WO2021092775A1 - 一种全温ota测试系统 - Google Patents

一种全温ota测试系统 Download PDF

Info

Publication number
WO2021092775A1
WO2021092775A1 PCT/CN2019/117658 CN2019117658W WO2021092775A1 WO 2021092775 A1 WO2021092775 A1 WO 2021092775A1 CN 2019117658 W CN2019117658 W CN 2019117658W WO 2021092775 A1 WO2021092775 A1 WO 2021092775A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature control
wave
full
area
Prior art date
Application number
PCT/CN2019/117658
Other languages
English (en)
French (fr)
Inventor
张庞源
席磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/117658 priority Critical patent/WO2021092775A1/zh
Publication of WO2021092775A1 publication Critical patent/WO2021092775A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing

Definitions

  • This application relates to the field of communication technology, and in particular to a full temperature OTA test system.
  • OTA Over the Air, that is, air interface testing technology, refers to the realization of air interface radio frequency performance testing through the field test method of electromagnetic wave space transmission. 3GPP 38.104 protocol has also been defined, 5G high frequency (FR2) base station radio frequency performance requires OTA testing.
  • FR2 5G high frequency
  • the test solution is a splicing combination of test incubator 1, shielding box 2, and wave-transmitting window 3, in the test incubator
  • the internal temperature and humidity control of the environment is realized, and the test signal is radiated into the shielding box through the wave-transmitting window.
  • the shielding box is equipped with a measuring antenna to realize the OTA test of the communication equipment in a full temperature environment.
  • the test thermostat has a large volume, requires a higher temperature control host, and has high system power consumption and high cost. It is difficult to achieve rapid temperature and humidity changes in the test thermostat.
  • This application provides a full-temperature OTA test system, which is used to reduce the energy consumption of the test system and improve the effect of rapid adjustment of temperature and humidity for antenna testing.
  • a full-temperature OTA test system which is used to test the radio frequency performance of the base station.
  • the test system includes a shielding case, the shielding case is used as a carrier for carrying a test piece and a measuring component for measuring the test piece, wherein the test piece is a base station product.
  • the shielding case is divided into two areas. The two areas are respectively used to place the DUT and the measurement component. Among them, the area where the DUT is placed is the temperature control area, and the area where the measurement component is placed It is the darkroom measurement area.
  • the area located in the wave-transmitting cover is the temperature control zone, and the area between the shielding shell and the wave-transmitting cover
  • the area is the darkroom measurement area.
  • the divided darkroom measurement area surrounds the temperature control area.
  • a shielding shell can carry the DUT and measuring components, and the area containing the DUT can be isolated by a wave-transmitting cover.
  • two boxes are used to carry the components separately.
  • the volume of the entire test system is reduced.
  • the temperature control host only needs to adjust the temperature and humidity in the temperature control area, and there is no need to adjust the temperature and humidity of the entire space in the shielding shell. Therefore, the energy consumption of the temperature control host can be reduced, and at the same time, since the area of the temperature control area is relatively small, the temperature and humidity of the temperature control area can be quickly adjusted, and the effect of temperature and humidity adjustment is improved.
  • the mounting assembly includes at least a holding pole arranged in the temperature control area, and at least one layer of brackets fixed on the holding pole, wherein each layer of bracket includes at least one for fixing A mounting bracket for the DUT.
  • the mounting bracket is provided to support the test piece, and the number of the mounting brackets can be multiple, so that multiple test pieces can be measured simultaneously, and the measurement efficiency is improved.
  • a multi-layer bracket is provided on the holding pole, and the multi-layer brackets are arranged along the height direction of the holding pole.
  • the multi-layer brackets are arranged along the height direction of the holding pole.
  • each layer of support includes multiple mounting brackets, and the multiple mounting brackets are arranged around the holding pole, so that multiple DUTs can be measured simultaneously.
  • the holding pole is arranged in the central area of the temperature control zone.
  • the mounting assembly further includes a turntable for driving the holding pole to rotate.
  • the holding pole is driven to rotate by the turntable, so that the adjustment of the test piece can be realized, and the measurement is convenient.
  • it further includes a standard gain horn antenna arranged in the temperature control area and used to calibrate the environmental loss in the temperature control area.
  • the environmental loss is measured by the standard gain horn antenna, so that the base station can be measured more accurately.
  • the standard gain horn antenna is fixed on the pole. It is convenient to set up standard gain antenna.
  • the wave-transmitting cover includes four wave-transmitting surfaces, and the four wave-transmitting surfaces are sequentially connected to form the temperature control zone.
  • the temperature control zone is enclosed by four wave-transmitting surfaces, thereby limiting the size of the temperature control zone.
  • each wave-transmitting surface is spherical or flat. Form different temperature control zones.
  • the wave-transmitting cover is a heat-insulating wave-transmitting cover. It is convenient to control the temperature and humidity of the temperature control area.
  • the measurement component includes: a measurement antenna arranged in the darkroom measurement area and used for detecting the object under test; and a four-axis driving component that drives the measurement component to move.
  • the DUT can be tested from different directions.
  • the four-axis driving component includes an aerial frame, and the measuring component is arranged on the aerial frame, and the position of the measuring component is adjusted by the aerial frame.
  • it also includes a first ventilation channel and a second ventilation channel, where,
  • the temperature control host communicates with the temperature control area in the wave-transparent cover through the first ventilation passage and the second ventilation passage, and forms a circulation loop.
  • the communication with the temperature control host is realized through the ventilation duct to facilitate the adjustment of the temperature and humidity of the temperature control area.
  • it further includes a wave-absorbing layer arranged in the shielding shell and used for absorbing interference waves; and the wave-absorbing layer and the wave-transmitting cover enclose the darkroom measurement area.
  • the absorbing layer absorbs useless electromagnetic wave interference in the environment to form an interference-free electromagnetic environment.
  • Figure 1 is a schematic diagram of a full-temperature OTA test system in the prior art
  • FIG. 2 is a top view of the internal structure of the first full-temperature OTA test system provided by an embodiment of the application;
  • FIG. 3 is a side view of the internal structure of the first full temperature OTA test system provided by an embodiment of the application;
  • FIG. 4 is a top view of the internal structure of the second full-temperature OTA test system provided by an embodiment of the application.
  • the test system is suitable for products that need to use OTA test technology to achieve full temperature measurement requirements, such as 5G base stations, 5G terminals and similar terminals Products, millimeter-wave array antennas and other products, the above-mentioned 5G base stations, 5G terminals, millimeter-wave array antennas, etc. can be called DUTs.
  • the DUT is put into the full-temperature OTA test system to test the DUT.
  • Test the system.
  • the full temperature OTA test system is referred to as the test system in the following.
  • FIGS. 2 and 3 show a top view of the internal structure of the test system provided by an embodiment of the present application
  • FIG. 3 shows a side view of the internal structure of the test system provided by an embodiment of the present application.
  • the main structure of the test system provided by the embodiment of the present application includes two parts: a temperature control host 1 and a test room 20.
  • the test piece 10 is tested, the test piece 10 is placed in the test room 20 for testing and is used for testing.
  • the measurement components of the test piece 10 can also be placed in the detection chamber 20; and the temperature control host 1 is used to control the environmental temperature and humidity of the test piece 10 during the test.
  • the structure of the detection chamber 20 of the test system will be explained below.
  • the detection room 20 provided by the embodiment of the present application includes a shielding shell 2, which is used to isolate the electromagnetic environment of the detection room and the outdoor to avoid the electromagnetic environment in the detection room 20 and the outdoor
  • the electromagnetic environments interfere with each other, so that the DUT 10 is in a non-interference electromagnetic environment.
  • the shielding shell 2 is a rectangular parallelepiped shell structure, but the shape of the shielding shell 2 is not specifically limited in the embodiment of the present application, and different shapes can be selected according to the needs, such as the shielding shell 2. Different shapes such as cylindrical and elliptical cylinders can be used, and the specific shape can be defined according to actual application scenarios.
  • a wave-transmitting cover 6 is provided in the shielding shell 2.
  • the wave-transmitting cover 6 and the shielding shell 2 are detachably connected to facilitate the assembly
  • the DUT 10 is placed in the temperature control zone 4, and when the two are fixed, the wave-transmitting cover 6 and the shielding shell 2 are hermetically connected, so that the space in the shielding shell 2 is divided into two areas by the wave-transmitting cover 6.
  • the temperature control zone 4 is an area surrounded by a wave-transmitting cover 6 and surrounded by a wave-transmitting cover 6 made of wave-transmitting materials.
  • the temperature control zone 4 is a temperature and humidity controllable environment for placing the DUT 10.
