WO2021075886A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2021075886A1
WO2021075886A1 PCT/KR2020/014121 KR2020014121W WO2021075886A1 WO 2021075886 A1 WO2021075886 A1 WO 2021075886A1 KR 2020014121 W KR2020014121 W KR 2020014121W WO 2021075886 A1 WO2021075886 A1 WO 2021075886A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
information
dci
feedback
group
Prior art date
Application number
PCT/KR2020/014121
Other languages
English (en)
French (fr)
Inventor
양석철
김선욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN202080072082.4A priority Critical patent/CN114556839B/zh
Priority to JP2022522747A priority patent/JP7375184B2/ja
Priority to EP20876674.1A priority patent/EP4047848A4/en
Priority to KR1020227007933A priority patent/KR102478144B1/ko
Publication of WO2021075886A1 publication Critical patent/WO2021075886A1/ko
Priority to US17/694,939 priority patent/US11563547B2/en
Priority to US18/090,971 priority patent/US11831580B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving a wireless signal.
  • Wireless communication systems are widely deployed to provide various types of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and apparatus for efficiently performing a wireless signal transmission/reception process.
  • a terminal used in a wireless communication system comprising: at least one transceiver; At least one processor; And at least one computer memory operatively connected to the at least one processor and allowing the at least one processor to perform an operation when executed, the operation including: a first Generates first A/N (acknowledgement/negative acknowledgment) information for a PDSCH (physical downlink shared channel) group, and second A/N information for a second PDSCH group, but each PDSCH group is for A/N request.
  • A/N acknowledgement/negative acknowledgment
  • the A/N for a specific PDSCH that does not belong to any PDSCH group is transmitted together with the first and second A/N information, the A/N for the specific PDSCH is assigned to the first and second A/N Appended to the information; Control information including the first and second A/N information and A/N for the specific PDSCH is transmitted.
  • an apparatus for a terminal comprising: at least one processor; And at least one computer memory operably connected to the at least one processor and allowing the at least one processor to perform an operation when executed, the operation comprising: a first Generates first A/N (acknowledgement/negative acknowledgment) information for a PDSCH (physical downlink shared channel) group, and second A/N information for a second PDSCH group, but each PDSCH group is for A/N request.
  • A/N acknowledgement/negative acknowledgment
  • the A/N for a specific PDSCH that does not belong to any PDSCH group is transmitted together with the first and second A/N information, the A/N for the specific PDSCH is assigned to the first and second A/N Appended to the information; Control information including the first and second A/N information and A/N for the specific PDSCH is transmitted.
  • a computer-readable storage medium comprising at least one computer program that, when executed, causes the at least one processor to perform an operation, the operation comprising: a first PDSCH Generates first A/N (acknowledgement/negative acknowledgment) information for a (physical downlink shared channel) group, and second A/N information for a second PDSCH group, but each PDSCH group is a basic for A/N request.
  • the A/N for the specific PDSCH is assigned to the first and second A/N Appended to the information; Control information including the first and second A/N information and A/N for the specific PDSCH is transmitted.
  • At least one PDSCH belonging to a first PDSCH (physical downlink shared channel) group and at least one PDSCH belonging to a second PDSCH group are provided. Transmitting, but each PDSCH group being a basic group for an acknowledgment/negative acknowledgment (A/N) request; Transmitting a specific PDSCH that does not belong to any PDSCH group; And receiving control information including first A/N information for the first PDSCH group, second A/N information for a second PDSCH group, and A/N for the specific PDSCH, A method in which the A/N for the specific PDSCH is located after the first and second A/N information is provided.
  • A/N acknowledgment/negative acknowledgment
  • a base station used in a wireless communication system comprising: at least one transceiver; At least one processor; And at least one computer memory operatively connected to the at least one processor and allowing the at least one processor to perform an operation when executed, the operation including: a first At least one PDSCH belonging to a physical downlink shared channel (PDSCH) group and at least one PDSCH belonging to a second PDSCH group are transmitted, wherein each PDSCH group is a basic group for an acknowledgment/negative acknowledgment (A/N) request; Transmits a specific PDSCH that does not belong to any PDSCH group; Receiving control information including first A/N information for the first PDSCH group, second A/N information for a second PDSCH group, and A/N for the specific PDSCH, and the specific The A/N for the PDSCH is located after the first and second A/N information.
