.
  • the charging current and adjusting the transmission power of the wireless transmission circuit 1121 may include: during the constant current charging stage of the battery 1132, the second communication control circuit 1135 performs wireless communication with the first communication control circuit 1122 according to the detected voltage of the battery, so that A communication control circuit 1122 adjusts the transmitting power of the wireless transmitting circuit 1121 so that the output voltage of the first charging channel 1133 matches the charging voltage required by the battery in the constant current charging stage (or, so that the output voltage of the first charging channel 1133 meets The battery 1132 needs charging voltage during the constant current charging stage).
  • Fig. 16 is another example of a charging system provided by an embodiment of the present application.
  • the wireless charging signal transmitting device 1120 corresponding to the embodiment of FIG. 16 does not obtain electrical energy from the power supply device 1110, but directly converts the externally input AC power (such as commercial power) into the above-mentioned wireless charging signal.
  • the wireless charging signal transmitting device 1120 may further include a voltage conversion circuit 1124 and a power supply circuit 1125.
  • the power supply circuit 1125 can be used to receive externally input AC power (such as city power), and generate the output voltage and output current of the power supply circuit 1125 according to the AC power.
  • the power supply circuit 1125 may rectify and/or filter the alternating current to obtain direct current or pulsating direct current, and transmit the direct current or pulsating direct current to the voltage conversion circuit 1124.
  • the voltage conversion circuit 1124 can be used to receive the output voltage of the power supply circuit 1125 and convert the output voltage of the power supply circuit 1125 to obtain the output voltage and output current of the voltage conversion circuit 1124.
  • the wireless transmitting circuit 1121 can also be used to generate a wireless charging signal according to the output voltage and output current of the voltage conversion circuit 1124.
  • the embodiment of the present application integrates a function similar to an adapter inside the wireless charging signal transmitting device 1120, so that the wireless charging signal transmitting device 1120 does not need to obtain power from an external power supply device, which improves the integration of the wireless charging signal transmitting device 1120 It also reduces the number of devices required to realize the wireless charging process.
  • the wireless charging signal transmitting device 1120 can support the first wireless charging mode and the second wireless charging mode, and the wireless charging signal transmitting device 1120 charges the device to be charged in the first wireless charging mode.
  • the transmitting device 1120 which is faster than the wireless charging signal, charges the device to be charged in the second wireless charging mode.
  • the wireless charging signal transmitting device 1120 working in the first wireless charging mode is fully charged in the equipment to be charged with the same capacity The battery time is shorter.
  • the charging method provided in the embodiment of the present application may use the first charging mode for charging, and may also use the second charging mode for charging, which is not limited in the embodiment of the present application.
  • the second wireless charging mode may be a so-called normal wireless charging mode, for example, may be a traditional wireless charging mode based on the QI standard, the PMA standard, or the A4WP standard.
  • the first wireless charging mode may be a fast wireless charging mode.
  • the normal wireless charging mode may refer to a wireless charging mode in which the transmitting power of the wireless charging signal transmitter 1120 is relatively small (usually less than 15W, and the commonly used transmitting power is 5W or 10W). In the normal wireless charging mode, you want to fully charge it. A large-capacity battery (such as a 3000 mAh battery) usually takes several hours; and in the fast wireless charging mode, the transmission power of the wireless charging signal transmitter 1120 is relatively large (usually greater than or equal to 15W ).
  • the wireless charging signal transmitting device 1120 requires a significantly shorter charging time and a faster charging speed in the fast wireless charging mode to fully charge the battery with the same capacity.
  • the device to be charged 1130 further includes: a second charging channel 1136.
  • the second charging channel 1136 may be a wire.
  • the second charging channel 1136 can be provided with a conversion circuit 1137 for voltage control of the DC power output by the wireless receiving circuit 1131 to obtain the output voltage and output current of the second charging channel 1136 to charge the battery 1132.
  • the conversion circuit 1137 can be used in a step-down circuit, and output constant current and/or constant voltage electric energy. In other words, the conversion circuit 1137 can be used to perform constant voltage and/or constant current control on the charging process of the battery.
  • the wireless transmitting circuit 1121 can use a constant transmitting power to transmit an electromagnetic signal.
  • the conversion circuit 1137 processes it into a voltage sum that meets the charging requirements of the battery 1132.
  • the current is also input to the battery 1132 to charge the battery 1132.
  • the constant transmission power does not necessarily mean that the transmission power remains completely unchanged, and it can vary within a certain range, for example, the transmission power is 7.5W and fluctuates by 0.5W.
  • the charging method for charging the battery 1132 through the first charging channel 1133 is the first wireless charging mode
  • the charging method for charging the battery 1132 through the second charging channel 1136 is called the second wireless charging mode.
  • the wireless charging signal transmitter and the device to be charged can determine whether to use the first wireless charging mode or the second wireless charging mode to charge the battery 1132 through handshake communication.
  • the maximum transmitting power of the wireless transmitting circuit 1121 when the device to be charged is charged through the first wireless charging mode, the maximum transmitting power of the wireless transmitting circuit 1121 may be the first transmitting power value.
  • the maximum transmission power of the wireless transmission circuit 1121 may be the second transmission power value.
  • the first transmission power value is greater than the second transmission power value, and thus, the charging speed of the device to be charged in the first wireless charging mode is greater than the second wireless charging mode.
  • the second communication control circuit 1135 can also be used to control the switching between the first charging channel 1133 and the second charging channel 1136.
  • a switch 1138 can be provided on the first charging channel 1133, and the second communication control circuit 1135 can control the first charging channel 1133 and the second charging channel 1136 by controlling the on and off of the switch 1138. Switch between.
  • the wireless charging signal transmitting device 1120 may include a first wireless charging mode and a second wireless charging mode, and the wireless charging signal transmitting device 1120 is to be charged in the first wireless charging mode.
  • the charging speed of 1130 is faster than the charging speed of the device 1130 to be charged by the wireless charging signal transmitter 1120 in the second wireless charging mode.
  • the device to be charged 1130 can control the operation of the first charging channel 1133; when the wireless charging signal transmitter 1120 uses the second wireless When the charging mode is that the battery in the device to be charged 1130 is charged, the device to be charged 1130 can control the second charging channel 1136 to work.
  • the second communication control circuit 1135 can switch between the first charging channel 1133 and the second charging channel 1136 according to the charging mode.
  • the second communication control circuit 1135 controls the voltage conversion circuit 1139 on the first charging channel 1133 to work.
  • the second communication control circuit 1135 controls the operation of the conversion circuit 1137 on the second charging channel 1136.
  • the wireless charging signal transmitter 1120 may communicate with the device 1130 to be charged to negotiate a charging mode between the wireless charging signal transmitter 1120 and the device 1130 to be charged.
  • the first communication control circuit 1122 in the wireless charging signal transmitting device 1120 and the second communication control circuit 1135 in the device to be charged 1130 can also exchange many other communication information.
  • the first communication control circuit 1122 and the second communication control circuit 1135 can exchange information for safety protection, anomaly detection, or fault handling, such as temperature information of the battery 1132, into overvoltage protection or overcurrent Information such as protection indication information, power transmission efficiency information (the power transmission efficiency information can be used to indicate the power transmission efficiency between the wireless transmitting circuit 1121 and the wireless receiving circuit 1131).
  • the communication between the second communication control circuit 1135 and the first communication control circuit 1122 may be one-way communication or two-way communication, which is not specifically limited in the embodiment of the present application.
  • the function of the second communication control circuit can be implemented by the application processor of the device to be charged 1130, thus, the hardware cost can be saved.
  • it can also be implemented by an independent control chip, and implementation by an independent control chip can improve the reliability of control.
  • the wireless receiving circuit 1131 and the voltage conversion circuit 1139 can be integrated in the same wireless charging chip, which can improve the integration of the device to be charged and simplify the implementation of the device to be charged.
  • the functions of traditional wireless charging chips can be expanded to support charging management functions.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a Digital Video Disc (DVD)), or a semiconductor medium (for example, a Solid State Disk (SSD)), etc.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • first, second, etc. may be used in this application to describe various devices, these devices should not be limited by these terms. These terms are only used to distinguish one device from another.
  • the first device can be called the second device, and similarly, the second device can be called the first device, as long as all occurrences of the "first device” are renamed consistently and all occurrences
  • the “second device” can be renamed consistently.
  • the first device and the second device are both devices, but they may not be the same device.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种无线接收装置、无线充电系统和无线充电方法,包括:多个接收线圈,分别与所述发射线圈耦合,用于分别接收所述发射线圈发射的无线充电信号;多个无线接收处理模块,分别用于对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于对电池充电。其中,每一所述无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。本申请提供的无线接收装置,由于无线接收装置包括多个接收线圈和多个无线接收处理模块,从而可以提高无线充电的充电速度和效率;且由于多个无线接收处理模块分别用于对多个接收线圈所接收到的电压和电流进行处理,可避免整流电路工作紊乱。

