WO2021091258A1 - 무선 통신 시스템에서 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2021091258A1
WO2021091258A1 PCT/KR2020/015412 KR2020015412W WO2021091258A1 WO 2021091258 A1 WO2021091258 A1 WO 2021091258A1 KR 2020015412 W KR2020015412 W KR 2020015412W WO 2021091258 A1 WO2021091258 A1 WO 2021091258A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack
dci
harq
codebook
pdsch
Prior art date
Application number
PCT/KR2020/015412
Other languages
English (en)
French (fr)
Inventor
양석철
김선욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP20885902.5A priority Critical patent/EP4057538B1/en
Priority to KR1020227007931A priority patent/KR102477129B1/ko
Priority to JP2022525394A priority patent/JP7375188B2/ja
Priority to CN202080076930.9A priority patent/CN114642065A/zh
Publication of WO2021091258A1 publication Critical patent/WO2021091258A1/ko
Priority to US17/716,394 priority patent/US11611419B2/en
Priority to US18/158,185 priority patent/US11799612B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting or receiving an uplink/downlink radio signal in a wireless communication system.
  • Wireless communication systems are widely deployed to provide various types of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and apparatus for efficiently performing a wireless signal transmission/reception process.
  • a method for transmitting a hybrid automatic repeat request (HARQ)-acknowledgement (ACK) report by a terminal in a wireless communication system includes: receiving downlink control information (DCI) through a physical downlink control channel (PDCCH); And transmitting a HARQ-ACK report based on the DCI.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the terminal In the transmission of the HARQ-ACK report, the terminal is configured to spatial bundling of TB (transport block)-based ACK / NACK (negative-ACK) bits, the DCI is set in the terminal Indicating a specific type codebook-based HARQ-ACK report for transmitting ACK/NACKs for all HARQ processes of one or more of the serving cells on a one-shot basis, and that the terminal is the specific type Based on that it is configured to report each new data indicator (NDI) bit through a codebook-based HARQ-ACK report, each TB-based ACK/NACK bit and each NDI bit can be reported without the spatial bundling. have.
  • NDI new data indicator
  • a terminal for wireless communication includes: a transceiver; And a processor that receives downlink control information (DCI) through a physical downlink control channel (PDCCH) by controlling the transceiver and transmits a hybrid automatic repeat request (HARQ)-acknowledgement (ACK) report based on the DCI.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • HARQ hybrid automatic repeat request
  • ACK acknowledgenowledgement
  • the processor is set to spatial bundling (spatial bundling) the TB (transport block)-based ACK / NACK (negative-ACK) bits
  • the DCI is set in the terminal Indicating a specific type codebook-based HARQ-ACK report for transmitting ACK/NACKs for all HARQ processes of one or more of the serving cells on a one-shot basis, and that the terminal is the specific type
  • each new data indicator (NDI) bit through a codebook-based HARQ-ACK report
  • each TB-based ACK/NACK bit and each NDI bit can be reported without the spatial bundling. have.
  • the specific type codebook is a Type-3 codebook, and for a Type-3 codebook-based HARQ-ACK report configured to include each NDI, the spatial bundling may not be performed as an exception of the spatial bundling.
  • the exception of the spatial bundling may be applied based on the fact that the HARQ-ACK report based on the Type-3 codebook is configured to include each NDI bit.
  • the spatial bundling may be performed on corresponding TB-based ACK/NACK bits.
  • the terminal is configured to report each NDI bit through the configuration of the spatial bundling for a logical AND operation of the corresponding TB-based ACK/NACK bits and the HARQ-ACK report based on the specific type codebook May be received through higher layer signaling.
  • the one or more serving cells may include a specific serving cell in which codeblock group (CBG)-based transmission is performed.
  • CBG codeblock group
  • the UE determines whether to perform CBG-based ACK/NACK reporting or TB-based ACK/NACK reporting for the specific serving cell through HARQ-ACK reporting based on the specific type codebook based on higher layer signaling. You can decide.
  • the specific type codebook may be a Type-3 codebook.
  • the UE CBG-based ACK/NACK reporting may be performed for the specific serving cell through a Type-1 or Type-2 codebook-based HARQ-ACK report different from that.
  • the ACK/NACK (A/N) bit of the lower indexed serving cell may be mapped to the lower index bit in the HARQ-ACK report based on the specific type codebook.
  • the A/N bits of the lower index HARQ process may be mapped to the lower index bits in the HARQ-ACK report based on the specific type codebook.
  • the A/N bits of the lower index TB may be mapped to the lower index bits in the HARQ-ACK report based on the specific type codebook.
  • the A/N bits of a plurality of codeblock groups (CBGs) included in the TB the A/N bits of the lower index CBG may be mapped to the lower index bits in the HARQ-ACK report based on the specific type codebook.
  • CBGs codeblock groups
  • Each NDI bit included in the specific type codebook-based HARQ-ACK report may be set as an NDI field value included in a corresponding DCI scheduling a corresponding TB.
  • the terminal may receive the first TB through a physical downlink shared channel (PDSCH) of the first serving cell based on TB-based scheduling.
  • the UE may receive CBGs of the second TB through the PDSCH of the second serving cell based on codeblock group (CBG)-based scheduling.
  • CBG codeblock group
  • the specific type codebook-based HARQ-ACK report may include a TB-based ACK/NACK bit for the first TB, an NDI bit for the first TB, and an NDI bit for the second TB.
  • the specific type codebook-based HARQ-ACK report may include TB-based ACK/NACK bits for the second TB or CBG-based ACK/NACK bits for CBGs of the second TB.
  • a recording medium readable by a processor recording instructions for performing the above-described method may be provided.
  • a device for performing signal processing for wireless communication includes: a memory storing instructions; And an operation of receiving downlink control information (DCI) through a physical downlink control channel (PDCCH) by executing the commands. And a processor that transmits a hybrid automatic repeat request (HARQ)-acknowledgement (ACK) report based on the DCI.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • HARQ hybrid automatic repeat request
  • ACK acknowledgenowledgement
  • the processor is configured to spatially bundling the TB (transport block)-based ACK/NACK (negative-ACK) bits
  • the DCI is the device Indicating a specific type codebook-based HARQ-ACK report for transmitting ACK/NACKs for all HARQ processes of one or two or more serving cells set in a one-shot basis, and that the device Based on the configuration (configured) to report each new data indicator (NDI) bit through HARQ-ACK reporting based on a specific type codebook, reporting each TB-based ACK/NACK bit and each NDI bit without the spatial bundling can do.
  • NDI new data indicator
  • a method for a base station to receive a hybrid automatic repeat request (HARQ)-acknowledgement (ACK) report in a wireless communication system is to transmit downlink control information (DCI) to a terminal through a physical downlink control channel (PDCCH). Send on; And receiving a HARQ-ACK report based on the DCI from the terminal.
  • the base station configures the terminal even though the terminal is configured to spatially bundling the TB (transport block)-based ACK/NACK (negative-ACK) bits.
  • a specific type codebook-based HARQ-ACK report for receiving ACK/NACKs for all HARQ processes of one or more serving cells on a one-shot basis is indicated through the DCI, and Based on the configuration of the terminal to report each new data indicator (NDI) bit through the specific type codebook-based HARQ-ACK report, each NDI through the specific type codebook-based HARQ-ACK report It is possible to obtain a bit and each TB-based ACK/NACK bit to which the spatial bundling is not applied.
  • NDI new data indicator
  • a base station for wireless communication includes a transceiver; And a processor that transmits downlink control information (DCI) to a terminal through a physical downlink control channel (PDCCH) by controlling the transceiver and receives a HARQ-ACK report based on the DCI from the terminal.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the processor configures the terminal even though the terminal is configured to spatially bundling the TB (transport block)-based ACK/NACK (negative-ACK) bits.
  • a specific type codebook-based HARQ-ACK report for receiving ACK/NACKs for all HARQ processes of one or more serving cells on a one-shot basis is indicated through the DCI, and Based on the configuration of the terminal to report each new data indicator (NDI) bit through the specific type codebook-based HARQ-ACK report, each NDI through the specific type codebook-based HARQ-ACK report It is possible to obtain a bit and each TB-based ACK/NACK bit to which the spatial bundling is not applied.
  • NDI new data indicator
  • wireless signal transmission and reception can be efficiently performed in a wireless communication system.
  • FIG. 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • 3 illustrates a resource grid of a slot.
  • FIG. 5 shows an example in which a physical channel is mapped in a self-complete slot.
  • PUSCH 7 illustrates a physical uplink shared channel (PUSCH) transmission process.
  • FIG 9 illustrates a wireless communication system supporting an unlicensed band.
  • FIG. 10 illustrates a method of occupying a resource in an unlicensed band.
  • 11 is a flowchart illustrating a type 1 CAP operation of a terminal for transmitting an uplink signal.
  • FIG. 15 illustrates a conventional transport block (TB) processing process.
  • 17 illustrates A/N transmission based on a Type-3 codebook.
  • FIG. 18 illustrates A/N transmission based on a Type-3 codebook according to an example of the present invention.
  • FIG 19 illustrates A/N transmission according to an example of the present invention.
  • 20 to 23 illustrate A/N based on a Type-3 codebook according to an example of the present invention.
  • FIG. 24 illustrates A/N transmission based on a Type-3 codebook according to an example of the present invention.
  • 25 to 28 illustrate a communication system 1 and a wireless device applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is a part of Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP New Radio or New Radio Access Technology is an evolved version of 3GPP LTE/LTE-A.
  • NR New Radio or New RAT
  • 3GPP NR is mainly described, but the technical idea of the present invention is not limited thereto.
  • configuration may be replaced with an expression of "configure/configuration”, and both may be used interchangeably.
  • conditional expressions for example, “if”, “in a case” or “when”, etc.
  • based on that ⁇
  • SW/HW configuration according to the satisfaction of the corresponding condition may be inferred/understood.
  • a description may be omitted if the process on the receiving (or transmitting) side can be inferred/understood from the process on the transmitting (or receiving) side.
  • signal determination/generation/encoding/transmission of the transmitting side may be understood as signal monitoring reception/decoding/decision of the receiving side.
  • the expression that the terminal performs (or does not perform) a specific operation can be interpreted as that the base station expects/assums (or expects/assums not to perform) the performance of a specific operation of the terminal and operates.
  • each section, embodiment, example, option, method, method, etc. are for convenience of description and mean that each constitutes an independent invention, or that each must be implemented only individually. It should not be construed as intended to mean.
  • at least some of them may be combined and implemented together, and at least some of them may be omitted. It can be inferred/interpreted as possible.
  • a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information transmitted and received by them.
  • FIG. 1 is a diagram illustrating physical channels used in a 3GPP NR system and a general signal transmission method using them.
  • the terminal In a state in which the power is turned off, the terminal is turned on again or newly enters the cell and performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the UE receives a Synchronization Signal Block (SSB) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on PSS/SSS and acquires information such as cell identity (cell identity).
  • the terminal may acquire intra-cell broadcast information based on the PBCH.
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the physical downlink control channel information in step S102 to be more specific.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal may perform a random access procedure such as steps S103 to S106 in order to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • Can receive S104
  • a contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106) ) Can be performed.
  • the UE receives a physical downlink control channel/physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
  • Physical Uplink Control Channel (PUCCH) transmission (S108) may be performed.
  • Control information transmitted from the UE to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and ReQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data are to be transmitted at the same time. In addition, UCI may be aperiodically transmitted through the PUSCH at the request/instruction of the network.
  • each radio frame has a length of 10 ms and is divided into two 5 ms half-frames (HF). Each half-frame is divided into five 1ms subframes (Subframe, SF). The subframe is divided into one or more slots, and the number of slots in the subframe depends on Subcarrier Spacing (SCS).
  • SCS Subcarrier Spacing
  • Each slot includes 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols according to a cyclic prefix (CP). When a normal CP is used, each slot includes 14 OFDM symbols. When an extended CP is used, each slot includes 12 OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Table 1 exemplifies that when a normal CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • N subframe,u slot the number of slots in the subframe
  • Table 2 exemplifies that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • the structure of the frame is only an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed.
  • OFDM numerology eg, SCS
  • the (absolute time) section of the time resource eg, SF, slot, or TTI
  • TU Time Unit
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or a Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • BWP Bandwidth Part
  • PRB Physical RBs
  • the carrier may contain up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated to one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-contained structure in which all of a DL control channel, DL or UL data, and a UL control channel can be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter, a DL control region), and the last M symbols in a slot may be used to transmit a UL control channel (hereinafter, a UL control region).
  • N and M are each an integer of 0 or more.
  • a resource region hereeinafter, a data region
  • a time gap for DL-to-UL or UL-to-DL switching may exist between the control region and the data region.
  • the following configuration may be considered. Each section was listed in chronological order.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • the GP provides a time gap when the base station and the terminal switch from a transmission mode to a reception mode or a process from a reception mode to a transmission mode. Some symbols at a time point at which the DL to UL is switched within a subframe may be set as a GP.
  • PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • It carries system information on the DL-SCH, resource allocation information for an upper layer control message such as a random access response transmitted on the PDSCH, a transmission power control command, and activation/release of Configured Scheduling (CS).
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • CS Configured Scheduling
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH is composed of 1, 2, 4, 8, 16 Control Channel Elements (CCEs) according to the Aggregation Level (AL).
  • CCE is a logical allocation unit used to provide a PDCCH of a predetermined code rate according to a radio channel state.
  • CCE is composed of 6 REGs (Resource Element Group).
  • REG is defined by one OFDM symbol and one (P)RB.
  • PDCCH is transmitted through CORESET (Control Resource Set).
  • CORESET Control Resource Set
  • CORESET is defined as a REG set with a given pneumonology (eg, SCS, CP length, etc.).
  • a plurality of CORESETs for one terminal may overlap in the time/frequency domain.
  • CORESET may be set through system information (eg, Master Information Block, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs and the number of OFDM symbols (maximum 3) constituting CORESET may be set by higher layer signaling.
  • system information eg, Master Information Block, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of OFDM symbols (maximum 3) constituting CORESET may be set by higher layer signaling.
  • the UE monitors PDCCH candidates.
  • the PDCCH candidate represents the CCE(s) that the UE should monitor for PDCCH detection.
  • Each PDCCH candidate is defined as 1, 2, 4, 8, 16 CCEs according to the AL. Monitoring involves (blind) decoding the PDCCH candidates.
  • the set of PDCCH candidates monitored by the UE is defined as a PDCCH search space (SS).
  • the search space includes a common search space (CSS) or a UE-specific search space (USS).
  • the UE may acquire DCI by monitoring PDCCH candidates in one or more search spaces configured by MIB or higher layer signaling.
  • Each CORESET is associated with one or more search spaces, and each search space is associated with one COREST.
  • the search space may be defined based on the following parameters.
  • -controlResourceSetId indicates CORESET related to the search space
  • -monitoringSlotPeriodicityAndOffset indicates PDCCH monitoring period (slot unit) and PDCCH monitoring period offset (slot unit)
  • -monitoringSymbolsWithinSlot indicates the PDCCH monitoring symbol in the slot (eg, indicates the first symbol(s) of CORESET)
  • PDCCH monitoring
  • One or more PDCCH (monitoring) opportunities may be configured within a slot.
  • Table 3 exemplifies the characteristics of each search space type.
  • Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
  • Table 4 exemplifies DCI formats transmitted through the PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH Can be used to schedule.
  • DCI format 1_0 is used to schedule TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH Can (DL grant DCI).
  • DCI format 0_0/0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0/1_1 may be referred to as DL grant DCI or UL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
  • DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
  • the fallback DCI format maintains the same DCI size/field configuration regardless of the terminal configuration.
  • the non-fallback DCI format the DCI size/field configuration varies according to the terminal configuration.
  • PDSCH carries downlink data (e.g., DL-SCH transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are applied. do.
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • a codeword is generated by encoding TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to a resource together with a demodulation reference signal (DMRS) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS demodulation reference signal
  • UCI Uplink Control Information
  • UCI includes:
  • -SR (Scheduling Request): This is information used to request UL-SCH resources.
  • HARQ-ACK Hybrid Automatic Repeat Request-ACK (Acknowledgement): This is a response to a downlink data packet (eg, codeword) on the PDSCH. Indicates whether a downlink data packet has been successfully received.
  • HARQ-ACK 1 bit may be transmitted in response to a single codeword, and HARQ-ACK 2 bits may be transmitted in response to two codewords.
  • the HARQ-ACK response includes positive ACK (briefly, ACK), negative ACK (NACK), DTX or NACK/DTX.
  • HARQ-ACK is mixed with HARQ ACK/NACK and ACK/NACK.
  • MIMO Multiple Input Multiple Output
  • PMI Precoding Matrix Indicator
  • Table 5 illustrates PUCCH formats. Depending on the PUCCH transmission length, it can be classified into Short PUCCH (formats 0, 2) and Long PUCCH (formats 1, 3, 4).
  • PUCCH format 0 carries UCI of a maximum size of 2 bits, and is mapped and transmitted on a sequence basis. Specifically, the terminal transmits a specific UCI to the base station by transmitting one of the plurality of sequences through the PUCCH of PUCCH format 0. The UE transmits a PUCCH of PUCCH format 0 within a PUCCH resource for SR configuration corresponding only when transmitting a positive SR.
  • PUCCH format 1 carries UCI of a maximum size of 2 bits, and the modulation symbol is spread by an orthogonal cover code (OCC) (which is set differently depending on whether or not frequency hopping) in the time domain.
  • OCC orthogonal cover code
  • the DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (ie, time division multiplexing (TDM) is performed).
  • PUCCH format 2 carries UCI of a bit size larger than 2 bits, and a modulation symbol is transmitted after DMRS and frequency division multiplexing (FDM).
  • the DM-RS is located at symbol indexes #1, #4, #7, and #10 in a given resource block with a density of 1/3.
  • a PN (Pseudo Noise) sequence is used for the DM_RS sequence.
  • frequency hopping may be activated.
  • PUCCH format 3 does not perform multiplexing of terminals within the same physical resource blocks, and carries UCI with a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbol is transmitted after DMRS and TDM (Time Division Multiplexing).
  • PUCCH format 4 supports multiplexing of up to 4 terminals in the same physical resource block, and carries UCI with a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted after DMRS and TDM (Time Division Multiplexing).
  • PUSCH carries uplink data (e.g., UL-SCH transport block, UL-SCH TB) and/or uplink control information (UCI), and CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveform or It is transmitted based on a DFT-s-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on the CP-OFDM waveform, and when transform precoding is possible (eg, transform precoding is enabled), the UE is CP- PUSCH may be transmitted based on an OFDM waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by the UL grant in the DCI or is semi-static based on higher layer (e.g., RRC) signaling (and/or Layer 1 (L1) signaling (e.g., PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed based on a codebook or a non-codebook.
  • the UE may detect the PDCCH in slot #n.
  • the PDCCH includes downlink scheduling information (eg, DCI formats 1_0, 1_1), and the PDCCH represents a DL assignment-to-PDSCH offset (K0) and a PDSCH-HARQ-ACK reporting offset (K1).
  • DCI formats 1_0 and 1_1 may include the following information.
  • -Frequency domain resource assignment indicates the RB set assigned to the PDSCH
  • K0 e.g., slot offset
  • the starting position of the PDSCH e.g., OFDM symbol index
  • the length of the PDSCH e.g. number of OFDM symbols
  • -HARQ process number (4 bits): indicates the HARQ process ID (Identity) for data (eg, PDSCH, TB)
  • the UE receives the PDSCH from slot #(n+K0) according to the scheduling information of slot #n, and then, after receiving the PDSCH in slot #n1 (where, n+K0 ⁇ n1), slot #(n1+K1) ) Can transmit UCI through PUCCH.
  • the UCI may include a HARQ-ACK response for the PDSCH.
  • K1 may be indicated/interpreted based on the SCS of the PUCCH.
  • the HARQ-ACK response may consist of 1-bit.
  • the HARQ-ACK response may consist of 2-bits when spatial bundling is not configured, and may consist of 1-bits when spatial bundling is configured.
  • the HARQ-ACK transmission time point for a plurality of PDSCHs is designated as slot #(n+K1)
  • the UCI transmitted in slot #(n+K1) includes HARQ-ACK responses for the plurality of PDSCHs.
  • Whether the UE should perform spatial bundling for the HARQ-ACK response may be configured for each cell group (e.g., RRC/higher layer signaling). For example, spatial bundling may be individually configured for each of the HARQ-ACK response transmitted through the PUCCH and/or the HARQ-ACK response transmitted through the PUSCH.
  • Spatial bundling may be supported when the maximum number of TBs (or codewords) that can be received at one time (or scheduleable through 1 DCI) in the corresponding serving cell is two (or if there are two or more) (eg, upper layer If the parameter maxNrofCodeWordsScheduledByDCI corresponds to 2-TB). Meanwhile, more than 4 layers may be used for 2-TB transmission, and up to 4 layers may be used for 1-TB transmission.
  • spatial bundling when spatial bundling is configured in a corresponding cell group, spatial bundling may be performed on serving cells in which more than four layers of the serving cells in the corresponding cell group can be scheduled. On the serving cell, spatial bundling is performed.
  • a terminal that wants to transmit a HARQ-ACK response through a (bit-wise) logical AND operation on A/N bits for a plurality of TBs may generate a HARQ-ACK response.
  • the terminal performing spatial bundling is the first A/N for the first TB.
  • a single A/N bit may be generated by performing a logical AND operation on the bit and the second A/N bit for the second TB.
  • the UE when only 1-TB is actually scheduled on a serving cell configured to be capable of receiving 2-TB, the UE logically AND operates the A/N bit and the bit value 1 for the 1-TB to perform a single A/ N bits can be generated. As a result, the terminal reports the A/N bit for the 1-TB to the base station as it is.
  • each HARQ process is associated with a HARQ buffer of a medium access control (MAC) layer.
  • MAC medium access control
  • Each DL HARQ process manages state variables related to the number of transmissions of the MAC PDU (Physical Data Block) in the buffer, HARQ feedback for the MAC PDU in the buffer, and the current redundancy version.
  • Each HARQ process is distinguished by a HARQ process ID.
  • the UE may detect the PDCCH in slot #n.
  • the PDCCH includes uplink scheduling information (eg, DCI formats 0_0, 0_1).
  • DCI formats 0_0 and 0_1 may include the following information.
  • -Frequency domain resource assignment indicates the RB set assigned to the PUSCH
  • -Time domain resource assignment indicates the slot offset K2, the starting position (eg, symbol index) and length (eg number of OFDM symbols) of the PUSCH in the slot.
  • the start symbol and length may be indicated through a Start and Length Indicator Value (SLIV), or may be indicated respectively.
  • SIV Start and Length Indicator Value
  • the terminal may transmit the PUSCH in slot # (n+K2) according to the scheduling information of slot #n.
  • the PUSCH includes the UL-SCH TB.
  • UCI may be transmitted through PUSCH as shown (UCI piggyback or PUSCH piggyback). 8 illustrates a case where HARQ-ACK and CSI are carried on PUSCH resources.
  • a cell operating in a licensed band (hereinafter, L-band) is defined as an LCell, and a carrier of the LCell is defined as (DL/UL) Licensed Component Carrier (LCC).
  • L-band a cell operating in an unlicensed band
  • U-band a cell operating in an unlicensed band
  • UCC unlicensed Component Carrier
  • the cell carrier may mean the cell's operating frequency (eg, center frequency).
  • Cell/carrier eg, Component Carrier, CC
  • Cell/carrier eg, Component Carrier, CC
  • CC Component Carrier
  • one terminal can transmit and receive signals to and from the base station through a plurality of merged cells/carriers.
  • one CC may be set as a Primary CC (PCC), and the remaining CC may be set as a Secondary CC (SCC).
  • Specific control information/channel eg, CSS PDCCH, PUCCH
  • PCC Physical channels Control Channel
  • LCC may be set to PCC and UCC may be set to SCC.
  • one specific LCC may be set as PCC and the remaining LCCs may be set as SCC.
  • Figure 9 (a) corresponds to the LAA of the 3GPP LTE system.
  • 9(b) illustrates a case in which a terminal and a base station transmit and receive signals through one or more UCCs without an LCC (SA (standalone) mode). in this case.
  • One of the UCCs may be set as PCC and the other UCC may be set as SCC.
  • PUCCH, PUSCH, and PRACH transmission may be supported in the NR UCell. In the unlicensed band of the 3GPP NR system, both the NSA mode and the SA mode can be supported.
  • the communication node may first perform CS (Carrier Sensing) before signal transmission to determine whether other communication node(s) transmit signals.
  • CS Carrier Sensing
  • a case where it is determined that other communication node(s) does not transmit a signal is defined as having a clear channel assessment (CCA).
  • CCA clear channel assessment
  • the communication node determines the channel state as busy if energy higher than the CCA threshold is detected in the channel, otherwise the channel state Can be judged as children.
  • the CCA threshold is -62dBm for non-Wi-Fi signals and -82dBm for Wi-Fi signals.
  • the communication node can start signal transmission in the UCell.
  • LBT Listen-Before-Talk
  • CAP Channel Access Procedure
  • FBE Frame Based Equipment
  • LBE Load Based Equipment
  • FBE is a channel occupancy time (e.g. 1-10ms), which means the time that the communication node can continue to transmit when the channel connection is successful, and an idle period corresponding to at least 5% of the channel occupancy time. (idle period) constitutes one fixed frame
  • CCA is defined as an operation of observing a channel during a CCA slot (at least 20 ⁇ s) at the end of the idle period.
  • the communication node periodically performs CCA in a fixed frame unit, and if the channel is in an unoccupied state, it transmits data during the channel occupancy time, and if the channel is occupied, it suspends transmission and Wait for the CCA slot.
  • the communication node first q ⁇ 4, 5,... , After setting the value of 32 ⁇ , perform CCA for 1 CCA slot. If the channel is not occupied in the first CCA slot, data can be transmitted by securing a maximum (13/32)q ms length of time. If the channel is occupied in the first CCA slot, the communication node randomly N ⁇ 1, 2,... Select the value of, q ⁇ and store it as the initial value of the counter. Afterwards, the channel status is sensed in units of CCA slots, and if the channel is not occupied in units of CCA slots, the value stored in the counter is reduced by one. When the counter value becomes 0, the communication node can transmit data by securing a maximum (13/32)q ms length of time.
  • a plurality of CAP Types may be defined for uplink transmission in an unlicensed band.
  • a Type 1 or Type 2 CAP may be defined for uplink transmission.
  • the terminal may perform a CAP (eg, Type 1 or Type 2) set/instructed by the base station for uplink signal transmission.
  • 11 is a flowchart illustrating a type 1 CAP operation of a terminal for transmitting an uplink signal.
  • the terminal may initiate a CAP for signal transmission through an unlicensed band (S1510).
  • the terminal may randomly select the backoff counter N within the contention window (CW) according to step 1.
  • the N value is set to the initial value N init (S1520).
  • N init is selected as an arbitrary value from 0 to CW p.
  • the terminal ends the CAP process (S1532).
  • the terminal may perform Tx burst transmission (S1534).
  • the terminal decreases the backoff counter value by 1 according to step 2 (S1540).
  • the UE checks whether the channel of UCell(s) is in the idle state (S1550), and if the channel is in the idle state (S1550; Y), it checks whether the backoff counter value is 0 (S1530). Conversely, if the channel is not in an idle state in step S1550, that is, if the channel is in a busy state (S1550; N), the terminal has a delay period longer than the slot time (eg, 9us) according to step 5 (defer duration T d ; 25usec or more) While it is checked whether the corresponding channel is in the idle state (S1560). If the channel is in the idle state during the delay period (S1570; Y), the terminal may resume the CAP process again.
  • the slot time eg, 9us
  • the delay period may consist of a 16usec period and m p consecutive slot times (eg, 9us) immediately following.
  • the terminal performs step S1560 again to check whether the channel is in the idle state during the new delay period.
  • Table 6 shows m p applied to the CAP according to the channel access priority class (p), minimum CW (CW min,p ), maximum CW (CW max,p ), and maximum channel occupancy time (MCOT). (T ulmcot,p ) and allowed CW sizes are different.
  • the CW size (CWS) applied to the Type 1 CAP may be determined based on various methods. As an example, the CWS may be adjusted based on whether to toggle a New Data Indicator (NDI) value for at least one HARQ processor related to HARQ_ID_ref, which is the HARQ process ID of the UL-SCH within a certain time period (eg, a reference TU).
  • NDI New Data Indicator
  • the UE performs signal transmission using the Type 1 CAP related to the channel access priority class p on the carrier, the UE will toggle all priority classes p ⁇ 1 when the NDI value for at least one HARQ process related to HARQ_ID_ref is toggled.
  • Set CW p CW min,p in ,2,3,4 ⁇ , and if not, set CW p to the next higher allowed value in all priority classes p ⁇ 1,2,3,4 ⁇ allowed value).
  • Reference subframe n ref (or reference slot n ref ) is determined as follows.
  • the UE receives a UL grant in subframe (or slot) n g and starts from subframe (or slot) n 0 in subframe (or slot) n 0 , n 1 ,... n w and has no gap.
  • a reference subframe (or slot) n ref is a subframe (or slot) n 0 .
  • T short_ul 25us
  • the UE may perform uplink transmission (eg, PUSCH) in the unlicensed band immediately after sensing is terminated.
  • Embodiment HARQ-ACK feedback in U-band
  • HARQ-ACK is collectively referred to as A/N for convenience.
  • PUCCH/PUSCH represents PUCCH or PUSCH.
  • the base station schedules DL data transmission to the terminal through the Channel Occupancy Time (COT) interval secured by performing an LBT (CCA) operation, and HARQ-ACK for reception of the corresponding DL data from the terminal through the same COT interval.
  • COT Channel Occupancy Time
  • CCA LBT
  • a process of instructing the feedback to be transmitted may be considered (hereinafter, LBT or CCA is collectively referred to as LBT for convenience).
  • LBT LBT
  • CCA CCA
  • HARQ-ACK feedback for the reception of the scheduled/transmitted DL data through a specific COT interval is different from the corresponding COT.
  • a process of instructing to transmit through the COT interval may also be considered.
  • a HARQ-ACK feedback (hereinafter, A/N) configuration/transmission method in the U-band is proposed.
  • the A/N configuration/transmission method may be performed in consideration of an LBT operation, a COT configuration, and the like.
  • the matters proposed in the present specification are not limited to the HARQ-ACK feedback transmission method through PUCCH/PUSCH, and may be similarly applied to other UCI (eg, CSI, SR) transmission methods through PUCCH/PUSCH.
  • the matters proposed in the present specification are not limited to LBT-based U-band operation, and may be similarly applied to L-band (or U-band) operation that does not involve LBT.
  • a plurality of CCs is replaced by a plurality of BWPs (indexes) configured in one (or more) CC/(serving) cells, or a plurality of CC/(serving) cells composed of a plurality of BWPs ( That is, it can be replaced by a combination of CC (index) and BWP (index)).
  • UCI refers to control information transmitted by the UE by UL.
  • UCI includes various types of control information (ie, UCI type).
  • UCI includes HARQ-ACK, SR, and CSI.
  • -HARQ-ACK indicates whether DL data (eg, transport block (TB), codeword (CW)) on the PDSCH has been successfully received.
  • HARQ-ACK 1 bit may be transmitted in response to single DL data
  • HARQ-ACK 2 bits may be transmitted in response to two DL data.
  • the HARQ-ACK response/result includes positive ACK (ACK), negative ACK (NACK), DTX or NACK/DTX.
  • HARQ-ACK is mixed with ACK/NACK, A/N, and AN.
  • -HARQ process number/ID indicates the number or identifier of the HARQ process.
  • the HARQ process manages state variables related to the number of transmissions of MAC PDUs in the buffer, HARQ feedback for MAC PDUs in the buffer, and the current redundancy version.
  • -PUCCH means a physical layer UL channel for UCI transmission.
  • PUCCH resources set by the base station and/or indicating transmission are referred to as A/N PUCCH resources, SR PUCCH resources, and CSI PUCCH resources, respectively.
  • -PUSCH refers to a physical layer UL channel for UL data transmission.
  • -Slot means a basic time unit (time unit (TU), or time interval) for data scheduling.
  • the slot includes a plurality of symbols.
  • the symbol includes an OFDM-based symbol (eg, CP-OFDM symbol, DFT-s-OFDM symbol).
  • symbols, OFDM-based symbols, OFDM symbols, CP-OFDM symbols, and DFT-s-OFDM symbols may be replaced with each other.
  • the A/N triggering DCI includes at least a DL grant DCI, and may further include a specific DCI that does not schedule UL grant DCI and/or PDSCH/PUSCH transmission (in addition to the DL grant DCI).
  • the base station may indicate to the terminal one of the plurality of candidate HARQ timings through (DL grant) DCI.
  • the UE operates to transmit A/N feedback for (plural) PDSCH reception in a plurality of slots (or slot set; for convenience, bundling window) corresponding to the entire candidate HARQ timing set through the indicated HARQ timing. can do.
  • the HARQ timing means PDSCH-to-A/N timing/interval.
  • HARQ timing may be expressed in units of slots.
  • the A/N information may include response information for PDSCH reception in slot #(m-i).
  • slot #(m-i) corresponds to a slot corresponding to the candidate HARQ timing.
  • the A/N response to reception of the PDSCH in slot #n+1/#n+3 may be processed as NACK.
  • this A/N feedback configuration/transmission scheme is referred to as a “type-1 A/N codebook”.
  • counter Downlink Assignment Index (c-DAI) and/or total-DAI (t-DAI) may be signaled together through (DL grant) DCI.
  • the c-DAI (DL grant) may indicate the number of times the PDSCH corresponding to the DCI is scheduled.
  • the t-DAI may inform the total number of PDSCHs scheduled up to the current (slot) (or the total number of slots in which the PDSCH exists). Accordingly, the terminal may operate to transmit the A/N for the PDSCH corresponding to the c-DAI values from the c-DAI initial value to the (received) last t-DAI value through the indicated HARQ timing.
  • c-DAI and t-DAI may have the same meaning. Therefore, t-DAI can be included in DCI only when the number of serving cells is plural (DL grant).
  • the c-DAI is a cell-domain counted first, and then a scheduling order of the PDSCH counted in a time-domain (or the order of (serving cell, slot) in which the PDSCH exists). I can tell you.
  • the t-DAI may inform the total number of PDSCHs scheduled up to the current (slot) (or the total number of PDSCHs (serving cells, slots)).
  • c-DAI/t-DAI may be defined based on PDCCH.
  • the PDSCH is replaced with a PDCCH
  • a slot in which the PDCCH is present may be replaced with a PDCCH monitoring opportunity in which the PDCCH (or DCI) related to the PDCCH is present.
  • Each c-DAI/t-DAI may be indicated using a 2-bit value.
  • a number greater than 4 can be indicated as follows using the modulo operation.
  • n represents an integer of 0 or more.
  • 12(b) illustrates a case in which DAI is signaled through (DL grant) DCI in the same situation as in FIG. 12(a).
  • an operation of deferring (pending/deferring) A/N feedback transmission for a corresponding PDSCH may be indicated.
  • transmission of A/N feedback for the PDSCH corresponding to (i) all DL HARQ process IDs, or (ii) specific partial DL HARQ process ID(s) may be indicated through DCI (pooling).
  • the A/N feedback may be transmitted through a timing set/instructed based on a specific signal (eg, RRC or DCI signaling).
  • A/N pooling may be indicated through a DL grant (eg, DCI format 1_0/1_1), a UL grant (eg, DCI format 0_0/0_1), or another DCI (eg, a terminal (group) common DCI).
  • DCI indicating A/N pooling is referred to as pooling DCI.
  • the HARQ process ID to be pooled may be set/defined in advance, or may be indicated through pooling DCI.
  • A/N pooling may be indicated in units of all/group/individual HARQ process IDs.
  • a UE may receive three PDSCHs from a base station, and HARQ process IDs (HpIDs) allocated to each PDSCH may be 0, 3, and 2.
  • the terminal may transmit A/N for reception of the PDSCH corresponding to the entire HpID or partial HpID at once.
  • A/N pooling corresponds to HARQ process ID (indicated through pooling DCI) It may be defined as pooling the A/N transmission for the PDSCH to be used, or pooling the A/N transmission for the PDSCH corresponding to the t-DAI value (indicated through the pooling DCI). In the latter case, the UE may transmit A/N information for PDSCH reception corresponding to the c-DAI initial value to the t-DAI value at one time.
  • Timing-D indicating A/N timing may be signaled.
  • the terminal may operate to transmit A/N feedback for a slot group corresponding to timing-D (receiving PDSCH through this) through a time point indicated by timing-A.
  • the A/N payload may be mapped (eg, ordered) in the order of the slot index belonging to the corresponding slot group.
  • the UE may operate to transmit A/N feedback for a slot group (ie, PDSCH reception through this) corresponding to slot # (n + K-L) through slot # (n + K).
  • the UE may operate to transmit A/N feedback for a slot group (receiving PDSCH through this) corresponding to slot # (n + K-L) through slot # (n + K).
  • the terminal 1) timing- A/N feedback for the bundling window corresponding to A (receiving PDSCH through this) and 2) A/N feedback for a slot group corresponding to timing-D (receiving PDSCH through this) are combined (at the same time, for example, For example, it may operate to transmit) through one PUCCH/PUSCH.
  • the terminal 1) slot # (n + K ) A/N feedback for the bundling window (receiving PDSCH through this) corresponding to), and 2) A/N feedback for a slot group (receiving PDSCH through this) corresponding to slot # (n + K-L)
  • it can operate to transmit through slot #(n + K).
  • timing-D a specific value (eg, 0) is set, it may indicate that there is no corresponding slot group (a/N feedback request for this).
  • a specific part of the slots belonging to the bundling window corresponding to timing-A (or the slot group corresponding to timing-D) through DCI ( Yes, it can be instructed to transmit A/N feedback only for the first or last slot (eg, through a timing-D indication field).
  • a structure for signaling timing-A/timing-D and A/N feedback transmission triggering for a corresponding slot group (eg, bundling window) through a terminal (group)-common DCI may also be considered.
  • the reference A/N timing (the corresponding A/N feedback target slot group) that can be indicated by timing-D may be limited.
  • A/N feedback for PDSCH reception corresponding to all (not a specific slot group) or (pre-designated) specific partial HARQ process IDs is transmitted through a specific state of the timing-D indication field. Can be instructed to do.
  • the A/N transmission PUCCH/PUSCH resource (set) may be differently set for each timing-D value.
  • A/N transmission PUCCH/PUSCH resources (sets) may be differently set for each slot group corresponding to each timing-D value.
  • the timing-D value corresponding to each A/N transmission PUCCH/PUSCH resource (set) (e.g., corresponding to the A/N feedback target slot group to the corresponding PUCCH/PUSCH resource (set)) is set differently.
  • a slot group corresponding to each PUCCH/PUSCH resource (set) is set differently, and accordingly, a timing-D value may be set differently.
  • the terminal may transmit A/N feedback for a slot group corresponding to the feedback-ID (receiving PDSCH through this) through a time point (eg, a slot) indicated by the A/N transmission timing.
  • a time point eg, a slot
  • the current-ID of the same value as the feedback-ID is signaled/received through the previously signaled/received current-ID of the same value as the feedback-ID, that is, through the DL grant DCI. Includes the received slot.
  • the A/N payload is received through the DL grant DCI (e.g., from 1 to N) for the slot group corresponding to the feedback-ID (in a state in which counter-DAI is signaled through the DL grant DCI). ) Can be mapped in the order of counter-DAI values.
  • the counter-DAI may be determined/signaled to have a continuous value (starting from an initial value (eg, 1)) within one slot group (ID) as shown in FIG. 12(b). That is, the counter-DAI value may be independently determined/signaled between different slot groups.
  • the slot group may be defined in the form of a DAI sequence consisting of counter-DAI values from 1 to N corresponding to the same slot group ID value (indicated through DCI). In this case, the slot group may be composed of discontinuous slots based on the received/detected counter-DAI.
  • the slot group ID and the DAI sequence ID may be substituted/compatible with each other.
  • the terminal 1) timing A/N feedback for a bundling window corresponding to -A or a slot group corresponding to current-ID (receiving PDSCH through this), and 2) A/N for a slot group corresponding to feedback-ID (receiving PDSCH through this) N feedback can be combined (eg, concatenate) and transmitted (simultaneously, eg, through one PUCCH/PUSCH).
  • A/N triggering DCI e.g., DL grant DCI, UL grant DCI
  • a total-ID indicating the number of (PDSCH) slot groups (IDs) is signaled, and it may mean that a specific slot group ID determined from total-ID and current-ID is applied as a feedback-ID.
  • total-DAI and/or NFI for the feedback-ID (the corresponding (PDSCH) slot group) signaled/instructed through the A/N triggering DCI (eg, DL grant DCI, UL grant DCI) New Feedback Indicator) means total-DAI and/or NFI for feedback-ID determined according to Method 1, or other- having a value different from current-ID (regardless of the value indicated by total-ID). It may mean total-DAI and/or NFI for ID (slot group corresponding to this).
  • Method 2 This other-ID determination and total-DAI/NFI application method is referred to as "Method 2" for convenience.
  • NFI is 1-bit information
  • A/N feedback hereinafter, previous A/N feedback
  • the base station whether detection/reception has failed can be signaled.
  • the UE configures updated A/N feedback by processing the rest of the parts except for the A/N corresponding to the PDSCH scheduled after the previous A/N transmission with NACK or DTX (feedback configuration/transmission omitted). /Can be sent.
  • the UE may configure/transmit A/N feedback by maintaining the rest of the parts except for the A/N corresponding to the PDSCH scheduled after the previous A/N transmission.
  • the toggled NFI value from the NFI value received through the previous DCI is indicated through the current DCI.
  • an NFI value that is not toggled from an NFI value received through a previous DCI may be indicated through the current DCI.
  • the feedback-ID (or other-ID) and/or the corresponding slot group (request A/N feedback for this) through the DCI None may be indicated (eg, through a feedback-ID (or total-ID) indication field).
  • feedback-ID or total-ID indication field
  • the terminal configures A/N feedback only for (one) slot group corresponding to current-ID / Can act to transmit.
  • a bundling window corresponding to timing-A or a slot group corresponding to current-ID (or feedback-ID (or other -ID) to transmit A/N feedback only for a specific part (eg, first or last slot) among slots belonging to) (eg, through a feedback-ID (or total-ID) indication field) I can instruct.
  • terminal (group)-common DCI #1 and/or feedback-ID are signaled through terminal (group)-common DCI #1 and/or feedback-ID and A/N feedback transmission triggering for a corresponding slot group is performed by terminal (group)-common DCI #
  • a structure signaling through 2 may also be considered.
  • the terminal (group)-common DCI #1 and #2 may be separate DCIs from each other or may be configured with the same single DCI.
  • total-DAI is signaled through A/N triggering DCI, and the terminal is in a slot group corresponding to feedback-ID (or a bundling window corresponding to timing-A or a slot group corresponding to current-ID).
  • it can operate to configure/transmit A/N feedback only for the counter-DAI value(s) up to the total-DAI value (from 1). That is, A/N feedback can be configured/transmitted only for slot(s) (PDSCHs scheduled through this) corresponding to counter-DAI value(s) from 1 to total-DAI value.
  • total-DAI may be respectively signaled for a slot group corresponding to feedback-ID (or other-ID) and a slot group corresponding to current-ID (or a bundling window corresponding to timing-A) through DCI.
  • the terminal may operate to configure/transmit A/N feedback based on total-DAI for each slot group.
  • the A/N feedback configuration related information indicated through the DL grant DCI is at least (i) current-ID, (ii) counter/total for a slot group (PDSCHs scheduled through this) corresponding to the current-ID.
  • -DAI, and (iii) feedback-ID may be included.
  • the total-DAI for the slot group (PDSCHs scheduled through this) corresponding to the feedback-ID (or other-ID) may be further included in the DL grant DCI (ie, A/N feedback configuration related information).
  • current-ID may be indicated.
  • feedback-ID may be defined/generalized as two feedback-IDs #1 and #2.
  • the terminal may operate to transmit (eg, in the form of UCI piggyback) A/N feedback for a slot group corresponding to feedback-ID #1 and #2 through (PUCCH or) PUSCH.
  • current-ID may not be included in the UL grant DCI. That is, signaling through the UL grant DCI may be omitted for the current-ID (and/or feedback-ID (or total-ID)).
  • the terminal may operate to configure/transmit A/N feedback (on PUSCH) based on current-ID (and/or feedback-ID (or total-ID)) information received through the DL grant DCI.
  • it may be indicated through a specific field that there is no A/N feedback transmission request (eg, a slot group subject to A/N feedback) through the UL grant DCI.
  • the specific field is, for example, feedback-ID (or total-ID) and/or current-ID (and/or feedback-ID (or other-ID) and/or total-DAI corresponding to current-ID) May include an indication field.
  • current-ID and starting-ID may be indicated through A/N triggering DCI (eg, DL grant DCI, UL grant DCI).
  • the UE configures/transmits A/N feedback for a slot group set A (receiving PDSCH through this) corresponding to (a plurality of) consecutive slot group ID(s) from starting-ID to current-ID. It can work.
  • starting-ID is indicated to be the same value as current-ID
  • the terminal may operate to configure/transmit A/N feedback only for (one) slot group corresponding to current-ID.
  • current-ID may be defined/generalized as ending-ID.
  • the A/N feedback configuration related information indicated through the DL grant DCI is at least (i) current-ID, (ii) counter/total for a slot group (PDSCHs scheduled through this) corresponding to the current-ID.
  • -DAI, (iii) may include starting-ID.
  • the (single) total-DAI commonly applied to each of the (multiple) slot group(s) belonging to the slot group set A (excluding the slot group corresponding to the current-ID) is the DL grant DCI (i.e., A/N Feedback configuration related information) may be further included.
  • the terminal may operate to transmit (eg, in the form of UCI piggyback) A/N feedback for the slot group set corresponding to the starting-ID to the current-ID through (PUCCH or) PUSCH.
  • current-ID may not be included in the UL grant DCI. That is, signaling through the UL grant DCI may be omitted for the current-ID (and/or starting-ID).
  • the UE may operate to configure/transmit A/N feedback (on PUSCH) based on current-ID (and/or starting-ID) information received through the DL grant DCI.
  • A/N feedback on PUSCH
  • it may be indicated through a specific field that there is no A/N feedback transmission request (eg, a slot group subject to A/N feedback) through the UL grant DCI.
  • the specific field may include, for example, a starting-ID and/or current-ID (and/or a corresponding total-DAI) indication field.
  • the number of slot groups to be configured for (single) A/N feedback simultaneously transmitted e.g., 2 including current-ID, or including current-ID
  • A/N triggering DCI e.g, DL grant DCI
  • UL grant DCI e.g., DL grant DCI
  • each of a plurality of slot groups to be configured for A/N feedback excluding the slot group corresponding to the current-ID
  • Commonly applied (single) total-DAI can be indicated.
  • a slot group ID (a corresponding A/N feedback target slot group) that can be indicated by current-ID/feedback-ID (or total-ID).
  • current-ID/feedback-ID or total-ID
  • all (not a specific slot group) or some specific HARQ process IDs (specified in advance) It can be instructed to transmit A/N feedback for PDSCH reception.
  • A/N transmission PUCCH/PUSCH resources (sets) are set differently for each slot group ID value (for a slot group corresponding to the corresponding ID), or corresponding A/N transmission PUCCH/PUSCH resources (sets) are set differently.
  • a slot group ID value eg, a target for A/N feedback to the corresponding PUCCH/PUSCH resource (set)
  • the slot group ID is Opt 1-1) for all multiple carriers at the same time (eg, slot timing) or time period.
  • the same slot group ID is indicated/defined, or the slot group ID is individually indicated/defined for each carrier in the order of Opt 1-2) frequency (carrier)-first time (slot group)-second Can be.
  • the counter-DAI is 1) (with Opt 1-1 applied) within one slot group (ID) frequency (carrier)-first time (The PDSCH scheduling counter value is determined/indicated in the order of slot)-second, or 2) the PDSCH scheduling counter value is independently determined/indicated within one slot group (ID) for each carrier (with Opt 1-2 applied) Can be.
  • A/N feedback configuration/transmission and related basic operation methods will be described as follows.
  • the tA/N method and the pA/N method are substantially the same as those described with reference to FIGS. 12 to 13, and are described again below to classify the A/N feedback configuration/transmission method (or A/N codebook method). .
  • Timing-based A/N feedback method (t-A/N method)
  • the base station may indicate to the terminal one of the plurality of candidate HARQ timings through (DL grant) DCI.
  • the UE may operate to transmit A/N feedback for (multiple) PDSCH reception in a plurality of slots (or slot set; bundling window) corresponding to the entire candidate HARQ timing set through the indicated HARQ timing.
  • the HARQ timing means PDSCH-to-A/N timing/interval.
  • HARQ timing may be expressed in units of slots.
  • the above-described scheme is referred to as a Type-1 A/N codebook.
  • the Type-1 A/N codebook may also be referred to as a semi-static A/N codebook.
  • counter Downlink Assignment Index (c-DAI) and/or total-DAI (t-DAI) may be signaled together through (DL grant) DCI.
  • the c-DAI (DL grant) may indicate the number of times the PDSCH corresponding to the DCI is scheduled.
  • the t-DAI may inform the total number of PDSCHs scheduled up to the current (slot) (or the total number of slots in which the PDSCH exists). Accordingly, the terminal may operate to transmit the A/N for the PDSCH corresponding to the c-DAI values from the c-DAI initial value to the (received) last t-DAI value through the indicated HARQ timing.
  • the above-described scheme is referred to as a Type-2 A/N codebook.
  • the Type-2 A/N codebook may also be referred to as a dynamic A/N codebook.
  • the current-ID may be signaled through the DL grant DCI, and the feedback-ID may be signaled through the A/N triggering DCI.
  • the current-ID is used to indicate the slot group ID to which the slot in which the DL grant DCI or the corresponding PDSCH is transmitted belongs.
  • the feedback-ID is used to indicate the (DL PDSCH) slot group ID to be subjected to A/N feedback.
  • total-ID is signaled through DCI, and feedback-ID may be inferred from total-ID based on Method 1.
  • the UE may transmit A/N feedback for a slot group (receiving PDSCH through this) corresponding to the feedback-ID through a time point indicated by the A/N transmission timing.
  • the terminal When the A/N triggering DCI is the same as the DL grant DCI (i.e., both current-ID and feedback-ID (or total-ID) are signaled through the DL grant DCI), the terminal , 1) A/N feedback for a bundling window corresponding to timing-A or a slot group corresponding to current-ID (receiving PDSCH through this), and 2) a slot group corresponding to feedback-ID (receiving PDSCH through this) A/N feedback for is combined and transmitted (at the same time, for example, through one PUCCH/PUSCH).
  • an operation of deferring (pending/deferring) A/N feedback transmission for a corresponding PDSCH may be indicated.
  • transmission of A/N feedback for the PDSCH corresponding to (i) all DL HARQ process IDs, or (ii) specific partial DL HARQ process ID(s) may be indicated through DCI (pooling).
  • the A/N feedback may be transmitted through a timing set/instructed based on a specific signal (eg, RRC or DCI signaling).
  • a specific signal eg, RRC or DCI signaling.
  • the above-described scheme is referred to as a Type-3 A/N codebook.
  • the Type-3 A/N codebook may also be referred to as a one-shot A/N codebook.
  • A/N pooling corresponds to HARQ process ID (indicated through pooling DCI) It may be defined as pooling the A/N transmission for the PDSCH to be used, or pooling the A/N transmission for the PDSCH corresponding to the t-DAI value (indicated through the pooling DCI). In the latter case, the UE may transmit A/N information for PDSCH reception corresponding to the c-DAI initial value to the t-DAI value at one time.
  • switching between the t-A/N scheme and the p-A/N scheme may be indicated through the DL grant DCI. That is, it is possible to indicate whether to configure/transmit A/N feedback by applying any of the t-A/N scheme and the p-A/N scheme through the DL grant DCI. Additionally, both A/N pending and A/N pooling for the p-A/N scheme may be indicated through the same DL grant DCI. For example, when the DL grant DCI indicates the p-A/N scheme, the DL grant DCI may further indicate whether to indicate whether to pending A/N feedback transmission or to indicate pooling.
  • switching between the t-A/N scheme and the A/N pending operation for applying the p-A/N scheme may be instructed through the DL grant DCI. That is, whether to apply the t-A/N scheme or pending A/N feedback transmission for the p-A/N scheme may be indicated through the DL grant DCI.
  • the A/N pooling operation for the p-A/N scheme may be indicated through a UL grant DCI or a (terminal (group)) common DCI.
  • switching between t-A/N schemes and A/N pending for p-A/N may be indicated through DL grant DCI including PDSCH scheduling. That is, whether to apply t-A/N or to pending A/N transmission for the p-A/N scheme may be indicated through the DL grant DCI.
  • A/N pooling for the p-A/N scheme may be indicated through a DL grant DCI that does not include PDSCH scheduling.
  • the NFI can indicate the following information in the form of toggling.
  • previous A/N feedback Signaling whether the A/N feedback transmitted at the previous (recent) point in time (hereinafter, previous A/N feedback) was properly detected/received by (a) the base station, and (b) whether the base station failed to detect/receive. Can be.
  • the UE configures updated A/N feedback by processing the rest of the parts except for the A/N corresponding to the PDSCH scheduled after the previous A/N transmission with NACK or DTX (feedback configuration/transmission omitted). /Can be sent.
  • the UE may configure/transmit A/N feedback by maintaining the rest of the parts except for the A/N corresponding to the PDSCH scheduled after the previous A/N transmission.
  • the toggled NFI value from the NFI value received through the previous DCI is indicated through the current DCI.
  • an NFI value that is not toggled from an NFI value received through a previous DCI may be indicated through the current DCI.
  • a method of configuring a DL/UL grant DCI and signaling information when setting Type-2a and Type-1/2 A/N codebooks is proposed.
  • a DCI (format) in which the field configuration and each field size in the DCI format are configurable (ie, changeable) is referred to as a non-fallback DCI, and the DCI field configuration and each size are configured.
  • the DCI (format) that is not possible (i.e., fixed) is referred to as a fallback DCI.
  • DCI which is not separately specified as a fallback DCI in the present specification, may mean a non-fallback DCI.
  • A may contain the following information (for convenience, basic information).
  • total-ID is signaled through DCI, and feedback-ID information can be determined based on Method 1.
  • NFI information for A/N feedback corresponding to current-ID i.e., NFI for current-ID
  • NFI information for A/N feedback corresponding to feedback-ID ie, NFI for feedback-ID
  • NFI information for A/N feedback corresponding to other-ID having a value different from current-ID (i.e., NFI for other-ID)
  • Type-3 codebook e.g., CTI (Codebook Type Indicator) signaling indicating which A/N codebook is configured/transmitted from Type-2a and Type-3
  • NFI information ie, NFI for Type-3 codebook-based A/N feedback may be additionally signaled through the DCI.
  • CTI information may be explicitly signaled using a dedicated 1-bit or implicitly signaled in the following way.
  • the NFI for feedback-ID (or NFI for other-ID) bit/ CTI information may be signaled through the field.
  • Type-3 is indicated through the CTI, through the counter-DAI, the total-DAI bit/field, and/or the NFI for current-ID bit/field, the HARQ process ID group that is the A/N feedback target and/or (In CA situation) CC/cell group may be indicated or/and NFI for Type-3 information may be signaled
  • total-DAI for feedback-ID (or total-DAI for other- ID) CTI information can be signaled through bit/field.
  • Type-3 is indicated through CTI, counter-DAI, total-DAI (for current-ID) bit/field, NFI for current-ID, and/or NFI for feedback-ID (or NFI for other-ID)
  • the HARQ process ID group and/or the CC/cell group (in CA context) to be A/N feedback target may be indicated or/and NFI for Type-3 information may be signaled.
  • the fallback DCI format may include/signal only current-ID information and/or counter-DAI information (related to the (PDSCH) slot group corresponding to the ID) among the above-described basic information (for convenience, Case 1 )
  • the fallback DCI format may include/signal all of the above basic information except total-DAI for current-ID.
  • the DCI format does not include/signal all of the slot group ID/index, total-DAI, and NFI (however, the PDSCH scheduled from the DCI is a slot group having a specific (eg lowest) ID/index. Can be in the form of setting/defining) (this is referred to as “Case 2” for convenience)
  • the terminal is the most recently detected/received information (e.g., feedback-ID (or, total-ID), current-ID, A/N codebook (payload) can be configured/transmitted based on NFI, total-DAI, and/or CTI).
  • the non-fallback DL DCI related to the recently detected/received information refers to the HARQ-ACK (PUCCH) transmission time point (slot) indicated through the fallback DL DCI, and only the DCI indicated as the HARQ-ACK (PUCCH) transmission time point. May be limited.
  • the UE is a slot group corresponding to the current-ID or (in the case of Case 2) )
  • A/N feedback is configured/transmitted only for the slot group corresponding to the lowest ID, and for NFI for current-ID or Lowest ID (compared to the previous A/N feedback or compared with the previously received NFI bit) It can be operated by assuming/applying in a toggled form (or a non-toggled form).
  • the terminal can operate by assuming/applying that the CTI is indicated by the Type-2a codebook.
  • the DL fallback DCI does not contain/signal NFI information (therefore, a situation in which an A/N error may occur due to inconsistency regarding whether the NFI is toggled between the terminal and the base station).
  • the most recently received NFI bit is A Can operate to transmit through the same PUCCH/PUSCH resource with /N feedback
  • the most recent It can operate to transmit the received NFI bit (eg, through DL non-fallback DCI) through the same one PUCCH/PUSCH resource with A/N feedback.
  • the same HARQ-ACK (PUCCH) transmission time (eg, slot) is indicated (in the case of Case 1).
  • a plurality of fallback DL DCIs may be specified to indicate the same current-ID. Accordingly, the UE operates under the assumption that a plurality of fallback DL DCIs indicating the same HARQ-ACK (PUCCH) transmission time point all indicate the same current-ID, and if a DCI that does not are detected, the DCI may be ignored. There is (discard). For example, the terminal may not perform an operation indicated by the corresponding DCI.
  • CBG CB group
  • total-DAI for feedback-ID (or total-DAI for other-ID) information corresponds to an A/N sub-codebook corresponding to TB unit transmission and a CBG unit transmission.
  • A/N sub-codebooks can be individually signaled
  • A may contain the following information (for convenience, basic information).
  • first-ID Total-DAI information for the first (PDSCH) slot group ID
  • Second-ID Total-DAI information for the second (PDSCH) slot group ID
  • first-ID and second-ID may correspond to slot group indexes 0 and 1, respectively.
  • first-ID and second-ID may be set/replaced as current-ID and feedback-ID (or other-ID), respectively.
  • current-ID information and feedback-ID (or total-ID) information may be additionally signaled through DCI.
  • the other-ID may be determined as a slot group ID having a value different from the current-ID based on Method 2
  • group ID-bitmap it may be indicated for each slot group ID whether or not the slot group corresponding to the ID is an A/N feedback request/transmission target.
  • the UL grant DCI may not include slot group ID/index-related information/signaling.
  • the terminal may operate to configure/transmit an A/N codebook (payload) based on the most recently detected/received slot group ID/index information through the DL grant DCI.
  • the DL grant DCI related to the slot group ID/index may be limited only to the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • the UL grant DCI may be configured to include only single total-DAI information for a specific one (PDSCH) slot group (ID/index).
  • the specific slot group (ID/index) refers to the PUSCH transmission time (eg PUSCH timing) corresponding to the UL grant DCI as the A/N feedback transmission time for the PDSCH (e.g., the corresponding A/ Among the DL grant DCIs (or PDSCHs corresponding to the DCIs) indicating N timing in the form of a valid or numerical value, the DL grant received at the closest point from the UL grant DCI reception time (or the corresponding PUSCH timing) It may be determined as a slot group (ID/index) to which the PDSCH scheduled through DCI (or the PDSCH received at the nearest time point) belongs (this is referred to as “method 1”).
  • the specific slot group can be (pre) set/defined as a slot group having a specific (e.g. lowest) ID/index (this is referred to as “method 2”).
  • the ID/index (field indicating this) of the specific slot group may be signaled/included through the UL grant DCI, and additionally A/N for a slot group other than the specific slot group Whether feedback is transmitted (a field indicating this) may be signaled/included through the UL grant DCI.
  • single total-DAI information signaled through the UL grant DCI may be commonly applied to a plurality of (e.g. 2) slot groups (this is referred to as “method 3”).
  • the total-DAI (eg UL DAI) information indicated by UL grant DCI is the maximum of the last counter-DAI or total-DAI (eg DL DAI) values indicated through the DL grant DCI for each of the plurality of slot groups.
  • the UE can operate to configure/transmit a corresponding A/N codebook (payload) by individually interpreting the indicated UL DAI value based on the DL DAI value received for each slot group.
  • the UL DAI (to which the modulo-4 operation is applied) may be indicated as 3 (corresponding to the maximum value of 7), and the terminal receiving it Can operate to configure/transmit A/N codebook (payload) by interpreting the total-DAI values of slot groups 0 and 1 as 3 and 7, respectively.
  • the UL DAI (to which the modulo-4 operation is applied) may be indicated as 1 (corresponding to the maximum value of 5), and the terminal receiving it
  • the total-DAI values of slot groups 0 and 1 are interpreted as 5 and 5, respectively, and the A/N codebook (payload) can be configured/transmitted.
  • Case 1 When PDSCH scheduling and/or A/N feedback is indicated by the base station for all of the plurality (eg 2) slot groups, or Case 2) a specific single slot PDSCH scheduling and/or A/N feedback is indicated by the base station only for the group, or Case 3) PDSCH scheduling and/or A/N feedback is not indicated by the base station for all of the plurality (eg 2) slot groups. It may be applied if not.
  • method 2 (or method 3) may be applied, and in case of case 2, method 1 (or method 2) may be applied.
  • each of the DL/UL DCIs is an individual total-DAI for each of a plurality (eg 2) slot groups (and/or NFI) may be set to include information, or 2) DL/UL DCI may be set to include only total-DAI (and/or NFI) information for one specific slot group.
  • A/N feedback transmission (via PUSCH) may be instructed to the terminal without additional DL (PDSCH) scheduling/transmission from the base station.
  • the UL grant DCI may not include NFI information for A/N feedback.
  • the UE can operate to configure/transmit an A/N codebook (payload) based on the most recently detected/received NFI information through the DL grant DCI (for each (PDSCH) slot group).
  • the DL grant DCI related to the NFI information may be limited to only the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • the UL grant DCI may be configured to include only single NFI information for a specific one (PDSCH) slot group (ID/index).
  • the specific slot group (ID/index) refers to the PUSCH transmission time (eg PUSCH timing) corresponding to the UL grant DCI as the A/N feedback transmission time for the PDSCH (e.g., the corresponding A/ Among the DL grant DCIs (or PDSCHs corresponding to the DCIs) indicating N timing in the form of a valid or numerical value, the DL grant received at the closest point from the UL grant DCI reception time (or the corresponding PUSCH timing) It may be determined as a slot group (ID/index) to which the PDSCH scheduled through DCI (or the PDSCH received at the nearest time point) belongs (this is referred to as “method 1”).
  • the specific slot group can be (pre) set/defined as a slot group having a specific (e.g. lowest) ID/index (this is referred to as “method 2”).
  • the ID/index (field indicating this) of the specific slot group may be signaled/included through the UL grant DCI, and additionally A/N for a slot group other than the specific slot group Whether feedback is transmitted (a field indicating this) may be signaled/included through the UL grant DCI.
  • single NFI information signaled through the UL grant DCI may be commonly applied to a plurality of (e.g. 2) slot groups (this is referred to as “method 3”).
  • Case 1 When PDSCH scheduling and/or A/N feedback is indicated by the base station for all of the plurality (eg 2) slot groups, or Case 2) a specific single slot PDSCH scheduling and/or A/N feedback is indicated by the base station only for the group, or Case 3) PDSCH scheduling and/or A/N feedback is not indicated by the base station for all of the plurality (eg 2) slot groups. It may be applied if not.
  • method 2 (or method 3) may be applied, and in case of case 2, method 1 (or method 2) may be applied.
  • Type-3 codebook e.g., indicate which A/N codebook will be configured/transmitted from Type-2a or Type-3)
  • NFI information for Type-3 codebook-based A/N feedback may be additionally signaled through the DCI.
  • the fallback DCI format may be in a (omitted) form in which all basic information is not included/signaled.
  • the fallback DCI format may include/signal all basic information (eg, total-DAI and/or group ID-bitmap information for each of first-ID and second-ID).
  • the fallback DCI format may be in the form of including/signaling ⁇ total-DAI for first-ID, total-DAI for second-ID, NFI for first-ID, NFI for second-ID ⁇
  • the fallback DCI format may include/signal ⁇ NFI for first-ID, NFI for second-ID ⁇ (and/or group ID-bitmap information).
  • the UE is A based on the most recently detected/received information (e.g., slot group ID/index, total-DAI, NFI, CTI) through the DL grant DCI.
  • the DL grant DCI related to the recently detected/received information may be limited only to the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • the terminal when the A/N is piggybacked and transmitted through a CG-PUSCH transmitted without DCI in a configured (Configured Grant, CG) form rather than scheduling accompanying dynamic grant DCI transmission, the terminal is impersonated through the DL grant DCI. It can operate to configure/transmit A/N codebook (payload) based on recently detected/received information (eg, slot group ID/index, total-DAI, NFI, CTI).
  • the DL grant DCI related to the recently detected/received information may be limited only to the DCI indicating the CG-PUSCH transmission time (slot) as the HARQ-ACK transmission time for the PDSCH.
  • CBG CB group
  • total-DAI eg, total-DAI for first-ID and total-DAI for second-ID
  • A/N sub-codebook corresponding to TB unit transmission.
  • Each of the A/N sub-codebooks corresponding to unit transmission can be individually signaled
  • the base station instructs/recognizes "no A/N feedback to be piggybacked on PUSCH" to the terminal. You may need a way to do it. To this end, the following DCI signaling and operation may be considered.
  • the total-DAI bit in the UL grant DCI is indicated as '11' (or the total-DAI value is 4), and the bundling window period corresponding to the PUSCH transmission time (or previous (e.g., recent) A/N feedback)
  • the bundling window period corresponding to the PUSCH transmission time or previous (e.g., recent) A/N feedback
  • the NFI bit indicated through the UL grant DCI is (compared to or before the previous A/N feedback).
  • the UE can operate so as not to piggyback any A/N on the PUSCH.
  • This scheme can be applied to a structure for signaling NFI information through UL grant DCI.
  • DCI information check and terminal operation accordingly can be performed independently/individually for each (PDSCH) slot group (ID).
  • the DCI check/terminal operation is applied/performed, but the NFI bit is (formerly A /N Can be assumed to be non-toggled (or toggled) against feedback or against previous (recent) received NFI bits.
  • This method can be applied to the case of UL grant DCI (format) without separate NFI information signaling (e.g., fallback)
  • One of the states signaled by the total-DAI field in the UL grant DCI may be defined as indicating "no A/N feedback" (to be piggybacked by PUSCH).
  • the UE may operate so as not to piggyback any A/N on the PUSCH.
  • This method can be applied to a structure without NFI information signaling through UL grant DCI.
  • DCI information check and terminal operation accordingly can be performed independently/individually for each (PDSCH) slot group (ID).
  • PDSCH Only one
  • first-ID is indicated through the first-ID and second-ID (or current-ID and feedback-ID (or total-ID)) bit/field in the UL grant DCI Can be.
  • a specific total-DAI field eg, total-DAI field for second-ID
  • 1) A/N feedback for only one indicated slot group eg, first-ID
  • Piggyback to PUSCH To configure/transmit, or 2)
  • A/N to be piggybacked with PUSCH even for the indicated slot group (eg, first-ID) (that is, for all slot groups (first-ID and second-ID)) Can indicate that there is no feedback.
  • slot group ID information includes first-ID and second-ID (or current-ID and feedback-ID (or total-ID)) information.
  • the terminal sets the NFI bit corresponding to the corresponding (PDSCH) slot group (ID) (Previous A/N feedback In contrast or assuming that it is toggled (or non-toggle) as compared or compared with the previously (recently) received NFI bit), corresponding to the PUSCH based on the total-DAI value indicated through the UL grant DCI (PDSCH )
  • the (DL grant) DCI scheduling the PDSCH belonging to the specific (PDSCH) slot group (ID) is not detected/received or indicates A/N feedback for the corresponding slot group.
  • (DL grant) A case in which DCI is not detected/received or (DL grant) DCI indicating NFI information for a corresponding slot group is not detected/received is referred to as a no PDSCH case for convenience.
  • the terminal assumes that the NFI bit value corresponding to the corresponding (PDSCH) slot group (ID) is not toggled (or toggled) (compared to the previously (recently) received NFI value).
  • the A/N payload corresponding to the corresponding (PDSCH) slot group (ID) on the PUSCH is configured or operated not to be configured. I can.
  • the A/N payload is not configured (ie, 0-bit A/N) and can be operated so as not to piggyback on the PUSCH.
  • the A/N payload ie, 1-bit or more A/N
  • the corresponding A/N is piggybacked on the PUSCH.
  • PDSCHs (or N PDSCHs) of ⁇ N + 4M ⁇ (M is a positive integer (including 0)) based on the non-toggled NFI assumption (or toggled NFI assumption). It is possible to operate to piggyback on the PUSCH by configuring the A/N payload for.
  • the operation in a situation in which T-DAI is indicated for each PDSCH group through UL grant DCI, in the case of the no PDSCH case for a specific PDSCH group, the operation may be applied to the corresponding PDSCH group, and as another example, UL grant
  • the operation can be applied to a specific PDSCH group (e.g., having the lowest group ID/index) in the case of the no PDSCH case for all PDSCH groups. have.
  • the UE indicates that the NFI bit value corresponding to the corresponding (PDSCH) slot group (ID) remains the same as the previously (recent) received NFI value (e.g., previous (recent) Assuming that the received NFI value is not toggled), A corresponding to the corresponding (PDSCH) slot group (ID) on the PUSCH based only on the total-DAI value indicated through the UL grant DCI without consideration of the corresponding NFI value.
  • /N Can be operated to configure or not configure the payload.
  • the A/N payload is not configured (ie, 0-bit A/N) and can be operated so as not to piggyback on the PUSCH.
  • the A/N payload ie, 1-bit or more A/N
  • the A/N payload for N PDSCHs can be configured and operated to piggyback on the PUSCH.
  • the operation in a situation in which T-DAI is indicated for each PDSCH group through UL grant DCI, in the case of the no PDSCH case for a specific PDSCH group, the operation may be applied to the corresponding PDSCH group, and as another example, UL grant
  • the operation can be applied to a specific PDSCH group (e.g., having the lowest group ID/index) in the case of the no PDSCH case for all PDSCH groups. have.
  • the UE maintains that the NFI bit value corresponding to the corresponding (PDSCH) slot group (ID) is the same as the previously (recent) received NFI value (e.g., the previous (recent ) Assuming that the received NFI value is not toggled), but the PDSCH(s) corresponding to the total-DAI value indicated through the UL grant DCI are considered to belong to no (PDSCH) slot group (ID). It can be operated not to configure or configure the A/N payload only for the PDSCH(s).
  • the A/N payload is not configured (ie, 0-bit A/N) and can be operated so as not to piggyback on the PUSCH.
  • the A/N payload ie, 1-bit or more A/N
  • the A/N payload for N PDSCHs can be configured and operated to piggyback on the PUSCH.
  • a) the most recently detected/received information through the DL grant DCI e.g., slot group ID/index, total-DAI, NFI, CTI, and/or whether the following fallback A/N A/N codebook (payload) is configured/transmitted based on indication information, pended A/N presence/absence indication information), and/or b) a specific (eg, default) value can be assumed/applied for the information.
  • DCI e.g., slot group ID/index, total-DAI, NFI, CTI, and/or whether the following fallback A/N A/N codebook (payload) is configured/transmitted based on indication information, pended A/N presence/absence indication information
  • a specific (eg, default) value can be assumed/applied for the information.
  • the DL grant DCI related to the recently detected/received information may be limited to only the DCI indicating the PUSCH transmission time point (slot) as the HARQ-ACK transmission time point for the PDSCH.
  • at least one can be assumed/applied as follows.
  • the information may indicate whether only one fallback DCI scheduling PCell (PDSCH transmission through this) is transmitted during one bundling window period.
  • the above information can be configured/signaled with only 1-bit
  • Type-3 codebook e.g., CTI signaling indicating which A/N codebook will be configured/transmitted from Type-1 or Type-2 and Type-3
  • NFI information for Type-3 codebook-based A/N feedback may be additionally signaled through the DCI.
  • the information further includes A/N (ie, pended A/N) in which pending is indicated (at a previous point in time) in the A/N payload configured based on the Type-1 or Type-2 codebook. Can indicate whether to configure final A/N feedback
  • the DCI format (corresponding to at least PCell/PSCell) may include/signal the basic information.
  • the fallback DCI format corresponding to the SCell may include/not signal the basic information.
  • the DCI format may include/signal only counter-DAI in the basic information.
  • CBG CB group
  • the pended A/N payload is the maximum number of (transmittable) CBGs set in all cells/CCs, i.e. It can be determined based on the maximum value among (transmittable) CBG numbers set for each cell/CC.
  • the pended A/N payload is the maximum number of (transmittable) TBs set for all cells/CCs, that is, set for each cell/CC. (Transferable) Can be determined based on the maximum value among TB numbers
  • Type-1 codebook e.g., in the case of Type-1 codebook
  • the information is whether the A/N payload configured based on the type-1 codebook is piggybacked to PUSCH and transmitted (or 0-bit (i.e., piggyback is omitted) or only the fallback A/N is piggybacked). Can instruct
  • Total-DAI indication information (e.g., in the case of Type-2 codebook)
  • Type-3 codebook e.g., indicate whether to configure/transmit to which A/N codebook among Type-1 or Type-2 and Type-3)
  • NFI information for Type-3 codebook-based A/N feedback may be additionally signaled through the DCI.
  • the information further includes A/N (ie, pended A/N) in which pending is indicated (at a previous point in time) in the A/N payload configured based on the Type-1 or Type-2 codebook. Can indicate whether to configure final A/N feedback
  • the fallback DCI format may include/not signal the basic information.
  • the terminal is the most recently detected/received information through the DL grant DCI (e.g., (in the case of a Type-1 codebook) fallback A/N indication information, (Type-2 codebook) In the case of) counter-DAI/total-DAI information, CTI, pended A/N presence indication information), the A/N codebook (payload) can be configured/transmitted.
  • the DL grant DCI related to the recently detected/received information may be limited only to the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • the terminal is the most recently detected/received information through the DL grant DCI (e.g., (in the case of a Type-1 codebook) information indicating whether to fallback A/N, (in the case of a Type-2 codebook) counter-DAI/total- A/N codebook (payload) can be configured/transmitted based on DAI information, CTI, pended A/N presence indication information).
  • the DL grant DCI related to the recently detected/received information may be limited to only the DCI indicating the CG-PUSCH transmission time (slot) as the HARQ-ACK transmission time for the PDSCH.
  • CBG CB group
  • the pended A/N payload may be determined based on the maximum number of (transmittable) CBGs or TBs set in all cells/CCs.
  • DL/UL grant DCI information configuration and signaling operation is a PUCCH cell/CC set to perform PUCCH transmission in a CA situation (e.g. , PCell or PSCell) may be limited to the case of a cell/CC operating on the U-band.
  • the DL/UL grant DCI corresponding to all CA cells/CCs may be configured according to the proposed method of the present specification.
  • the PUCCH cell/CC is a cell/CC operating on the L-band (with the existing Type-1 or Type-2 A/N codebook set)
  • the same DL/UL grant DCI information configuration and signaling operation as before Can be applied.
  • the DL/UL grant DCI corresponding to all the merged cells/CCs may be configured the same as before.
  • the configuration/signaling of the Type-2a or Type-1 or Type-2 A/N codebook and DL/UL grant DCI information according to the configuration/signaling is a multi-carrier, that is, a multi-cell/CC set set as CA to the terminal. It may be limited to a case in which a cell/CC operating on the U-band is included. In this case, the DL/UL grant DCI corresponding to all the merged cells/CCs can be configured as in the above-described proposed method.
  • the configuration/signaling of the existing Type-1 or Type-2 A/N codebook and the configuration/signaling of the existing DL/UL grant DCI information accordingly may be applied.
  • the DL/UL grant DCI corresponding to all the merged cells/CCs may be configured the same as before.
  • Processing time (required for PDSCH decoding and A/N preparation operation) for a specific PDSCH or HARQ process ID may be insufficiently scheduled/instructed from the base station (compared to the minimum processing time that can be supported by the terminal).
  • the terminal operates to feedback (or DTX) NACK for the corresponding PDSCH (or HARQ process ID) through the (initial) A/N (PUCCH) transmission time point indicated by the DCI (corresponding to the corresponding PDSCH) can do.
  • A/N feedback transmission (based on the Type-2a codebook) for the slot group ID including the PDSCH or A/N feedback transmission (based on the Type-3 codebook) for the HARQ process group including the HARQ process ID may be indicated (again) from the base station.
  • the UE may update the A/N feedback for the corresponding PDSCH (or HARQ process ID) by reflecting the actual/final decoding result of the corresponding PDSCH (or HARQ process ID). For example, when the decoding result is ACK, ACK may be fed back to the corresponding PDSCH (or HARQ process ID) through the A/N (PUCCH) transmission time point indicated by the base station (again).
  • the above operation may be applied irrespective of whether the NFI corresponding to the PDSCH (or HARQ process ID) is toggled, or may be applied only in one of the cases where the corresponding NFI is non-toggled or toggled.
  • the above feedback update may be omitted (eg, previous feedback is maintained).
  • the update of the HARQ-ACK feedback transmitted by the terminal through the corresponding HARQ-ACK transmission time point is the corresponding HARQ process. It may vary according to the NDI value indicated for the ID. As an example, in a state in which the NDI value is not toggled (compared to the previous value), if the UE has previously fed back ACK for the corresponding HARQ process ID or / and the actual / final PDSCH decoding result is ACK, the UE is HARQ- ACK feedback (eg, updated feedback) may be updated/reported as ACK.
  • the terminal in a state in which the NDI value is not toggled (compared to the previous value), if the terminal previously fed back NACK for the corresponding HARQ process ID or / and the actual / final PDSCH decoding result was NACK, the terminal is HARQ- ACK feedback (eg, updated feedback) may be reported as NACK.
  • HARQ-ACK feedback e.g. , updated feedback
  • the UE is due to lack of processing time for the corresponding TB or PDSCH, and HARQ-ACK feedback (e.g. , updated feedback) may be reported as an invalid value (eg, NACK).
  • Type-3 codebook-based A/N feedback transmission When the Type-3 codebook-based A/N feedback transmission is instructed by a base station, a method of configuring an A/N payload on a PUCCH (or PUSCH) may be required. A common understanding between the terminal and the base station is required for the configuration of the payload for A/N feedback based on the Type-3 codebook.
  • the UE based on the CC index set set for the UE, the HARQ process ID/index set for each CC, the (maximum) TB index set and/or the CBG index set set for each CC, the UE in what order Accordingly, it may be determined whether to map A/N bits corresponding to each ⁇ CC, HARQ ID, TB or CBG ⁇ combination.
  • mapping A/N bits in a "TB/CBG index first-HARQ process index second-CC index third" method may be considered.
  • mapping A/N bits for TB/CBG(s) based on the TB/CBG index (first level) When mapping of A/N bits for the corresponding HARQ process is completed, based on the HARQ process index Mapping the A/N bits for the next HARQ process (second level) -> When the mapping of the A/N bits for the corresponding CC is completed, the A/N bits for the next CC are mapped based on the CC index (third level). ) Method, each A/N bit may be mapped in the HARQ-ACK payload.
  • the UE 1) maps the corresponding A/N sequentially (up to the highest TB/CBG index) from the lowest TB/CBG index to the lowest HARQ process index of the lowest CC index, and 2) the lowest CC index Mapping the corresponding A/N sequentially from the lowest TB/CBG index to the 2nd lowest HARQ process index of... 3) Mapping the corresponding A/N sequentially from the lowest TB/CBG index to the highest HARQ process index of the lowest CC index, and 4) sequentially from the lowest TB/CBG index to the lowest HARQ process index of the 2nd lowest CC index.
  • Map the corresponding A/N, and... It can operate to map A/N in this order. As an example in which such A/N mapping is used, reference may be made to FIGS. 17 to 23 to be described later.
  • the terminal is configured to report A/N for multiple (or all) CCs, multiple (or all) HARQ processes and multiple (or all) TB/CBGs at once (for A/N feedback transmission based on Type-3 codebook) (eg, pdsch-HARQ-ACK-OneShotFeedback-r16 parameter reception through higher layer signaling), and the UE may report a HARQ-ACK response based on a configuration related to the Type 3 codebook.
  • Type-3 codebook eg, pdsch-HARQ-ACK-OneShotFeedback-r16 parameter reception through higher layer signaling
  • the UE reporting A/N based on the Type 3 codebook first selects the A/N bit of the Highest indexed TB/CBG from the A/N bit of the Lowest indexed TB/CBG of the Lowest indexed HARQ process in the Lowest indexed cell. Mapping in order (ie, first level mapping), and then performing first level mapping from the 2nd Lowest indexed HARQ process to the Highest indexed HARQ process in the Lowest indexed cell (ie, second level mapping), and then 2nd Lowest indexed cell First and second level mapping can be performed (ie, third level mapping) respectively from to the highest indexed cell.
  • rules can be clearly defined between the terminal/base station regarding the order in which A/N bits transmitted at a time through the same HARQ-ACK message (eg, single PUCCH signal or single PUSCH signal) should be arranged.