  • the darkroom measurement area 5 is the space between the shielding shell 2 and the transparent cover 6; as shown in Figure 2, the darkroom measurement area 5 is arranged around the temperature control area 4, and the darkroom measurement area 5 is located outside the transparent cover 6 In a measurement space area with a normal temperature environment and no electromagnetic interference, the measurement components used to measure the DUT 10 can be set in the darkroom measurement area 5.
  • the electromagnetic waves emitted by the test piece 10 placed in the temperature control zone 4 through the wave-transparent cover 6 and enter the darkroom measurement zone 5 can be measured. Therefore, the wave-transmitting cover 6 can be made of a material with a low dielectric constant.
  • a wave-absorbing layer 3 for absorbing interference waves may be provided in the shielding shell 2.
  • the aforementioned darkroom measurement area 5 is surrounded by the wave-absorbing layer 3 and the outer layer of the wave-transmitting cover 6.
  • the absorbing layer 3 can absorb useless electromagnetic wave interference in the environment to form an interference-free electromagnetic environment, which can improve the measurement effect of the measurement component.
  • the wave-absorbing layer 3 can be made of different wave-absorbing materials such as polyurethane foam. In the specific setting, the above-mentioned wave absorbing material can be fixed on the inner side wall of the shielding shell 2 by bonding, spraying or other connection methods.
  • the temperature control zone 4 is an area with adjustable temperature and humidity
  • the darkroom measurement zone 5 is a normal temperature environment
  • the temperature and humidity between the temperature control zone 4 and the normal temperature zone can have a large difference, in order to avoid the temperature control zone
  • the temperature and humidity in 4 affect the measurement area 5 in the darkroom.
  • the wave-transmitting cover 6 is made of heat insulation & low dielectric constant materials, such as PMI foam.
  • the wave-transmitting cover 6 is made into a heat-insulating and heat-preserving wave-transmitting cover, so as to realize the heat preservation of the environment in the temperature control zone 4 and the transmission of electromagnetic wave energy in a low-loss space.
  • the embodiment of the present application provides two specific shapes of the wave-transmitting cover 6.
  • the wave-transmitting cover 6 shown in Figures 2 and 4 the wave-transmitting cover 6 includes four wave-transmitting surfaces, and the four wave-transmitting surfaces are sequentially connected to form the aforementioned temperature control zone 4, wherein each wave-transmitting surface Corresponding to a DUT 10, the electromagnetic wave emitted by the DUT 10 enters the darkroom measurement area 5 after passing through the corresponding wave-transmitting surface.
  • the wave-transmitting surface can be selected in different shapes.
  • each wave-transmitting surface is a spherical surface, and the four spherical surfaces enclose the above-mentioned temperature control zone 4.
  • the four spherical surfaces When the four spherical surfaces are specifically set, the four spherical surfaces The centers of the spheres respectively correspond to the center of the antenna surface of the DUT 10, so that the volume of the temperature control zone 4 is minimized, the system power consumption is reduced, and the rapid temperature and humidity conversion is realized while meeting the performance requirements.
  • the wave-transmitting surface is a plane, and the four planes enclose the above-mentioned temperature control zone 4.
  • the design of the plane should be as close as possible to the distance between the test piece 10 and the inner edge of the wave-transmitting cover 6 so as to The incident angle is reduced to minimize the volume of the temperature control zone 4, reduce system power consumption, and achieve rapid temperature and humidity conversion while meeting performance requirements.
  • the temperature control host 1 may be an air conditioner host, a central air conditioner, or other common equipment that can realize temperature and humidity adjustment.
  • the temperature control host 1 communicates with the temperature control zone 4 to form a circulation loop, and the temperature and humidity in the temperature control zone 4 are adjusted through the air flow in the circulation loop.
  • the circulation loop is formed, the upper and lower ends of the wave-transmitting cover 6 are respectively opened, and the top side wall and the bottom side wall of the shielding shell 2 are respectively provided with corresponding through holes; continue to refer to Fig.
  • the wave-transmitting cover 6 The openings at the top and bottom ends of the cover 6 respectively communicate with the two through holes of the shielding shell 2 in a one-to-one correspondence.
  • the communication is carried out through the ventilation channel.
  • a first ventilation channel 7a is provided above the shielding shell 2, and one end of the first ventilation channel 7a is connected with the opening at the top of the wave-transparent cover 6, and the other end is connected with the air inlet of the temperature control host 1;
  • a second ventilating passage 7b is provided below the second ventilating passage 7b, and one end of the second ventilating passage 7b is connected with the bottom opening of the wave-transparent cover 6 and the other end is connected with the air outlet of the temperature control host 1.
  • the temperature control host 1 communicates with the temperature control zone 4 in the wave-transparent cover 6 through the first ventilation passage 7a and the second ventilation passage 7b, and forms a circulation loop.
  • the method of air inlet at the bottom and air outlet at the top conforms to the principle of natural heat dissipation, and realizes rapid temperature and humidity change in temperature control zone 4 to the greatest extent.
  • the temperature control host 1 drives the air flow in the circulation loop, and the temperature control host 1 heats or cools the air to control the temperature in the temperature control zone 4.
  • the humidity in the temperature control zone 4 is also controlled by humidifying or drying the air by the temperature control host 1.
  • first cover (not shown in the figure) is covered above the shielding shell 2, and the first cover is fixedly connected to the shielding shell 2.
  • a gap is formed between the first air passage 7a; when the second air passage 7b is specifically provided, a second cover body is covered under the shielding shell 2, and the second cover body and the shielding shell 2 are also fixed Connected, and a gap is formed between the two, and the gap is the second air passage 7b.
  • the first cover body and the second cover body and the shielding shell 2 can be fixedly connected by welding, riveting or threaded connections (bolts or screws).
  • the first cover body and the second cover body can also be connected to the shielding shell 2.
  • the shielding shell 2 is an integral structure.
  • the installation assembly includes a holding pole 11 which is arranged in the central area of the temperature control zone 4 and extends along the height direction of the temperature control zone 4.
  • the holding pole 11 is provided with two layers of brackets, each layer of bracket is provided with four mounting brackets 16 for fixing the test piece 10, and the four mounting brackets 16 are arranged around the holding pole 11.
  • the four mounting brackets 16 are arranged in one-to-one correspondence with the four wave-transmitting surfaces.
  • each mounting bracket 16 Since the pole 11 is located in the central area of the temperature control zone 4, the distance between each mounting bracket 16 and the corresponding wave-transmitting surface is equal; when the DUT 10 is fixed on the mounting bracket 16, the center of the antenna surface of the DUT 10 is located The position of the center of the sphere. And the signal of each DUT 10 passes through the corresponding wave-transmitting surface and enters the darkroom measurement area 5 for detection.
  • the mounting bracket 16 When the mounting bracket 16 is connected to the holding pole 11, the mounting bracket 16 has a certain adjustment function to ensure that the DUT 10 is located at the center of the spherical wave transparent cover 6 or is as close as possible to the flat wave transparent cover 6.
  • the mounting bracket 16 is rotatably connected with the holding rod 11 through a ball head, and a locking screw for locking the ball head is provided on the holding rod 11; or the mounting bracket 16 is rotatably connected with the holding rod 11 through a rotating shaft, and the holding rod 11 is provided with a useful The locking screw used to lock the shaft.
  • the ball head and the rotating shaft are common connection methods, so they are not shown in the drawings of this application; for the same reason, the locking screws are also not shown.
  • the holding pole 11 provided in the embodiment of the present application can also be provided with multiple layers of supports, such as one layer of support, two layers of support, three layers of support or four
  • layers of supports such as one layer of support, two layers of support, three layers of support or four
  • layer brackets and other different layers of brackets it is only necessary to satisfy that at least one layer of brackets are provided on the holding pole 11.
  • the multi-layer brackets are arranged on the holding pole 11, the multi-layer brackets are arranged along the height direction of the holding pole 11, and there is a certain gap between the two adjacent layers of brackets, so as to avoid the difference of the DUT 10 fixed by each layer of brackets. Interference occurs between signals. For example, as shown in FIG.
  • each layer of brackets may include one mounting bracket 16, two mounting brackets 16, three mounting brackets 16, and four mounting brackets 16. Different numbers of mounting brackets 16 are acceptable, and it is only necessary to ensure that each layer of bracket includes at least one mounting bracket 16 and each mounting bracket 16 corresponds to the DUT 10 one-to-one.
  • the wave-transmitting surface of the corresponding wave-transmitting cover 6 is also changed accordingly, so as to ensure that the wave-transmitting surface and the DUT 10 satisfy the above-mentioned corresponding relationship.
  • the corresponding wave-transmitting surfaces are also three; when there are five mounting brackets 16, the corresponding wave-transmitting surfaces are also five.
  • the turntable 12 that drives the holding rod 11 to rotate can realize the rotation of the test piece 10 at any angle in the azimuth plane.
  • the turntable 12 is fixed in the second air passage 7b, and the holding rod 11 is inserted into the turntable 12 and is rotatably connected with the turntable 12.
  • the turntable 12 can adopt different structures to drive the holding rod 11 to rotate.
  • the turntable 12 includes a housing, a drive motor arranged in the housing, a main drive gear connected to the drive motor, and a driven gear coaxially fixed on the holding pole 11.
  • the main driving gear meshes with the driven gear.