  • PDSCH physical downlink shared channel
  • A/N acknowledgment/negative acknowledgment
  • the specific PDSCH may include a semi-persistent scheduling (SPS) PDSCH.
  • SPS semi-persistent scheduling
  • A/N retransmission is allowed for each of the first and second A/N information, but A/N retransmission may not be allowed for A/N for the SPS PDSCH.
  • DCI downlink control information
  • control information may be transmitted in an unlicensed band.
  • wireless signal transmission and reception can be efficiently performed in a wireless communication system.
  • FIG. 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • 3 illustrates a resource grid of a slot.
  • FIG. 5 shows an example in which a physical channel is mapped in a self-complete slot.
  • PUSCH 7 illustrates a physical uplink shared channel (PUSCH) transmission process.
  • FIG 9 illustrates a wireless communication system supporting an unlicensed band.
  • FIG. 10 illustrates a method of occupying a resource in an unlicensed band.
  • 11 is a flowchart illustrating a type 1 CAP operation of a terminal for transmitting an uplink signal.
  • SPS 15 illustrates Semi-Persistent Scheduling (SPS).
  • 16 illustrates a configuration of A/N payload based on a Type-2 codebook.
  • 17 illustrates a problem in simultaneous transmission of A/N for SPS PDSCH.
  • 20 to 23 illustrate a communication system 1 and a wireless device applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is a part of Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP New Radio or New Radio Access Technology is an evolved version of 3GPP LTE/LTE-A.
  • NR New Radio or New RAT
  • 3GPP NR is mainly described, but the technical idea of the present invention is not limited thereto.
  • a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information transmitted and received by them.
  • FIG. 1 is a diagram illustrating physical channels used in a 3GPP NR system and a general signal transmission method using them.
  • the terminal In a state in which the power is turned off, the terminal is turned on again or newly enters the cell and performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the UE receives a Synchronization Signal Block (SSB) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on PSS/SSS and acquires information such as cell identity (cell identity).
  • the terminal may acquire intra-cell broadcast information based on the PBCH.
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the physical downlink control channel information in step S102 to be more specific.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal may perform a random access procedure such as steps S103 to S106 in order to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • Can receive S104
  • a contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106) ) Can be performed.
  • the UE receives a physical downlink control channel/physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
  • Physical Uplink Control Channel (PUCCH) transmission (S108) may be performed.
  • Control information transmitted from the UE to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and ReQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data are to be transmitted at the same time. In addition, UCI may be aperiodically transmitted through the PUSCH at the request/instruction of the network.
  • each radio frame has a length of 10 ms and is divided into two 5 ms half-frames (HF). Each half-frame is divided into five 1ms subframes (Subframe, SF). The subframe is divided into one or more slots, and the number of slots in the subframe depends on Subcarrier Spacing (SCS).
  • SCS Subcarrier Spacing
  • Each slot includes 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols according to a cyclic prefix (CP). When a normal CP is used, each slot includes 14 OFDM symbols. When an extended CP is used, each slot includes 12 OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Table 1 exemplifies that when a normal CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • N subframe,u slot the number of slots in the subframe
  • Table 2 exemplifies that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • the structure of the frame is only an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed.
  • OFDM numerology eg, SCS
  • the (absolute time) section of the time resource eg, SF, slot, or TTI
  • TU Time Unit
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or a Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • BWP Bandwidth Part
  • PRB Physical RBs
  • the carrier may contain up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated to one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-contained structure in which all of a DL control channel, DL or UL data, and a UL control channel can be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter, a DL control region), and the last M symbols in a slot may be used to transmit a UL control channel (hereinafter, a UL control region).
  • N and M are each an integer of 0 or more.
  • a resource region hereinafter, referred to as a data region
  • a time gap for DL-to-UL or UL-to-DL switching may exist between the control region and the data region.
  • the following configuration may be considered. Each section was listed in chronological order.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • the GP provides a time gap when the base station and the terminal switch from a transmission mode to a reception mode or a process from a reception mode to a transmission mode. Some symbols at a time point at which the DL to UL is switched within a subframe may be set as a GP.
  • PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • It carries system information on the DL-SCH, resource allocation information for an upper layer control message such as a random access response transmitted on the PDSCH, a transmission power control command, and activation/release of Configured Scheduling (CS).
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • CS Configured Scheduling
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH is composed of 1, 2, 4, 8, 16 Control Channel Elements (CCEs) according to the Aggregation Level (AL).
  • CCE is a logical allocation unit used to provide a PDCCH of a predetermined code rate according to a radio channel state.
  • CCE is composed of 6 REGs (Resource Element Group).
  • REG is defined by one OFDM symbol and one (P)RB.
  • PDCCH is transmitted through CORESET (Control Resource Set).
  • CORESET Control Resource Set
  • CORESET is defined as a REG set with a given pneumonology (eg, SCS, CP length, etc.).
  • a plurality of CORESETs for one terminal may overlap in the time/frequency domain.
  • CORESET may be set through system information (eg, Master Information Block, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs and the number of OFDM symbols (maximum 3) constituting CORESET may be set by higher layer signaling.
  • system information eg, Master Information Block, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of OFDM symbols (maximum 3) constituting CORESET may be set by higher layer signaling.
  • the UE monitors PDCCH candidates.
  • the PDCCH candidate represents the CCE(s) that the UE should monitor for PDCCH detection.
  • Each PDCCH candidate is defined as 1, 2, 4, 8, 16 CCEs according to the AL. Monitoring involves (blind) decoding the PDCCH candidates.
  • the set of PDCCH candidates monitored by the UE is defined as a PDCCH search space (SS).
  • the search space includes a common search space (CSS) or a UE-specific search space (USS).
  • the UE may acquire DCI by monitoring PDCCH candidates in one or more search spaces configured by MIB or higher layer signaling.
  • Each CORESET is associated with one or more search spaces, and each search space is associated with one COREST.
  • the search space may be defined based on the following parameters.
  • -controlResourceSetId indicates CORESET related to the search space
  • -monitoringSlotPeriodicityAndOffset indicates PDCCH monitoring period (slot unit) and PDCCH monitoring period offset (slot unit)
  • -monitoringSymbolsWithinSlot indicates the PDCCH monitoring symbol in the slot (eg, indicates the first symbol(s) of CORESET)
  • PDCCH monitoring
  • One or more PDCCH (monitoring) opportunities may be configured within a slot.
  • Table 3 exemplifies the characteristics of each search space type.
  • Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
  • Table 4 exemplifies DCI formats transmitted through the PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH Can be used to schedule.
  • DCI format 1_0 is used to schedule TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH Can (DL grant DCI).
  • DCI format 0_0/0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0/1_1 may be referred to as DL grant DCI or UL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
  • DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
  • the fallback DCI format maintains the same DCI size/field configuration regardless of the terminal configuration.
  • the non-fallback DCI format the DCI size/field configuration varies according to the terminal configuration.
  • PDSCH carries downlink data (e.g., DL-SCH transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are applied. do.
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • a codeword is generated by encoding TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to a resource together with a demodulation reference signal (DMRS) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS demodulation reference signal
  • UCI Uplink Control Information
  • UCI includes:
  • -SR (Scheduling Request): This is information used to request UL-SCH resources.
  • HARQ-ACK Hybrid Automatic Repeat Request-ACK (Acknowledgement): This is a response to a downlink data packet (eg, codeword) on the PDSCH. Indicates whether a downlink data packet has been successfully received.
  • HARQ-ACK 1 bit may be transmitted in response to a single codeword, and HARQ-ACK 2 bits may be transmitted in response to two codewords.
  • the HARQ-ACK response includes positive ACK (briefly, ACK), negative ACK (NACK), DTX or NACK/DTX.
  • HARQ-ACK is mixed with HARQ ACK/NACK and ACK/NACK.
  • MIMO Multiple Input Multiple Output
  • PMI Precoding Matrix Indicator
  • Table 5 illustrates PUCCH formats. Depending on the PUCCH transmission length, it can be classified into Short PUCCH (formats 0, 2) and Long PUCCH (formats 1, 3, 4).
  • PUCCH format 0 carries UCI of a maximum size of 2 bits, and is mapped and transmitted on a sequence basis. Specifically, the terminal transmits a specific UCI to the base station by transmitting one of the plurality of sequences through the PUCCH of PUCCH format 0. The UE transmits a PUCCH of PUCCH format 0 within a PUCCH resource for SR configuration corresponding only when transmitting a positive SR.