  • the meaning that the A/N bits are arranged first in the payload means that the index j is lower in each A/N bit (O ACK j ) (where 0 ⁇ j ⁇ Maximum number of A/N bits). This may mean that the corresponding A/N value is mapped to the bit.
  • A/N bits for a serving cell with a lower cell index (ie, A for a DL signal received through a serving cell having a lower cell index) /N bit) placed first
  • FIG. 15 illustrates a conventional transport block (TB) processing process.
  • the process of FIG. 15 can be applied to data of a DL-SCH transport channel.
  • Uplink TB (or uplink transmission channel data) may be similarly processed.
  • the transmitter performs a CRC (eg, 24-bit) (TB CRC) to the TB for error check. Thereafter, the transmitter may divide the TB+CRC into a plurality of code blocks (CBs) in consideration of the size of the channel encoder.
  • the maximum CB size in NR is 8424-bit (LDPC base graph 1) or 3840-bit (LDPC base graph 2). Accordingly, if the TB size is smaller than the CB maximum size, the CB is not configured, and when the TB size is larger than the CB maximum size, the TB is divided into a CB maximum size unit to generate a plurality of CBs.
  • Each CB is individually added with a CRC (eg 24-bit) (CB CRC) for error checking.
  • CRC eg 24-bit
  • Each CB undergoes channel coding and rate matching, and is then combined into one to generate a codeword (CW).
  • CW codeword
  • a cell e.g., CC
  • CBG-based (re)transmission is not configured
  • data scheduling and the HARQ process accordingly are performed in units of TB, and CB CRC is used to determine early termination of TB decoding. do.
  • the UE uses a higher layer signal (eg, RRC signal) to the maximum number of codeblock groups per transport block M ( Information about >1) can be received from the base station (S1602).
  • CBG-based transmission may be configured for each cell (eg, CC).
  • the terminal may receive the initial data transmission from the base station (via PDSCH) (S1604).
  • data includes a TB
  • a transport block includes a plurality of CBs
  • the plurality of CBs may be classified into one or more CBGs.
  • TB-CRC and CB-CRC are not shown.
  • the terminal may feed back CBG-based A/N information for data to the base station (S1606), and the base station may perform data retransmission based on the CBG (S1608).
  • A/N information may be transmitted through PUCCH or PUSCH.
  • the A/N information includes a plurality of A/N bits for data, and each A/N bit may represent each A/N response generated for data in CBG units.
  • the payload size of the A/N information may be kept the same based on M regardless of the CBG constituting the data (eg, TB).
  • the A/N payload size transmitted through the PUCCH is the number of CCs configured for the terminal, each CC
  • the number of HARQ processes set, the maximum number of TBs set for each CC, or the maximum number of CBGs may increase proportionally.
  • the number of CBGs may be a factor that rapidly increases the A/N payload size compared to other parameters, and this may cause a lot of PUCCH resource overhead.
  • 17 illustrates A/N transmission based on a Type-3 codebook.
  • Type-3 codebook-based A/N feedback transmission may be indicated from the base station through the DCI of the PDCCH.
  • the terminal performs A/N feedback transmission based on the Type-3 codebook based on the configuration for the Type-3 codebook acquired through higher layer signaling. You can do it.
  • Type-3 codebook-based A/N feedback is one-for reporting HARQ-ACK for a plurality of CCs, a plurality of HARQ processes per each CC, and/or at least one or more TB/CBGs per each HARQ process. It can be understood as shot A/N feedback.
  • the base station may configure parameters related to the Type-3 codebook-based A/N feedback through higher layer signaling. For example, higher layer signaling may be provided for each cell group.
  • the base station sets the type-3 codebook-based A/N feedback to the terminal through higher layer signaling (eg, RRC signaling), and whether the Type-3 codebook-based A/N feedback should be performed in units of CBG and/or It is possible to set whether to report an NDI value (eg, an NDI field value included in the DL grant DCI) related to the corresponding A/N value(s) together.
  • higher layer signaling eg, RRC signaling
  • the UE can perform Type-3 codebook-based A/N feedback in units of CBG for all CCs on which CBG unit transmission is performed. have. However, for CCs in which transmission is performed in units of TB, the terminal still performs Type-3 codebook-based A/N feedback in units of TB. On the contrary, if it is not set that the Type-3 codebook-based A/N feedback should be performed in units of CBG, the terminal is in a TB unit for all CCs (eg, all CCs including a CC in which CBG unit transmission is performed). As a result, A/N feedback based on a Type-3 codebook can be performed.
  • the terminal configured to report the NDI value (eg, the NDI field value included in the DL grant DCI) together (eg, higher layer signaling) has one NDI field value per TB. report.
  • the terminal is the A/N bit for the corresponding TB and the corresponding NDI value (eg, the corresponding NDI of the DCI scheduling the TB. Field value) together.
  • the UE shares A/N bits for CBGs included in the corresponding TB and CBGs belonging to the corresponding TB.
  • a corresponding NDI value (eg, a corresponding NDI field value of DCI scheduling CBGs of a corresponding TB) may be reported together.
  • the UE may generate and transmit Type-3 codebook-based A/N feedback based on the above-described higher layer signaling.
  • a UE may receive one or more PDSCHs on at least one CC (S1702).
  • Each PDSCH may include one or more TBs.
  • Each TB may contain more than one CB.
  • CBG unit (re) transmission is set for the corresponding CC
  • CBs of TB may be grouped into a plurality of CBGs.
  • Each received PDSCH corresponds to each (DL) HARQ process ID, and the (DL) HARQ process ID corresponding to the corresponding PDSCH may be indicated through DCI scheduling the PDSCH.
  • the total number of HARQ process IDs may be set for each CC.
  • the UE may transmit (Type-1/2 codebook based) A/N information according to the corresponding HARQ-ACK process timing with respect to the received one or more PDSCHs (not shown).
  • A/N information may be transmitted (Type-1/2 codebook based) A/N information according to the corresponding HARQ-ACK process timing with respect to the received one or more PDSCHs (not shown).
  • a process of transmitting A/N information based on a Type-1/2 codebook is not shown, and a detailed description thereof will be omitted.
  • Type-3 codebook-based A/N feedback transmission may include a process of configuring A/N feedback based on HARQ process ID- (with respect to all HARQ process IDs of the serving CC/cell(s)).
  • the HARQ process ID-based A/N feedback configuration may mean configuring the generation/arrangement of A/N information constituting the A/N feedback based on the HARQ process ID.
  • A/N information may be configured/arranged for each HARQ process ID (for all HARQ process IDs of the corresponding serving CC/cell(s)).
  • the type-3 codebook-based A/N feedback transmission is based on an indication of DCI (eg, DL grant) (eg, see CTI of Proposed Method 3), (for all serving CCs) of each CC. It may include a process of configuring the A/N feedback for the PDSCH corresponding to the entire DL HARQ process ID based on the HARQ process ID (refer to pA/N of Proposed Method 3).
  • DCI eg, DL grant
  • CTI of Proposed Method 3 for all serving CCs
  • the terminal may transmit A/N feedback based on the Type-3 codebook (S1706).
  • the A/N feedback may be transmitted through a timing set/instructed based on a specific signal (eg, RRC or DCI signaling).
  • a specific signal eg, RRC or DCI signaling.
  • the A/N payload includes A/N information configured based on HARQ process ID-for the entire (DL) HARQ process ID of each CC (for all serving CCs). Can include.
  • FIG. 20 and 21 show various examples of A/N feedback based on a Type-3 codebook. More specifically, FIG. 20 illustrates a case where Spatial Bundling is not applied and NDI reporting is not configured for A/N feedback based on a Type-3 codebook. 21 illustrates a case in which Spatial Bundling is applied for A/N feedback based on a Type-3 codebook and NDI reporting is not configured.
  • the A/N payload size for a specific CC may be determined based on the maximum number of TBs set for a specific CC.
  • the A/N payload for a specific CC may include TB level A/N information corresponding to each HARQ process ID.
  • TB level A/N information may be configured with 1 bit for each TB (configured).
  • the A/N payload size for a specific CC may be determined based on the maximum number of CBGs set for a specific CC. That is, the A/N payload for a specific CC includes CBG level A/N information corresponding to each HARQ process ID.
  • the CBG level A/N information may consist of 1 bit for each CBG. Since the CBG level A/N information is composed of a plurality of A/N information for one TB (eg, M in FIG. 16), the A/N payload size rapidly increases when the A/N information is configured at the CBG level. Can be.
  • each HARQ process ID may be used.
  • the UE does not explicitly receive higher layer signaling indicating that CBG-based A/N is also applied to the Type-3 codebook (eg, when Oneshot-feedback-CBG is not included), the UE is CBG Even for a CC in which unit (re)transmission is set, it can operate to generate/map/transmit TB-level A/N for each HARQ process ID (eg, CC#m in (c) of 20, or CCs in (d) of FIG. 20).
  • HARQ process ID eg, CC#m in (c) of 20, or CCs in (d) of FIG. 20.
  • the spatial bundling described above may be used (eg, FIG. 21).
  • a terminal configured to feed back TB-level A/N (e.g., without Oneshot-feedback-CBG) for a CC in which (re)transmission in units of CBG is configured may be additionally configured to perform spatial bundling.
  • the spatially bundled A/N may be generated by bundling A/N between CBs or CBGs corresponding to the same HARQ process ID.
  • the TB-level A/N may be generated by applying a logical AND operation between CB-level A/Ns for each of a plurality of CBs or between CBG-level A/Ns for each of a plurality of CBGs.
  • bundling A/N between CBs corresponding to the same HARQ process ID or between CBGs as a result is equivalent to performing a logical AND operation between TB-level A/Ns corresponding to the same HARQ process ID.
  • the A/N payload size and PUCCH resource overhead based on the Type-3 codebook can be reduced.
  • the type-3 codebook-based A/N feedback transmission is not (e.g., Type-1/2 codebook), for a CC in which CBG unit (re) transmission is set, for a corresponding PDSCH (or HARQ process ID) It can operate to generate/map/transmit CBG-level A/N.
  • FIG. 18 illustrates A/N transmission based on a Type-3 codebook according to an example of the present invention. For convenience of explanation, it is assumed in FIG. 18 that Oneshot-feedback-CBG is not set in the terminal.
  • the UE may receive at least one PDSCH from the base station on a carrier (eg, CC) in which CBG level transmission is configured (S1802). Thereafter, the terminal may transmit control information (e.g., UCI through PUCCH or PUSCH) including A/N information on the at least one PDSCH to the base station (S1804).
  • control information e.g., UCI through PUCCH or PUSCH
  • the at least one PDSCH includes CBGs corresponding to each TB, and may be associated with one of all HARQ process IDs of the carrier.
  • each of the carriers may be composed of TB level A/N information (based on that Oneshot-feedback-CBG is not set in the terminal) even though CBG level transmission is configured for the carrier. have.
  • the A/N information for the at least one PDSCH may be composed of CBG level A/N information (Oneshot-feedback-CBG is the terminal Regardless of whether it is set on).
  • the (Oneshot-feedback-CBG parameter may be understood as a parameter limitedly applied to a Type-3 codebook rather than a Type-1/2/2a codebook.
  • the size of the CBG level A/N information is based on the maximum number of CBGs set for the carrier, and may be larger than the size of the TB level A/N information.
  • the terminal may further receive DCI before step S1804, and the control information may be configured for the entire HARQ process IDs of the carrier based on codebook type information (eg, CTI) in the DCI. have.
  • codebook type information eg, CTI
  • Type-3 codebook-based A/N feedback transmission is instructed, whether to generate/transmit TB-level A/N or CBG-level A/N for a CC in which CBG unit (re) transmission is set.
  • Generation/transmission can be set through higher layer signals (eg, Oneshot-feedback-CBG parameters transmitted through RRC signaling).
  • FIG 19 illustrates A/N transmission according to an example of the present invention.
  • the A/N payload 1902 including A/N for PDSCH(s) through a CC (or cell) may have a different A/N codebook configuration method according to a situation.
  • the type-3 codebook-based A/N feedback transmission is not indicated for the CC (eg, type-1, 2 codebook-based A/N feedback transmission is indicated (eg, slot index-based or DAI-based A/N feedback integrity is indicated)) (1904), according to whether CBG-based transmission for the CC is configured (configured), for the PDSCH (s) received from the CC ( Not based on the HARQ process ID; eg slot index-based or DAI-based) TB-level A/N or CBG-level A/N can be configured (Case 1).
  • the terminal when the type-3 codebook-based A/N feedback transmission for the CC is indicated (via DCI) (1906a), the terminal further performs higher layer (eg, RRC) signaling (1906b) related to the type-3 codebook.
  • RRC higher layer
  • FIG. 19 1906a is shown before 1906b for convenience of description of terminal processing for generating A/N payload based on type-3 codebook, but after receiving RRC signaling corresponding to 1906b first in the real time domain It can be understood by those skilled in the art that an indication of 1906a (instruction to perform A/N feedback transmission based on a type-3 codebook through DCI) is received.
  • the upper layer (e.g., RRC) signaling 1906b related to the type-3 codebook is whether to generate/transmit TB-level A/N for a CC in which CBG unit (re) transmission is set, or whether to generate/transmit a TB-level A/N or a CBG-level It may include information indicating whether to generate/transmit A/N (eg, Oneshot-feedback-CBG parameter).
  • Oneshot-feedback-CBG parameter When creation of CBG-level A/N is indicated (eg, when the Oneshot-feedback-CBG parameter is included in higher layer signaling 1906b), as in Case 1, the UE determines whether CBG-based transmission is configured for the CC.
  • TB-level A/N when the generation of TB-level A/N is indicated (eg, when the Oneshot-feedback-CBG parameter is not included in the higher layer signaling 1906b), as described with reference to FIG. Even if base transmission is configured, TB-level A/N (based on HARQ process ID-) can be configured for all HARQ process IDs of the CC (Case 3) (eg, (d) of FIG. 20).
  • the UE when CBG-based transmission is not configured for the CC (that is, when TB-based transmission is configured), the UE always displays the A/N information for the CC regardless of the codebook type of the A/N payload. It can be composed of A/N.
  • the generated A/N payload 1902 is transmitted from the terminal to the base station.
  • the base station may analyze the A/N information in the A/N payload according to the A/N configuration method and perform PDSCH (re)transmission based on the A/N information.
  • the UE when a specific point in time (eg, slot Y) is indicated as a type-3 codebook-based A/N transmission point, the UE indicates slot Y as A/N transmission timing while scheduling PDSCH transmission. It can operate under the assumption that there is no such DCI without expecting DCI (reception) (and/or scheduling the initial transmission of a new TB (or indicating a toggled NDI value)). Accordingly, in the case of receiving/receiving the DCI as described above, the terminal may ignore the DCI (discard). For example, the terminal may not perform an operation indicated by the corresponding DCI.
  • the terminal schedules the PDSCH and indicates the A/N transmission timing in the same specific slot. 2 It can be assumed that DCI will not be received. Despite this assumption, when the second DCI is received, the terminal ignores the second DCI and may not perform an operation according to the second DCI.
  • an arbitrary codebook type e.g., type-1/2/2a/3 codebook
  • the terminal is a section between the slot Y (or a specific (next slot) time point after the corresponding slot Y) to the slot Z (or a time point prior to the minimum PDSCH processing time of the terminal from the PUCCH start symbol indicated in the corresponding slot Z)
  • an arbitrary codebook type eg, Type-1/2/2a/3 codebook
  • the UE may operate to maintain the previous A/N state without resetting the exception).
  • the criterion/whether to reset the A/N state may be determined according to whether the UE actually transmits the A/N feedback (eg, ACK). For example, when the UE fails to LBT and omits (drops) transmission of A/N (PUCCH/PUSCH), it may operate to maintain (eg, ACK) without resetting the corresponding A/N state.
  • the A/N state eg, ACK
  • NACK NACK
  • the criterion / whether the A/N state is reset may be determined according to whether the UE actually transmits the A/N feedback (eg, ACK). For example, when the UE fails to LBT and omits (drops) transmission of A/N (PUCCH/PUSCH), it may operate to maintain (eg, ACK) without resetting the corresponding A/N state.
  • a DCI indicating type-3 codebook-based A/N transmission while scheduling PDSCH transmission may be excluded. That is, the terminal can perform a corresponding operation without ignoring the DCI.
  • the terminal may configure/transmit type-3 codebook-based A/N feedback including A/N for the PDSCH scheduled by the corresponding DCI.
  • the terminal may be configured (or instructed) to report an A/N feedback and an NDI bit related to the corresponding A/N feedback together.
  • the UE receives the TB/CBG received through the PDSCH based on a specific DCI scheduling the PDSCH, and feeds back the corresponding TB/CBG-based A/N, together with the value of the NDI field included in the specific DCI. I can send it.
  • a method of feeding back an NDI bit (most recently) received through a DL grant DCI for each HARQ process ID and an A/N bit for a corresponding PDSCH may be considered.
  • the A/N bit for the PDSCH corresponding to the NDI bit (most recently) received through the DL grant DCI for each HARQ process ID (e.g., NACK is bit '0', ACK is bit ' Mapping to 1)
  • an XOR (exclusive OR) operation may be performed and the calculated bits are fed back.
  • the terminal may report the result of performing the XOR operation of the corresponding NDI bit and the corresponding A/N bit.
  • A/N for a CC in which (re)transmission/feedback in CBG units is set and/or for a CC in which spatial bundling (according to a logical AND operation) between A/N per TB is set may be considered.
  • the terminal may operate to feed back the calculated N bits by performing an XOR operation on each of the NDI bits (for each TB) and the N A/N bits corresponding to the N CBGs for each HARQ process ID. For example, N XOR operation results may be reported.
  • the terminal generates a single A/N bit by first applying bundling (according to a logical AND operation) between A/Ns corresponding to N CBGs (for each TB) for each HARQ process ID, and then generating a single A/N bit. It can operate to feed back a single bit calculated by performing an XOR operation on the N bits and the NDI bits.
  • bundling (according to a logical AND operation) between A/Ns corresponding to N CBGs is first applied to generate a single A/N bit, and the corresponding A/N bits and ( It operates to feed back the NDI bits for the corresponding TB together (e.g., 1-bit A/N and 1-bit NDI for each HARQ process ID (each TB of the corresponding HARQ process ID))
  • CBG unit transmission is not configured (for any CC)
  • the UE feedbacks (1-bit) A/N information and (1-bit) NDI information together for each TB of each HARQ ID (for all CCs). can do.
  • CBG unit transmission is set (at least one CC)
  • the UE (for all CCs) for each HARQ ID (according to the maximum number of TB/CBGs set in the CC)
  • A/ for each TB/CBG Operates to feed back only N bits
  • the UE can map the ACK bit to all of the N CBGs.
  • the maximum number of TBs set in the CC is 2 or more.
  • the terminal generates a single A/N bit by first applying spatial bundling between A/Ns corresponding to a plurality of TBs for each HARQ process ID, and corresponds to the corresponding A/N bit and a specific TB (of multiple TBs) It is possible to operate to feed back a single bit calculated by performing an XOR operation on the NDI bits.
  • the terminal includes a single A/N bit generated by applying spatial bundling between A/Ns corresponding to a plurality of TBs for each HARQ process ID, and an NDI bit corresponding to a specific TB (of the plurality of TBs) together (e.g. For example, it may operate to feed back 1-bit A/N and 1-bit NDI for each HARQ process ID.
  • the UE combines a single A/N bit generated by applying spatial bundling between A/Ns corresponding to a plurality of TBs for each HARQ process ID, and a plurality of NDI bits corresponding to each of the plurality (eg L) TBs (e.g. For example, it may operate to feed back 1-bit A/N and L-bit NDI for each HARQ process ID.
  • the UE may not apply the exceptionally set spatial bundling, and accordingly, the A/N bit and the NDI bit for each TB of each HARQ process ID are XORed with each other and calculated. It can be operated to feed back a single bit.
  • the UE may not apply the exceptionally set spatial bundling, and accordingly, the A/N bit and the NDI bit are combined for each TB of each HARQ ID (e.g., each It can operate to feed back 1-bit A/N and 1-bit NDI for each TB of HARQ ID.
  • the UE is configured to perform A/N feedback through (a) Spatial Bundling for the corresponding CC (eg, higher layer signaling), and (b) Type-3 codebook-based A/N feedback and corresponding TB(s) In the (eg, higher layer signaling) state configured to report together NDI(s) (eg, the bit value of the NDI field included in the DL grant DCI scheduling the TB), (b) the DCI of the PDCCH is Type- 3
  • the UE does not perform Spatial Bundling despite (a) Spatial Bundling configuration, and (b) configuration and (c) Type-3 codebook-based A/ N feedback and NDI(s) for the TB(s) can be reported.
  • the UE when receiving the Oneshot-feedback-NDI parameter through higher layer signaling, the UE may transmit NDI together (e.g., PUCCH or PUSCH) in performing A/N feedback based on Type-3 codebook.
  • NDI e.g., PUCCH or PUSCH
  • the terminal When the terminal is configured to report Type-3 codebook-based A/N feedback together with NDI (eg, receives Oneshot-feedback-NDI parameter), the terminal is exceptionally Spatial Bundling for Type-3 codebook-based A/N feedback. May not be performed.
  • the base station transmits the Oneshot-feedback-NDI parameter to the terminal through higher layer signaling, the base station may receive a Type-3 codebook-based A/N feedback and NDI together.
  • the base station When the base station is configured to report the type-3 codebook-based A/N feedback and NDI together (eg, oneshot-feedback-NDI parameter is transmitted), the base station is exceptional for type-3 codebook-based A/N feedback. Assuming that Spatial Bundling is not performed, A/N feedback can be decoded.
  • ....iii. 22 shows Opt. It shows payloads of various Type-3 codebook-based A/N feedback according to 5.
  • Spatial Bundling and Oneshot-feedback-NDI are set together in a terminal
  • Spatial Bundling is performed for Type-3 codebook-based A/N feedback. It is not performed exceptionally and NDI is reported.
  • this exception is applied to A/N feedback based on Type-3 codebook
  • Spatial Bundling is still applied to A/N feedback based on Type-1/2/2a codebook.
  • the NDI may be arranged at the end of A/N bits for each TB/CBGs.
  • the NDI value for unscheduled TB may be reported as 0.
  • Spatial Bundling is set in (i), (j), (k), and (l) of FIG. 22, even if Spatial Bundling is not set, the payloads of Type-3 codebook-based A/N feedback are shown in FIG. It can be understood by those skilled in the art that it will be generated/transmitted in the same manner as in (i), (j), (k), and (l) of 22.
  • the terminal when the terminal reports NDI together in the Type-3 codebook-based A/N feedback process, the terminal transmits UCI including NDI (eg, PUCCH transmission or UCI transmission piggybacked to PUSCH). It can be understood as doing.
  • UCI including NDI eg, PUCCH transmission or UCI transmission piggybacked to PUSCH. It can be understood as doing.
  • the present embodiment in which the terminal transmits NDI through UCI needs to be distinguished from the prior art in which the terminal receives NDI through DCI, and there is a clear difference between the two.
  • the NDI included in the DL grant DCI scheduling DL data (eg, PDSCH) is referred to as DL data NDI
  • the NDI included in the UL grant DCI scheduling UL data (eg, PUSCH) is referred to as UL data NDI.
  • the number of DL/UL data NDI fields may vary depending on the number of DL/UL TBs (TBs including CBGs) scheduled by DCI, but one DL/UL data NDI field per TB (1-TB including CBGs) (eg, 1-bit) is linked.
  • the base station may inform the UE of whether the corresponding DL data transmission (e.g., TB/CBGs) is initial transmission or retransmission through the DL data NDI field.
  • the base station may schedule new UL data transmission to the terminal through the UL data NDI field or schedule UL data retransmission.
  • the base station can schedule retransmission of UL data through the UL data NDI field when the corresponding UL data is not correctly received in previous UL transmission. If the UL data is correctly received, the UL data NDI field is toggled to UL data transmission can be scheduled.
  • the UL data NDI may be used similarly to a kind of A/N indicating the UL data reception state of the base station, and may be related to the HARQ process of the base station.
  • the NDI in the UCI transmitted according to the present embodiment is transmitted by the terminal to the base station.
  • the terminal transmits the first A/N for the first DL data the first NDI in the UCI is
  • the associated DL data NDI is set to the same value and the second A/N for the second DL data is transmitted
  • the second NDI in the UCI is set to the same value as the DL data NDI associated with the second DL data.
  • the NDI of UCI may be understood to be for reporting the DL data NDI associated with the corresponding A/N included in the UCI to the base station. Since the DL data NDI is a value that the base station already knows, the process of transmitting the DL data NDI received by the UE through UCI (i.g., UL control NDI) has not existed before.
  • the terminal can report the DL data NDI it knows together in the case of A/N feedback based on Type-3 codebook.
  • the terminal configured to report NDI through UCI does not perform a logical AND operation on the A/N of the first TB and the A/N of the second TB, despite the Spatial Bundling configuration, and the A/N of the first TB and the second TB are not logically ANDed. It may be desirable to report 2 TB of A/N each.
  • FIG. 23 illustrates A/N transmission based on a Type-3 codebook according to an example of the present invention.
  • FIG. 23 is one of examples of operation of a terminal/base station based on the embodiment of FIGS. 17 to 22, and the contents described through FIGS. 17 to 22 may be omitted for convenience. The scope of rights is not limited to FIG. 23.
  • the UE may receive a configuration related to a HARQ-ACK response from a network (from at least one base station) through higher layer signaling (2305).
  • configuration related to HARQ-ACK response for each cell group through an RRC reconfiguration message or RRC setup message eg, Spatial Bundling, HARQ-ACK-OneShotFeedback, HARQ-ACK-OneShotFeedback NDI and/or HARQ-ACK-OneShotFeedback CBG
  • RRC reconfiguration message or RRC setup message eg, Spatial Bundling, HARQ-ACK-OneShotFeedback, HARQ-ACK-OneShotFeedback NDI and/or HARQ-ACK-OneShotFeedback CBG
  • the UE may receive one or more PDCCH(s) from the network (at least from one base station) through at least one DL CC (2310).
  • PDCCH(s) may include a DL grant DCI for scheduling a PDSCH.
  • the DL grant DCI is a field indicating the HARQ process index of the corresponding PDSCH (HARQ process number), a field indicating whether the TB (including CBG) of the corresponding PDSCH is new transmission or retransmission (New Data Indicator, NDI), and It may include a field (PDSCH-to-HARQ_feedback timing indicator) indicating when the terminal should transmit the HARQ-ACK response for the corresponding PDSCH to the base station.
  • the DCI grant DCI is a specific DCI format
  • the DCI grant DCI may further include a field indicating whether a Type-3 codebook-based A/N feedback has been requested (One-shot HARQ-ACK request).
  • the terminal may receive one or more PDSCH(s) from the network (from at least one base station) through at least one DL CC (2315).
  • the PDCCH and the PDSCH may be received in the same DL CC, but the PDCCH and the PDSCH may be received in different DL CCs based on a cross-carrier scheduling scheme.
  • the PDSCH(s) may include those scheduled by the received PDCCH 2310, but is not limited thereto and may include, for example, an SPS PDSCH.
  • the terminal may transmit a HARQ-ACK response to the network (to at least one base station) for the received PDSCH(s) (2320, 2330).
  • the HARQ-ACK response may include Type-1/2/2a (2320) and/or Type-3 codebook-based A/N feedback (2325 Y, 2330).
  • the HARQ-ACK response may be transmitted through UCI of PUCCH or PUSCH.
  • the A/N for DL data scheduled by the DCI will be transmitted based on the Type-1, 2, or 2a codebook. Yes (2320, eg, Case 1 of Fig. 19).
  • the UE may determine the type of the codebook that is the basis of the HARQ-ACK response from the Type-1, 2, or 2a codebooks according to higher layer signaling 2305 (e.g., semi-static/dynamic).
  • higher layer signaling 2305 includes a Type-3 codebook-based HARQ-ACK feedback configuration
  • a Type-3 codebook-based HARQ-ACK is indicated to the terminal through DCI (eg, One-shot HARQ-ACK request)
  • the terminal may generate a HARQ-ACK based on a Type-3 codebook and transmit it to the network (2330).
  • the DCI indicating the Type-3 codebook-based HARQ-ACK may be one of the PDCCH(s) 2310, but may be received by the UE through a separate PDCCH (not shown).
  • Mapping of each A/N bit in the HARQ-ACK payload based on the Type-3 codebook is performed in a “TB/CBG index first-HARQ process index second-CC index third” method (eg, FIGS. 20 to 23 ) May be used, but is not limited thereto.
  • the CC is a CC on which CBG-based transmission/scheduling is performed (2335 CBG), and a CBG-based A/N report is also set in the corresponding CC in Type-3 codebook-based HARQ-ACK through higher layer signaling (2305) (2340 Y , One-shot feedback CBG), the UE may map CBG-based A/N bits (eg, CASE 2 of Fig. 19) to the corresponding CC.
  • the type-3 codebook-based HARQ-ACK is configured to include NDI (2345 Y) (eg, one-shot feedback NDI configuration)
  • the terminal may report the NDI together (2355) (eg, Fig. 22 (eg, Fig. 22 (eg, Fig. 22 (eg, Fig.).
  • the A/N bits of the CC may be mapped to the Type 3-codebook based HARQ-ACK response based on CBG without NDI (2350) (eg, FIG. 20 (a), (C)). )
  • the CC is a CC on which CBG-based transmission/scheduling is performed (2335 CBG)
  • CBG-based A/N reporting is not set in the corresponding CC even in Type-3 codebook-based HARQ-ACK through higher layer signaling (2305) (2340 N) (eg, FIG. 18 or FIG 19 Case 3)
  • TB-based A/N bits of a corresponding CC may be mapped to a Type 3-codebook-based HARQ-ACK response.
  • the Type 3-codebook-based A/N bits of the corresponding CC may be determined regardless of the presence/absence of the configuration of the One-shot feedback CBG parameter.
  • the terminal When spatial bundling is set through higher layer signaling 2305 (2360 Y) and not configured to include NDI in Type-3 codebook-based HARQ-ACK (2365 N), the terminal performs spatial bundling for each HARQ process ( eg, by performing a logical AND operation on TB-based A/Ns), the A/N bits of the corresponding CC may be mapped to a Type 3-codebook-based HARQ-ACK response (2370) (eg, FIG. 21).
  • the terminal is TB-based of the CC A/N bits may be mapped to a Type 3-codebook based HARQ-ACK response (2385) (eg, FIG. 20 (b), (d)).
  • the UE When spatial bundling is configured through higher layer signaling 2305 (2360 Y), and configured to include NDI in the Type-3 codebook-based HARQ-ACK (2365 Y), the UE is configured to use the type in spite of the spatial bundling configuration.
  • TB-based A/N bits and NDIs may be generated/reported without spatial bundling (2375) (eg, Fig. 22 (j), (l)).
  • the terminal is the TB-based A/ N bits and NDIs may be generated/reported (2375).
  • the terminal (1-bit) A/N information and (1-bit) for each TB of each HARQ process ID Whether to feed back NDI information together or to feed back only (1-bit) A/N information for each TB of each HARQ ID may be set by the base station (eg, 2380 in Fig. 23, One-Shot feedback NDI). (The terminal operates to feed back according to the setting, eg, 2385/2375 in Fig. 23).
  • spatial bundling is set (eg, 2360 Y in Fig.
  • a single (bundled) A for a single TB or multiple TBs (depending on the maximum number of TBs set in the CC) for each HARQ ID (for all CCs) Operates to feed back only /N bits (eg, 2370 in Fig. 23)
  • a specific TB (corresponding to the NDI bit to be fed back) may be applied as a TB having the lowest/highest index.
  • PUCCH resources are allocated based on the corresponding UCI payload size and PRI indication through DCI.
  • a case may occur that exceeds the maximum UCI coding rate (set in the corresponding PUCCH) due to a large UCI payload size, and in this case, in the feedback ( All or a specific part) can be operated to omit (drop) transmission of the NDI bit.
  • the terminal when instructed to dynamically transmit the Type-3 codebook-based A/N feedback through DCI in a situation in which the Type-1/2/2a codebook-based A/N feedback operation is set, (the Through the counter-DAI field and/or total-DAI field and/or current-ID (and feedback-ID or total-ID) field and/or NFI field set for the Type-1/2/2a codebook, to the terminal A method of indicating which CC/HARQ group to transmit A/N feedback (from among a plurality of predefined/configured CC groups and/or a plurality of HARQ (process ID) groups) may be considered.
  • the corresponding DCI is Through (for example, a separate field or a counter-DAI field (set for the Type-1/2/2a codebook) and/or a total-DAI field and/or a current-ID (and feedback-ID or total-ID) ) Whether to transmit only A/N feedback for each HARQ process ID for the entire (or specific indicated as above) CC/HARQ group through a field and/or an NFI field or NDI corresponding to A/N feedback together It can indicate whether to transmit or not.
  • the Type-1/2/2a codebook-based It may be set identically to the candidate A/N timing set that can be indicated from the DCI indicating A/N feedback, or may be set independently of each other (eg, as a set consisting of different A/N timing values).
  • the A/N feedback for the corresponding PDSCH (referred to as “pended A/N” for convenience) is 1) by instructing a separate A/N pooling through a specific DCI (to the terminal )
  • the pended A/N is transmitted in the Type-3 A/N codebook format, or 2) Another (e.g., A/N timing for PDSCH is valid or
  • Another e.g., A/N timing for PDSCH is valid or
  • An operation of adding the corresponding pended A/N to the Type-1 A/N codebook transmitted through the A/N timing indicated by the DL grant DCI (indicated in the form of a numerical value) may be considered.
  • the (maximum) pended A/N information/number of bits (eg P bits) that can be added to the Type-1 A/N codebook can be set to the terminal through RRC signaling.
  • the UE can operate to configure the final A/N payload by always adding the corresponding P bits to the Type-1 A/N codebook regardless of the presence or absence of an actual pended A/N.
  • the (base station) may indicate the presence or absence of a pended A/N (or whether the P bit is added) to the terminal, and to the corresponding field.
  • the terminal may operate to configure the final A/N payload in the form of adding or not adding pended A/N bits (or corresponding P bits) to the Type-1 A/N codebook.
  • a plurality of candidates (having different values including 0) may be set to the terminal (via RRC), and within the DCI (eg DL grant).
  • a value of one of the candidates may be indicated through a specific field, and the terminal may operate to configure the final A/N payload by adding the number of bits corresponding to the indicated value to the Type-1 A/N codebook. have.
  • the Type-1 A/N codebook is preferentially mapped to a low bit index portion starting with MSB (Most Significant Bit) (e.g., the first A/N sub- It may be configured in the form of a codebook), followed by mapping of the pended A/N information (to a high bit index portion) (eg, configured in the form of a second A/N sub-codebook).
  • MSB Mobile Bit
  • the terminal in order to match the mapping order between pended A/N information/bits on the A/N payload, through a specific field in the DCI (eg DL grant) indicating the A/N pending operation, (base station) instructs the terminal The number of times the PDCCH/PDSCH corresponding to the A/N pending is scheduled/transmitted (out of all PDCCH/PDSCHs in which A/N pending is indicated), and the order value (eg counter-DAI) can be informed, The terminal can operate to configure the final A/N payload in the form of adding pended A/N bits (payload) configured/mapped according to the order of corresponding counter values (to the Type-1 A/N codebook). have.
  • DCI eg DL grant
  • the field indicating the counter value in the DCI (eg DL grant) is applied as a field used for counter-DAI signaling, or a field for allocating PUCCH resources (to be used for A/N feedback transmission) (eg PUCCH Resource It can be decided/considered as an indicator (PRI).
  • the (pended) A/N feedback for the corresponding PDSCH is then transmitted from another DCI at a specific time (the above It can be operated to transmit through the indicated A/N timing (as a Type-1 codebook-based A/N feedback point), and in this case, it may be necessary to determine the corresponding A/N timing (to which a pending A/N is transmitted). .
  • each DCI for example, triggering the Type-1 codebook-based A/N feedback
  • the A/N timing indicated by the corresponding DCI the PDSCH in which the A/N pending is indicated at the previous time point
  • It can directly indicate whether to transmit (by adding) pended A/N for).
  • the Type-1 codebook-based A/N feedback transmitted after the point in time for example, A/N timing is indicated as valid or numerical value
  • A/N pending is indicated (DCI or PDSCH transmission).
  • the earliest time among A/N timings indicated by DCIs (or triggering) the fastest time after the minimum PDSCH processing time of the terminal from the time when the A/N pending is indicated among the indicated A/N timings.
  • the pended A/N may be transmitted (additionally) through a time point or a time point indicated by the initial A/N timing after the minimum PDSCH processing time of the terminal from the time point at which the A/N pending is indicated PDSCH transmission.
  • scheduling the first PDSCH transmitted at or after the PDSCH transmission time point in which A/N pending is indicated (same slot) (e.g., A/N timing is indicated as a valid or numerical value, and the Type- 1 It can operate to transmit (in addition) the corresponding pended A/N through the A/N timing indicated by the DCI (which triggers the codebook-based A/N feedback).
  • pended A/N transmission is possible in the above manner (added to the Type-1 A/N codebook and transmitted through the same UL time point).
  • a method of setting/designating a viewpoint can be considered. Specifically, when an A/N pending operation is instructed for a PDSCH transmitted in slot #n or through a DCI (eg DL grant) transmitted in slot #n, a time point after/including slot #(n+T) (and / Or set/designated so that pended A/N transmission is possible only through PUCCH (PUSCH) (carrying Type-1 A/N codebook) transmitted through slot # (n+T+F) included/previous time) I can.
  • PUCCH PUSCH
  • the terminal In the form of mapping corresponding pended A/N information/bits to A/N bits corresponding to slot X, it may operate to configure a Type-1 A/N codebook for a corresponding bundling window.
  • the corresponding A/N timing (for the PDSCH in which A/N pending is indicated at the previous time) is added according to the method (or other method).
  • the UE operates to feedback/transmit the fallback A/N and the corresponding pended A/N together through Opt 1) the A/N timing, or Opt 2) through the A/N timing (existing and The same) operates to feedback/transmit only the fallback A/N (thus, in this case, except for the A/N timing indicated for fallback A/N transmission, it is operated not to add/feedback pended A/N), or Or Opt 3)
  • the operation to feedback/transmit by adding the corresponding pended A/N to the entire Type-1 codebook through the A/N timing (thus, in this case, the fallback A/N transmission is a pended A/N feedback/transmission time point. It can be operated to be performed only through an undecided A/N timing.
  • the (pended) A/N feedback for the corresponding PDSCH is 1) by instructing a separate A/N pooling through a specific DCI (to the terminal), so that the corresponding pended A/N is the Type -3 A/N codebook format or 2) another DL grant without separate A/N pooling (e.g., A/N timing for PDSCH is indicated in valid or numerical value format)
  • An operation of adding the corresponding pended A/N to the Type-2 A/N codebook transmitted through the A/N timing indicated by DCI and configuring it may be considered.
  • the PDCCH/PDSCH corresponding to the A/N pending indicated through the DCI is (among all PDCCH/PDSCHs in which A/N pending is indicated) How many times are scheduled/transmitted (the order value (eg counter-DAI)) and/or the total number of PDCCH/PDSCHs for which A/N pending is indicated to the UE up to the current point in time (the total value (eg total -DAI)).
  • the terminal is in the form of adding pended A/N bits (payload) configured/mapped based on the corresponding total value (to the Type-2 A/N codebook) and/or according to the order of the corresponding counter value. It can operate to construct the final A/N payload.
  • the Type-2 A/N codebook is preferentially mapped to a low bit index portion starting with MSB (eg, configured in the form of a first sub-codebook), and then the pended A /N information may be mapped (to a high bit index portion) (eg, configured in the form of a second sub-codebook).
  • the (pended) A/N feedback for the corresponding PDSCH is then transmitted from another DCI at a specific time (the above It can operate to transmit through the indicated A/N timing (as a Type-2 codebook-based A/N feedback point), and in this case, it may be necessary to determine the corresponding A/N timing (to which a pending A/N will be transmitted). .
  • the PDSCH in which A/N pending is indicated at the previous time at the A/N timing indicated by the corresponding DCI through each DCI (for example, triggering the Type-2 codebook-based A/N feedback). It can directly indicate whether to transmit (by adding) pended A/N for).
  • the Type-2 codebook-based A/N feedback is transmitted after the point in time when A/N pending is indicated (DCI or PDSCH transmission) (for example, A/N timing is indicated as a valid or numerical value). The earliest time among A/N timings indicated by DCIs (or triggering) the fastest time after the minimum PDSCH processing time of the terminal from the time when the A/N pending is indicated among the indicated A/N timings.
  • the pended A/N may be transmitted (additionally) through a time point or a time point indicated by the initial A/N timing after the minimum PDSCH processing time of the terminal from the time point at which the A/N pending is indicated PDSCH transmission.
  • scheduling the first PDSCH transmitted at or after the PDSCH transmission time point in which A/N pending is indicated (same slot) (e.g., A/N timing is indicated as a valid or numerical value, and the Type- 2 It can operate to transmit (in addition) the corresponding pended A/N through the A/N timing indicated from the DCI (triggering the codebook-based A/N feedback).
  • the maximum number of PDSCHs Np to which A/N pending can be indicated is set as RRC
  • the maximum number of PDSCHs Np for which A/N pending can be indicated is defined in advance.
  • Np b x (Tm-a), where b may be an integer greater than 1 depending on the terminal capability of whether or not multiple PDSCHs can be received in a single slot.
  • Each CC individually/independently (within the CC) signaling/applying counter-DAI only to PDSCHs for which A/N pending is indicated
  • the pended A/N payload may be configured by mapping A/N corresponding to counter-DAI values from 1 to Np for each CC.
  • the number of A/N bits corresponding to one counter-DAI value for each CC can be determined equal to the maximum number of TB or CBG set in the corresponding CC.
  • the counter-DAI value can be signaled/applied to have a continuous value starting from the PDSCH in which the A/N pending is indicated, and up to the DCI requesting the A/N feedback for the corresponding PDSCH (transmitted later). has exist
  • the counter-DAI value corresponding to the (first) DCI requesting A/N feedback for the corresponding PDSCH is ( Can be signaled/applied as X + 1)
  • the total A/N payload starts with the counter-DAI value corresponding to the PDSCH in which the A/N pending is indicated, and the A/N corresponding to the last received counter-DAI (or total-DAI) value. Configured by sequential mapping
  • sending A/N feedback for the PDSCH in which the A/N pending is indicated (at the previous time) through the A/N timing indicated from the corresponding DCI through the DCI (eg DL grant) (Type-1/2 A/ N codebook) and indicates whether to transmit (eg request) or not (eg no request)
  • the A/N state at each (pended) A/N feedback point is always reset after the feedback is transmitted (for example, the A/N state at a specific feedback point is fed back at the previous (recent) point.
  • the A/N state can be reset and then updated (depending on the presence or absence of a PDSCH in which an additional A/N pending is indicated) to be determined).
  • the pended A/N feedback is always added to and transmitted to the Type-1/2 codebook at all times, or if the NFI is non-toggled (or indicates the maintenance of the previous A/N state), it is always added/ On the other hand, in the case of toggled (or instructing to reset the previous A/N state), if there is a PDSCH in which A/N pending is indicated additionally (after the previous feedback point), it can be added/transmitted, and not added/transmitted otherwise has exist
  • NFI is in the form of signaling through a separate bit/field in the DCI, or the resource group corresponding to the non-toggled NFI (or maintaining the previous A/N state) with the entire PUCCH resource set and toggled NFI (or In the state divided into resource groups corresponding to the previous A/N state reset), the corresponding NFI value may be determined according to the PUCCH resource indicated through DCI.
  • the corresponding The (pended) A/N feedback for the PDSCH is to 1) transmit a corresponding pended A/N in the Type-3 A/N codebook form by instructing a separate A/N pooling through a specific DCI.
  • An operation configured by including a corresponding pended A/N in the transmitted Type-2a A/N codebook may be considered. Meanwhile, in the latter case, it may be necessary to determine the corresponding A/N timing to which the pended A/N feedback is to be transmitted, and as a method for this, the A/N pending is transmitted after the indicated (DCI or PDSCH transmission) time point.
  • the slot group ID A/N feedback for X It can operate to transmit (by adding) the corresponding pended A/N through the viewpoint.
  • the A/N feedback transmission time for the PDSCH in which the A/N pending is indicated may be determined as the A/N timing indicated through the DCI detected/received after the corresponding PDSCH reception time, in which case the corresponding A/N
  • PUCCH or PUSCH transmission carrying specific A/N information eg, corresponding to SPS PDSCH reception
  • PUCCH or PUSCH transmission carrying specific A/N information may be set/instructed/performed through a timing time point or a specific time point before the corresponding DCI reception time point.
  • out-of-order that causes signal processing complexity in UE implementation on HARQ operation, for example, of another (or the same) HARQ process ID received after the PDSCH#1 reception time of a specific HARQ process ID
  • OFOO out-of-order
  • the A/N feedback transmission time for the PDSCH in which the A/N pending is indicated is the fastest A/N PUCCH (after the terminal's minimum PDSCH processing time) from the time when the corresponding PDSCH is received. or PUSCH) transmission (the transmission is set/instructed/performed) may be determined as a time point.
  • the A/N PUCCH is an A/N feedback dedicated PUCCH resource corresponding to the SPS PDSCH
  • the A/N pending is indicated by using the PUCCH resource indicated by the PRI included in the DCI that indicated the A/N pending. It can operate to feedback/transmit an A/N for a PDSCH in which N pending is indicated and an A/N for an SPS PDSCH together.
  • A/N PUCCH is an A/N-only PUCCH resource corresponding to the SPS PDSCH while the Type-1 A/N codebook scheme is set to the terminal, 1) A/N pending is indicated.
  • A/N for PDSCH and A/N for SPS PDSCH are configured/transmitted together on the same single PUCCH (or PUSCH), or 2) only A/N for SPS PDSCH is transmitted (in this case, A/ A/N transmission for the PDSCH in which N pending is indicated may be operated (to be omitted for all A/N timings after including the A/N timing corresponding to the SPS PDSCH).
  • the A/N PUCCH is an A/N-only PUCCH resource corresponding to the SPS PDSCH while the Type-2 A/N codebook scheme is set to the terminal, 1) from the initial counter-DAI value ( A/N corresponding to the PDSCH up to the total-DAI (or counter-DAI) value included in the DCI indicating the A/N pending (including the PDSCH for which A/N pending is not indicated) and the A/N for the SPS PDSCH Configure/transmit N together on the same PUCCH (or PUSCH), or 2) A/N and SPS for PDSCH in which A/N pending is indicated (except for PDSCH for which A/N pending is not indicated)
  • the A/N for the PDSCH can be configured/transmitted together on the same single PUCCH (or PUSCH).
  • the A/N PUCCH is an A/N-dedicated PUCCH resource corresponding to the SPS PDSCH or the A/N PUCCH (or PUSCH) is A in a state in which the Type-2a A/N codebook scheme is set to the terminal
  • Type-1 or Type-2 A/N codebook method when the Type-1 or Type-2 A/N codebook method is set, an operation of dynamically triggering A/N feedback transmission based on the Type-3 A/N codebook method through a specific DCI is applied/allowed.
  • DCI-based dynamic Type-3 A/N codebook triggering may be defined/defined so that triggering is not applied/permitted.
  • the Type-1 or Type-2 A/N codebook scheme when the Type-1 or Type-2 A/N codebook scheme is set, the above-described (invalid or non-numerical A/N timing value for PDSCH) is indicated through DCI (eg DL grant).
  • A/N pending indication operation (indicating invalid or non-numerical A/N timing value) through DCI when the Type-2a method is set while the A/N pending indication operation is not applied/allowed It may be specified/defined to be applicable/permissible.
  • the SPS PDSCH transmitted without a corresponding DCI (eg DL grant) and the A/N feedback therefor may be considered.
  • the retransmission request for the corresponding A/N feedback (for example, due to the LBT failure of the terminal and/or the A/N detection failure of the base station) is due to the absence of a separate slot group ID designation for the corresponding SPS PDSCH. Since it is impossible, a rule for 1) determination of the A/N feedback transmission time for the corresponding SPS PDSCH and 2) the corresponding A/N feedback configuration/mapping on the Type-2a A/N codebook may be required.
  • the SPS PDSCH period is set to L slots and the A/N timing (delay) corresponding to the SPS PDSCH is indicated to K slots
  • the A/N feedback for the SPS PDSCH transmitted in slot #n is (repeatedly) through all A/N timings indicated in the interval from slot #(n + K) to slot #(n + K + L-1). Can act to transmit.
  • the Type-2a (or Type-1 or Type-2) codebook-based A/N feedback for the SPS PDSCH transmitted in a specific slot #n is transmitted only through slot #(n + K), and additionally From slot #(n + K) to slot #(n + K + L-1), it may be transmitted (additionally) through a time point indicated by the Type-3 codebook-based A/N timing.
  • a specific slot group ID to which SPS PDSCHs to be transmitted afterwards belong can be designated through SPS activation DCI, and accordingly (according to a request from the base station)
  • SPS activation DCI SPS activation DCI
  • it can operate to configure/transmit including A/N for a corresponding SPS PDSCH.
  • the slot group ID is mapped to the lower bit index portion starting with MSB from A/N for the PDSCH designated on the A/N payload of the Type-2a codebook (e.g., the first sub-codebook Form), and then the A/N for the corresponding SPS PDSCH may be mapped (to a high bit index part) (eg, configured in the form of a second sub-codebook).
  • configuration/mapping in a separate form from A/N for PDSCHs for which HARQ process ID is specified through DCI For example, the HARQ process ID is mapped to the lower bit index portion starting with MSB from A/N for the PDSCH in which the HARQ process ID is designated as DCI on the A/N payload of the Type-3 codebook (e.g., the first sub -Composed in the form of a codebook), followed by the A/N for the corresponding SPS PDSCH may be configured in a form in which the A/N for the corresponding SPS PDSCH is mapped (eg, configured in the form of a second sub-codebook).
  • DCI eg DL grant
  • an A/N payload may be configured in a form in which an A/N corresponding to each HARQ process ID is mapped.
  • a PDCCH indicating release for the SPS PDSCH It can be used for the purpose of setting that the corresponding PDCCH is for SPS release by using the HARQ process ID field in DCI.
  • A/N payload is configured by mapping A/N for each HARQ process ID
  • (1-bit) A/N information for the SPS release PDCCH is assigned to a specific location of the corresponding A/N payload.
  • the entire Type-3 A/N codebook can be configured in a form that is added to, and the specific location is 1) after/after the last A/N bit of the entire A/N payload or 2) the A/N payload After/after the last A/N bit corresponding to the CC in which the SPS release PDCCH is transmitted within or 3) the last A/N corresponding to the CC in which the SPS PDSCH corresponding to the SPS release PDCCH is transmitted in the A/N payload Bit next/after or 4) may be determined as an A/N bit corresponding to a specific HARQ process ID reserved for SPS PDSCH transmission corresponding to the SPS release PDCCH.
  • the PUCCH resource for A/N feedback transmission corresponding to the initial PDSCH reception is 1) directly indicated through the same SPS activation DCI, or 2) a plurality of candidate PUCCH resource (PRI) indexes configured through RRC Among them, it may be determined as a specific resource (eg, corresponding to the lowest or highest index), or 3) may be defined in advance as a specific resource or set through RRC.
  • PRI candidate PUCCH resource
  • the specific applicable value applied to the A/N transmission timing for the initial PDSCH reception is 1) a specific value defined in advance or set through RRC, or 2) a plurality of candidates set through RRC ( Applicable) It can be determined as a specific (eg, minimum or maximum) value among K1 values, or 3) can be directly indicated through the same SPS activation DCI.
  • the operation in which the inapplicable value is indicated by A/N timing through the DCI indicating SPS activation (eg, A/N pending indication) is performed to the terminal in the Type-2a (and/or Type-3) A/ It can be allowed only when the N codebook or the Type-2 (and/or Type-3) A/N codebook is set, and when the Type-1 (and/or Type-3) A/N codebook is set to the terminal, This operation may not be allowed.
  • the Type-2a A/N codebook is set to the corresponding Type- 2a and/or Type-3 codebook-based A/N transmission can be requested through any DCI instructing, and if the Type-2 A/N codebook is set to the terminal, the corresponding Type-2 and/or Type-3 codebook is based While it is possible to request through any DCI indicating A/N transmission, when the Type-1 A/N codebook is set to the terminal, only through DCI instructing Type-3 codebook-based A/N transmission (with a small request opportunity This is because it can be requested with limited).
  • the type-3 codebook-based A/N feedback transmission DCI indicating DCI and/or SPS activation indicating DCI and/or SPS release indicating DCI and/or specific cell (eg Scell) of the terminal For DCI indicating switching to a specific (eg dormant) BWP set to disable the PDCCH monitoring or decoding operation (for convenience, this DCI is referred to as “special DCI”), the A/N timing corresponding to the DCI reception is inapplicable. It may be specified not to be indicated by a value (or to be indicated only by an applicable value), and accordingly, the terminal operates to ignore the DCI when the inapplicable value is indicated by the A/N timing through the special DCI as described above. can do.
  • Type-3 codebook-based A/N feedback transmission may be indicated through DL grant DCI, and more specifically, the following two methods may be considered (supported):
  • Case B which is the latter, if the PDSCH frequency resource allocated by the corresponding DCI is invalid (eg empty), the terminal may recognize and operate as a case in which a Type-3 A/N codebook is indicated without PDSCH scheduling.
  • the terminal may recognize and operate as a case in which a Type-3 A/N codebook is indicated without PDSCH scheduling.
  • the UE may generate/transmit a Type-3 codebook-based HARQ-ACK without receiving a PDSCH.
  • the DCI includes a PDSCH-to-HARQ Feedback Timing Indicator field and indicates a value of K1.
  • the terminal/base station is Opt 1) determining the time after K1 slots from the slot where the DCI was received as the A/N transmission time, or Opt 2) through the DCI (although it is not actually transmitted).
  • a method of determining a time point after K1 slots from a slot indicated as a PDSCH reception time point as an A/N transmission time point may be considered, but is not limited thereto.
  • N1 it may have a different value according to the SCS applied to the PDSCH and A/N PUCCH transmission, and the DMRS symbol pattern set in the PDSCH.
  • Table 7 shows the minimum PDSCH processing time (the number of N1 symbols) according to the SCS value and the DMRS pattern.
  • the current NR system stipulates a minimum processing time (e.g. N2) in relation to the PUSCH transmission of the UE.
  • N2 a minimum processing time
  • the terminal is assigned a corresponding PDCCH.
  • the corresponding PDCCH can be discarded and the corresponding PUSCH transmission can be dropped (drop).
  • N2 it may have different values according to the SCS applied to UL grant PDCCH and PUSCH transmission. Table 8 below shows the minimum PUSCH processing time (number of symbols N2) according to the SCS value.
  • a minimum processing time (e.g. number of symbols N) is stipulated in relation to PDCCH reception indicating SPS PDSCH release.
  • the terminal While it operates to feed back valid A/N (eg ACK) information for reception of the corresponding PDCCH, if the corresponding section is less than N symbols, it may not feed back valid A/N information.
  • the number of symbols, N may have a different value according to the SCS applied to the PDCCH and A/N PUCCH transmission. Table 9 below shows the (minimum) processing time (number of symbols N) of the PDCCH indicating SPS PDSCH release according to the SCS value.
  • the SCS may mean a smaller value of the SCS of the corresponding PDCCH and the SCS of the corresponding A/N PUCCH.
  • Case B if the DL grant PDCCH indicates only A/N feedback transmission (based on Type-3 codebook) without PDSCH scheduling, the corresponding A/N PUCCH (first symbol) from the time of reception of the corresponding PDCCH (last symbol) ) It may be necessary to define a minimum processing time to be applied to the period up to the transmission time and the number of symbols (eg Nx) corresponding thereto.
  • the terminal From the time of receiving the PDCCH (last symbol) indicating A/N feedback transmission (based on the Type-3 codebook) without PDSCH scheduling, the A/N feedback (eg, A/N PUCCH) based on the Type-3 codebook ( Initial symbol)
  • the terminal operates to feed back valid (Type-3 codebook based) A/N information corresponding to the corresponding PDCCH, whereas the corresponding interval is Nx In the case of less than two symbols, 1) valid A/N information may not be fed back, or 2) the corresponding PDCCH itself may be ignored (discard).
  • an N1 value (or (N1+a) value obtained by adding a specific number of symbols to the corresponding N1 when an additional DMRS symbol (group) is not set among the values shown in Table 7, where a is It can be set to a positive or negative number) can be applied as the Nx value. This is because there is no actually scheduled PDSCH, so the processing required for this can be omitted, so it is possible to apply the smallest N1 value for each SCS.
  • an N1 value (or (N1+a) value obtained by adding a specific number of symbols to the corresponding N1 when an additional DMRS symbol (group) is set among the values shown in Table 7, where a is It can be set to a positive or negative number) can be applied as the Nx value.
  • the DMRS is included in each of all symbols constituting the PDCCH, so it may not be unreasonable to apply the largest N1 value for each SCS when the corresponding channel estimation time is considered.
  • the N2 value shown in Table 8 (or the (N2+a) value obtained by adding a specific symbol number a to the corresponding N2, where a can be set to a positive or negative number) is applied as the Nx value.
  • I can. This is because Case B is a form of receiving DL control and transmitting a corresponding UL channel similar to the PUSCH scheduling/transmission case, so it may not be unreasonable to apply the N2 value defined for each SCS.
  • the N value related to the PDCCH indicating the SPS release shown in Table 9 (or the (N+a) value obtained by adding a specific number of symbols to the corresponding N, where a may be set to a positive or negative number. )
  • Nx values eg, Type-3 codebook-based A/N feedback (eg, A/N PUCCH) from the last symbol of the PDCCH indicating transmission of Type-3 codebook-based A/N feedback without PDSCH scheduling.
  • Case B is a form in which the UE receives the PDCCH and transmits the HARQ-ACK (eg, A/N PUCCH) corresponding to the PDCCH (although the information indicated through the PDCCH is different from the SPS PDSCH release). This is because it may be possible to apply the N value defined for each SCS to the PDCCH indicating SPS PDSCH release to the PDCCH indicating A/N feedback transmission based on the Type-3 codebook.
  • the HARQ-ACK eg, A/N PUCCH
  • a terminal receiving a first PDCCH carrying a DCI (eg, DL grant format DCI) requesting a HARQ-ACK based on a Type-3 codebook without scheduling a PDSCH is as if a second PDCCH carrying a DCI indicating SPS release If is received, the type-3 indicated by the first PDCCH at the timing at which the UE should transmit the A/N feedback for the second PDCCH (although actually the second PDCCH was not received, but the first PDCCH was received). It is possible to transmit (or start transmission) the codebook-based HARQ-ACK.
  • a DCI eg, DL grant format DCI
  • the base station that transmits the first PDCCH carrying DCI (eg, DL grant format DCI) requesting HARQ-ACK based on the Type-3 codebook without PDSCH scheduling receives the second PDCCH carrying DCI indicating SPS release If so, the base station is based on the Type-3 codebook indicated by the first PDCCH at the timing at which the base station should receive the A/N feedback for the second PDCCH (although the first PDCCH was not actually transmitted, but the second PDCCH was actually transmitted). It is possible to receive (or start receiving) the HARQ-ACK.
  • DCI eg, DL grant format DCI
  • the A/N feedback timing for the PDCCH indicating SPS PDSCH release is a PDCCH carrying Case B (eg, a DCI (eg, DL grant format DCI) requesting a HARQ-ACK based on a Type-3 codebook without scheduling of the PDSCH).
  • the received terminal may be reused for (transmitting HARQ-ACK based on the Type-3 codebook).
  • FIG. 24 illustrates HARQ-ACK transmission timing based on a Type-3 codebook according to an example of the present invention.
  • the present invention is not limited to FIG. 24, and a description overlapping with the above-described contents (e.g., FIGS. 17 to 23, etc.) may be omitted.
  • the UE attempts to detect a PDCCH carrying DCI corresponding to the DL grant DCI format (2405). Attempting to detect the PDCCH may include performing blind decoding on candidates of the corresponding PDCCH in the search space.
  • the UE acquires a DCI having a DL grant DCI format from the PDCCH (2410).
  • the UE When the DCI requests the HARQ-ACK feedback based on the Type-3 codebook (2412 Y) and schedules the PDSCH (2415 Y) (eg, Case A), the UE receives (2425) the PDSCH scheduled by the corresponding DCI. , Generates a HARQ-ACK payload based on the Type-3 codebook indicated by the DCI (2430) (eg, Fig. 21 to 23, etc.).
  • Type-3 codebook-based HARQ-ACK feedback (2412 Y) (eg, Case B)
  • the terminal is based on the Type-3 codebook indicated in the DCI without receiving the PDSCH.
  • Generates HARQ-ACK payload (eg, Fig. 21 ⁇ 23, etc.).
  • the terminal transmits HARQ-ACK based on the Type-3 codebook (2435).
  • the HARQ-ACK transmission timing may be determined based on whether the DCI 2412 Y requesting the HARQ-ACK feedback based on the Type-3 codebook schedules the PDSCH (2415 Y/N).
  • the HARQ-ACK transmission 2435 may be determined based on the PDSCH reception 2425.
  • HARQ-ACK transmission 2435 may be performed in a second slot determined by applying a first slot offset value to a first slot in which PDSCH reception 2425 ends.
  • the first slot offset value may mean K1 indicated by the PDSCH-to-HARQ timing indicator when the DCI 2412 Y & 2415 Y includes the PDSCH-to-HARQ timing indicator.
  • the first slot offset value may be determined by a preset value through higher layer signaling.
  • the HARQ-ACK transmission 2435 may be determined based on the detected reception time of the PDCCH 2405.
  • the timing of HARQ-ACK transmission 2435 may be determined based on the A/N timing (e.g., Table 9) used when the PDCCH indicating SPS PDSCH release.
  • the UE/base station applies/rates the A/N timing (eg, Table 9) used when the PDCCH indicating SPS PDSCH release is applied/reused to HARQ-ACK.
  • the timing of transmission 2435 may be determined.
  • the HARQ-ACK transmission 2435 based on the Type-3 codebook is symbol #(X+N) May be performed (or transmission start) at, and Table 9 may be referred for the value of N.
  • HARQ-ACK transmission 2435 may be performed in a fourth slot determined by applying a second slot offset value to a third slot in which reception of the PDCCH 2405 ends.
  • the second slot offset value may mean K1 indicated by the PDSCH-to-HARQ timing indicator when the DCI 2412 Y & 2415 N includes the PDSCH-to-HARQ timing indicator.
  • a preset value may be used as the second slot offset value through higher layer signaling, and the present invention is not limited thereto.
  • the following DL grant DCI signaling method may be considered for configuring a Type-2 A/N codebook.
  • Method 0 (via DL grant DCI) T-DAI information for TB-based (ie, TB-based) PDSCH for other groups (for the corresponding TB-based A/N sub-codebook configuration) and Indicate all T-DAI information (for CBG-based A/N sub-codebook configuration corresponding thereto) for CBG-based (ie, CBG-based) PDSCH
  • Method 1 (via DL grant DCI) indicates only one T-DAI information for the other group (in this case, the corresponding T-DAI is a T for one PDSCH type of TB-based PDSCH and CBG-based PDSCH) -Only DAI information can be indicated)
  • the PDSCH type may be fixed to a TB-based PDSCH (or fixed to a CBG-based PDSCH).
  • the PDSCH type is selected so that PDSCH transmission is performed with any specific PDSCH type. Can be fixed.
  • PDSCH type-1 other than the PDSCH type for example, when the PDSCH type is a TB-based PDSCH, the corresponding PDSCH type-1 is a CBG-based PDSCH And, when the PDSCH type is a CBG-based PDSCH, the PDSCH type-1 becomes the TB-based PDSCH), the most recent reception (through another DCI scheduling the corresponding PDSCH type-1 of the other group) Composes corresponding A/N feedback (sub-codebook) by applying the T-DAI information
  • Method 2 (via DL grant DCI) indicates only one T-DAI information for the other group (in this case, the corresponding T-DAI is a T for one PDSCH type of TB-based PDSCH and CBG-based PDSCH) -Directs only DAI information)
  • the PDSCH type is determined as the last scheduled PDSCH type from the corresponding DCI-1 (or the DCI-1 If CBG-based PDSCH transmission is configured in the cell last scheduled from, the PDSCH type is determined as a CBG-based PDSCH, otherwise, the PDSCH type is determined as a TB-based PDSCH)
  • the PDSCH type is determined as a TB-based PDSCH (or determined as a CBG-based PDSCH or the PDSCH type is Whether it is TB-based PDSCH or CBG-based PDSCH is set through RRC signaling)
  • Method 3 (via DL grant DCI) indicates only one T-DAI information for the other group (in this case, the corresponding T-DAI is a T for one PDSCH type of TB-based PDSCH and CBG-based PDSCH) -Indicate only DAI information)
  • the PDSCH type is TB- Determined as based PDSCH (or, determined as CBG-based PDSCH or set whether the PDSCH type is TB-based PDSCH or CBG-based PDSCH through RRC signaling)
  • the PDSCH type is determined as the corresponding PDSCH type-1
  • the PDSCH type is determined as a TB-based PDSCH (or determined as a CBG-based PDSCH or the PDSCH type is Whether it is TB-based PDSCH or CBG-based PDSCH is set through RRC signaling)
  • E. Method 4 (via DL grant DCI) indicates only one T-DAI information for the other group (in this case, the corresponding T-DAI is a T for one PDSCH type of TB-based PDSCH and CBG-based PDSCH) -Directs only DAI information)
  • the PDSCH type is TB-based PDSCH or CBG-based PDSCH is indicated through the same DCI (eg, in a separate 1-bit) or set through RRC signaling
  • the corresponding A/N feedback (through DCI scheduling the corresponding PDSCH type-1 of the other group) is applied to the corresponding A/N feedback (Sub-codebook), or in the case of this method 4, A/N feedback (sub-codebook) may not be configured/transmitted for the corresponding PDSCH type-1
  • Method 5 For the other group, for each PDSCH type (TB-based or CBG-based), the most recently received T-DAI information (through DCI scheduling the corresponding PDSCH type of the other group) By applying, it operates to configure A/N feedback (sub-codebook) corresponding to each corresponding PDSCH type.
  • one of the following two schemes may be configured to the terminal through RRC signaling.
  • Method X Indicate both T-DAI information for TB-based PDSCH and T-DAI information for CBG-based PDSCH for the other group (through DL grant DCI) (same as method 0 above)
  • Method Y (via DL grant DCI) indicates only one T-DAI information for the other group (corresponding T-DAI indicates only T-DAI information for one of TB-based PDSCH and CBG-based PDSCH )
  • the following UL grant DCI signaling method may be considered for the Type-2 A/N codebook configuration.
  • T-DAI information for each of the two PDSCH groups is set to be indicated through UL grant DCI (eg, for a PDSCH group (ie, first group (index 0)) corresponding to the first-ID through DCI)
  • T-DAI information and T-DAI information for the PDSCH group are indicated
  • Method 0 (via UL grant DCI) T-DAI information and CBG- for TB-based PDSCH for each PDSCH group (for the corresponding TB-based A/N sub-codebook configuration) as follows: Indicate all T-DAI information (for CBG-based A/N sub-codebook configuration corresponding to this) for based PDSCH
  • Method 1 (through UL grant DCI) indicates only one T-DAI information for each PDSCH group (in this case, the corresponding T-DAI is for one PDSCH type of TB-based PDSCH and CBG-based PDSCH) Only T-DAI information is indicated)
  • the PDSCH type (corresponding to the T-DAI indicated for each PDSCH group) is fixed as a TB-based PDSCH (or fixed as a CBG-based PDSCH)
  • a PDSCH type-1 other than the PDSCH type for example, when the PDSCH type is a TB-based PDSCH, the corresponding PDSCH type-1 Is a CBG-based PDSCH, and when the PDSCH type is a CBG-based PDSCH, the corresponding PDSCH type-1 becomes a TB-based PDSCH
  • T-DAI information for the corresponding PDSCH type-1 of the corresponding PDSCH group Configure the corresponding A/N feedback (sub-codebook) by applying the most recently received T-DAI information (via a DL grant DCI indicating a)
  • Method 2 (via UL grant DCI) indicates only one T-DAI information for each PDSCH group (in this case, the corresponding T-DAI is for one PDSCH type of TB-based PDSCH and CBG-based PDSCH) Only T-DAI information is indicated)
  • each PDSCH type is determined as the last scheduled PDSCH type from the corresponding DL DCI (or, if CBG-based PDSCH transmission is configured in the cell last scheduled from the corresponding DL grant DCI, it is a CBG-based PDSCH, otherwise In this case, each PDSCH type is determined as TB-based PDSCH)
  • the PDSCH type is determined as TB-based PDSCH (or, it is determined as CBG-based PDSCH, or whether the PDSCH type is TB-based PDSCH or CBG-based PDSCH is set through RRC signaling)
  • Method 3 (via UL grant DCI) indicates only one T-DAI information for each PDSCH group (in this case, the corresponding T-DAI is for one PDSCH type of TB-based PDSCH and CBG-based PDSCH) Only T-DAI information is indicated)
  • the PDSCH type (corresponding to the T-DAI indicated for the corresponding PDSCH group) is determined as TB-based PDSCH (or, determined as CBG-based PDSCH or whether the PDSCH type is TB-based PDSCH) Or it is set through RRC signaling whether it is a CBG-based PDSCH)
  • each PDSCH group there is a DL grant DCI that schedules a corresponding PDSCH group while indicating a PUSCH transmission slot indicated by the UL grant DCI as an A/N PUCCH transmission slot, and the corresponding DL grant DCI is a TB-based PDSCH and a CBG-based PDSCH. If only one of the PDSCH type-1 is scheduled, the PDSCH type (corresponding to the T-DAI indicated for the corresponding PDSCH group) is determined as the corresponding PDSCH type-1
  • the PDSCH type is determined as TB-based PDSCH (or, it is determined as CBG-based PDSCH, or whether the PDSCH type is TB-based PDSCH or CBG-based PDSCH is set through RRC signaling)
  • E. Method 4 (via UL grant DCI) indicates only one T-DAI information for each PDSCH group (in this case, the corresponding T-DAI is for one PDSCH type of TB-based PDSCH and CBG-based PDSCH) Only T-DAI information is indicated)
  • the PDSCH type (corresponding to the T-DAI indicated for each PDSCH group) is a TB-based PDSCH or a CBG-based PDSCH through the same UL grant DCI (e.g., in a separate 1-bit) Instructed or set through RRC signaling
  • the corresponding A/N feedback may be configured by applying DAI information, or, in the case of this method 4, A/N feedback (sub-codebook) may not be configured/transmitted for the corresponding PDSCH type-1.
  • T-DAI information is set to be indicated for only one PDSCH group X of two PDSCH groups (first group (index 0), second group (index 1)) through UL DCI
  • Method 5 (via UL grant DCI) T-DAI information and CBG- for TB-based PDSCH (for the corresponding TB-based A/N sub-codebook configuration) for the one PDSCH group X Indicate all T-DAI information (for CBG-based A/N sub-codebook configuration corresponding to this) for based PDSCH
  • the PDSCH group X is 1) a first group when DL grant DCIs indicating a PUSCH transmission slot indicated by the UL grant DCI as an A/N PUCCH transmission slot schedule both PDSCH groups, and 2) the UL grant A/N PUSCH transmission slot indicated by DCI
  • the PUSCH transmission slot indicated by the UL grant DCI is assigned to the specific group.3
  • the PUSCH transmission slot indicated by the UL grant DCI is A/N If there is no DL grant DCI indicated by the PUCCH transmission slot, each may be determined as a first group
  • A/N feedback (sub-codebook) corresponding to each PDSCH type is configured by applying the most recently received T-DAI information
  • Method 6 (via UL DCI) indicates only one T-DAI information for the one PDSCH group X (in this case, the corresponding T-DAI is one PDSCH type of TB-based PDSCH and CBG-based PDSCH Instruction only for T-DAI information)
  • the method in the case of the PDSCH group X, it may be determined in the same manner as in Method 5, and in the case of the PDSCH type (TB-based or CBG-based) corresponding to the T-DAI indicated for the corresponding PDSCH group X, the method Can be determined by applying at least one of 1/2/3/4
  • the corresponding A/N feedback may be configured by applying T-DAI information for each PDSCH type in the same manner as in Method 5 above.
  • one of the following two methods may be configured to the terminal through RRC signaling.
  • Method X Indicate both T-DAI information for TB-based PDSCH and T-DAI information for CBG-based PDSCH for each PDSCH group (through UL grant DCI) (same as method 0 above)
  • Method Y (via UL grant DCI) indicates only one T-DAI information for each PDSCH group (corresponding T-DAI indicates only T-DAI information for one of TB-based PDSCH and CBG-based PDSCH )
  • 25 illustrates a communication system 1 applied to the present invention.
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices. It can be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, or a robot.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f/base station 200, and the base station 200/base station 200.
  • wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive radio signals to each other.
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • At least some of a process of setting various configuration information various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation process, and the like may be performed.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation process e.g., resource allocation process, and the like.
  • 26 illustrates a wireless device applicable to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. 25 ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed herein. It is possible to store software code including:
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • Transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 and one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It is possible to store software code including:
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed herein Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or operational flow chart disclosed herein. At least one processor (102, 202) generates a signal (e.g., a baseband signal) containing PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , Can be provided to one or more transceivers (106, 206).
  • a signal e.g., a baseband signal
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are configured to perform firmware or software included in one or more processors 102, 202, or stored in one or more memories 104, 204, and It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions, and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more of the memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc., mentioned in the description, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document from one or more other devices. have.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), one or more transceivers (106, 206) through the one or more antennas (108, 208), the description and functions disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
  • the first wireless device 100 may receive downlink control information (DCI) through a physical downlink control channel (PDCCH) and transmit a HARQ-ACK report based on the DCI.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the first wireless device 100 is configured to spatially bundling the TB (transport block)-based ACK/NACK (negative-ACK) bits
  • the Specific type codebook-based HARQ-ACK for transmitting ACK/NACKs for all HARQ processes of one or more serving cells in which DCI is set in the first wireless device 100 on a one-shot basis
  • the spatial bundling based on the indication that the report is indicated and that the first wireless device 100 is configured to report each new data indicator (NDI) bit through the HARQ-ACK report based on the specific type codebook.
  • NDI new data indicator
  • Each TB-based ACK/NACK bit and each NDI bit can be reported without (even though the wireless device 100 is configured to perform spatial bundling for transport block (TB)-based ACK/negative-ACK(NACK) bits, the wireless device 100 may report each new data indicator (NDI) bit and each TB-based ACK/NACK bit without performing the spatial bundling, based on that the DCI indicates a specific type codebook-based HARQ-ACK report for one-shot- based transmission of ACK/NACKs for all HARQ processes of one or more serving cells configured in the UE, and the wireless device 100 is configured to report each NDI bit through th e specific type codebook-based HARQ-ACK report).
  • NDI new data indicator
  • the second wireless device 200 transmits downlink control information (DCI) to the first wireless device 100 through a physical downlink control channel (PDCCH), and the first wireless device 100
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the HARQ-ACK report based on the DCI may be received from.
  • the second wireless device 200 In the reception of the HARQ-ACK report, the second wireless device 200, the first wireless device to spatially bundling the TB (transport block)-based ACK / NACK (negative-ACK) bits (spatial bundling) ( In spite of setting 100), specific for receiving ACK/NACKs for all HARQ processes of one or more serving cells set in the first wireless device 100 on a one-shot basis
  • the first wireless device 100 to report that each new data indicator (NDI) bit is indicated through the type codebook-based HARQ-ACK report through the DCI and the specific type codebook-based HARQ-ACK report. Based on the configuration, each NDI bit and each TB-based ACK/NACK bit to which the spatial bundling is not applied may be obtained through the HARQ-ACK report based on the specific type codebook.
  • NDI new data indicator
  • the specific type codebook is a Type-3 codebook, and for a Type-3 codebook-based HARQ-ACK report configured to include each NDI, the spatial bundling may not be performed as an exception of the spatial bundling.
  • the exception of the spatial bundling may be applied based on the fact that the HARQ-ACK report based on the Type-3 codebook is configured to include each NDI bit.
  • the spatial bundling may be performed on corresponding TB-based ACK/NACK bits.
  • the first wireless device 100 provides each NDI through a configuration of the spatial bundling for a logical AND operation of the TB-based ACK/NACK bits and a HARQ-ACK report based on the specific type codebook.
  • the setting for reporting the bit may be received through higher layer signaling.
  • the one or more serving cells may include a specific serving cell in which codeblock group (CBG)-based transmission is performed.
  • CBG codeblock group
  • the first wireless device 100 whether to perform CBG-based ACK/NACK reporting for the specific serving cell through the specific type codebook-based HARQ-ACK report based on higher layer signaling or TB-based ACK/NACK You can decide whether or not to do the reporting.
  • the specific type codebook may be a Type-3 codebook.
  • the second 1 The wireless device 100 may perform CBG-based ACK/NACK reporting on the specific serving cell through a Type-1 or Type-2 codebook-based HARQ-ACK report different from the Type-3 codebook.
  • the A/N bits of the lower indexed serving cell may be mapped to the lower index bits in the HARQ-ACK report based on the specific type codebook.
  • the A/N bits of the lower index HARQ process may be mapped to the lower index bits in the HARQ-ACK report based on the specific type codebook.
  • the A/N bits of the lower index TB may be mapped to the lower index bits in the HARQ-ACK report based on the specific type codebook.
  • the A/N bits of a plurality of codeblock groups (CBGs) included in the TB the A/N bits of the lower index CBG may be mapped to the lower index bits in the HARQ-ACK report based on the specific type codebook.
  • CBGs codeblock groups
  • Each NDI bit included in the specific type codebook-based HARQ-ACK report may be set as an NDI field value included in a corresponding DCI scheduling a corresponding TB.
  • the first wireless device 100 may receive a first TB through a physical downlink shared channel (PDSCH) of a first serving cell based on TB-based scheduling.
  • the first wireless device 100 may receive CBGs of a second TB through a PDSCH of a second serving cell based on codeblock group (CBG)-based scheduling.
  • the specific type codebook-based HARQ-ACK report may include a TB-based ACK/NACK bit for the first TB, an NDI bit for the first TB, and an NDI bit for the second TB.
  • the specific type codebook-based HARQ-ACK report may include TB-based ACK/NACK bits for the second TB or CBG-based ACK/NACK bits for CBGs of the second TB.
  • FIG. 27 shows another example of a wireless device applied to the present invention.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 25).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 26, and various elements, components, units/units, and/or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 26.
  • the transceiver(s) 114 may include one or more transceivers 106 and 206 and/or one or more antennas 108 and 208 of FIG. 26.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally through the communication unit 110 (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • an external eg, other communication device
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 25, 100a), vehicles (FIGS. 25, 100b-1, 100b-2), XR devices (FIGS. 25, 100c), portable devices (FIGS. 25, 100d), and home appliances. (FIGS. 25, 100e), IoT devices (FIGS.
  • digital broadcasting terminals It may be implemented in the form of an AI server/device (FIGS. 25 and 400), a base station (FIGS. 25 and 200), and a network node.
  • the wireless device can be used in a mobile or fixed place depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit eg, 130, 140
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the control unit 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a unit (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110/130/140a to 140d correspond to blocks 110/130/140 of FIG. 27, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside base stations, etc.), and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c is an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement. /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc. can be included.
  • the autonomous driving unit 140d is a technology that maintains a driving lane, a technology that automatically adjusts the speed such as adaptive cruise control, a technology that automatically travels along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a so that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
  • the communication unit 110 asynchronously/periodically acquires the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like, based on information collected from the vehicle or autonomously driving vehicles, and may provide the predicted traffic information data to the vehicle or autonomously driving vehicles.
  • FIG. 29 is a diagram for describing a discontinuous reception (DRX) operation of a terminal according to an embodiment of the present invention.
  • the UE may perform the DRX operation while performing the procedures and/or methods described/suggested above.
  • a terminal in which DRX is configured can reduce power consumption by discontinuously receiving DL signals.
  • DRX may be performed in Radio Resource Control (RRC)_IDLE state, RRC_INACTIVE state, and RRC_CONNECTED state.
  • RRC_IDLE state and RRC_INACTIVE state the DRX is used to receive paging signals discontinuously.
  • RRC_CONNECTED DRX DRX performed in the RRC_CONNECTED state will be described (RRC_CONNECTED DRX).
  • a DRX cycle consists of On Duration and Opportunity for DRX.
  • the DRX cycle defines a time interval in which On Duration is periodically repeated.
  • On Duration represents a time period during which the UE monitors to receive the PDCCH.
  • the UE performs PDCCH monitoring during On Duration. If there is a PDCCH successfully detected during PDCCH monitoring, the UE operates an inactivity timer and maintains an awake state. On the other hand, if there is no PDCCH successfully detected during PDCCH monitoring, the UE enters a sleep state after the On Duration ends. Accordingly, when DRX is configured, PDCCH monitoring/reception may be discontinuously performed in the time domain in performing the procedure and/or method described/proposed above.
  • a PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be set discontinuously according to the DRX configuration.
  • PDCCH monitoring/reception may be continuously performed in the time domain in performing the above-described/suggested procedure and/or method.
  • a PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be continuously set in the present invention.
  • PDCCH monitoring may be limited in a time period set as a measurement gap.
  • Table 10 shows the process of the terminal related to the DRX (RRC_CONNECTED state).
  • DRX configuration information is received through higher layer (eg, RRC) signaling, and whether DRX ON/OFF is controlled by the DRX command of the MAC layer.
  • RRC Radio Resource Control
  • the UE may discontinuously perform PDCCH monitoring in performing the procedures and/or methods described/suggested in the present invention.
  • Type of signals UE procedure 1 st step RRC signaling(MAC- CellGroupConfig) -Receive DRX configuration information 2 nd Step MAC CE ((Long) DRX command MAC CE) -Receive DRX command 3 rd Step - -Monitor a PDCCH during an on-duration of a DRX cycle
  • the MAC-CellGroupConfig includes configuration information required to set a medium access control (MAC) parameter for a cell group.
  • MAC-CellGroupConfig may also include configuration information on DRX.
  • MAC-CellGroupConfig defines DRX and may include information as follows.
  • -Value of drx-OnDurationTimer Defines the length of the start section of the DRX cycle.
  • -Value of drx-InactivityTimer Defines the length of the time interval in which the terminal is awake after the PDCCH opportunity in which the PDCCH indicating initial UL or DL data is detected
  • -Value of drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval from receiving the initial DL transmission until the DL retransmission is received.
  • the UE performs PDCCH monitoring at every PDCCH opportunity while maintaining the awake state.
  • the present invention can be used in a terminal, a base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예에 따른 단말은 PDCCH를 통해서 DCI를 수신하고, HARQ-ACK 보고를 송신하되, DCI가 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷 기반으로 송신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 지시한다는 것 및 단말이 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI 비트를 보고하도록 설정(configure)되었다는 것에 기초하여, 단말에 공간 번들링이 설정되었음에도 불구하고, 공간 번들링 없이 특정 타입 코드북 기반의 HARQ-ACK 보고를 송신할 수 있다.