  • the driven gear can drive the holding rod 11 to rotate.
  • the drive motor and the holding rod 11 it is also possible to use the drive motor and the holding rod 11 to respectively fix the pulleys, and realize transmission through belts sleeved on the two pulleys to drive the holding rod 11 to rotate.
  • other common driving methods can also be used to drive the holding rod 11 to rotate, which will not be listed here.
  • the transparent cover 6 and the shielding shell 2 are fixedly connected, and then the pole 11 can be driven to rotate through the turntable 12, and the mounting bracket 16 can be adjusted so that the antenna array is close to the plane The inner edge of the wave-transmitting cover 6 or the center of the sphere of the spherical wave-transmitting cover 6.
  • the penetration loss of the wave-transmitting cover 6 will also have certain volatility under different temperatures and humidity.
  • the entire measurement environment needs to be calibrated. The purpose is to obtain different temperature, humidity, and The relative change of the spatial loss under different incident angles. Therefore, the test system provided by the embodiment of the present application may also include a standard gain horn antenna 15, which can replace the DUT 10 to perform different temperature, humidity and different The incident angle is measured to get the corresponding loss.
  • the standard gain horn antenna 15 is tested first, and then the test piece 10 is measured, and the corresponding loss detected by the standard gain horn antenna 15 is compensated to the measurement result of the test piece 10.
  • the standard gain horn antenna 15 when the standard gain horn antenna 15 is specifically set, the standard gain horn antenna 15 is fixed on the pole 11. Therefore, the relative position between the standard gain horn antenna 15 and the wave-transmitting surface can also be adjusted by the turntable 12 and the mounting bracket 16 to ensure the reliability of detection.
  • the test is performed by the measurement antenna 9 set in the darkroom measurement area 5.
  • the measurement antenna 9 There is also a one-to-one correspondence with the mounting bracket 16.
  • the measuring antenna 9 is connected to the meter 13 through the radio frequency cable 14; the radio frequency cable 14 conducts the signal collected by the measuring antenna 9 to the measuring meter 13 for index testing; the measuring meter 13 can be different
  • the meter 13 for example, when performing a downlink test, the measuring meter 13 is a spectrum analyzer, which can detect tests including radio frequency indicators such as power, EVM, and spurious.
  • the measuring instrument 13 is a vector signal source, which can measure radio frequency indicators including sensitivity and blocking sensitivity.
  • a four-axis driving member that drives the measurement antenna 9 to rotate along the polarization of the measurement antenna 9 is provided in the darkroom measurement area 5.
  • the four-axis driving member can drive the measuring antenna 9 to slide along the X axis, the Y axis, and the Z axis.
  • the four-axis driving part can be a scanning rail flight frame 8.
  • multiple high-precision scanning rail flight frames 8 are distributed in the darkroom measurement area 5, and each has X/Y/Z /Roll four-axis high-precision adjustment capability, the Roll axis realizes the polarization rotation direction of the measurement antenna 9, the Z axis realizes the adjustment of the measurement distance, provides a near-field & mid-field measurement environment, and the X/Y axis can realize planar scanning for Parallel testing of beam alignment, stereo pattern and amplitude & phase calibration measurements.
  • the support is two-layered
  • the corresponding scanning guide airframe 8 is also two-layered.
  • the test system of the present application adopts an integrated design logic, organically combines the traditional temperature control host 1 equipment with the darkroom equipment, and uses an omnidirectional low insertion loss transparent cover with heat insulation to realize the temperature control zone 4
  • the isolation from the darkroom measurement area 5 reduces the dependence on the performance of the absorbing material in high and low temperature environments.
  • the temperature control area 4 is small in size, low in cost, and low in power consumption.
  • the embodiment of the present application also provides an application method of the test system.
  • the standard gain horn antenna on the mounting bracket, and adjust the mounting bracket so that the antenna array of the standard gain horn antenna is close to the inner edge of the plane wave-transmitting cover (the wave-transmitting surface is a plane), or is located in the spherical wave-transmitting cover (the transmissive surface).
  • the center of the sphere (the wave surface is an arc surface) (when focusing on the measurement of indicators of different beam angles, a spherical transparent cover is preferred);
  • the antenna radiation area is divided into the near field area and the midfield area.
  • Area and far-field area, the mid-field area is the area between the near-field area and the far-field area), keep the same distance with the subsequent test of the DUT;
  • a measuring antenna to receive, rotate the turntable, and test different beam angles, use a spectrum analyzer to measure the received power of the antenna;
  • the full-temperature OTA radio frequency index test is based on the midfield test principle to obtain the radio frequency index deterioration of the same beam angle under different temperatures and humidity.
  • the parallel test steps are as follows:
  • the DUT is installed with a pole or a pendant, and installed in layers up and down. During the installation of the same layer, install in the four directions of the pole before and after the pole, which can reduce the size of the device to be tested. Mutual interference between components, the maximum number of installation matches the number of high-precision scanning aircraft, and then configure power, channel, beam and other parameters to generate power;
  • test distance is located in the midfield area of the DUT, which is consistent with the distance when the standard gain horn antenna was tested before;
  • a vector signal source is used for uplink index measurement, the signal level value corresponding to the corresponding bit error rate is read, and the sensitivity value is obtained after the insertion loss is compensated.
  • each base station module covers a range of 120 degrees in front, and the radiation energy in the remaining areas is very small. Therefore, in the horizontal direction, the module adopts a star-shaped distribution method to achieve test isolation in the beam domain to reduce mutual interference during parallel testing.
  • the base station antennas are generally horizontal & vertical polarization or +45 degrees & -45 degrees polarization
  • the DUT adopts a layered design in the vertical direction to achieve test isolation in the polarization domain and reduce mutual interference during parallel testing.
  • test system provided by the embodiment of the present application can also perform a full-temperature spatial three-dimensional pattern test, and the specific method is as follows:
  • the pattern of the standard gain horn antenna itself is relatively fixed (the deformation of metal at high and low temperature has little effect on the pattern).
  • the difference of the pattern under different temperature and humidity is that the characteristics of the transparent cover under different temperature and humidity are caused by Corresponding to the space transmission loss of temperature, humidity and beam angle.
  • the full-temperature spatial three-dimensional pattern is based on the near-field test principle to obtain the relative deterioration of the pattern under different temperatures and humidity.
  • the test steps are as follows:
  • the DUT is installed with a pole or pendant, and installed in layers up and down.
  • the module is installed in four directions, front, back, left, and right, which can reduce the distance between the DUTs.
  • the maximum number of installations matches the number of high-precision scanning guide rails, and then configures power, channel, beam and other parameters to generate power;
  • the full-temperature stereo pattern test is to use the test principle of the plane near field to collect the amplitude & phase information of different positions on the XY plane, and obtain the stereo pattern based on the near-to-far field transformation algorithm.
  • the purpose of environmental calibration is to obtain the full temperature.
  • the influence of the wave-transparent cover on the performance of the directional pattern is offset and used in the process of testing the DUT;
  • the test system provided by the embodiment of the present application can also achieve full temperature amplitude & phase calibration, where the purpose of the full temperature amplitude & phase calibration is to obtain the amplitude & phase changes of each antenna element of the DUT at full temperature It has nothing to do with the spatial beam angle, so it only needs to measure the normal direction characteristics of each antenna element.
  • the purpose of environmental calibration is to obtain the full temperature change of the amplitude & phase of the transparent cover in the case of vertical incidence. Proceed as follows:
  • the DUT is installed with a pole or pendant, and installed in layers up and down. During the installation of the same layer, install the pole in four directions, front, rear, left, and right, which can reduce the size of the DUT.
  • the maximum number of installations matches the number of high-precision scanning rail aircraft frames, and then configures power, channel, beam and other parameters to generate power;
  • the test system provided by the embodiment of the present application is a low-cost integrated full-temperature OTA test system with a small footprint; the use of a heat-insulating and low-insertion-loss transparent wave cover to achieve test space isolation Division, on the one hand, reduces the dependence on the performance of the absorbing material at high and low temperatures, on the other hand, compresses the volume of the temperature control zone, which facilitates rapid temperature changes and reduces system power consumption; makes full use of the multi-dimensional freedom of space to achieve multiple DUT orientations
  • Parallel testing technology of surface arbitrary beam radio frequency indicators supports mass production testing; in addition, it can also realize a test scheme that supports full-temperature stereo pattern based on planar near-field measurement technology, which can be used to evaluate the effect of temperature and humidity on the full temperature of 5G base stations The influence of the directional pattern performance; at the same time, the use of high-precision scanning guide rails to achieve the full-temperature front amplitude & phase calibration test program, which can be used to calibrate