Description

无线接收装置、无线充电系统和无线充电方法 技术领域
本申请实施例涉及充电技术领域,具体涉及一种无线接收装置、无线充电系统和无线充电方法。
背景技术
目前在利用无线充电的方式对电子设备(如手机、pad、手环等)进行充电时,无线充电功率的要求越来越高。
在无线充电过程中,一般将电源适配器与无线充电底座相连,并通过无线充电底座将电源适配器的输出功率以无线的方式(如电磁信号或电磁波)传输至电子设备,以对电子设备进行无线充电。
然而,随着电子设备电池容量的提高,对于无线充电速率的要求越来越高,现有的无线充电方式无法满足日益增长的无线充电速率需求。
发明内容
本申请实施例提供一种无线接收装置、无线充电系统和无线充电方法,以解决相关技术中的充电问题。
第一方面,提供一种无线接收装置,包括:多个接收线圈,分别与发射线圈耦合,用于分别接收所述发射线圈发射的无线充电信号;多个无线接收处理模块,分别用于对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于对电池充电;其中,每一所述无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
第二方面,提供一种无线接收装置,包括:多个接收线圈,分别与发射线圈耦合,用于分别接收所述发射线圈发射的无线充电信号;多个AC/DC转换模块,分别用于对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以得到直流电压和直流电流;电压转换模块,与所述多个AC/DC转换模块连接,用于将所述直流电压进行升压或降压处理,以得到为电池充电的目标直流电压;其中,每一所述AC/DC转换模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电压转换模块连接。
第三方面,提供一种无线充电系统,包括:无线发射装置和无线接收装置;所述无线发射装置包括:逆变电路,用于将输入的直流电转换为交流电;发射线圈,用于将所述交流电转换为可通过电磁域发射的无线充电信号;所述无线接收装置包括:多个接收线圈,分别与所述发射线圈耦合,用于分别接收所述发射线圈发射的无线充电信号;多个无线接收处理模块,分别用于对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于对电池充电;其中,每一所述无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
第四方面,提供一种无线充电方法,包括:多个接收线圈分别接收发射线圈发射的无线充电信号;多个无线接收处理模块分别对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于共同对电池充电;其中,每一所述无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
第五方面,一种无线充电方法,包括:多个接收线圈分别接收发射线圈发射的无线充电信号;多个AC/DC转换模块分别对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以得到直流电压和直流电流;电压转换模块将所述直流电压进行升压或降压处理,以得到为电池充电的目标直流电压;其中,每一所述AC/DC转换模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电压转换模块连接。
第六方面,提供一种无线充电方法,包括:将输入的直流电转换为交流电;将所述交流电转换为可通过电磁域发射的无线充电信号;多个接收线圈分别接收发射线圈发射的无线充电信号;多个无线接收处理模块分别对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于对电池充电;其中,每一所述无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
第七方面,提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第四方面至第六方面中的任一方面或其各实现方式中任一项所述的方法。
第八方面,提供一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行上述第四方面至第六方面中的任一方面或其各实现方式中任一项所述的方法。
本申请实施例提供的无线接收装置,由于无线接收装置包括多个接收线圈和多个无线接收处理模块,从而可以提高无线充电的充电速度和效率;且由于多个无线接收处理模块分别用于对多个接收线圈 所接收到的电压和电流进行处理,可避免整流电路工作紊乱。
附图说明
图1是本申请一个实施例提供的无线充电系统的示意图;
图2是本申请一个实施例提供的无线接收装置的示意图;
图3是本申请另一个实施例提供的无线接收装置的示意图;
图4是本申请又一个实施例提供的无线接收装置的示意图;
图5a是本申请一实施例提供的对待充电设备进行充电过程中的充电电流变化的示意图;
图5b是本申请一实施例提供的对待充电设备进行充电过程中的充电电压变化的示意图;
图6a是本申请再一个实施例提供的无线接收装置的示意图;
图6b是本申请再一个实施例提供的无线接收装置的示意图;
图7a是本申请再一个实施例提供的无线接收装置的示意图;
图7b是本申请再一个实施例提供的无线接收装置的示意图;
图7c是本申请再一个实施例提供的无线接收装置的示意图;
图8是本申请再一个实施例提供的无线接收装置的示意图;
图9是本申请一个实施例提供的无线充电系统的示意图;
图10是本申请一个实施例提供的无线充电方法的示意性流程图;
图11是本申请另一个实施例提供的无线充电方法的示意性流程图;
图12是本申请又一个实施例提供的无线充电方法的示意性流程图;
图13是本申请再一个实施例提供的无线充电方法的示意性流程图;
图14是本申请一个实施例提供的无线充电系统的示意图;
图15是本申请另一实施例提供的无线充电系统的示意性结构图;
图16是本申请又一实施例提供的无线充电系统的示意性结构图;
图17是本申请再一实施例提供的无线接收装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
为了更加清楚地理解本申请的方案,以下将简单介绍无线充电工作原理。但应理解,以下介绍的内容仅仅是为了更好的理解本申请,不应对本申请造成特别限定。
如图1所示为本申请实施例提供的无线充电系统,下面结合图1对无线充电方式进行简单介绍。
如图1所示,无线充电系统可以包括电源提供设备110、无线发射装置120以及待充电设备130,其中无线发射装置120例如可以是无线充电底座,待充电设备130例如可以是终端。
电源提供设备110与无线发射装置120连接之后,会将电源提供设备110的输出电压和输出电流传输至无线发射装置120。无线发射装置120可以通过内部的无线发射电路122将电源提供设备110的输出电压和输出电流转换成无线充电信号(例如,电磁信号)进行发射。例如,该无线发射电路122可以将电源提供设备110的输出电流转换成交流电,并通过发射线圈或发射天线(图中未示出)将该交流电转换成无线充电信号。其中,电压转换电路可以对电源提供设备110输出的电压进行转换,微控制单元123可以控制电压转换电路121和无线发射电路122的电压。
待充电设备130可以通过无线接收电路131接收无线发射电路122发射的无线充电信号,并将该无线充电信号转换成无线接收电路131的输出电压和输出电流。
例如,该无线接收电路131可以通过接收线圈或接收天线(图中未示出)将无线发射电路122发射的电磁信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成无线接收电路131的输出电压和输出电流,通过电压转换模块132或充电管理电路136对无线接收电路131接收的输出电压和输出电流进行调节,以得到待充电设备130内的电池133所预期的充电电压和/或充电电流的需求,从而可以实现为电池133的充电。
上述充电管理电路136例如可以为充电集成电路(Integrated Circuit,IC)。
本申请实施中的检测模块135可以检测电池133的信息,例如电池温度,电池电压和电池电流等,也可以检测电压转换模块132或充电管理电路136的输出电流和输出电压以及无线接收电路131的输出电压和输出电流等。
在利用无线充电的方式对待充电设备进行充电时,随着无线充电功率的要求越来越高,为了提高充 电功率,可以通过增加接收线圈的方式来提高无线充电功率。增加接收线圈后,在一些实施例中,可以采用共用整流电路的方式,对多接收线圈接收到的电能进行整流。这种方式,由于线圈发热严重,在更大功率传输上并不适用;对整流电路的控制逻辑复杂,限制了其进一步提升无线传输功率的能力。
因此,本申请实施例提供了一种无线接收装置、无线充电系统和无线充电方法,可以避免整流电路在工作过程中的紊乱,同时也可以提高无线充电功率的能力和充电速度。
本申请实施例中所使用到的待充电设备可以是指终端,该“终端”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(Public Switched Telephone Network,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如手持数字视频广播(Digital Video Broadcasting Handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(Amplitude Modulation-Frequency Modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。
移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communication System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。在某些实施例中,待充电设备可指移动终端是设备或手持终端设备,如手机、pad等。在某些实施例中,本申请实施例提及的待充电设备可以是指芯片系统,在该实施例中,待充电设备的电池可以属于或也可以不属于该芯片系统。
另外,待充电设备还可以包括其他有充电需求的待充电设备,例如手机、移动电源(如充电宝、旅充等)、电动汽车、笔记本电脑、无人机、平板电脑、电子书、电子烟、智能待充电设备和小型电子产品等。智能待充电设备例如可以包括手表、手环、智能眼镜和扫地机器人等。小型电子产品例如可以包括无线耳机、蓝牙音响、电动牙刷和可充电无线鼠标等。
下面结合图2,对本申请实施例提供的无线接收装置200进行详细介绍。
如图2所示,为本申请实施例提供的一种无线接收装置200,其中,无线接收装置200可以包括多个接收线圈210、多个无线接收处理模块220和电池230。
其中,本申请实施例中的无线接收装置200可以为图1中的待充电设备130。
多个接收线圈210,分别与发射线圈耦合,用于分别接收所述发射线圈发射的无线充电信号。
本申请实施例中的无线充电信号可以通过无线发射装置的发射线圈(或发射天线)发射,在一些实施例中,无线发射装置可以包括无线发射驱动电路和发射线圈。无线发射驱动电路可用于生成较高频率的交流电,发射线圈或发射天线可用于将该较高频率的交流电转换成电磁信号发射出去。
本申请实施例中的多个接收线圈可以包括两个或者三个或者更多的接收线圈,本申请对此不作具体限定。本申请实施例中,该多个接收线圈可以同时接收无线发射装置发射的无线信号,也可以不同时接收无线发射装置发射的无线信号。
多个无线接收处理模块220,分别用于对从所述多个接收线圈210接收到的无线充电信号进行电压和/或电流处理,以用于对电池230充电,其中,每一所述无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
本申请实施例中,多个无线接收处理模块220可以与多个接收线圈210一一对应,分别处理多个接收线圈210接收到的无线充电信号的电压和/或电流。经过多个无线接收处理模块210处理后的多个电压和电流,可以共同用于对电池230进行充电。
本申请实施例提供的无线接收装置,由于无线接收装置包括多个接收线圈和多个无线接收处理模块,从而可以提高无线充电的充电速度和效率;且由于多个无线接收处理模块分别用于对多个接收线圈所接收到的电压和电流进行处理,可避免整流电路工作紊乱。
可选地,在一些实施中,如图3所示,为本申请实施例提供的另一种无线接收装置的示意性图。
如图3所示,所述多个接收线圈包括:第一接收线圈311,与所述发射线圈耦合,用于从所述发射线圈接收第一无线充电信号;第二接收线圈321,与所述发射线圈耦合,用于从所述发射线圈接收第二无线充电信号。
本申请实施例中,第一接收线圈311和第二接收线圈321可以同时接收发射线圈发射的无线充电信号,也可以不同时接收无线发射线圈发射的无线充电信号。
本申请实施例中的第一接收线圈311和第二接收线圈321可以为图2中的多个接收线圈210。
应理解,图3只是示意性地示出了无线接收装置300b可以包括2个接收线圈。可选地,在一些实 施例中,无线接收装置还可以包括第三接收线圈,甚至更多,从而可以利用经过多个无线接收处理模块处理后的电压和/电流共同对电池进行充电。
可选地,在一些实施例中,如图3所示,所述第一接收线圈和所述第二接收线圈重叠设置,以使得所述第一接收线圈和所述第二接收线圈能够同时与所述发射线圈对准。
本申请实施例中,第一接收线圈311和第二接收线圈321可以重叠设置,换句话说,第一接收线圈311和第二接收线圈321可以叠加在一起形成一个磁屏蔽材料的结构,从而使得第一接收线圈311和第二接收线圈321可以与发射线圈同时对准,即第一接收线圈311和第二接收线圈321可以最大限度地接收发射线圈发射的信号。
可选地,在一些实施例中,所述第一接收线圈和所述第二接收线圈设置在同一柔性印刷电路(Flexible Printed Circuit,FPC)基板上,并通过屏蔽层隔离。
可选地,在一些实施例中,所述第一接收线圈311和所述第二接收线圈321均为表面包覆了绝缘材料的导线绕制而成。
本申请实施例中,第一接收线圈311和第二接收线圈321可以位于同一FPC基板上,可以最大限度地节省空间,同时通过屏蔽层隔离,使得这两个接收线圈在接收无线充电信号的过程中可以互不干扰。
本申请实施例中,第一接收线圈311和第二接收线圈321可以由表面包覆了绝缘材料的导线绕制而成,例如,可以为漆包线等。
可选地,在一些实施例中,如图3所示,所述多个无线接收处理模块包括:第一交流/直流(Alternating Current/Direct Current,AC/DC)转换模块312,与所述第一接收线圈311连接,用于将所述第一无线充电信号转换为第一直流电压和第一直流电流;第二AC/DC转换模块,与所述第二接收线圈连接,用于将所述第二无线充电信号转换为第二直流电压和第二直流电流。
与所述第一AC/DC转换模块312连接的第一电压转换模块313,与所述第二AC/DC转换模块322连接的第二电压转换模块323;所述第一电压转换模块和所述第二电压转换模块,分别用于将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为电池充电的第三直流电压;所述无线接收装置还包括:控制模块340,用于根据所述电池的充电阶段,控制所述第一AC/DC转换模块312和所述第一电压转换模块工作313,和/或控制所述第二AC/DC转换模块322和所述第二电压转换模块323工作;其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段。
本申请实施例中的第一接收线圈311和第二接收线圈321可以为图2中的多个接收线圈210,第一AC/DC转换模块312、第一电压转换模块313、第二AC/DC转换模块322以及第二电压转换模块323共同组成的模块可以为图2中的多个无线接收处理模块220。
应理解,图3只是示意性地示出了无线接收装置可以包括2个接收线圈,2个AC/DC转换模块以及2个电压转换模块。可选地,在一些实施例中,无线接收装置还可以包括第三接收线圈、第三AC/DC转换模块和第三电压转换模块,甚至更多,从而可以利用经过这多个电压转换模块转换后的电压和/电流共同对电池进行充电。
本申请实施例中,第一AC/DC转换模块312输出的电流可以是第一接收线圈311输出的电流,也可以是第一接收线圈311至第一AC/DC转换模块312的充电通路上检测到的电流等,本申请对此不做具体限定,只要是可以反应第一接收线圈311的电流均可应用本申请实施例;类似地,第二AC/DC转换模块322输出的电流可以是第二接收线圈321输出的电流,也可以是第二接收线圈321至第二AC/DC转换模块322的充电通路上检测到的电流等,本申请对此不做具体限定,只要是可以反应第二接收线圈321的电流均可应用本申请实施例。
在对电池充电的过程中,控制模块340可以控制第一AC/DC转换模块312所包括的整流工作,也可以控制第二AC/DC转换模块322所包括的整流工作,还可以同时控制第一AC/DC转换模块312和第二AC/DC转换模块322所包括的整流工作;或者,控制模块340可以控制第一AC/DC转换模块312所包括的滤波工作,也可以控制第二AC/DC转换模块322包括的滤波工作,还可以同时控制第一AC/DC转换模块312和第二AC/DC转换模块322所包括滤波工作;或者,控制模块340可以控制第一电压转换模块313的转换工作,也可以控制第二电压转换模块323的转换工作,还可以同时控制第一电压转换模块313和第二电压转换模块323的转换工作,本申请对此不作具体限定。
本申请实施例中的控制模块340可以为微控制单元(Micro Control Unit,MCU)和/或应用处理器(Application Processor,AP)控制。
应理解,本申请实施例中,控制第一AC/DC转换模块312和第二AC/DC转换模块322以及第一电压转换模块313和第二电压转换模块323的工作可以由不同的控制模块进行控制。例如,无线接收装置300b可以包括第一控制模块340a和第二控制模块340b,第一控制模块340a用于控制第一AC/DC 转换模块312和第一电压转换模块313的工作,第二控制模块340b用于控制第二AC/DC转换模块322和第二电压转换模块323的工作。
本申请实施例中,第一AC/DC转换模块312和第二AC/DC转换模块322包括的用于整流作用的也可以为具有整流功能的整流器等,第一AC/DC转换模块312和第二AC/DC转换模块322包括的用于滤波作用的也可以为具有滤波功能的滤波器等,本申请对此不作具体限定。
本申请实施例中,如图3所示,以2个同样的接收线圈为例进行说明,即第一接收线圈311和第二接收线圈321的阻抗、匝数、材质等可以是一样的。假设无线发射装置发射的功率为10W,即无线发射装置发射的电压为5V,电流为2A,若发射线圈和接收线圈的增益为1,在没有能量损耗的情况下,因为发射线圈产生的磁场在多个接收线圈中的每一个接收线圈上的磁通量是一样的,所以电压也是一样的,即第一接收线圈311和第二接收线圈321接收到的交流电的最大电压幅值也可以为5V;而对于接收线圈上的电流来说,由于这两个接收线圈上各自的电流是一样的,叠加后由发射线圈提供,因此,发射线圈上的电流应该有双倍的电流通过,即在发射线圈的电流为2A的情况下,第一接收线圈311和第二接收线圈321的最大电流幅值可以分别为1A。第一AC/DC转换模块312对第一接收线圈311所接收到的交流电进行整流和滤波后,可以得到直流电,第一电压转换模块313可以对经过第一AC/DC转换模块312处理后的直流电进行转换处理;类似地,第二AC/DC转换模块322可以对第二接收线圈321所接收到的交流电进行整流和滤波后可以得到较为平稳的直流电,第二电压转换模块323可以对经过第二AC/DC转换模块322处理后的直流电进行转换处理。经过第一电压转换模块313和第二电压转换模块323处理后得到的直流电可以用于为电池330进行充电。
本申请实施例中,发射线圈和接收线圈的增益可以为其他数值,例如,可以为n,该n值可以为2或3或4等。以增益为2为例进行说明,在发射线圈和接收线圈的增益为2的情况下,假设无线发射装置发射的功率为10W,即无线发射装置发射的电压为5V,电流为2A,在没有能量损耗的情况下,因为发射线圈和接收线圈的增益为2,即多个接收线圈中的每一个接收线圈上的磁通量是发射线圈产生磁通量的2倍,所以电压也是2倍,即第一接收线圈311和第二接收线圈321接收到的交流电的最大电压幅值也可以为10V;而对于接收线圈上的电流来说,由于多个接收线圈上各自的电流是一样的,叠加后由发射线圈提供,因此,发射线圈上的电流应该有双倍的电流通过,即在发射线圈的电流为2A的情况下,第一接收线圈311和第二接收线圈321上的最大电流幅值可以分别为2A。
应理解,本申请实施例中的数值仅为举例说明,还可以为其它数值,不应对本申请造成特别限定。
本申请实施例中,由于无线接收装置包括多个AC/DC转换模块和多个电压转换模块,分别与多个接收线圈连接,该多个AC/DC转换模块和多个电压转换模块可以将分别对多个接收线圈所接收到的电压和电流进行整流、滤波和降压/升压,从而可以避免整流电路工作紊乱,同时由于多个接收线圈上所接收到的电流通过多个AC/DC转换模块进行处理,在电池可以允许充电的电压和电流范围内,进一步地,可以提升电池充电功率和充电速度。
可选地,在一些实施例中,如图4所示,为本申请实施例提供的另一种无线充电装置。
在图4中,无线发射装置300a中也可以包括多个发射线圈。例如,以无线发射装置包括2个发射线圈为例进行说明。第一发射线圈363发射的无线充电信号可以通路A和通路B中的第一接收线圈311和第二接收线圈321接收;第二发射线圈366发射的无线充电信号可以通路C和通路D中的第一接收线圈311和第二接收线圈321接收。
在一种实现方式下,经过300b-1中的第一电压转换模块313和第二电压转换模块323转换后的电压可以用于为电池300b-1中的电池330充电,经过300b-2中的第一电压转换模块313和第二电压转换模块323转换后的电压可以用于为300b-2中的电池330充电。
在另一种实现方式下,经过300b-1中的第一电压转换模块313和第二电压转换模块323,以及300b-2中的第一电压转换模块313和第二电压转换模块323转换后的电压也可以用于为同一个电池充电,本申请对此不作具体限定。
为了更加清楚地理解本申请,下文先介绍电池充电过程中的所包括的阶段,便于后续理解本申请的方案。但应理解,以下介绍的内容仅仅是为了更好的理解本申请,不应对本申请造成特别限定。
充电过程一般包括三个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段。以锂离子的充电过程为例进行说明。如图5a所示为本申请一实施例提供的对待充电设备进行充电过程中的充电电流变化的示意图,如图5b所示为本申请一实施例提供的对待充电设备进行充电过程中的充电电压变化的示意图。
其中,在时间为(0-t1)这一段时间内,可以为涓流充电阶段,这段时间内,充电电流和充电电压都以较小的速率在逐渐地增加;当充电电压大于某一电压阈值时,进入恒流充电阶段,即图5a和图5b中的(t1-t2段),这段时间内,可以以恒定的较大电流对待充电设备进行充电,例如,可以为6.5A,在这一过程中,充电电压逐渐地增加;当充电电压大于某一电压阈值时,可以进入恒压充电阶段,即图 5a和图5b中的(t2-t3)段,这段时间内,由于待充电设备的电量快要充满,因此,充电电流可以逐渐减小,以逐渐减小的充电电流对待充电设备充电,直到充电截止。
上文指出,多个无线接收处理模块可以包括多个电压转换模块。其中,电压转换模块可以包括升压电路和降压电路。升压电路可以包括具有固定升压比的升压电路和无固定升压比的升压电路,降压电路可以包括具有固定降压比的电路和无固定降压比的电路,可应用本申请的实施例中,下文将具体进行介绍。