Description

무선 통신 시스템에서 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 상/하향링크 무선 신호를 송신 또는 수신하는 방법과 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따라 무선 통신 시스템에서 단말이 HARQ(hybrid automatic repeat request)-ACK(acknowledgement) 보고를 송신하는 방법은, PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 수신; 및 상기 DCI에 기초하여 HARQ-ACK 보고를 송신하는 것을 포함할 수 있다. 상기 HARQ-ACK 보고의 송신에 있어서, 상기 단말은, TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 설정되었음에도 불구하고, 상기 DCI가 상기 단말에 설정된 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 송신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 지시한다는 것 및 상기 단말이 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 설정(configure)되었다는 것에 기초하여, 상기 공간 번들링 없이 각 TB-기반의 ACK/NACK 비트와 각 NDI 비트를 보고할 수 있다.
본 발명의 일 측면에 따른 무선 통신을 위한 단말은, 송수신기; 및 상기 송수신기를 제어함으로써 PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 수신하고, 상기 DCI에 기초하여 HARQ(hybrid automatic repeat request)-ACK(acknowledgement) 보고를 송신하는 프로세서를 포함할 수 있다. 상기 HARQ-ACK 보고의 송신에 있어서, 상기 프로세서는, TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 설정되었음에도 불구하고, 상기 DCI가 상기 단말에 설정된 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 송신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 지시한다는 것 및 상기 단말이 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 설정(configure)되었다는 것에 기초하여, 상기 공간 번들링 없이 각 TB-기반의 ACK/NACK 비트와 각 NDI 비트를 보고할 수 있다.
상기 특정 타입 코드북은 Type-3 코드북으로써, 각 NDI를 포함하도록 구성된 Type-3 코드북 기반의 HARQ-ACK 보고에 대해서는 상기 공간 번들링의 예외로써 상기 공간 번들링이 수행되지 않을 수 있다. 상기 공간 번들링의 예외는, 상기 Type-3 코드북 기반의 HARQ-ACK 보고가 각 NDI 비트를 포함하도록 구성되었다는 것에 기초하여 적용될 수 있다. 상기 Type-3 코드북과 상이한 Type-1 또는 Type-2 코드북 기반의 HARQ-ACK 보고에 대해서는 해당 TB-기반 ACK/NACK 비트들에 상기 공간 번들링이 수행될 수 있다.
상기 단말은 해당 TB-기반의 ACK/NACK 비트들의 논리적(logical) AND 연산을 위한 상기 공간 번들링의 설정(configuration) 및 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI 비트를 보고하기 위한 설정을 상위 계층 시그널링을 통해 수신할 수 있다.
상기 하나 또는 둘 이상의 서빙 셀들은 CBG(codeblock group)-기반의 송신이 수행되는 특정 서빙 셀을 포함할 수 있다. 상기 단말은 상위 계층 시그널링에 기초하여 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 상기 특정 서빙 셀에 대하여 CBG-기반 ACK/NACK 보고를 수행할지 또는 TB-기반 ACK/NACK 보고를 수행할지 여부를 결정할 수 있다. 상기 특정 타입 코드북은 Type-3 코드북일 수 있다. 상기 단말이 상기 상위 계층 시그널링에 기초하여 Type-3 코드북 기반의 HARQ-ACK 보고를 통해 상기 특정 서빙 셀에 대하여 TB-기반 ACK/NACK 보고를 수행하기로 결정하였더라도, 상기 단말은 상기 Type-3 코드북과 상이한 Type-1 또는 Type-2 코드북 기반의 HARQ-ACK 보고를 통해서는 상기 특정 서빙 셀에 대하여 CBG-기반 ACK/NACK 보고를 수행할 수 있다.
하위 인덱스(lower indexed) 서빙 셀의 ACK/NACK (A/N) 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑 될 수 있다. 동일 인덱스 서빙 셀의 A/N 비트들 간에는 하위 인덱스 HARQ 프로세스의 A/N 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑 될 수 있다. 동일 인덱스 HARQ 프로세스의 A/N 비트들 간에는 하위 인덱스 TB의 A/N 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑 될 수 있다. 해당 TB에 포함된 복수의 CBG(codeblock group)들의 A/N 비트들 간에는 하위 인덱스 CBG의 A/N 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑 될 수 있다.
상기 특정 타입 코드북 기반의 HARQ-ACK 보고에 포함된 각 NDI 비트는, 해당 TB를 스케줄하는 해당 DCI에 포함된 NDI 필드 값으로 설정될 수 있다.
상기 단말은 TB-기반 스케줄링에 기반하여 제1 서빙 셀의 PDSCH(physical downlink shared channel)를 통해 제1 TB를 수신할 수 있다. 상기 단말은 CBG(codeblock group)-기반 스케줄링에 기반하여 제2 서빙 셀의 PDSCH를 통해 제2 TB의 CBG들을 수신할 수 있다. 상기 특정 타입 코드북 기반의 HARQ-ACK 보고는 상기 제1 TB에 대한 TB-기반 ACK/NACK 비트, 상기 제1 TB에 대한 NDI 비트 및 상기 제2 TB에 대한 NDI 비트를 포함할 수 있다. 상기 특정 타입 코드북 기반의 HARQ-ACK 보고는 상기 제2 TB에 대한 TB-기반 ACK/NACK 비트를 포함하거나 또는 상기 제2 TB의 CBG들에 대한 CBG-기반 ACK/NACK 비트들을 포함할 수 있다.
본 발명의 다른 일 측면에 따라 상술된 방법을 수행하기 위한 명령어들을 기록한 프로세서로 읽을 수 있는 기록매체가 제공될 수 있다.
본 발명의 또 다른 일 측면에 따라 무선 통신을 위한 신호 처리를 수행하는 디바이스는 명령어들을 저장하는 메모리; 및 상기 명령어들을 실행함으로써 PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 수신하는 동작(operation); 및 상기 DCI에 기초하여 HARQ(hybrid automatic repeat request)-ACK(acknowledgement) 보고를 송신하는 동작을 수행하는 프로세서를 포함할 수 있다. 상기 HARQ-ACK 보고를 송신하는 동작에 있어서, 상기 프로세서는, TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 설정되었음에도 불구하고, 상기 DCI가 상기 디바이스에 설정된 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 송신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 지시한다는 것 및 상기 디바이스가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 설정(configure)되었다는 것에 기초하여, 상기 공간 번들링 없이 각 TB-기반의 ACK/NACK 비트와 각 NDI 비트를 보고할 수 있다.
본 발명의 또 다른 일 측면에 따라 무선 통신 시스템에서 기지국이 HARQ(hybrid automatic repeat request)-ACK(acknowledgement) 보고를 수신하는 방법은 PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 단말에 송신; 및 상기 단말로부터 상기 DCI에 기초한 HARQ-ACK 보고를 수신하는 것을 포함할 수 있다. 상기 HARQ-ACK 보고의 수신에 있어서, 상기 기지국은, TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 상기 단말을 설정하였음에도 불구하고, 상기 단말에 설정한 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 수신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 상기 DCI를 통해 지시하였다는 것 및 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 상기 단말을 설정(configure)하였다는 것에 기초하여, 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI 비트와 상기 공간 번들링이 적용되지 않은 각 TB-기반의 ACK/NACK 비트를 획득할 수 있다.
본 발명의 또 다른 일 측면에 따라 무선 통신을 위한 기지국은 송수신기; 및 상기 송수신기를 제어함으로써 PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 단말에 송신하고, 상기 단말로부터 상기 DCI에 기초한 HARQ-ACK 보고를 수신하는 프로세서를 포함할 수 있다. 상기 HARQ-ACK 보고의 수신에 있어서, 상기 프로세서는, TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 상기 단말을 설정하였음에도 불구하고, 상기 단말에 설정한 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 수신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 상기 DCI를 통해 지시하였다는 것 및 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 상기 단말을 설정(configure)하였다는 것에 기초하여, 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI 비트와 상기 공간 번들링이 적용되지 않은 각 TB-기반의 ACK/NACK 비트를 획득할 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 자기-완비(self-contained) 슬롯의 구조를 예시한다.
도 5는 자기-완비 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 6은 ACK/NACK 전송 과정을 예시한다.
도 7은 PUSCH(Physical Uplink Shared Channel) 전송 과정을 예시한다.
도 8은 제어 정보를 PUSCH에 다중화하는 예를 나타낸다.
도 9는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다.
도 10은 비면허 밴드 내에서 자원을 점유하는 방법을 예시한다.
도 11은 상향링크 신호 전송을 위한 단말의 Type 1 CAP 동작 흐름도이다.
도 12~14는 본 발명의 예에 따른 A/N 전송을 예시한다.
도 15은 기존의 전송블록(Transport Block, TB) 처리 과정을 예시한다.
도 16은 기존의 CBG-기반 전송을 예시한다.
도 17은 Type-3 코드북 기반의 A/N 전송을 예시한다.
도 18은 본 발명의 예에 따른 Type-3 코드북 기반의 A/N 전송을 예시한다.
도 19는 본 발명의 예에 따른 A/N 전송을 예시한다.
도 20~23는 본 발명의 예에 따른 Type-3 코드북 기반의 A/N을 예시한다.
도 24는 본 발명의 예에 따른 Type-3 코드북 기반의 A/N 전송을 예시한다.
도 25~28은 본 발명에 적용되는 통신 시스템(1)과 무선 기기를 예시한다.
도 29는 본 발명에 적용 가능한 DRX(Discontinuous Reception) 동작을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 명세서에서 "설정"의 표현은 "구성(configure/configuration)"의 표현으로 대체될 수 있으며, 양자는 혼용될 수 있다. 또한 조건적 표현(예를 들어, "~~이면(if)", "~~ 일 경우(in a case)" 또는 "~~일 때(when)" 등)은 "~~인 것에 기초하여(based on that ~~)" 또는 "~~인 상태에서(in a state/status)"의 표현으로 대체될 수 있다. 또한, 해당 조건의 충족에 따른 단말/기지국의 동작 또는 SW/HW 구성이 유추/이해될 수 있다. 또한, 무선 통신 장치들 (e.g., 기지국, 단말) 간의 신호 송수신에서 송신 (또는 수신) 측의 프로세스로부터 수신 (또는 송신) 측의 프로세스가 유추/이해될 수 있다면 그 설명이 생략될 수 있다. 예를 들어, 송신 측의 신호 결정/생성/인코딩/송신 등은 수신측의 신호 모니터링 수신/디코딩/결정 등으로 이해될 수 있다. 또한, 단말이 특정 동작을 수행한다(또는 수행하지 않는다)는 표현은, 기지국이 단말의 특정 동작 수행을 기대/가정(또는 수행하지 않는다고 기대/가정)하고 동작한다는 것으로도 해석될 수 있다. 기지국이 특정 동작을 수행한다(또는 수행하지 않는다)는 표현은, 단말이 기지국의 특정 동작 수행을 기대/가정(또는 수행하지 않는다고 기대/가정)하고 동작한다는 것으로도 해석될 수 있다.또한, 후술하는 설명에서 각 섹션, 실시예, 예시, 옵션, 방법, 방안 등의 구분과 인덱스는 설명의 편의를 위한 것이지 각각이 반드시 독립된 발명을 구성한다는 것을 의미하거나, 각각이 반드시 개별적으로만 실시되어야 한다는 것을 의미하는 의도로 해석되지 않아야 한다. 또한, 각 섹션, 실시예, 예시, 옵션, 방법, 방안 등을 설명함에 있어서 명시적으로 충돌/반대되는 기술이 없다면 이들의 적어도 일부 조합하여 함께 실시될 수도 있고, 적어도 일부가 생략된 채로 실시될 수도 있는 것으로 유추/해석될 수 있다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 제어 영역과 데이터 영역 사이에는 DL-to-UL 혹은 UL-to-DL 스위칭을 위한 시간 갭이 존재할 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
도 5는 자기-완비 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16개의 CCE(Control Channel Element)로 구성된다. CCE는 무선 채널 상태에 따라 소정 부호율의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 6개의 REG(Resource Element Group)로 구성된다. REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, Master Information Block, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB 개수 및 OFDM 심볼 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PDCCH 수신/검출을 위해, 단말은 PDCCH 후보들을 모니터링 한다. PDCCH 후보는 PDCCH 검출을 위해 단말이 모니터링 해야 하는 CCE(들)을 나타낸다. 각 PDCCH 후보는 AL에 따라 1, 2, 4, 8, 16개의 CCE로 정의된다. 모니터링은 PDCCH 후보들을 (블라인드) 디코딩 하는 것을 포함한다. 단말이 모니터링 하는 PDCCH 후보들의 세트를 PDCCH 검색 공간(Search Space, SS)이라고 정의한다. 검색 공간은 공통 검색 공간(Common Search Space, CSS) 또는 단말-특정 검색 공간(UE-specific search space, USS)을 포함한다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간에서 PDCCH 후보를 모니터링 하여 DCI를 획득할 수 있다. 각각의 CORESET는 하나 이상의 검색 공간과 연관되고, 각 검색 공간은 하나의 COREST과 연관된다. 검색 공간은 다음의 파라미터들에 기초하여 정의될 수 있다.
- controlResourceSetId: 검색 공간과 관련된 CORESET를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: 슬롯 내 PDCCH 모니터링 심볼을 나타냄(예, CORESET의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타냄
* PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)을 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 3은 검색 공간 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 UL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 5는 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format Length in OFDM symbols N PUCCH symb Number of bits Usage Etc
0 1 - 2 ≤2 HARQ, SR Sequence selection
1 4 - 14 ≤2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM
(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM
(Pre DFT OCC)
PUCCH 포맷 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.
PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH 포맷 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH 포맷 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH 포맷 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH 포맷 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 6은 ACK/NACK 전송 과정을 예시한다. 도 6참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: K0 (예, 슬롯 오프셋), 슬롯 #n+K0 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 PDSCH의 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
- HARQ process number (4비트): 데이터(예, PDSCH, TB)에 대한 HARQ process ID(Identity)를 나타냄
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서부터 PDSCH를 수신한 뒤, 슬롯 #n1(where, n+K0≤ n1)에서 PDSCH의 수신이 끝나면 슬롯 #(n1+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함할 수 있다. 도 6에서는 편의상 PDSCH에 대한 SCS와 PUCCH에 대한 SCS가 동일하고, 슬롯# n1= 슬롯#n+K0 라고 가정하였으나, 본 발명은 이에 한정되지 않는다. SCS들이 상이한 경우 PUCCH의 SCS를 기반으로 K1 지시/해석될 수 있다.
PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
HARQ-ACK 응답을 위해 단말이 공간(spatial) 번들링을 수행하여야 하는지 여부는 셀 그룹 별로 구성(configure)(e.g., RRC/상위계층 시그널링)될 수 있다. 일 예로 공간 번들링은 PUCCH를 통해서 송신되는 HARQ-ACK 응답 및/또는 PUSCH를 통해서 송신되는 HARQ-ACK 응답 각각에 개별적으로 구성될 수 있다.
공간 번들링은 해당 서빙 셀에서 한번에 수신 가능한(또는 1 DCI를 통해 스케줄 가능한) TB (또는 코드워드)의 최대 개수가 2개 인경우 (또는 2개 이상인 경우)에 지원될 수 있다(e.g., 상위계층파라미터 maxNrofCodeWordsScheduledByDCI 가 2-TB에 해당하는 경우). 한편, 2-TB 전송을 위해서는 4개 보다 더 많은 개수의 레이어들이 사용될 수 있으며, 1-TB 전송에는 최대 4개 레이어가 사용될 수 있다. 결과적으로, 공간 번들링이 해당 셀 그룹에 구성된 경우, 해당 셀 그룹 내의 서빙 셀들 중 4 개 보다 많은 개수의 레이어가 스케줄 가능한 서빙 셀에 대하여 공간 번들링이 수행될 수 있다.해당 서빙 셀 상에서, 공간 번들링을 통해서 HARQ-ACK 응답을 송신하고자 하는 단말은 복수 TB들에 대한 A/N 비트들을 (bit-wise) logical AND 연산하여 HARQ-ACK 응답을 생성할 수 있다.
예컨대, 단말이 2-TB를 스케줄링하는 DCI를 수신하고, 해당 DCI에 기초하여 PDSCH를 통해서 2-TB를 수신하였다고 가정할 때, 공간 번들링을 수행하는 단말은 제1 TB에 대한 제1 A/N 비트와 제2 TB에 대한 제2 A/N 비트를 논리적 AND 연산하여 단일 A/N 비트를 생성할 수 있다. 결과적으로, 제1 TB와 제2 TB가 모두 ACK 인 경우 단말은 ACK 비트 값을 기지국에 보고하고, 어느 하나의 TB라도 NACK 인경우 단말은 NACK 비트 값을 기지국에 보고한다.
예컨대, 2-TB가 수신 가능하도록 구성(configure)된 서빙 셀 상에서 실제로 1-TB 만 스케줄된 경우, 단말은 해당 1-TB에 대한 A/N 비트와 비트 값 1을 논리적 AND 연산하여 단일 A/N 비트를 생성할 수 있다. 결과적으로, 단말은 해당 1-TB에 대한 A/N 비트를 그대로 기지국에 보고하게 된다.
기지국/단말에는 DL 전송을 위해 복수의 병렬 DL HARQ 프로세스가 존재한다. 복수의 병렬 HARQ 프로세스는 이전 DL 전송에 대한 성공 또는 비성공 수신에 대한 HARQ 피드백을 기다리는 동안 DL 전송이 연속적으로 수행되게 한다. 각각의 HARQ 프로세스는 MAC(Medium Access Control) 계층의 HARQ 버퍼와 연관된다. 각각의 DL HARQ 프로세스는 버퍼 내의 MAC PDU(Physical Data Block)의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전(redundancy version) 등에 관한 상태 변수를 관리한다. 각각의 HARQ 프로세스는 HARQ 프로세스 ID에 의해 구별된다.
도 7은 PUSCH 전송 과정을 예시한다. 도 7을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
도 8은 UCI를 PUSCH에 다중화 하는 예를 나타낸다. 슬롯 내에 복수의 PUCCH 자원과 PUSCH 자원이 중첩되고, PUCCH-PUSCH 동시 전송이 설정되지 않은 경우, UCI는 도시된 바와 같이 PUSCH를 통해 전송될 수 있다(UCI 피기백 또는 PUSCH 피기백). 도 8은 HARQ-ACK과 CSI가 PUSCH 자원에 실리는 경우를 예시한다.
도 9는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다. 편의상, 면허 대역(이하, L-밴드)에서 동작하는 셀을 LCell로 정의하고, LCell의 캐리어를 (DL/UL) LCC(Licensed Component Carrier)로 정의한다. 또한, 비면허 대역(이하, U-밴드)에서 동작하는 셀을 UCell로 정의하고, UCell의 캐리어를 (DL/UL) UCC(Unlicensed Component Carrier)로 정의한다. 셀의 캐리어는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, Component Carrier, CC)는 셀로 통칭될 수 있다.
캐리어 병합(Carrier Aggregation, CA)이 지원되는 경우, 하나의 단말은 병합된 복수의 셀/캐리어를 통해 기지국과 신호를 송수신할 수 있다. 하나의 단말에게 복수의 CC가 구성된 경우, 하나의 CC는 PCC(Primary CC)로 설정되고, 나머지 CC는 SCC(Secondary CC)로 설정될 수 있다. 특정 제어 정보/채널(예, CSS PDCCH, PUCCH)은 PCC를 통해서만 송수신 되도록 설정될 수 있다. 데이터는 PCC/SCC를 통해 송수신 될 수 있다. 도 9(a)는 단말과 기지국은 LCC 및 UCC를 통해 신호를 송수신 하는 경우를 예시한다(NSA(non-standalone) 모드). 이 경우, LCC는 PCC로 설정되고 UCC는 SCC로 설정될 수 있다. 단말에게 복수의 LCC가 구성된 경우, 하나의 특정 LCC는 PCC로 설정되고 나머지 LCC는 SCC로 설정될 수 있다. 도 9(a)는 3GPP LTE 시스템의 LAA에 해당한다. 도 9(b)는 단말과 기지국은 LCC 없이 하나 이상의 UCC를 통해 신호를 송수신 하는 경우를 예시한다(SA(standalone) 모드). 이 경우. UCC들 중 하나는 PCC로 설정되고 나머지 UCC는 SCC로 설정될 수 있다. 이에 따라, NR UCell에서는 PUCCH, PUSCH, PRACH 전송 등이 지원될 수 있다. 3GPP NR 시스템의 비면허 대역에서는 NSA 모드와 SA 모드가 모두 지원될 수 있다.
도 10은 비면허 대역에서 자원을 점유하는 방법을 예시한다. 비면허 대역에 대한 지역별 규제(regulation)에 따르면, 비면허 대역 내의 통신 노드는 신호 전송 전에 다른 통신 노드(들)의 채널 사용 여부를 판단해야 한다. 구체적으로, 통신 노드는 신호 전송 전에 먼저 CS(Carrier Sensing)를 수행하여 다른 통신 노드(들)이 신호 전송을 하는지 여부를 확인할 수 있다. 다른 통신 노드(들)이 신호 전송을 하지 않는다고 판단된 경우를 CCA(Clear Channel Assessment)가 확인됐다고 정의한다. 기-정의된 혹은 상위계층(예, RRC) 시그널링에 의해 설정된 CCA 임계치가 있는 경우, 통신 노드는 CCA 임계치보다 높은 에너지가 채널에서 검출되면 채널 상태를 비지(busy)로 판단하고, 그렇지 않으면 채널 상태를 아이들(idle)로 판단할 수 있다. 참고로, Wi-Fi 표준(802.11ac)에서 CCA 임계치는 non Wi-Fi 신호에 대하여 -62dBm, Wi-Fi 신호에 대하여 -82dBm으로 규정되어 있다. 채널 상태가 아이들이라고 판단되면, 통신 노드는 UCell에서 신호 전송을 시작할 수 있다. 상술한 일련의 과정은 LBT(Listen-Before-Talk) 또는 CAP(Channel Access Procedure)로 지칭될 수 있다. LBT와 CAP는 혼용될 수 있다.
유럽에서는 FBE(Frame Based Equipment)와 LBE(Load Based Equipment)로 명명되는 2가지의 LBT 동작을 예시하고 있다. FBE는 통신 노드가 채널 접속에 성공했을 때 송신을 지속할 수 있는 시간을 의미하는 채널 점유 시간(channel occupancy time)(예, 1~10ms)과 상기 채널 점유 시간의 최소 5%에 해당되는 아이들 기간(idle period)이 하나의 고정(fixed) 프레임을 구성하며, CCA는 아이들 기간 내 끝 부분에 CCA 슬롯 (최소 20μs) 동안 채널을 관측하는 동작으로 정의된다. 통신 노드는 고정 프레임 단위로 주기적으로 CCA를 수행하고, 채널이 비점유(unoccupied) 상태인 경우에는 채널 점유 시간 동안 데이터를 송신하고 채널이 점유(occupied) 상태인 경우에는 전송을 보류하고 다음 주기의 CCA 슬롯까지 기다린다.
한편, LBE의 경우, 통신 노드는 먼저 q∈{4, 5, … , 32}의 값을 설정한 후 1개 CCA 슬롯에 대한 CCA를 수행하고. 첫 번째 CCA 슬롯에서 채널이 비점유 상태이면, 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다. 첫 번째 CCA 슬롯에서 채널이 점유 상태이면 통신 노드는 랜덤하게 N∈{1, 2, … , q}의 값을 골라 카운터의 초기값으로 저장하고, 이후 CCA 슬롯 단위로 채널 상태를 센싱하면서 CCA 슬롯 단위로 채널이 비점유 상태이면 카운터에 저장된 값을 1개씩 줄여나간다. 카운터 값이 0이 되면, 통신 노드는 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다.
구체적으로, 비면허 대역에서의 상향링크 전송을 위해 복수의 CAP Type (즉, LBT Type)이 정의될 수 있다. 예를 들어, 상향링크 전송을 위해 Type 1 또는 Type 2 CAP가 정의될 수 있다. 단말은 상향링크 신호 전송을 위해 기지국이 설정/지시한 CAP(예, Type 1 또는 Type 2)를 수행할 수 있다.
(1) Type 1 상향링크 CAP 방법
도 11은 상향링크 신호 전송을 위한 단말의 Type 1 CAP 동작 흐름도이다.
단말은 비면허 대역을 통한 신호 전송을 위해 CAP를 개시할 수 있다(S1510). 단말은 스텝 1에 따라 경쟁 윈도우(CW) 내에서 백오프 카운터 N을 임의로 선택할 수 있다. 이때, N 값은 초기 값 N init으로 설정된다(S1520). N init은 0 내지 CW p 사이의 값 중 임의의 값으로 선택된다. 이어서, 스텝 4에 따라 백오프 카운터 값(N)이 0이면(S1530; Y), 단말은 CAP 과정을 종료한다(S1532). 이후, 단말은 Tx 버스트 전송을 수행할 수 있다(S1534). 반면, 백오프 카운터 값이 0이 아니면(S1530; N), 단말은 스텝 2에 따라 백오프 카운터 값을 1만큼 줄인다(S1540). 이후, 단말은 UCell(s)의 채널이 아이들 상태인지 확인하고(S1550), 채널이 아이들 상태이면(S1550; Y) 백오프 카운터 값이 0인지 확인한다(S1530). 반대로, S1550 단계에서 채널이 아이들 상태가 아니면 즉, 채널이 비지 상태이면(S1550; N), 단말은 스텝 5에 따라 슬롯 시간(예, 9us)보다 긴 지연 기간(defer duration T d; 25usec 이상) 동안 해당 채널이 아이들 상태인지 확인한다(S1560). 지연 기간 동안 채널이 아이들 상태이면(S1570; Y), 단말은 다시 CAP 과정을 재개할 수 있다. 여기서, 지연 기간은 16usec 구간 및 바로 뒤따르는 m p개의 연속하는 슬롯 시간(예, 9us)으로 구성될 수 있다. 반면, 지연 기간 동안 채널이 비지 상태이면(S1570; N), 단말은 S1560 단계를 재수행하여 새로운 지연 기간 동안 채널이 아이들 상태인지 다시 확인한다.
표 6은 채널 접속 우선 순위 클래스(p)에 따라 CAP에 적용되는 m p, 최소 CW(CW min,p), 최대 CW(CW max,p), 최대 채널 점유 시간(Maximum Channel Occupancy Time, MCOT)(T ulmcot,p) 및 허용된 CW 크기(allowed CW sizes)가 달라지는 것을 예시한다.
Channel Access Priority Class (p) m p CW min,p CW max,p T ulmcot,p allowed CWp sizes
1 2 3 7 2 ms {3,7}
2 2 7 15 4 ms {7,15}
3 3 15 1023 6ms or 10 ms {15,31,63,127,255,511,1023}
4 7 15 1023 6ms or 10 ms {15,31,63,127,255,511,1023}
Type 1 CAP에 적용되는 CW 사이즈(CWS)는 다양한 방법에 기초하여 결정될 수 있다. 일 예로, CWS는 일정 시간 구간(예, 참조 TU) 내 UL-SCH의 HARQ 프로세스 ID인 HARQ_ID_ref와 관련된 적어도 하나의 HARQ 프로세서를 위한 NDI(New Data Indicator) 값의 토글 여부에 기초하여 조정될 수 있다. 단말이 반송파 상에서 채널 접속 우선순위 클래스 p와 관련된 Type 1 CAP를 이용하여 신호 전송을 수행하는 경우, 단말은 HARQ_ID_ref와 관련된 적어도 하나의 HARQ 프로세스를 위한 NDI 값이 토글되면 모든 우선순위 클래스 p∈{1,2,3,4}에서 CW p=CW min,p로 설정하고, 아닌 경우, 모든 우선순위 클래스 p∈{1,2,3,4}에서 CW p를 다음으로 높은 허락된 값(next higher allowed value)로 증가시킨다.
참조 서브프레임 n ref (또는 참조 슬롯 n ref)는 다음과 같이 결정된다.
단말이 서브프레임 (또는 슬롯) n g에서 UL 그랜트를 수신하고 서브프레임 (또는 슬롯) n 0,n 1,...n w내에서 서브프레임 (또는 슬롯) n 0부터 시작하고 갭이 없는 UL-SCH를 포함한 전송을 수행하는 경우, 참조 서브프레임 (또는 슬롯) n ref는 서브프레임 (또는 슬롯) n 0이다.
(2) Type 2 상향링크 CAP 방법
적어도 센싱 구간 T short_ul=25us 동안 채널이 아이들이라고 센싱되면, 단말은 센싱이 종료된 바로 직후(immediately after)부터 비면허 대역에서 상향링크 전송(예, PUSCH)을 할 수 있다. T short_ul은 T sl (=9us) + T f (=16us)로 구성될 수 있다.
실시예: U-밴드에서의 HARQ-ACK 피드백
U-밴드에서의 스탠드-얼론 동작을 지원하기 위해, DL 데이터(예, PDSCH) 수신에 대해서, 단말의 U-밴드 PUCCH/PUSCH 전송에 기반한 HARQ-ACK 피드백 동작이 필수적일 수 있다(이하, HARQ-ACK을 편의상 A/N으로 통칭함). PUCCH/PUSCH는 PUCCH 또는 PUSCH를 나타낸다. 일 예로, 기지국은 LBT (CCA) 동작을 수행하여 확보한 COT(Channel Occupancy Time) 구간을 통해 단말에게 DL 데이터 전송을 스케줄링하고, 동일한 COT 구간을 통해 해당 단말로부터 해당 DL 데이터 수신에 대한 HARQ-ACK 피드백이 전송되도록 지시하는 과정이 고려될 수 있다(이하, LBT 또는 CCA를 편의상 LBT로 통칭함). 다른 예로, DL 데이터 신호의 디코딩 및 대응되는 HARQ-ACK 신호의 인코딩에 수반되는 단말 프로세싱 시간으로 인해, 특정 COT 구간을 통해 스케줄링/전송된 DL 데이터 수신에 대한 HARQ-ACK 피드백을 해당 COT 이후의 다른 COT 구간을 통해 전송하도록 지시하는 과정도 고려될 수 있다.
이하, 본 명세서에서는 U-밴드에서의 HARQ-ACK 피드백(이하, A/N) 구성/전송 방법에 대해 제안한다. 여기서, A/N 구성/전송 방법은 LBT 동작, COT 구성 등을 고려하여 수행될 수 있다. 본 명세서에서 제안된 사항은 PUCCH/PUSCH를 통한 HARQ-ACK 피드백 전송 방법에만 국한되지 않으며, PUCCH/PUSCH를 통한 다른 UCI(예, CSI, SR) 전송 방법에도 유사하게 적용될 수 있다. 또한, 본 명세서에서 제안된 사항은 LBT 기반의 U-밴드 동작에만 국한되지 않으며, LBT를 수반하지 않는 L-밴드 (또는, U-밴드) 동작에도 유사하게 적용될 수 있다. 또한, 이하의 설명에서 복수의 CC (인덱스)는 하나 (이상)의 CC/(서빙) 셀 내에 구성된 복수의 BWP (인덱스)으로 대체되거나, 복수의 BWP로 구성된 복수의 CC/(서빙) 셀(즉, CC (인덱스)와 BWP (인덱스)의 조합)로 대체될 수 있다.
먼저, 다음과 같이 용어를 정의한다.
- UCI: 단말이 UL 전송하는 제어 정보를 의미한다. UCI는 여러 타입의 제어 정보(즉, UCI 타입)를 포함한다. 예를 들어, UCI는 HARQ-ACK, SR, CSI를 포함한다.
- HARQ-ACK: PDSCH 상의 DL 데이터(예, 전송블록(TB), 코드워드(CW))가 성공적으로 수신됐는지 여부를 나타낸다. 단일 DL 데이터에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 DL 데이터에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답/결과는 포지티브 ACK(ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 ACK/NACK, A/N, AN과 혼용된다.
- HARQ 프로세스 번호/ID: HARQ 프로세스의 번호 또는 식별자를 나타낸다. HARQ 프로세스는 버퍼 내의 MAC PDU의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전 등에 관한 상태 변수를 관리한다.
- PUCCH: UCI 전송을 위한 물리계층 UL 채널을 의미한다. 편의상, A/N, SR, CSI 전송을 위해, 기지국이 설정한 및/또는 전송을 지시한 PUCCH 자원을 각각 A/N PUCCH 자원, SR PUCCH 자원, CSI PUCCH 자원으로 명명한다.
- PUSCH: UL 데이터 전송을 위한 물리계층 UL 채널을 의미한다.
- 슬롯: 데이터 스케줄링을 위한 기본 시간 단위(time unit (TU), 또는 time interval)를 의미한다. 슬롯은 복수의 심볼을 포함한다. 여기서, 심볼은 OFDM-기반 심볼(예, CP-OFDM 심볼, DFT-s-OFDM 심볼)을 포함한다. 본 명세서에서 심볼, OFDM-기반 심볼, OFDM 심볼, CP-OFDM 심볼 및 DFT-s-OFDM 심볼은 서로 대체될 수 있다.
아래에서 설명하는 각 제안 방안은 다른 제안 방안들과 상호 배치되지 않는 한 결합되어 함께 적용될 수 있다.
(1) 기본 동작 방식
본 명세서에서 제안하는 A/N 피드백 구성/전송 방법을 위한 기본 동작 방식들에 대하여 설명하면 다음과 같다. 본 명세서에서 A/N 트리거링 DCI는 적어도 DL 그랜트 DCI를 포함하며, (DL 그랜트 DCI에 추가로) UL 그랜트 DCI 및/또는 PDSCH/PUSCH 전송을 스케줄링 하지 않는 특정 DCI를 더 포함할 수 있다.
1) 타이밍 기반의 A/N 피드백 방식(이하, t-A/N 방식)(도 12)
A. 사전에 RRC 시그널링을 통해 복수의 후보 HARQ 타이밍을 설정한 뒤, 기지국은 (DL 그랜트) DCI를 통해 복수의 후보 HARQ 타이밍 중 하나를 단말에게 지시할 수 있다. 이 경우, 단말은 전체 후보 HARQ 타이밍 세트에 대응되는 복수 슬롯(혹은, 슬롯 집합; 편의상, 번들링 윈도우)에서의 (복수) PDSCH 수신에 대한 A/N 피드백을, 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 여기서, HARQ 타이밍은 PDSCH-to-A/N 타이밍/간격을 의미한다. HARQ 타이밍은 슬롯 단위로 표현될 수 있다.
예를 들어, A/N 전송이 슬롯 #m에서 지시된 경우, A/N 정보는 슬롯 #(m-i)에서의 PDSCH 수신에 대한 응답 정보를 포함할 수 있다. 여기서, 슬롯 #(m-i)는 후보 HARQ 타이밍에 대응하는 슬롯에 해당한다. 도 12(a)는 후보 HARQ 타이밍이 i={2, 3, 4, 5}로 설정된 경우를 예시한다. 이 경우, A/N 전송 시점이 #(n+5)(=m)로 지시되면, 단말은 슬롯 #n~#(n+3)(=m-i)의 PDSCH 수신에 대한 A/N 정보를 생성/전송할 수 있다(즉, 4개 슬롯 모두에 대해 A/N 피드백). 여기서, 슬롯 #n+1/#n+3의 PDSCH 수신에 대한 A/N 응답은 NACK으로 처리될 수 있다.
편의상, 본 A/N 피드백 구성/전송 방식을 "타입-1 A/N 코드북"으로 지칭한다.
B. HARQ 타이밍 지시에 추가하여, (DL 그랜트) DCI를 통해 c-DAI(counter Downlink Assignment Index) 및/또는 t-DAI(total-DAI)가 함께 시그널링 될 수 있다. c-DAI는 (DL 그랜트) DCI에 대응되는 PDSCH가 몇 번째로 스케줄링된 것인지 알려줄 수 있다. t-DAI는 현재 (슬롯)까지 스케줄링된 PDSCH의 총 개수 (또는, PDSCH가 존재하는 슬롯의 총 개수)를 알려줄 수 있다. 이에 따라, 단말은 c-DAI 초기값부터 (수신된) 마지막 t-DAI 값까지의 c-DAI 값들에 대응되는 PDSCH에 대한 A/N을 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 단말에게 구성된 서빙 셀의 개수가 하나인 경우, c-DAI와 t-DAI는 동일한 의미를 가질 수 있다. 따라서, t-DAI는 서빙 셀의 개수가 복수인 경우에만 (DL 그랜트) DCI에 포함될 수 있다. 단말에게 복수의 서빙 셀이 구성된 경우, c-DAI는 셀-도메인에서 먼저 계수된 뒤, 시간-도메인에서 계수된 PDSCH의 스케줄링 순서 (또는, PDSCH가 존재하는 (서빙 셀, 슬롯)의 순서)를 알려줄 수 있다. 유사하게, t-DAI는 현재 (슬롯)까지 스케줄링된 PDSCH의 총 개수 (또는, PDSCH가 존재하는 (서빙 셀, 슬롯)의 총 개수)를 알려줄 수 있다. 여기서, c-DAI/t-DAI는 PDCCH를 기준으로 정의될 수도 있다. 이 경우, 앞의 설명에서 PDSCH는 PDCCH로 대체되고, PDCCH가 존재하는 슬롯은 상기 PDCCH와 관련된 PDCCH (혹은, DCI)가 존재하는 PDCCH 모니터링 기회로 대체될 수 있다.
c-DAI/t-DAI는 각각 2-비트 값을 이용하여 지시될 수 있다. 4보다 큰 수는 modulo 연산을 이용하여 다음과 같이 지시될 수 있다.
- DAI 비트가 00 (예, DAI 값=1)인 경우: 4n+1을 지시 (즉, 1, 5, 9, ...)
- DAI 비트가 01 (예, DAI 값=2)인 경우: 4n+2을 지시 (즉, 2, 6, 10, ...)
- DAI 비트가 10 (예, DAI 값=3)인 경우: 4n+3을 지시 (즉, 3, 7, 11, ...)
- DAI 비트가 11 (예, DAI 값=4)인 경우: 4n+4를 지시 (즉, 4, 8, 12, ...)
* n은 0 이상의 정수를 나타낸다.
도 12(b)는 도 12(a)와 동일한 상황에서 (DL 그랜트) DCI를 통해 DAI가 시그널링 되는 경우를 예시한다. 도 12(b)를 참조하면, 슬롯 #n에서 DAI=00을 갖는 DCI에 의해 스케줄링된 PDSCH가 수신되고, 슬롯 #(n+2)에서 DAI=10을 갖는 DCI에 의해 스케줄링된 PDSCH가 수신될 수 있다. 이 경우, 단말은 연속된 DAI 값(즉, DAI=00/01/11)(이하, DAI 시퀀스)에 해당하는 3개의 PDSCH 수신에 대해서만 A/N 정보를 생성/전송할 수 있다. 여기서, DAI=01에 대응하는 PDSCH 수신에 대한 A/N 응답은 NACK으로 처리될 수 있다.
2) 풀링(pooling) 기반의 A/N 피드백 방식(이하, p-A/N 방식)(도 13)
A. DL 그랜트 DCI를 통해, 대응되는 PDSCH에 대한 A/N 피드백 전송을 연기 (pending/deferring)시키는 동작을 지시할 수 있다. 이후, DCI를 통해, (i) 전체 DL HARQ 프로세스 ID들, 혹은 (ii) 특정 일부 DL HARQ 프로세스 ID(들)에 대응되는 PDSCH에 대한 A/N 피드백의 전송을 지시할 수 있다(pooling). A/N 피드백은 특정 신호(예, RRC 또는 DCI 시그널링)를 기반으로 설정/지시된 타이밍을 통해 전송될 수 있다. A/N 풀링은 DL 그랜트(예, DCI 포맷 1_0/1_1), UL 그랜트(예, DCI 포맷 0_0/0_1) 또는 다른 DCI(예, 단말 (그룹) 공통 DCI)를 통해 지시될 수 있다. 편의상, A/N 풀링을 지시하는 DCI를 풀링 DCI라고 지칭한다. 풀링 대상이 되는 HARQ 프로세스 ID는 미리 설정/정의되어 있거나, 풀링 DCI를 통해 지시될 수 있다. A/N 풀링은 전체/그룹/개별 HARQ 프로세스 ID 단위로 지시될 수 있다.
예를 들어, 도 13을 참조하면, 단말은 기지국으로부터 3개의 PDSCH를 수신할 수 있고, 각각의 PDSCH에 할당된 HARQ 프로세스 ID(HpID)는 0, 3 및 2일 수 있다. 또한, 각각의 DL 그랜트 DCI를 통해 3개의 PDSCH에 대해 A/N 펜딩(AN=pe)이 지시될 수 있다. 이 경우, 단말은 HpID=0/3/2에 대응하는 PDSCH 수신에 대한 A/N 전송을 연기한다. 이후, 기지국으로부터 풀링 DCI(AN=pooling)를 수신하면, 단말은 전체 HpID 혹은 일부 HpID에 대응하는 PDSCH 수신에 대한 A/N을 한 번에 전송할 수 있다.
B. t-A/N 방식에 c-/t-DAI 시그널링이 설정된 경우(예, DL 그랜트 DCI를 통해 DAI가 시그널링 되는 경우), A/N 풀링은 (풀링 DCI를 통해 지시된) HARQ 프로세스 ID에 대응되는 PDSCH에 대한 A/N 전송을 풀링하거나, (풀링 DCI를 통해 지시된) t-DAI 값에 대응되는 PDSCH에 대한 A/N 전송을 풀링하는 것으로 정의될 수 있다. 후자의 경우, 단말은 c-DAI 초기 값 ~ t-DAI 값에 대응하는 PDSCH 수신에 대한 A/N 정보를 한 번에 전송할 수 있다.
(2) 제안 방법 1
제안 방법 1의 경우, A/N 트리거링 DCI를 통해 1) 실제 A/N 전송 타이밍을 지시하는 타이밍-A와, 2) A/N 피드백 대상이 되는 (DL PDSCH) 슬롯 그룹에 대응되는 기준(reference) A/N 타이밍을 지시하는 타이밍-D가 시그널링 될 수 있다.
이를 기반으로, 단말은 타이밍-A로 지시된 시점을 통해 타이밍-D에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 전송하도록 동작할 수 있다. 이 경우, A/N 페이로드는 해당 슬롯 그룹에 속한 슬롯 인덱스 순서로 매핑(예, ordering)될 수 있다.
일 예로, A/N 트리거링 DCI (혹은, A/N 트리거링 DCI가 DL 그랜트 DCI인 경우, 대응되는 PDSCH)가 슬롯 #n을 통해 전송/검출되고, 해당 DCI를 통하여 타이밍-A = K와 타이밍-D = L이 지시될 수 있다. 이 경우, 단말은 슬롯 #(n + K - L)에 대응되는 슬롯 그룹 (즉, 이를 통한 PDSCH 수신)에 대한 A/N 피드백을 슬롯 #(n + K)를 통해 전송하도록 동작할 수 있다. 여기서, 슬롯 그룹은 복수(예, M개)의 후보 타이밍 값 D_m (m = 0, 1, ..., M-1)들로 구성된 타이밍 세트로 규정될 수 있다. 예를 들어, 슬롯 #n에 대응되는 슬롯 그룹은 슬롯 #(n - D_m) 또는 슬롯 #(n + D_m) (m = 0, 1, ..., M-1)에 해당하는 M개의 슬롯들로 구성/정의될 수 있다. 이 경우, 슬롯 #(n + K - L)에 대응되는 슬롯 그룹은 슬롯 #(n + K - L - Dm) 또는 슬롯 #( n + K - L + D_m) (m = 0, 1, ..., M-1)로 구성/정의될 수 있다.
한편, 슬롯 그룹을 규정하는 타이밍 세트는 타이밍-A로 지시 가능한 후보 타이밍-A 값들의 집합(예, K_m; m = 0, 1, ..., M-1)과 동일하게 설정되거나, 독립적으로 (상이하게) 설정될 수 있다. 예를 들어, 슬롯 #n에 대응되는 번들링 윈도우는 슬롯 #(n - K_m)으로 구성되며, 슬롯 #n에 대응되는 슬롯 그룹도 K_m (m = 0, 1, ..., M-1)으로 구성된 타이밍 세트에 의해 규정될 수 있다. 일 예로, A/N 트리거링 DCI (혹은, A/N 트리거링 DCI가 DL 그랜트 DCI인 경우, 대응되는 PDSCH)가 슬롯 #n을 통해 전송/검출되고, 해당 DCI를 통하여 타이밍-A = K와 타이밍-D = L이 지시될 수 있다. 이 경우, 단말은 슬롯 #(n + K - L)에 대응하는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 슬롯 #(n + K)를 통해 전송하도록 동작할 수 있다. 여기서, 슬롯 #(n + K - L)에 대응하는 슬롯 그룹은 슬롯 #(n + K - (K_m + L)) (m = 0, 1, ..., M-1)로 구성될 수 있다.
한편, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우(즉, 타이밍-A와 타이밍-D가 모두 DL 그랜트 DCI를 통해 시그널링됨), 단말은 타이밍-A로 지시된 시점을 통해 1) 타이밍-A에 대응되는 번들링 윈도우 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) 타이밍-D에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여 (동시에, 예를 들어 하나의 PUCCH/PUSCH를 통해) 전송하도록 동작할 수 있다.
일 예로, DL 그랜트 DCI 혹은 대응되는 PDSCH가 슬롯 #n을 통해 전송/검출되고 해당 DCI를 통하여 타이밍-A = K와 타이밍-D = L이 지시된 경우, 단말은 1) 슬롯 #(n + K)에 대응되는 번들링 윈도우 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) 슬롯 #(n + K - L)에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여, 슬롯 #(n + K)를 통해 전송하도록 동작할 수 있다. 여기서, 슬롯 #(n + K - L)에 대응되는 슬롯 그룹은 (i) 슬롯 #(n + K - L - Dm) 또는 슬롯 #(n + K - L + D_m) (m = 0, 1, ..., M-1)로 구성/정의되거나, (ii) 슬롯 #(n + K - (K_m + L)) (m = 0, 1, ..., M-1)로 구성/정의될 수 있다.
추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 타이밍-D 및/또는 이에 대응되는 슬롯 그룹 (이에 대한 A/N 피드백 요청)이 없음을 지시할 수 있다. 예를 들어, 타이밍-D = 특정 값(예, 0)으로 설정된 경우, 대응되는 슬롯 그룹 (이에 대한 A/N 피드백 요청)이 없음을 지시할 수 있다.
추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 타이밍-A에 대응되는 번들링 윈도우 (혹은 타이밍-D에 대응되는 슬롯 그룹)에 속한 슬롯들 중에서 특정 일부(예, 최초 혹은 마지막 슬롯)에 대해서만 A/N 피드백을 전송하도록 (예, 타이밍-D 지시 필드를 통해) 지시할 수 있다.
또 다른 방법으로, 타이밍-A/타이밍-D 및 이에 대응되는 슬롯 그룹(예, 번들링 윈도우)에 대한 A/N 피드백 전송 트리거링을 단말 (그룹)-공통 DCI를 통해 시그널링하는 구조도 고려할 수 있다.
한편, 제한된 DCI 필드 사이즈/비트 수로 인해, 타이밍-D로 지시 가능한 기준 A/N 타이밍 (이에 대응되는 A/N 피드백 대상 슬롯 그룹)은 한계가 있을 수 있다. 이를 고려하여, 타이밍-D 지시 필드의 특정 상태(state)를 통해 (특정 슬롯 그룹이 아닌) 전체 혹은 (사전에 지정된) 특정 일부 HARQ 프로세스 ID들에 대응되는 PDSCH 수신에 대한 A/N 피드백을 전송하도록 지시할 수 있다.
한편, 타이밍-D 값 별로 A/N 전송 PUCCH/PUSCH 자원 (세트)이 상이하게 설정될 수 있다. 예를 들어, 각각의 타이밍-D 값에 대응되는 슬롯 그룹 별로 A/N 전송 PUCCH/PUSCH 자원 (세트)이 상이하게 설정될 수 있다. 또한, 각각의 A/N 전송 PUCCH/PUSCH 자원 (세트) 별로 대응되는 (예, 해당 PUCCH/PUSCH 자원 (세트)로의 A/N 피드백 대상 슬롯 그룹에 대응되는) 타이밍-D 값이 상이하게 설정될 수 있다. 예를 들어, PUCCH/PUSCH 자원 (세트) 별로 대응되는 슬롯 그룹이 상이하게 설정되고, 그에 따라 타이밍-D 값도 상이하게 설정될 수 있다.
(3) 제안 방법 2
제안 방법 2의 경우, 하나의 슬롯 그룹 사이즈 (예, 단일 슬롯 그룹 내 슬롯 개수 N 혹은 단일 슬롯 그룹 내 스케줄링 가능한 최대 PDSCH 수 N)가 사전에 미리 설정된 상태에서, 1) DL 그랜트 DCI를 통해 해당 DCI 혹은 대응되는 PDSCH가 전송된 슬롯이 속한 슬롯 그룹 ID를 지시하는 current-ID (c-ID)가 시그널링 되고, 2) A/N 트리거링 DCI를 통해 A/N 피드백 대상이 되는 (DL PDSCH) 슬롯 그룹 ID를 지시하는 feedback-ID (f-ID)가 시그널링 될 수 있다.
이를 기반으로, 단말은 A/N 전송 타이밍으로 지시된 시점(예, 슬롯)을 통해, feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 전송할 수 있다. 여기서, feedback-ID에 대응되는 슬롯 그룹은, 이전에 feedback-ID와 동일한 값의 current-ID가 시그널링/수신된 슬롯, 즉 DL 그랜트 DCI를 통해 feedback-ID와 동일한 값의 current-ID가 시그널링/수신된 슬롯을 포함한다.
이때, A/N 페이로드는 (DL 그랜트 DCI를 통해 counter-DAI가 시그널링되도록 설정된 상태에서) feedback-ID에 대응되는 슬롯 그룹에 대해, DL 그랜트 DCI를 통해 수신된 (예, 1부터 N까지의) counter-DAI 값 순서로 매핑(ordering)될 수 있다.
일 예로, 도 14를 참조하면, A/N 트리거링 DCI (혹은, A/N 트리거링 DCI가 DL 그랜트 DCI인 경우, 대응되는 PDSCH)가 슬롯 #n을 통해 전송/검출되고, 해당 DCI를 통하여 타이밍-A (T-A) = K와 feedback-ID (f-ID) = X가 지시될 수 있다. 이 경우, 단말은 슬롯 그룹 ID = X에 대응되는 (즉, DL 그랜트 DCI를 통해 current-ID (c-ID) = X로 수신된) 슬롯 그룹에서의 PDSCH 수신에 대한 A/N 피드백을 슬롯 #(n + K)에서 전송할 수 있다.
한편, counter-DAI는 도 12(b)와 같이 하나의 슬롯 그룹 (ID) 내에서 (초기 값(예, 1)부터 시작하여) 연속하는 값을 가지도록 결정/시그널링 될 수 있다. 즉, 서로 다른 슬롯 그룹간에 counter-DAI 값은 독립적으로 결정/시그널링 될 수 있다. 또한, 슬롯 그룹은 (DCI를 통해 지시되는) 동일한 슬롯 그룹 ID 값에 대응되는 1부터 N까지의 counter-DAI 값들로 구성된 DAI 시퀀스 형태로 규정될 수 있다. 이 경우, 슬롯 그룹은 수신/검출된 counter-DAI에 기반해 불연속 슬롯들로 구성될 수 있다. 본 명세서에서 슬롯 그룹 ID와 DAI 시퀀스 ID는 서로 대체/호환될 수 있다.
한편, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우(즉, current-ID와 feedback-ID가 모두 DL 그랜트 DCI를 통해 시그널링됨), 단말은 타이밍-A로 지시된 시점을 통해, 1) 타이밍-A에 대응되는 번들링 윈도우 혹은 current-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여(예, concatenate) (동시, 예를 들어 하나의 PUCCH/PUSCH를 통해) 전송하도록 동작할 수 있다.
한편, 본 명세서에서 A/N 트리거링 DCI (예, DL 그랜트 DCI, UL 그랜트 DCI)를 통해 feedback-ID가 시그널링/지시된다 함은, 해당 DCI를 통해서는 A/N 피드백 전송/요청 대상이 되는 총 (PDSCH) 슬롯 그룹 (ID) 수를 지시하는 total-ID가 시그널링되고, total-ID와 current-ID로부터 결정되는 특정 슬롯 그룹 ID를 feedback-ID로 적용함을 의미할 수 있다. 일 예로, 최대 2개의 (PDSCH) 슬롯 그룹 ID (예, ID=0 또는 ID=1)가 설정/구성된 상태에서, current-ID가 X로 지시되고 total-ID가 1로 지시된 경우, feedback-ID는 (current-ID와 동일한 값인) X로 결정/적용될 수 있다. 다른 예로, 최대 2개의 (PDSCH) 슬롯 그룹 ID (예, ID=0 또는 ID=1)가 설정/구성된 상태에서, current-ID가 X로 지시되고 total-ID가 2로 지시된 경우, feedback-ID는 (current-ID와 다른 값인) Y로 결정/적용될 수 있다. 이 경우, X와 Y는 서로 다른 값으로 결정될 수 있다(예, X=0이면 Y=1, 또는 X=1이면 Y=0). 이러한 feedback-ID 결정 방법을, 편의상 "Method 1"로 칭한다.
일 예로, DL 그랜트 DCI 혹은 대응되는 PDSCH가 슬롯 #n을 통해 전송/검출되고 해당 DCI를 통해 타이밍-A = K, current-ID = X, 및 feedback-ID = Y (또는 total-ID = 2로)가 지시될 수 있다. 이 경우, 단말은 1) 슬롯 #(n + K)에 대응되는 번들링 윈도우 혹은 ID = X에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) ID = Y에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여, 슬롯 #(n + K)를 통해 전송할 수 있다.
한편, 본 명세서에서 A/N 트리거링 DCI (예, DL 그랜트 DCI, UL 그랜트 DCI)를 통해 시그널링/지시되는 feedback-ID (이에 대응되는 (PDSCH) 슬롯 그룹)에 대한 total-DAI 및/또는 NFI(New Feedback Indicator)는, Method 1에 따라 결정되는 feedback-ID에 대한 total-DAI 및/또는 NFI를 의미하거나, (total-ID로 지시된 값에 관계없이) current-ID와 다른 값을 가지는 other-ID (이에 대응되는 슬롯 그룹)에 대한 total-DAI 및/또는 NFI를 의미할 수 있다. 후자의 예로, 최대 2개의 (PDSCH) 슬롯 그룹 ID (예, ID=0 또는 ID=1)가 설정/구성된 상태에서, current-ID = X로 지시된 경우, "feedback-ID에 대한 total-DAI 및/또는 NFI"는 other-ID = Y에 대응되는 슬롯 그룹에 대한 total-DAI 및/또는 NFI를 의미할 수 있다. 이 경우, X와 Y는 서로 다른 값으로 결정될 수 있다(예, X=0이면 Y=1, 또는 X=1이면 Y=0). 이러한 other-ID 결정 및 total-DAI/NFI 적용 방법을, 편의상 "Method 2"로 칭한다.
여기서, NFI는 1-비트 정보로서, 이전(예, 최근) 시점에 전송했던 A/N 피드백(이하, 이전 A/N 피드백)이 (a) 기지국에서 제대로 검출/수신되었는지, (b) 기지국이 검출/수신에 실패했는지 여부가 시그널링 할 수 있다. (a)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 NACK 또는 DTX (피드백 구성/전송 생략)로 처리하여 업데이트된 A/N 피드백을 구성/전송할 수 있다. (b)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 그대로 유지하여 A/N 피드백을 구성/전송할 수 있다. (a)의 경우 이전 DCI를 통해 수신된 NFI 값에서 토글링된 NFI 값이 현재 DCI를 통해 지시된다. (b)의 경우 이전 DCI를 통해 수신된 NFI 값에서 토글링되지 않은 NFI 값이 현재 DCI를 통해 지시될 수 있다.
일 예로, DL 그랜트 DCI 혹은 대응되는 PDSCH가 슬롯 #n을 통해 전송/검출되고 해당 DCI를 통하여 timing-A=K, current-ID=X 및 feedback-ID=Y로 (또는, total-ID 값이 2로) 각각 지시된 경우, 단말은 1) 슬롯 #(n+K)에 대응되는 번들링 윈도우 혹은 ID=X에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) ID=Y에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여, 슬롯 #(n+K)를 통해 전송하도록 동작할 수 있다.
추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 feedback-ID (또는 other-ID) 및/또는 이에 대응되는 슬롯 그룹 (이에 대한 A/N 피드백 요청)이 없음을 (예, feedback-ID (또는 total-ID) 지시 필드를 통해) 지시할 수 있다. 일 예로, feedback-ID가 current-ID와 동일한 값으로 (또는 total-ID 값이 1로) 지시된 경우, 단말은 current-ID에 대응되는 (하나의) 슬롯 그룹에 대해서만 A/N 피드백을 구성/전송하도록 동작할 수 있다.
또한, 추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 타이밍-A에 대응되는 번들링 윈도우 또는 current-ID에 대응되는 슬롯 그룹 (혹은 feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹)에 속한 슬롯들 중에서 특정 일부(예, 최초 혹은 마지막 슬롯)에 대해서만 A/N 피드백을 전송하도록 (예, feedback-ID (또는 total-ID) 지시 필드를 통해) 지시할 수 있다.
다른 방법으로, current-ID를 단말 (그룹)-공통 DCI #1을 통해 시그널링하고 및/또는 feedback-ID 및 이에 대응되는 슬롯 그룹에 대한 A/N 피드백 전송 트리거링을 단말 (그룹)-공통 DCI #2를 통해 시그널링하는 구조도 고려할 수 있다. 이 경우, 단말 (그룹)-공통 DCI #1과 #2는 서로 별개의 DCI들이거나, 동일한 하나의 DCI로 구성될 수 있다.
또 다른 방법으로, A/N 트리거링 DCI를 통해 total-DAI가 시그널링되고, 단말은 feedback-ID에 대응되는 슬롯 그룹 (혹은 타이밍-A에 대응되는 번들링 윈도우 또는 current-ID에 대응되는 슬롯 그룹)에 대하여 (1부터) total-DAI 값까지의 counter-DAI 값(들)에 대해서만 A/N 피드백을 구성/전송하도록 동작할 수 있다. 즉, 1부터 total-DAI 값까지의 counter-DAI 값(들)에 대응하는 슬롯(들) (이를 통해 스케줄링된 PDSCH들)에 대해서만 A/N 피드백을 구성/전송할 수 있다. 또는, DCI를 통해 feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹과 current-ID에 대응되는 슬롯 그룹 (혹은, 타이밍-A에 대응되는 번들링 윈도우)에 대해 total-DAI를 각각 시그널링할 수 있다. 이 경우, 단말은 각 슬롯 그룹에 대한 total-DAI에 기반하여 A/N 피드백을 구성/전송하도록 동작할 수 있다.
일 예로, DL 그랜트 DCI를 통해 지시되는 A/N 피드백 구성 관련 정보는 적어도 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 counter/total-DAI, 및 (iii) feedback-ID (또는, total-ID)를 포함할 수 있다. 또한, feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 total-DAI가 DL 그랜트 DCI (즉, A/N 피드백 구성 관련 정보)에 더 포함될 수 있다.
한편, UL 그랜트 DCI를 통해서는 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 total-DAI, (iii) feedback-ID (또는 total-ID), (iv) feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹에 대한 total-DAI가 지시될 수 있다. 여기서, current-ID와 feedback-ID는 2개의 feedback-ID #1과 #2로 정의/일반화될 수 있다. 이에 따라, 단말은 feedback-ID #1과 #2에 대응되는 슬롯 그룹에 대한 A/N 피드백을 (PUCCH 또는) PUSCH를 통해 (예, UCI 피기백 형태로) 전송하도록 동작할 수 있다.
다른 방법으로, current-ID (및/또는 feedback-ID (또는 total-ID))는 UL 그랜트 DCI에 포함되지 않을 수 있다. 즉, current-ID (및/또는 feedback-ID (또는 total-ID))는 UL 그랜트 DCI를 통한 시그널링이 생략될 수 있다. 이 경우, 단말은 DL 그랜트 DCI를 통해 수신된 current-ID (및/또는 feedback-ID (또는 total-ID)) 정보를 기반으로 (PUSCH 상의) A/N 피드백을 구성/전송하도록 동작할 수 있다. 추가적으로, UL 그랜트 DCI를 통하여 A/N 피드백 전송 요청 (예, A/N 피드백 대상이 되는 슬롯 그룹)이 없음을 특정 필드를 통해 지시할 수 있다. 여기서, 특정 필드는 예를 들어, feedback-ID (또는 total-ID) 및/또는 current-ID (및/또는 feedback-ID (또는 other-ID) 및/또는 current-ID에 대응되는 total-DAI) 지시 필드를 포함할 수 있다.
또 다른 방법으로, A/N 트리거링 DCI(예, DL 그랜트 DCI, UL 그랜트 DCI)를 통해 current-ID와 starting-ID가 지시될 수 있다. 이 경우, 단말은 starting-ID부터 current-ID까지의 (복수의) 연속적인 슬롯 그룹 ID(들)에 대응되는 슬롯 그룹 집합 A (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 구성/전송하도록 동작할 수 있다. starting-ID가 current-ID와 동일한 값으로 지시된 경우, 단말은 current-ID에 대응되는 (하나의) 슬롯 그룹에 대해서만 A/N 피드백을 구성/전송하도록 동작할 수 있다. 여기서, current-ID는 ending-ID로 정의/일반화될 수 있다.
일 예로, DL 그랜트 DCI를 통해 지시되는 A/N 피드백 구성 관련 정보는 적어도 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 counter/total-DAI, (iii) starting-ID를 포함할 수 있다. 또한, (current-ID에 대응되는 슬롯 그룹을 제외한) 슬롯 그룹 집합 A에 속한 (복수) 슬롯 그룹(들) 각각에 공통적으로 적용되는 (단일) total-DAI가 DL 그랜트 DCI(즉, A/N 피드백 구성 관련 정보)에 더 포함될 수 있다.
다른 예로, UL 그랜트 DCI를 통해서는 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 total-DAI, (iii) starting-ID, (iv) (current-ID에 대응되는 슬롯 그룹을 제외한) 슬롯 그룹 집합 A에 속한 (복수) 슬롯 그룹(들) 각각에 공통으로 적용되는 (단일) total-DAI가 지시될 수 있다. 이에 따라, 단말은 starting-ID부터 current-ID까지에 대응되는 슬롯 그룹 집합에 대한 A/N 피드백을 (PUCCH 또는) PUSCH를 통해 (예, UCI 피기백 형태로) 전송하도록 동작할 수 있다.
또 다른 예로, current-ID (및/또는 starting-ID)는 UL 그랜트 DCI에 포함되지 않을 수 있다. 즉, current-ID (및/또는 starting-ID)는 UL 그랜트 DCI를 통한 시그널링이 생략될 수 있다. 이 경우, 단말은 DL 그랜트 DCI를 통해 수신된 current-ID (및/또는 starting-ID) 정보를 기반으로 (PUSCH 상의) A/N 피드백을 구성/전송하도록 동작할 수 있다. 추가적으로, UL 그랜트 DCI를 통해 A/N 피드백 전송 요청 (예, A/N 피드백 대상이 되는 슬롯 그룹)이 없음을 특정 필드를 통해 지시할 수 있다. 여기서, 특정 필드는 예를 들어 starting-ID 및/또는 current-ID (및/또는 대응되는 total-DAI) 지시 필드를 포함할 수 있다.