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种全温OTA测试系统,测试系统包括屏蔽壳(2),屏蔽壳(2)内通过透波罩(6)划分为两个区域:放置有待测件(10)的温控区(4),放置有测量组件的暗室测量区(5),且划分的暗室测量区(5)环绕温控区(4)。在具体承载待测件(10)时,位于温控区(4)内设置了用于支撑待测件(10)的安装组件;并且还设置了温控主机(1)以调节温控区(4)内的温湿度。通过透波罩(6)将盛放待测件(10)的区域隔离出来,相比与现有技术中采用两个箱体分别承载待测件与测量组件来说,降低了整个测试系统的体积。在测量待测件(10)时,温控主机(1)只需要调整温控区(4)内的温湿度即可,从而可以降低温控主机(1)的能耗;由于温控区(4)的面积比较小,因此可以快速的调整温控区(4)的温湿度,提高了温湿度调节的效果。

Description

一种全温OTA测试系统 技术领域
本申请涉及到通信技术领域,尤其涉及到一种全温OTA测试系统。
背景技术
随着无线通信技术的发展,相对于传统基站而言,5G基站产品天线与整机一体化设计,射频性能测试需要由传统的传导测试转变为OTA测试。OTA:Over the Air,即空口测试技术,指的是通过电磁波空间传输的场测试方法实现空口射频性能测试。3GPP 38.104协议也已经定义,5G高频(FR2)基站射频性能均需要OTA测试。
针对全温OTA测试技术,业界尚没有成熟的应用案例,业界现有技术方案如图1所示:采用测试温箱1,屏蔽箱2,透波窗3拼接组合的测试方案,在测试温箱内实现环境温湿度控制,测试信号通过透波窗辐射到屏蔽箱中,屏蔽箱中架有测量天线,实现通信设备在全温环境下的OTA测试。但是图1所示的方案中测试温箱体积较大,对温控主机要求较高,系统功耗大,成本高,难以实现测试温箱内的快速温湿度变化。
发明内容
本申请提供了一种全温OTA测试系统,用以降低测试系统的能耗,提高对天线测试的温湿度快速调节效果。
第一方面,提供了一种全温OTA测试系统,该测试系统用于测试基站的射频性能。该测试系统包括一个屏蔽壳,该屏蔽壳作为承载件,用于承载待测件以及测量该待测件的测量组件,其中,待测件为基站产品。为了检测该待测件,屏蔽壳内划分为两个区域,两个区域分别用于放置待测件及测量组件,其中,放置有待测件的区域为温控区,放置有测量组件的区域为暗室测量区。在具体划分两个区域时,通过设置在屏蔽壳内的透波罩进行划分:位于所述透波罩内的区域为温控区,而位于所述屏蔽壳与所述透波罩之间的区域为暗室测量区。并且划分的暗室测量区环绕温控区。在具体承载待测件时,位于所述温控区内设置了用于支撑待测件的安装组件;并且还设置了温控主机与温控区连通,以调节温控区内的温湿度,该温控主机与所述温控区连通并用于控制所述温控区内温湿度。通过上述描述可以看出,通过一个屏蔽壳可以承载待测件以及测量组件,并且通过透波罩将盛放待测件的区域隔离出来,相比与现有技术中采用两个箱体分别承载待测件与测量组件来说,降低了整个测试系统的体积。在测量待测件时,温控主机只需要调整温控区内的温湿度即可,无需调整整个屏蔽壳内的空间的温湿度。从而可以降低温控主机的能耗,同时,由于温控区的面积比较小,因此可以快速的调整温控区的温湿度,提高了温湿度调节的效果。
在一个可实施的设计中,所述安装组件至少包括设置在所述温控区内的抱杆,以及固定在所述抱杆上的至少一层支架,其中每层支架至少包括一个用于固定一个所述待测件的安装支架。通过设置的安装支架支撑待测件,并且安装支架的个数可以为多个,从而可以同步测量多个待测件,提高了测量的效率。
在一个可实施的设计中,抱杆上设置有多层支架,且多层支架沿抱杆的高度方向排列。从而可以同步测量多个待测件。
在一个可实施的设计中,每层支架包括多个安装支架,且多个安装支架环绕抱杆设置, 从而可以同步测量多个待测件。
在一个可实施的设计中,所述抱杆设置在所述温控区的中心区域。
在一个可实施的设计中,所述安装组件还包括用于驱动所述抱杆转动的转台。通过转台驱动抱杆转动,从而可以实现对待测件的调整,方便测量。
在一个可实施的设计中,还包括设置在所述温控区内,且用于标定所述温控区内环境耗损的标准增益喇叭天线。通过标准增益喇叭天线测量环境耗损,从而可以更准确的测量基站。
在一个可实施的设计中,所述标准增益喇叭天线固定在所述抱杆上。方便设置标准增益天线。
在一个可实施的设计中,所述透波罩包括四个透波面,且所述四个透波面依次连接并围成所述温控区。通过四个透波面围成温控区,从而限定温控区的大小。
在一个可实施的设计中,每个透波面为球面或平面。形成不同的温控区。
在一个可实施的设计中,所述透波罩为隔热保温的透波罩。方便控制温控区的温湿度。
在一个可实施的设计中,所述测量组件包括:设置在所述暗室测量区内,并用于检测所述待测件的测量天线;驱动所述测量组件运动的四轴驱动件。从而可以从不同的方向测试待测件。
在一个可能的设计中,所述四轴驱动件包括航架,测量件设置在该航架上,并通过航架调整测量件的位置。
在一个可实施的设计中,还包括第一通风道及第二通风道,其中,
所述温控主机通过所述第一通风道、所述第二通风道与所述透波罩内的温控区连通并形成循环回路。通过通风道实现与温控主机的连通,以方便调整温控区的温湿度。
在一个可实施的设计中,还包括设置在所述屏蔽壳内,且用于吸附干扰波的吸波层;且所述吸波层与所述透波罩围成所述暗室测量区。通过吸波层吸收环境中无用的电磁波干扰,形成无干扰的电磁环境。
附图说明
图1为现有技术中全温OTA测试系统的示意图;
图2为本申请实施例提供的第一种全温OTA测试系统的内部结构俯视图;
图3为本申请实施例提供的第一种全温OTA测试系统的内部结构侧视图;
图4为本申请实施例提供的第二种全温OTA测试系统的内部结构俯视图。
具体实施方式
为方便理解本申请实施例提供的全温OTA测试系统,下面首先说明一下其应用场景,该测试系统适用于需要使用OTA测试技术实现全温测量需求的产品,例如5G基站,5G终端和类终端产品,毫米波阵列天线等产品,上述5G基站、5G终端、毫米波阵列天线等可以称为待测件。在检测待测件的射频性能时,将待测件放入到全温OTA测试系统中对待测件进行检测,下面结合附图以及具体的实施例详细说明一下本申请实施例提供的全温OTA测试系统。为方便描述以下将全温OTA测试系统简称为测试系统。
首先参考图2及图3,其中图2示出了本申请实施例提供的测试系统的内部结构的俯视图,图3示出了本申请实施例提供的测试系统的内部结构的侧视图。本申请实施例提供 的测试系统主体结构包括两大部分:温控主机1以及检测室20,在对待测件10检测时,将待测件10放置在检测室20内进行检测,且用于检测待测件10的测量组件也可以放置在检测室20内;而温控主机1用于控制待测件10在检测时的环境温湿度。下面首先说明一下测试系统的检测室20的结构。
继续参考图2及图3,本申请实施例提供的检测室20包括一个屏蔽壳2,该屏蔽壳2用于实现检测室内及室外的电磁环境相互隔离,避免检测室20内的电磁环境与室外的电磁环境之间相互干扰,从而使得待测件10处于一个无干扰的电磁环境中。在图2及图3中,该屏蔽壳2为一个长方体形的壳体结构,但是在本申请实施例中不具体限定屏蔽壳2的形状,可以根据需要选择不同的形状,如屏蔽壳2也可以采用圆柱形、椭圆柱体形等不同的形状,具体的形状可以根据实际的应用场景进行限定。
继续参考图2及图3,在屏蔽壳2内设置了一个透波罩6,在透波罩6装配在屏蔽壳2内时,透波罩6与屏蔽壳2可拆卸的连接,以方便将待测件10放置在温控区4内,并且在两者固定时,透波罩6与屏蔽壳2密封连接,从而使得屏蔽壳2内的空间被透波罩6划分为两个区域:温控区4以及暗室测量区5。其中,温控区4为使用透波罩6包围起来的区域,四周为透波材料制作的透波罩6,该温控区4内为温度湿度可控环境,用于放置待测件10。而暗室测量区5为屏蔽壳2与透波罩6之间的空间;如图2中所示,暗室测量区5环绕温控区4设置,且该暗室测量区5为位于透波罩6外部的常温环境、且无电磁干扰的测量空间区域,用于测量待测件10的测量组件可以设置在该暗室测量区5内。在对待测件10检测时,可以对放置在温控区4内的待测件10发射的穿过透波罩6进入到暗室测量区5内的电磁波进行测量。因此,该透波罩6可以选用低介电常数的材料制备而成。
继续参考图2,在具体设置屏蔽壳2时,屏蔽壳2内可以设置有用于吸附干扰波的吸波层3,上述的暗室测量区5为吸波层3与透波罩6外层围成的区域,该吸波层3可以吸收环境中无用的电磁波干扰,从而形成无干扰的电磁环境,可以改善测量组件的测量效果。其中的吸波层3可以采用如聚氨酯泡棉等不同的吸波材料制备而成。在具体设置时,可以将上述的吸波材料采用粘接、喷涂或者其他连接方式固定在屏蔽壳2的内侧壁上。