可选地,在一些实施例中,所述第一电压转换模块313包括直流电-直流电降压电路(Direct Current-Direct Current Buck Circuit,DC-DC Buck Circuit)、降压-升压(Buck-Boost)电路或充电集成电路(Integrated Circuit,IC)。
可选地,在一些实施例中,所述控制模块340,用于控制所述第一电压转换模块工作在以下充电阶段的一个或多个充电阶段:所述涓流充电阶段、所述恒流充电阶段和所述恒压充电阶段。
本申请实施例中,如图3所示,第一电压转换模块313可以为无固定降压比的Buck电路或Buck-Boost电路或充电IC。在对电池充电的过程中,通路A和通路B可以同时选用无固定降压比的Buck电路或Buck-Boost电路或充电IC对经过整流和滤波后的电压进行转换处理;或者通路A可以采用无固定降压比的Buck电路或Buck-Boost电路或充电IC对经过整流和滤波后的电压进行降压处理,通路B中可以采用具有固定降压比的电路对经过整流和滤波后的电压进行转换处理。
其中,通路A中可以包括第一接收线圈311、第一AC/DC转换模块312、第一电压转换模块313以及电池330;通路B可以包括第二接收线圈321、第二AC/DC转换模块322、第二电压转换模块323以及电池330。
在对电池进行充电的过程中,控制模块340可以基于电池的充电阶段对充电过程中的第一电压转换模块313和第二电压转换模块323所采用的电路进行控制。
例如,DC-DC Buck电路可以工作在上述充电过程中的涓流充电阶段、恒流充电阶段和恒压充电阶段中的任一阶段。
具体地,在一种实现方式下,假设电池的额定电压为4.4V,多个AC/DC转换模块对接收到的交流电进行整流和滤波完成后,第一电压转换模块313和第二电压转换模块323可以对经过整流和滤波后的直流电进行降压,在涓流充电阶段,可以利用DC-DC Buck或充电IC电路对经过整流和滤波后的电压进行降压处理。
当电池电压达到某一电压值时,例如电池电压达到3V时,可以进入恒流充电阶段,在这一阶段,第一电压转换模块313可以采用DC-DC Buck电路或充电IC对通路A上经过第一AC/DC转换模块312处理后的电压进行降压处理。例如,如图3所示,第一电压转换模块313可以采用DC-DC Buck电路对通路A上的经过第一AC/DC转换模块312处理后的电压进行降压。假设电池所预期的充电电压为3.4V,则进入第一电压转换模块313的电压可以大于3.4V的任一电压值,例如,可以为6V;若电池所预期的充电电压为3.8V,则进入第一电压转换模块313的电压可以为大于3.8V的任一电压值,例如,可以为7.6V。对于第二电压转换模块323,可以采用DC-DC Buck电路,也可以采用直流电-直流电电荷泵(Direct Current-Direct Current Charge Pump,DC-DC Charge Pump),从而经过第一电压转换模块313和第二电压转换模块323后可以满足电池所预期的充电电压。
当电池电压达到某一电压值时,例如电池电压达到4.2V时,可以进入恒压充电阶段,在这一阶段,可以采用DC-DC Buck或充电IC电路对电池进行充电。
可选地,在一些实施例中,所述第二电压转换模块包括Charge pump电路。
可选地,在一些实施例中,所述控制模块340,用于控制所述Charge pump电路在所述恒流充电阶段的工作。
本申请实施例中,如图3所示,第二电压转换模块323可以为具有固定降压比的Charge pump电路。在对电池充电的过程中,通路A中,第一电压转换模块313可以采用无固定降压比的Buck电路对经过第一AC/DC转换模块312处理后的电压进行降压处理;通路B中,第二电压转换模块323可以采用具有固定降压比的电压转换模块对经过第二AC/DC转换模块322处理后的电压和进行降压处理。
在对电池进行充电的过程中,控制模块340可以基于电池的充电阶段对充电过程中的第一电压转换模块313和第二电压转换模块323所采用的电路进行控制。
例如,控制模块340可以控制Charge pump电路工作在充电过程中的恒流充电阶段。
具体地,在一种实现方式下,假设电池的额定电压为4.4V,多个AC/DC转换模块对接收到的交流电进行整流和滤波完成后,可以对经过整流和滤波后的直流电进行降压,在涓流充电阶段,可以利用DC-DC Buck电路或充电IC对经过整流和滤波后的电压进行降压处理。
当电池电压达到某一电压值时,例如电池电压达到3V时,可以进入恒流充电阶段,在这一阶段, 第二电压转换模块323可以采用DC-DC Charge Pump电路对通路B上经过第二AC/DC转换模块322处理后的电压进行降压处理,而对于通路A上的电压,仍然可以采用DC-DC Buck电路。如图3所示,例如,第一电压转换模块313可以采用DC-DC Buck电路对通路A上的经过第一AC/DC转换模块312处理后的电压进行降压,第二电压转换模块323可以采用DC-DC Charge Pump对通路B上的经过第二AC/DC转换模块322处理后的电压进行降压。假设DC-DC Charge Pump的降压比为2,若电池所预期的充电电压为3.4V,则进入DC-DC Charge Pump的电压可以为6.8V;若电池所预期的充电电压为3.8V,则进入DC-DC Charge Pump的电压可以为7.6V。从而经过DC-DC Charge Pump后可以满足电池所预期的充电电压。
当电池电压达到某一电压值时,例如电池电压达到4.2V时,可以进入恒压充电阶段,在这一阶段,可以采用DC-DC Buck电路或充电IC对电池进行充电。
可选地,在一些实施例中,如图6a和图6b所示,所述第一电压转换模块和所述第二电压转换模块均包括Charge pump电路;所述多个电压转换模块还包括:与所述第一AC/DC转换模块或所述第二AC/DC转换模块连接的第三电压转换模块314;所述控制模块340,用于控制所述第一电压转换模块和所述第二电压转换模块工作在恒流充电阶段,以及控制所述第三电压转换模块工作在涓流充电阶段和/或恒压充电阶段。
可选地,在一些实施例中,所述第三电压转换模块包括Buck电路、Buck-Boost电路或充电IC。
在一种实现方式中,如图6a所示,第三电压转换模块314可与第一电压转换模块313并联,以使得在对电池330充电的过程中,若第一电压转换模块313包括DC-DC Charge Pump电路,第三电压转换模块314可作为辅助模块对电压进行管理;在另一种实现方式中,如图6b所示,第三电压转换模块314可与第一电压转换模块313和第二电压转换模块323并联,以使得在对电池330充电的过程中,若第一电压转换模块313和第二电压转换模块323包括DC-DC Charge Pump电路,第三电压转换模块314可作为辅助模块对电压进行管理。
可以理解的是,第三电压转化模块314也可只与第二电压转换模块323并联,以使得在对电池330充电的过程中,若第二电压转换模块323包括DC-DC Charge Pump电路,第三电压转换模块314可作为辅助模块对电压进行管理。
本申请实施例中的控制模块340可以控制多个AC/DC转换模块,也可以控制电压转换模块,例如,控制模块340可以控制第一AC/DC转换模块和第二AC/DC转换模块的工作,也可以控制第一电压转换模块313和第二电压转换模块323以及第三电压转换模块314的工作。
本申请实施例中,第一电压转换模块313和第二电压转换模块323均可以采用具有固定降压比的电路,例如第一电压转换模块313可以采用DC-DC Charge Pump1对通路A上的经过第一AC/DC转换模块312处理后的电压进行降压处理,第二电压转换模块323可以采用DC-DC Charge Pump2对通路B上的经过第二AC/DC转换模块322处理后的电压进行降压处理。假设DC-DC Charge Pump1和DC-DC Charge Pump2的降压比均为2,若电池所预期的充电电压为3.4V,则进入DC-DC Charge Pump1和DC-DC Charge Pump2的电压可以为6.8V;若电池所预期的充电电压为3.8V,则进入DC-DC Charge Pump1和DC-DC Charge Pump2的电压可以为7.6V。从而经过DC-DC Charge Pump1和DC-DC Charge Pump2后可以满足电池所预期的充电电压。
假设电池的额定电压为4.4V,多个AC/DC转换模块对接收到的无线充电信号所对应的电压和电流进行整流和滤波完成后,可以对经过整流和滤波后的直流电进行降压,在涓流充电阶段,可以利用第三电压转换模块314对经过整流和滤波后的电压进行降压处理。
当电池电压达到某一电压值时,例如电池电压达到3V时,可以进入恒流充电阶段,在这一阶段,多个电压转换模块均可以采用DC-DC Charge Pump分别对不同通路上的经过AC/DC转换模块处理后的电压进行降压处理。如图6所示,例如,第一电压转换模块313可以采用DC-DC Charge Pump1电路对通路A上的经过第一AC/DC转换模块312处理后的电压进行降压,第二电压转换模块323可以采用DC-DC Charge Pump2电路对通路B上的经过第二AC/DC转换模块322处理后的电压进行降压。假设DC-DC Charge Pump的降压比为2,若电池所预期的充电电压为3.4V,则进入DC-DC Charge Pump的电压可以为6.8V;若电池所预期的充电电压为3.8V,则进入DC-DC Charge Pump的电压可以为7.6V。从而经过DC-DC Charge Pump后可以满足电池所预期的充电电压。
当电池电压达到某一电压值时,例如电池电压达到4.2V时,可以进入恒压充电阶段,在这一阶段,可以采用第三电压转换模块314对经过第一AC/DC转换模块312和/或第二AC/DC转换模块322处理后的电压进行转换。当进入恒压充电阶段时,由于这一阶段的电压基本保持不变,因此可以采用第三电压转换模块314对经过整流和滤波后的电压进行降压处理。
应理解,本申请实施例中的数值仅为举例说明,还可以为其它数值,不应对本申请造成特别限定。
还应理解,本申请实施例中,具有固定降压比的多个电压转换模块也可以用于充电过程中的涓流充电阶段和恒压充电阶段,无固定降压比的多个电压转换模块也可以用于充电过程中的恒流充电阶段,本申请对此不作具体限定。
上文介绍了控制模块可以根据电池的充电阶段确定电压转换模块可以采用的转换电路,控制模块也可以根据电池的充电模式确定电压转换模块可以采用的转换电路,下文将进行具体介绍。
可选地,在一些实施例中,所述多个无线接收处理模块包括:第一AC/DC转换模块,与所述第一接收线圈连接,用于将所述第一无线充电信号转换为第一直流电压和第一直流电流;第二AC/DC转换模块,与所述第二接收线圈连接,用于将所述第二无线充电信号转换为第二直流电压和第二直流电流。与所述第一AC/DC转换模块连接的第一电压转换模块,与所述第二AC/DC转换模块连接的第二电压转换模块;所述第一电压转换模块和所述第二电压转换模块,分别用于将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为电池充电的第三直流电压。
所述无线接收装置还包括:控制模块,用于根据所述电池的充电模式,控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作;其中,所述电池的充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度。
本申请实施例中,如图6a所示,控制模块340可以基于对电池的充电模式选择电压转换模块所包括的转换电路,例如,电池的充电模式包括第一充电模式和第二充电模式,其中,第一充电模式的充电速度大于第二充电模式的充电速度,例如,第一充电模式可以为电压为9V和电流为2A的快速充电模式,第二充电模式可以为电压为5V和电路为1A的标准充电模式。
可选地,在一些实施例中,所述第一电压转化模块包括Buck电路或Buck-Boost电路或充电IC。
可选地,在一些实施例中,所述控制模块用于控制所述Buck电路或所述Buck-Boost电路或所述充电IC工作在所述第二充电模式下。
本申请实施例中,如图6a所示,假设第一电压转换模块313包括Buck电路或Buck-Boost电路或充电IC,则控制模块340可以控制Buck电路或Buck-Boost电路或充电IC工作在所述第二充电模式下,即控制模块340可以控制Buck电路或Buck-Boost电路或充电IC工作在电压和电流较小的充电模式下。
可选地,在一些实施例中,所述第二电压转换模块包括Charge pump电路。
可选地,在一些实施例中,所述控制模块,用于控制所述Charge pump电路工作在所述第一充电模式下。
本申请实施例中,如图6a所示,假设第二电压转换模块323包括Charge pump电路,则控制模块340可以控制Charge pump电路工作在所述第一充电模式下。在该充电模式下,可以以相对较大的电流和电压对电池进行充电。
应理解,本申请实施例中的第一充电模式和第二充电模式的充电速度是相对的,不限定第一充电模式和第二充电模式的电压和电流,只要第一充电模式的充电速度大于第二充电模式的充电速度均可应用本申请实施例。
可选地,在一些实施例中,所述第一电压转换模块和所述第二电压转换模块均包括Charge pump电路;所述多个电压转换模块还包括:与所述第一AC/DC转换模块和/或所述第二AC/DC转换模块连接的第三电压转换模块;所述控制模块,用于控制所述第一电压转换模块和所述第二电压转换模块工作在所述第一充电模式下,以及控制所述第三电压转换模块工作在所述第二充电模式下。
可选地,在一些实施例中,所述第三电压转换模块包括Buck电路、Buck-Boost电路或充电IC。
本申请实施例中,如图6a所示,假设第一电压转换模块313和第二电压转换模块323均采用Charge pump电路,则控制模块340可以控制Charge pump电路工作在第一充电模式下,与第一电压转换模块313或第二电压转换模块323连接的第三电压转换模块可以采用Buck电路、Buck-Boost电路或充电IC,控制模块340可以控制Buck电路、Buck-Boost电路或充电IC工作在第二充电模式下。
上述充电过程中,通路A和通路B的电压和电流均用于为同一电池进行充电,无线接收装置中的电池可能包括单电芯、多个并联的电芯或多个串联的电芯,对于电池中可能包括的多个并联的电芯或多个串联的电芯,下文将进行具体介绍。
可选地,在一些实施例中,所述多个无线接收处理模块包括的电压转换模块,用于在所述电池包括多个并联的电芯的情况下,分别对经过所述无线接收处理模块包括的AC/DC转换模块处理后的直流电压进行降压处理。
可选地,在一些实施例中,所述多个无线接收处理模块包括的电压转换模块,用于在所述电池包括多个串联的电芯的情况下,分别对经过所述无线接收处理模块包括的AC/DC转换模块处理后的直流电压进行升压处理。
如图7a所示,为本申请实施例提供的另一种无线接收装置。该装置中的电池可以包括两个电芯,分别为电芯330a和电芯330b,这两个电芯可以处于并联状态。
本申请实施例中,由于电芯330a和电芯330b处于并联状态,因此,第一电压转换模块313和第二电压转换模块323可以采用降压电路,以满足电池所预期的电池电压。
假设电池的额定电压为4.4V,两个电芯并联后的额定电压仍然为4.4V,若经过第一AC/DC转换模块312和第二AC/DC转换模块322处理后的电压为8.8V,则第一电压转换模块313和第二电压转换模块323可以均采用固定降压比为2的降压电路,则在经过第一电压转换模块313和第二电压转换模块323升压后的电压为4.4V,可以满足电池所预期的电压,因此,可以基于该电压对电池330进行充电。
在另一种实现方式中,如图7b所示,为本申请实施例提供的另一种无线接收装置。该装置中的电池也可以包括两个电芯,分别为电芯330c和电芯330d,这两个电芯也可以处于并联状态。在这种实现方式下,经过第一电压转换模块313转换后的电压可以用于为电芯330c充电,经过第二电压转换模块323转换后的电压可以用于为电芯330d充电。
如图7c所示,为本申请实施例提供的另一种无线接收装置。该装置中的电池也可以包括两个电芯,分别为电芯330e和电芯330f,这两个电芯也可以处于串联状态。
本申请实施例中,由于电池330e和电池330f处于串联状态,因此,第一电压转换模块313和第二电压转换模块323可以采用升压电路,以满足电池所预期的电池电压。
本申请实施例中,在电芯330e和电芯330f处于串联状态的情况下,第一电压转换模块313和第二电压转换模块323可以为boost升压电路,也可以为具有固定升压比的Charge Pump电路。
假设电池的额定电压为4.4V,两个电池串联后的额定电压为8.8V,若经过第一AC/DC转换模块312和第二AC/DC转换模块322处理后的电压为4.4V,则第一电压转换模块313和第二电压转换模块323可以均采用固定升压比为2的升压电路,则在经过第一电压转换模块313和第二电压转换模块323升压后的电压为8.8V,可以满足电池所预期的电压,因此,可以基于该电压对电芯330e和电芯330f进行充电。
可选地,在一些实施例中,所述每一无线接收处理模块包括:交流/直流AC/DC转换模块,用于将与其连接的接收线圈接收到的所述无线充电信号,转换为直流电压和直流电流;电压转换模块,用于对所述AC/DC转换模块输出的直流电压进行升压或降压处理,以得到满足所述电池充电需求的充电电压。
本申请实施例中,电压转换模块可以对AC/DC转换模块输出的电压进行转换处理,例如,可以对AC/DC转换模块包括的滤波模块滤波后的电压进行降压处理,或者对滤波后的电压进行升压处理,本申请对此不作具体限定。
本申请实施例中的AC/DC转换模块可以由MCU和/或AP控制。
为了进一步保证充电过程中的充电效率,无线接收装置可以向无线发射装置反馈信号,无线发射装置可以基于该反馈信号所对应的电压和/或电流调整发射功率,下文将进行具体介绍。
可选地,在一些实施中,所述无线接收装置还包括:控制模块340,用于根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线发射装置:所述电池两端的电压、所述电池的充电电流、每一AC/DC转换模块的输出电流、每一AC/DC转换模块的输出电压;其中,所述反馈信息用于指示所述无线发射装置调整发射的无线充电信号的发射功率。
本申请实施例中,无线接收装置中的控制模块可以将反馈信息反馈至无线发射装置。无线发射装置在接收到反馈信息后,可以基于该反馈信息调整发射功率。
可选地,在一些实施例中,所述反馈信息包括:所述电池两端的电压、所述电池的充电电流、每一AC/DC转换模块的输出电流、每一AC/DC转换模块的输出电压。
其中,所述电池两端的电压和所述电池的充电电流,用于供所述无线发射装置确定发射功率;所述每一AC/DC转换模块的输出电流和所述每一AC/DC转换模块的输出电压,用于供所述无线发射装置,在确定了所述无线充电信号的发射功率时,确定所述无线充电信号的发射电压。
可选地,在一些实施例中,所述控制模块340还用于:根据所述电池两端的电压和/或所述电池的充电电流,确定所述电池需要的充电功率;以及将所述需要的充电功率作为所述反馈信息反馈给所述无线发射装置,以使得所述无线发射装置调整所述无线充电信号的发射功率。
本申请实施例中,在对电池进行充电的过程中,多个充电通路中的其中一路可以将进入电池的实际接收功率反馈至无线发射装置,另一路可以不反馈;或者多个充电通路可以错开向无线发射装置反馈进入电池的实际接收功率。
类似地,以图3为例进行说明。控制模块340可以将通路A的进入电池的实际接收功率反馈至无线发射装置,可以不向无线发射装置反馈通路B的进入电池的实际接收功率;或者控制模块340可以将通路B的进入电池的实际接收功率反馈至无线发射装置,可以不向无线发射装置反馈通路A的进入 电池的实际接收功率;或者可以将通路A的在充电过程中的涓流充电阶段将进入电池的实际接收功率反馈至无线发射装置,将通路B的在充电过程中的恒流充电阶段和/或恒压充电阶段将进入电池的实际接收功率反馈至无线发射装置。本申请对此不作具体限定。
可以理解的是,在多个充电通路可以错开向无线发射装置反馈进入电池的实际接收功率的情况下,可以不基于充电过程中的充电阶段确定哪个充电通路向无线发射装置反馈进入电池的实际接收功率,多个充电通路可以基于充电时间错开向无线发射装置反馈进入电池的实际接收功率。
例如,在开始充电前的5分钟内,控制模块340可以向无线发射装置反馈通路A的进入电池的实际接收功率,可以不向无线发射装置反馈通路B的进入电池的实际接收功率;充电时间达到5分钟时及之后的充电过程,可以向无线发射装置反馈通路B的进入电池的实际接收功率,可以不向无线发射装置反馈通路A的进入电池的实际接收功率。
当无线发射装置接收到无线接收装置反馈的电池的实际接收功率后,可以基于该实际功率调整发射功率。例如,若无线发射装置接收到的无线接收装置反馈的功率为20W,大于预设的目标值,则无线发射装置中的控制单元可以减小发射电路的电压和/或电流,以降低无线发射装置的发射功率;若无线发射装置接收到的无线接收装置的功率为5W,小于预设的目标值,则无线发射装置中的控制单元可以增加发射电路的电压和/或电流,以提高无线发射装置的发射功率;若无线发射装置接收到的无线接收装置的功率为10W,等于预设的目标值,则无线发射装置中的控制单元可以不调整发射功率。
本申请实施例中,可以不采用反馈功率信号的方式向无线发射装置反馈充电功率,也可以采用其他方式,例如,可以通过蓝牙、Wi-Fi等方式向无线发射装置反馈电池的充电功率。
可选地,在一些实施例中,所述无线接收装置还包括控制模块340,用于根据所述多个AC/DC转换模块的输出电流和/或输出电压,确定所述电池的需求电流;以及将所述需求电流反馈给所述无线发射装置,以使得所述无线发射装置根据所述需求电流调整所述无线充电信号的发射功率。
本申请实施例中,控制模块340可以向无线发射装置反馈电池所需的充电电流。例如,假设接收线圈的预设电流阈值为5A,此时接收线圈接收到的电流为8A,大于预设的电流阈值,控制模块340可以向无线发射装置反馈该需求电流5A,以减小接收线圈的发热;无线发射装置在接收到无线接收装置的反馈后,可以调整无线发射电流,即调整无线发射功率。
本申请实施例提供的无线接收装置,由于控制模块可以向无线发射装置反馈电池所需的需求电流,从而可以使得无线发射装置根据反馈的需求电流调整发射电流,进一步地,可以减小无线接收装置的发热。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块340,用于根据所述电池的信息确定需要的充电功率,并根据所述多个AC/DC转换模块的输出电流,确定所述电池的需求电流;以及根据所述需要的充电功率和所述需求电流,确定所述电池的需求电压;将所述需求电压反馈给所述无线发射装置,或将所述需求电压与所述多个AC/DC转换模块中任一AC/DC转换模块的输出电压的电压差值反馈至所述无线发射装置。
本申请实施例中,在确定电池所需要的充电功率和需求电流后,可以确定电池所需的需求电压,从而可以将需求电压反馈给无线发射装置,无线发射装置在接收到无线接收装置发射的需求电压后,可以根据该需求电压调整发射电压。
本申请实施例中的电池信息可以包括电池两端的电压,电池的充电电流或电池的温度等信息。
本申请实施例中,在确定需求电压后,可以将需求电压与AC/DC转换模块中任一AC/DC转换模块的输出电压的电压差值反馈至无线发射装置,无线发射装置在接收到该电压差值后,可以根据该电压差值调整发射电压。
具体地,当无线发射装置接收到无线接收装置反馈的电压差值后,可以基于该差值调整发射功率。例如,若无线发射装置接收到的无线接收装置反馈的电压差值大于0,说明无线发射装置所发射的发射电压大于电池所预期的电压,这种情况下,无线发射装置可以减小发射电压;若无线发射装置接收到的无线接收装置反馈的差值小于0,说明无线发射装置所发射的发射电压小于电池所预期的充电电压,这种情况下,无线发射装置可以增加发射电压;若无线发射装置接收到的无线接收装置反馈的差值等于0,说明无线发射装置所发射的发射电压等于电池所预期的电压,这种情况下,无线发射装置可以不调整发射电压。