한편, 상술한 방법 혹은 여타의 다른 방법을 적용했을 때에 동시에 전송되는 (단일) A/N 피드백 구성 대상이 되는 슬롯 그룹 개수가 (예, current-ID를 포함하여 2개로, 또는 current-ID를 포함하여 3개 이상으로) 동적으로 변경될 수 있다. 이 경우, A/N 트리거링 DCI (예, DL 그랜트 DCI) 및/또는 UL 그랜트 DCI를 통해 A/N 피드백 구성 대상이 되는 (current-ID에 대응되는 슬롯 그룹을 제외한) 복수의 슬롯 그룹들 각각에 공통으로 적용되는 (단일) total-DAI가 지시될 수 있다.
한편, 제한된 DCI 필드 사이즈/비트 수로 인해, current-ID/feedback-ID (또는 total-ID)로 지시 가능한 슬롯 그룹 ID (이에 대응되는 A/N 피드백 대상 슬롯 그룹)에 한계가 있을 수 있다. 이를 고려하여, current-ID/feedback-ID (또는 total-ID) 지시 필드의 특정 상태(state)를 통해 (특정 슬롯 그룹이 아닌) 전체 혹은 (사전에 지정된) 특정 일부 HARQ 프로세스 ID들에 대응되는 PDSCH 수신에 대한 A/N 피드백을 전송하도록 지시할 수 있다.
한편, 각 슬롯 그룹 ID 값 별로 (해당 ID에 대응되는 슬롯 그룹에 대한) A/N 전송 PUCCH/PUSCH 자원 (세트)이 상이하게 설정되거나, 각 A/N 전송 PUCCH/PUSCH 자원 (세트)별로 대응되는 (예, 해당 PUCCH/PUSCH 자원 (세트)로의 A/N 피드백 대상이 되는) 슬롯 그룹 ID 값이 상이하게 설정될 수 있다. 일 예로, 슬롯 그룹 ID = X에 대한 A/N 피드백에 대하여, 단말은 슬롯 그룹 ID = X에 설정된 PUCCH/PUSCH 자원 (세트)을 선택/사용하여 전송하도록 동작할 수 있다.
추가적으로, 하나의 단말에게 복수의 캐리어가 병합/설정된 상황에서(즉, CA 상황), 슬롯 그룹 ID는, Opt 1-1) 동일 시점 (예, 슬롯 타이밍) 또는 시간 구간에서 모든 복수 캐리어들에 대해 공통적으로 동일한 슬롯 그룹 ID가 지시/규정되거나, Opt 1-2) 주파수 (캐리어)-퍼스트(first) 시간 (슬롯 그룹)-세컨드(second) 순서로 각 캐리어 별로 슬롯 그룹 ID가 개별적으로 지시/규정될 수 있다.
추가적으로, CA 상황에서 슬롯 그룹 ID가 지시/규정된 상태에서, counter-DAI는, 1) (Opt 1-1이 적용된 상태에서) 하나의 슬롯 그룹 (ID) 내에서 주파수 (캐리어)-퍼스트 시간 (슬롯)-세컨드 순서로 PDSCH 스케줄링 카운터 값이 결정/지시되거나, 2) (Opt 1-2가 적용된 상태에서) 각 캐리어 별로 하나의 슬롯 그룹 (ID) 내에서 PDSCH 스케줄링 카운터 값이 독립적으로 결정/지시될 수 있다.
(4) 제안 방법 3
제안 방법의 설명에 앞서, A/N 피드백 구성/전송 및 관련 기본 동작 방식들에 대하여 설명하면 다음과 같다. t-A/N 방식과 p-A/N 방식은 도 12~13을 참조하여 설명한 것과 실질적으로 동일하며, A/N 피드백 구성/전송 방식(혹은, A/N 코드북 방식)을 분류하기 위해 아래에 다시 기재하였다.
1) 타이밍 기반의 A/N 피드백 방식(t-A/N 방식)
A. 사전에 RRC 시그널링을 통해 복수의 후보 HARQ 타이밍을 설정한 뒤, 기지국은 (DL 그랜트) DCI를 통해 복수의 후보 HARQ 타이밍 중 하나를 단말에게 지시할 수 있다. 이 경우, 단말은 전체 후보 HARQ 타이밍 세트에 대응되는 복수 슬롯(혹은, 슬롯 집합; 번들링 윈도우)에서의 (복수) PDSCH 수신에 대한 A/N 피드백을, 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 여기서, HARQ 타이밍은 PDSCH-to-A/N 타이밍/간격을 의미한다. HARQ 타이밍은 슬롯 단위로 표현될 수 있다. 이하, 상술한 방식을 Type-1 A/N 코드북으로 지칭한다. Type-1 A/N 코드북은 준-정적(Semi-static) A/N 코드북으로 지칭될 수도 있다.
B. HARQ 타이밍 지시에 추가하여, (DL 그랜트) DCI를 통해 c-DAI(counter Downlink Assignment Index) 및/또는 t-DAI(total-DAI)가 함께 시그널링 될 수 있다. c-DAI는 (DL 그랜트) DCI에 대응되는 PDSCH가 몇 번째로 스케줄링된 것인지 알려줄 수 있다. t-DAI는 현재 (슬롯)까지 스케줄링된 PDSCH의 총 개수 (또는, PDSCH가 존재하는 슬롯의 총 개수)를 알려줄 수 있다. 이에 따라, 단말은 c-DAI 초기값부터 (수신된) 마지막 t-DAI 값까지의 c-DAI 값들에 대응되는 PDSCH에 대한 A/N을 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 이하, 상술한 방식을 Type-2 A/N 코드북으로 지칭한다. Type-2 A/N 코드북은 동적(dynamic) A/N 코드북으로 지칭될 수도 있다.
C. PDSCH (슬롯) 그룹 ID 기반의 A/N 피드백 방식(이하, Type-2a A/N 코드북)
i. DL 그랜트 DCI를 통해 current-ID가 시그널링되고, A/N 트리거링 DCI를 통해 feedback-ID를 시그널링될 수 있다. 여기서, current-ID는 DL 그랜트 DCI 혹은 대응되는 PDSCH가 전송된 슬롯이 속한 슬롯 그룹 ID를 지시하는데 사용된다. 또한, feedback-ID는 A/N 피드백 대상이 되는 (DL PDSCH) 슬롯 그룹 ID를 지시하는데 사용된다. 여기서, DCI를 통해 total-ID가 시그널링되고, Method 1에 기반하여 total-ID로부터 feedback-ID가 유추될 수 있다.
ii. 단말은 A/N 전송 타이밍으로 지시된 시점을 통해 feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 전송할 수 있다.
iii. A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우(즉, current-ID와 feedback-ID (또는 total-ID)가 모두 DL 그랜트 DCI를 통해 시그널링됨), 단말은 타이밍-A로 지시된 시점을 통해, 1) 타이밍-A에 대응되는 번들링 윈도우 혹은 current-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여 (동시에, 예를 들어 하나의 PUCCH/PUSCH를 통해) 전송하도록 동작할 수 있다.
2) 풀링 기반의 A/N 피드백 방식(p-A/N 방식)
A. DL 그랜트 DCI를 통해, 대응되는 PDSCH에 대한 A/N 피드백 전송을 연기 (pending/deferring)시키는 동작을 지시할 수 있다. 이후, DCI를 통해, (i) 전체 DL HARQ 프로세스 ID들, 혹은 (ii) 특정 일부 DL HARQ 프로세스 ID(들)에 대응되는 PDSCH에 대한 A/N 피드백의 전송을 지시할 수 있다(pooling). A/N 피드백은 특정 신호(예, RRC 또는 DCI 시그널링)를 기반으로 설정/지시된 타이밍을 통해 전송될 수 있다. 이하, 상술한 방식을 Type-3 A/N 코드북으로 지칭한다. Type-3 A/N 코드북은 원-샷(one-shot) A/N 코드북으로 지칭될 수도 있다.
B. t-A/N 방식에 c-/t-DAI 시그널링이 설정된 경우(예, DL 그랜트 DCI를 통해 DAI가 시그널링 되는 경우), A/N 풀링은 (풀링 DCI를 통해 지시된) HARQ 프로세스 ID에 대응되는 PDSCH에 대한 A/N 전송을 풀링하거나, (풀링 DCI를 통해 지시된) t-DAI 값에 대응되는 PDSCH에 대한 A/N 전송을 풀링하는 것으로 정의될 수 있다. 후자의 경우, 단말은 c-DAI 초기 값 ~ t-DAI 값에 대응하는 PDSCH 수신에 대한 A/N 정보를 한 번에 전송할 수 있다.
3) t-A/N 방식과 p-A/N 방식간 다이나믹 스위칭 동작 방법
A. 일 예로, DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N 방식간 스위칭을 지시할 수 있다. 즉, DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N 방식 중 어느 방식을 적용하여 A/N 피드백을 구성/전송할지 지시할 수 있다. 추가적으로, 동일한 DL 그랜트 DCI를 통해 p-A/N 방식을 위한 A/N 펜딩과 A/N 풀링까지 모두 지시될 수 있다. 예를 들어, DL 그랜트 DCI가 p-A/N 방식을 지시하는 경우, DL 그랜트 DCI는 A/N 피드백 전송을 펜딩할지 아니면 풀링을 지시할지 여부를 더 지시할 수 있다.
B. 다른 예로, DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N 방식 적용을 위한 A/N 펜딩 동작간 스위칭을 지시할 수 있다. 즉, DL 그랜트 DCI를 통해 t-A/N 방식을 적용할지, p-A/N 방식을 위해 A/N 피드백 전송을 펜딩할지 여부를 지시할 수 있다. 이때, p-A/N 방식을 위한 A/N 풀링 동작은 UL 그랜트 DCI 혹은 (단말 (그룹)) 공통 DCI를 통해 지시될 수 있다.
C. 또 다른 예로, PDSCH 스케줄링을 포함하는 DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N을 위한 A/N 펜딩간 스위칭을 지시할 수 있다. 즉, DL 그랜트 DCI를 통해 t-A/N을 적용할지, p-A/N 방식을 위해 A/N 전송을 펜딩할지 여부를 지시할 수 있다. 이때, p-A/N 방식을 위한 A/N 풀링은 PDSCH 스케줄링을 포함하지 않는 DL 그랜트 DCI를 통해 지시될 수 있다.
4) NFI(New Feedback Indicator) 정보 시그널링
A. LBT 실패에 따른 단말의 A/N 피드백 전송 드랍 및/또는 기지국에서의 A/N 피드백 검출 실패 등으로 인한, 단말과 기지국간 A/N 코드북 (페이로드) 구성 상의 불일치 방지 (및, A/N PUCCH (이를 포함한 PUSCH 등의 UL 전송)에 수반되는 LBT 동작을 위한 CWS(Contention Window Size) 업데이트)를 목적으로, A/N 피드백 전송을 트리거하는 (예, DL 그랜트 또는 UL 그랜트) DCI를 통해 1-비트 NFI가 시그널링 될 수 있다. NFI는 토글링 형태로 다음의 정보를 지시할 수 있다.
i. 이전 (최근) 시점에 전송했던 A/N 피드백(이하, 이전(previous) A/N 피드백)이 (a) 기지국에서 제대로 검출/수신되었는지, (b) 기지국이 검출/수신에 실패했는지 여부가 시그널링 될 수 있다. (a)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 NACK 또는 DTX (피드백 구성/전송 생략)로 처리하여 업데이트된 A/N 피드백을 구성/전송할 수 있다. (b)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 그대로 유지하여 A/N 피드백을 구성/전송할 수 있다.
ii. (a)의 경우에는 이전의 DCI를 통해 수신된 NFI 값에서 토글링된 NFI 값이 현재의 DCI를 통해 지시된다. (b)의 경우에는 이전의 DCI를 통해 수신된 NFI 값에서 토글링되지 않은 NFI 값이 현재의 DCI를 통해 지시될 수 있다. 단말은 토글된 NFI를 수신한 경우 A/N PUCCH (및/또는 PUSCH) 전송을 위한 CWS를 최소 값으로 리셋하는 반면 비-토글된 NFI를 수신한 경우에는 CWS 값을 (일정 단위로) 증가시키도록 동작할 수 있다.
이하, Type-2a 및 Type-1/2 A/N 코드북 설정시 DL/UL 그랜트 DCI 구성 방법 및 시그널링 정보에 대하여 제안한다. 한편, 본 명세서에서는, DCI 포맷 내의 필드 구성 및 각 필드 사이즈 등이 구성 가능한(configurable)(즉, 변경 가능한) DCI (포맷)를 non-폴백 DCI로 칭하고, DCI 필드 구성 및 각각의 사이즈 등이 구성 가능하지 않은(즉, 고정된) DCI (포맷)를 폴백 DCI로 칭한다. 본 명세서에서 별도로 폴백 DCI라 명시하지 않은 DCI는 non-폴백 DCI를 의미할 수 있다.
(a) Type-2a A/N 코드북 설정시 DCI 구성 및 시그널링 정보
1) DL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보들을 포함할 수 있음 (편의상, 기본 정보).
i. current-ID 정보
ii. current-ID에 대응되는 (PDSCH) 슬롯 그룹과 관련된 counter-DAI 및 total-DAI 정보
iii. feedback-ID 정보
1. 또는, DCI를 통해서는 total-ID가 시그널링되고, feedback-ID 정보는 Method 1을 기반으로 결정될 수 있음
iv. current-ID에 대응되는 A/N 피드백에 대한 NFI 정보 (즉, NFI for current-ID)
v. feedback-ID에 대응되는 A/N 피드백에 대한 NFI 정보 (즉, NFI for feedback-ID)
1. Method 2를 기반으로 (total-ID로 지시된 값에 관계없이) current-ID와 다른 값을 갖는 other-ID에 대응되는 A/N 피드백에 대한 NFI 정보로 대체될 수 있음 (즉, NFI for other-ID)
B. 추가적으로 다음 정보를 더 포함할 수 있음.
i. feedback-ID에 대응되는 (PDSCH) 슬롯 그룹과 관련된 total-DAI 정보
1. Method 2를 기반으로 (total-ID로 지시된 값에 관계없이) current-ID과 다른 값을 갖는 other-ID에 대응되는 A/N 피드백에 대한 total-DAI 정보로 대체될 수 있음 (즉, total-DAI for other-ID)
C. 추가적으로 다음 정보를 더 포함할 수 있음.
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-2a와 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시하는 CTI(Codebook Type Indicator) 시그널링)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보 (즉, NFI for Type-3)가 추가 시그널링 될 수 있음
2. CTI 정보는 전용의 1-비트를 이용하여 명시적으로(explicit) 시그널링되거나, 아래와 같은 방법으로 묵시적으로(implicit) 시그널링 될 수 있음
3. 첫 번째 방법은, DCI를 통해 current-ID에 대응되는 하나의 (PDSCH) 슬롯 그룹에 대해서만 A/N 피드백 전송이 지시된 경우, NFI for feedback-ID (또는 NFI for other-ID) 비트/필드를 통해 CTI 정보가 시그널링 될 수 있음. CTI를 통해 Type-3이 지시된 경우, counter-DAI, total-DAI 비트/필드, 및/또는 NFI for current-ID 비트/필드를 통해, A/N 피드백 대상이 되는 HARQ 프로세스 ID 그룹 및/또는 (CA 상황에서) CC/셀 그룹이 지시되거나/되고 NFI for Type-3 정보가 시그널링 될 수 있음
4. 두 번째 방법은, DCI를 통해 current-ID에 대응되는 하나의 (PDSCH) 슬롯 그룹에 대해서만 A/N 피드백 전송이 지시된 경우, total-DAI for feedback-ID (또는 total-DAI for other-ID) 비트/필드를 통해 CTI 정보가 시그널링 될 수 있음. CTI를 통해 Type-3가 지시된 경우, counter-DAI, total-DAI (for current-ID) 비트/필드, NFI for current-ID, 및/또는 NFI for feedback-ID (또는 NFI for other-ID) 비트/필드를 통해, A/N 피드백 대상이 되는 HARQ 프로세스 ID 그룹 및/또는 (CA 상황에서) CC/셀 그룹이 지시되거나/되고 NFI for Type-3 정보가 시그널링 될 수 있음
5. 한편, 상기 Type-2a 코드북 기반 A/N과 관련한 (복수 (PDSCH) 슬롯 그룹 각각에 대한) NFI의 toggled 여부에 대한 단말과 기지국의 불일치 (이로 인한 A/N error 발생)를 막고 A/N 피드백 reliability를 보장하기 위해, Type-3 코드북 기반의 A/N 피드백 전송 시에, 상기 복수의 슬롯 그룹 각각에 대하여 가장 최근에 (예들 들어, Type-2a 코드북 기반 A/N 피드백을 지시하는 DCI를 통해) 수신된 NFI 비트를 함께 동일한 하나의 PUCCH/PUSCH 자원을 통해 전송하도록 동작할 수 있음
D. 폴백 DCI 기반의 DL 스케줄링 관련
i. 기본적으로, 폴백 DCI 포맷에는 상술한 기본 정보들 중에서 current-ID 정보 및/또는 (해당 ID에 대응되는 (PDSCH) 슬롯 그룹과 관련된) counter-DAI 정보만 포함/시그널링 될 수 있음 (편의상, Case 1)
ii. 또 다른 방법으로, 폴백 DCI 포맷에는 total-DAI for current-ID를 제외한 상기 모든 기본 정보들이 포함/시그널링 될 수 있음
iii. 또 다른 방법으로, 해당 DCI format에는 상기 슬롯 그룹 ID/인덱스, total-DAI, NFI 모두 포함/시그널링되지 않는 (단, 해당 DCI로부터 스케줄링된 PDSCH는 특정 (e.g. lowest) ID/인덱스를 가지는 슬롯 그룹으로 설정/정의하는) 형태일 수 있음 (이를 편의상, “Case 2”로 칭함)
iv. 이 경우, 폴백 DCI에 포함/시그널링되지 않는 정보에 대해, 단말은 non-폴백 DL DCI를 통해 가장 최근에 검출/수신된 정보 (예, feedback-ID (또는, total-ID), current-ID, NFI, total-DAI, 및/또는 CTI)를 기반으로 A/N 코드북 (페이로드)를 구성/전송할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 non-폴백 DL DCI는, 폴백 DL DCI를 통해 지시된 HARQ-ACK (PUCCH) 전송 시점 (슬롯)을, HARQ-ACK (PUCCH) 전송 시점으로 지시한 DCI만으로 국한될 수 있음.
1. 만약, 폴백 DCI와 동일한 HARQ-ACK (PUCCH) 전송 시점을 지시하는 non-폴백 DCI가 존재하지 않는 경우, Case 1에 따라 단말은 current-ID에 대응되는 슬롯 그룹 혹은 (상기 Case 2의 경우) lowest ID에 대응되는 슬롯 그룹에 대해서만 A/N 피드백을 구성/전송하고 NFI for current-ID 또는 Lowest ID에 대해서는 (이전 A/N 피드백 대비 혹은 이전(즉, 최근)에 수신된 NFI 비트와 비교하여) 토글된 형태 (또는 non-토글된 형태)로 가정/적용하여 동작할 수 있음. 또한, 단말은 CTI가 Type-2a 코드북으로 지시됨을 가정/적용하여 동작할 수 있음
2. 또한 상기 (Case 2)와 같이 DL fallback DCI에는 NFI 정보가 포함/시그널링되지 않는 형태 (이에 따라, 단말과 기지국간 NFI의 toggled 여부에 대한 불일치로 인한 A/N error가 발생 가능한 상황)임을 고려하여, 해당 DCI (이로부터 스케줄링된 PDSCH)에 대응되는 특정 (e.g. lowest) ID/인덱스를 가지는 슬롯 그룹에 대해서는 가장 최근에 (예들 들어, DL non-fallback DCI를 통해) 수신된 NFI 비트를 A/N 피드백과 함께 동일한 하나의 PUCCH/PUSCH 자원을 통해 전송하도록 동작할 수 있음
3. 또한 추가적으로 (A/N 피드백 reliability를 위해) 상기 특정 (e.g. lowest) ID/인덱스를 가지는 슬롯 그룹이 아닌 다른 슬롯 그룹에 대해서도, 즉 A/N 피드백 전송이 지시된 슬롯 그룹 각각에 대하여 가장 최근에 (예들 들어, DL non-fallback DCI를 통해) 수신된 NFI 비트를 A/N 피드백과 함께 동일한 하나의 PUCCH/PUSCH 자원을 통해 전송하도록 동작할 수 있음
v. 한편, 단말의 DL DCI 검출 실패 등으로 인한 단말과 기지국간 A/N 피드백 불일치를 사전에 방지하기 위하여, (상기 Case 1의 경우) 동일한 HARQ-ACK (PUCCH) 전송 시점(예, 슬롯)을 지시하는 복수의 폴백 DL DCI들은 모두 동일한 current-ID를 지시하도록 규정될 수 있다. 이에 따라, 단말은 동일한 HARQ-ACK (PUCCH) 전송 시점을 지시하는 복수의 폴백 DL DCI들은 모두 동일한 current-ID를 지시한다고 가정한 상태에서 동작하고, 그렇지 않은 DCI가 검출될 경우 해당 DCI를 무시할 수 있다(discard). 예를 들어, 단말은 해당 DCI에 의해 지시되는 동작을 수행하지 않을 수 있다.
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. CBG 단위 DL 전송이 설정된 CC/셀의 경우, total-DAI for feedback-ID (또는 total-DAI for other-ID) 정보가 TB 단위 전송에 대응되는 A/N 서브-코드북과 CBG 단위 전송에 대응되는 A/N 서브-코드북에 대해 각각 개별적으로 시그널링 될 수 있음
2) UL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보들을 포함할 수 있음 (편의상, 기본 정보).
i. 첫 번째 (PDSCH) 슬롯 그룹 ID (이하, first-ID)에 대한 total-DAI 정보
ii. 두 번째 (PDSCH) 슬롯 그룹 ID (이하, second-ID)에 대한 total-DAI 정보
iii. Notes
1. 일 예로, 최대 2개까지의 (PDSCH) 슬롯 그룹 (인덱스 = 0, 1)이 정의/설정될 경우, first-ID와 second-ID는 각각 슬롯 그룹 인덱스 0와 1에 대응될 수 있음
2. 다른 예로, first-ID와 second-ID가 각각 current-ID와 feedback-ID (또는 other-ID)로 설정/대체될 수 있음. 이 경우, DCI를 통해 추가적으로 current-ID 정보와 feedback-ID (또는 total-ID) 정보가 더 시그널링 될 수 있음
A). feedback-ID의 경우, DCI를 통해서는 total-ID가 시그널링되고, feedback-ID 정보는 Method 1을 기반으로 결정될 수 있음
B). other-ID는 Method 2를 기반으로 current-ID와 다른 값을 가지는 슬롯 그룹 ID로 결정될 수 있음
3. 또 다른 예로, 전체 슬롯 그룹 ID/인덱스 집합 (예, ID/인덱스 = 0, 1)에 대한 비트맵 정보가 DCI를 통해 시그널링 될 수 있음. 해당 그룹 ID-비트맵을 통해 각 슬롯 그룹 ID 별로 해당 ID에 대응되는 슬롯 그룹이 A/N 피드백 요청/전송 대상인지 여부가 지시될 수 있음
4. 한편, UL 그랜트 DCI가 슬롯 그룹 ID/인덱스-관련 정보/시그널링을 포함하지 않을 수 있다. 이 경우, 단말은 DL 그랜트 DCI를 통해 가장 최근에 검출/수신된 슬롯 그룹 ID/인덱스 정보를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 슬롯 그룹 ID/인덱스와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
iv. 또 다른 방법으로, 상기 UL grant DCI는 특정 하나의 (PDSCH) 슬롯 그룹 (ID/인덱스)에 대한 단일 total-DAI 정보만을 포함하는 형태로 설정될 수 있음.
1. 이 경우, 해당 특정 슬롯 그룹 (ID/인덱스)는 상기 UL grant DCI에 대응되는 PUSCH 전송 시점 (e.g. PUSCH 타이밍)을, PDSCH에 대한 A/N 피드백 전송 시점으로 (예를 들어, 해당 A/N 타이밍을 valid or numerical value 형태로) 지시한 DL grant DCI들 (혹은 해당 DCI들에 대응되는 PDSCH들)중에서, 해당 UL grant DCI 수신 시점 (혹은 해당 PUSCH 타이밍)으로부터 가장 가까운 시점에 수신된 DL grant DCI를 통해 스케줄링된 PDSCH (혹은 가장 가까운 시점에 수신된 PDSCH)가 속하는 슬롯 그룹 (ID/인덱스)로 결정될 수 있음 (이를, “방법 1”로 칭함).
2. 또는, 해당 특정 슬롯 그룹은 특정 (e.g. lowest) ID/인덱스를 가지는 슬롯 그룹으로 (사전) 설정/정의될 수 있음 (이를, “방법 2”로 칭함).
3. 또는, 해당 특정 슬롯 그룹의 ID/인덱스 (이를 지시하는 필드)가 상기 UL grant DCI를 통해 시그널링/포함될 수 있으며, 추가로 해당 특정 슬롯 그룹이 아닌 다른 (other) 슬롯 그룹에 대한 A/N 피드백 전송 여부 (이를 지시하는 필드)가 상기 UL grant DCI를 통해 시그널링/포함될 수 있음.
4. 한편, 상기 other 슬롯 그룹에 대해서는 DL DCI를 통해 가장 최근 검출/수신한 정보 (예를 들어, total-DAI, NFI)를 기반으로 대응되는 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음.
5. 또 다른 방법으로, 상기 UL grant DCI를 통해 시그널링되는 단일 total-DAI 정보가 복수 (e.g. 2개)의 슬롯 그룹들에 공통적으로 적용될 수 있음 (이를, “방법 3”로 칭함).
A). 일례로, UL grant DCI로 지시되는 상기 total-DAI (e.g. UL DAI) 정보는 상기 복수 슬롯 그룹 각각에 대하여 DL grant DCI를 통해 지시된 마지막 counter-DAI 또는 total-DAI (e.g. DL DAI)값들중 최대값 (예를 들어, 해당 최대값에 modulo-4 연산을 적용한 값)으로 지시될 수 있음.
B). 이에 따라, 단말은 상기 지시된 UL DAI값을 각 슬롯 그룹별로 수신된 DL DAI값을 기준으로 개별적으로 해석하여 대응되는 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음.
C). 예를 들어 슬롯 그룹 0과 1의 DL DAI가 각각 2와 7인 상황에서 (modulo-4 연산이 적용된) UL DAI는 (최대값인 7에 대응되는) 3로 지시될 수 있으며, 이를 수신한 단말은 슬롯 그룹 0과 1의 total-DAI값을 각각 3과 7로 해석하여 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음.
D). 다른 예로 슬롯 그룹 0과 1의 DL DAI가 각각 3와 5인 상황에서 (modulo-4 연산이 적용된) UL DAI는 (최대값인 5에 대응되는) 1로 지시될 수 있으며, 이를 수신한 단말은 슬롯 그룹 0과 1의 total-DAI값을 각각 5과 5로 해석하여 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음.
6. 한편, 상기 방법들은 단말 관점에서, Case 1) 복수 (e.g. 2개)의 슬롯 그룹들 모두에 대해 기지국으로부터 PDSCH 스케줄링 및/또는 A/N 피드백이 지시된 경우, 또는 Case 2) 특정 단일 슬롯 그룹에 대해서만 기지국으로부터 PDSCH 스케줄링 및/또는 A/N 피드백이 지시된 경우, 또는 Case 3) 복수 (e.g. 2개)의 슬롯 그룹들 모두에 대해 기지국으로부터 PDSCH 스케줄링 및/또는 A/N 피드백이 지시되지 않은 경우에 적용될 수 있음.
A). 일례로, Case 1/3의 경우에는 상기 방법 2 (또는 방법 3)가 적용될 수 있으며, Case 2의 경우에는 상기 방법 1 (또는 방법 2)이 적용될 수 있음.
7. 한편, 상기 DL (non-fallback) DCI의 경우에도 특정 하나의 (예를 들어, 상기 current-ID에 대응되는) 슬롯 그룹에 대한 단일 total-DAI (및/또는 NFI) 정보만을 포함하는 형태로 설정될 수 있으며, 이에 따라 DL/UL DCI를 구성하는 정보/시그널링을 설정함에 있어, 1) DL/UL DCI 모두 복수 (e.g. 2개)의 슬롯 그룹 각각에 대한 개별적인 total-DAI (및/또는 NFI) 정보를 포함하는 형태로 설정되거나, 또는 2) DL/UL DCI 모두 특정 하나의 슬롯 그룹에 대한 total-DAI (및/또는 NFI) 정보만을 포함하는 형태로 설정될 수 있음.
B. 추가적으로 다음 정보를 더 포함할 수 있음
i. first-ID에 대응되는 A/N 피드백에 대한 NFI 정보
ii. second-ID에 대응되는 A/N 피드백에 대한 NFI 정보
iii. Notes
1. 이 경우, 기지국으로부터 추가 DL (PDSCH) 스케줄링/전송 없이도 단말에게 (PUSCH를 통한) A/N 피드백 전송이 지시될 수 있음
2. 그렇지 않고, UL 그랜트 DCI가 A/N 피드백에 대한 NFI 정보를 포함하지 않을 수 있다. 이 경우, 단말은 (각 (PDSCH) 슬롯 그룹에 대해) DL 그랜트 DCI를 통해 가장 최근 검출/수신한 NFI 정보를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, NFI 정보와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
3. 또 다른 방법으로, UL grant DCI내에 상기 (슬롯 그룹별) NFI 정보/시그널링 (이를 위한 필드)를 포함/구성할지 아니면 포함/구성하지 않을지 여부를 단말에게 (예를 들어, 상위계층 신호 (e.g. RRC signaling)를 통해) 설정해줄 수 있음.
iv. 또 다른 방법으로, 상기 UL grant DCI는 특정 하나의 (PDSCH) 슬롯 그룹 (ID/인덱스)에 대한 단일 NFI 정보만을 포함하는 형태로 설정될 수 있음.
1. 이 경우, 해당 특정 슬롯 그룹 (ID/인덱스)는 상기 UL grant DCI에 대응되는 PUSCH 전송 시점 (e.g. PUSCH 타이밍)을, PDSCH에 대한 A/N 피드백 전송 시점으로 (예를 들어, 해당 A/N 타이밍을 valid or numerical value 형태로) 지시한 DL grant DCI들 (혹은 해당 DCI들에 대응되는 PDSCH들)중에서, 해당 UL grant DCI 수신 시점 (혹은 해당 PUSCH 타이밍)으로부터 가장 가까운 시점에 수신된 DL grant DCI를 통해 스케줄링된 PDSCH (혹은 가장 가까운 시점에 수신된 PDSCH)가 속하는 슬롯 그룹 (ID/인덱스)로 결정될 수 있음 (이를, “방법 1”로 칭함).
2. 또는, 해당 특정 슬롯 그룹은 특정 (e.g. lowest) ID/인덱스를 가지는 슬롯 그룹으로 (사전) 설정/정의될 수 있음 (이를, “방법 2”로 칭함).
3. 또는, 해당 특정 슬롯 그룹의 ID/인덱스 (이를 지시하는 필드)가 상기 UL grant DCI를 통해 시그널링/포함될 수 있으며, 추가로 해당 특정 슬롯 그룹이 아닌 다른 (other) 슬롯 그룹에 대한 A/N 피드백 전송 여부 (이를 지시하는 필드)가 상기 UL grant DCI를 통해 시그널링/포함될 수 있음.
4. 한편, 상기 other 슬롯 그룹에 대해서는 DL DCI를 통해 가장 최근 검출/수신한 정보 (예를 들어, total-DAI, NFI)를 기반으로 대응되는 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음.
5. 또 다른 방법으로, 상기 UL grant DCI를 통해 시그널링되는 단일 NFI 정보가 복수 (e.g. 2개)의 슬롯 그룹들에 공통적으로 적용될 수 있음 (이를, “방법 3”로 칭함).
6. 한편, 상기 방법들은 단말 관점에서, Case 1) 복수 (e.g. 2개)의 슬롯 그룹들 모두에 대해 기지국으로부터 PDSCH 스케줄링 및/또는 A/N 피드백이 지시된 경우, 또는 Case 2) 특정 단일 슬롯 그룹에 대해서만 기지국으로부터 PDSCH 스케줄링 및/또는 A/N 피드백이 지시된 경우, 또는 Case 3) 복수 (e.g. 2개)의 슬롯 그룹들 모두에 대해 기지국으로부터 PDSCH 스케줄링 및/또는 A/N 피드백이 지시되지 않은 경우에 적용될 수 있음.
A). 일례로, Case 1/3의 경우에는 상기 방법 2 (또는 방법 3)가 적용될 수 있으며, Case 2의 경우에는 상기 방법 1 (또는 방법 2)이 적용될 수 있음.
7. 추가적으로, UL grant DCI내에 상기 (단일) NFI 정보/시그널링 (이를 위한 필드)를 포함/구성할지 아니면 포함/구성하지 않을지 여부를 단말에게 (예를 들어, 상위계층 신호 (e.g. RRC signaling)를 통해) 설정해줄 수 있음.
C. 추가적으로 다음 정보를 더 포함할 수 있음.
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-2a와 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보가 추가 시그널링 될 수 있음
D. 폴백 DCI 기반의 UL 스케줄링 관련
i. 기본적으로, 폴백 DCI 포맷은 기본 정보들이 모두 포함/시그널링되지 않는 (생략된) 형태일 수 있음
ii. 다른 방법으로, 폴백 DCI 포맷은 모든 기본 정보들(예, first-ID 및 second-ID 각각에 대한 total-DAI 및/또는 그룹 ID-비트맵 정보)이 포함/시그널링되는 형태일 수 있음
iii. 또는, 폴백 DCI 포맷은 {first-ID에 대한 total-DAI, second-ID에 대한 total-DAI, first-ID에 대한 NFI, second-ID에 대한 NFI}가 포함/시그널링되는 형태일 수 있음
iv. 또는, 폴백 DCI 포맷은 {first-ID에 대한 NFI, second-ID에 대한 NFI} (및/또는 그룹 ID-비트맵 정보)가 포함/시그널링되는 형태일 수 있음
v. 이 경우, UL 그랜트 DCI에 포함/시그널링되지 않는 정보에 대하여 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보 (예, 슬롯 그룹 ID/인덱스, total-DAI, NFI, CTI)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시하는 DCI만으로 국한될 수 있음
vi. 한편, 다이나믹 그랜트 DCI 전송을 수반하는 스케줄링이 아닌, 구성된(Configured Grant, CG) 형태로 DCI없이 전송되는 CG-PUSCH를 통해 A/N을 피기백하여 전송하는 경우, 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, 슬롯 그룹 ID/인덱스, total-DAI, NFI, CTI)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, CG-PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시하는 DCI만으로 국한될 수 있음
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. CBG 단위 DL 전송이 설정된 CC/셀의 경우, total-DAI(예, total-DAI for first-ID 및 total-DAI for second-ID) 정보가 TB 단위 전송에 대응되는 A/N 서브-코드북과 CBG 단위 전송에 대응되는 A/N 서브-코드북에 대해 각각 개별적으로 시그널링 될 수 있음
한편, 단말이 Type-2a 코드북에 기반하여 PUCCH/PUSCH 상에 A/N 피드백을 구성/전송하는 경우, 기지국은 단말에게 "PUSCH에 피기백되어 전송될 A/N 피드백이 없음"을 지시/인지하도록 하는 방법이 필요할 수 있다. 이를 위해, 다음과 같은 DCI 시그널링 및 동작을 고려할 수 있다.
1) 방법 1
A. UL 그랜트 DCI 내의 total-DAI 비트가 '11'로 (또는, total-DAI 값이 4로) 지시되고, PUSCH 전송 시점에 대응되는 번들링 윈도우 구간 (또는 이전(예, 최근) A/N 피드백 전송 시점 (혹은, 해당 전송 타이밍으로 지시된 시점) 이후부터 PUSCH 전송 시점까지의 구간) 동안 검출된 DL 그랜트 DCI가 없고, UL 그랜트 DCI를 통해 지시된 NFI 비트가 (이전 A/N 피드백 대비 혹은 이전(예, 최근) 수신된 NFI 비트와 비교하여) 토글된 경우, 단말은 PUSCH 상에 어떤 A/N도 피기백하지 않도록 동작할 수 있음. 본 방식은 UL 그랜트 DCI를 통해 NFI 정보를 시그널링하는 구조에 적용될 수 있음. 여기서, DCI 정보 체크 및 그에 따른 단말 동작은 각 (PDSCH) 슬롯 그룹 (ID)별로 독립/개별적으로 수행될 수 있음
B. 다른 방식으로, (UL 그랜트 DCI를 통한 별도의 NFI 정보 시그널링이 없는 상태에서) 검출/수신된 UL 그랜트 DCI에 대하여, 상기 DCI 체크/단말 동작을 적용/수행하되, NFI 비트는 (이전 A/N 피드백 대비 혹은 이전 (최근) 수신된 NFI 비트와 비교하여) non-토글된 (또는 토글된) 것으로 가정될 수 있음. 본 방식은 별도의 NFI 정보 시그널링이 없는 (예, 폴백) UL 그랜트 DCI (포맷)인 경우에 대해 적용될 수 있음
2) 방법 2
A. UL 그랜트 DCI 내의 total-DAI 필드로 시그널링 되는 상태(state)들 중 하나를 (PUSCH로 피기백될) "A/N 피드백이 없음"을 지시하는 것으로 정의할 수 있음. 단말은 DCI를 통해 해당 상태가 지시된 경우, PUSCH 상에 아무런 A/N도 피기백하지 않도록 동작할 수 있음. 본 방법은 UL 그랜트 DCI를 통한 NFI 정보 시그널링이 없는 구조에 적용될 수 있음. 여기서, DCI 정보 체크 및 그에 따른 단말 동작은 각 (PDSCH) 슬롯 그룹 (ID)별로 독립/개별적으로 수행될 수 있음
3) 방법 3
A. UL 그랜트 DCI 내의 first-ID 및 second-ID (또는 current-ID 및 feedback-ID (또는 total-ID)) 비트/필드를 통해 하나의 (PDSCH) 슬롯 그룹 (예, first-ID)만 지시될 수 있다. 이 경우, 특정 total-DAI 필드(예, second-ID에 대한 total-DAI 필드)를 통해, 1) 지시된 슬롯 그룹(예, first-ID) 하나에 대해서만 A/N 피드백을 (PUSCH에 피기백하여) 구성/전송하도록 지시하거나, 2) 지시된 슬롯 그룹(예, first-ID)에 대해서도 (즉, 모든 슬롯 그룹(first-ID 및 second-ID)에 대해) PUSCH로 피기백될 A/N 피드백이 없음을 지시할 수 있음.
i. 본 방법은 (UL 그랜트 DCI를 통한 NFI 정보 시그널링이 없고) UL 그랜트 DCI를 통해 (PDSCH) 슬롯 그룹 ID 정보를 시그널링 하는 구조에 적용될 수 있음. 예를 들어, 슬롯 그룹 ID 정보는 first-ID 및 second-ID (또는, current-ID 및 feedback-ID (또는 total-ID)) 정보)를 포함함
한편, 상기 Type-2a 코드북에 기반하여 PUCCH/PUSCH상에 A/N 피드백을 구성/전송하도록 동작하는 (그리고 UL grant DCI를 통한 별도의 NFI 정보 시그널링은 없는) 상황에서, PUSCH 전송 시점에 대응되는 bundling window 구간 (또는 이전 (최근) A/N 피드백 전송 시점 (혹은 해당 전송 타이밍으로 지시된 시점) 이후부터 해당 PUSCH 전송 시점까지 구간) 동안, 특정 (PDSCH) 슬롯 그룹 (ID)에 속한 PDSCH를 스케줄링하는 또는 해당 슬롯 그룹에 대한 A/N 피드백을 지시하는 (DL grant) DCI가 검출/수신되지 않은 경우, 단말은 해당 (PDSCH) 슬롯 그룹 (ID)에 대응되는 NFI 비트가 (이전 A/N 피드백 대비 혹은 이전 (최근) 수신된 NFI 비트와 비교하여) toggle되었다고 (또는 non-toggle되었다고) 가정/간주한 상태에서, UL grant DCI를 통해 지시된 total-DAI 값을 기반으로 PUSCH상에 해당 (PDSCH) 슬롯 그룹 (ID)에 대응되는 A/N 페이로드를 구성하거나 구성하지 않도록 (예를 들어, 만약 해당 total-DAI 값이 4인 경우에는 A/N 페이로드를 구성하지 않고 (즉, 0-bit A/N) PUSCH상에 piggyback하지 않도록, 그렇지 않고 만약 해당 total-DAI 값이 4가 아닌 경우에는 A/N 페이로드 (즉, 1-bit 이상의 A/N)을 구성하여 해당 A/N을 PUSCH상에 piggyback하도록) 동작할 수 있다.
또 다른 추가적인 방안을 위하여, 일단 상기 Type-2a 코드북에 기반하여 PUCCH/PUSCH상에 A/N 피드백을 구성/전송하도록 동작하는 (그리고 UL grant DCI를 통한 별도의 NFI 정보 시그널링은 없는) 상황에서, PUSCH 전송 시점에 대응되는 bundling window 구간 동안, 특정 (PDSCH) 슬롯 그룹 (ID)에 속한 PDSCH를 스케줄링하는 (DL grant) DCI가 검출/수신되지 않거나 또는 해당 슬롯 그룹에 대한 A/N 피드백을 지시하는 (DL grant) DCI가 검출/수신되지 않거나 또는 해당 슬롯 그룹에 대한 NFI 정보를 지시하는 (DL grant) DCI가 검출/수신되지 않은 경우를, 편의상 no PDSCH case로 칭한다.
이때, 상기 no PDSCH case인 경우 단말은 해당 (PDSCH) 슬롯 그룹 (ID)에 대응되는 NFI 비트 값이 (이전 (최근) 수신된 NFI 값과 비교하여) toggle되지 않았다고 (또는 toggle되었다고) 가정/간주한 상태에서, 해당 NFI 값과 UL grant DCI를 통해 지시된 total-DAI 값을 기반으로 PUSCH상에 해당 (PDSCH) 슬롯 그룹 (ID)에 대응되는 A/N 페이로드를 구성하거나 구성하지 않도록 동작할 수 있다.
구체적으로, 만약 해당 total-DAI 값 N이 4인 경우 (e.g. N = 4)에는 A/N 페이로드를 구성하지 않고 (즉, 0-bit A/N) PUSCH상에 piggyback하지 않도록 동작할 수 있고, 그렇지 않고 만약 해당 total-DAI 값 N이 4가 아닌 경우 (e.g. N < 4)에는 A/N 페이로드 (즉, 1-bit 이상의 A/N)을 구성하여 해당 A/N을 PUSCH상에 piggyback하도록 동작할 수 있으며, 구체적으로는 상기 non-toggled NFI 가정 (또는 toggled NFI 가정)을 기반으로 {N + 4M}개 (M은 (0을 포함한) 양의 정수)의 PDSCH (또는 N개의 PDSCH)에 대한 A/N 페이로드를 구성하여 PUSCH상에 piggyback하도록 동작할 수 있다.
일례로, UL grant DCI를 통해 각 PDSCH 그룹별로 T-DAI가 지시되도록 설정된 상황에서, 특정 PDSCH 그룹에 대해 상기 no PDSCH case인 경우 해당 PDSCH 그룹에 대하여 상기 동작이 적용될 수 있으며, 다른 예로, UL grant DCI를 통해 하나의 T-DAI만 지시되도록 설정된 상황에서, 모든 PDSCH 그룹에 대해 상기 no PDSCH case인 경우 특정 (예를 들어, 가장 낮은 그룹 ID/인덱스를 가지는) PDSCH 그룹에 대하여 상기 동작이 적용될 수 있다.
다른 방법으로, 상기 no PDSCH case인 경우 단말은 해당 (PDSCH) 슬롯 그룹 (ID)에 대응되는 NFI 비트 값은 이전 (최근) 수신된 NFI 값과 동일하게 유지됨을 (예를 들어, 이전 (최근) 수신된 NFI 값으로부터 toggle되지 않음을) 가정하되, 해당 NFI 값에 대한 고려 없이 UL grant DCI를 통해 지시된 total-DAI 값만을 기반으로 PUSCH상에 해당 (PDSCH) 슬롯 그룹 (ID)에 대응되는 A/N 페이로드를 구성하거나 구성하지 않도록 동작할 수 있다.
구체적으로, 만약 해당 total-DAI 값 N이 4인 경우 (e.g. N = 4)에는 A/N 페이로드를 구성하지 않고 (즉, 0-bit A/N) PUSCH상에 piggyback하지 않도록 동작할 수 있고, 그렇지 않고 만약 해당 total-DAI 값 N이 4가 아닌 경우 (e.g. N < 4)에는 A/N 페이로드 (즉, 1-bit 이상의 A/N)을 구성하여 해당 A/N을 PUSCH상에 piggyback하도록 동작할 수 있으며, 구체적으로는 (1부터 N까지의 counter-DAI 값에 대응되는) N개의 PDSCH에 대한 A/N 페이로드를 구성하여 PUSCH상에 piggyback하도록 동작할 수 있다.
일례로, UL grant DCI를 통해 각 PDSCH 그룹별로 T-DAI가 지시되도록 설정된 상황에서, 특정 PDSCH 그룹에 대해 상기 no PDSCH case인 경우 해당 PDSCH 그룹에 대하여 상기 동작이 적용될 수 있으며, 다른 예로, UL grant DCI를 통해 하나의 T-DAI만 지시되도록 설정된 상황에서, 모든 PDSCH 그룹에 대해 상기 no PDSCH case인 경우 특정 (예를 들어, 가장 낮은 그룹 ID/인덱스를 가지는) PDSCH 그룹에 대하여 상기 동작이 적용될 수 있다.
또 다른 방법으로, 상기 no PDSCH case인 경우 단말은 해당 (PDSCH) 슬롯 그룹 (ID)에 대응되는 NFI 비트 값은 이전 (최근) 수신된 NFI 값과 동일하게 유지됨을 (예를 들어, 이전 (최근) 수신된 NFI 값으로부터 toggle되지 않음을) 가정하되, UL grant DCI를 통해 지시된 total-DAI 값에 대응되는 PDSCH(들)는 어떤 (PDSCH) 슬롯 그룹 (ID)에도 속하지 않는다고 간주한 상태에서 해당 PDSCH(들)에 대해서만 A/N 페이로드를 구성하거나 구성하지 않도록 동작할 수 있다.
구체적으로, 만약 해당 total-DAI 값 N이 4인 경우 (e.g. N = 4)에는 A/N 페이로드를 구성하지 않고 (즉, 0-bit A/N) PUSCH상에 piggyback하지 않도록 동작할 수 있고, 그렇지 않고 만약 해당 total-DAI 값 N이 4가 아닌 경우 (e.g. N < 4)에는 A/N 페이로드 (즉, 1-bit 이상의 A/N)을 구성하여 해당 A/N을 PUSCH상에 piggyback하도록 동작할 수 있으며, 구체적으로는 (1부터 N까지의 counter-DAI 값에 대응되는) N개의 PDSCH에 대한 A/N 페이로드를 구성하여 PUSCH상에 piggyback하도록 동작할 수 있다.
일례로, UL grant DCI를 통해 각 PDSCH 그룹별로 T-DAI가 지시되도록 설정된 상황에서, 특정 PDSCH 그룹에 대해 상기 no PDSCH case인 경우 해당 PDSCH 그룹에 설정된 T-DAI에 대응되는 PDSCH(들)는 어떤 PDSCH 그룹에도 속하지 않는다고 간주한 상태에서 상기 동작이 적용될 수 있으며, 다른 예로, UL grant DCI를 통해 하나의 T-DAI만 지시되도록 설정된 상황에서, 모든 PDSCH 그룹에 대해 상기 no PDSCH case인 경우 해당 T-DAI에 대응되는 PDSCH(들)는 어떤 PDSCH 그룹에도 속하지 않는다고 간주한 상태에서 상기 동작이 적용될 수 있다.
한편, 단일 UL 그랜트 DCI를 통해, 복수 슬롯들에 걸쳐 전송되는 복수의 PUSCH 자원을 스케줄링/지시하는 (멀티-슬롯 스케줄링의) 경우, 해당 DCI를 통해 시그널링되는 total-DAI, NFI, 및/또는 CTI 정보를 적용하는 동작이 필요할 수 있다. 해당 정보의 경우, DCI를 통해 스케줄링된 복수의 슬롯 또는 PUSCH 자원들 중에서, 1) (a) 최초 슬롯 내 PUSCH 자원(즉, first-슬롯 PUSCH), (b) 최초 PUSCH 자원(즉, first PUSCH), (c) 특정 심볼 수 (혹은 non-DMRS 심볼 수) 및/또는 특정 RB 수 (혹은 RE 수 혹은 non-DMRS RE 수) 이상으로 구성된 최초 PUSCH 자원, (d) PUSCH 전송이 지시된 최초 슬롯의 바로 다음 슬롯 내에 할당된 PUSCH 자원, 혹은 (e) 슬롯 구간(duration)과 동일한 심볼 구간을 가지는 최초 PUSCH 자원(즉, first full-PUSCH)에만 (예를 들어, 상기 복수의 자원들 중 특정 하나의 자원 또는 특정 자원 조합에만) 적용되거나, 2) (a) LBT (이를 통한 CCA)에 최초 성공한 first-슬롯 PUSCH, (b) first PUSCH, 혹은 (c) first full-PUSCH에만 적용되거나, 3) (a) A/N 피드백이 피기백된 형태로 전송되는 first-슬롯 PUSCH, (b) first PUSCH, 혹은 (c) first full-PUSCH에만 적용될 수 있다. 상기를 제외한 나머지 슬롯 또는 PUSCH 자원에 대해서는 a) DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, 슬롯 그룹 ID/인덱스, total-DAI, NFI, CTI, 및/또는 하기 폴백 A/N 여부 지시 정보, pended A/N 유무 지시 정보)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하거나, 및/또는 b) 상기 정보에 대해 특정(예, 디폴트) 값을 가정/적용할 수 있다.
a)의 경우, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있다. 한편, b)의 경우, 적어도 하나에 대해 다음과 같이 가정/적용할 수 있다.
1) total-DAI에 대해서는 total-DAI 비트를 '11'로 (또는, total-DAI 값을 4로) 가정/적용하고,
2) NFI에 대해서는 (이전 A/N 피드백 대비 혹은 이전(예, 최근) 수신된 NFI 비트와 비교하여) 토글된 (또는 non-토글된) 것으로 가정/적용하고,
3) CTI로는 Type-2a (또는, 하기의 경우 Type-1) 코드북이 지시됨을 가정/적용하고,
4) 하기에서 "Type-1 코드북 기반 A/N 피드백 여부를 지시하는 정보"에 대해서는 해당 필드/시그널링이 없다고 가정/적용하고,
5) 하기에서 "Pended A/N 유무를 지시하는 정보"에 대해서는 해당 pended A/N 피드백이 없다고 가정/적용할 수 있다.
(b) Type-1/2 A/N 코드북 설정시 DCI 구성 및 시그널링 정보
1) DL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보를 포함할 수 있음 (편의상, 기본 정보).
i. 폴백 A/N 여부를 지시하는 정보 (e.g., Type-1 코드북의 경우)
ii. Notes
1. 상기 정보는, 하나의 번들링 윈도우 구간 동안 PCell (이를 통한 PDSCH 전송)을 스케줄링하는 폴백 DCI 하나만 전송되었는지 여부를 지시할 수 있음. 상기 정보는 1-비트만으로 구성/시그널링 될 수 있음
iii. Counter-DAI 및 total-DAI 지시 정보 (Type-2 코드북의 경우)
B. 추가적으로 다음 정보를 더 포함할 수 있음
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-1 또는 Type-2와 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시하는 CTI 시그널링)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보가 추가 시그널링 될 수 있음
C. 추가적으로 다음 정보를 더 포함할 수 있음
i. Pended A/N 유무를 지시하는 정보
ii. Notes
1. 상기 정보는, Type-1 또는 Type-2 코드북에 기반하여 구성된 A/N 페이로드에 (이전 시점에) 펜딩이 지시된 A/N (즉, pended A/N)을 추가로 더 포함시켜 최종 A/N 피드백을 구성할지 여부를 지시할 수 있음
D. 폴백 DCI 기반의 DL 스케줄링 관련
i. 상기 Type-1 코드북의 경우
1. 기본적으로, (적어도 PCell/PSCell에 대응되는) 해당 DCI 포맷에는 상기 기본 정보가 포함/시그널링되는 형태일 수 있음
2. 추가적으로, (PCell/PSCell을 제외한) SCell에 대응되는 폴백 DCI 포맷에는 상기 기본 정보가 포함/시그널링되지 않는 형태일 수 있음
ii. 상기 Type-2 코드북의 경우
1. 기본적으로, 해당 DCI format에는 상기 기본 정보에서 counter-DAI만 포함/시그널링 되는 형태일 수 있음
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. CBG 단위 DL 전송이 설정된 CC/셀의 경우 또는 CBG 단위 DL 전송이 설정된 CC/셀을 포함한 CA인 경우, pended A/N 페이로드는 모든 셀/CC들에 설정된 최대 (전송 가능) CBG 수, 즉 셀/CC별로 설정된 (전송 가능) CBG 수들 중 최대값에 기반하여 결정될 수 있음. TB 단위 전송이 설정된 CC/셀의 경우 또는 TB 단위 전송이 설정된 CC/셀만 병합된 경우 pended A/N 페이로드는 모든 셀/CC들에 설정된 최대 (전송 가능) TB 수, 즉 셀/CC별로 설정된 (전송 가능) TB 수들 중 최대값에 에 기반하여 결정될 수 있음
2) UL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보를 포함할 수 있음 (편의상, 기본 정보).
i. Type-1 코드북 기반 A/N 피드백 여부를 지시하는 정보 (e.g., Type-1 코드북의 경우)
ii. Notes
1. 상기 정보는, type-1 코드북에 기반하여 구성된 A/N 페이로드를 PUSCH로 피기백하여 전송할지 (아니면, 0-비트 (즉 피기백 생략) 혹은 폴백 A/N만을 피기백할지) 여부를 지시할 수 있음
iii. Total-DAI 지시 정보 (e.g., Type-2 코드북의 경우)
B. 추가적으로 다음 정보를 더 포함할 수 있음
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-1 또는 Type-2와 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보가 추가 시그널링 될 수 있음
C. 추가적으로 다음 정보를 더 포함할 수 있음
i. Pended A/N 유무를 지시하는 정보
ii. Notes
1. 상기 정보는, Type-1 또는 Type-2 코드북에 기반하여 구성된 A/N 페이로드에 (이전 시점에) 펜딩이 지시된 A/N (즉, pended A/N)을 추가로 더 포함시켜 최종 A/N 피드백을 구성할지 여부를 지시할 수 있음
D. 폴백 DCI 기반의 UL 스케줄링 관련
i. 기본적으로, 폴백 DCI 포맷에는 상기 기본 정보가 포함/시그널링되지 않는 형태일 수 있음
ii. UL 그랜트 DCI에 포함/시그널링되지 않는 정보에 대하여 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, (Type-1 코드북의 경우) 폴백 A/N 여부 지시 정보, (Type-2 코드북의 경우) counter-DAI/total-DAI 정보, CTI, pended A/N 유무 지시 정보)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
iii. 한편, 다이나믹 그랜트 DCI 전송을 수반하는 스케줄링이 아닌, CG(Configured Grant) 형태로 DCI없이 전송되는 CG-PUSCH를 통해 A/N을 피기백하여 전송할 수 있음. 이 경우, 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, (Type-1 코드북의 경우) 폴백 A/N 여부 지시 정보, (Type-2 코드북의 경우) counter-DAI/total-DAI 정보, CTI, pended A/N 유무 지시 정보)를 기반으로 A/N 코드북 (페이로드)를 구성/전송할 수 있음. 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, CG-PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. 앞서 DL 그랜트 DCI의 경우와 유사하게, pended A/N 페이로드가 모든 셀/CC들에 설정된 최대 (전송 가능) CBG 수 혹은 TB 수에 기반하여 결정될 수 있음
한편, (Type-2a 또는 Type-1 또는 Type-2 A/N 코드북 설정 및 이에 따른) DL/UL 그랜트 DCI 정보 구성 및 시그널링 동작은, CA 상황에서 PUCCH 전송을 수행하도록 설정된 PUCCH 셀/CC (예, PCell 또는 PSCell)가 U-밴드 상에서 동작하는 셀/CC인 경우로 한정될 수 있다. 이 경우, CA된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI는 본 명세서의 제안 방법에 따라 구성될 수 있다. 한편, PUCCH 셀/CC가 L-밴드 상에서 동작하는 셀/CC인 경우 (기존 Type-1 또는 Type-2 A/N 코드북을 설정한 상태에서) 기존과 동일한 DL/UL 그랜트 DCI 정보 구성 및 시그널링 동작이 적용될 수 있다. 이 경우, 병합된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI는 기존과 동일하게 구성될 수 있음.
다른 방안으로, Type-2a 또는 Type-1 또는 Type-2 A/N 코드북 설정 및 이에 따른 DL/UL 그랜트 DCI 정보의 구성/시그널링은, 멀티-캐리어, 즉 단말에게 CA로 설정된 복수 셀/CC 집합에 U-밴드 상에서 동작하는 셀/CC이 포함된 경우로 한정될 수 있다. 이 경우, 병합된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI를 상술한 제안 방법처럼 구성할 수 있음. 한편, 멀티-캐리어에 L-밴드 상에서 동작하는 셀/CC만 포함된 경우 기존 Type-1 또는 Type-2 A/N 코드북 설정 및 이에 따른 기존 DL/UL 그랜트 DCI 정보의 구성/시그널링이 적용될 수 있다. 이 경우, 병합된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI는 기존과 동일하게 구성될 수 있음
(5) 제안 방법 4
(a) 특정 PDSCH에 대한 A/N 피드백 업데이트
특정 PDSCH 혹은 HARQ 프로세스 ID에 대하여 (PDSCH 디코딩 및 A/N 준비(preparation) 동작에 소요되는) 프로세싱 시간이 기지국으로부터 (단말이 지원할 수 있는 최소 프로세싱 시간에 비해) 부족하게 스케줄링/지시될 수 있다. 이 경우, 단말은 (해당 PDSCH에 대응되는) DCI로부터 지시된 (최초) A/N (PUCCH) 전송 시점을 통해서는 해당 PDSCH (또는, HARQ 프로세스 ID)에 대해 NACK을 피드백 (혹은 DTX)하도록 동작할 수 있다.
이후, (상기 PDSCH (또는, HARQ 프로세스 ID)에 대한 기지국로부터의 별도의 재전송 스케줄링은 없었던 상태에서) 상기 PDSCH를 포함하는 슬롯 그룹 ID에 대한 (Type-2a 코드북 기반의) A/N 피드백 전송 또는 상기 HARQ 프로세스 ID를 포함하는 HARQ 프로세스 그룹에 대한 (Type-3 코드북 기반의) A/N 피드백 전송이 기지국으로부터 (다시) 지시될 수 있다. 이 경우, 단말은 해당 PDSCH (또는, HARQ 프로세스 ID)의 실제/최종 디코딩 결과를 반영하여 해당 PDSCH (또는, HARQ 프로세스 ID)에 대한 A/N 피드백을 업데이트 할 수 있다. 일 예로, 디코딩 결과가 ACK인 경우, 기지국으로부터 (다시) 지시된 A/N (PUCCH) 전송 시점을 통해서는 해당 PDSCH (또는, HARQ 프로세스 ID)에 대해 ACK을 피드백 할 수 있다.
한편, 위의 동작은 PDSCH (또는, HARQ 프로세스 ID)에 대응되는 NFI의 토글링 여부와 무관하게 적용하거나, 해당 NFI가 non-toggled인 경우와 toggled인 경우 중에서 하나의 경우에만 적용될 수 있다. 이 경우, 다른 하나의 경우에는 상기와 같은 피드백 업데이트를 생략(예, 이전 피드백을 유지) 할 수 있다.
추가적으로, HARQ 프로세스 ID에 대하여 프로세싱 시간이 기지국으로부터 부족하게 스케줄링/지시된 경우, 이에 대응되는 HARQ-ACK 전송 시점을 통해 단말이 전송하는 HARQ-ACK 피드백의 업데이트(이하, updated feedback)는 해당 HARQ 프로세스 ID에 대해 지시된 NDI 값에 따라 달라질 수 있다. 일 예로, NDI 값이 (이전 값과 비교하여) 토글되지 않은 상태에서, 단말이 해당 HARQ 프로세스 ID에 대해 이전에 ACK을 피드백 했거나/했고 실제/최종 PDSCH 디코딩 결과가 ACK이었을 경우, 단말은 HARQ-ACK 피드백(예, updated feedback)을 ACK으로 업데이트/보고할 수 있다. 다른 예로, NDI 값이 (이전 값과 비교하여) 토글되지 않은 상태에서, 단말이 해당 HARQ 프로세스 ID에 대해 이전에 NACK을 피드백 했거나/했고 실제/최종 PDSCH 디코딩 결과가 NACK이었을 경우, 단말은 HARQ-ACK 피드백(예, updated feedback)을 NACK으로 보고할 수 있다. 또 다른 예로, NDI가 (이전 값과 비교하여) 토글된 상태로 지시되어 새로운 TB 또는 PDSCH가 스케줄링/전송된 경우, 단말은 해당 TB 또는 PDSCH에 대한 프로세싱 시간 부족으로 인해, HARQ-ACK 피드백(예, updated feedback)을 유효(valid)하지 않은 값(예, NACK)으로 보고할 수 있다.
(b) CBG 재전송이 설정된 CC 관련 A/N 피드백
상기 Type-3 코드북 기반의 A/N 피드백 전송이 기지국으로부터 지시된 경우 PUCCH (or PUSCH)상의 A/N 페이로드 구성 방법이 필요할 수 있다. Type-3 코드북 기반의 A/N 피드백에 대한 페이로드 구성에 대한 단말과 기지국 간의 공통의 이해가 필요하다.
구체인 예로, 단말에게 설정된 CC 인덱스 집합, 각 CC별로 설정된 HARQ 프로세스(process) ID/인덱스 집합, 각 CC별로 설정된 (최대) TB 인덱스 집합 및/또는 CBG 인덱스 집합에 기반하여, 단말이 어떠한 순서에 따라 각 {CC, HARQ ID, TB or CBG} 조합에 대응되는 A/N 비트들을 매핑할 것인지 결정되어야 할 수 있다.
이를 감안하여, 일 예로, “TB/CBG 인덱스 first - HARQ 프로세스 인덱스 second - CC 인덱스 third” 방식으로 A/N 비트를 매핑하는 방법을 고려할 수 있다. 예컨대, TB/CBG 인덱스에 기초하여 TB/CBG(s)에 대한 A/N 비트들을 맵핑하고(first level) -> 해당 HARQ 프로세스에 대한 A/N 비트들의 맵핑이 완료되면 HARQ 프로세스 인덱스에 기초하여 다음 HARQ 프로세스에 대한 A/N 비트들을 맵핑하고(second level) -> 해당 CC에 대한 A/N 비트들의 맵핑이 완료되면 CC 인덱스에 기초하여 다음 CC에 대한 A/N 비트들을 맵핑하는(third level) 방식으로, HARQ-ACK 페이로드 내에서 각 A/N 비트가 맵핑될 수 있다. 보다 더 구체적인 예를 들어 단말은 1) lowest CC 인덱스의 lowest HARQ 프로세스 인덱스에 대하여 lowest TB/CBG 인덱스부터 순차적으로 (highest TB/CBG 인덱스까지) 대응되는 A/N을 매핑하고, 2) lowest CC 인덱스의 2nd lowest HARQ 프로세스 인덱스에 대하여 lowest TB/CBG 인덱스부터 순차적으로 대응되는 A/N을 매핑하고, … 3) lowest CC 인덱스의 highest HARQ 프로세스 인덱스에 대하여 lowest TB/CBG 인덱스부터 순차적으로 대응되는 A/N을 매핑하고, 4) 2nd lowest CC 인덱스의 lowest HARQ 프로세스 인덱스에 대하여 lowest TB/CBG 인덱스부터 순차적으로 대응되는 A/N을 매핑하고, … 이러한 순서로 A/N을 매핑하도록 동작할 수 있다. 이와 같은 A/N 맵핑이 사용된 예시로써, 후술하는 도 17 내지 도 23가 참조될 수 있다.
단말은 (Type-3 코드북 기반의 A/N 피드백 전송을 위해) 복수(또는 전체) CC, 복수(또는 전체) HARQ 프로세스 및 복수(또는 전체) TB/CBG에 대한 A/N을 한번에 보고하도록 구성(e.g., 상위 계층 시그널링을 통해 pdsch-HARQ-ACK-OneShotFeedback-r16 파라미터 수신) 될 수 있으며, 단말은 Type 3 코드북에 관련한 구성(configuration)에 기초하여 HARQ-ACK 응답을 보고할 수 있다. HARQ-ACK 응답의 페이로드 내에서 각 A/N 비트가 맵핑되는 순서는 위와 같은 순서에 따를 수 있다. 예컨대, Type 3 코드북에 기초하여 A/N을 보고하는 단말은, 먼저 Lowest indexed 셀 내에서 Lowest indexed HARQ 프로세스의 Lowest indexed TB/CBG의 A/N 비트부터 Highest indexed TB/CBG의 A/N 비트를 순서대로 맵핑하고(i.e., first level mapping), 이후 Lowest indexed 셀 내에서 2nd Lowest indexed HARQ 프로세스부터 Highest indexed HARQ 프로세스에 대하여 first level mapping을 각각 수행하고(i.e., second level mapping), 이후 2nd Lowest indexed 셀부터 Highest indexed 셀까지 first & second level mapping을 각각 수행(i.e., third level mapping)할 수 있다. 본 예시에 따르면 동일한 하나의 HARQ-ACK 메시지(e.g., single PUCCH signal or single PUSCH signal)를 통해서 한번에 송신되는 A/N 비트들이 어떠한 순서로 배치되어야 하는지에 대해서 단말/기지국 간에 규칙이 명확하게 정의될 수 있다. 한편, 페이로드에서 A/N 비트가 먼저 배치된다는 것의 의미는, 각 A/N비트(O ACK j)(where 0<j<Maximum number of A/N bits)에서 인덱스 j 가 더 낮은 A/N 비트에 해당 A/N 값이 맵핑 된다는 것을 의미할 수 있다.
요약하면:
- (복수의 서빙 셀이 1 단말에 구성(configure)된 경우)셀 인덱스가 더 낮은 서빙 셀에 대한 A/N 비트(i.e., 더 낮은 셀 인덱스를 가지는 서빙 셀을 통해서 수신된 DL 신호에 대한 A/N 비트)가 먼저 배치
- 동일한 셀 인덱스에 대한 A/N 비트들의 경우, HARQ 인덱스가 더 낮은 HARQ 프로세스와 연관된 A/N 비트가 먼저 배치
- 동일한 HARQ 프로세스 인덱스에 대한 A/N 비트들의 경우, TB 인덱스가 더 낮은 TB에 대한 A/N 비트가 먼저 배치
- (CBG 기반의 HARQ-ACK이 구성(configure)된 서빙셀인 경우) 동일한 TB 인덱스에 대한 A/N 비트들의 경우, CBG 인덱스가 더 낮은 CBG에 대한 A/N 비트가 먼저 배치
도 15는 기존의 전송블록(TB) 처리 과정을 예시한다. 도 15의 과정은 DL-SCH 전송 채널의 데이터에 적용될 수 있다. 상향링크 TB (혹은, 상향링크 전송 채널의 데이터)도 유사하게 처리될 수 있다.
도 15를 참조하면, 송신기는 TB에 에러 체크를 위해 CRC(예, 24-비트)(TB CRC)가한다. 이후, 송신기는 채널 인코더의 사이즈를 고려하여 TB+CRC를 복수의 코드블록(CB)으로 나눌 수 있다. NR에서 CB 최대 사이즈는 8424-비트 (LDPC 베이스 그래프 1) 또는 3840-비트 (LDPC 베이스 그래프 2)이다. 따라서, TB 사이즈가 CB 최대 사이즈보다 작으면 CB는 구성되지 않고, TB 사이즈가 CB 최대 사이즈보다 크면 TB는 CB 최대 사이즈 단위로 분할되어 복수의 CB가 생성된다. 각각의 CB에는 에러 체크를 위해 CRC(예, 24-비트)(CB CRC)가 개별적으로 부가된다. 각각의 CB는 채널 코딩 및 레이트 매칭을 거친 뒤, 하나로 합쳐져 코드워드(CW)가 생성된다. CBG 기반 (재)전송이 설정되지 않은 셀(예, CC)의 경우, 데이터 스케줄링과 그에 따른 HARQ 과정은 TB 단위로 수행되며, CB CRC는 TB 디코딩의 조기 종료(early termination)를 판단하기 위해 사용된다.
도 16은 기존의 CBG-기반 전송을 예시한다.
도 16을 참조하면, CBG 기반 (재)전송이 설정된(configured) 셀(예, CC)에 대해, 단말은 상위 계층 신호(예, RRC 신호)를 통해 전송블록 당 코드블록 그룹의 최대 개수 M(>1)에 관한 정보를 기지국으로부터 수신할 수 있다(S1602). CBG-기반 전송은 셀(예, CC)별로 설정될 수 있다. 이후, 단말은 데이터 초기 전송을 (PDSCH를 통해) 기지국으로부터 수신할 수 있다(S1604). 여기서, 데이터는 TB를 포함하고, 전송블록은 복수의 CB를 포함하며, 복수의 CB는 하나 이상의 CBG로 구분될 수 있다. 편의상, TB-CRC 및 CB-CRC는 도시하지 않았다. 여기서, CBG 중 일부는 ceiling (K/M)개의 CB를 포함하고, 나머지 CB는 flooring (K/M)개의 CB를 포함할 수 있다. K는 TB 내의 CB의 개수를 나타낸다. 이후, 단말은 데이터에 대해 CBG-기반의 A/N 정보를 기지국에게 피드백 할 수 있고(S1606), 기지국은 CBG에 기반하여 데이터 재전송을 수행할 수 있다(S1608). A/N 정보는 PUCCH 또는 PUSCH를 통해 전송될 수 있다. 여기서, A/N 정보는 데이터에 대해 복수의 A/N 비트를 포함하고, 각각의 A/N 비트는 데이터에 대해 CBG 단위로 생성된 각각의 A/N 응답을 나타낼 수 있다. A/N 정보의 페이로드 사이즈는 데이터(예, TB)를 구성하는 CBG와 관계없이 M에 기반하여 동일하게 유지될 수 있다.