  • PUCCH format 1 carries UCI of a maximum size of 2 bits, and the modulation symbol is spread by an orthogonal cover code (OCC) (which is set differently depending on whether or not frequency hopping) in the time domain.
  • OCC orthogonal cover code
  • the DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, it is transmitted after time division multiplexing (TDM)).
  • PUCCH format 2 carries UCI of a bit size larger than 2 bits, and a modulation symbol is transmitted after DMRS and frequency division multiplexing (FDM).
  • the DM-RS is located at symbol indexes #1, #4, #7, and #10 in a given resource block with a density of 1/3.
  • a PN (Pseudo Noise) sequence is used for the DM_RS sequence.
  • frequency hopping may be activated.
  • PUCCH format 3 does not perform multiplexing of terminals within the same physical resource blocks, and carries UCI with a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbol is transmitted after DMRS and TDM (Time Division Multiplexing).
  • PUCCH format 4 supports multiplexing of up to 4 terminals in the same physical resource block, and carries UCI with a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted after DMRS and TDM (Time Division Multiplexing).
  • PUSCH carries uplink data (e.g., UL-SCH transport block, UL-SCH TB) and/or uplink control information (UCI), and CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveform or It is transmitted based on a DFT-s-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on the CP-OFDM waveform, and when transform precoding is possible (eg, transform precoding is enabled), the UE is CP- PUSCH may be transmitted based on an OFDM waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by the UL grant in the DCI or is semi-static based on higher layer (e.g., RRC) signaling (and/or Layer 1 (L1) signaling (e.g., PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed based on a codebook or a non-codebook.
  • the UE may detect the PDCCH in slot #n.
  • the PDCCH includes downlink scheduling information (eg, DCI formats 1_0, 1_1), and the PDCCH represents a DL assignment-to-PDSCH offset (K0) and a PDSCH-HARQ-ACK reporting offset (K1).
  • DCI formats 1_0 and 1_1 may include the following information.
  • -Frequency domain resource assignment indicates the RB set assigned to the PDSCH
  • K0 indicating the starting position (eg, OFDM symbol index) and length (eg number of OFDM symbols) of the PDSCH in the slot
  • -HARQ process number (4 bits): indicates the HARQ process ID (Identity) for data (eg, PDSCH, TB)
  • the UE may transmit UCI through PUCCH in slot #(n+K1).
  • the UCI includes a HARQ-ACK response for the PDSCH.
  • the HARQ-ACK response may consist of 1-bit.
  • the HARQ-ACK response may consist of 2-bits when spatial bundling is not configured, and may consist of 1-bits when spatial bundling is configured.
  • the HARQ-ACK transmission time point for a plurality of PDSCHs is designated as slot #(n+K1)
  • the UCI transmitted in slot #(n+K1) includes HARQ-ACK responses for the plurality of PDSCHs.
  • each HARQ process is associated with a HARQ buffer of a medium access control (MAC) layer.
  • MAC medium access control
  • Each DL HARQ process manages state variables related to the number of transmissions of the MAC PDU (Physical Data Block) in the buffer, HARQ feedback for the MAC PDU in the buffer, and the current redundancy version.
  • Each HARQ process is distinguished by a HARQ process ID.
  • the UE may detect the PDCCH in slot #n.
  • the PDCCH includes uplink scheduling information (eg, DCI formats 0_0, 0_1).
  • DCI formats 0_0 and 0_1 may include the following information.
  • -Frequency domain resource assignment indicates the RB set assigned to the PUSCH
  • -Time domain resource assignment indicates the slot offset K2, the starting position (eg, symbol index) and length (eg number of OFDM symbols) of the PUSCH in the slot.
  • the start symbol and length may be indicated through a Start and Length Indicator Value (SLIV), or may be indicated respectively.
  • SIV Start and Length Indicator Value
  • the terminal may transmit the PUSCH in slot # (n+K2) according to the scheduling information of slot #n.
  • the PUSCH includes the UL-SCH TB.