在另一种实现方式中,也可以将电池的预期接收功率与实际接收功率的差值反馈至无线发射装置。本申请实施例中的预期接收功率可以为电池预期接收的充电电压和充电电流的乘积,实际接收功率可以为电池的实际充电电压和充电电流的乘积。
在对电池进行充电的过程中,控制模块340可以将多个充电通路中的其中一个通路的预期接收功率与进入电池的实际接收功率的差值反馈至无线发射装置,另一通路的可以不反馈;或者控制模块340 可以错开向无线发射装置反馈多个充电通路的预期接收功率与进入电池的实际接收功率的差值。
例如,对于图3中的通路A,控制模块340可以将进入电池的预期接收功率与实际接收功率的差值反馈至无线发射装置,对于图3中的通路B,控制模块340可以不向无线发射装置反馈进入电池的预期接收功率与实际接收功率的差值;或者控制模块340可以将通路B的进入电池的预期接收功率与实际接收功率的差值反馈至无线发射装置,可以不向无线发射装置反馈通路A的进入电池的预期接收功率与实际接收功率的差值;或者控制模块340可以将通路A的在充电过程中的涓流充电阶段的进入电池的预期接收功率与实际接收功率的差值反馈至无线发射装置,可以将通路B的在充电过程中的恒流充电阶段和/或恒压充电阶段的进入电池的预期接收功率与实际接收功率的差值反馈至无线发射装置。本申请对此不作具体限定。
可以理解的是,在多个充电通路可以错开向无线发射装置反馈进入电池的预期接收功率与实际接收功率的差值的情况下,可以不基于充电过程中的充电阶段确定哪个充电通路向无线发射装置反馈进入电池的预期接收功率与实际接收功率的差值,多个充电通路可以基于充电时间错开向无线发射装置反馈进入电池的预期接收功率与实际接收功率的差值。
例如,在开始充电前的5分钟内,控制模块340可以向无线发射装置反馈通路A的进入电池的预期接收功率与实际接收功率的差值,可以不向无线发射装置反馈通路B的进入电池的预期接收功率与实际接收功率的差值;充电时间达到5分钟时及之后的充电过程,可以向无线发射装置反馈通路B的进入电池的预期接收功率与实际接收功率的差值,可以不向无线发射装置反馈通路A的进入电池的预期接收功率与实际接收功率的差值。
当无线发射装置接收到无线接收装置反馈的进入电池的预期接收功率与实际接收功率的差值后,可以基于该差值调整发射功率。例如,若无线发射装置接收到的无线接收装置反馈的差值大于0,说明无线发射装置所发射的发射功率大于电池所预期的充电功率,这种情况下,无线发射装置可以减小发射功率,例如,可以减小发射电流和/或发射电压;若无线发射装置接收到的无线接收装置反馈的差值小于0,说明无线发射装置所发射的发射功率小于电池所预期的充电功率,这种情况下,无线发射装置可以增加发射功率,例如,可以增加发射电流和/或发射电压;若无线发射装置接收到的无线接收装置反馈的差值等于0,说明无线发射装置所发射的发射功率等于电池所预期的充电功率,这种情况下,无线发射装置可以不调整发射功率。
可选地,在一些实施例中,所述反馈信息指示所述无线发射装置增加发射电压或减小发射电压。
本申请实施例中,在无线接收装置确定当前接收的电压和/或电流的情况后,基于电池的信息,可以向无线发射装置发送增加发射电压或减小发射电压的反馈信息;无线发射装置在接收到反馈信息后,可以基于该反馈信息调整发射电压,以满足电池所预期的电压。
本申请实施例中,无线发射装置在接收到无线接收装置发送的反馈信息后,可以按照一定的调整等级调整,例如,无线发射装置接收到无线接收装置发送的第一反馈信息和第二反馈信息,第一反馈信息为控制模块340反馈的主线圈的信息,第二反馈信息为控制模块340反馈的副线圈的信息,则无线发射装置可以先基于第一反馈信息调整发射电压,再基于第二反馈信息调整发射电压。无线接收装置在接收到经过调整后的功率后,可以实时向无线发射装置反馈,以使得无线发射装置可以基于无线接收装置发送的反馈信息实时调整发射电压,从而可以满足电池所预期的电压。
可选地,在一些实施例中,所述无线接收装置利用所述多个接收线圈的任一个或多个向所述无线发射装置发射反馈信息;或所述无线接收装置利用带外通信的方式向无线发射装置发送反馈信息。
本申请实施例中,无线接收装置可以利用多个接收线圈中的一个接收线圈向无线发射装置发送反馈信息,也可以通过多个接收线圈中的多个接收线圈向无线发射装置发送反馈信息,还可以通过带外通信的方式向向无线发射装置发送反馈信息,例如,可以通过蓝牙、Wi-Fi等方式向无线发射装置发送反馈信息。
可选地,在一些实施例中,所述多个接收线圈接收到的功率相同。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块,用于控制所述多个接收线圈分别接收到的功率。
本申请实施例中,如图3所示,假设第一接收线圈311和第二接收线圈321的匝数相同,则在无线发射功率一定的情况下,第一接收线圈311和第二接收线圈321所接收到的功率可以是相同的。
本申请实施例中,假设第一接收线圈311和第二接收线圈321的匝数不同,则在无线发射功率一定的情况下,第一接收线圈311和第二接收线圈321所接收到的功率也是不同的。可选地,控制模块340可以控制分配给第一接收线圈311和第二接收线圈321的功率,例如,无线发射装置发射的发射功率为10W,假设在没有能量损耗的情况下,控制模块340可以控制第一接收线圈311接收的功率为7W,第二接收线圈321接收的功率为3W。
可选地,在一些实施例中,所述控制模块具体用于:根据所述多个接收线圈的阻抗的不同控制所述多个接收线圈分别接收到的功率。
本申请实施例中,若需要将需求电流反馈至无线发射装置,可以将主线圈所需求的电流反馈至无线发射装置,也可以将发热较为严重的线圈的需求电流反馈至无线发射装置。例如,假设第一接收线圈311为主线圈,第二接收线圈321为副线圈,则可以将第一接收线圈311所需求的电流反馈至无线发射装置;若第一接收线圈311上的发热较为严重,可以将第一接收线圈311所需求的电流反馈至无线发射装置,若第二接收线圈321上的发热较为严重,可以将第二接收线圈321所需求的电流反馈至无线发射装置。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块340,用于,在所述多个接收线圈或所述多个无线接收处理模块的阻抗不同的情况下,控制调整所述多个接收线圈中的至少部分接收线圈的输出电流。
本申请实施例中,若不同充电通路上的接收线圈或整流电路或滤波电路或变压电路不同,例如,多个接收线圈中的线圈可能是不同的,由于材料的不同导致线圈的阻抗不同,或者由于线圈的匝数不同而导致线圈的阻抗不同;或者多个整流电路中的整流电路的阻抗也可能是不同的,例如,电路形式不同或整流电路所包括的元器件不同而导致的阻抗不同等。由于不同充电通路的阻抗不同,则在无线充电过程中的不同充电通路上的发热可能也是不同的,因此,在这种情况下,可以基于充电通路上所包括的器件的阻抗调整该充电通路的电流和电压。
具体地,如图3所示,假设无线充电通路包括两个通路,其中充电通路A上所包括的第一接收线圈311、第一AC/DC转换模块312和第一电压转换模块313等的通路阻抗大于充电通路B上所包括的第二接收线圈321、第二AC/DC转换模块322以及第二电压转换模块323的通路阻抗,则充电通路A上的发热可能会超过充电通路B上的发热,因此,通信控制电路可以控制减小充电通路A上的充电电流,从而可以尽量降低通路A上的发热。
本申请实施例中的通信控制电路可以包括微控制单元MCU和/或AP。本申请实施例中,通过通信控制电路来调整充电电流可以由MCU实现,也可以由AP实现,还可以由MCU和AP共同来实现,本申请对此不作具体限定。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块340,用于控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理;其中所述部分接收线圈为所述多个接收线圈中的至少一个接收线圈。
本申请实施例中,例如,如图3所示,第一接收线圈311可以接收无线发射装置发射的无线充电信号,第二接收线圈321可以不接收无线发射装置发射的无线充电信号;或者第一接收线圈311可以不接收无线发射装置发射的无线充电信号,第二接收线圈321可以接收无线发射装置发射的无线充电信号。在第一接收线圈311可以接收无线发射装置发射的无线充电信号,第二接收线圈321可以不接收无线发射装置发射的无线充电信号的情况下,第一AC/DC转换模块312和第一电压转换模块313可以不工作;或者在第一接收线圈311可以不接收无线发射装置发射的无线充电信号,第二接收线圈321可以接收无线发射装置发射的无线充电信号的情况下,第二AC/DC转换模块322和第二电压转换模块323可以不工作。
可选地,在一些实施例中,所述控制模块340具体用于:在以下一个或多个条件满足时,控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理:在无线发射装置发射的功率小于预设功率阈值;所述多个接收线圈中任一接收线圈的温度大于预设温度阈值;所述多个无线接收处理模中任一个无线接收处理模块输出的电压或电流大于预设电压/电流阈值。
本申请实施例中,若无线发射装置的功率小于预设的功率阈值,例如,小于5W的情况下,控制模块340可以控制多个接收线圈中的部分接收线圈接收无线充电信号,例如,可以控制第一接收线圈311接收无线充电信号,相应地,可以控制与第一接收线圈311连接的无线接收处理模块工作;或者控制第二接收线圈321接收无线充电信号,相应地,可以控制与第二接收线圈311连接的无线接收处理模块工作。
或者,若多个接收线圈中的部分接收线圈的温度大于预设温度阈值,例如,大于50℃,控制模块340可以控制多个接收线圈中的部分接收线圈接收无线充电信号,例如,若第一接收线圈的温度大于50℃,可以控制第二接收线圈321接收无线充电信号,相应地,可以控制与第二接收线圈311连接的无线接收处理模块工作。或者若第二接收线圈的温度大于50℃,可以控制第一接收线圈311接收无线充电信号,相应地,可以控制与第一接收线圈311连接的无线接收处理模块工作。
或者,若多个无线接收处理模块中的部分无线接收处理模块的输出电压或电流大于预设的电压/电流阈值,则控制模块340可以控制与输出电压或电流大于预设阈值的无线接收处理模块连接的接收线圈不工作,或者若多个无线接收处理模的输出电压或电流大于预设的电压/电流阈值,控制模块340可以控制停止对电池充电。
例如,若第一无线接收处理模块输出的电压大于预设阈值,例如,大于20V,控制模块340可以控制第二接收线圈321接收无线充电信号,相应地,可以控制与第二接收线圈311连接的第二无线接收处理模块工作。或者若第二无线接收处理模块输出的电压大于预设阈值,例如,大于20V,可以控制第一接收线圈311接收无线充电信号,相应地,可以控制与第一接收线圈311连接的第一无线接收处理模块工作。或者,若第一无线接收处理模块与第二无线接收处理模输出的电压均大于预设阈值,例如,大于20V,控制模块340可以控制第一接收线圈311和第二接收线圈321均停止接收无线充电信号,即控制模块340可以控制停止对电池充电。
应理解,上述数值仅为举例说明,还可以为其他数值,不应对本申请造成特别限定。
可选地,在一些实施例中,所述电池包括多个电芯;所述多个无线接收处理模块中每一个均与一电芯连接,以对与其连接的电芯充电。
本申请实施例中,无线接收处理中每一个无线接收处理模块可以均与电池所包括的一电芯连接,如图7b所示,例如,通路A上的经过第一电压转换模块313转换后的电压可以用于为电池所包括的电芯330c充电,通路B上的进过第二电压转换模块323转换后的电压可以用于为电池所包括的电芯330d充电。
本申请实施例中的多个电芯可以处于串联状态,也可以处于并联状态。
图8是本申请实施例提供的一种无线接收装置800,该装置可以包括多个接收线圈810、多个AC/DC转换模块820、电压转换模块830以及电池840。
多个接收线圈810,分别与发射线圈耦合,用于分别接收所述发射线圈发射的无线充电信号。
多个AC/DC转换模块820,分别用于对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以得到直流电压和直流电流。
电压转换模块830,与所述多个AC/DC转换模块连接,用于将所述直流电压进行升压或降压处理,以得到为电池840充电的目标直流电压。
其中,每一所述AC/DC转换模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电压转换模块连接。
本申请实施例中的电压转换模块830可以对经过多个AC/DC转换模块820处理后的电压进行降压或升压处理,由于无线接收装置中包括多个AC/DC转换模块,分别用于对多个接收线圈所接收到的电压和/或电流进行处理,从而可以避免整流电路工作紊乱;同时由于多个接收线圈上所接收到的电流通过多个AC/DC转换模块进行处理,在电池可以允许充电的电压和电流范围内,进一步地,可以增加电池的充电电压和充电电流,从而可以提升充电功率和充电速度。
可选地,在一些实施例中,所述多个接收线圈包括:第一接收线圈,与所述发射线圈耦合,用于从所述发射线圈接收第一无线充电信号;第二接收线圈,与所述发射线圈耦合,用于从所述发射线圈接收第二无线充电信号。
可选地,在一些实施例中,所述第一接收线圈和所述第二接收线圈重叠设置,以使得所述第一接收线圈和所述第二接收线圈能够同时与所述发射线圈对准。
可选地,在一些实施例中,所述第一接收线圈和所述第二接收线圈设置在同一柔性印刷电路FPC基板上,并通过屏蔽层隔离。
可选地,在一些实施例中,所述第一接收线圈和所述第二接收线圈均为表面包覆了绝缘材料的导线绕制而成。
可选地,在一些实施例中,所述多个AC/DC转换模块包括:第一AC/DC转换模块,与所述第一接收线圈连接,用于将所述第一无线充电信号转换为第一直流电压和第一直流电流;第二AC/DC转换模块,与所述第二接收线圈连接,用于将所述第二无线充电信号转换为第二直流电压和第二直流电流。
所述电压转换模块包括第一电压转换模块,用于:将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为所述电池充电的所述目标直流电压;所述无线接收装置还包括:控制模块,用于根据所述电池的充电阶段,控制所述第一AC/DC转换模块和第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第一电压转换模块工作;其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段。
可选地,在一些实施例中,所述第一电压转化模块包括Buck电路或Buck-Boost电路或充电集成电路IC。
可选地,在一些实施例中,所述控制模块用于控制所述Buck电路或所述Buck-Boost电路或充电IC工作在以下充电阶段的一个或多个充电阶段:所述涓流充电阶段、所述恒流充电阶段和所述恒压充电阶段。
可选地,在一些实施例中,所述第一电压转换模块包括Charge pump电路;所述电压转换模块还包括:与所述第一AC/DC转换模块和/或所述第二AC/DC转换模块连接的第二电压转换模块;所述控制模块,用于控制所述第一电压转换模块工作在恒流充电阶段,以及控制所述第二电压转换模块工作在涓流充电阶段和/或恒压充电阶段。
可选地,在一些实施例中,所述第二电压转换模块包括Buck电路、Buck-Boost电路或充电IC。
可选地,在一些实施例中,所述多个无线接收处理模块包括:第一AC/DC转换模块,与所述第一接收线圈连接,用于将所述第一无线充电信号转换为第一直流电压和第一直流电流;第二AC/DC转换模块,与所述第二接收线圈连接,用于将所述第二无线充电信号转换为第二直流电压和第二直流电流。
所述电压转换模块包括第一电压转换模块,具体用于:将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为所述电池充电的所述目标直流电压;所述无线接收装置还包括:控制模块,用于根据所述电池的充电模式,控制所述第一AC/DC转换模块和所述电压转换模块包括的第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述电压转换模块包括的第一电压转换模块工作;其中,所述电池的充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度。
可选地,在一些实施例中,所述第一电压转化模块包括Buck电路或Buck-Boost电路或充电集成电路IC。
可选地,在一些实施例中,所述控制模块用于控制所述Buck电路或Buck-Boost电路或充电IC工作在所述第二充电模式下。
可选地,在一些实施例中,所述第一电压转换模块包括Charge pump电路;所述电压转换模块还包括:与所述第一AC/DC转换模块和/或所述第二AC/DC转换模块连接的第二电压转换模块;所述控制模块,用于控制所述第一电压转换模块工作在所述第一充电模式下,以及控制所述第二电压转换模块工作在所述第二充电模式下。
可选地,在一些实施例中,所述第二电压转换模块包括Buck电路、Buck-Boost电路或充电IC。
可选地,在一些实施例中,所述电池包括多个并联的电芯或包括多个串联的电芯。
可选地,在一些实施例中,所述电压转换模块,用于在所述电池包括多个并联的电芯的情况下,对经过所述多个AC/DC转换模块处理后的直流电压进行降压处理。
可选地,在一些实施例中,所述电压转换模块,用于在所述电池包括多个串联的电芯的情况下,对经过所述多个AC/DC转换模块处理后的直流电压进行升压处理。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块,用于根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池两端的电压、所述电池的充电电流、每一AC/DC转换模块的输出电流、每一AC/DC转换模块的输出电压;其中,所述反馈信息用于指示所述无线充电装置调整发射的无线充电信号的发射功率。
可选地,在一些实施例中,所述反馈信息包括:所述电池两端的电压、所述电池的充电电流、每一AC/DC转换模块的输出电流、每一AC/DC转换模块的输出电压;其中,所述电池两端的电压和所述电池的充电电流,用于供所述无线发射装置确定发射功率;所述每一AC/DC转换模块的输出电流、所述每一AC/DC转换模块的输出电压,用于供所述无线发射装置,在确定了所述无线充电信号的发射功率时,确定所述无线充电信号的发射电压。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块,用于根据所述电池两端的电压和/或所述电池的充电电流,确定所述电池需要的充电功率;以及将所述需要的充电功率作为所述反馈信息反馈给所述无线发射装置,以使得所述无线发射装置调整所述无线充电信号的发射功率。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块,用于根据所述多个AC/DC转换模块的输出电流和/或输出电压,确定所述电池的需求电流;以及将所述需求电流作为所述反馈信息反馈给所述无线发射装置,以使得所述无线发射装置根据所述需求电流调整所述无线充电信号的发射功率。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块,用于根据所述电池的信息确定需要的充电功率,并根据所述多个AC/DC转换模块的输出电流,确定所述电池的需求电流;以及根据所述需要的充电功率和所述需求电流,确定所述电池的需求电压;将所述需求电压反馈给所述无线发射装置,或将所述需求电压与所述多个AC/DC转换模块中任一AC/DC转换模块的输出电压的电压差值作为所述反馈信息反馈至所述无线发射装置。
可选地,在一些实施例中,所述反馈信息指示所述无线发射装置增加发射电压或减小发射电压。
可选地,在一些实施例中,所述无线接收装置利用所述多个接收线圈的任一个或多个向所述无线发射装置发送反馈信息;或所述无线接收装置利用带外通信的方式向所述无线发射装置发送反馈信息。
可选地,在一些实施例中,所述多个接收线圈接收到的功率相同。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块,用于控制所述多个接收线圈分别接收到的功率。
可选地,在一些实施例中,所述控制模块具体用于:根据所述多个接收线圈的阻抗的不同控制所述多个接收线圈分别接收到的功率。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块,用于在所述多个接收线圈或所述多个无线接收处理模块的阻抗不同的情况下,控制调整所述多个接收线圈中的至少部分接收线圈的输出电流。
可选地,在一些实施例中,所述无线接收装置还包括:控制模块,用于控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理;其中所述部分接收线圈为所述多个接收线圈中的至少一个接收线圈。
可选地,在一些实施例中,所述控制模块具体用于:在以下一个或多个条件满足时,控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理:无线发射装置发射的功率小于预设功率阈值;所述多个接收线圈中任一接收线圈的温度大于预设温度阈值;所述多个无线接收处理模块中任一个无线接收处理模块输出的电压或电流大于预设电压/电流阈值。
图9是本申请实施例提供的一种无线充电系统900,该系统900可以包括无线发射装置910和无线接收装置920;其中,无线发射装置910可以包括逆变电路911和发射线圈912,无线接收装置920可以包括多个接收线圈921、多个无线接收处理模块922和电池923。
无线发射装置910可以包括:
逆变电路911,用于将输入的直流电转换为交流电。
发射线圈912,用于将所述交流电转换为可通过电磁域发射的无线充电信号。
所述无线接收装置920可以包括:
多个接收线圈921,与所述发射线圈耦合,用于接收所述发射线圈发射的无线充电信号。
本申请实施例中的无线充电信号可以通过无线发射装置的发射线圈(或发射天线)发射,在一些实施例中,无线发射装置可以包括无线发射驱动电路和发射线圈。无线发射驱动电路可用于生成较高频率的交流电,发射线圈或发射天线可用于将该较高频率的交流电转换成电磁信号发射出去。
本申请实施例中的多个接收线圈可以包括两个或者三个或者更多的接收线圈,本申请对此不作具体限定。本申请实施例中,该多个接收线圈可以同时接收无线发射装置发射的无线信号,也可以不同时接收无线发射装置发射的无线信号。
多个无线接收处理模块922,分别用于对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于对电池923充电。
其中,每一无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
本申请实施例中,多个无线接收处理模块922可以与多个接收线圈911一一对应,分别处理多个接收线圈911接收到的无线充电信号的电压和/或电流。经过多个无线接收处理模块922处理后的多个电压和电流,可以共同用于对电池923进行充电。
本申请实施例提供的无线接收系统,由于无线接收装置包括多个接收线圈和多个无线接收处理模块,从而可以提高无线充电的充电速度和效率;且由于多个无线接收处理模块分别用于对多个接收线圈所接收到的电压和电流进行处理,可避免整流电路工作紊乱。
可选地,在一些实施例中,所述多个接收线圈921包括:第一接收线圈,与所述发射线圈耦合,用于从所述发射线圈接收第一无线充电信号;第二接收线圈,与所述发射线圈耦合,用于从所述发射线圈接收第二无线充电信号。