한편, Type-3 코드북 기반의 A/N 피드백 전송이 기지국으로부터 지시된 경우, PUCCH (또는, PUSCH)를 통해 전송되는 A/N 페이로드 사이즈는, 단말에게 설정된(configured) CC 개수, 각 CC별로 설정된 HARQ 프로세스 개수, 각 CC별로 설정된 최대 TB 개수 또는 최대 CBG 개수에 비례적으로 증가할 수 있다. 이들 중, 특히 CBG 개수는 다른 파라미터들에 비해 급격히 A/N 페이로드 사이즈를 증가시키는 요인이 될 수 있으며, 이로 인해 많은 PUCCH 자원 오버헤드가 유발될 수 있다.
도 17은 Type-3 코드북 기반의 A/N 전송을 예시한다.
Type-3 코드북 기반의 A/N 피드백 전송이 기지국으로부터 PDCCH의 DCI를 통해서 지시될 수 있다. Type-3 코드북 기반의 A/N 피드백 전송이 지시되면, 단말은 상위 계층 시그널링을 통해서 획득된 Type-3 코드북에 대한 구성(configuration)을 바탕으로, Type-3 코드북 기반의 A/N 피드백 전송을 수행할 수 있다.
이와 같은, Type-3 코드북 기반의 A/N 피드백은 복수 CC들, 각 CC 당 복수 HARQ 프로세스들 및/또는 각 HARQ 프로세스 당 적어도 하나 이상의 TB/CBG들에 대해서 한번에 HARQ-ACK을 보고하는 One-shot A/N 피드백으로 이해될 수 있다.
기지국은 Type-3 코드북 기반의 A/N 피드백을 DCI를 통해 지시하기 이전에, 상위 계층 시그널링을 통해서 Type-3 코드북 기반의 A/N 피드백과 관련된 파라미터들을 설정(configure)할 수 있다. 예컨대, 상위 계층 시그널링은 셀 그룹 별로 제공될 수 있다. 기지국은 Type-3 코드북 기반의 A/N 피드백을 상위 계층 시그널링(e.g., RRC 시그널링)을 통해서 단말에 설정하면서, Type-3 코드북 기반의 A/N 피드백이 CBG 단위로 수행되어야 하는지 여부 및/또는 해당 A/N 값(들)에 관련된 NDI 값(e.g., DL grant DCI에 포함된 NDI 필드 값)을 함께 보고하여야 하는지 여부를 설정할 수 있다.
Type-3 코드북 기반의 A/N 피드백이 CBG 단위로 수행되어야 한다고 설정된 경우, 단말은 CBG 단위 전송이 수행되는 모든 CC들에 대해서는 CBG 단위로 Type-3 코드북 기반의 A/N 피드백을 수행할 수 있다. 그러나, TB 단위로 전송이 수행되는 CC들에 대해서는 단말은 여전히 TB 단위로 Type-3 코드북 기반의 A/N 피드백을 수행한다. 이와 달리, Type-3 코드북 기반의 A/N 피드백이 CBG 단위로 수행되어야 한다고 설정되지 않은 경우 단말은 모든 CC들(e.g., CBG 단위 전송이 수행되는 CC를 포함하는 모든 CC들)에 대해서 TB 단위로 Type-3 코드북 기반의 A/N 피드백을 수행할 수 있다.
Type-3 코드북 기반의 A/N 전송에서 NDI 값(e.g., DL grant DCI에 포함된 NDI 필드 값)을 함께 보고하도록 설정(e.g., 상위 계층 시그널링)된 단말은 매 TB 마다 1 개의 NDI 필드 값을 보고한다. 예를 들어, TB 단위로 Type-3 코드북 기반의 A/N 피드백이 생성되는 CC에 대해서, 단말은 해당 TB에 대한 A/N 비트 및 해당 NDI 값(e.g., 해당 TB를 스케줄하는 DCI의 해당 NDI 필드 값)을 함께 보고한다. 또한 예를 들어, CBG 단위로 Type-3 코드북 기반의 A/N 피드백이 생성되는 CC에 대해서, 단말은 해당 TB에 포함된 CBG들에 대한 A/N 비트들 및 해당 TB에 속하는 CBG들 공통의 해당 NDI 값(e.g., 해당 TB의 CBG들을 스케줄하는 DCI의 해당 NDI 필드 값)을 함께 보고할 수 있다.
DCI를 통해서 Type-3 코드북 기반의 A/N 피드백 요청이 수신되면 단말은 앞서 설명된 상위 계층 시그널링에 기반하여 Type-3 코드북 기반의 A/N 피드백을 생성 및 송신할 수 있다.
도 17에서는 Type-3 코드북 기반의 A/N 피드백에 관련된 상위 계층 시그널링 과정은 이미 완료되었다고 가정한다.
도 17을 참조하면, 단말은 적어도 하나의 CC 상에서 하나 이상의 PDSCH를 수신할 수 있다(S1702). 각 PDSCH는 하나 이상의 TB를 포함할 수 있다. 각 TB는 하나 이상의 CB를 포함할 수 있다. 해당 CC에 대해 CBG 단위 (재)전송이 설정된 경우, TB의 CB들은 복수의 CBG로 묶일 수 있다. 수신된 각 PDSCH는 각 (DL) HARQ 프로세스 ID에 대응되며, 해당 PDSCH에 대응되는 (DL) HARQ 프로세스 ID는 PDSCH를 스케줄링하는 DCI를 통해 지시될 수 있다. (DL) HARQ 프로세스 ID의 전체 개수는 CC 별로 설정될 수 있다.
이후, 단말은 수신된 하나 이상의 PDSCH에 대하여 해당 HARQ-ACK 프로세스 타이밍에 따라서 (Type-1/2 코드북 기반) A/N 정보를 전송할 수 있다(미도시). 설명의 논점을 흐리는 것을 방지하기 위하여 Type-1/2 코드북 기반 A/N 정보 전송의 과정은 도시되지 않았으며, 이에 대한 구체적인 설명은 생략하기로 한다.
한편, 단말은 Type-3 코드북 기반의 A/N 피드백 전송을 지시하기 위한 제어 정보를 기지국으로부터 수신할 수 있다(S1704). Type-3 코드북 기반의 A/N 피드백 전송은, (해당 서빙 CC/셀(들)의 전체 HARQ 프로세스 ID들에 대하여) HARQ 프로세스 ID-기반으로 A/N 피드백을 구성하는 과정을 포함할 수 있다. HARQ 프로세스 ID-기반의 A/N 피드백 구성은, A/N 피드백을 구성하는 A/N 정보들의 생성/배치를 HARQ 프로세스 ID를 기준으로 구성하는 것을 의미할 수 있다. (해당 서빙 CC/셀(들)의 전체 HARQ 프로세스 ID들에 대하여) 각 HARQ 프로세스 ID별로 A/N 정보가 구성/배치될 수 있다.
보다 구체적인 예로, Type-3 코드북 기반의 A/N 피드백 전송은, DCI(예, DL 그랜트)의 지시에 기반하여(e.g., 제안 방법 3의 CTI 참조), (전체 서빙 CC에 대해) 각 CC의 DL HARQ 프로세스 ID 전체에 대응되는 PDSCH에 대한 A/N 피드백을 HARQ 프로세스 ID-기반으로 구성하는 과정을 포함할 수 있다(제안 방법 3의 p-A/N 참조).
단말은 Type-3 코드북 기반의 A/N 피드백을 전송할 수 있다(S1706).
A/N 피드백은 특정 신호(예, RRC 또는 DCI 시그널링)를 기반으로 설정/지시된 타이밍을 통해 전송될 수 있다.
Type-3 코드북 기반의 A/N 피드백의 경우, A/N 페이로드는 (전체 서빙 CC에 대해) 각 CC의 (DL) HARQ 프로세스 ID 전체에 대하여 HARQ 프로세스 ID-기반으로 구성된 A/N 정보를 포함할 수 있다.
도 20 및 도 21은 Type-3 코드북 기반의 A/N 피드백의 다양한 예시들을 나타낸다. 보다 구체적으로 도 20은 Type-3 코드북 기반의 A/N 피드백을 위해 Spatial Bundling이 적용되지 않고, NDI 보고가 설정되지 않는 경우를 예시한다. 도 21은 Type-3 코드북 기반의 A/N 피드백을 위해 Spatial Bundling이 적용되고, NDI 보고가 설정되지 않는 경우를 예시한다.
일 예로, Type-3 코드북 기반의 A/N 피드백에 있어서, 특정 CC에 대해 CBG-기반 전송이 설정되지 않은 경우(e.g., 도 20의 (b)에서의 CC들 또는 도 21의 (c)에서의 CC#n), 특정 CC에 대한 A/N 페이로드 사이즈는 특정 CC에 대해 설정된 최대 TB 개수에 기반하여 결정될 수 있다. 예컨대, 특정 CC에 대한 A/N 페이로드는 각 HARQ 프로세스 ID에 대응하는 TB 레벨 A/N 정보를 포함할 수 있다. TB 레벨 A/N 정보는 TB 별로 1비트로 구성될 수 있다(configured).
반면, 특정 CC에 대해 CBG-기반 전송이 설정된 경우로써, Type-3 A/N 피드백을 위해 One-shot feedback CBG 파라미터가 설정된 경우(e.g., 도 20의 (a)에서의 CC들 또는 도 20의 (c)에서의 CC#m), 특정 CC에 대한 A/N 페이로드 사이즈는 특정 CC에 설정된 최대 CBG 개수에 기반하여 결정될 수 있다. 즉, 특정 CC에 대한 A/N 페이로드는 각 HARQ 프로세스 ID들에 대응하는 CBG 레벨 A/N 정보를 포함한다. CBG 레벨 A/N 정보는 CBG 별로 1비트로 구성될 수 있다. CBG 레벨 A/N 정보는 하나의 TB에 대해 복수(예, 도 16의 M)의 A/N 정보로 구성되므로, A/N 정보가 CBG 레벨로 구성되는 경우 A/N 페이로드 사이즈가 급격히 증가될 수 있다.
위와 같이 UL (PUCCH) 자원 오버헤드가 증가하는 문제를 고려하여, Type-3 코드북 기반의 A/N 피드백 전송이 지시된 경우, CBG 단위 (재)전송이 설정된 CC에 대해서는, 각 HARQ 프로세스 ID별로 TB-레벨(level) A/N을 생성/매핑/전송하도록 동작할 수 있는 방법이 필요할 수 있다. 이를 위해 상위 계층 시그널링이 사용될 수 있다. 예컨대, 단말은 명시적으로 CBG 기반 A/N을 Type-3 코드북에 대해서도 적용할 것을 지시하는 상위 계층 시그널링을 수신하지 않은 경우(e.g., Oneshot-feedback-CBG가 포함되지 않은 경우), 단말은 CBG 단위 (재)전송이 설정된 CC에 대해서도 각 HARQ 프로세스 ID별로 TB-레벨(level) A/N을 생성/매핑/전송하도록 동작할 수 있다(e.g., 20의 (c)에서의 CC#m, 또는 도 20의 (d)에서의 CC들).
이로 제한되는 것은 아니지만, Type-3 코드북 기반의 A/N 피드백의 페이로드의 송수신 오버헤드를 저감하기 위한 추가적인 방법으로, 앞서 설명된 공간 번들링(spatial bundling)이 사용될 수도 있다(e.g., 도 21). CBG 단위 (재)전송이 설정된 CC에 대해서 TB-레벨 A/N을 피드백하도록 설정(e.g., without Oneshot-feedback-CBG)된 단말은 추가적으로 공간 번들링을 수행하도록 설정될 수 있다. 공간 번들링된 A/N은 동일한 하나의 HARQ 프로세스 ID에 대응되는 CB들간 또는 CBG들간에 A/N을 번들링 함으로써 생성될 수 있다. 일 예로, TB-레벨 A/N은 복수 CB들 각각에 대한 CB-레벨 A/N들간 또는 복수 CBG들 각각에 대한 CBG-레벨 A/N들간에 logical AND 연산을 적용함으로써 생성될 수 있다. 이와 같이 동일한 하나의 HARQ 프로세스 ID에 대응되는 CB들간 또는 CBG들간에 A/N을 번들링 하는 것은 결과적으로, 동일한 하나의 HARQ 프로세스 ID에 대응되는 TB-레벨 A/N들간의 logical AND 연산을 하는 것과 동일한 의미로 이해될 수도 있다(e.g., 도 21의 (f)에서의 CC들 또는 도 21의 (h)에서의 CC#m).
이를 통해, Type-3 코드북 기반의 A/N 페이로드 사이즈와 PUCCH 자원 오버헤드가 감소될 수 있다.
한편, Type-3 코드북 기반의 A/N 피드백 전송이 아닌 경우(예, Type-1/2 코드북), CBG 단위 (재)전송이 설정된 CC에 대해서는, 해당 PDSCH (또는, HARQ 프로세스 ID)에 대하여 CBG-레벨 A/N을 생성/매핑/전송하도록 동작할 수 있다.
도 18은 본 발명의 예에 따른 Type-3 코드북 기반의 A/N 전송을 예시한다. 설명의 편의상 도 18에서 Oneshot-feedback-CBG가 단말에 설정되지 않았다고 가정한다.
도 18을 참조하면, 단말은 CBG 레벨 전송이 구성된(configured) 캐리어(예, CC) 상에서, 적어도 하나의 PDSCH를 기지국으로부터 수신할 수 있다(S1802). 이후, 단말은 상기 적어도 하나의 PDSCH에 대한 A/N 정보를 포함하는 제어 정보(e.g., UCI through PUCCH or PUSCH)를 기지국에게 전송할 수 있다(S1804). 여기서, 상기 적어도 하나의 PDSCH는 각각 TB에 대응되는 CBG들을 포함하고, 상기 캐리어의 전체 HARQ 프로세스 ID들 중 하나와 연관될 수 있다. 이때, 상기 제어 정보가 상기 캐리어의 전체 HARQ 프로세스 ID들에 대해 HARQ 프로세스 ID-기반으로 구성된 것에 기반하여(예, Type-3 코드북 기반의 A/N 피드백 전송이 지시된 경우), 상기 캐리어의 각 HARQ 프로세스 ID에 대한 A/N 정보는, 상기 캐리어에 대해 CBG 레벨 전송이 구성됐음에도 불구하고, (Oneshot-feedback-CBG가 단말에 설정되지 않았다는 것에 기반하여) TB 레벨 A/N 정보로 구성될 수 있다. 한편, 상기 제어 정보가 상기 캐리어의 상기 적어도 하나의 PDSCH에 대해 슬롯 인덱스-기반 또는 DAI-기반으로 구성된 것에 기반하여(예, Type-3 코드북 기반의 A/N 피드백 전송이 지시되지 않은 경우, 혹은 Type-1/2 코드북 기반의 A/N 피드백 전송이 지시된 경우), 상기 적어도 하나의 PDSCH에 대한 A/N 정보는 CBG 레벨 A/N 정보로 구성될 수 있다(Oneshot-feedback-CBG가 단말에 설정되는지 여부에 관계 없이). 예컨대, (Oneshot-feedback-CBG 파라미터는 Type-1/2/2a 코드북이 아닌 Type-3 코드북에 한정적으로 적용되는 파라미터로 이해될 수 있다.
여기서, 상기 CBG 레벨 A/N 정보의 사이즈는 상기 캐리어에 대해 설정된 최대 CBG 개수에 기반하며, 상기 TB 레벨 A/N 정보의 사이즈보다 클 수 있다.
여기서, 단말은 단계 S1804 이전에 DCI를 더 수신할 수 있고, 상기 제어 정보는, 상기 DCI 내의 코드북 타입 정보(예, CTI)에 기반하여, 상기 캐리어의 상기 전체 HARQ 프로세스 ID들에 대해 구성될 수 있다.
이와 같이 Type-3 코드북 기반의 A/N 피드백 전송이 지시된 경우, CBG 단위 (재)전송이 설정된 CC에 대하여, TB-레벨 A/N을 생성/전송할지, 아니면 CBG-레벨 A/N을 생성/전송할지를 상위계층 신호(예, RRC 시그널링을 통해 송신되는 Oneshot-feedback-CBG 파라미터)를 통해 설정할 수 있다.
도 19는 본 발명의 예에 따른 A/N 전송을 예시한다.
도 19를 참조하면, CC (혹은, 셀)를 통해 PDSCH(s)에 대한 A/N을 포함하는 A/N 페이로드(1902)는 상황에 따라 A/N 코드북 구성 방식이 달라질 수 있다. 먼저, 상기 CC에 대해 type-3 코드북 기반의 A/N 피드백 전송이 지시되지 않은 경우(예, type-1, 2 코드북 기반의 A/N 피드백 전송이 지시된 경우(예, 슬롯 인덱스-기반 또는 DAI-기반으로 A/N 피드백 전성이 지시된 경우))(1904), 단말은 상기 CC에 대해 CBG 기반 전송이 설정(configured)되었는지 여부에 따라, 상기 CC에서 수신된 PDSCH(s)에 대해 (HARQ 프로세스 ID에 기반하지 않고; 예 슬롯 인덱스-기반 또는 DAI-기반으로) TB-레벨 A/N 또는 CBG-레벨 A/N을 구성할 수 있다(Case 1).
한편, 상기 CC에 대해 type-3 코드북 기반의 A/N 피드백 전송이 (DCI를 통해) 지시되면(1906a), 단말은 type-3 코드북에 관련한 상위계층(예, RRC) 시그널링(1906b)에 더 기반하여 A/N 코드북 구성 방식을 다르게 할 수 있다. 도 19에서는 type-3 코드북 기반의 A/N 페이로드를 생성하는 단말 프로세싱의 설명의 편의를 위하여 1906a가 1906b보다 먼저 도시되었으나, 실제 시간 도메인 상에서 단말은 1906b에 해당하는 RRC 시그널링을 먼저 수신한 이후 1906a의 지시(DCI를 통해 type-3 코드북 기반의 A/N 피드백 전송을 수행할 것을 지시)를 수신한다는 것을 당업자라면 이해할 수 있다.
구체적으로, type-3 코드북에 관련한 상위계층(예, RRC) 시그널링(1906b)은, CBG 단위 (재)전송이 설정된 CC에 대하여, TB-레벨 A/N을 생성/전송할지, 아니면 CBG-레벨 A/N을 생성/전송할지를 지시하는 정보(e.g., Oneshot-feedback-CBG 파라미터)를 포함할 수 있다. CBG-레벨 A/N을 생성이 지시된 경우(e.g., Oneshot-feedback-CBG 파라미터가 상위 계층 시그널링 1906b에 포함된 경우) Case 1과 마찬가지로, 단말은 상기 CC에 대해 CBG 기반 전송이 설정되었는지 여부에 따라, 상기 CC의 전체 HARQ 프로세스 ID들에 대해 (HARQ 프로세스 ID-기반으로) TB-레벨 A/N 또는 CBG-레벨 A/N을 구성할 수 있다(Case 2)(e.g., 도 20의 (a) 또는 (c)).
반면, TB-레벨 A/N을 생성이 지시된 경우(e.g., Oneshot-feedback-CBG 파라미터가 상위 계층 시그널링 1906b에 포함되지 않은 경우) 도 18을 참조하여 설명한 바와 같이, 단말은 상기 CC에 대해 CBG 기반 전송이 설정됐더라도, 상기 CC의 전체 HARQ 프로세스 ID들에 대해 (HARQ 프로세스 ID-기반으로) TB-레벨 A/N을 구성할 수 있다(Case 3)(e.g., 도 20의 (d)).
한편, 상기 CC에 대해 CBG 기반 전송이 설정되지 않은 경우(즉, TB 기반 전송이 설정된 경우), 단말은 A/N 페이로드의 코드북 타입과 관계없이 상기 CC에 대한 A/N 정보는 항상 TB 레벨 A/N으로 구성할 수 있다. 생성된 A/N 페이로드(1902)는 단말로부터 기지국으로 전송된다. 기지국은 A/N 구성 방식에 따라 A/N 페이로드 내의 A/N 정보를 해석하고, A/N 정보에 기반하여 PDSCH (재)전송을 수행할 수 있다.
(c) A/N 피드백 불일치(misalignment)에 대한 핸들링
Type-1 (또는 Type-2 또는 Type-2a) 코드북 기반의 A/N 피드백 전송이 설정된 상황에서 단말이 특정 시점(예, 슬롯 #n)에서 HARQ 프로세스 ID=X에 대하여 ACK을 피드백/전송할 수 있다. 이후, 다른 특정 시점(예, 슬롯 #(n+K))에서의 type-3 코드북 기반의 A/N 피드백 전송이, 기지국으로부터 단말에게 지시될 수 있다. 한편, 특정 DCI가 HARQ 프로세스 ID=X에 대응되는 PDSCH를 스케줄링하면서 이에 대한 A/N 전송 타이밍을, type-3 코드북 기반 A/N 전송이 지시된 시점(예, 슬롯 #(n+K))과 동일한 시점으로 지시할 수 있다. 만약, 단말이 해당 DCI의 검출에 실패하면 type-3 코드북 상에서 HARQ 프로세스 ID=X에 대해 단말과 기지국간에 A/N 피드백 불일치(예, DTX-to-ACK 에러)가 발생될 수 있다. 이로 인해, 비효율적인 (RLC 레벨) 재전송이 불필요하게 초래될 수 있다.
위의 문제를 해결하기 위해, 특정 시점(예, 슬롯 Y)이 type-3 코드북 기반 A/N 전송 시점으로 지시된 경우, 단말은, PDSCH 전송을 스케줄링 하면서 슬롯 Y를 A/N 전송 타이밍으로 지시하는 (및/또는, 새로운 TB의 최초 전송을 스케줄링 (혹은, 토글된 NDI 값을 지시)하는) DCI (수신)을 기대하지 않고 그러한 DCI는 없다고 가정한 상태에서 동작할 수 있다. 이에 따라, 상기와 같은 DCI를 수신/한 경우, 단말은 해당 DCI를 무시할 수 있다(discard). 예를 들어, 단말은 해당 DCI에 의해 지시되는 동작을 수행하지 않을 수 있다.
예를 들어, 제1 DCI를 통해서 type-3 코드북 기반 A/N 전송을 특정 슬롯 에서 수행할 것이 단말에 지시된 경우 단말은, PDSCH를 스케줄링하면서 동일한 특정 슬롯 에서 A/N 전송 타이밍으로 지시하는 제2 DCI는 수신되지 않을 것이라고 가정할 수 있다. 이와 같은 가정에도 불구하고, 제2 DCI가 수신되는 경우, 단말은 제2 DCI를 무시하고, 제2 DCI에 따른 동작은 수행하지 않을 수 있다.
예를 들어, 임의의 코드북 타입 (예를 들어, type-1/2/2a/3 코드북)을 기반으로 특정 HARQ 프로세스 ID = X에 대응되는 PDSCH에 대하여 단말이 ACK를 보고 (전송)한 시점이 슬롯 Y이고, 이후 (해당 HARQ 프로세스 ID = X에 대한 최초 HARQ-ACK 피드백 시점으로써) 특정 코드북 타입 (예를 들어, type-3 코드북)에 기반한 HARQ-ACK 피드백 전송 타이밍으로 지시된 시점이 슬롯 Z라고 가정한다. 이 경우 단말은, 상기 슬롯 Y (혹은 해당 슬롯 Y 이후 특정 (다음 슬롯) 시점)부터 상기 슬롯 Z (혹은 해당 슬롯 Z내에 지시된 PUCCH 시작 심볼로부터 단말의 minimum PDSCH processing time만큼 이전 시점) 사이의 구간을 통해서는 상기 HARQ 프로세스 ID = X에 대응되는 PDSCH를 스케줄링하는 (그리고/또는 새로운 TB의 최초 전송을 스케줄링 (혹은 toggled된 NDI값을 지시)하는) DCI (수신)을 기대하지 않고 그러한 DCI는 없다고 가정한 상태에서 동작할 수 있다. 만약 단말이 상기와 같은 DCI를 수신한 경우 단말은 해당 DCI를 무시 (discard)하도록 동작할 수 있다.
추가적으로, 상기 Type-3 코드북이 설정된 경우, 임의의 코드북 type (예를 들어, Type-1/2/2a/3 코드북)에 기반하여 단말은 특정 HARQ 프로세스 ID = X에 대응되는 PDSCH #1에 대한 ACK을 최초 A/N 피드백 시점에만 한번 report (전송)하도록 (그런 후에 해당 HARQ 프로세스 ID = X에 대한 A/N state를 DTX 혹은 NACK으로 reset하도록) 동작할 수 있다. 따라서, PDSCH #1에 대한 최초 A/N 피드백 시점 이후 다음 A/N 피드백 시점까지 해당 HARQ 프로세스 ID = X에 대한 추가 PDSCH 스케줄링이 없었을 경우, 단말은 해당 HARQ 프로세스 ID = X에 대응되는 A/N을 DTX/NACK으로 report하도록 동작할 수 있다. 이와 달리 만약 PDSCH #1에 대한 최초 A/N 피드백 시점 이후 다음 A/N 피드백 시점까지 해당 HARQ 프로세스 ID = X에 대한 추가적인 PDSCH #2의 스케줄링이 있었을 경우 단말은, 1) 만약 해당 PDSCH #2가 (toggled NDI를 지시하는 DCI로 스케줄링된) 새로운 데이터 (TB)에 대한 전송이면 해당 PDSCH #2에 대한 decoding 결과에 해당하는 ACK 또는 NACK을 report하도록 동작하거나, 또는 2) 만약 해당 PDSCH #2가 (non-toggled NDI를 지시하는 DCI로 스케줄링된) 이전 데이터 전송 (예를 들어, 상기 PDSCH #1을 통해 전송된 TB)에 대한 재전송이면 (이전 A/N state에 해당하는) ACK을 report하도록 동작할 수 있다. 즉 결과적으로 2)의 경우에는 단말은 예외적으로 이전 A/N state를 reset하지 않고 유지하도록) 동작할 수 있다. 한편, 상기에서 A/N state를 (DTX/NACK으로) reset하는 기준/여부는 단말이 (예를 들어, ACK인) A/N 피드백을 실제 전송했는지의 유무에 따라 결정될 수 있다. 일례로 단말이 LBT에 실패하여 A/N (PUCCH/PUSCH) 전송을 생략 (drop)한 경우에는 해당 A/N state를 reset하지않고 (예를 들어, ACK으로) 유지하도록 동작할 수 있다.
또 다른 방안으로, 상기 Type-3 코드북에 기반하여 단말이 특정 HARQ 프로세스 ID = X에 대한 A/N을 피드백/전송할 때에 해당 HARQ 프로세스 ID = X에 대하여 (임의의 (e.g. Type-1/2/2a/3) 코드북을 기반으로) 이전 A/N 피드백 시점에 report (전송)했던 A/N state (예를 들어, ACK)를 (DTX 혹은 NACK으로) reset하도록 동작할 수 있다. 이에 따라 이전 A/N 피드백 시점 이후 상기 Type-3 코드북 기반 피드백 시점까지 해당 HARQ 프로세스 ID = X에 대한 추가 PDSCH 스케줄링이 없었을 경우, 단말은 HARQ 프로세스 ID = X에 대응되는 A/N을 DTX/NACK으로 report하도록 동작할 수 있다. 그렇지 않고 만약 이전 A/N 피드백 시점 이후 상기 Type-3 코드북 기반 피드백 시점까지 HARQ 프로세스 ID = X에 대한 추가적인 PDSCH 스케줄링이 있었을 경우 단말은, 1) 만약 추가적으로 스케줄된 PDSCH가 (toggled NDI를 지시하는 DCI로 스케줄링된) 새로운 데이터에 대한 전송이면 해당 PDSCH에 대한 decoding 결과에 해당하는 ACK 또는 NACK을 report하도록 동작하거나, 또는 2) 만약 해당 PDSCH가 (non-toggled NDI를 지시하는 DCI로 스케줄링된) 이전 데이터 전송에 대한 재전송이면 (이전 A/N state에 해당하는) ACK을 report하도록, 즉 결과적으로 이 경우에는 예외적으로 이전 A/N state를 reset하지 않고 유지하도록) 동작할 수 있다. 한편, 이 경우에도 A/N state를 (DTX/NACK으로) reset하는 기준/여부는 단말이 (예를 들어, ACK인) A/N 피드백을 실제 전송했는지의 유무에 따라 결정될 수 있다. 일례로 단말이 LBT에 실패하여 A/N (PUCCH/PUSCH) 전송을 생략 (drop)한 경우에는 해당 A/N state를 reset하지않고 (예를 들어, ACK으로) 유지하도록 동작할 수 있다.
한편, 상기에서 단말이 기대하지 않고 무시할 대상이 되는 DCI에서, PDSCH 전송을 스케줄링 하면서 동시에 type-3 코드북 기반 A/N 전송을 지시하는 DCI는 제외될 수 있다. 즉, 단말은 해당 DCI를 무시하지 않고 대응되는 동작을 수행할 수 있다. 예를 들어, 단말은 해당 DCI에 의해 스케줄링된 PDSCH에 대한 A/N까지 포함하여 type-3 코드북 기반 A/N 피드백을 구성/전송할 수 있다.
한편, 단말은 A/N 피드백과 해당 A/N 피드백에 관련된 NDI 비트를 함께 보고하도록 설정(또는 지시)될 수도 있다. 예를 들어, 단말은 PDSCH를 스케줄하는 특정 DCI에 기반하여 PDSCH를 통해 수신되는 TB/CBG를 수신하고, 해당 TB/CBG 기반 A/N을 피드백하면서, 특정 DCI에 포함된 NDI 필드의 값을 함께 송신할 수 있다. 예컨대, 각 HARQ 프로세스 ID 별로 DL grant DCI를 통해 (가장 최근) 수신된 NDI 비트와 대응되는 PDSCH에 대한 A/N 비트를 함께 피드백하는 방법을 고려할 수 있다.
또 다른 방안으로, 각 HARQ 프로세스 ID별로 DL grant DCI를 통해 (가장 최근) 수신된 NDI 비트와 대응되는 PDSCH에 대한 A/N 비트 (예를 들어, NACK을 bit '0'로, ACK을 bit '1로 매핑)를, 서로 XOR (exclusive OR) 연산을 취하여 산출된 비트를 피드백하는 방법을 고려할 수 있다. 예컨대, 단말은 해당 NDI 비트와 해당 A/N 비트의 XOR 연산을 수행한 결과를 보고할 수도 있다.
한편, 상기 방안들의 적용을 감안할 경우 CBG 단위의 (재)전송/피드백이 설정된 CC 및/또는 TB별 A/N간 (logical AND 연산에 따른) spatial bundling이 설정된 CC에 대하여 다음과 같은 A/N 피드백 방법(e.g., NDI를 포함하는 피드백)을 고려할 수 있다.
1) CBG 단위 전송이 설정된 CC의 경우
A. Base
i. 해당 CC에 설정된 (TB당) 최대 CBG 수를 N으로 가정하기로 한다.
B. Opt 1
i. 단말은, 각 HARQ 프로세스 ID에 대하여 (각 TB별로) NDI 비트와 N개 CBG에 대응되는 N개 A/N 비트 각각을 서로 XOR 연산하여 산출된 N개 비트를 피드백하도록 동작할 수 있다. 예컨대, N개의 XOR 연산 결과들이 보고될 수 있다.
C. Opt 2
i. 단말은, 각 HARQ 프로세스 ID에 대하여 (각 TB별로) 먼저 N개 CBG에 대응되는 A/N들간에 (logical AND 연산에 따른) bundling을 적용하여 단일 A/N 비트를 생성하고, 해당 단일 A/N 비트와 NDI 비트를 서로 XOR 연산하여 산출된 단일 비트를 피드백하도록 동작할 수 있다.
D. Opt 3
i. 각 HARQ 프로세스 ID에 대하여 (각 TB별로) 먼저 N개 CBG에 대응되는 A/N들간에 (logical AND 연산에 따른) bundling을 적용하여 단일 A/N 비트를 생성하고, 해당 A/N 비트와 (이에 대응되는 TB에 대한) NDI 비트를 함께 (예를 들어, 각 HARQ 프로세스 ID (해당 HARQ 프로세스 ID의 각 TB)별로 1-bit A/N과 1-bit NDI를) 피드백하도록 동작
E. Opt 4
i. CBG 단위 전송이 (어떠한 CC에도) 설정되지 않은 경우에는 단말은 (모든 CC들에 대해) 각 HARQ ID의 각 TB별로 (1-bit) A/N 정보와 (1-bit) NDI 정보를 함께 피드백할 수 있다. 이와 달리 CBG 단위 전송이 (적어도 하나의 CC에) 설정된 경우에는 단말은 (모든 CC들에 대해) 각 HARQ ID별로 (해당 CC에 설정된 최대 TB/CBG 수에 따라) 각 TB/CBG에 대한 A/N 비트만을 피드백하도록 동작
F. Note
i. 상기 Opt 1/2/3에서 만약 TB 전체 decoding 결과가 ACK이면 (실제 해당 TB를 구성하는 CBG 수가 N보다 작은 경우에도) 단말은 N개 CBGs 모두에 ACK 비트를 매핑할 수 있음
2) Spatial bundling이 설정된 CC의 경우
A. Base
i. 해당 CC에 설정된 최대 TB 수가 2개 이상이라고 가정하기로 한다.
B. Opt 1
i. 단말은 각 HARQ 프로세스 ID별로 먼저 복수 TB에 대응되는 A/N들간에 spatial bundling을 적용하여 단일 A/N 비트를 생성하고, 해당 A/N 비트와 (복수 TB들중) 특정 하나의 TB에 대응되는 NDI 비트를 서로 XOR 연산하여 산출된 단일 비트를 피드백하도록 동작할 수 있다.
C. Opt 2
i. 단말은 각 HARQ 프로세스 ID별로 복수 TB에 대응되는 A/N들간에 spatial bundling을 적용하여 생성된 단일 A/N 비트와, (복수 TB들중) 특정 하나의 TB에 대응되는 NDI 비트를 함께 (예를 들어, 각 HARQ 프로세스 ID별로 1-bit A/N과 1-bit NDI를) 피드백하도록 동작할 수 있다.
D. Opt 3
i. 단말은 각 HARQ 프로세스 ID별로 복수 TB에 대응되는 A/N들간에 spatial bundling을 적용하여 생성된 단일 A/N 비트와, 해당 복수 (e.g. L개) TB 각각에 대응되는 복수 NDI 비트를 함께 (예를 들어, 각 HARQ 프로세스 ID별로 1-bit A/N과 L-bit NDI를) 피드백하도록 동작할 수 있다.
E. Opt 4
i. 단말은 상기 Type-3 코드북 기반 A/N 피드백의 경우 예외적으로 설정된 spatial bundling을 적용하지 않을 수 있으며, 이에 따라 각 HARQ 프로세스 ID의 각 TB별로 A/N 비트와 NDI 비트를 서로 XOR 연산하여 산출된 단일 비트를 피드백하도록 동작할 수 있다.
F. Opt 5
i. 단말은 상기 Type-3 코드북 기반 A/N 피드백의 경우 예외적으로 설정된 spatial bundling을 적용하지 않을 수 있으며, 이에 따라 각 HARQ ID의 각 TB별로 A/N 비트와 NDI 비트를 함께 (예를 들어, 각 HARQ ID의 각 TB별로 1-bit A/N과 1-bit NDI를) 피드백하도록 동작할 수 있다. 예컨대, 단말이 해당 CC에 대해서 (a) Spatial Bundling을 통해 A/N 피드백을 수행하도록 구성되고(e.g., 상위 계층 시그널링), (b) Type-3 코드북 기반 A/N 피드백과 해당 TB(s)에 대한 NDI(s) (e.g., 해당 TB를 스케줄하는 DL grant DCI에 포함된 NDI 필드의 비트값)을 함께 보고하도록 구성된 (e.g., 상위 계층 시그널링) 상태에서, (b) PDCCH의 DCI가 Type-3 코드북 기반 A/N 피드백을 수행할 것을 지시하면, 단말은 (a) Spatial Bundling 구성에도 불구하고 Spatial Bundling을 수행하지 않고 (b) 구성 및 (c) 지시에 기초하여 Type-3 코드북 기반 A/N 피드백과 해당 TB(s)에 대한 NDI(s)를 보고할 수 있다.
ii. 예컨대, 단말은 상위 계층 시그널링을 통해 Oneshot-feedback-NDI 파라미터를 수신한 경우 Type-3 코드북 기반의 A/N 피드백을 수행함에 있어서 NDI를 함께 송신(e.g., PUCCH or PUSCH)할 수 있다. 단말은 Type-3 코드북 기반의 A/N 피드백을 NDI와 함께 보고하도록 구성된 경우(e.g., Oneshot-feedback-NDI 파라미터를 수신), 단말은 Type-3 코드북 기반 A/N 피드백에 대해서는 예외적으로 Spatial Bundling을 수행하지 않을 수 있다. 기지국은 상위 계층 시그널링을 통해 Oneshot-feedback-NDI 파라미터를 단말에 송신한 경우 Type-3 코드북 기반의 A/N 피드백 및 NDI를 함께 수신할 수 있다. 기지국은 Type-3 코드북 기반의 A/N 피드백과 NDI를 함께 보고하도록 단말에 설정한 경우(e.g., Oneshot-feedback-NDI 파라미터를 송신), 기지국은 Type-3 코드북 기반 A/N 피드백에 대해서는 예외적으로 Spatial Bundling이 수행되지 않는다고 가정하고, A/N 피드백을 디코딩할 수 있다.
....iii. 도 22는 Opt. 5에 따른 다양한 Type-3 코드북 기반 A/N 피드백의 페이로드들을 도시한다. 도 22의 (i), (j), (k), (l)을 참조하면 단말에 Spatial Bundling과 Oneshot-feedback-NDI이 함께 설정된 경우, Spatial Bundling은 Type-3 코드북 기반 A/N 피드백에 대해서는 예외적으로 수행되지 않고 NDI가 보고된다. 다만, 이와 같은 예외는 Type-3 코드북 기반 A/N 피드백에 대해서 적용되는 것이므로, Type-1/2/2a 코드북 기반의 A/N 피드백에 대해서는 여전히 Spatial Bundling이 적용된다. 한편, 도 22에 도시된 바와 같이 NDI는 각 TB/CBGs 별 A/N비트들의 마지막에 배치될 수 있다. 스케줄되지 않은 TB에 대한 NDI 값은 0으로 보고될 수 있다. 한편, 도 22의 (i), (j), (k), (l)에서 Spatial Bundling이 설정되었다고 가정하였으나, Spatial Bundling이 설정되지 않았더라도 Type-3 코드북 기반 A/N 피드백의 페이로드들은 도 22의 (i), (j), (k), (l)와 동일하게 생성/송신될 것임을 당업자라면 이해할 수 있다.
....iv. 한편, 본 실시예에서 단말이 Type-3 코드북 기반의 A/N 피드백 과정에서 NDI를 함께 보고하는 것은, 단말이 NDI를 포함하는 UCI를 송신(e.g., PUCCH 송신 또는 PUSCH에 피기백된 UCI 송신)하는 것으로 이해될 수 있다. 이와 같이 단말이 UCI를 통해서 NDI를 송신하는 본 실시예는, 단말이 DCI를 통해서 NDI를 수신하는 종래 기술과는 구분될 필요가 있으며 양자 간에는 명확한 차이점이 있다. 편의상 DL data(e.g., PDSCH)를 스케줄링하는 DL grant DCI에 포함되는 NDI를 DL data NDI라고 지칭하고, UL data(e.g., PUSCH)를 스케줄링하는 UL grant DCI에 포함되는 NDI를 UL data NDI라고 지칭하기로 한다. DL/UL data NDI 필드의 개수는 DCI가 스케줄하는 DL/UL TB(CBGs를 포함하는 TB) 수에 따라서 달라질 수 있으나, TB(CBGs를 포함하는 1-TB) 당 1개의 DL/UL data NDI 필드(e.g., 1-bit)가 연계된다. 기지국은 DL data NDI 필드를 통해서 해당 DL data 전송(e.g., TB/CBGs)이 초기(initial) 전송인지 아니면 재전송인지 여부를 단말에 알릴 수 있다. 기지국은 UL data NDI 필드를 통해서 단말에 새로운 UL data 전송을 스케줄하거나 또는 UL data 재전송을 스케줄할 수 있다. 기지국은 이전(previous) UL 전송에서 해당 UL data를 올바르게 수신하지 못한 경우에 UL data NDI 필드를 통해서 UL data 재전송을 스케줄할 수 있으며, 해당 UL data를 올바르게 수신하였다면 UL data NDI 필드를 토글링하여 새로운 UL data 전송을 스케줄할 수 있다. 이와 같이 UL data NDI는 기지국의 UL data 수신 상태를 나타내는 일종의 A/N과 유사하게 사용될 수 있으며, 기지국의 HARQ 프로세스와 관련될 수 있다. 한편, 본 실시예에 따라서 송신되는 UCI 내의 NDI는 단말이 기지국에 송신하는 것으로써, 단말이 제1 DL data에 대한 제1 A/N을 송신하는 경우 UCI 내의 재1 NDI는 재1 DL data와 연계된 DL data NDI와 동일한 값으로 설정되고, 제2 DL data에 대한 제2 A/N을 송신하는 경우 UCI 내의 제2 NDI는 제2 DL data와 연계된 DL data NDI와 동일한 값으로 설정된다. 예컨대, UCI의 NDI는 UCI에 포함된 해당 A/N과 연계된 DL data NDI를 기지국에 보고하기 위한 것으로 이해될 수 있다. DL data NDI는 기지국이 이미 알고 있는 값이기 때문에, 단말이 자신이 수신한 DL data NDI를 UCI를 통해서 송신(i.g., UL control NDI)를 송신하는 과정 자체가 기존에는 존재하지 않았다. 그러나, 1 UE에 설정되는 CC 개수 증가, HARQ 프로세스 개수 증가 및 CBGs 기반 송신 등의 원인으로 단말과 기지국 간에 송수신되는 A/N 비트들이 증가한 상태에서 A/N misalignment 에러가 발생된 부분과 원인을 보다 효율적으로 파악하고 대처하기 위한 방안이 필요하고, 이를 위해 단말은 Type-3 코드북 기반 A/N 피드백시 자신이 알고 있는 DL data NDI를 함께 보고 할 수 있다. 이와같이 DL data NDI까지 UCI를 통해 보고하는 상태라면(e.g., 제1 NDI 및 제2 NDI 각각 보고), 이는 UCI의 오버헤드를 저감하기 위한 목적 보다는 정확하게 각 TB(CBG 별로) A/N 비트들을 보고하는 것이 더 중요할 수 있다. 따라서, UCI를 통해 NDI를 보고하도록 설정된 단말은, Spatial Bundling 설정에도 불구하고 제1 TB의 A/N과 제2 TB의 A/N을 Logical AND 연산하지 않고, 제1 TB의 A/N과 제2 TB의 A/N 각각을 보고하는 것이 바람직할 수 있다.
....v. 도 23은 본 발명의 예에 따른 Type-3 코드북 기반의 A/N 전송을 예시한다. 구체적으로, 도 23은 도 17 내지 도 22에 대한 실시예를 기반으로 하는 단말/기지국 동작의 예시들 중의 하나이고, 도 17 내지 도 22를 통해 설명된 내용은 편의상 생략될 수 있으며, 본 발명의 권리범위는 도 23에 한정되지 않는다.
도 23을 참조하면, 단말은 상위 계층 시그널링을 통해 HARQ-ACK 응답과 관련된 구성(configuration)을 네트워크로부터(적어도 하나의 기지국으로부터) 수신할 수 있다(2305). 예를 들어, RRC 재구성 메시지 또는 RRC 셋업 메시지등을 통해 셀 그룹 마다 HARQ-ACK 응답과 관련된 구성 (e.g., Spatial Bundling, HARQ-ACK-OneShotFeedback, HARQ-ACK-OneShotFeedback NDI 및/또는 HARQ-ACK-OneShotFeedback CBG)이 제공될 수 있으며, 이에 한정되지 않는다.
단말은 네트워크로부터(적어도 하나의 기지국으로부터) 하나 또는 둘 이상의 PDCCH(s)를 적어도 하나의 DL CC를 통해 수신할 수 있다(2310). PDCCH(s)는 PDSCH를 스케줄링하는 DL grant DCI를 포함할 수 있다. DL grant DCI는 해당 PDSCH의 HARQ 프로세스 인덱스를 지시하는 필드 (HARQ process number), 해당 PDSCH의 (CBG가 포함된) TB가 신규 전송인지 또는 재전송인지 여부를 지시하는 필드(New Data Indicator, NDI) 및 해당 PDSCH에 대한 HARQ-ACK 응답을 단말이 언제 기지국에 송신하여야 하는지를 지시하는 필드(PDSCH-to-HARQ_feedback timing indicator)를 포함할 수 있다. DCI grant DCI가 특정 DCI 포맷인 경우, 추가적으로, DCI grant DCI는 Type-3 코드북 기반의 A/N 피드백이 요청되었는지 여부를 지시하는 필드(One-shot HARQ-ACK request)를 더 포함할 수 있다.
단말은 네트워크로부터(적어도 하나의 기지국으로부터) 하나 또는 둘 이상의 PDSCH(s)를 적어도 하나의 DL CC를 통해 수신할 수 있다(2315). PDCCH와 PDSCH는 동일한 DL CC에서 수신될 수도 있으나, 크로스-캐리어 스케줄링 방식에 기반하여 PDCCH와 PDSCH가 다른 DL CC에서 수신될 수도 있다. PDSCH(s)는 수신된 PDCCH(2310)에 의해 스케줄된 것을 포함할 수 있으나, 이에 한정되지 않으며 예컨대 SPS PDSCH를 포함할 수도 있다.
단말은 수신된 PDSCH(s)에 대하여 HARQ-ACK 응답을 네트워크에(적어도 하나의 기지국에) 송신할 수 있다(2320, 2330). HARQ-ACK 응답은 Type-1/2/2a (2320) 및/또는 Type-3 코드북 기반의 A/N 피드백을 포함(2325 Y, 2330)할 수 있다. HARQ-ACK 응답은 PUCCH 또는 PUSCH의 UCI를 통해 송신될 수 있다.
예를 들어, 수신된 PDCCH(s)(2310)의 DCI가 지시하는 HARQ-ACK 송신 타이밍에서, 해당 DCI가 스케줄한 DL 데이터에 대한 A/N이 Type-1, 2 또는 2a 코드북 기반으로 송신될 수 있다(2320, e.g., FIG. 19의 Case 1). 단말은 상위 계층 시그널링(2305)(e.g., semi-static/dynamic)에 따라서, Type-1, 2 또는 2a 코드북 중에서 HARQ-ACK 응답의 기반이 되는 코드북의 타입을 결정할 수 있다.
한편, 상위 계층 시그널링(2305)이 Type-3 코드북 기반 HARQ-ACK 피드백 구성을 포함하고, DCI를 통해서 Type-3 코드북 기반 HARQ-ACK이 단말에 지시(e.g., One-shot HARQ-ACK request)되면 단말은 Type-3 코드북 기반 HARQ-ACK을 생성하여 네트워크에 송신할 수 있다(2330). Type-3 코드북 기반 HARQ-ACK을 지시하는 DCI는 PDCCH(s)(2310) 중 하나일 수 도 있으나, 별도의 PDCCH(미도시)를 통해서 단말에 수신될 수도 있다.
Type-3 코드북 기반의 HARQ-ACK 페이로드 내에서 각 A/N 비트의 맵핑은 앞서 설명된 바와 같이 “TB/CBG 인덱스 first - HARQ 프로세스 인덱스 second - CC 인덱스 third” 방식(e.g., 도 20~23)이 사용될 수 있으며, 이에 한정되지 않는다.
CC가 CBG-기반 송신/스케줄링이 수행되는 CC이고 (2335 CBG), 상위 계층 시그널링(2305)을 통해 Type-3 코드북 기반 HARQ-ACK에도 CBG-기반 A/N 보고가 해당 CC에 설정(2340 Y, One-shot feedback CBG)된 경우, 단말은 해당 CC에 대해서 CBG 기반 A/N 비트들을(e.g., FIG. 19의 CASE 2) 맵핑할 수 있다. 또한, Type-3 코드북 기반 HARQ-ACK에 NDI를 포함하도록 구성된 경우(2345 Y)(e.g., One-shot feedback NDI 설정) 단말은 NDI를 함께 보고할 수 있다(2355)(e.g., FIG. 22 (i), (k)). 그렇지 않으면(2345 N), NDI 없이 CBG 기반으로 해당 CC의 A/N 비트들이 Type 3-코드북 기반 HARQ-ACK 응답에 맵핑될 수 있다(2350)(e.g., FIG. 20 (a), (C))
CC가 CBG-기반 송신/스케줄링이 수행되는 CC일지라도 (2335 CBG), 상위 계층 시그널링(2305)을 통해 Type-3 코드북 기반 HARQ-ACK에도 CBG-기반 A/N 보고가 해당 CC에 설정되지 않은 경우(2340 N)(e.g., FIG. 18 또는 FIG 19 Case 3) TB-기반으로 해당 CC의 A/N 비트들이 Type 3-코드북 기반 HARQ-ACK 응답에 맵핑될 수 있다. CC가 TB-기반 송신/스케줄링이 수행되는 CC라면 (2335 TB), 해당 CC의 Type 3-코드북 기반 A/N 비트는 One-shot feedback CBG 파라미터의 구성 유/무와 무관하게 결정될 수 있다.
상위 계층 시그널링 (2305)을 통해서 공간 번들링이 설정되고(2360 Y), Type-3 코드북 기반 HARQ-ACK에 NDI를 포함하도록 구성되지 않은 경우(2365 N), 단말은 HARQ 프로세스 마다 공간 번들링을 수행(e.g., TB 기반 A/N들을 Logical AND 연산)하여 해당 CC의 A/N 비트들을 Type 3-코드북 기반 HARQ-ACK 응답에 맵핑할 수 있다(2370)(e.g., FIG. 21).
상위 계층 시그널링 (2305)을 통해서 공간 번들링이 설정되지 않았으며(2360 N), Type-3 코드북 기반 HARQ-ACK에 NDI를 포함하도록 구성되지 않은 경우(2380 N), 단말은 해당 CC의 TB-기반 A/N 비트들을 Type 3-코드북 기반 HARQ-ACK 응답에 맵핑할 수 있다(2385)(e.g., FIG. 20 (b), (d)).
상위 계층 시그널링 (2305)을 통해서 공간 번들링이 구성되고(2360 Y), Type-3 코드북 기반 HARQ-ACK에 NDI를 포함하도록 구성된 경우(2365 Y), 단말은 공간 번들링 구성(configuration)에도 불구하고 Type-3 코드북 기반 HARQ-ACK에 대해서는 공간 번들링 없이 TB-기반 A/N 비트들 및 NDI들을 생성/보고할 수 있다(2375)(e.g., FIG. 22 (j),(l)).
상위 계층 시그널링 (2305)을 통해서 공간 번들링이 설정되지 않았으며(2360 N), Type-3 코드북 기반 HARQ-ACK에 NDI를 포함하도록 구성된 경우(2380 Y), 단말은 해당 CC의 TB-기반 A/N 비트들 및 NDI들을 생성/보고할 수 있다(2375).
G. Opt 6
i. Spatial bundling이 설정되지 않은 경우(e.g., FIG. 23의 2360 N)에는 (모든 CC들에 대하여) 단말이 각 HARQ 프로세스 ID의 각 TB 별로 (1-bit) A/N 정보와 (1-bit) NDI 정보를 함께 피드백할지 아니면 각 HARQ ID의 각 TB별로 (1-bit) A/N 정보만 피드백할지 여부가 기지국에 의해 설정(e.g., FIG. 23의 2380, One-Shot feedback NDI)될 수 있다(단말은 해당 설정에 따라 피드백하도록 동작, e.g., FIG. 23의 2385/2375). spatial bundling이 설정된 경우(e.g., FIG. 23의 2360 Y)에는 (모든 CC들에 대하여) 각 HARQ ID별로 (해당 CC에 설정된 최대 TB 수에 따라) 단일 TB 혹은 복수 TB에 대한 단일 (bundled) A/N 비트만을 피드백하도록 동작(e.g., FIG. 23의 2370)
H. Note
i. 상기 Opt 1/2에서 (피드백되는 NDI 비트에 대응되는) 특정 하나의 TB는 가장 낮은/높은 인덱스를 가지는 TB로 적용될 수 있음
한편, 상기에서 각 HARQ 프로세스 ID에 대해 (각 TB별로) NDI 비트와 A/N 비트를 함께 피드백하는 방식을 적용했을 경우, 대응되는 UCI 페이로드 사이즈 및 DCI를 통한 PRI 지시를 기반으로 PUCCH 자원을 결정했을 때에, 해당 PUCCH에 설정된 모든 주파수/시간 자원을 사용해도 큰 UCI 페이로드 사이즈로 인해 (해당 PUCCH에 설정된) 최대 UCI coding rate을 초과하는 경우가 발생될 수 있으며, 이 경우에는 상기 피드백에서 (전체 혹은 특정 일부) NDI 비트의 전송을 생략 (drop)하도록 동작할 수 있다.
추가적으로, 상기 Type-1/2/2a 코드북 기반의 A/N 피드백 동작이 설정된 상황에서 DCI를 통해 동적으로 상기 Type-3 코드북 기반의 A/N 피드백을 전송하도록 지시될 경우, 해당 DCI내의 (상기 Type-1/2/2a 코드북을 위해 설정된) counter-DAI 필드 및/또는 total-DAI 필드 및/또는 current-ID (및 feedback-ID 또는 total-ID) 필드 및/또는 NFI 필드를 통해, 단말로 하여금 (사전 정의/설정된 복수의 CC group 및/또는 복수의 HARQ (프로세스 ID) group들중) 어느 CC/HARQ group에 대한 A/N 피드백을 전송할지를 지시하는 방법을 고려할 수 있다.
그리고/또는, 상기 Type-1/2/2a 코드북 기반의 A/N 피드백 동작이 설정된 상황에서 DCI를 통해 동적으로 상기 Type-3 코드북 기반의 A/N 피드백을 전송하도록 지시될 경우, 해당 DCI를 통해 (예를 들어, 별도의 필드 내지는 (상기 Type-1/2/2a 코드북을 위해 설정된) counter-DAI 필드 및/또는 total-DAI 필드 및/또는 current-ID (및 feedback-ID 또는 total-ID) 필드 및/또는 NFI 필드를 통해), 전체 (혹은 상기와 같이 지시된 특정) CC/HARQ group에 대하여 각 HARQ 프로세스 ID별로 A/N 피드백만을 전송할지 아니면 A/N 피드백과 대응되는 NDI를 함께 전송할지 여부를 지시할 수 있다.
한편, (동일한 CC 또는 BWP에 대하여) 상기 Type-3 코드북 기반의 A/N 피드백을 지시하는 DCI로부터 지시될 수 있는 candidate A/N 타이밍 집합의 경우, 상기 Type-1/2/2a 코드북 기반의 A/N 피드백을 지시하는 DCI로부터 지시될 수 있는 candidate A/N 타이밍 집합과 동일하게 설정되거나, 또는 서로 독립적으로 (예를 들어, 서로 다른 A/N 타이밍값들로 구성된 집합으로) 설정될 수 있다.
(d) A/N pending이 지시된 PDSCH 처리
먼저, 단말에게 상기 Type-1 A/N 코드북 방식이 설정된 상태에서 특정 DL grant DCI를 통해 (예를 들어, PDSCH에 대한 A/N 타이밍이 invalid or non-numerical value로 지시되는 형태로) A/N pending이 지시된 PDSCH의 경우, 해당 PDSCH에 대한 A/N 피드백 (편의상, “pended A/N”로 칭함)은, 1) 특정 DCI를 통해 별도의 A/N pooling을 지시함으로써 (단말로하여금) 해당 pended A/N을 상기 Type-3 A/N 코드북 형태로 전송하도록 하는 형태이거나, 혹은 2) 별도의 A/N pooling없이 또 다른 (예를 들어, PDSCH에 대한 A/N 타이밍이 valid or numerical value 형태로 지시되는) DL grant DCI로 지시된 A/N 타이밍을 통해 전송되는 Type-1 A/N 코드북에 해당 pended A/N을 추가하여 구성하는 동작을 고려할 수 있다. 한편, 상기와 같이 Type-1 A/N 코드북에 pended A/N을 추가하는 형태로 A/N 페이로드를 구성하여 전송하는 동작을 고려할 경우, 1) 추가되는 총 pended A/N 정보/비트 수 그리고 2) A/N 페이로드상의 해당 pended A/N 정보/비트 매핑 순서가, 단말과 기지국간에 일치되도록 구성/매핑하는 것이 필수적이며, 만약 이러한 A/N 페이로드상의 pended A/N 수/매핑에 대하여 단말과 기지국간에 불일치가 생길 경우에는 UCI decoding 성능이 저하될 뿐만 아니라 심각한 ACK/NACK (e.g. NACK-to-ACK) error가 발생되어 불필요한 PDSCH 재전송 overhead 및 큰 latency를 초래할 수 있다.
위의 문제를 고려하여, 상기 Type-1 A/N 코드북에 추가될 수 있는 (최대) pended A/N 정보/비트 수 (e.g. P bits)를 (기지국이) 단말에게 RRC signaling을 통해 설정해줄 수 있으며, 단말은 실제 pended A/N의 유무에 관계없이 항상 Type-1 A/N 코드북에 해당 P 비트를 추가하여 최종 A/N 페이로드를 구성하도록 동작할 수 있다. 또 다른 방법으로, DCI (e.g. DL grant)내의 특정 (e.g. 1-bit) 필드를 통해 (기지국이) 단말에게 pended A/N 유무 (혹은 상기 P 비트 추가 여부)를 지시해줄 수 있으며, 해당 필드로 지시된 정보에 따라 단말은 Type-1 A/N 코드북에 pended A/N bits (혹은 해당 P 비트)를 추가하거나 추가하지 않는 형태로 최종 A/N 페이로드를 구성하도록 동작할 수 있다. 또 다른 방법으로, 상기 추가되는 pended A/N 비트 수 P에 대하여 (0을 포함하여 상이한 값을 갖는) 복수의 candidate들이 (RRC를 통해) 단말에게 설정될 수 있고, DCI (e.g. DL grant)내의 특정 필드를 통해 해당 candidate들중 하나의 값이 지시될 수 있으며, 단말은 지시된 값에 상응하는 비트 수를 Type-1 A/N 코드북에 추가하여 최종 A/N 페이로드를 구성하도록 동작할 수 있다.
한편, 최종 A/N 페이로드상에는 상기 Type-1 A/N 코드북부터 우선적으로 MSB (Most Significant Bit)로 시작하는 낮은 비트 인덱스 부분에 매핑되고 (예를 들어, 첫번째 A/N 서브(sub)-코드북 형태로 구성), 그 뒤에 상기 pended A/N 정보가 (높은 비트 인덱스 부분에) 매핑되는 형태로 구성될 수 있다 (예를 들어, 두번째 A/N 서브-코드북 형태로 구성). 추가적으로, A/N 페이로드상의 pended A/N 정보/비트간 매핑 순서를 일치시키기 위하여 상기 A/N pending 동작을 지시하는 DCI (e.g. DL grant)내의 특정 필드를 통해, (기지국이) 단말에게 지시된 A/N pending에 대응되는 PDCCH/PDSCH가 (A/N pending이 지시된 전체 PDCCH/PDSCH들중) 몇 번째로 스케줄링/전송된 것인지, 그 순서 값 (e.g. counter-DAI)을 알려줄 수 있으며, 단말은 (상기 Type-1 A/N 코드북에) 해당 counter값의 순서에 따라 구성/매핑된 pended A/N bits (페이로드)를 추가하는 형태로 최종 A/N 페이로드를 구성하도록 동작할 수 있다. 이 경우, DCI (e.g. DL grant)내에 상기 counter값을 지시하는 필드는 counter-DAI 시그널링에 사용되는 필드로 적용되거나, 또는 (A/N 피드백 전송에 사용될) PUCCH 자원을 할당하는 필드 (e.g. PUCCH Resource Indicator; PRI)로 결정/고려될 수 있다.
한편, 특정 시점의 DCI (e.g. DL grant)를 통해 대응되는 PDSCH에 대하여 A/N pending 동작이 지시된 상태에서, 해당 PDSCH에 대한 (pended) A/N 피드백을 이후 특정 시점의 다른 DCI로부터 (상기 Type-1 코드북 기반 A/N 피드백 시점으로) 지시된 A/N 타이밍을 통해 전송하도록 동작할 수 있으며, 이 경우 (pended A/N이 전송될) 해당 A/N 타이밍에 대한 결정이 필요할 수 있다. 이를 위한 방안으로, (예를 들어, 상기 Type-1 코드북 기반 A/N 피드백을 trigger하는) 각 DCI를 통해 해당 DCI로부터 지시된 A/N 타이밍에 (이전 시점에 A/N pending이 지시된 PDSCH에 대한) pended A/N을 (추가하여) 전송할지 여부를 직접 지시해줄 수 있다. 또 다른 방안으로, A/N pending이 지시된 (DCI 또는 PDSCH 전송) 시점 이후에 전송된 (예를 들어, A/N 타이밍을 valid or numerical value로 지시하면서 상기 Type-1 코드북 기반 A/N 피드백을 trigger하는) DCI들로부터 지시된 A/N 타이밍들중 가장 빠른 시점 (혹은 해당 지시된 A/N 타이밍들중 상기 A/N pending이 지시된 PDSCH 전송 시점으로부터 단말의 minimum PDSCH processing time 이후 가장 빠른 시점 혹은 상기 A/N pending이 지시된 PDSCH 전송 시점으로부터 단말의 minimum PDSCH processing time 이후 최초 A/N 타이밍으로 지시된 시점)을 통해 해당 pended A/N을 (추가하여) 전송하도록 동작할 수 있다. 또 다른 방안으로, A/N pending이 지시된 PDSCH 전송 시점 (이와 동일한 슬롯) 혹은 이후에 전송된 (예를 들어, A/N 타이밍을 valid or numerical value로 지시하면서 상기 Type-1 코드북 기반 A/N 피드백을 trigger하는) 최초 DCI로부터 지시된 A/N 타이밍을 통해 해당 pended A/N을 (추가하여) 전송하도록 동작할 수 있다. 또 다른 방안으로, A/N pending이 지시된 PDSCH 전송 시점 (이와 동일한 슬롯) 혹은 이후에 전송된 최초 PDSCH를 스케줄링하는 (예를 들어, A/N 타이밍을 valid or numerical value로 지시하면서 상기 Type-1 코드북 기반 A/N 피드백을 trigger하는) DCI로부터 지시된 A/N 타이밍을 통해 해당 pended A/N을 (추가하여) 전송하도록 동작할 수 있다.
추가적으로, A/N 페이로드에 대한 단말과 기지국간 불일치를 방지하기 위하여, 상기와 같은 (Type-1 A/N 코드북에 추가되어 동일 UL 시점을 통해 전송되는) 방식으로 pended A/N 전송이 가능한 시점을 설정/지정하는 방법을 고려할 수 있다. 구체적으로, 슬롯 #n에 전송된 DCI (e.g. DL grant)를 통해 또는 슬롯 #n에 전송된 PDSCH에 대해 A/N pending 동작이 지시된 경우, 슬롯 #(n+T) 포함/이후 시점 (그리고/또는 슬롯 #(n+T+F) 포함/이전 시점)을 통해 전송되는 (Type-1 A/N 코드북을 나르는) PUCCH (PUSCH)를 통해서만 해당 pended A/N 전송이 가능하도록 설정/지정될 수 있다. 또한 추가적으로, 상기 pended A/N에 대응되는 PDSCH 수신 슬롯이 임의의 DCI (e.g. DL grant)를 통해 지시된 A/N 전송 타이밍에 대응되는 bundling window에 포함된 슬롯 X와 일치할 경우, 단말은 해당 슬롯 X에 대응되는 A/N 비트에 해당 pended A/N 정보/비트를 매핑하는 형태로 해당 bundling window에 대한 Type-1 A/N 코드북을 구성하도록 동작할 수 있다.
한편, Pcell을 스케줄링하면서 counter-DAI = 1을 포함한 DL fallback DCI (이에 대응되는 A/N을 편의상, “fallback A/N”으로 정의)가 특정 A/N 타이밍을 지시하고 해당 A/N 타이밍을 지시하는 다른 DL grant DCI는 없는 상태에서, 상기 방식 (또는 여타의 다른 방식)에 따라 해당 A/N 타이밍이 (이전 시점에 A/N pending이 지시된 PDSCH에 대한) pended A/N을 (추가하여) 전송하는 시점으로 결정될 수 있다. 이 경우 단말은, Opt 1) 상기 A/N 타이밍을 통해 상기 fallback A/N과 해당 pended A/N을 함께 피드백/전송하도록 동작하거나, 또는 Opt 2) 상기 A/N 타이밍을 통해서는 (기존과 동일하게) 상기 fallback A/N만을 피드백/전송하도록 동작 (따라서, 이 경우 fallback A/N 전송에 지시된 A/N 타이밍을 통해서는 예외적으로 pended A/N을 추가/피드백하지 않도록 동작)하거나, 또는 Opt 3) 상기 A/N 타이밍을 통해 전체 Type-1 코드북에 해당 pended A/N을 추가하여 피드백/전송하도록 동작 (따라서, 이 경우 fallback A/N 전송은 pended A/N 피드백/전송 시점으로 결정되지 않은 A/N 타이밍을 통해서만 수행하도록 동작)할 수 있다.
또한, 단말에게 상기 Type-2 A/N 코드북 방식이 설정된 상태에서 특정 DL grant DCI를 통해 (예를 들어, PDSCH에 대한 A/N 타이밍이 invalid or non-numerical value로 지시되는 형태로) A/N pending이 지시된 PDSCH의 경우, 해당 PDSCH에 대한 (pended) A/N 피드백은, 1) 특정 DCI를 통해 별도의 A/N pooling을 지시함으로써 (단말로하여금) 해당 pended A/N을 상기 Type-3 A/N 코드북 형태로 전송하도록 하는 형태이거나, 혹은 2) 별도의 A/N pooling없이 또 다른 (예를 들어, PDSCH에 대한 A/N 타이밍이 valid or numerical value 형태로 지시되는) DL grant DCI로 지시된 A/N 타이밍을 통해 전송되는 Type-2 A/N 코드북에 해당 pended A/N을 추가하여 구성하는 동작을 고려할 수 있다. 한편, 이 경우에도 상기와 같이 Type-2 A/N 코드북에 pended A/N을 추가하는 형태로 A/N 페이로드를 구성하여 전송하는 동작을 고려할 경우, 1) 추가되는 총 pended A/N 정보/비트 수 그리고 2) A/N 페이로드상의 해당 pended A/N 정보/비트 매핑 순서가, 단말과 기지국간에 일치되도록 구성/매핑하는 것이 (UCI decoding 성능 및 PDSCH 재전송 overhead/latency 측면에서) 필수적일 수 있다.
이를 고려하여, 상기 A/N 페이로드상의 총 pended A/N 정보/비트 수 및 해당 pended A/N 정보/비트간 매핑 순서를 (단말과 기지국간에) 일치시키기 위하여, (기지국이) 상기 A/N pending 동작을 지시하는 DCI (e.g. DL grant)내의 특정 필드를 통해, 해당 DCI를 통해 지시된 A/N pending에 대응되는 PDCCH/PDSCH가 (A/N pending이 지시된 전체 PDCCH/PDSCH들중) 몇 번째로 스케줄링/전송된 것인지 (그 순서 값 (e.g. counter-DAI)) 그리고/또는 현재 시점까지 단말에게 A/N pending이 지시된 PDCCH/PDSCH의 수가 총 몇 개인지 (그 총합 값 (e.g. total-DAI))에 대한 정보를 알려줄 수 있다. 이에 따라, 단말은 (상기 Type-2 A/N 코드북에) 해당 total값을 기반으로 그리고/또는 해당 counter값의 순서에 따라 구성/매핑된 pended A/N bits (페이로드)를 추가하는 형태로 최종 A/N 페이로드를 구성하도록 동작할 수 있다. 한편, 최종 A/N 페이로드상에는 상기 Type-2 A/N 코드북부터 우선적으로 MSB로 시작하는 낮은 비트 인덱스 부분에 매핑되고 (예를 들어, 첫번째 서브-코드북 형태로 구성), 그 뒤에 상기 pended A/N 정보가 (높은 비트 인덱스 부분에) 매핑되는 형태로 구성될 수 있다 (예를 들어, 두번째 서브-코드북 형태로 구성).
한편, 특정 시점의 DCI (e.g. DL grant)를 통해 대응되는 PDSCH에 대하여 A/N pending 동작이 지시된 상태에서, 해당 PDSCH에 대한 (pended) A/N 피드백을 이후 특정 시점의 다른 DCI로부터 (상기 Type-2 코드북 기반 A/N 피드백 시점으로) 지시된 A/N 타이밍을 통해 전송하도록 동작할 수 있으며, 이 경우 (pended A/N이 전송될) 해당 A/N 타이밍에 대한 결정이 필요할 수 있다. 이를 위한 방안으로, (예를 들어, 상기 Type-2 코드북 기반 A/N 피드백을 trigger하는) 각 DCI를 통해 해당 DCI로부터 지시된 A/N 타이밍에 (이전 시점에 A/N pending이 지시된 PDSCH에 대한) pended A/N을 (추가하여) 전송할지 여부를 직접 지시해줄 수 있다. 또 다른 방안으로, A/N pending이 지시된 (DCI 또는 PDSCH 전송) 시점 이후에 전송된 (예를 들어, A/N 타이밍을 valid or numerical value로 지시하면서 상기 Type-2 코드북 기반 A/N 피드백을 trigger하는) DCI들로부터 지시된 A/N 타이밍들중 가장 빠른 시점 (혹은 해당 지시된 A/N 타이밍들중 상기 A/N pending이 지시된 PDSCH 전송 시점으로부터 단말의 minimum PDSCH processing time 이후 가장 빠른 시점 혹은 상기 A/N pending이 지시된 PDSCH 전송 시점으로부터 단말의 minimum PDSCH processing time 이후 최초 A/N 타이밍으로 지시된 시점)을 통해 해당 pended A/N을 (추가하여) 전송하도록 동작할 수 있다. 또 다른 방안으로, A/N pending이 지시된 PDSCH 전송 시점 (이와 동일한 슬롯) 혹은 이후에 전송된 (예를 들어, A/N 타이밍을 valid or numerical value로 지시하면서 상기 Type-2 코드북 기반 A/N 피드백을 trigger하는) 최초 DCI로부터 지시된 A/N 타이밍을 통해 해당 pended A/N을 (추가하여) 전송하도록 동작할 수 있다. 또 다른 방안으로, A/N pending이 지시된 PDSCH 전송 시점 (이와 동일한 슬롯) 혹은 이후에 전송된 최초 PDSCH를 스케줄링하는 (예를 들어, A/N 타이밍을 valid or numerical value로 지시하면서 상기 Type-2 코드북 기반 A/N 피드백을 trigger하는) DCI로부터 지시된 A/N 타이밍을 통해 해당 pended A/N을 (추가하여) 전송하도록 동작할 수 있다.
상기 방식들을 종합하여 (혹은 상기 방식에 추가로) A/N pending이 지시된 PDSCH에 대한 A/N 피드백을 Type-1/2 A/N 코드북에 추가하여 전송하는 동작을 지원하기 위해 다음과 같은 방법을 고려할 수 있다.
1) A/N pending이 지시된 PDSCH에 대한 A/N 페이로드 사이즈
A. Opt 1
i. 각 CC 혹은 BWP별로 (단일 A/N 피드백상에 구성 가능한) A/N pending이 지시될 수 있는 최대 PDSCH 수 Np를 RRC로 설정
B. Opt 2
i. 각 CC 혹은 BWP별로 (단일 A/N 피드백상에 구성 가능한) A/N pending이 지시될 수 있는 최대 PDSCH 수 Np를 사전에 정의
1. 일례로, 해당 CC/BWP에 설정된 valid or numerical A/N 타이밍중 최소값을 Tm으로 정의할 경우, Np = Tm - a (where a = 1 (or 0 or 2)로 결정될 수 있음
A). 또는, Np = b x (Tm - a)로 결정될 수 있으며, 여기서 b는 단일 슬롯내 복수 PDSCH 수신 가능 여부에 대한 단말 capability에 따라 1보다 큰 정수일 수 있음
2) A/N pending이 지시된 PDSCH에 대한 A/N ordering 방식
A. Opt 1
i. 각 CC별로 개별/독립적으로 (해당 CC내에서) A/N pending이 지시된 PDSCH들에 대해서만 counter-DAI를 시그널링/적용
1. 이 경우 상기 pended A/N 페이로드는 각 CC별로 1부터 Np까지의 counter-DAI값에 대응되는 A/N을 매핑하여 구성될 수 있음
2. 이 경우 각 CC별로 하나의 counter-DAI값에 대응되는 A/N 비트 수는 해당 CC에 설정된 최대 TB 또는 CBG 수와 동일하게 결정될 수 있음
B. Opt 2
i. 전체 CC에 걸쳐 (CC first - time second 방식으로) A/N pending이 지시된 PDSCH들에 대해서만 counter-DAI (및 total-DAI)를 시그널링/적용
1. 이 경우 상기 counter-DAI값은 A/N pending이 지시된 PDSCH부터 시작하여 (이후에 전송되는) 해당 PDSCH에 대한 A/N 피드백을 요청하는 DCI까지 연속적인 값을 가지도록 시그널링/적용될 수 있음
A). 예를 들어, A/N pending이 지시된 PDSCH에 대응되는 마지막 counter-DAI값이 X인 경우, 이후 해당 PDSCH에 대한 A/N 피드백을 요청하는 (최초) DCI에 대응되는 counter-DAI값은 (X + 1)로 시그널링/적용될 수 있음
2. 이 경우 전체 A/N 페이로드는 상기 A/N pending이 지시된 PDSCH에 대응되는 counter-DAI값부터 시작하여 마지막 수신된 counter-DAI (또는 total-DAI)값에 대응되는 A/N을 순차적으로 매핑하여 구성