由上述描述可知,温控区4为温度湿度可调的区域,而暗室测量区5为常温环境,因此温控区4与常温区之间的温度湿度可以存在较大差异,为了避免温控区4内的温湿度影响到暗室测量区5,在设置透波罩6时,采用隔热保温&低介电常数材料制备透波罩6,如采用PMI泡沫制备透波罩6。使得该透波罩6为隔热保温透波罩,以实现温控区4内环境的保温及电磁波能量在低损耗的空间中传输。
由上述描述可以看出,在改变待测件10的测量环境时,只需改变温控区4内的温湿度即可,因此,温控区4的空间越小,温控主机1在改变温控区4内的温湿度时能耗越小,同时也可以更快的改变温控区4内的温湿度。因此在设置透波罩6时,需要考虑两个方向:一、选用低介电常数材料,降低透波插损,二、透波罩6的形状设计,材料的传输系数随入射角度变大,插损波动大,所以透波罩6的设计要尽量减小波束入射角。如图2及图4所示,本申请实施例提供了两种具体的透波罩6的形状。在图2及图4中所示的透波罩6中,该透波罩6包括四个透波面,且四个透波面依次连接并围成上述的温控区4,其中每个透波面对应一个待测件10,该待测件10发射出的电磁波穿过对应的透波面后进入到暗室测量区5。在具体设置时,透波面可以选用不同的形状,如在图2中,每个透波面为球面,四个球面围成上述的温控区4,在具体设置四个球面时,四个球面的球心分别对应待 测件10的天线面中心置,从而在满足性能要求的情况下,最大限度的减小温控区4的体积,降低系统功耗,实现快速温湿度变换。而在图4中,透波面为平面,且四个平面围成上述的温控区4,其中,平面的设计要为:尽量拉近待测件10与透波罩6的内沿的距离从而降低入射角,以在满足性能要求的情况下,最大限度的减小温控区4的体积,降低系统功耗,实现快速温湿度变换。
在实现温控区4内的温湿度可调时,通过温控主机1调控温控区4内的温湿度。该温控主机1可以为空调主机、中央空调、或者其他常见的可实现温度与湿度调节的设备。在对温控区4进行调整温湿度时,温控主机1与温控区4连通形成循环回路,通过循环回路中的空气流动调整温控区4内的温湿度。如图3中所示,在形成循环回路时,透波罩6的上下端分别开口,且屏蔽壳2的顶部侧壁及底部侧壁分别设置有对应的通孔;继续参考图3,透波罩6的顶端及底端的开口分别与屏蔽壳2的两个通孔一一对应连通。在温控区4与温控主机1连通时,通过通风道进行连通。如图3所示,屏蔽壳2的上方设置有第一通风道7a,且第一通风道7a一端与透波罩6顶端的开口连通,另一端与温控主机1的进风口连通;屏蔽壳2的下方设置有第二通风道7b,且第二通风道7b一端与透波罩6的底端开口连通,另一端与温控主机1的出风口连通。从而使得温控主机1通过第一通风道7a及第二通风道7b与透波罩6内的温控区4连通并形成循环回路。此外,采用底部进风,顶部出风的方式,符合自然散热的原理,最大程度实现温控区4快速温湿度变换。在使用时,通过温控主机1驱动循环回路中的空气流动,并通过温控主机1加热或者冷却空气实现控制温控区4内的温度。同样也通过温控主机1加湿或者干燥空气实现控制温控区4内的湿度。
继续参考图3,在具体设置第一通风道7a时,在屏蔽壳2的上方盖合有第一罩体(图中未标示),且第一罩体与屏蔽壳2固定连接,两者之间形成有间隙,该间隙即为第一通风道7a;在具体设置第二通风道7b时,在屏蔽壳2的下方盖合有第二罩体,且第二罩体与屏蔽壳2也固定连接,且两者之间形成有间隙,该间隙即为第二通风道7b。其中,上述第一罩体及第二罩体与屏蔽壳2固定连接时可以采用焊接、铆接或者螺纹连接件(螺栓或螺钉)实现固定连接,当然第一罩体及第二罩体也可以与屏蔽壳2为一体结构。
继续参考图2及图3,在将待测件10放置在温控区4内时,该温控区4内设置有用于支撑待测件10的安装组件,一并参考图2及图3,该安装组件包括一个抱杆11,该抱杆11设置在温控区4的中心区域,并沿温控区4的高度方向延伸。该抱杆11上设置有两层支架,每层支架设置有四个用于固定待测件10的安装支架16,且四个安装支架16环绕抱杆11设置。继续参考图2及图3中所示,四个安装支架16与四个透波面一一对应设置。由于抱杆11位于温控区4的中心区域,因此每个安装支架16距离对应的透波面的间距相等;在待测件10固定在安装支架16时,待测件10的天线面的中心位于球面的球心位置。且每个待测件10的信号穿过对应的透波面进入到暗室测量区5中进行检测。在安装支架16与抱杆11连接时,安装支架16具备一定的调整功能,以保证待测件10位于球面透波罩6的圆心或者离平面透波罩6距离尽量近。如安装支架16通过球头与抱杆11转动连接,并且抱杆11上设置有用于锁定球头的锁紧螺钉;或者安装支架16通过转轴与抱杆11转动连接,并且抱杆11上设置有用于锁定该转轴的锁紧螺钉。其中,球头以及转轴为常见的连接方式,因此在本申请视图中并未时候出;同理,锁紧螺钉也没有示出。
应当理解的是,上述图2及图3仅仅示例出了一个具体的实例,本申请实施例提供的 抱杆11上还可以设置多层支架,如一层支架、两层支架、三层支架或者四层支架等不同的层数的支架等不同的情况,只需要满足抱杆11上设置有至少一层支架即可。在抱杆11上设置有多层支架时,多层支架沿抱杆11的高度方向排列,且相邻的两层支架之间间隔一定的间隙,以避免每层支架固定的待测件10之间信号出现干扰。示例的,如图3中所示在包含两层支架时,两层支架沿抱杆11的长度方向间隔排列。另外,在本申请示例中,每层支架的安装支架16的个数也不限定,如每层支架可以包含一个安装支架16、两个安装支架16、三个安装支架16、四个安装支架16等不同个数的安装支架16均可,只需保证每层支架至少包括一个安装支架16,且每个安装支架16与待测件10一一对应即可。另外在每层安装支架16的个数改变时,对应的透波罩6的透波面也相应改变,以保证透波面与待测件10之间满足上述的对应关系。如在安装支架16为三个时,对应的透波面也为三个;在安装支架16为五个时,对应的透波面也为五个。
在将待测件10组装到透波罩6内时,待测件10与透波面之间可能存在一定的偏差,因此,在本申请示例中,如图3所示,安装组件还可以包括用于驱动抱杆11转动的转台12,以实现待测件10方位面任意角度旋转。如图3中所示,转台12固定在了第二通风道7b中,且抱杆11插入到转台12中并与转台12之间转动连接。其中转台12可以采用不同的结构实现驱动抱杆11转动。示例的,该转台12包括一个壳体,设置在所述壳体内的驱动电机,与所述驱动电机连接的主驱动齿轮,以及同轴固定在抱杆11的从动齿轮。在装配时,主驱动齿轮与从动齿轮啮合,在驱动电机带动主驱动齿轮转动时,可以通过从动齿轮带动抱杆11转动。当然除了上述的结构外,还可以采用驱动电机及抱杆11上分别固定皮带轮,通过套在两个皮带轮上的皮带实现传动,以带动抱杆11转动。或者还可以采用其他的常见的驱动方式实现带动抱杆11转动,在此不再一一列举。
在待测件10装配在安装支架16后,将透波罩6与屏蔽壳2固定连接好,之后,可以通过转台12驱动抱杆11转动,并调整安装支架16,以使得天线阵面贴近平面透波罩6的内沿,或者位于球面透波罩6的球心。
继续参考图3,另外,透波罩6在不同的温湿度下,透波插损也会存在一定的波动性,为了实现精准测试,需要对整个测量环境进行校准,目的是得到不同温湿度和不同入射角下,空间损耗的相对变化量,因此,本申请实施例提供的测试系统还可以包括一个标准增益喇叭天线15,该标准增益喇叭天线15可以代替待测件10进行不同温湿度和不同入射角的测量,得到对应的损耗。在使用时,首先通过标准增益喇叭天线15检测后,之后再对待测件10进行测量,并将标准增益喇叭天线15检测到的对应的耗损补偿到对待测件10的测量结果中。
继续参考图3,在具体设置标准增益喇叭天线15时,标准增益喇叭天线15固定在抱杆11上。从而也可通过转台12及安装支架16的调整标准增益喇叭天线15与透波面之间的相对位置,以保证检测的可靠性。
继续参考图2及图3,在检测待测件10时,通过设置在暗室测量区5内的测量天线9进行检测,该测量天线9与待测件10之间一一对应,即测量天线9与安装支架16之间也为一一对应。如图2中所示,测量天线9通过射频线缆14连接了仪表13;其中,射频线缆14将测量天线9采集的信号传导到测量仪表13进行指标测试;该测量仪表13可以为不同的仪表13,如在进行下行测试时,测量仪表13为频谱仪,该频谱仪可以检测包含功率、EVM和杂散等射频指标的测试。在进行上行测试时,测量仪表13为矢量信号源,该 矢量信号源可以测量包含灵敏度和阻塞灵敏度等射频指标。
在具体设置时,暗室测量区5内设置有驱动测量天线9沿测量天线9的极化转动的四轴驱动件。该四轴驱动件可以驱动测量天线9沿X轴、Y轴及Z轴滑动。其中四轴驱动件可以为扫描导轨航架8,如图2及图3所示,在暗室测量区5分布了多台高精度的扫描导轨航架8,且每台均具备X/Y/Z/Roll四轴高精度调节能力,Roll轴实现测量天线9的极化旋转方向,Z轴实现测量距离的调整,提供近场&中场的测量环境,X/Y轴可实现平面扫描,用于并行测试波束对准,立体方向图和幅度&相位校准的测量。如图3中所示,在支架为两层时,对应的扫描导轨航架8也为两层。