可选地,在一些实施例中,第一交流/直流AC/DC转换模块,与所述第一接收线圈连接,用于将所述第一无线充电信号转换为第一直流电压和第一直流电流;第二AC/DC转换模块,与所述第二接收线圈连接,用于将所述第二无线充电信号转换为第二直流电压和第二直流电流;与所述第一AC/DC转换模块连接的第一电压转换模块,所述第二AC/DC转换模块连接的第二电压转换模块;所述第一电压转换模块和所述第二电压转换模块,分别用于将所述第一直流电压和所述第二直流电压进行升压或降压处 理,以得到为电池充电的第三直流电压;所述无线接收装置还包括:控制模块,用于根据所述电池的充电阶段或充电模式,控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作;其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段;所述电池的充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度。
本申请实施例中,电压转换模块可以对AC/DC转换模块输出的电压进行转换处理,例如,可以对AC/DC转换模块包括的滤波模块滤波后的电压进行降压处理,或者对滤波后的电压进行升压处理,本申请对此不作具体限定。
本申请实施例中的AC/DC转换模块可以由MCU和/或AP控制。
本申请实施例中,第一接收线圈和第二接收线圈可以同时接收发射线圈发射的无线充电信号,也可以不同时接收发射发射线圈发射的无线充电信号;第一AC/DC转换模块的一端与第一接收线圈连接,另一端与电池连接,第二AC/DC转换模块的一端与第二接收线圈连接,另一端与电池连接。这两个AC/DC转换模块可以分别对其连接的接收线圈接收到的无线充电信号的接收功率对应的电压和/或电流进行处理,例如,第一AC/DC转换模块可以对第一接收线圈接收到的第一无线充电信号进行整流和滤波处理;第二AC/DC转换模块可以对第二接收线圈接收到的第二无线充电信号进行整流和滤波处理。
本申请实施例中的第一接收线圈和第二接收线圈可以为图9中的多个接收线圈921,第一AC/DC转换模块、第一电压转换模块、第二AC/DC转换模块以及第二电压转换模块共同组成的模块可以为图9中的多个无线接收处理模块922。
本申请实施例中,第一AC/DC转换模块输出的电流可以是第一接收线圈输出的电流,也可以是第一接收线圈至第一AC/DC转换模块的充电通路上检测到的电流等,本申请对此不做具体限定,只要是可以反应第一接收线圈的电流均可应用本申请实施例;类似地,第二AC/DC转换模块输出的电流可以是第二接收线圈输出的电流,也可以是第二接收线圈至第二AC/DC转换模块的充电通路上检测到的电流等,本申请对此不做具体限定,只要是可以反应第二接收线圈的电流均可应用本申请实施例。
本申请实施例提供的无线接收系统,由于无线接收装置包括多个接收线圈和多个无线接收处理模块,从而可以提高无线充电的充电速度和效率;且由于多个无线接收处理模块分别用于对多个接收线圈所接收到的电压和电流进行处理,可避免整流电路工作紊乱。
可选地,在一些实施例中,所述电池包括多个电芯;所述多个无线接收处理模块中每一个均与一电芯连接,以对与其连接的电芯充电。
上文结合图1-图9,详细描述了本申请的装置实施例,下面结合图10-图13,详细描述本申请的方法实施例,方法实施例与装置实施例相互对应,因此未详细描述的部分可以参见前面各装置实施例。
图10是本申请实施例提供的无线充电方法1000的示意性流程图。所述方法1000可应用于无线接收装置,例如可以是上文描述的无线接收装置200或300b或800中的任意一种装置。图10的方法可以包括步骤S1010-S1020。
S1010,多个接收线圈接收发射线圈发射的无线充电信号。
S1020,多个无线接收处理模块分别对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于共同对电池充电。
其中,每一个无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
可选地,在一些实施例中,所述多个接收线圈包括第一接收线圈和第二接收线圈;所述多个接收线圈分别接收发射线圈发射的无线充电信号,包括:所述第一接收线圈接收所述发射线圈发射的第一无线充电信号;所述第二接收线圈接收所述发射线圈发射的第二无线充电信号。
可选地,在一些实施例中,所述第一接收线圈和所述第二接收线圈重叠设置,以使得所述第一接收线圈和所述第二接收线圈能够同时与所述发射线圈对准。
可选地,在一些实施例中,所述第一接收线圈和所述第二接收线圈设置在同一FPC基板上,并通过屏蔽层隔离。
可选地,在一些实施例中,所述第一接收线圈和所述第二接收线圈均为表面包覆了绝缘材料的导线绕制而成。
可选地,在一些实施例中,所述多个无线接收处理模块包括:与所述第一接收线圈连接的第一AC/DC转换模块,与所述第二接收线圈连接的第二AC/DC转换模块;所述方法还包括:所述第一AC/DC转换模块将所述第一无线充电信号转换为第一直流电压和第一直流电流;所述第二AC/DC转换模块将所述第二无线充电信号转换为第二直流电压和第二直流电流;所述无线接收处理模块还包括:与所述第一AC/DC转换模块连接的第一电压转换模块,与所述第二AC/DC转换模块连接的第二电压转换模块; 所述方法还包括:所述第一电压转换模块和所述第二电压转换模块分别将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为电池充电的第三直流电压;所述无线接收装置还包括:控制模块;所述方法还包括:所述控制模块根据所述电池的充电阶段,控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作;其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段。
可选地,在一些实施例中,所述第一电压转换模块包括Buck电路或Buck-Boost电路或充电集成电路IC。
可选地,在一些实施例中,所述控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作,包括:控制所述Buck电路或所述Buck-Boost电路或所述充电IC工作在以下充电阶段的一个或多个充电阶段:所述涓流充电阶段、所述恒流充电阶段和所述恒压充电阶段。
可选地,在一些实施例中,所述第二电压转换模块包括Charge pump电路。
可选地,在一些实施例中,所述控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作,包括:控制所述Charge pump电路在所述恒流充电阶段的工作。
可选地,在一些实施例中,所述第一电压转换模块和所述第二电压转换模块均为Charge pump电路;所述电压转换模块还包括:与所述第一AC/DC转换模块和/或所述第二AC/DC转换模块连接的第三电压转换模块;所述控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作,包括:控制所述第一电压转换模块和所述第二电压转换模块工作在恒流充电阶段;所述方法还包括:控制所述第三电压转换模块工作在涓流充电阶段和恒压充电阶段。
可选地,在一些实施例中,所述第三电压转换模块包括Buck电路或Buck-Boost电路或充电集成电路IC。
可选地,在一些实施例中,所述多个无线接收处理模块包括:与所述第一接收线圈连接的第一AC/DC转换模块,与所述第二接收线圈连接的第二AC/DC转换模块;所述方法还包括:所述第一AC/DC转换模块将所述第一无线充电信号转换为第一直流电压和第一直流电流;所述第二AC/DC转换模块将所述第二无线充电信号转换为第二直流电压和第二直流电流;所述无线接收处理模块还包括:与所述第一AC/DC转换模块连接的第一电压转换模块,与所述第二AC/DC转换模块连接的第二电压转换模块;所述方法还包括:所述第一电压转换模块和所述第二电压转换模块分别将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为电池充电的第三直流电压;所述无线接收装置还包括控制模块;所述方法还包括:所述控制模块根据所述电池的充电模式,控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作;其中,所述电池的充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度。
可选地,在一些实施例中,所述第一电压转化模块包括Buck电路或Buck-Boost电路或充电IC。
可选地,在一些实施例中,所述控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作,包括:控制所述Buck电路或所述Buck-Boost电路所述充电IC工作在所述第二充电模式下。
可选地,在一些实施例中,所述第二电压转换模块包括Charge pump电路。
可选地,在一些实施例中,所述控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作,包括:控制所述Charge pump电路工作在所述第一充电模式下。
可选地,在一些实施例中,所述第一电压转换模块和所述第二电压转换模块均包括Charge pump电路;所述电压转换模块还包括:与所述第一AC/DC转换模块和/或所述第二AC/DC转换模块连接的第三电压转换模块;所述控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作,包括:控制所述第一电压转换模块和所述第二电压转换模块工作在所述第一充电模式下;所述方法还包括:控制所述第三电压转换模块工作在所述第二充电模式下。
可选地,在一些实施例中,所述第三电压转换模块包括Buck电路或Buck-Boost电路或充电IC。
可选地,在一些实施例中,所述电池包括多个并联的电芯或包括多个串联的电芯。
可选地,在一些实施例中,所述控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作,包括:控制所述第一电压转换模块和 所述第二电压转换模块在所述电池包括多个并联的电芯的情况下,分别对经过所述无线接收处理模块包括的AC/DC转换模块处理后的直流电压进行降压处理。
可选地,在一些实施例中,所述无线接收处理模块包括的第一电压转换模块和第二电压转换模块为升压电路;所述控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作,包括:控制所述第一电压转换模块和所述第二电压转换模块在所述电池包括多个串联的电芯的情况下,分别对经过所述无线接收处理模块包括的AC/DC转换模块处理后的直流电压进行升压处理。
可选地,在一些实施例中,所述多个无线接收处理模块分别对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,包括:所述多个无线接收处理模块包括的多个交流/直流AC/DC转换模块中的每一个交流/直流AC/DC转换模块将与其连接的接收线圈接收到的所述无线充电信号,转换为直流电压和直流电流;所述多个无线接收处理模块包括的多个电压转换模块中的每一个电压转换模块对所述AC/DC转换模块输出的直流电压进行升压或降压处理,以得到满足所述电池充电需求的充电电压。
可选地,在一些实施例中,所述方法还包括:根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池两端的电压、所述电池的充电电流、每一AC/DC转换模块的输出电流、每一AC/DC转换模块的输出电压;其中,所述反馈信息用于指示所述无线充电装置调整发射的无线充电信号的发射功率。
可选地,在一些实施例中,所述反馈信息包括:所述电池两端的电压、所述电池的充电电流、每一AC/DC转换模块的输出电流、每一AC/DC转换模块的输出电压;其中,所述电池两端的电压和所述电池的充电电流,用于供所述无线发射装置确定发射功率;所述每一AC/DC转换模块的输出电流、所述每一AC/DC转换模块的输出电压,用于供所述无线发射装置,在确定了所述无线充电信号的发射功率时,确定所述无线充电信号的发射电压。
可选地,在一些实施例中,所述方法1000还包括:根据所述电池两端的电压和/或所述电池的充电电流,确定所述电池需要的充电功率;将所述需要的充电功率作为所述反馈信息反馈给所述无线发射装置,以使得所述无线发射装置调整所述无线充电信号的发射功率。
可选地,在一些实施例中,所述方法1000还包括:根据所述多个AC/DC转换模块的输出电流和/或输出电压,确定所述电池的需求电流;将所述需求电流作为所述反馈信息反馈给所述无线发射装置,以使得所述无线发射装置根据所述需求电流调整所述无线充电信号的发射功率。
可选地,在一些实施例中,所述方法1000还包括:根据所述电池的信息确定需要的充电功率,并根据所述多个AC/DC转换模块的输出电流,确定所述电池的需求电流;根据所述需要的充电功率和所述需求电流,确定所述电池的需求电压;将所述需求电压反馈给所述无线发射装置,或将所述需求电压与所述多个AC/DC转换模块中任一AC/DC转换模块的输出电压的电压差值作为所述反馈信息反馈至所述无线发射装置。
可选地,在一些实施例中,所述方法1000还包括:向所述无线发射装置发送反馈信息,所述反馈信息指示所述无线发射装置增加发射电压或减小发射电压。
可选地,在一些实施例中,所述多个接收线圈接收到的功率相同。
可选地,在一些实施例中,所述方法还包括:控制所述多个接收线圈分别接收到的功率。
可选地,在一些实施例中,所述控制所述多个接收线圈分别接收到的功率,包括:根据所述多个接收线圈的阻抗的不同控制所述多个接收线圈分别接收到的功率。
可选地,在一些实施例中,如图10所示,所述方法1000还可以包括步骤S1030。
S1030,在所述多个接收线圈或所述多个无线接收处理模块的阻抗不同的情况下,控制调整所述多个接收线圈中的至少部分接收线圈的输出电流。
可选地,在一些实施例中,所述方法1000还可以包括:控制多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理;其中所述部分接收线圈为所述多个接收线圈中的至少一个接收线圈。
可选地,在一些实施例中,所述控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理,包括:在以下一个或多个条件满足时,控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理:无线发射装置发射的功率小于预设功率阈值;所述多个接收线圈中任一接收线圈的温度大于预设温度阈值;所述多个无线接收处理模块中任一个无线接收处理模块输出的电压或电流大于预设电压/电流阈值。
图12是本申请实施例提供的无线充电方法1200的示意性流程图。所述方法1200可应用于无线接收装置,例如可以是上文描述的无线接收装置200或300b或800中的任意一种装置。图12的方法可以包括步骤S1210-S1230。
S1210,多个接收线圈分别接收发射线圈发射的无线充电信号。
S1220,多个AC/DC转换模块分别对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以得到直流电压和直流电流。
S1230,电压转换模块将所述直流电压进行升压或降压处理,以得到为电池充电的目标直流电压。
其中,每一所述AC/DC转换模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电压转换模块连接。
可选地,在一些实施例中,所述多个接收线圈包括第一接收线圈和第二接收线圈;所述多个接收线圈分别接收发射线圈发射的无线充电信号,包括:所述第一接收线圈接收所述发射线圈发射的第一无线充电信号;所述第二接收线圈接收所述发射线圈发射的第二无线充电信号。
可选地,在一些实施例中,所述第一接收线圈和所述第二接收线圈重叠设置,以使得所述第一接收线圈和所述第二接收线圈能够同时与所述发射线圈对准。
可选地,在一些实施例中,所述第一接收线圈和所述第二接收线圈设置在同一柔性印刷电路FPC基板上,并通过屏蔽层隔离。
可选地,在一些实施例中,所述第一接收线圈和所述第二接收线圈均为表面包覆了绝缘材料的导线绕制而成。
可选地,在一些实施例中,所述多个AC/DC转换模块包括:与所述第一接收线圈连接的第一AC/DC转换模块,与所述第二接收线圈连接的第二AC/DC转换模块;所述方法1200还包括:所述第一AC/DC转换模块将所述第一无线充电信号转换为第一直流电压和第一直流电流;所述第二AC/DC转换模块将所述第二无线充电信号转换为第二直流电压和第二直流电流;所述电压转换模块将所述直流电压进行升压或降压处理,以得到为电池充电的目标直流电压,包括:所述电压转换模块包括第一电压转换模块,将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为所述电池充电的所述目标直流电压;所述无线接收装置还包括控制模块;所述方法1200还包括:所述控制模块根据所述电池的充电阶段,控制所述第一AC/DC转换模块和所述电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述电压转换模块工作;其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段。
可选地,在一些实施例中,所述第一电压转换模块包括Buck电路或Buck-Boost电路或充电集成电路IC。
可选地,在一些实施例中,所述控制所述第一AC/DC转换模块和所述电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述电压转换模块工作,包括:控制所述Buck电路或所述Buck-Boost电路或所述充电IC工作在以下充电阶段的一个或多个充电阶段:所述涓流充电阶段、所述恒流充电阶段和所述恒压充电阶段。
可选地,在一些实施例中,所述第一电压转换模块包括Charge pump电路;所述电压转换模块还包括:与所述第一AC/DC转换模块和/或所述第二AC/DC转换模块连接的第二电压转换模块;所述方法1200还包括:控制所述第一电压转换模块工作在恒流充电阶段,以及控制所述第二电压转换模块工作在涓流充电阶段和/或恒压充电阶段。
可选地,在一些实施例中,所述第二电压转换模块包括Buck电路或Buck-Boost电路或充电IC。
可选地,在一些实施例中,所述多个无线接收处理模块包括:与所述第一接收线圈连接的第一AC/DC转换模块,与所述第二接收线圈连接的第二AC/DC转换模块;所述电压转换模块将所述直流电压进行升压或降压处理,以得到为电池充电的目标直流电压,包括:所述电压转换模块包括第一电压转换模块,将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为所述电池充电的所述目标直流电压;所述无线接收装置还包括控制模块;所述方法1200还包括:根据所述电池的充电模式,控制所述第一AC/DC转换模块和所述电压转换模块包括的第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述电压转换模块包括的第一电压转换模块工作;其中,所述电池的充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度。
可选地,在一些实施例中,所述第一电压转化模块包括Buck电路或Buck-Boost电路或充电IC。
可选地,在一些实施例中,所述控制所述第一AC/DC转换模块和所述电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述电压转换模块工作,包括:控制所述Buck电路或或所述Buck-Boost电路所述充电IC工作在所述第二充电模式下。
可选地,在一些实施例中,所述第一电压转换模块包括Charge pump电路;所述电压转换模块还包 括:与所述第一AC/DC转换模块和/或所述第二AC/DC转换模块连接的第二电压转换模块;所述方法1200还包括:控制所述第一电压转换模块工作在所述第一充电模式下,以及控制所述第二电压转换模块工作在所述第二充电模式下。
可选地,在一些实施例中,所述第二电压转换模块包括Buck电路、Buck-Boost电路或充电IC。
可选地,在一些实施例中,所述电池包括多个并联的电芯或包括多个串联的电芯。
可选地,在一些实施例中,所述电压转换模块将所述直流电压进行升压或降压处理,包括:在所述电池包括多个并联的电芯的情况下,所述电压转换模块对所述直流电压进行降压处理。
可选地,在一些实施例中,所述电压转换模块将所述直流电压进行升压或降压处理,包括:在所述电池包括多个串联的电芯的情况下,所述电压转换模块对所述直流电压进行升压处理。
可选地,在一些实施例中,所述方法还包括:根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线充电装置:所述电池两端的电压、所述电池的充电电流、每一AC/DC转换模块的输出电流、每一AC/DC转换模块的输出电压;其中,所述反馈信息用于指示所述无线充电装置调整发射的无线充电信号的发射功率。
可选地,在一些实施例中,所述反馈信息包括:所述电池两端的电压、所述电池的充电电流、每一AC/DC转换模块的输出电流、每一AC/DC转换模块的输出电压;其中,所述电池两端的电压和所述电池的充电电流,用于供所述无线发射装置确定发射功率;所述每一AC/DC转换模块的输出电流、所述每一AC/DC转换模块的输出电压,用于供所述无线发射装置,在确定了所述无线充电信号的发射功率时,确定所述无线充电信号的发射电压。
可选地,在一些实施例中,所述1200方法还包括:根据所述电池两端的电压和/或所述电池的充电电流,确定所述电池需要的充电功率;将所述需要的充电功率作为所述反馈信息反馈给所述无线发射装置,以使得所述无线发射装置调整所述无线充电信号的发射功率。
可选地,在一些实施例中,所述方法1200还包括:根据所述多个AC/DC转换模块的输出电流和/或输出电压,确定所述电池的需求电流;将所述需求电流反馈给所述无线发射装置,以使得所述无线发射装置根据所述需求电流调整所述无线充电信号的发射功率。
可选地,在一些实施例中,所述方法1200还包括:根据所述电池的信息确定需要的充电功率,并根据所述多个AC/DC转换模块的输出电流,确定所述电池的需求电流;根据所述需要的充电功率和所述需求电流,确定所述电池的需求电压;将所述需求电压反馈给所述无线发射装置,或将所述需求电压与所述多个AC/DC转换模块中任一AC/DC转换模块的输出电压的电压差值反馈至所述无线发射装置。
可选地,在一些实施例中,所述1200方法还包括:向所述无线发射装置发送反馈信息,所述反馈信息指示所述无线发射装置增加发射电压或减小发射电压。
可选地,在一些实施例中,所述方法1200还包括:利用控制模块或带外通信的方式向无线发射装置发送反馈信息。
可选地,在一些实施例中,所述多个接收线圈接收到的功率相同。
可选地,在一些实施例中,所述方法1200还包括:控制所述多个接收线圈分别接收到的功率。
可选地,在一些实施例中,所述控制所述多个接收线圈分别接收到的功率,包括:根据所述多个接收线圈的阻抗的不同控制所述多个接收线圈分别接收到的功率。
可选地,在一些实施例中,所述方法1200还包括:在所述多个接收线圈或所述多个无线接收处理模块的阻抗不同的情况下,控制调整所述多个接收线圈中的至少部分接收线圈的输出电流。
可选地,在一些实施例中,所述方法1200还包括:控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理;其中所述部分接收线圈为所述多个接收线圈中的至少一个接收线圈。
可选地,在一些实施例中,所述控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理,包括:在以下一个或多个条件满足时,控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理:无线发射装置发射的功率小于预设功率阈值;所述多个接收线圈中任一接收线圈的温度大于预设温度阈值;所述多个无线接收处理模块中任一个无线接收处理模块输出的电压或电流大于预设电压/电流阈值。