3) A/N pending이 지시된 PDSCH에 대한 A/N 피드백 시점
A. Opt 1
i. DCI (e.g. DL grant)를 통해 해당 DCI로부터 지시된 A/N 타이밍을 통해 (이전 시점에) A/N pending이 지시된 PDSCH에 대한 (pended) A/N 피드백을 (Type-1/2 A/N 코드북에) 추가하여 전송할지 (e.g. request) 아닐지를 (e.g. no request) 여부를 지시
1. 상기에서 “request”로 지시된 경우에는 Type-1/2 A/N 코드북에 (pended) A/N 피드백을 추가하여 전송하는 반면, “no request”로 지시된 경우에는 (pended) A/N 피드백 추가없이 Type-1/2 A/N 코드북만을 전송
2. 이 경우 매 (pended) A/N 피드백 시점에서의 A/N state는 피드백 전송 이후 항상 reset하도록 동작 (예를 들어, 특정 피드백 시점에서의 A/N state는 이전 (최근) 시점에 피드백된 A/N state를 reset하고 (이후 추가로 A/N pending이 지시된 PDSCH의 유무에 따라) update하여 결정하도록 동작)할 수 있음
B. Opt 2
i. DCI (e.g. DL grant)를 통해 A/N pending이 지시된 PDSCH에 대응되는 (pended) A/N 피드백에 대한 NFI 정보 (일례로, 이전 (최근) 피드백된 A/N state를 reset하고 (이후 추가로 A/N pending이 지시된 PDSCH의 유무에 따라) update할지 아니면 이전 (최근) 피드백된 A/N state를 그대로 유지할지)를 지시하고, 해당 DCI로부터 지시된 A/N 타이밍을 통해 해당 NFI 정보를 반영하여 (pended) A/N 피드백을 (Type-1/2 코드북에 추가하여) 전송
1. 이 경우 상기 pended A/N 피드백은 모든 시점의 Type-1/2 코드북에 항상 추가하여 전송하거나, 혹은 NFI가 non-toggled (또는 이전 A/N state 유지를 지시)인 경우에는 항상 추가/전송하는 반면 toggled (또는 이전 A/N state 리셋을 지시)인 경우에는 (이전 피드백 시점 이후에) 추가로 A/N pending이 지시된 PDSCH가 있으면 추가/전송하고 없으면 추가/전송하지 않도록 동작할 수 있음
2. 상기에서 NFI의 경우 DCI내 별도의 비트/필드를 통해 시그널링되는 형태이거나, 혹은 전체 PUCCH 자원 집합을 non-toggled NFI (또는 이전 A/N state 유지)에 대응되는 자원 그룹과 toggled NFI (또는 이전 A/N state 리셋)에 대응되는 자원 그룹으로 나눈 상태에서, DCI를 통해 지시되는 PUCCH 자원에 따라 대응되는 NFI값으로 결정될 수 있음
또한, 단말에게 상기 Type-2a A/N 코드북 방식이 설정된 상태에서 특정 DL grant DCI를 통하여 (특정 (PDSCH) 슬롯 그룹 ID = X로 지정됨과 동시에) A/N pending이 지시된 PDSCH의 경우, 해당 PDSCH에 대한 (pended) A/N 피드백은, 1) 특정 DCI를 통해 별도의 A/N pooling을 지시함으로써 (단말로하여금) 해당 pended A/N을 상기 Type-3 A/N 코드북 형태로 전송하도록 하는 형태이거나, 혹은 2) 별도의 A/N pooling없이 또 다른 특정 (예를 들어, 상기 슬롯 그룹 ID = X에 대한 A/N 피드백을 request하는) DL grant DCI로 지시된 A/N 타이밍을 통해 전송되는 Type-2a A/N 코드북에 해당 pended A/N을 포함하여 구성하는 동작을 고려할 수 있다. 한편, 상기에서 후자의 경우 pended A/N 피드백이 전송될 해당 A/N 타이밍에 대한 결정이 필요할 수 있으며, 이를 위한 방안으로 A/N pending이 지시된 (DCI 또는 PDSCH 전송) 시점 이후에 전송된 특정 (예를 들어, (상기 Type-2a 코드북 기반 A/N 피드백을 trigger하면서) 상기 슬롯 그룹 ID = X에 대한 A/N 피드백을 request하는) DCI들로부터 지시된 A/N 타이밍들중 가장 빠른 시점을 통해 해당 pended A/N을 (추가하여) 전송하도록 동작할 수 있다.
한편, 상기와 같이 A/N pending이 지시된 PDSCH에 대한 A/N 피드백 전송 시점은 해당 PDSCH 수신 시점 이후 검출/수신된 DCI를 통해 지시된 A/N 타이밍으로 결정될 수 있는데, 이때 해당 A/N 타이밍 시점 또는 해당 DCI 수신 시점 이전 특정 시점을 통해 특정 (예를 들어, SPS PDSCH 수신에 대응되는) A/N 정보를 나르는 PUCCH 혹은 PUSCH 전송이 설정/지시/수행될 가능성이 있다. 이 경우, HARQ 동작상에 단말 구현상의 신호처리 복잡도를 유발하는 out-of-order (OOO), 예를 들어 특정 HARQ 프로세스 ID의 PDSCH#1 수신 시점 이후에 수신된 다른 (혹은 동일한) HARQ 프로세스 ID의 PDSCH#2에 대한 A/N 피드백이 PDSCH#1에 대한 A/N 피드백 시점 이전에 전송되는 상황이 연출될 가능성이 있다.
따라서, 상기와 같은 OOO 동작 상황을 피하기 위하여 A/N pending이 지시된 PDSCH에 대한 A/N 피드백 전송 시점은, 해당 PDSCH 수신 시점으로부터 (단말의 minimum PDSCH processing time 이후) 가장 빠른 A/N PUCCH (or PUSCH) 전송 (해당 전송이 설정/지시/수행된) 시점으로 결정될 수 있다. 이 경우, 만약 상기 A/N PUCCH가 SPS PDSCH에 대응되는 A/N 피드백 전용 PUCCH 자원인 경우에는, 상기 A/N pending를 지시했던 DCI에 포함된 PRI로 지시된 PUCCH 자원을 사용하여 해당 A/N pending이 지시된 PDSCH에 대한 A/N과 SPS PDSCH에 대한 A/N을 함께 피드백/전송하도록 동작할 수 있다.
또한 이 경우, 만약 단말에게 상기 Type-1 A/N 코드북 방식이 설정된 상태에서 상기 A/N PUCCH가 SPS PDSCH에 대응되는 A/N 전용 PUCCH 자원인 경우에는, 1) A/N pending이 지시된 PDSCH에 대한 A/N과 SPS PDSCH에 대한 A/N을 함께 동일한 하나의 PUCCH (or PUSCH)상에 구성/전송하거나, 또는 2) SPS PDSCH에 대한 A/N만을 전송하도록 (이 경우, A/N pending이 지시된 PDSCH에 대한 A/N 전송은 (상기 SPS PDSCH에 대응되는 A/N 타이밍을 포함하여 이후 모든 A/N 타이밍에 대해) 생략하도록) 동작할 수 있다. 또한 이 경우, 만약 단말에게 상기 Type-2 A/N 코드북 방식이 설정된 상태에서 상기 A/N PUCCH가 SPS PDSCH에 대응되는 A/N 전용 PUCCH 자원인 경우에는, 1) counter-DAI 초기값부터 (A/N pending이 지시되지 않은 PDSCH까지 포함하여) A/N pending을 지시한 DCI에 포함된 total-DAI (또는 counter-DAI)값까지의 PDSCH에 대응되는 A/N과 SPS PDSCH에 대한 A/N을 함께 동일한 하나의 PUCCH (or PUSCH)상에 구성/전송하거나, 또는 2) (A/N pending이 지시되지 않은 PDSCH를 제외하고) A/N pending이 지시된 PDSCH에 대한 A/N과 SPS PDSCH에 대한 A/N을 함께 동일한 하나의 PUCCH (or PUSCH)상에 구성/전송하도록 동작할 수 있다. 또한 이 경우, 만약 단말에게 상기 Type-2a A/N 코드북 방식이 설정된 상태에서 상기 A/N PUCCH가 SPS PDSCH에 대응되는 A/N 전용 PUCCH 자원이거나 또는 상기 A/N PUCCH (or PUSCH)가 A/N pending이 지시된 PDSCH에 대응되는 (PDSCH) 슬롯 그룹 ID = X와는 다른 group ID = Y에 대한 A/N 피드백이 지시된 PUCCH (or PUSCH)인 경우에는, 1) 상기 group ID = X에 대하여 counter-DAI 초기값부터 (A/N pending이 지시되지 않은 PDSCH까지 포함하여) A/N pending을 지시한 DCI에 포함된 total-DAI (또는 counter-DAI)값까지의 PDSCH에 대응되는 A/N과 SPS PDSCH에 대한 A/N 또는 group ID = Y에 대한 A/N을 함께 동일한 하나의 PUCCH (or PUSCH)상에 구성/전송하거나, 또는 2) 상기 group ID = X에 대하여 (A/N pending이 지시되지 않은 PDSCH를 제외하고) A/N pending이 지시된 PDSCH에 대한 A/N과 SPS PDSCH에 대한 A/N 또는 group ID = Y에 대한 A/N을 함께 동일한 하나의 PUCCH (or PUSCH)상에 구성/전송하도록 동작하거나, 또는 3) 상기에서 group ID = Y에 대한 A/N 피드백을 지시하는 DCI를 통해서는 항상 group ID = X에 대한 A/N 피드백이 함께 지시되도록 규정할 수 있다.
추가적으로, 상기 Type-1 혹은 Type-2 A/N 코드북 방식이 설정된 경우에는 특정 DCI를 통해 상기 Type-3 A/N 코드북 방식에 기반한 A/N 피드백 전송을 dynamic하게 trigger하는 동작이 적용/허용되는 반면, 상기 Type-2a A/N 코드북 방식이 설정된 경우에는 이와 같은 DCI 기반의 dynamic Type-3 A/N 코드북 triggering이 적용/허용되지 않도록 규정/정의될 수 있다. 또한 추가적으로, 상기 Type-1 혹은 Type-2 A/N 코드북 방식이 설정된 경우에는 DCI (e.g. DL grant)를 통한 상기와 같은 (PDSCH에 대해 invalid or non-numerical A/N 타이밍 value를 지시하는 형태의) A/N pending 지시 동작이 적용/허용되지 않는 반면, 상기 Type-2a 방식이 설정된 경우에는 DCI를 통한 (invalid or non-numerical A/N 타이밍 value를 지시하는 형태의) A/N pending 지시 동작이 적용/허용되도록 규정/정의될 수 있다.
(e) SPS PDSCH에 대한 A/N 피드백 전송 동작
한편, 상기 Type-2a (또는 Type-1 또는 Type-2) A/N 코드북 방식이 설정/지시된 상황에서 대응되는 DCI (e.g. DL grant)없이 전송되는 SPS PDSCH 및 이에 대한 A/N 피드백을 고려할 경우, 해당 SPS PDSCH에 대한 별도의 슬롯 그룹 ID 지정이 없음으로 인해 대응되는 A/N 피드백에 대한 (예를 들어, 단말의 LBT 실패 및/또는 기지국의 A/N 검출 실패에 따른) 재전송 request가 불가하므로, 1) 해당 SPS PDSCH에 대한 A/N 피드백 전송 시점의 결정 및 2) Type-2a A/N 코드북상에서의 해당 A/N 피드백 구성/매핑에 대한 규칙이 필요할 수 있다.
먼저 SPS PDSCH에 대한 A/N 피드백 전송 시점의 경우, 예를 들어 SPS PDSCH 주기가 L개 슬롯으로 설정되고 SPS PDSCH에 대응되는 A/N 타이밍 (delay)가 K개 슬롯으로 지시됨을 가정하면, 특정 슬롯 #n에 전송된 SPS PDSCH에 대한 A/N 피드백은 슬롯 #(n + K)부터 슬롯 #(n + K + L - 1)까지 구간 내에 지시된 모든 A/N 타이밍을 통해 (반복적으로) 전송하도록 동작할 수 있다. 다른 방법으로, 특정 슬롯 #n에 전송된 SPS PDSCH에 대한 상기 Type-2a (또는 Type-1 또는 Type-2) 코드북 기반의 A/N 피드백은 슬롯 #(n + K)을 통해서만 전송되고, 추가적으로 슬롯 #(n + K)부터 슬롯 #(n + K + L - 1)까지 구간 내에 상기 Type-3 코드북 기반의 A/N 타이밍으로 지시된 시점을 통해 (추가) 전송될 수 있다. 또 다른 방법으로, Type-2a A/N 코드북 방식으로 동작하는 경우에는 SPS activation DCI를 통해 이후 전송될 SPS PDSCH들이 속하는 특정 슬롯 그룹 ID를 지정할 수 있으며, 이에 따라 (기지국으로부터의 request에 따른) 해당 슬롯 그룹 ID에 대한 A/N 피드백 구성/전송 시 해당 SPS PDSCH에 대한 A/N까지 포함하여 구성/전송하도록 동작할 수 있다.
한편 Type-2a A/N 코드북상에서 SPS PDSCH에 대한 A/N 구성/매핑의 경우, DCI (e.g. DL grant)를 통해 슬롯 그룹 ID가 지정된 PDSCH들에 대한 A/N과 분리된 형태로 구성/매핑될 수 있으며, 일례로 Type-2a 코드북의 A/N 페이로드상에 슬롯 그룹 ID가 지정된 PDSCH에 대한 A/N부터 MSB로 시작하는 낮은 비트 인덱스 부분에 매핑되고 (예를 들어, 첫번째 서브-코드북 형태로 구성), 그 뒤에 해당 SPS PDSCH에 대한 A/N이 (높은 비트 인덱스 부분에) 매핑되는 형태로 구성될 수 있다 (예를 들어, 두번째 서브-코드북 형태로 구성). 또한 Type-3 A/N 코드북상에서 SPS PDSCH에 대한 A/N 구성/매핑의 경우, DCI (e.g. DL grant)를 통해 HARQ 프로세스 ID가 지정된 PDSCH들에 대한 A/N과 분리된 형태로 구성/매핑될 수 있으며, 일례로 Type-3 코드북의 A/N 페이로드상에 DCI로 HARQ 프로세스 ID가 지정된 PDSCH에 대한 A/N부터 MSB로 시작하는 낮은 비트 인덱스 부분에 매핑되고 (예를 들어, 첫번째 서브-코드북 형태로 구성), 그 뒤에 해당 SPS PDSCH에 대한 A/N이 (높은 비트 인덱스 부분에) 매핑되는 형태로 구성될 수 있다 (예를 들어, 두번째 서브-코드북 형태로 구성).
한편, 상기 Type-3 A/N 코드북의 경우 각 HARQ 프로세스 ID에 대응되는 A/N이 매핑되는 형태로 A/N 페이로드가 구성될 수 있는데, SPS PDSCH에 대한 release를 지시하는 PDCCH의 경우에는 DCI내의 HARQ 프로세스 ID 필드를 사용하여 해당 PDCCH가 SPS release 용도임을 설정하는 목적으로 사용될 수 있다. 이를 감안하여, 먼저 각 HARQ 프로세스 ID별 A/N을 매핑하여 A/N 페이로드를 구성한 상태에서 상기 SPS release PDCCH에 대한 (1-bit) A/N 정보를 해당 A/N 페이로드의 특정 위치에 추가하는 형태로 전체 Type-3 A/N 코드북이 구성될 수 있으며, 해당 특정 위치는 1) 상기 전체 A/N 페이로드의 마지막 A/N 비트 다음/이후 또는 2) 상기 A/N 페이로드내에서 SPS release PDCCH가 전송된 CC에 대응되는 마지막 A/N 비트 다음/이후 또는 3) 상기 A/N 페이로드내에서 SPS release PDCCH에 대응되는 SPS PDSCH가 전송된 CC에 대응되는 마지막 A/N 비트 다음/이후 또는 4) 상기 SPS release PDCCH에 대응되는 SPS PDSCH 전송 용도로 reserve된 특정 HARQ 프로세스 ID에 대응되는 A/N 비트로 결정될 수 있다.
한편 추가적으로, SPS activation을 지시하는 DCI를 통해 SPS PDSCH 수신에 대응되는 A/N 타이밍이 inapplicable (or invalid or non-numerical) value로 지시된 경우, 해당 DCI에 대응되는 최초 PDSCH 수신에 대해서는 특정 applicable (or valid or numerical) value를 A/N 타이밍으로 적용하여 대응되는 A/N 피드백을 전송하고, 이후 SPS PDSCH들에 대해서는 대응되는 A/N 피드백을 pending하도록 동작하는 방법을 고려할 수 있다. 이 경우, 상기 최초 PDSCH 수신에 대응되는 A/N 피드백 전송을 위한 PUCCH 자원은, 1) 상기 동일 SPS activation DCI를 통해 직접 지시되거나, 혹은 2) RRC를 통해 설정된 복수의 candidate PUCCH resource (PRI) 인덱스들중 특정 (예를 들어, lowest or highest 인덱스에 대응되는) 자원으로 결정되거나, 혹은 3) 특정 자원으로 사전에 정의되거나 내지는 RRC를 통해 설정될 수 있다. 또한 이 경우, 상기 최초 PDSCH 수신에 대한 A/N 전송 타이밍에 적용되는 특정 applicable value는, 1) 특정 값으로 사전에 정의되거나 내지는 RRC를 통해 설정되거나, 혹은 2) RRC를 통해 설정된 복수의 candidate (applicable) K1 value들중 특정 (예를 들어, 최소 또는 최대) 값으로 결정되거나, 혹은 3) 상기 동일 SPS activation DCI를 통해 직접 지시될 수 있다.
한편, SPS activation을 지시하는 DCI를 통해 inapplicable value가 A/N 타이밍으로 지시되는 (예를 들어, A/N pending 지시) 동작은, 단말에게 상기 Type-2a (및/또는 Type-3) A/N 코드북 혹은 상기 Type-2 (및/또는 Type-3) A/N 코드북이 설정된 경우에만 허용될 수 있으며, 단말에게 상기 Type-1 (및/또는 Type-3) A/N 코드북이 설정된 경우에는 해당 동작이 허용되지 않을 수 있다. 그 이유는, 상기와 같이 A/N pending이 지시된 복수의 SPS PDSCH에 대한 일괄적인 (기지국으로부터의) A/N 피드백 요청은, 단말에게 상기 Type-2a A/N 코드북이 설정된 경우 해당 Type-2a 및/또는 Type-3 코드북 기반 A/N 전송을 지시하는 임의의 DCI를 통해 요청 가능하고, 단말에게 상기 Type-2 A/N 코드북이 설정된 경우 해당 Type-2 및/또는 Type-3 코드북 기반 A/N 전송을 지시하는 임의의 DCI를 통해 요청 가능한 반면, 단말에게 상기 Type-1 A/N 코드북이 설정된 경우에는 Type-3 코드북 기반 A/N 전송을 지시하는 DCI를 통해서만 (적은 요청 기회를 가지고 제한적으로) 요청 가능하기 때문이다.
또한 추가적으로, 상기 Type-3 코드북 기반의 A/N 피드백 전송을 지시하는 DCI 및/또는 SPS activation을 지시하는 DCI 및/또는 SPS release를 지시하는 DCI 및/또는 특정 cell (e.g. Scell)에 대하여 단말의 PDCCH monitoring 혹은 decoding 동작이 disabled되도록 설정된 특정 (e.g. dormant) BWP로의 switching을 지시하는 DCI 등 (편의상, 이러한 DCI를 “special DCI”로 칭함)에 대해서는, 해당 DCI 수신에 대응되는 A/N 타이밍이 inapplicable value로 지시되지 않도록 (내지는, applicable value로만 지시되도록) 규정될 수 있으며, 이에 따라 단말은 상기와 같은 special DCI를 통해 inapplicable value가 A/N 타이밍으로 지시된 경우 해당 DCI를 무시 (discard)하도록 동작할 수 있다. 그 이유는, 상기와 같은 special DCI에 대해서 만약 해당 DCI 수신에 대한 A/N 피드백이 pending될 경우, 해당 DCI를 통해 지시된 동작 (예를 들어, SPS PDSCH 전송/수신 동작에 대한 SPS release 또는 dormant BWP로의 송수신 동작 전환을 위한 BWP switching)의 적용/수행 여부 및 시점에 대하여, 단말과 기지국간에 ambiguity 또는 misalignment가 발생될 수 있기 때문이다.
또 다른 방법으로, DCI 내의 A/N 타이밍 필드로 지시되는 state들중 inapplicable value가 매핑된 state를, 상기 special DCI에 대해서는 특정 applicable value로 대체/변경하여 해석/적용하는 방식도 가능할 수 있으며, 이 경우 상기 특정 applicable value는 1) 특정 값으로 사전에 정의되거나 내지는 RRC를 통해 설정되거나, 혹은 2) RRC를 통해 설정된 복수의 candidate (applicable) K1 value들중 특정 (예를 들어, 최소 또는 최대) 값을 기준으로 (예를 들어, 해당 값에 특정 offset을 더한 값으로) 결정될 수 있다 (예를 들어, minimum K1 - a (e.g. a = 1) 또는 maximum K1 + b (e.g. b = 1)로 결정).
(f) Type-3 A/N 코드북을 지시하는 DCI를 위한 최소 프로세싱 시간(minimum processing time) 결정
앞서 설명된 바와 같이 Type-3 코드북 기반의 A/N 피드백 전송은 DL grant DCI를 통해서 지시될 수 있는데, 보다 구체적으로 다음과 같은 2가지 방법들이 고려(지원)될 수 있다:
Case A) (DL grant) DCI가 PDSCH 스케줄링을 포함하면서 Type-3 코드북 기반의 A/N 피드백을 지시;
Case B) (DL grant) DCI가 PDSCH 스케줄링을 포함하지 않으면서 Type-3 코드북 기반의 A/N 피드백을 지시
일 예로, 후자인 Case B의 경우 해당 DCI에 의해 할당된 PDSCH 주파수 자원이 invalid (e.g. empty)하면, 단말은, PDSCH 스케줄링 없이 Type-3 A/N 코드북이 지시된 경우로 인식하여 동작할 수 있다. 예컨대, Case B에서 단말은 DL grant DCI 포맷에 해당하는 DCI를 수신하더라도 PDSCH 수신 없이, Type-3 코드북 기반 HARQ-ACK을 생성/전송할 수 있다.
Case B의 경우 해당 DCI에 의해 지시된 HARQ-ACK 타이밍 (e.g. K1)값이 어느 시점을 기준으로 적용되는지가 정의될 필요가 있다. 도 6을 통해 앞서 설명된 바와 같이 해당 DCI는 PDSCH-to-HARQ Feedback Timing Indicator 필드를 포함하고 K1 값을 지시하고 있는데, Case B의 경우 K1 값의 적용의 기준이 되는 PDSCH의 스케줄링이 없기 때문에 단말/기지국이 HARQ-ACK 응답 시점을 어떻게 결정하여야 하는지가 문제된다. 이를 해결하기 위한 구체적인 일 예로 단말/기지국은 Opt 1) 해당 DCI가 수신된 슬롯으로부터 K1개 슬롯 이후 시점을 A/N 전송 시점으로 결정하거나, 또는 Opt 2) 해당 DCI를 통해 (실제 전송되지 않지만) PDSCH 수신 시점으로 지시된 슬롯으로부터 K1개 슬롯 이후 시점을 A/N 전송 시점으로 결정하는 방법이 고려될 수 있으며, 이에 한정되지 않는다.
한편, 현재 NR 시스템에서는 단말의 PDSCH 수신과 관련하여 최소 프로세싱 시간 (minimum processing time) (e.g. N1)을 규정하고 있다. 구체적으로는 PDSCH (마지막 심볼) 수신 시점부터, 해당 A/N을 포함하는 PUCCH (최초 심볼) 전송 시점까지의 구간이 PDSCH 최소 프로세싱 시간 = N1개 심볼 이상으로 확보되는 경우, 단말은 해당 PDSCH 수신에 대해 (최종 decoding 결과를 반영한) valid한 A/N 정보를 피드백하도록 동작하는 반면, 해당 구간이 N1개 심볼 미만인 경우에는 valid한 A/N 정보를 피드백하지 않을 수 있다. 이러한 N1의 경우 PDSCH 및 A/N PUCCH 전송에 적용되는 SCS, 그리고 PDSCH에 설정된 DMRS 심볼 패턴에 따라 상이한 값을 가질 수 있다. 아래 표 7은 SCS값 및 DMRS 패턴에 따른 minimum PDSCH processing time (N1 심볼 개수)값을 제시한다.
SCS
(kHz)
Without additional DMRS symbol (group) With additional DMRS symbol (group)
15 8 13 or 14
30 10 13
60 17 20
120 20 24
또한, 현재 NR 시스템에서는 단말의 PUSCH 전송과 관련하여 minimum processing time (e.g. N2)을 규정하고 있다. 구체적으로는 UL grant DCI를 포함하는 PDCCH (마지막 심볼) 수신 시점부터, 해당 UL grant DCI에 의해 스케줄된 PUSCH (최초 심볼) 전송 시점까지의 구간이 N2개 심볼 이상으로 확보되는 경우, 단말은 해당 PDCCH로 스케줄링된 UL 데이터 (e.g., TB 또는 CBGs)를 나르는 PUSCH를 전송하도록 동작하는 반면, 해당 구간이 N2개 심볼 미만인 경우에는 해당 PDCCH를 무시 (discard)하고 대응되는 PUSCH 전송을 생략 (drop)할 수 있다. 이러한 N2의 경우 UL grant PDCCH 및 PUSCH 전송에 적용되는 SCS에 따라 상이한 값을 가질 수 있다. 아래 표 8은 SCS값에 따른 minimum PUSCH processing time (심볼 개수 N2)값을 제시한다.
SCS (kHz) N2
15 10
30 12
60 23
120 36
또한, NR 시스템에서는 SPS PDSCH release를 지시하는 PDCCH 수신과 관련하여 minimum processing time (e.g. 심볼 개수 N)을 규정하고 있다. 구체적으로는 SPS PDSCH release를 지시하는 PDCCH (마지막 심볼) 수신 시점부터, 해당 PDCCH에 대한 A/N을 포함하는 PUCCH (최초 심볼) 전송 시점까지의 구간이 N개 심볼 이상으로 확보되는 경우, 단말은 해당 PDCCH 수신에 대해 valid한 A/N (e.g. ACK) 정보를 피드백하도록 동작하는 반면, 해당 구간이 N개 심볼 미만인 경우에는 valid한 A/N 정보를 피드백하지 않을 수 있다. 이러한 심볼 개수 N은 PDCCH 및 A/N PUCCH 전송에 적용되는 SCS에 따라 상이한 값을 가질 수 있다. 아래 표 9는 SCS값에 따른 SPS PDSCH release를 지시하는 PDCCH의 (최소) processing time (심볼 개수 N)값을 제시한다.
SCS (kHz) N
15 10
30 12
60 22
120 25
구체적으로 표 9에서 SCS는 해당 PDCCH의 SCS 및 해당 A/N PUCCH의 SCS 중 더 작은 값을 의미할 수 있다. 한편, PDSCH에 대하여 향상된 프로세싱 시간(advanced processing time)이 사용되는 경우(e.g., processingType2Enabled) 표 9에서의 심볼 개수 N은 감소될 수 있다(e.g., N=5 for 15kHz SCS, N=5.5 for 30kHz SCS, N=11 for 60 kHz SCS).
한편, 상기 Case B와 같이 DL grant PDCCH가 PDSCH 스케줄링없이 (Type-3 코드북 기반의) A/N 피드백 전송만을 지시하는 경우, 해당 PDCCH (마지막 심볼) 수신 시점부터 대응되는 A/N PUCCH (최초 심볼) 전송 시점까지의 구간에 적용될 minimum processing time 및 이에 대응되는 심볼 수 (e.g. Nx)를 규정하는 것이 필요할 수 있다. 구체적으로는 PDSCH 스케줄링없이 (Type-3 코드북 기반의) A/N 피드백 전송을 지시하는 PDCCH (마지막 심볼) 수신 시점부터, Type-3 코드북 기반의 A/N 피드백 (e.g., A/N PUCCH) (최초 심볼) 전송 시점까지의 구간이 Nx개 심볼 이상으로 확보되는 경우, 단말은 해당 PDCCH에 대응되는 valid한 (Type-3 코드북 기반의) A/N 정보를 피드백하도록 동작하는 반면, 해당 구간이 Nx개 심볼 미만인 경우에는 1) valid한 A/N 정보를 피드백하지 않거나 또는 2) 해당 PDCCH 자체를 무시 (discard)하도록 동작할 수 있다.
Nx값의 일 예로서, 표 7에 제시된 값들 중 additional DMRS 심볼 (그룹)이 설정되지 않은 경우에 적용되는 N1값 (혹은 해당 N1에 특정 심볼 수 a를 더한 (N1+a)값, 여기서 a는 양수 또는 음수로 설정될 수 있음)들을 상기 Nx값으로 적용할 수 있다. 실제 스케줄링된 PDSCH는 없어서 이에 요구되는 processing 과정은 생략할 수 있는 상황이므로, 각 SCS별로 가장 작은 N1값을 적용하는 것이 가능할 수 있기 때문이다.
또는 Nx값의 다른 일 예로서, 표 7에 제시된 값들 중 additional DMRS 심볼 (그룹)이 설정된 경우에 적용되는 N1값 (혹은 해당 N1에 특정 심볼 수 a를 더한 (N1+a)값, 여기서 a는 양수 또는 음수로 설정될 수 있음)들을 상기 Nx값으로 적용할 수 있다. PDCCH의 경우 이를 구성하는 모든 심볼 각각에 DMRS가 포함된 형태여서, 이에 대응되는 channel estimation time을 고려했을 때 각 SCS별로 가장 큰 N1값을 적용하는 것이 무리가 없을 수 있기 때문이다.
Nx값의 또 다른 예로, 표 8에 제시된 N2값 (혹은 해당 N2에 특정 심볼 수 a를 더한 (N2+a)값, 여기서 a는 양수 또는 음수로 설정될 수 있음)들을 상기 Nx값으로 적용할 수 있다. Case B가 PUSCH 스케줄링/전송 case와 유사하게 DL control를 수신하고 대응되는 UL channel을 전송하는 형태이므로, 각 SCS별로 정의된 N2값을 적용하는 것이 무리가 없을 수 있기 때문이다.
Nx값의 또 다른 예로, 표 9에 제시된 SPS release를 지시하는 PDCCH에 관련된 N값 (혹은 해당 N에 특정 심볼 수 a를 더한 (N+a)값, 여기서 a는 양수 또는 음수로 설정될 수 있음)들이 Nx값(e.g., PDSCH 스케줄링없이 Type-3 코드북 기반의 A/N 피드백 전송을 지시하는 PDCCH의 마지막 심볼로부터 Type-3 코드북 기반의 A/N 피드백 (e.g., A/N PUCCH) (최초 심볼) 전송까시 심볼 오프셋)으로 사용될 수도 있다. 그 이유는 Case B가 (PDCCH를 통해 지시되는 정보는 SPS PDSCH release와는 다르지만) 단말이 PDCCH를 수신하고 PDCCH에 대응되는 HARQ-ACK(e.g., A/N PUCCH)를 전송하는 형태이므로, 표 9와 같이 SPS PDSCH release를 지시하는 PDCCH에 대하여 각 SCS별로 정의된 N값을 Type-3 코드북 기반의 A/N 피드백 전송을 지시하는 PDCCH에 적용하는 것이 가능할 수 있기 때문이다. 예컨대, PDSCH의 스케줄링 없이 Type-3 코드북 기반의 HARQ-ACK을 요청하는 DCI(e.g., DL grant 포맷 DCI)를 나르는 제1 PDCCH를 수신한 단말은, 마치 SPS release를 지시하는 DCI를 나르는 제2 PDCCH가 수신되었더라면 단말이 제2 PDCCH에 대해서 A/N 피드백을 송신하여야 하는 타이밍(실제로는 제2 PDCCH가 수신된 것이 아니라 제1 PDCCH가 수신되었음에도 불구하고)에서 제1 PDCCH가 지시하는 Type-3 코드북 기반의 HARQ-ACK을 전송(또는 전송을 시작)할 수 있다. PDSCH의 스케줄링 없이 Type-3 코드북 기반의 HARQ-ACK을 요청하는 DCI(e.g., DL grant 포맷 DCI)를 나르는 제1 PDCCH를 송신한 기지국은, 마치 SPS release를 지시하는 DCI를 나르는 제2 PDCCH가 수신되었더라면 기지국이 제2 PDCCH에 대해서 A/N 피드백을 수신하여야 하는 타이밍(실제로는 제2 PDCCH가 송신된 것이 아니라 제1 PDCCH가 송신되었음에도 불구하고)에서 제1 PDCCH가 지시하는 Type-3 코드북 기반의 HARQ-ACK을 수신(또는 수신을 시작)할 수 있다. 이와 같이 SPS PDSCH release를 지시하는 PDCCH에 대한 A/N 피드백 타이밍이 Case B(e.g. PDSCH의 스케줄링 없이 Type-3 코드북 기반의 HARQ-ACK을 요청하는 DCI(e.g., DL grant 포맷 DCI)를 나르는 PDCCH를 수신한 단말이 Type-3 코드북 기반의 HARQ-ACK을 송신)를 위해서 재사용될 수 있다.
도 24는 본 발명의 일 예에 따른 Type-3 코드북 기반의 HARQ-ACK 전송 타이밍을 예시한다. 본 발명은 도 24에 한정되지 않으며, 앞서 설명된 내용(e.g., 도 17~23 등)과 중복하는 설명은 생략될 수 있다.
도 24를 참조하면, 단말은 DL grant DCI 포맷에 해당하는 DCI를 나르는 PDCCH의 검출을 시도한다(2405). PDCCH의 검출 시도는, 탐색 공간 내에서 해당 PDCCH의 후보들에 대한 블라인드 디코딩을 수행하는 것을 포함할 수 있다.
단말은 PDCCH로부터 DL grant DCI 포맷을 가지는 DCI를 획득한다(2410).
DCI가 Type-3 코드북 기반의 HARQ-ACK 피드백을 요청하고(2412 Y), PDSCH를 스케줄링하면(2415 Y)(e.g., Case A) 단말은 해당 DCI에 의해 스케줄된 PDSCH를 수신(2425)하는 한편, DCI에서 지시된 Type-3 코드북 기반의 HARQ-ACK 페이로드를 생성한다(2430)(e.g., FIG. 21~23 등).
DCI가 PDSCH를 스케줄링 없이(2415 N), Type-3 코드북 기반의 HARQ-ACK 피드백을 요청하는 경우(2412 Y) (e.g., Case B) 단말은 PDSCH 수신 없이 DCI에서 지시된 Type-3 코드북 기반의 HARQ-ACK 페이로드를 생성한다(e.g., FIG. 21~23 등).
단말은 Type-3 코드북 기반의 HARQ-ACK을 송신한다(2435). HARQ-ACK 송신 타이밍은 Type-3 코드북 기반의 HARQ-ACK 피드백을 요청하는 DCI(2412 Y)가 PDSCH를 스케줄링 하는지 여부(2415 Y/N)에 기초하여 결정될 수 있다.
예를 들어, DCI(2412 Y)가 PDSCH를 스케줄링하는 경우 (2415 Y), HARQ-ACK 송신(2435)은 PDSCH 수신(2425) 시점에 기초하여 결정될 수 있다. 구체적인 예로, PDSCH 수신(2425)이 끝나는 제1 슬롯에 제1 슬롯 오프셋 값을 적용하여 결정된 제2 슬롯에서 HARQ-ACK 송신(2435)이 수행될 수 있다. 제1 슬롯 오프셋 값은 DCI(2412 Y & 2415 Y)가 PDSCH-to-HARQ 타이밍 지시자를 포함하는 경우, PDSCH-to-HARQ 타이밍 지시자에 의해 지시된 K1을 의미할 수 있다. DCI(2412 Y & 2415 Y)가 PDSCH-to-HARQ 타이밍 지시자를 포함하지 않는 경우 제1 슬롯 오프셋 값은 상위 계층 시그널링을 통해 사전 설정된 값에 의해 결정될 수 있다.
예를 들어, DCI(2412 Y)가 PDSCH를 스케줄링하지 않는 경우 (2415 N), HARQ-ACK 송신(2435)은 검출된 PDCCH(2405)의 수신 시점에 기초하여 결정될 수 있다. 구체적인 예로, SPS PDSCH release를 지시하는 PDCCH일 때 사용되는 A/N 타이밍(e.g., 표 9)에 기초하여 HARQ-ACK 송신(2435) 타이밍이 결정될 수 있다. 단말/기지국은 DCI(2412 Y & 2415 N)를 나르는 PDCCH(2405)에 대하여, SPS PDSCH release를 지시하는 PDCCH일 때 사용되는 A/N 타이밍(e.g., 표 9)을 적용/재사용하여 HARQ-ACK 송신(2435) 타이밍을 결정할 수 있다. 보다 더 구체적인 예로, DCI(2412 Y & 2415 N)를 나르는 PDCCH(2405)의 수신이 심볼 #X에서 끝날 때, Type-3 코드북 기반의 HARQ-ACK 송신(2435)은 심볼 #(X+N)에서 수행(또는 송신 시작)될 수 있으며, N 값을 위해 표 9가 참조될 수 있다.
한편, PDCCH(2405)의 수신이 끝나는 제3 슬롯에 제2 슬롯 오프셋 값을 적용하여 결정된 제4 슬롯에서 HARQ-ACK 송신(2435)이 수행될 수도 있다. 제2 슬롯 오프셋 값은 DCI(2412 Y & 2415 N)가 PDSCH-to-HARQ 타이밍 지시자를 포함하는 경우, PDSCH-to-HARQ 타이밍 지시자에 의해 지시된 K1을 의미할 수 있다. DCI(2412 Y & 2415 N)가 PDSCH-to-HARQ 타이밍 지시자를 포함하지 않는 경우 제2 슬롯 오프셋 값은 상위 계층 시그널링을 통해 사전 설정된 값이 사용될 수도 있으며, 본 발명은 이에 한정되지 않는다.
(g) CBG 기반 전송 설정을 고려한 Type-2a A/N 코드북 관련 DL/UL DCI 시그널링
먼저, 단말에게 설정된 특정 서빙 셀에 CBG 기반 PDSCH 전송이 설정된 경우, Type-2 A/N 코드북 구성을 위해 아래와 같은 DL grant DCI 시그널링 방법을 고려할 수 있다.
1)DL grant DCI를 통해 상기 other-ID에 대응되는 (PDSCH) 슬롯 그룹에 대한 total-DAI (i.e., T-DAI) 및 NFI 정보가 지시되도록 설정된 경우(e.g., DCI가 상기 current-ID에 대응되는 PDSCH group (i.e., current group)과 other-ID에 대응되는 PDSCH group (i.e., other group) 각각에 대한 T-DAI 및 NFI 정보를 모두 지시)
A. 방법 0: (DL grant DCI를 통해) other group에 대하여 TB 기반 (i.e., TB-based) PDSCH에 대한 (이에 대응되는 TB-based A/N 서브-코드북 구성을 위한) T-DAI 정보와 CBG 기반 (i.e., CBG-based) PDSCH에 대한 (이에 대응되는 CBG-based A/N 서브-코드북 구성을 위한) T-DAI 정보를 모두 지시
B. 방법 1: (DL grant DCI를 통해) other group에 대하여 하나의 T-DAI 정보만을 지시 (이 경우, 해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH 중 하나의 PDSCH type에 대한 T-DAI 정보만을 지시할 수 있음)
i. 이 방법의 경우, PDSCH type이 TB-based PDSCH로 고정 (또는, CBG-based PDSCH로 고정)될 수 있다. 예컨대, T-DAI가 TB-based PDSCH와 CBG-based PDSCH 중 특정 어느 하나의 PDSCH type에 대한 T-DAI 정보만을 지시하는 경우에 있어서, 특정 어느 하나의 PDSCH type으로 PDSCH 전송이 수행되도록 PDSCH type이 고정될 수 있다.
ii. 한편, (방법 1/2/3/4에 공통적으로) 상기 PDSCH type이 아닌 다른 PDSCH type-1 (예를 들어, 상기 PDSCH type이 TB-based PDSCH인 경우 해당 PDSCH type-1은 CBG-based PDSCH가 되고, 상기 PDSCH type이 CBG-based PDSCH인 경우 해당 PDSCH type-1은 TB-based PDSCH가 됨)에 대해서는 이전 (해당 other group의 해당 PDSCH type-1을 스케줄링하는 다른 DCI를 통해) 가장 최근 수신된 T-DAI 정보를 적용하여 대응되는 A/N 피드백 (서브-코드북)을 구성
C. 방법 2: (DL grant DCI를 통해) other group에 대하여 하나의 T-DAI 정보만을 지시 (이 경우, 해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH중 하나의 PDSCH type에 대한 T-DAI 정보만을 지시)
i. 상기 DCI와 동일한 A/N 전송 슬롯을 지시하면서 해당 other group을 스케줄링한 다른 DCI-1이 있는 경우, 상기 PDSCH type은 해당 DCI-1으로부터 마지막으로 스케줄링된 PDSCH type으로 결정 (또는, 해당 DCI-1으로부터 마지막으로 스케줄링된 cell에 CBG 기반 PDSCH 전송이 설정된 경우에는 CBG-based PDSCH로 PDSCH type이 결정되고, 그렇지 않은 경우에는 TB-based PDSCH로 PDSCH type이 결정)
ii. 상기 DCI와 동일한 A/N 전송 슬롯을 지시하면서 해당 other group을 스케줄링한 다른 DCI-1이 없는 경우, 상기 PDSCH type은 TB-based PDSCH로 결정 (또는, CBG-based PDSCH로 결정 혹은 상기 PDSCH type가 TB-based PDSCH인지 아니면 CBG-based PDSCH인지를 RRC 시그널링을 통해 설정)
D. 방법 3: (DL grant DCI를 통해) other group에 대하여 하나의 T-DAI 정보만을 지시 (이 경우, 해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH중 하나의 PDSCH type에 대한 T-DAI 정보만을 지시)
i. 상기 DCI와 동일한 A/N 전송 슬롯을 지시하면서 해당 other group을 스케줄링한 다른 DCI-1들이 있고 해당 DCI-1들이 TB-based PDSCH와 CBG-based PDSCH를 모두 스케줄링한 경우, 상기 PDSCH type은 TB-based PDSCH로 결정 (또는, CBG-based PDSCH로 결정 혹은 상기 PDSCH type가 TB-based PDSCH인지 아니면 CBG-based PDSCH인지를 RRC 시그널링을 통해 설정)
ii. 상기 DCI와 동일한 A/N 전송 슬롯을 지시하면서 해당 other group을 스케줄링한 다른 DCI-1이 있고 해당 DCI-1이 TB-based PDSCH와 CBG-based PDSCH중 하나의 PDSCH type-1만 스케줄링한 경우, 상기 PDSCH type은 해당 PDSCH type-1으로 결정
iii. 상기 DCI와 동일한 A/N 전송 슬롯을 지시하면서 해당 other group을 스케줄링한 다른 DCI-1이 없는 경우, 상기 PDSCH type은 TB-based PDSCH로 결정 (또는, CBG-based PDSCH로 결정 혹은 상기 PDSCH type가 TB-based PDSCH인지 아니면 CBG-based PDSCH인지를 RRC 시그널링을 통해 설정)
E. 방법 4: (DL grant DCI를 통해) other group에 대하여 하나의 T-DAI 정보만을 지시 (이 경우, 해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH중 하나의 PDSCH type에 대한 T-DAI 정보만을 지시)
i. 상기 PDSCH type이 TB-based PDSCH인지 아니면 CBG-based PDSCH인지 여부가 동일 DCI를 통해 (예를 들어, 별도의 1-bit로) 지시되거나 또는 RRC 시그널링을 통해 설정
ii. 한편, 상기 PDSCH type이 아닌 다른 PDSCH type-1에 대해서는 이전 (해당 other group의 해당 PDSCH type-1을 스케줄링하는 DCI를 통해) 가장 최근 수신된 T-DAI 정보를 적용하여 대응되는 A/N 피드백 (서브-코드북)을 구성하거나, 또는 이 방법 4의 경우 해당 PDSCH type-1에 대해서는 A/N 피드백 (서브-코드북)을 구성/전송하지 않을 수 있음
2) DL grant DCI를 통해 other group에 대한 T-DAI 및 NFI 정보가 지시되지 않도록 (즉, current group에 대한 T-DAI 및 NFI 정보만 지시되도록) 설정된 경우
A. 방법 5: 상기 other group에 대해서는, 각 PDSCH type (TB-based or CBG-based)에 대하여 이전 (해당 other group의 해당 PDSCH type을 스케줄링하는 DCI를 통해) 가장 최근 수신된 T-DAI 정보를 적용하여, 해당 각 PDSCH type에 대응되는 A/N 피드백 (서브-코드북)을 구성하도록 동작
상기에 추가로, DL grant DCI를 통한 T-DAI 정보 시그널링 관점에서 아래 두 방식 중 하나가 RRC 시그널링을 통해 단말에게 설정될 수 있다.
1) 방식 X: (DL grant DCI를 통해) 상기 other group에 대하여 TB-based PDSCH에 대한 T-DAI 정보와 CBG-based PDSCH에 대한 T-DAI 정보를 모두 지시 (상기 방법 0와 동일)
2) 방식 Y: (DL grant DCI를 통해) 상기 other group에 대하여 하나의 T-DAI 정보만을 지시 (해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH중 하나에 대한 T-DAI 정보만을 지시)
다음, 단말에게 설정된 특정 cell에 CBG 기반 PDSCH 전송이 설정된 경우, 상기 Type-2 A/N 코드북 구성을 위해 아래와 같은 UL grant DCI 시그널링 방법을 고려할 수 있다.
1) UL grant DCI를 통해 두 PDSCH group 각각에 대한 T-DAI 정보가 모두 지시되도록 설정된 경우 (e.g., DCI를 통해 상기 first-ID에 대응되는 PDSCH group (i.e., first group (인덱스 0))에 대한 T-DAI 정보와 상기 second-ID에 대응되는 PDSCH group (i.e., second group (인덱스 1))에 대한 T-DAI 정보가 모두 지시)
A. 방법 0: (UL grant DCI를 통해) 다음과 같이 각각의 PDSCH group별로 TB-based PDSCH에 대한 (이에 대응되는 TB-based A/N 서브-코드북 구성을 위한) T-DAI 정보와 CBG-based PDSCH에 대한 (이에 대응되는 CBG-based A/N 서브-코드북 구성을 위한) T-DAI 정보를 모두 지시
i. First group에 속한 TB-based PDSCH에 대한 T-DAI 정보
ii. First group에 속한 CBG-based PDSCH에 대한 T-DAI 정보
iii. Second group에 속한 TB-based PDSCH에 대한 T-DAI 정보
iv. Second group에 속한 CBG-based PDSCH에 대한 T-DAI 정보
B. 방법 1: (UL grant DCI를 통해) 각각의 PDSCH group별로 하나의 T-DAI 정보만을 지시 (이 경우, 해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH중 하나의 PDSCH type에 대한 T-DAI 정보만을 지시)
i. 이 방법의 경우, (각 PDSCH group별로 지시되는 상기 T-DAI에 대응되는) 상기 PDSCH type을 TB-based PDSCH로 고정 (또는, CBG-based PDSCH로 고정)
ii. 한편, (방법 1/2/3/4에 공통적으로) 각 PDSCH group에 대하여 상기 PDSCH type이 아닌 다른 PDSCH type-1 (예를 들어, 상기 PDSCH type이 TB-based PDSCH인 경우 해당 PDSCH type-1은 CBG-based PDSCH가 되고, 상기 PDSCH type이 CBG-based PDSCH인 경우 해당 PDSCH type-1은 TB-based PDSCH가 됨)에 대해서는 이전 (해당 PDSCH group의 해당 PDSCH type-1에 대한 T-DAI 정보를 지시하는 DL grant DCI를 통해) 가장 최근 수신된 T-DAI 정보를 적용하여 대응되는 A/N 피드백 (서브-코드북)을 구성
C. 방법 2: (UL grant DCI를 통해) 각각의 PDSCH group별로 하나의 T-DAI 정보만을 지시 (이 경우, 해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH중 하나의 PDSCH type에 대한 T-DAI 정보만을 지시)
i. 각 PDSCH group에 대하여 상기 UL grant DCI로 지시된 PUSCH 전송 슬롯을 A/N PUCCH 전송 슬롯으로 지시하면서 해당 PDSCH group을 스케줄링한 DL grant DCI가 있는 경우, (해당 PDSCH group에 대해 지시되는 상기 T-DAI에 대응되는) 상기 PDSCH type은 해당 DL DCI로부터 마지막으로 스케줄링된 PDSCH type으로 결정 (또는, 해당 DL grant DCI로부터 마지막으로 스케줄링된 cell에 CBG 기반 PDSCH 전송이 설정된 경우에는 CBG-based PDSCH로, 그렇지 않은 경우에는 TB-based PDSCH로 각각 PDSCH type이 결정됨)
ii. 각 PDSCH group에 대하여 상기 UL grant DCI로 지시된 PUSCH 전송 슬롯을 A/N PUCCH 전송 슬롯으로 지시하면서 해당 PDSCH group을 스케줄링한 DL grant DCI가 없는 경우, (해당 PDSCH group에 대해 지시되는 상기 T-DAI에 대응되는) 상기 PDSCH type은 TB-based PDSCH로 결정 (또는, CBG-based PDSCH로 결정 혹은 상기 PDSCH type가 TB-based PDSCH인지 아니면 CBG-based PDSCH인지를 RRC 시그널링을 통해 설정)
D. 방법 3: (UL grant DCI를 통해) 각각의 PDSCH group별로 하나의 T-DAI 정보만을 지시 (이 경우, 해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH중 하나의 PDSCH type에 대한 T-DAI 정보만을 지시)
i. 각 PDSCH group에 대하여 상기 UL grant DCI로 지시된 PUSCH 전송 슬롯을 A/N PUCCH 전송 슬롯으로 지시하면서 해당 PDSCH group을 스케줄링한 DL DCI들이 있고 해당 DL grant DCI들이 TB-based PDSCH와 CBG-based PDSCH를 모두 스케줄링한 경우, (해당 PDSCH group에 대해 지시되는 상기 T-DAI에 대응되는) 상기 PDSCH type은 TB-based PDSCH로 결정 (또는, CBG-based PDSCH로 결정 혹은 상기 PDSCH type가 TB-based PDSCH인지 아니면 CBG-based PDSCH인지를 RRC 시그널링을 통해 설정)
ii. 각 PDSCH group에 대하여 상기 UL grant DCI로 지시된 PUSCH 전송 슬롯을 A/N PUCCH 전송 슬롯으로 지시하면서 해당 PDSCH group을 스케줄링한 DL grant DCI가 있고 해당 DL grant DCI가 TB-based PDSCH와 CBG-based PDSCH중 하나의 PDSCH type-1만 스케줄링한 경우, (해당 PDSCH group에 대해 지시되는 상기 T-DAI에 대응되는) 상기 PDSCH type은 해당 PDSCH type-1으로 결정
iii. 각 PDSCH group에 대하여 상기 UL grant DCI로 지시된 PUSCH 전송 슬롯을 A/N PUCCH 전송 슬롯으로 지시하면서 해당 PDSCH group을 스케줄링한 DL grant DCI가 없는 경우, (해당 PDSCH group에 대해 지시되는 상기 T-DAI에 대응되는) 상기 PDSCH type은 TB-based PDSCH로 결정 (또는, CBG-based PDSCH로 결정 혹은 상기 PDSCH type가 TB-based PDSCH인지 아니면 CBG-based PDSCH인지를 RRC 시그널링을 통해 설정)
E. 방법 4: (UL grant DCI를 통해) 각각의 PDSCH group별로 하나의 T-DAI 정보만을 지시 (이 경우, 해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH중 하나의 PDSCH type에 대한 T-DAI 정보만을 지시)
i. (각 PDSCH group별로 지시되는 상기 T-DAI에 대응되는) 상기 PDSCH type이 TB-based PDSCH인지 아니면 CBG-based PDSCH인지 여부가 동일 UL grant DCI를 통해 (예를 들어, 별도의 1-bit로) 지시되거나 또는 RRC 시그널링을 통해 설정
ii. 한편, 각 PDSCH group에 대하여 상기 PDSCH type이 아닌 다른 PDSCH type-1에 대해서는 이전 (해당 PDSCH group의 해당 PDSCH type-1에 대한 T-DAI 정보를 지시하는 DL DCI를 통해) 가장 최근 수신된 T-DAI 정보를 적용하여 대응되는 A/N 피드백 (서브-코드북)을 구성하거나, 또는 이 방법 4의 경우 해당 PDSCH type-1에 대해서는 A/N 피드백 (서브-코드북)을 구성/전송하지 않을 수 있음
2) UL DCI를 통해 두 PDSCH group들 (first group (인덱스 0), second group (인덱스 1))중 하나의 PDSCH group X에 대해서만 T-DAI 정보가 지시되도록 설정된 경우
A. 방법 5: (UL grant DCI를 통해) 상기 하나의 PDSCH group X에 대하여 TB-based PDSCH에 대한 (이에 대응되는 TB-based A/N 서브-코드북 구성을 위한) T-DAI 정보와 CBG-based PDSCH에 대한 (이에 대응되는 CBG-based A/N 서브-코드북 구성을 위한) T-DAI 정보를 모두 지시
i. 상기 PDSCH group X는, 1) 상기 UL grant DCI로 지시된 PUSCH 전송 슬롯을 A/N PUCCH 전송 슬롯으로 지시한 DL grant DCI들이 두 PDSCH group을 모두 스케줄링한 경우에는 first group으로, 2) 상기 UL grant DCI로 지시된 PUSCH 전송 슬롯을 A/N PUCCH 전송 슬롯으로 지시한 DL grant DCI가 특정 PDSCH group 하나만 스케줄링한 경우에는 해당 특정 group으로, 3) 상기 UL grant DCI로 지시된 PUSCH 전송 슬롯을 A/N PUCCH 전송 슬롯으로 지시한 DL grant DCI가 없는 경우에는 first group으로 각각 결정될 수 있음
ii. 상기 PDSCH group X가 아닌 다른 PDSCH group Y에 대해서는, 각 PDSCH type (TB-based or CBG-based)에 대하여 이전 (해당 PDSCH group Y의 해당 PDSCH type에 대한 T-DAI 정보를 지시하는 DL DCI를 통해) 가장 최근 수신된 T-DAI 정보를 적용하여, 해당 각 PDSCH type에 대응되는 A/N 피드백 (서브-코드북)을 구성
B. 방법 6: (UL DCI를 통해) 상기 하나의 PDSCH group X에 대하여 하나의 T-DAI 정보만을 지시 (이 경우, 해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH중 하나의 PDSCH type에 대한 T-DAI 정보만을 지시)
i. 먼저 상기 PDSCH group X의 경우 상기 방법 5에서와 동일한 방식으로 결정될 수 있으며, 다음 해당 PDSCH group X에 대해 지시되는 상기 T-DAI에 대응되는 PDSCH type (TB-based or CBG-based)의 경우 상기 방법 1/2/3/4중 적어도 하나의 방법을 적용하여 결정될 수 있음
ii. 상기 PDSCH group X가 아닌 다른 PDSCH group Y에 대해서는, 상기 방법 5에서와 동일한 방식으로 각 PDSCH type별 T-DAI 정보를 적용하여 대응되는 A/N 피드백 (서브-코드북)을 구성할 수 있음
상기에 추가로, UL DCI를 통한 T-DAI 정보 시그널링 관점에서 아래 두 방식 중 하나가 RRC 시그널링을 통해 단말에게 설정될 수 있다.
1) 방식 X: (UL grant DCI를 통해) 각각의 PDSCH group별로 TB-based PDSCH에 대한 T-DAI 정보와 CBG-based PDSCH에 대한 T-DAI 정보를 모두 지시 (상기 방법 0와 동일)
2) 방식 Y: (UL grant DCI를 통해) 각각의 PDSCH group별로 하나의 T-DAI 정보만을 지시 (해당 T-DAI는 TB-based PDSCH와 CBG-based PDSCH중 하나에 대한 T-DAI 정보만을 지시)
도 25은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 25을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 26은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 26을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 25의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
상술된 일 예에 따르면 제1 무선 기기(100)가 PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 수신하고 상기 DCI에 기초하여 HARQ-ACK 보고를 송신할 수 있다. 상기 HARQ-ACK 보고의 송신에 있어서, 상기 제1 무선 기기(100)는, TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 설정되었음에도 불구하고, 상기 DCI가 상기 제1 무선 기기(100)에 설정된 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 송신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 지시한다는 것 및 상기 제1 무선 기기(100)가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 설정(configure)되었다는 것에 기초하여, 상기 공간 번들링 없이 각 TB-기반의 ACK/NACK 비트와 각 NDI 비트를 보고할 수 있다(even though the wireless device 100 is configured to perform spatial bundling for transport block (TB)-based ACK/negative-ACK(NACK) bits, the wireless device 100 may report each new data indicator (NDI) bit and each TB-based ACK/NACK bit without performing the spatial bundling, based on that the DCI indicates a specific type codebook-based HARQ-ACK report for one-shot-based transmission of ACK/NACKs for all HARQ processes of one or more serving cells configured in the UE, and the wireless device 100 is configured to report each NDI bit through the specific type codebook-based HARQ-ACK report).
상술된 일 예에 따르면, 제2 무선 기기(200)는 PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 제1 무선 기기(100)에 송신하고, 상기 제1 무선 기기(100)로부터 상기 DCI에 기초한 HARQ-ACK 보고를 수신할 수 있다. 상기 HARQ-ACK 보고의 수신에 있어서, 상기 제2 무선 기기(200)는, TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 상기 제1 무선 기기(100)을 설정하였음에도 불구하고, 상기 제1 무선 기기(100)에 설정한 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 수신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 상기 DCI를 통해 지시하였다는 것 및 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 상기 제1 무선 기기(100)을 설정(configure)하였다는 것에 기초하여, 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI 비트와 상기 공간 번들링이 적용되지 않은 각 TB-기반의 ACK/NACK 비트를 획득할 수 있다.
상기 특정 타입 코드북은 Type-3 코드북으로써, 각 NDI를 포함하도록 구성된 Type-3 코드북 기반의 HARQ-ACK 보고에 대해서는 상기 공간 번들링의 예외로써 상기 공간 번들링이 수행되지 않을 수 있다. 상기 공간 번들링의 예외는, 상기 Type-3 코드북 기반의 HARQ-ACK 보고가 각 NDI 비트를 포함하도록 구성되었다는 것에 기초하여 적용될 수 있다. 상기 Type-3 코드북과 상이한 Type-1 또는 Type-2 코드북 기반의 HARQ-ACK 보고에 대해서는 해당 TB-기반 ACK/NACK 비트들에 상기 공간 번들링이 수행될 수 있다.
상기 제1 무선 기기(100)는 해당 TB-기반의 ACK/NACK 비트들의 논리적(logical) AND 연산을 위한 상기 공간 번들링의 설정(configuration) 및 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI 비트를 보고하기 위한 설정을 상위 계층 시그널링을 통해 수신할 수 있다.
상기 하나 또는 둘 이상의 서빙 셀들은 CBG(codeblock group)-기반의 송신이 수행되는 특정 서빙 셀을 포함할 수 있다. 상기 제1 무선 기기(100)는 상위 계층 시그널링에 기초하여 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 상기 특정 서빙 셀에 대하여 CBG-기반 ACK/NACK 보고를 수행할지 또는 TB-기반 ACK/NACK 보고를 수행할지 여부를 결정할 수 있다. 상기 특정 타입 코드북은 Type-3 코드북일 수 있다. 상기 제1 무선 기기(100)가 상기 상위 계층 시그널링에 기초하여 Type-3 코드북 기반의 HARQ-ACK 보고를 통해 상기 특정 서빙 셀에 대하여 TB-기반 ACK/NACK 보고를 수행하기로 결정하였더라도, 상기 제1 무선 기기(100)는 상기 Type-3 코드북과 상이한 Type-1 또는 Type-2 코드북 기반의 HARQ-ACK 보고를 통해서는 상기 특정 서빙 셀에 대하여 CBG-기반 ACK/NACK 보고를 수행할 수 있다.
하위 인덱스(lower indexed) 서빙 셀의 A/N 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑 될 수 있다. 동일 인덱스 서빙 셀의 A/N 비트들 간에는 하위 인덱스 HARQ 프로세스의 A/N 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑 될 수 있다. 동일 인덱스 HARQ 프로세스의 A/N 비트들 간에는 하위 인덱스 TB의 A/N 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑 될 수 있다. 해당 TB에 포함된 복수의 CBG(codeblock group)들의 A/N 비트들 간에는 하위 인덱스 CBG의 A/N 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑 될 수 있다.
상기 특정 타입 코드북 기반의 HARQ-ACK 보고에 포함된 각 NDI 비트는, 해당 TB를 스케줄하는 해당 DCI에 포함된 NDI 필드 값으로 설정될 수 있다.
상기 제1 무선 기기(100)는 TB-기반 스케줄링에 기반하여 제1 서빙 셀의 PDSCH(physical downlink shared channel)를 통해 제1 TB를 수신할 수 있다. 상기 제1 무선 기기(100)는 CBG(codeblock group)-기반 스케줄링에 기반하여 제2 서빙 셀의 PDSCH를 통해 제2 TB의 CBG들을 수신할 수 있다. 상기 특정 타입 코드북 기반의 HARQ-ACK 보고는 상기 제1 TB에 대한 TB-기반 ACK/NACK 비트, 상기 제1 TB에 대한 NDI 비트 및 상기 제2 TB에 대한 NDI 비트를 포함할 수 있다. 상기 특정 타입 코드북 기반의 HARQ-ACK 보고는 상기 제2 TB에 대한 TB-기반 ACK/NACK 비트를 포함하거나 또는 상기 제2 TB의 CBG들에 대한 CBG-기반 ACK/NACK 비트들을 포함할 수 있다.
도 27은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 25 참조).
도 27을 참조하면, 무선 기기(100, 200)는 도 26의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 26의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 26의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 25, 100a), 차량(도 25, 100b-1, 100b-2), XR 기기(도 25, 100c), 휴대 기기(도 25, 100d), 가전(도 25, 100e), IoT 기기(도 25, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 25, 400), 기지국(도 25, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 27에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 28은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 28을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 27의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
도 29는 본 발명의 일 실시예에 따른 단말의 DRX(Discontinuous Reception) 동작을 설명하기 위한 도면이다.
단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된 단말은 DL 신호를 불연속적으로 수신함으로써 전력 소비를 낮출 수 있다. DRX는 RRC(Radio Resource Control)_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 이하, RRC_CONNECTED 상태에서 수행되는 DRX에 관해 설명한다(RRC_CONNECTED DRX).
도 29를 참조하면, DRX 사이클은 On Duration과 Opportunity for DRX로 구성된다. DRX 사이클은 On Duration이 주기적으로 반복되는 시간 간격을 정의한다. On Duration은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 On Duration이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 발명에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 발명에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
표 10은 DRX와 관련된 단말의 과정을 나타낸다(RRC_CONNECTED 상태). 표 10을 참조하면, DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 단말은 본 발명에 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
Type of signals UE procedure
1 st step RRC signalling(MAC-
CellGroupConfig)
- Receive DRX configuration information
2 nd Step MAC CE
((Long) DRX command MAC CE)
- Receive DRX command
3 rd Step - - Monitor a PDCCH during an on-duration of a DRX cycle
여기서, MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 구성 정보를 포함한다. MAC-CellGroupConfig는 DRX에 관한 구성 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 정보를 다음과 같이 포함할 수 있다.
- Value of drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이를 정의
- Value of drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 기회 이후에 단말이 깬 상태로 있는 시간 구간의 길이를 정의
- Value of drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이를 정의.
- Value of drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이를 정의.
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작 시점을 정의
- drx-ShortCycle (optional): short DRX 사이클의 시간 길이를 정의
여기서, drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerDL 중 어느 하나라도 동작 중이면 단말은 깬 상태를 유지하면서 매 PDCCH 기회마다 PDCCH 모니터링을 수행한다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (16)