通过上述描述可以看出,本申请的测试系统采用一体式的设计逻辑,将传统的温控主机1设备与暗室设备有机结合,利用隔热保温的全向低插损透波罩实现温控区4与暗室测量区5的隔离,降低对高低温环境下吸波材料性能的依赖,同时温控区4体积小,成本低,功耗低,可实现快速温湿度变化,提升测量效率;充分利用空间多维自由度,实现多DUT方位面任意波束射频指标的并行测试,配合高精度的扫描架,基于平面近场测量技术,实现全温空间立体方向图测试及全温阵面幅度&相位的校准。
为方便理解本申请实施例提供的测试系统,本申请实施例还提供了该测试系统的应用方法。
首先说明射频指标并行测试方法,其包含几个具体步骤方法,具体如下所示:
环境校准方法说明:
1、在安装支架安装标准增益喇叭天线,通过安装支架的调整,使标准增益喇叭天线的天线阵面,贴近平面透波罩(透波面为平面)的内沿,或者位于球面透波罩(透波面为弧形面)的球心(当关注不同波束角的指标测量时,优选球面透波罩);
2、利用正对的高精度的扫描导轨航架,实现X/Y/Roll的对正,通过Z轴调整测试距离位于待测件的中场区(天线辐射区域划分为近场区、中场区及远场区,中场区为介于近场区与远场区之间的区域),与后续测试待测件时距离保持一致;
3、使用频谱仪标定标准增益喇叭天线的入口功率;
4、控制温控区的温湿度稳定在预期值;
5、使用测量天线接收,转动转台,测试不同波束角时,使用频谱仪测量天线的接收功率;
6、计算对应温湿度和波束角的空间透波损耗;
全温OTA射频指标测试是基于中场的测试原理,获取不同温湿度下,同一个波束角的射频指标恶化量,并行测试步骤如下:
1、环境校准,如上所述,获取对应温湿度和波束角的空间透波损耗;
2、待测件安装,如图3所示,待测件采用抱杆或者挂件安装,上下分层安装,同层安装过程中,在抱杆的前后左右四个方向安装,可减小待测件之间的相互干扰,最大安装数量与高精度的扫描航架数量匹配,然后配置功率、通道、波束等参数发功;
3、利用正对的高精度的扫描导轨航架,实现X/Y/Roll的对正,对正待测件阵面的几何中心,(默认为法线波束的最大点),通过Z轴调整测试距离位于待测件的中场区,与前面测试标准增益喇叭天线时距离保持一致;
4、控制温控区的温湿度稳定在预期值;
5、转动转台,使得预期波束指向测量天线,使用频谱仪测量天线的接收功率;
6、更换基站配置,遍历波束,重复步骤4~6;
7、控制温控主机,实现待测件不同的温湿度稳定状态,重复步骤4~7;
8、利用之前得到的空间透波损耗,计算同一个波束角,不同温湿度下射频指标的恶化情况。
在上述方法中,上行指标测量使用矢量信号源,读取相应误码率对应的信号电平值,补偿插损后即为灵敏度值。
待测件的安装过程中需要考虑如何减小待测件之间的相互干扰,基于5G基站模块的典型波束分析,每个基站模块覆盖前方120度的范围,在其余区域的辐射能量非常小,故而在水平方向上模块采用星型分布方式,在波束域实现测试隔离,降低并行测试过程中的相互干扰,另外,基站天线一般均为水平&垂直极化或者+45度&-45度极化天线,两种极化方式之间天然形成了一种隔离,故而在垂直方向上待测件采用分层设计,在极化域实现测试隔离,降低并行测试过程中的相互干扰。
本申请实施例提供的测试系统还可以进行全温空间立体方向图测试,具体方法如下:
首先进行环境校准,具体方法如下:
1、在安装支架安装标准增益喇叭天线,通过安装支架的调整,使标准增益喇叭天线的天线阵面,贴近平面透波罩的内沿(方向图的测试是基于平面近场的测试原理,故而选用平面透波罩);
2、利用正对的高精度的扫描导轨航架,实现X/Y/Roll的对正,通过Z轴调整测试距离位于近场区,与后续测试待测件时距离保持一致;
3、控制温控区的温湿度稳定在预期值;
4、利用高精度的扫描导轨航架,利用平面近场测试方法,采集空间XY平面不同位置的幅度&相位信息,基于近远场变换理论,获取空间立体方向图;
5、控制温控主机,实现温控区不同的温湿度稳定状态,重复3~5,获取不同温湿度下,标准增益喇叭天线的方向图测试结果;
标准增益喇叭天线自身的方向图是相对固定的(金属高低温形变对方向图影响较小),不同温湿度下的方向图的差异是,透波罩在不同温湿度下的特性不同导致,得到对应温湿度和波束角的空间透波损耗。
开始测试全温空间立体方向图测试,其中全温空间立体方向图是基于近场的测试原理,获取不同温湿度下,方向图的相对恶化量,测试步骤如下:
1、环境校准,如上所述,获取对应温湿度和波束角的空间透波损耗;
2、待测件安装,如图3所示,待测件采用抱杆或者挂件安装,上下分层安装,同层安装过程中,模块前后左右四个方向安装,可减小待测件之间的相互干扰,最大安装数量与高精度的扫描导轨航架数量匹配,然后配置功率、通道、波束等参数发功;
3、利用正对的高精度的扫描导轨航架,实现X/Y/Roll的对正,对正待测件阵面的几何中心,(默认为法线波束的最大点),通过Z轴调整测试距离位于近场区,与前面测试标准增益喇叭天线时距离保持一致;
4、控制温控区的温湿度稳定在预期值;
5、利用高精度的扫描导轨航架,利用平面近场测试方法,采集空间XY平面不同位置的幅度&相位信息,基于近远场变换理论,获取空间立体方向图;
6、更换基站配置,遍历波束,重复4~6;
7、控制温控主机,实现待测件不同的温湿度稳定状态,重复4~7;
8、利用之前得到的空间透波损耗,计算不同温湿度下,待测件方向图的恶化量;
在上述方法中,全温立体方向图测试是利用平面近场的测试原理,采集XY平面不同位置的幅度&相位信息,基于近远场变换算法得到立体方向图,环境校准的目的是得到全温下,透波罩对方向图性能的影响,在测试待测件的过程中抵消使用;
本申请实施例提供的测试系统,还可以实现全温幅度&相位校准,其中全温幅度&相位的校准的目的是获取待测件的每个天线阵元在全温下的幅度&相位的变化量,与空间波束角无关,所以只需要测量每个天线阵元法线方向特性即可,环境校准的目的是获取,透波罩在垂直入射情况下,幅度&相位的全温变化量,测试步骤如下:
首先进行环境校准,具体步骤包括:
1、在安装支架安装标准增益喇叭天线,通过安装支架的调整,使标准增益喇叭天线的天线阵面,贴近平面透波罩的内沿,(校准的基本原理是获取每个阵元法线的幅度&相位变化量,因此采用平面透波罩最为合适,在法线方向上的波束路径一致);
2、利用正对的高精度的扫描导轨航架,实现X/Y/Roll的对正,通过Z轴调整测试距离位于近场区,与后续测试待测件时距离保持一致;
3、使用矢量网络分析仪标定标准增益喇叭天线端口和测量天线端口的S21;
4、控制温控区的温湿度稳定在预期值,获取S21;
5、控制温控主机,实现温控区不同的温湿度稳定状态,重复4~5;
6、计算对应温湿度下,透波罩在法线方向上对幅度&相位的影响的变化量
进行全温幅度&相位的校准测试步骤如下:
1、环境校准,如上所述,获取对应温湿度,透波罩在法线方向上对幅度&相位的影响的变化量;
2、待测件安装,如图3所示,待测件采用抱杆或者挂件安装,上下分层安装,同层安装过程中,在抱杆前后左右四个方向安装,可减小待测件之间的相互干扰,最大安装数量与高精度的扫描导轨航架数量匹配,然后配置功率、通道、波束等参数发功;
3、利用正对的高精度的扫描导轨航架,实现X/Y/Roll的对正,对正待测件阵面的阵元1,(默认为法线波束的最大点),通过Z轴调整测试距离位于近场区,与前面测试标准增益喇叭天线时距离保持一致;
4、控制温控区的温湿度稳定在预期值;
5、将两层待测件按照层分为阵元1及阵元2,单独打开阵元1,获取阵元1的幅度&相位数据,移动测量天线对正阵元2,单独打开阵元2,获取阵元2的幅度&相位数据…..,直至测量完全部阵元;
6、控制温控主机,实现待测件不同的温湿度稳定状态,重复4~6;
7、利用之前得到的不同温湿度下,透波罩在法线方向上对幅度&相位的影响变化量,计算待测件每个阵元在全温下的幅度&相位的变化量。
通过上述测试方法可以看出,本申请实施例提供的测试系统为一种低成本的一体式全温OTA测试系统,占地小;利用隔热保温低插损的透波罩,实现测试空间隔离划分,一方面降低了对高低温下吸波材料性能的依赖,另一方面压缩温控区的体积,便于实现快速温变,降低了系统功耗;充分利用空间多维自由度,实现多DUT方位面任意波束射频指标的并行测试技术,支持大规模生产测试;另外还可基于平面近场测量技术,实现了一种 支持全温立体方向图的测试方案,可用于评估温湿度对5G基站全温方向图性能的影响;同时,利用高精度的扫描导轨航架,实现了全温阵面幅度&相位的校准测试方案,可用于对5G基站全温性能的校准补偿。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (11)