图13是本申请实施例提供的无线充电方法1300的示意性流程图。所述方法1300可应用于无线充电系统,例如可以是上文描述的无线充电系统900中的任意一种装置。图13的方法可以包括步骤S1310-S1340。
S1310,将输入的直流电转换为交流电。
S1320,将所述交流电转换为可通过电磁域发射的无线充电信号。
S1330,多个接收线圈分别接收所述发射线圈发射的无线充电信号。
S1340,多个无线接收处理模块分别对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于对电池充电。
其中,每一无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
可选地,在一些实施例中,所述多个接收线圈包括第一接收线圈和第二接收线圈,所述多个接收线圈分别接收发射线圈发射的无线充电信号,包括:所述第一接收线圈接收所述发射线圈发射的第一无线充电信号;所述第二接收线圈接收所述发射线圈发射的第二无线充电信号。
可选地,在一些实施例中,所述多个无线接收处理模块包括:与所述第一接收线圈连接的第一AC/DC转换模块,与所述第二接收线圈连接的第二AC/DC转换模块;所述方法1300还包括:所述第一AC/DC转换模块将所述第一无线充电信号转换为第一直流电压和第一直流电流;所述第二AC/DC转换模块将所述第二无线充电信号转换为第二直流电压和第二直流电流;所述无线接收处理模块还包括:与所述第一AC/DC转换模块连接的第一电压转换模块,与所述第二AC/DC转换模块连接的第二电压转换模块;所述方法1300还包括:所述第一电压转换模块和所述第二电压转换模块分别将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为电池充电的第三直流电压;所述无线接收装置还包括控制模块;所述方法1300还包括:所述控制模块根据所述电池的充电阶段,控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作;其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述无线充电方法1000或1200或1300中的任何一种方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述无线充电方法1000或1200或1300中的任何一种方法。
下面结合图14-图17,对本申请实施例应用的无线充电过程进行描述。
传统的无线充电技术一般将电源提供装置(如适配器)与无线充电装置(如无线充电底座)相连,并通过该无线充电装置将电源提供装置的输出功率以无线的方式(如电磁波)传输至待充电设备,对待充电设备进行无线充电。该待充电设备可以为上文中的电子设备。
按照无线充电原理不同,无线充电方式主要分为磁耦合(或电磁感应)、磁共振以及无线电波三种方式。目前,主流的无线充电标准包括QI标准、电源实物联盟(Power Matters Alliance,PMA)标准、无线电源联盟(Alliance for Wireless Power,A4WP)。QI标准和PMA标准均采用磁耦合方式进行无线充电。A4WP标准采用磁共振方式进行无线充电。
下面结合图14,对一实施例的无线充电方式进行介绍。
如图14所示,无线充电系统包括电源提供装置1010、无线充电信号的发射装置1020以及充电控制装置1030,其中发射装置1020可以是本申请实施例中的无限发射装置300a或910,例如可以是无线充电底座,充电控制装置1030可以指本申请实施例中的无线接收装置200或300b或920中的任何一种装置。
电源提供装置1010与发射装置1020连接之后,会将电源提供装置1010的输出电压和输出电流传输至发射装置1020。
发射装置1020可以通过内部的无线发射电路1021将电源提供装置1010的输出电压和输出电流转换成无线充电信号(例如,电磁信号)进行发射。例如,该无线发射电路1021可以将电源提供装置1010的输出电流转换成交流电,并通过发射线圈或发射天线将该交流电转换成无线充电信号。
图14只是示例性地给出了无线充电系统的示意性结构图,但本申请实施例并不限于此。例如,发射装置1020也可以称为无线充电信号的发射装置,充电控制装置1030也可以称为无线充电信号的接收装置。无线充电信号的接收装置例如可以是具有无线充电信号接收功能的芯片,可以接收发射装置1020发射的无线充电信号;该无线充电信号的接收装置也可以是待充电设备。
充电控制装置1030可以通过无线接收电路1031接收无线发射电路1021发射的无线充电信号,并将该无线充电信号转换成无线接收电路131的输出电压和输出电流。例如,该无线接收电路1031可以通过接收线圈或接收天线将无线发射电路1021发射的无线充电信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成无线接收电路1031的输出电压和输出电流。
在一些实施例中,在无线充电之前,发射装置1020与充电控制装置1030会预先协商无线发射电路1021的发射功率。假设发射装置1020与充电控制装置1030之间协商的功率为5W,则无线接收电路1031的输出电压和输出电流一般为5V和1A。假设发射装置1020可与充电控制装置1030之间协商的功率为10.10W,则无线接收电路1031的输出电压和输出电流一般为9V和1.2A。
若无线接收电路1031的输出电压并不适合直接加载到电池1033两端,则是需要先经过充电控制装置1030内的转换电路1032进行恒压和/或恒流控制,以得到充电控制装置1030内的电池1033所预期的充电电压和/或充电电流。
转换电路1032可用于对无线接收电路1031的输出电压进行变换,以使得转换电路1032的输出电压和/或输出电流满足电池1033所预期的充电电压和/或充电电流的需求。
作为一种示例,该转换电路1032例如可以是充电IC,或者可以为电源管理电路。在电池1033的充电过程中,转换电路1032可用于对电池1033的充电电压和/或充电电流进行管理。该转换电路1032可以包含电压反馈功能,和/或,电流反馈功能,以实现对电池1033的充电电压和/或充电电流的管理。
在正常的充电过程中,电池所需的充电电压和/或充电电流在不同的充电阶段可能在不断发生变化。无线接收电路的输出电压和/或输出电流可能就需要不断地调整,以满足电池当前的充电需求。例如,在电池的恒流充电阶段,在充电过程中,电池的充电电流保持不变,但是电池的电压在不断升高,因此电池所需的充电电压也在不断升高。随着电池所需的充电电压的不断增大,电池所需的充电功率也在不断增大。当电池所需的充电功率增大时,无线接收电路需要增大输出功率,以满足电池的充电需求。
当无线接收电路的输出功率小于电池当前所需的充电功率时,通信控制电路可以向发射装置发射指示信息以指示发射装置提升发射功率,以增大无线接收电路的输出功率。因此,在充电过程中,通信控制电路可以与发射装置通信,使得无线接收电路的输出功率能够满足电池不同充电阶段的充电需求。
如图15所示,是本申请实施例提供的充电系统的另一示意图。本申请实施例对第二通信控制电路1135与发射装置1120的通信方式不做具体限定。可选地,在一些实施例中,第二通信控制电路1135与发射装置1120可以采用蓝牙通信、Wi-Fi通信或反向散射(backscatter)调制方式(或功率负载调制方式)通信、基于高载波频率的近距离无线通信、光通信、超声波通信、超宽带通信或移动通信等无线通信方式进行通信。
在一实施例中,基于高载波频率的近距离无线通信模块可以包括内部封装有极高频(Extremely High Frequency,EHF)天线的IC芯片。可选地,高载波频率可以为60GHz。
在一实施例中,光通信可以是利用光通信模块进行通信。光通信模块可以包括红外通信模块,红外通信模块可利用红外线传输信息。
在一实施例中,移动通信可以是利用移动通信模块进行通信。移动通信模块可利用5G通信协议、4G通信协议或3G通信协议等移动通信协议进行信息传输。
采用上述的无线通信方式,相比于Qi标准中通过信号调制的方式耦合到无线接收电路的线圈进行通信的方式,可提高通信的可靠性,且可避免采用信号耦合方式通信带来的电压纹波,影响降压电路的电压处理过程。
可选地,第二通信控制电路1135与发射装置1120也可以采用数据接口的有线通信方式进行通信。
请参见图15,无线充电信号的发射装置1120还可以包括充电接口1123,充电接口1123可用于与外部的电源提供装置1110相连。无线发射电路1121还可用于根据电源提供装置1110的输出电压和输出电流,生成无线充电信号。
第一通信控制电路1122还可以在无线充电的过程中,调整无线发射电路1121从电源提供装置1110的输出功率中抽取的功率量,以调整无线发射电路1121的发射功率,使得无线发射电路发射的功率能够满足电池的充电需求。例如,电源提供装置1110也可以直接输出较大的固定功率(如40W),第一通信控制电路1122可以直接调整无线发射电路1121从电源提供装置1110提供的固定功率中抽取的功率量。
本申请实施例中,电源提供装置1110的输出功率可以是固定的。例如,电源提供装置1110可以直接输出较大的固定功率(如40W),电源提供装置1110可以按照该固定的输出功率向无线充电装置1120提供输出电压和输出电流。在充电过程中,第一通信控制电路1122可以根据实际需要从该电源提供装置的固定功率中抽取一定的功率量用于无线充电。也就是说,本申请实施例将无线发射电路1121的发射功率调整的控制权分配给第一通信控制电路1122,第一通信控制电路1122能够在接收到第二通信控制电路1135发送的指示信息之后立刻对无线发射电路1121的发射功率进行调整,以满足电池当前的充电需求,具有调节速度快、效率高的优点。
本申请实施例对第一通信控制电路1122从电源提供装置1110提供的最大输出功率中抽取功率量的方式不做具体限定。例如,可以在无线充电信号的发射装置1120内部设置电压转换电路1124,该电压 转换电路1124可以与发射线圈或发射天线相连,用于调整发射线圈或发射天线接收到的功率。该电压转换电路1124例如可以包括脉冲宽度调制(Pulse Width Modulation,PWM)控制器和开关单元。第一通信控制电路1122可以通过调整PWM控制器发出的控制信号的占空比调整无线发射电路1121的发射功率。
本申请实施例对电源提供装置1110的类型不做具体限定。例如,电源提供装置1110可以为适配器、移动电源(power bank)、车载充电器或电脑等设备。
本申请实施例对充电接口1123的类型不做具体限定。可选地,在一些实施例中,该充电接口1123可以为USB接口。该USB接口例如可以是USB 2.0接口,micro USB接口,或USB TYPE-C接口。可选地,在另一些实施例中,该充电接口1123还可以是lightning接口,或者其他任意类型的能够用于充电的并口和/或串口。
本申请实施例对第一通信控制电路1122与电源提供装置1110之间的通信方式不做具体限定。作为一个示例,第一通信控制电路1122可以通过除充电接口之外的其他通信接口与电源提供装置1110相连,并通过该通信接口与电源提供装置1110通信。作为另一个示例,第一通信控制电路1122可以以无线的方式与电源提供装置1110进行通信。例如,第一通信控制电路1122可以与电源提供装置1110进行近场通信(Near Field Communication,NFC)。作为又一个示例,第一通信控制电路1122可以通过充电接口1123与电源提供装置1110进行通信,而无需设置额外的通信接口或其他无线通信模块,这样可以简化无线充电装置1120的实现。例如,充电接口1123为USB接口,第一通信控制电路1122可以与电源提供装置1110基于该USB接口中的数据线(如D+和/或D-线)进行通信。又如,充电接口1123可以为支持功率传输(Power Delivery,PD)通信协议的USB接口(如USB TYPE-C接口),第一通信控制电路1122与电源提供装置1110可以基于PD通信协议进行通信。
可选地,第一通信控制电路1122调整无线充电信号的发射功率可以指,第一通信控制电路1122通过调整无线发射电路1121的输入电压和/或输入电流来调整无线充电信号的发射功率。例如,第一通信控制电路可以通过增大无线发射电路的输入电压来增大无线发射电路的发射功率。
可选地,如图15所示,待充电设备1130还包括第一充电通道1133,通过该第一充电通道1133可将无线接收电路1131的输出电压和/或输出电流提供给电池1132,对电池1132进行充电。
可选地,第一充电通道1133上还可以设置电压转换电路1139,该电压转换电路1139的输入端与无线接收电路1131的输出端电连接,用于对无线接收电路1131的输出电压进行恒压和/或恒流控制,以对电池1132进行充电,使得电压转换电路1139的输出电压和/或输出电流与电池当前所需的充电电压和/或充电电流相匹配。
可选地,增大无线发射电路1121的发射功率可以指增大无线发射电路1121的发射电压,增大无线发射电路1121的发射电压可以通过增大电压转换电路1124的输出电压来实现。例如,第一通信控制电路1122接收到第二通信控制电路1135发送的指示增大发射功率的指示信息后,可以通过增大电压转换电路1124的输出电压来增大无线发射电路1121的发射功率。
本申请实施例对第二通信控制电路1135向第一通信控制电路1122发送指示信息的方式不做具体限定。
例如,第二通信控制电路1135可以定期向第一通信控制电路1122发送指示信息。或者,第二通信控制电路1135可以仅在电池的电压达到充电截止电压,或者电池的充电电流达到充电截止电流的情况下,再向第一通信控制电路1122发送指示信息。
可选地,无线充电信号的接收装置还可包括检测电路1134,该检测电路1134可以检测电池1132的电压和/或充电电流,第二通信控制电路1135可以根据电池1132的电压和/或充电电流,向第一通信控制电路1122发送指示信息,以指示第一通信控制电路1122调整无线发射电路1121的发射功率对应的输出电压和输出电流。
在一实施例中,对待充电设备而言,在恒流充电的过程中,电池的电压会不断上升,电池所需的充电功率也会随之增大。此时,需要增大无线充电信号的发射功率,以满足电池当前的充电需求。在恒压充电的过程中,电池的充电电流可能会不断减小,电池所需的充电功率也会随之减小。此时,需要减小无线充电信号的发射功率,以满足电池当前的充电需求。
第一通信控制电路1122可以根据指示信息调整无线充电信号的发射功率,可以指第一通信控制电路1122调整无线充电信号的发射功率,使得无线充电信号的发射功率与电池的当前所需的充电电压和/或充电电流相匹配。
无线发射电路1121的发射功率与电池1132当前所需的充电电压和/或充电电流相匹配可以指:第一通信控制电路1122对无线充电信号的发射功率的配置使得第一充电通道1133的输出电压和/或输出电流与电池1132当前所需的充电电压和/或充电电流相匹配(或者,第一通信控制电路1122对无线充 电信号的发射功率的配置使得第一充电通道1133的输出电压和/或输出电流满足电池1132的充电需求(包括电池1132对充电电压和/或充电电流的需求))。
应理解,在本公开的一个实施例中,“第一充电通道1133的输出电压和/或输出电流与电池1132当前所需的充电电压和/或充电电流相匹配”包括:第一充电通道1133输出的直流电的电压值和/或电流值与电池1132所需的充电电压值和/或充电电流值相等或在浮动预设范围(例如,电压值上下浮动100毫伏~200毫伏,电流值上下浮动0.001A~0.005A等)。
上述第二通信控制电路1135根据检测电路1134检测到的电池1132的电压和/或充电电流,与第一通信控制电路1122进行无线通信,以便第一通信控制电路1122根据电池1132的电压和/或充电电流,调整无线发射电路1121的发射功率可以包括:在电池1132的恒流充电阶段,第二通信控制电路1135根据检测到的电池的电压,与第一通信控制电路1122进行无线通信,以便第一通信控制电路1122调整无线发射电路1121的发射功率,使得第一充电通道1133的输出电压与该恒流充电阶段电池所需的充电电压相匹配(或者,使得第一充电通道1133的输出电压满足电池1132在恒流充电阶段对充电电压的需求)。
图16是本申请实施例提供的充电系统的另一示例。图16的实施例对应的无线充电信号的发射装置1120并非从电源提供装置1110获取电能,而是直接将外部输入的交流电(如市电)转换成上述无线充电信号。
如图16所示,无线充电信号的发射装置1120还可包括电压转换电路1124和电源提供电路1125。电源提供电路1125可用于接收外部输入的交流电(如市电),并根据交流电生成电源提供电路1125的输出电压和输出电流。例如,电源提供电路1125可以对交流电进行整流和/或滤波,得到直流电或脉动直流电,并将该直流电或脉动直流电传输至电压转换电路1124。
电压转换电路1124可用于接收电源提供电路1125的输出电压,并对电源提供电路1125的输出电压进行转换,得到电压转换电路1124的输出电压和输出电流。无线发射电路1121还可用于根据电压转换电路1124的输出电压和输出电流,生成无线充电信号。
本申请实施例在无线充电信号的发射装置1120内部集成了类似适配器的功能,使得该无线充电信号的发射装置1120无需从外部的电源提供装置获取功率,提高了无线充电信号的发射装置1120的集成度,并减少了实现无线充电过程所需的器件的数量。
可选地,在一些实施例中,无线充电信号的发射装置1120可以支持第一无线充电模式和第二无线充电模式,无线充电信号的发射装置1120在第一无线充电模式下对待充电设备的充电速度快于无线充电信号的发射装置1120在第二无线充电模式下对待充电设备的充电速度。换句话说,相较于工作在第二无线充电模式下的无线充电信号的发射装置1120来说,工作在第一无线充电模式下的无线充电信号的发射装置1120充满相同容量的待充电设备中的电池的耗时更短。
本申请实施例提供的充电方法可以使采用第一充电模式进行充电,也可以使采用第二充电模式进行充电,本申请实施例对此不做限定。
第二无线充电模式可为称为普通无线充电模式,例如可以是传统的基于QI标准、PMA标准或A4WP标准的无线充电模式。第一无线充电模式可为快速无线充电模式。该普通无线充电模式可以指无线充电信号的发射装置1120的发射功率较小(通常小于15W,常用的发射功率为5W或10W)的无线充电模式,在普通无线充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间;而在快速无线充电模式下,无线充电信号的发射装置1120的发射功率相对较大(通常大于或等于15W)。相较于普通无线充电模式而言,无线充电信号的发射装置1120在快速无线充电模式下完全充满相同容量电池所需要的充电时间能够明显缩短、充电速度更快。
参见图17,在本公开的一实施例中,待充电设备1130还包括:第二充电通道1136。第二充电通道1136可为导线。在第二充电通道1136上可设置变换电路1137,用于对无线接收电路1131输出的直流电进行电压控制,得到第二充电通道1136的输出电压和输出电流,以对电池1132进行充电。
在一个实施例中,变换电路1137可用于降压电路,并且输出恒流和/或恒压的电能。换句话说,该变换电路1137可用于对电池的充电过程进行恒压和/或恒流控制。
当采用第二充电通道1136对电池1132进行充电时,无线发射电路1121可采用恒定发射功率发射电磁信号,无线接收电路1131接收电磁信号后,由变换电路1137处理为满足电池1132充电需求的电压和电流并输入电池1132,实现对电池1132的充电。应理解,在一些实施例中,恒定发射功率不一定是发射功率完全保持不变,其可在一定的范围内变动,例如,发射功率为7.5W上下浮动0.5W。
在本公开的实施例中,通过第一充电通道1133对电池1132进行充电的充电方式为第一无线充电模式,通过第二充电通道1136对电池1132进行充电的方式称为第二无线充电模式。无线充电信号的发射装置和待充电设备可通过握手通信确定采用第一无线充电模式还是第二无线充电模式对电池1132进行 充电。
本公开实施例中,对于无线充电信号的发射装置,当通过第一无线充电模式对待充电设备充电时,无线发射电路1121的最大发射功率可为第一发射功率值。而通过第二无线充电模式对待充电设备进行充电时,无线发射电路1121的最大发射功率可为第二发射功率值。其中,第一发射功率值大于第二发射功率值,由此,采用第一无线充电模式对待充电设备的充电速度大于第二无线充电模式。
可选地,第二通信控制电路1135还可用于控制第一充电通道1133和第二充电通道1136之间的切换。例如,如图17所示,第一充电通道1133上可以设置开关1138,第二通信控制电路1135可以通过控制该开关1138的导通与关断控制第一充电通道1133和第二充电通道1136之间的切换。上文指出,在某些实施例中,无线充电信号的发射装置1120可以包括第一无线充电模式和第二无线充电模式,且无线充电信号的发射装置1120在第一无线充电模式下对待充电设备1130的充电速度快于无线充电信号的发射装置1120在第二无线充电模式下对待充电设备1130的充电速度。当无线充电信号的发射装置1120使用第一无线充电模式为待充电设备1130内的电池充电时,待充电设备1130可以控制第一充电通道1133工作;当无线充电信号的发射装置1120使用第二无线充电模式为待充电设备1130内的电池充电时,待充电设备1130可以控制第二充电通道1136工作。
在待充电设备侧,第二通信控制电路1135可以根据充电模式,在第一充电通道1133和第二充电通道1136之间进行切换。当采用第一无线充电模式时,第二通信控制电路1135控制第一充电通道1133上的电压转换电路1139工作。当采用第二无线充电模式时,第二通信控制电路1135控制第二充电通道1136上的变换电路1137工作。
可选地,无线充电信号的发射装置1120可以与待充电设备1130之间进行通信,以协商无线充电信号的发射装置1120与待充电设备1130之间的充电模式。
除了上文描述的通信内容外,无线充电信号的发射装置1120中的第一通信控制电路1122与待充电设备1130中的第二通信控制电路1135之间还可以交互许多其他通信信息。在一些实施例中,第一通信控制电路1122和第二通信控制电路1135之间可以交互用于安全保护、异常检测或故障处理的信息,如电池1132的温度信息,进入过压保护或过流保护的指示信息等信息,功率传输效率信息(该功率传输效率信息可用于指示无线发射电路1121和无线接收电路1131之间的功率传输效率)。
可选地,第二通信控制电路1135与第一通信控制电路1122之间的通信可以为单向通信,也可以为双向通信,本申请实施例对此不做具体限定。
在本申请的实施例中,第二通信控制电路的功能可由待充电设备1130的应用处理器实现,由此,可以节省硬件成本。或者,也可由独立的控制芯片实现,由独立的控制芯片实现可提高控制的可靠性。
可选地,本申请实施例可以将无线接收电路1131与电压转换电路1139均集成在同一无线充电芯片中,这样可以提高待充电设备集成度,简化待充电设备的实现。例如,可以对传统无线充电芯片的功能进行扩展,使其支持充电管理功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各设备,但这些设备不应受到这些术语的限制。这些术语仅用于将一个设备与另一个设备区别开。比如,在不改变描述的含义的情况下,第一设备可以叫做第二设备,并且同样地,第二设备可以叫做第一设备,只要所有出现的“第一设备”一致重命名并且所有出现的“第二设备”一致重命名即可。第一设备和第二设备都是设备,但可以不是相同的设备。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (55)