  1. 무선 통신 시스템에서 단말이 HARQ(hybrid automatic repeat request)-ACK(acknowledgement) 보고를 송신하는 방법에 있어서,
    PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 수신; 및
    상기 DCI에 기초하여 HARQ-ACK 보고를 송신하는 것을 포함하고,
    상기 HARQ-ACK 보고의 송신에 있어서, 상기 단말은,
    TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 설정되었음에도 불구하고,
    상기 DCI가 상기 단말에 설정된 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 송신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 지시한다는 것 및 상기 단말이 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 설정(configure)되었다는 것에 기초하여,
    상기 공간 번들링 없이 각 TB-기반의 ACK/NACK 비트와 각 NDI 비트를 보고하는, 방법.
  2. 제 1 항에 있어서,
    상기 특정 타입 코드북은 Type-3 코드북으로써, 각 NDI를 포함하도록 구성된 Type-3 코드북 기반의 HARQ-ACK 보고에 대해서는 상기 공간 번들링의 예외로써 상기 공간 번들링이 수행되지 않는, 방법.
  3. 제 2 항에 있어서,
    상기 공간 번들링의 예외는, 상기 Type-3 코드북 기반의 HARQ-ACK 보고가 각 NDI 비트를 포함하도록 구성되었다는 것에 기초하여 적용되는, 방법.
  4. 제 2 항에 있어서,
    상기 Type-3 코드북과 상이한 Type-1 또는 Type-2 코드북 기반의 HARQ-ACK 보고에 대해서는 해당 TB-기반 ACK/NACK 비트들에 상기 공간 번들링이 수행되는, 방법.
  5. 제 1 항에 있어서,
    해당 TB-기반의 ACK/NACK 비트들의 논리적(logical) AND 연산을 위한 상기 공간 번들링의 설정(configuration) 및 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI 비트를 보고하기 위한 설정을 상위 계층 시그널링을 통해 수신하는 것을 더 포함하는, 방법.
  6. 제 1 항에 있어서,
    상기 하나 또는 둘 이상의 서빙 셀들은 CBG(codeblock group)-기반의 송신이 수행되는 특정 서빙 셀을 포함하고,
    상기 단말은 상위 계층 시그널링에 기초하여 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 상기 특정 서빙 셀에 대하여 CBG-기반 ACK/NACK 보고를 수행할지 또는 TB-기반 ACK/NACK 보고를 수행할지 여부를 결정하는, 방법.
  7. 제 6 항에 있어서,
    상기 특정 타입 코드북은 Type-3 코드북으로써, 상기 단말이 상기 상위 계층 시그널링에 기초하여 Type-3 코드북 기반의 HARQ-ACK 보고를 통해 상기 특정 서빙 셀에 대하여 TB-기반 ACK/NACK 보고를 수행하기로 결정하였더라도,
    상기 단말은 상기 Type-3 코드북과 상이한 Type-1 또는 Type-2 코드북 기반의 HARQ-ACK 보고를 통해서는 상기 특정 서빙 셀에 대하여 CBG-기반 ACK/NACK 보고를 수행하는, 방법.
  8. 제 1 항에 있어서,
    하위 인덱스(lower indexed) 서빙 셀의 ACK/NACK 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑되고,
    동일 인덱스 서빙 셀의 ACK/NACK 비트들 간에는 하위 인덱스 HARQ 프로세스의 ACK/NACK 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑되고,
    동일 인덱스 HARQ 프로세스의 ACK/NACK 비트들 간에는 하위 인덱스 TB의 ACK/NACK 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑되는, 방법.
  9. 제 8 항에 있어서,
    해당 TB에 포함된 복수의 CBG(codeblock group)들의 ACK/NACK 비트들 간에는 하위 인덱스 CBG의 ACK/NACK 비트가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고에서 하위 인덱스 비트에 맵핑되는, 방법.
  10. 제 1 항에 있어서,
    상기 특정 타입 코드북 기반의 HARQ-ACK 보고에 포함된 각 NDI 비트는, 해당 TB를 스케줄하는 해당 DCI에 포함된 NDI 필드 값으로 설정되는, 방법.
  11. 제 1 항에 있어서,
    TB-기반 스케줄링에 기반하여 제1 서빙 셀의 PDSCH(physical downlink shared channel)를 통해 제1 TB를 수신; 및
    CBG(codeblock group)-기반 스케줄링에 기반하여 제2 서빙 셀의 PDSCH를 통해 제2 TB의 CBG들을 수신하는 것을 더 포함하고,
    상기 특정 타입 코드북 기반의 HARQ-ACK 보고는 상기 제1 TB에 대한 TB-기반 ACK/NACK 비트, 상기 제1 TB에 대한 NDI 비트 및 상기 제2 TB에 대한 NDI 비트를 포함하고,
    상기 특정 타입 코드북 기반의 HARQ-ACK 보고는 상기 제2 TB에 대한 TB-기반 ACK/NACK 비트를 포함하거나 또는 상기 제2 TB의 CBG들에 대한 CBG-기반 ACK/NACK 비트들을 포함하는, 방법.
  12. 제 1 항에 기재된 방법을 수행하기 위한 명령어들을 기록한 프로세서로 읽을 수 있는 기록매체.
  13. 무선 통신을 위한 단말에 있어서,
    송수신기; 및
    상기 송수신기를 제어함으로써 PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 수신하고, 상기 DCI에 기초하여 HARQ(hybrid automatic repeat request)-ACK(acknowledgement) 보고를 송신하는 프로세서를 포함하되,
    상기 HARQ-ACK 보고의 송신에 있어서, 상기 프로세서는,
    TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 설정되었음에도 불구하고,
    상기 DCI가 상기 단말에 설정된 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 송신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 지시한다는 것 및 상기 단말이 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 설정(configure)되었다는 것에 기초하여,
    상기 공간 번들링 없이 각 TB-기반의 ACK/NACK 비트와 각 NDI 비트를 보고하는, 단말.
  14. 무선 통신 시스템에서 기지국이 HARQ(hybrid automatic repeat request)-ACK(acknowledgement) 보고를 수신하는 방법에 있어서,
    PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 단말에 송신; 및
    상기 단말로부터 상기 DCI에 기초한 HARQ-ACK 보고를 수신하는 것을 포함하고,
    상기 HARQ-ACK 보고의 수신에 있어서, 상기 기지국은,
    TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 상기 단말을 설정하였음에도 불구하고,
    상기 단말에 설정한 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 수신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 상기 DCI를 통해 지시하였다는 것 및 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 상기 단말을 설정(configure)하였다는 것에 기초하여,
    상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI 비트와 상기 공간 번들링이 적용되지 않은 각 TB-기반의 ACK/NACK 비트를 획득하는, 방법.
  15. 무선 통신을 위한 기지국에 있어서,
    송수신기; 및
    상기 송수신기를 제어함으로써 PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 단말에 송신하고, 상기 단말로부터 상기 DCI에 기초한 HARQ(hybrid automatic repeat request)-ACK(acknowledgement) 보고를 수신하는 프로세서를 포함하고,
    상기 HARQ-ACK 보고의 수신에 있어서, 상기 프로세서는,
    TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 상기 단말을 설정하였음에도 불구하고,
    상기 단말에 설정한 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 수신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 상기 DCI를 통해 지시하였다는 것 및 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 상기 단말을 설정(configure)하였다는 것에 기초하여,
    상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI 비트와 상기 공간 번들링이 적용되지 않은 각 TB-기반의 ACK/NACK 비트를 획득하는, 기지국.
  16. 무선 통신을 위한 신호 처리를 수행하는 디바이스에 있어서,
    명령어들을 저장하는 메모리; 및
    상기 명령어들을 실행함으로써 PDCCH(physical downlink control channel)를 통해서 DCI(downlink control information)를 수신하는 동작(operation); 및 상기 DCI에 기초하여 HARQ(hybrid automatic repeat request)-ACK(acknowledgement) 보고를 송신하는 동작을 수행하는 프로세서를 포함하되,
    상기 HARQ-ACK 보고를 송신하는 동작에 있어서, 상기 프로세서는,
    TB(transport block)-기반 ACK/NACK(negative-ACK) 비트들을 공간 번들링 (spatial bundling)하도록 설정되었음에도 불구하고,
    상기 DCI가 상기 디바이스에 설정된 하나 또는 둘 이상의 서빙 셀들의 모든 HARQ 프로세스들에 대한 ACK/NACK들을 원-샷(one-shot) 기반으로 송신하기 위한 특정 타입 코드북 기반의 HARQ-ACK 보고를 지시한다는 것 및 상기 디바이스가 상기 특정 타입 코드북 기반의 HARQ-ACK 보고를 통해 각 NDI(new data indicator) 비트를 보고하도록 설정(configure)되었다는 것에 기초하여,
    상기 공간 번들링 없이 각 TB-기반의 ACK/NACK 비트와 각 NDI 비트를 보고하는, 디바이스.
PCT/KR2020/015412 2019-11-06 2020-11-05 무선 통신 시스템에서 신호 송수신 방법 및 장치 WO2021091258A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20885902.5A EP4057538B1 (en) 2019-11-06 2020-11-05 Method and apparatus for transmitting and receiving signal in wireless communication system
KR1020227007931A KR102477129B1 (ko) 2019-11-06 2020-11-05 무선 통신 시스템에서 신호 송수신 방법 및 장치
JP2022525394A JP7375188B2 (ja) 2019-11-06 2020-11-05 無線通信システムにおいて無線信号送受信方法及び装置
CN202080076930.9A CN114642065A (zh) 2019-11-06 2020-11-05 在无线通信系统中发送和接收信号的方法和设备
US17/716,394 US11611419B2 (en) 2019-11-06 2022-04-08 Method and apparatus for transmitting and receiving signal in wireless communication system
US18/158,185 US11799612B2 (en) 2019-11-06 2023-01-23 Method and apparatus for transmitting and receiving signal in wireless communication system