  1. 一种全温OTA测试系统,其特征在于,包括:屏蔽壳,设置在所述屏蔽壳内的透波罩,所述透波罩将所述屏蔽壳内的区域划分成两个区域,其中位于所述透波罩内的区域为温控区,位于所述屏蔽壳与所述透波罩之间的区域为暗室测量区,且所述暗室测量区环绕所述温控区;还包括:
    位于所述温控区内,且用于支撑待测件的安装组件;
    与所述温控区连通,且用于控制所述温控区内温湿度的温控主机;
    位于所述暗室测量区内,且用于检测所述待测件的测量组件。
  2. 根据权利要求1所述的全温OTA测试系统,其特征在于,所述安装组件至少包括设置在所述温控区内的抱杆,以及固定在所述抱杆上的至少一层支架,其中每层支架至少包括一个用于固定一个所述待测件的安装支架。
  3. 根据权利要求2所述的全温OTA测试系统,其特征在于,所述安装组件还包括用于驱动所述抱杆转动的转台。
  4. 根据权利要求2或3所述的全温OTA测试系统,其特征在于,还包括设置在所述温控区内,且用于标定所述温控区内环境耗损的标准增益喇叭天线。
  5. 根据权利要求4所述的全温OTA测试系统,其特征在于,所述标准增益喇叭天线固定在所述抱杆上。
  6. 根据权利要求1~5任一项所述的全温OTA测试系统,其特征在于,所述透波罩包括四个透波面,且所述四个透波面依次连接并围成所述温控区。
  7. 根据权利要求6所述的全温OTA测试系统,其特征在于,每个透波面为球面或平面。
  8. 根据权利要求6或7所述的全温OTA测试系统,其特征在于,所述透波罩为隔热保温的透波罩。
  9. 根据权利要求1~8任一项所述的全温OTA测试系统,其特征在于,所述测量组件包括:
    设置在所述暗室测量区内,并用于检测所述待测件的测量天线;
    驱动所述测量天线运动的四轴驱动件。
  10. 根据权利要求9所述的全温OTA测试系统,其特征在于,还包括第一通风道及第二通风道,其中,
    所述温控主机通过所述第一通风道、所述第二通风道与所述透波罩内的温控区连通并形成循环回路。
  11. 根据权利要求1~10任一项所述的全温OTA测试系统,其特征在于,还包括设置在所述屏蔽壳内,且用于吸附干扰波的吸波层;且所述吸波层与所述透波罩围成所述暗室测量区。
PCT/CN2019/117658 2019-11-12 2019-11-12 一种全温ota测试系统 WO2021092775A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/117658 WO2021092775A1 (zh) 2019-11-12 2019-11-12 一种全温ota测试系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/117658 WO2021092775A1 (zh) 2019-11-12 2019-11-12 一种全温ota测试系统