  1. 一种无线接收装置,其特征在于,包括:
    多个接收线圈,分别与发射线圈耦合,用于分别接收所述发射线圈发射的无线充电信号;
    多个无线接收处理模块,分别用于对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于对电池充电;
    其中,每一所述无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
  2. 根据权利要求1所述的装置,其特征在于,所述多个接收线圈包括:
    第一接收线圈,与所述发射线圈耦合,用于从所述发射线圈接收第一无线充电信号;
    第二接收线圈,与所述发射线圈耦合,用于从所述发射线圈接收第二无线充电信号。
  3. 根据权利要求2所述的装置,其特征在于,所述第一接收线圈和所述第二接收线圈重叠设置,以使得所述第一接收线圈和所述第二接收线圈能够同时与所述发射线圈对准。
  4. 根据权利要求2或3所述的装置,其特征在于,所述第一接收线圈和所述第二接收线圈设置在同一柔性印刷电路FPC基板上,并通过屏蔽层隔离。
  5. 根据权利要求2至4中任一项所述的装置,其特征在于,所述第一接收线圈和所述第二接收线圈均为表面包覆了绝缘材料的导线绕制而成。
  6. 根据权利要求2至5中任一项所述的装置,其特征在于,所述多个无线接收处理模块包括:
    第一交流/直流AC/DC转换模块,与所述第一接收线圈连接,用于将所述第一无线充电信号转换为第一直流电压和第一直流电流;
    第二AC/DC转换模块,与所述第二接收线圈连接,用于将所述第二无线充电信号转换为第二直流电压和第二直流电流;
    与所述第一AC/DC转换模块连接的第一电压转换模块,与所述第二AC/DC转换模块连接的第二电压转换模块;
    所述第一电压转换模块和所述第二电压转换模块,分别用于将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为电池充电的第三直流电压;
    所述无线接收装置还包括:
    控制模块,用于根据所述电池的充电阶段,控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作;
    其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段。
  7. 根据权利要求6所述的装置,其特征在于,所述第一电压转化模块包括降压Buck电路、降压-升压Buck-Boost电路或充电集成电路IC。
  8. 根据权利要求7所述的装置,其特征在于,所述控制模块用于控制所述第一电压转化模块工作在以下充电阶段的一个或多个充电阶段:所述涓流充电阶段、所述恒流充电阶段和所述恒压充电阶段。
  9. 根据权利要求6至8中任一项所述的装置,其特征在于,所述第二电压转换模块包括电荷泵Charge pump电路。
  10. 根据权利要求9所述的装置,其特征在于,所述控制模块,用于控制所述Charge pump电路在所述恒流充电阶段工作。
  11. 根据权利要求6所述的装置,其特征在于,所述第一电压转换模块和所述第二电压转换模块均包括Charge pump电路;
    所述多个电压转换模块还包括:与所述第一AC/DC转换模块和/或所述第二AC/DC转换模块连接的第三电压转换模块;
    所述控制模块,用于控制所述第一电压转换模块和所述第二电压转换模块工作在恒流充电阶段,以及控制所述第三电压转换模块工作在涓流充电阶段和/或恒压充电阶段。
  12. 根据权利要求11所述的装置,其特征在于,所述第三电压转换模块包括Buck电路、Buck-Boost电路或充电IC。
  13. 根据权利要求2至5至中任一项所述的装置,其特征在于,所述多个无线接收处理模块包括:
    第一AC/DC转换模块,与所述第一接收线圈连接,用于将所述第一无线充电信号转换为第一直流电压和第一直流电流;
    第二AC/DC转换模块,与所述第二接收线圈连接,用于将所述第二无线充电信号转换为第二直流电压和第二直流电流;
    与所述第一AC/DC转换模块连接的第一电压转换模块,与所述第二AC/DC转换模块连接的第二电压转换模块;
    所述第一电压转换模块和所述第二电压转换模块,分别用于将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为电池充电的第三直流电压;
    所述无线接收装置还包括:
    控制模块,用于根据所述电池的充电模式,控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作;
    其中,所述电池的充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度。
  14. 根据权利要求1至6中任一项所述的装置,其特征在于,所述电池包括多个并联的电芯或包括多个串联的电芯。
  15. 根据权利要求1至14中任一项所述的装置,其特征在于,所述多个无线接收处理模块包括的电压转换模块,用于在所述电池包括多个并联的电芯的情况下,分别对经过所述无线接收处理模块包括的AC/DC转换模块处理后的直流电压进行降压处理。
  16. 根据权利要求1至15中任一项所述的装置,其特征在于,所述多个无线接收处理模块包括的电压转换模块,用于在所述电池包括多个串联的电芯的情况下,分别对经过所述无线接收处理模块包括的AC/DC转换模块处理后的直流电压进行升压处理。
  17. 根据权利要求1至5中任一项所述的装置,其特征在于,所述每一所述无线接收处理模块均包括:
    交流/直流AC/DC转换模块,用于将与其连接的接收线圈接收到的所述无线充电信号,转换为直流电压和直流电流;
    电压转换模块,用于对所述AC/DC转换模块输出的直流电压进行升压或降压处理,以得到满足所述电池充电需求的充电电压。
  18. 根据权利要求17所述的装置,其特征在于,所述无线接收装置还包括:
    控制模块,用于根据以下充电参数中的至少一者生成反馈信息并反馈给所述无线发射装置:所述电池两端的电压、所述电池的充电电流、每一AC/DC转换模块的输出电流、每一AC/DC转换模块的输出电压;
    其中,所述反馈信息用于指示所述无线发射装置调整发射的无线充电信号的发射功率。
  19. 根据权利要求18所述的装置,其特征在于,所述反馈信息包括:所述电池两端的电压、所述电池的充电电流、每一AC/DC转换模块的输出电流、每一AC/DC转换模块的输出电压;
    其中,所述电池两端的电压和所述电池的充电电流,用于供所述无线发射装置确定发射功率;
    所述每一AC/DC转换模块的输出电流、所述每一AC/DC转换模块的输出电压,用于供所述无线发射装置,在确定了所述无线充电信号的发射功率时,确定所述无线充电信号的发射电压。
  20. 根据权利要求19述的装置,其特征在于,所述无线接收装置还包括:
    控制模块,用于根据所述电池两端的电压和/或所述电池的充电电流,确定所述电池需要的充电功率;以及
    将所述需要的充电功率作为所述反馈信息反馈给所述无线发射装置,以使得所述无线发射装置调整所述无线充电信号的发射功率。
  21. 根据权利要求19所述的装置,其特征在于,所述无线接收装置还包括:
    控制模块,用于根据所述多个AC/DC转换模块的输出电流和/或输出电压,确定所述电池的需求电流;以及
    将所述需求电流作为所述反馈信息反馈给所述无线发射装置,以使得所述无线发射装置根据所述需求电流调整所述无线充电信号的发射功率。
  22. 根据权利要求19所述的装置,其特征在于,所述无线接收装置还包括:
    控制模块,用于根据所述电池的信息确定需要的充电功率,并根据所述多个AC/DC转换模块的输出电流,确定所述电池的需求电流;以及
    根据所述需要的充电功率和所述需求电流,确定所述电池的需求电压;
    将所述需求电压作为所述反馈信息反馈给所述无线发射装置,或将所述需求电压与所述多个AC/DC转换模块中任一AC/DC转换模块的输出电压的电压差值作为所述反馈信息反馈至所述无线发射装置。
  23. 根据权利要求19所述的装置,其特征在于,所述反馈信息指示所述无线发射装置增加发射电压或减小发射电压。
  24. 根据权利要求1至23中任一项所述的装置,其特征在于,所述无线接收装置利用所述多个接收线圈的任一个或多个向所述无线发射装置发送反馈信息;或
    所述无线接收装置利用带外通信的方式向所述无线发射装置发送反馈信息。
  25. 根据权利要求1至24中任一项所述的装置,其特征在于,所述多个接收线圈接收到的功率相同。
  26. 根据权利要求1至25中任一项所述的装置,其特征在于,所述无线接收装置还包括:
    控制模块,用于控制所述多个接收线圈分别接收到的功率。
  27. 根据权利要求26所述的装置,其特征在于,所述控制模块具体用于:
    根据所述多个接收线圈的阻抗的不同控制所述多个接收线圈分别接收到的功率。
  28. 根据权利要求1至27中任一项所述的装置,其特征在于,所述无线接收装置还包括:
    控制模块,用于在所述多个接收线圈或所述多个无线接收处理模块的阻抗不同的情况下,控制调整所述多个接收线圈中的至少部分接收线圈的输出电流。
  29. 根据权利要求1至28中任一项所述的装置,其特征在于,所述无线接收装置还包括:
    控制模块,用于控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理;其中所述部分接收线圈为所述多个接收线圈中的至少一个接收线圈。
  30. 根据权利要求29所述的装置,其特征在于,所述控制模块具体用于:
    在以下一个或多个条件满足时,控制所述多个接收线圈中的部分接收线圈接收所述无线发射装置发射的无线充电信号,与所述部分接收线圈相应的部分无线接收处理模块对接收到的所述无线充电信号进行电压和/或电流处理:无线发射装置发射的功率小于预设功率阈值;所述多个接收线圈中任一接收线圈的温度大于预设温度阈值;所述多个无线接收处理模块中任一个无线接收处理模块输出的电压或电流大于预设电压/电流阈值。
  31. 根据权利要求1至30中任一项所述的装置,其特征在于,所述电池包括多个电芯;
    所述多个无线接收处理模块中每一个均与一电芯连接,以对与其连接的电芯充电。
  32. 一种无线接收装置,其特征在于,包括:
    多个接收线圈,分别与发射线圈耦合,用于分别接收所述发射线圈发射的无线充电信号;
    多个交流/直流AC/DC转换模块,分别用于对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以得到直流电压和直流电流;
    电压转换模块,与所述多个AC/DC转换模块连接,用于将所述直流电压进行升压或降压处理,以得到为电池充电的目标直流电压;
    其中,每一所述AC/DC转换模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电压转换模块连接。
  33. 根据权利要求32所述的装置,其特征在于,所述多个接收线圈包括:
    第一接收线圈,与所述发射线圈耦合,用于从所述发射线圈接收第一无线充电信号;
    第二接收线圈,与所述发射线圈耦合,用于从所述发射线圈接收第二无线充电信号。
  34. 根据权利要求33所述的装置,其特征在于,所述第一接收线圈和所述第二接收线圈重叠设置,以使得所述第一接收线圈和所述第二接收线圈能够同时与所述发射线圈对准。
  35. 根据权利要求33或34所述的装置,其特征在于,所述第一接收线圈和所述第二接收线圈设置在同一柔性印刷电路FPC基板上,并通过屏蔽层隔离。
  36. 根据权利要求33至35中任一项所述的装置,其特征在于,所述第一接收线圈和所述第二接收线圈均为表面包覆了绝缘材料的导线绕制而成。
  37. 根据权利要求33至36中任一项所述的装置,其特征在于,所述多个AC/DC转换模块包括:
    第一AC/DC转换模块,与所述第一接收线圈连接,用于将所述第一无线充电信号转换为第一直流电压和第一直流电流;
    第二AC/DC转换模块,与所述第二接收线圈连接,用于将所述第二无线充电信号转换为第二直流电压和第二直流电流;
    所述电压转换模块包括第一电压转换模块,用于:
    将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为所述电池充电的所述目标直流电压;
    所述无线接收装置还包括:
    控制模块,用于根据所述电池的充电阶段或充电模式,控制所述第一AC/DC转换模块和第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第一电压转换模块工作;
    其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段;所述电池的充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度。
  38. 根据权利要求37所述的装置,其特征在于,所述第一电压转换模块包括Charge pump电路;
    所述电压转换模块还包括:与所述第一AC/DC转换模块和/或所述第二AC/DC转换模块连接的第二电压转换模块;
    所述控制模块,用于控制所述第一电压转换模块工作在恒流充电阶段,以及控制所述第二电压转换模块工作在涓流充电阶段和恒压充电阶段,或者,
    控制所述第一电压转换模块工作在所述第一充电模式,以及控制所述第二电压转换模块工作在所述第二充电模式。
  39. 根据权利要求38所述的装置,其特征在于,所述第二电压转换模块包括降压Buck电路、降压-升压Buck-Boost电路或充电集成电路IC。
  40. 一种无线充电系统,其特征在于,包括:
    无线发射装置和无线接收装置;
    所述无线发射装置包括:
    逆变电路,用于将输入的直流电转换为交流电;
    发射线圈,用于将所述交流电转换为可通过电磁域发射的无线充电信号;
    所述无线接收装置包括:
    多个接收线圈,分别与所述发射线圈耦合,用于分别接收所述发射线圈发射的无线充电信号;
    多个无线接收处理模块,分别用于对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于对电池充电;
    其中,每一所述无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
  41. 根据权利要求40所述的系统,其特征在于,所述多个接收线圈包括:
    第一接收线圈,与所述发射线圈耦合,用于从所述发射线圈接收第一无线充电信号;
    第二接收线圈,与所述发射线圈耦合,用于从所述发射线圈接收第二无线充电信号。
  42. 根据权利要求40或41所述的系统,其特征在于,所述多个无线接收处理模块包括:
    第一交流/直流AC/DC转换模块,与所述第一接收线圈连接,用于将所述第一无线充电信号转换为第一直流电压和第一直流电流;
    第二AC/DC转换模块,与所述第二接收线圈连接,用于将所述第二无线充电信号转换为第二直流电压和第二直流电流;
    与所述第一AC/DC转换模块连接的第一电压转换模块,所述第二AC/DC转换模块连接的第二电压转换模块;
    所述第一电压转换模块和所述第二电压转换模块,分别用于将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为电池充电的第三直流电压;
    所述无线接收装置还包括:
    控制模块,用于根据所述电池的充电阶段或充电模式,控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作;
    其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段;所述电池的充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度。
  43. 一种无线充电方法,其特征在于,包括:
    多个接收线圈分别接收发射线圈发射的无线充电信号;
    多个无线接收处理模块分别对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以用于对电池充电;
    其中,每一所述无线接收处理模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电池连接。
  44. 根据权利要求43所述的方法,其特征在于,所述多个接收线圈包括第一接收线圈和第二接收线圈;
    所述多个接收线圈分别接收发射线圈发射的无线充电信号,包括:
    所述第一接收线圈接收所述发射线圈发射的第一无线充电信号;
    所述第二接收线圈接收所述发射线圈发射的第二无线充电信号。
  45. 根据权利要求44所述的方法,其特征在于,所述第一接收线圈和所述第二接收线圈重叠设置,以使得所述第一接收线圈和所述第二接收线圈能够同时与所述发射线圈对准。
  46. 根据权利要求44或45所述的方法,其特征在于,所述第一接收线圈和所述第二接收线圈设置在同一柔性印刷电路FPC基板上,并通过屏蔽层隔离。
  47. 根据权利要求44至46中任一项所述的方法,其特征在于,所述第一接收线圈和所述第二接收线圈均为表面包覆了绝缘材料的导线绕制而成。
  48. 根据权利要求44至47中任一项所述的方法,其特征在于,所述多个无线接收处理模块包括:
    与所述第一接收线圈连接的第一交流/直流AC/DC转换模块,与所述第二接收线圈连接的第二AC/DC转换模块;
    所述方法还包括:
    所述第一AC/DC转换模块将所述第一无线充电信号转换为第一直流电压和第一直流电流;
    所述第二AC/DC转换模块将所述第二无线充电信号转换为第二直流电压和第二直流电流;
    所述无线接收处理模块还包括:
    与所述第一AC/DC转换模块连接的第一电压转换模块,与所述第二AC/DC转换模块连接的第二电压转换模块;
    所述方法还包括:
    所述第一电压转换模块和所述第二电压转换模块分别将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为电池充电的第三直流电压;
    所述无线接收装置还包括控制模块;
    所述方法还包括:
    所述控制模块根据所述电池的充电阶段或充电模式,控制所述第一AC/DC转换模块和所述第一电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述第二电压转换模块工作;
    其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段;所述电池的充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度。
  49. 一种无线充电方法,其特征在于,包括:
    多个接收线圈分别接收发射线圈发射的无线充电信号;
    多个交流/直流AC/DC转换模块分别对从所述多个接收线圈接收到的无线充电信号进行电压和/或电流处理,以得到直流电压和直流电流;
    电压转换模块将所述直流电压进行升压或降压处理,以得到为电池充电的目标直流电压;
    其中,每一所述AC/DC转换模块的一端与所述多个接收线圈中的一个接收线圈连接,另一端与所述电压转换模块连接。
  50. 根据权利要求49所述的方法,其特征在于,所述多个接收线圈包括第一接收线圈和第二接收线圈;
    所述多个接收线圈分别接收发射线圈发射的无线充电信号,包括:
    所述第一接收线圈接收所述发射线圈发射的第一无线充电信号;
    所述第二接收线圈接收所述发射线圈发射的第二无线充电信号。
  51. 根据权利要求50所述的方法,其特征在于,所述第一接收线圈和所述第二接收线圈重叠设置,以使得所述第一接收线圈和所述第二接收线圈能够同时与所述发射线圈对准。
  52. 根据权利要求50或51所述的方法,其特征在于,所述第一接收线圈和所述第二接收线圈设置在同一柔性印刷电路FPC基板上,并通过屏蔽层隔离。
  53. 根据权利要求50至52中任一项所述的方法,其特征在于,所述第一接收线圈和所述第二接收线圈均为表面包覆了绝缘材料的导线绕制而成。
  54. 根据权利要求50至53中任一项所述的方法,其特征在于,所述多个AC/DC转换模块包括:
    与所述第一接收线圈连接的第一AC/DC转换模块,与所述第二接收线圈连接的第二AC/DC转换模块;
    所述方法还包括:
    所述第一AC/DC转换模块将所述第一无线充电信号转换为第一直流电压和第一直流电流;
    所述第二AC/DC转换模块将所述第二无线充电信号转换为第二直流电压和第二直流电流;
    所述电压转换模块将所述直流电压进行升压或降压处理,以得到为电池充电的目标直流电压,包括:
    所述电压转换模块包括第一电压转换模块,将所述第一直流电压和所述第二直流电压进行升压或降压处理,以得到为所述电池充电的所述目标直流电压;
    所述无线接收装置还包括控制模块;
    所述方法还包括:
    所述控制模块根据所述电池的充电阶段或充电模式,控制所述第一AC/DC转换模块和所述电压转换模块工作,和/或控制所述第二AC/DC转换模块和所述电压转换模块工作;
    其中,所述电池的充电阶段包括以下充电阶段的至少一个阶段:涓流充电阶段、恒流充电阶段和恒压充电阶段;所述电池的充电模式包括第一充电模式和第二充电模式,所述第一充电模式的充电速度大于所述第二充电模式的充电速度。
  55. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求43至54中任一项所述的方法。
PCT/CN2019/118785 2019-11-15 2019-11-15 无线接收装置、无线充电系统和无线充电方法 WO2021092894A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19952618.7A EP4047786A4 (en) 2019-11-15 2019-11-15 WIRELESS RECEIVER DEVICE, WIRELESS CHARGING SYSTEM AND WIRELESS CHARGING METHOD
CN201980100245.2A CN114365383A (zh) 2019-11-15 2019-11-15 无线接收装置、无线充电系统和无线充电方法
PCT/CN2019/118785 WO2021092894A1 (zh) 2019-11-15 2019-11-15 无线接收装置、无线充电系统和无线充电方法
US17/734,659 US20220263351A1 (en) 2019-11-15 2022-05-02 Wireless receiving device, wireless charging system, wireless charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/118785 WO2021092894A1 (zh) 2019-11-15 2019-11-15 无线接收装置、无线充电系统和无线充电方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/734,659 Continuation US20220263351A1 (en) 2019-11-15 2022-05-02 Wireless receiving device, wireless charging system, wireless charging method