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US201962931752P 2019-11-06 2019-11-06
US62/931,752 2019-11-06
US201962932542P 2019-11-08 2019-11-08
US62/932,542 2019-11-08
US201962936583P 2019-11-17 2019-11-17
US62/936,583 2019-11-17
US201962938284P 2019-11-20 2019-11-20
US62/938,284 2019-11-20
KR20200017990 2020-02-13
KR10-2020-0017990 2020-02-13
US202062983557P 2020-02-28 2020-02-28
US62/983,557 2020-02-28
US202063006709P 2020-04-07 2020-04-07
US63/006,709 2020-04-07
US202063007301P 2020-04-08 2020-04-08
US63/007,301 2020-04-08
US202063012250P 2020-04-19 2020-04-19
US63/012,250 2020-04-19
KR10-2020-0062658 2020-05-25
KR20200062658 2020-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/716,394 Continuation US11611419B2 (en) 2019-11-06 2022-04-08 Method and apparatus for transmitting and receiving signal in wireless communication system

Publications (1)

Publication Number Publication Date
WO2021091258A1 true WO2021091258A1 (ko) 2021-05-14

Family

ID=75849715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015412 WO2021091258A1 (ko) 2019-11-06 2020-11-05 무선 통신 시스템에서 신호 송수신 방법 및 장치

Country Status (6)

Country Link
US (2) US11611419B2 (ko)
EP (1) EP4057538B1 (ko)
JP (1) JP7375188B2 (ko)
KR (1) KR102477129B1 (ko)
CN (1) CN114642065A (ko)
WO (1) WO2021091258A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210153172A1 (en) * 2019-11-19 2021-05-20 Qualcomm Incorporated Configuration for one-shot hybrid automatic repeat request (harq) feedback
US11412497B2 (en) * 2019-03-27 2022-08-09 Electronics And Telecommunications Research Institute Method and apparatus for transmitting or receiving uplink feedback information in communication system
US20220303100A1 (en) * 2019-11-06 2022-09-22 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal in wireless communication system
WO2023132736A1 (ko) * 2022-01-10 2023-07-13 삼성전자 주식회사 원샷 harq 피드백을 위한 drx 타이머 제어
WO2023153864A1 (en) * 2022-02-10 2023-08-17 Samsung Electronics Co., Ltd. Method and device for harq-ack transmission in wireless communication system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3820992A2 (en) * 2018-07-11 2021-05-19 Actym Therapeutics, Inc. Engineered immunostimulatory bacterial strains and uses thereof
JP2023043889A (ja) * 2020-02-13 2023-03-30 シャープ株式会社 端末装置および通信方法
US11889502B2 (en) * 2020-02-24 2024-01-30 Qualcomm Incorporated Two-stage feedback procedures
WO2022027599A1 (en) * 2020-08-07 2022-02-10 Apple Inc. Method and apparatus for group based physical downlink shared channel (pdsch) hybrid automatic repeat request (harq) -acknowledgement (ack) feedback in wireless communication
CN116250332A (zh) * 2020-08-07 2023-06-09 鸿颖创新有限公司 用于传输harq-ack码本的无线通信方法和用户设备
US11751193B2 (en) * 2021-01-14 2023-09-05 Qualcomm Incorporated Scheduling order for a scheduled cell having downlink control information from multiple scheduling cells
KR20230150543A (ko) * 2022-04-22 2023-10-31 삼성전자주식회사 무선 통신 시스템에서 drx 설정 개선을 위한 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093618A1 (ko) * 2014-12-09 2016-06-16 엘지전자 주식회사 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 위한 장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3280173A4 (en) * 2015-03-31 2018-11-21 Ntt Docomo, Inc. User terminal, wireless communication system, and wireless communication method
US10567142B2 (en) * 2017-03-23 2020-02-18 Apple Inc. Preemption indicators and code-block-group-based retransmission techniques for multiplexing different services on physical layer frames
US10548096B2 (en) * 2017-04-21 2020-01-28 Samsung Electronics Co., Ltd. Information type multiplexing and power control
JP6835984B2 (ja) * 2017-05-03 2021-02-24 アイディーエーシー ホールディングス インコーポレイテッド 低遅延トラフィックによって影響されるときの高速大容量モバイルブロードバンド(eMBB)のハイブリッド自動再送要求(HARQ)フィードバック性能を改善するための方法および装置
US20180367263A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. Downlink Control Signaling to Enable Preemption and CBG-Based (Re)Transmission
US10673566B2 (en) * 2017-09-07 2020-06-02 Sharp Kabushiki Kaisha Determining DCI format
US10750488B2 (en) * 2017-09-11 2020-08-18 Apple Inc. Hybrid automatic repeat request (HARQ) based on codeblock groups in new radio systems
US10873934B2 (en) * 2017-09-28 2020-12-22 Ofinno, Llc Pre-emption indication in a wireless device
US10985877B2 (en) * 2017-11-16 2021-04-20 Sharp Kabushiki Kaisha Codebook determination of HARQ-ACK multiplexing with fallback downlink control information (DCI) and code block group (CBG) configurations
US20200100284A1 (en) * 2018-09-24 2020-03-26 Samsung Electronics Co., Ltd. Method and apparatus for contention window size adaptation of nr unlicensed
US11496246B2 (en) * 2019-01-10 2022-11-08 Samsung Electronics Co., Ltd. HARQ operation and power control in sidelink
US11012994B2 (en) * 2019-10-04 2021-05-18 Qualcomm Incorporated Multiple downlink control information (DCI) message handling for multiple control resource set (CORESET) groups
JP7375188B2 (ja) * 2019-11-06 2023-11-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて無線信号送受信方法及び装置
CN112911710B (zh) * 2019-12-03 2024-05-14 华硕电脑股份有限公司 产生侧链路混合自动重复请求确认的方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093618A1 (ko) * 2014-12-09 2016-06-16 엘지전자 주식회사 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 위한 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Feature lead summary#2 of HARQ enhancements for NR-U", 3GPP DRAFT; R1-1909694 FL SUMMARY#2 FOR 72223 NRU HARQ, vol. RAN WG1, 3 September 2019 (2019-09-03), Prague, Czech Republic, pages 1 - 29, XP051766288 *
LENOVO, MOTOROLA MOBILITY: "HARQ enhancement for NR-U", 3GPP DRAFT; R1-1910156, vol. RAN WG1, 4 October 2019 (2019-10-04), Chongqing, China, pages 1 - 6, XP051788963 *
LENOVO, MOTOROLA MOBILITY: "HARQ-ACK enhancement for NR-U", 3GPP DRAFT; R1-1900396, vol. RAN WG1, 11 January 2019 (2019-01-11), Taipei, pages 1 - 4, XP051576005 *
LG ELECTRONICS: "HARQ procedure for NR-U", 3GPP DRAFT; R1-1910821 NR-U HARQ_FINAL, vol. RAN WG1, 8 October 2019 (2019-10-08), Chongqing, China, pages 1 - 22, XP051789607 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412497B2 (en) * 2019-03-27 2022-08-09 Electronics And Telecommunications Research Institute Method and apparatus for transmitting or receiving uplink feedback information in communication system
US11832275B2 (en) 2019-03-27 2023-11-28 Electronics And Telecommunications Research Institute Method and apparatus for transmitting or receiving uplink feedback information in communication system
US20220303100A1 (en) * 2019-11-06 2022-09-22 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal in wireless communication system
US11611419B2 (en) * 2019-11-06 2023-03-21 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal in wireless communication system
US11799612B2 (en) 2019-11-06 2023-10-24 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal in wireless communication system
US20210153172A1 (en) * 2019-11-19 2021-05-20 Qualcomm Incorporated Configuration for one-shot hybrid automatic repeat request (harq) feedback
US11671975B2 (en) * 2019-11-19 2023-06-06 Qualcomm Incorporated Configuration for one-shot hybrid automatic repeat request (HARQ) feedback
WO2023132736A1 (ko) * 2022-01-10 2023-07-13 삼성전자 주식회사 원샷 harq 피드백을 위한 drx 타이머 제어
WO2023153864A1 (en) * 2022-02-10 2023-08-17 Samsung Electronics Co., Ltd. Method and device for harq-ack transmission in wireless communication system

Also Published As

Publication number Publication date
US11799612B2 (en) 2023-10-24
JP7375188B2 (ja) 2023-11-07
CN114642065A (zh) 2022-06-17
EP4057538A4 (en) 2022-12-28
KR20220049538A (ko) 2022-04-21
EP4057538A1 (en) 2022-09-14
KR102477129B1 (ko) 2022-12-13
US11611419B2 (en) 2023-03-21
EP4057538B1 (en) 2024-02-28
JP2023500855A (ja) 2023-01-11
US20230163926A1 (en) 2023-05-25
US20220303100A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2021091258A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2021091251A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2021091292A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021015520A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020060367A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020184836A1 (ko) 무선 통신 시스템에서 단말의 빔 정보 전송 방법 및 이를 지원하는 단말 및 기지국
WO2022080928A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020060372A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022031023A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2021066545A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2020171405A1 (ko) 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국
WO2020226393A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2021075886A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022216041A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
WO2020159172A1 (ko) 무선 통신 시스템에서 단말의 빔 실패 보고 방법 및 이를 지원하는 단말 및 기지국
WO2022216040A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
WO2020159189A1 (ko) 무선 통신 시스템에서 단말의 상태 정보 보고 방법 및 이를 지원하는 단말 및 기지국
WO2022030945A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020166848A1 (ko) 무선 통신 시스템에서 단말의 빔 관련 상향링크 피드백 정보 전송 방법 및 이를 지원하는 단말 및 기지국
WO2020032756A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2021066535A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2021066533A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2021066548A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2020226395A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2022216035A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227007931

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022525394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020885902

Country of ref document: EP

Effective date: 20220607