Publications (1)

Publication Number Publication Date
WO2021092775A1 true WO2021092775A1 (zh) 2021-05-20

Family

ID=75911629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117658 WO2021092775A1 (zh) 2019-11-12 2019-11-12 一种全温ota测试系统

Country Status (1)

Country Link
WO (1) WO2021092775A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117749287A (zh) * 2024-02-19 2024-03-22 成都恪赛科技有限公司 一种相控阵天线校准装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780002A (zh) * 2015-04-21 2015-07-15 陈奕铭 一种具有多个探头的小型化ota测试系统
CN205490563U (zh) * 2016-03-23 2016-08-17 北京中科国技信息系统有限公司 同时支持mimo 和siso ota 的紧凑型混合暗室
CN109100640A (zh) * 2018-09-14 2018-12-28 苏州永安丰新能源科技有限公司 一种用于通信设备环境适应性测试的ota测试装置及方法
US20190124529A1 (en) * 2017-10-23 2019-04-25 Keysight Technologies, Inc. Over the air (ota) beamforming testing with a reduced number of receivers
CN110086550A (zh) * 2018-01-22 2019-08-02 中国移动通信有限公司研究院 一种全温ota测试装置及方法
CN209311582U (zh) * 2018-12-14 2019-08-27 广东柏兹电子科技有限公司 一种小型多功能、高集成、可移动检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780002A (zh) * 2015-04-21 2015-07-15 陈奕铭 一种具有多个探头的小型化ota测试系统
CN205490563U (zh) * 2016-03-23 2016-08-17 北京中科国技信息系统有限公司 同时支持mimo 和siso ota 的紧凑型混合暗室
US20190124529A1 (en) * 2017-10-23 2019-04-25 Keysight Technologies, Inc. Over the air (ota) beamforming testing with a reduced number of receivers
CN110086550A (zh) * 2018-01-22 2019-08-02 中国移动通信有限公司研究院 一种全温ota测试装置及方法
CN109100640A (zh) * 2018-09-14 2018-12-28 苏州永安丰新能源科技有限公司 一种用于通信设备环境适应性测试的ota测试装置及方法
CN209311582U (zh) * 2018-12-14 2019-08-27 广东柏兹电子科技有限公司 一种小型多功能、高集成、可移动检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117749287A (zh) * 2024-02-19 2024-03-22 成都恪赛科技有限公司 一种相控阵天线校准装置及方法
CN117749287B (zh) * 2024-02-19 2024-05-03 成都恪赛科技有限公司 一种相控阵天线校准装置及方法

Similar Documents

Publication Publication Date Title
Kummer et al. Antenna measurements—1978
JP7223843B2 (ja) ハイブリッドコンパクト近傍-遠方界テスト範囲システム
CN102830298B (zh) 一种有源天线系统射频指标及无线指标的测试方法与装置
US11506697B2 (en) Measurement device for antenna systems
US10564201B1 (en) Testing antenna systems
JP6446441B2 (ja) 無線周波数信号トランシーバ被試験デバイスの無線試験を容易に行う装置と方法
US11063676B2 (en) Method and device for enabling testing of a communication node
EP3837561B1 (en) An improved measurement device for antenna systems
CN215894766U (zh) 一种滑动式紧缩场空口测试设备
CN211046941U (zh) 一种射频性能测试系统
Expósito et al. Uncertainty assessment of a small rectangular anechoic chamber: From design to operation
US10746775B1 (en) Testing system and method with multiple antennas
TWI674416B (zh) 用於量測天線的自動化系統
WO2021092775A1 (zh) 一种全温ota测试系统
CN113970561A (zh) 平板材料高温透波率测试系统及方法
CN113242098B (zh) 一种射频性能测试系统及方法
Pannala Feasibility and challenges of over-the-air testing for 5G millimeter wave devices
Fordham An introduction to antenna test ranges, measurements and instrumentation
Rownd et al. Design and performance of feedhorn-coupled bolometer arrays for SPIRE
Zhang et al. Beam measurements of the Tianlai dish radio telescope using an unmanned aerial vehicle [antenna applications corner]
Shields et al. A new compact range facility for antenna and radar target measurements
Zheng et al. A study of a probe-based millimeter-wave far-field antenna measurement setup [measurements corner]
CN216209487U (zh) 一种紧缩场空口测试设备
CA3120473C (en) Testing antenna systems
Derat et al. Acceleration of Over-The-Air Measurements Under Extreme Temperature Conditions Through Optimization of Air Flow and Thermal Efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952243

Country of ref document: EP

Kind code of ref document: A1