Publications (1)

Publication Number Publication Date
WO2021092894A1 true WO2021092894A1 (zh) 2021-05-20

Family

ID=75911659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118785 WO2021092894A1 (zh) 2019-11-15 2019-11-15 无线接收装置、无线充电系统和无线充电方法

Country Status (4)

Country Link
US (1) US20220263351A1 (zh)
EP (1) EP4047786A4 (zh)
CN (1) CN114365383A (zh)
WO (1) WO2021092894A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110140671A1 (en) * 2009-12-11 2011-06-16 Electronics And Telecommunications Research Institute Portable device and battery charging method thereof
CN104052099A (zh) * 2013-03-15 2014-09-17 三星电机株式会社 充电设备和电池设备
US20160105032A1 (en) * 2014-10-10 2016-04-14 Samsung Electro-Mechanics Co., Ltd. Wireless power reception device and electronic device including the same
CN107919735A (zh) * 2017-12-21 2018-04-17 天津大学 微型无人机快速无线充电系统
CN107919710A (zh) * 2017-12-21 2018-04-17 天津大学 微型无人机快速无线充电电池
CN108155727A (zh) * 2017-12-21 2018-06-12 天津大学 应用于磁耦合谐振式无线充电的平行阵面式充电电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200052A (ja) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc 給電装置
WO2011156768A2 (en) * 2010-06-11 2011-12-15 Mojo Mobility, Inc. System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith
CN103633703B (zh) * 2013-12-03 2015-07-08 大连大学 智能充电器
CN203607899U (zh) * 2013-12-17 2014-05-21 刘磊 一种移动设备的双充电系统
US9800076B2 (en) * 2014-02-14 2017-10-24 Massachusetts Institute Of Technology Wireless power transfer
KR20160017626A (ko) * 2014-08-05 2016-02-16 한국전기연구원 임피던스 정합을 이용한 무선전력전송 장치 및 시스템
CN107078528B (zh) * 2016-09-21 2019-02-01 深圳市大疆创新科技有限公司 电源的充电方法、充电控制系统、充电装置及无人机
CN107220446A (zh) * 2017-06-02 2017-09-29 深圳市皇驰科技有限公司 一种单发射对四接收线圈电动汽车静态无线供电系统的建模方法
CN107612159B (zh) * 2017-09-28 2023-05-26 湖南工业大学 一种兼具pwm控制和调频控制的单发射对四接收线圈电动汽车静态无线供电系统
CN109995098B (zh) * 2017-12-29 2021-11-19 华为技术有限公司 无线充电接收装置、无线充电方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110140671A1 (en) * 2009-12-11 2011-06-16 Electronics And Telecommunications Research Institute Portable device and battery charging method thereof
CN104052099A (zh) * 2013-03-15 2014-09-17 三星电机株式会社 充电设备和电池设备
US20160105032A1 (en) * 2014-10-10 2016-04-14 Samsung Electro-Mechanics Co., Ltd. Wireless power reception device and electronic device including the same
CN107919735A (zh) * 2017-12-21 2018-04-17 天津大学 微型无人机快速无线充电系统
CN107919710A (zh) * 2017-12-21 2018-04-17 天津大学 微型无人机快速无线充电电池
CN108155727A (zh) * 2017-12-21 2018-06-12 天津大学 应用于磁耦合谐振式无线充电的平行阵面式充电电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4047786A4 *
YANG LIU , ZHAO XUE-CEN , ZHOU PING , ZHANG GANG-PING ,HUANG YAO-XIONG: "On an Intelligent Wireless Charging and Discharging System for Lithium-Ion Battery Packs", JOURNAL OF YUNNAN UNIVERSITY(NATURAL SCIENCES EDITION), vol. 40, no. 2, 31 December 2018 (2018-12-31), pages 264 - 271, XP055812685, ISSN: 0258-7971, DOI: 10.7540/j.ynu.20170064 *

Also Published As

Publication number Publication date
US20220263351A1 (en) 2022-08-18
EP4047786A4 (en) 2022-10-26
EP4047786A1 (en) 2022-08-24
CN114365383A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2018184584A1 (zh) 无线充电装置、方法及待充电设备
WO2018184429A1 (zh) 无线充电系统、方法及待充电设备
KR102222153B1 (ko) 무선 충전 장치, 무선 충전 방법, 및 충전 대기 설비
WO2018152786A1 (zh) 均衡电路、待充电设备和充电控制方法
WO2018068454A1 (zh) 待充电设备和充电方法
JP2018525963A (ja) アダプター及び充電制御方法
US11462931B2 (en) Charging method and charging apparatus
US20220006312A1 (en) Device to be charged, and charging and discharging control method
US11722062B2 (en) Power supply device, electronic device and power supply method
US20220271571A1 (en) To-be-charged device, wireless charging device, and wireless charging method
US20220006303A1 (en) Charging and discharging control method, and device
US20210281099A1 (en) Transmitting Apparatus and Wireless Charging Method
WO2021077933A1 (zh) 充电控制方法、充电控制设备和电子设备
WO2018188006A1 (zh) 待充电设备和充电方法
WO2018068460A1 (zh) 待充电设备和充电方法
WO2019218161A1 (zh) 待充电设备和充电控制方法
WO2019056303A1 (zh) 电源提供电路、电源提供设备以及控制方法
WO2020133081A1 (zh) 充电方法和装置、待充电设备、存储介质及芯片系统
WO2021017770A1 (zh) 无线充电方法和待充电设备
WO2021092894A1 (zh) 无线接收装置、无线充电系统和无线充电方法
US11502557B2 (en) Wireless charging control method and charging control device
CN112913104A (zh) 发射装置、接收装置、电源提供设备及无线充电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019952618

Country of ref document: EP

Effective date: 20220517

NENP Non-entry into the national phase

Ref country code: DE