  • UCI may be transmitted through PUSCH as shown (UCI piggyback or PUSCH piggyback). 8 illustrates a case where HARQ-ACK and CSI are carried on PUSCH resources.
  • a cell operating in a licensed band (hereinafter, L-band) is defined as an LCell, and a carrier of the LCell is defined as (DL/UL) Licensed Component Carrier (LCC).
  • L-band a cell operating in an unlicensed band
  • U-band a cell operating in an unlicensed band
  • UCC unlicensed Component Carrier
  • the cell carrier may mean the cell's operating frequency (eg, center frequency).
  • Cell/carrier eg, Component Carrier, CC
  • Cell/carrier eg, Component Carrier, CC
  • CC Component Carrier
  • one terminal can transmit and receive signals to and from the base station through a plurality of merged cells/carriers.
  • one CC may be set as a Primary CC (PCC), and the remaining CC may be set as a Secondary CC (SCC).
  • Specific control information/channel eg, CSS PDCCH, PUCCH
  • PCC Physical channels Control Channel
  • LCC may be set to PCC and UCC may be set to SCC.
  • one specific LCC may be set as PCC and the remaining LCCs may be set as SCC.
  • Figure 9 (a) corresponds to the LAA of the 3GPP LTE system.
  • 9(b) illustrates a case in which a terminal and a base station transmit and receive signals through one or more UCCs without an LCC (SA (standalone) mode). in this case.
  • One of the UCCs may be set as PCC and the other UCC may be set as SCC.
  • PUCCH, PUSCH, and PRACH transmission may be supported in the NR UCell. In the unlicensed band of the 3GPP NR system, both the NSA mode and the SA mode can be supported.
  • the communication node may first perform CS (Carrier Sensing) before signal transmission to determine whether other communication node(s) transmit signals.
  • CS Carrier Sensing
  • a case where it is determined that other communication node(s) does not transmit a signal is defined as having a clear channel assessment (CCA).
  • CCA clear channel assessment
  • the communication node determines the channel state as busy if energy higher than the CCA threshold is detected in the channel, otherwise the channel state Can be judged as children.
  • the CCA threshold is -62dBm for non-Wi-Fi signals and -82dBm for Wi-Fi signals.
  • the communication node can start signal transmission in the UCell.
  • LBT Listen-Before-Talk
  • CAP Channel Access Procedure
  • FBE Frame Based Equipment
  • LBE Load Based Equipment
  • FBE is a channel occupancy time (e.g. 1-10ms), which means the time that the communication node can continue to transmit when the channel connection is successful, and an idle period corresponding to at least 5% of the channel occupancy time. (idle period) constitutes one fixed frame
  • CCA is defined as an operation of observing a channel during a CCA slot (at least 20 ⁇ s) at the end of the idle period.
  • the communication node periodically performs CCA in a fixed frame unit, and if the channel is in an unoccupied state, it transmits data during the channel occupancy time, and if the channel is occupied, it suspends transmission and Wait for the CCA slot.
  • the communication node first q ⁇ 4, 5,... , After setting the value of 32 ⁇ , perform CCA for 1 CCA slot. If the channel is not occupied in the first CCA slot, data can be transmitted by securing a maximum (13/32)q ms length of time. If the channel is occupied in the first CCA slot, the communication node randomly N ⁇ 1, 2,... Select the value of, q ⁇ and store it as the initial value of the counter. Afterwards, the channel status is sensed in units of CCA slots, and if the channel is not occupied in units of CCA slots, the value stored in the counter is reduced by one. When the counter value becomes 0, the communication node can transmit data by securing a maximum (13/32)q ms length of time.
  • a plurality of CAP Types may be defined for uplink transmission in an unlicensed band.
  • a Type 1 or Type 2 CAP may be defined for uplink transmission.
  • the terminal may perform a CAP (eg, Type 1 or Type 2) set/instructed by the base station for uplink signal transmission.
  • 11 is a flowchart illustrating a type 1 CAP operation of a terminal for transmitting an uplink signal.
  • the terminal may initiate a CAP for signal transmission through an unlicensed band (S1510).
  • the terminal may randomly select the backoff counter N within the contention window (CW) according to step 1.
  • the N value is set to the initial value N init (S1520).
  • N init is selected as an arbitrary value from 0 to CW p.
  • the terminal ends the CAP process (S1532).
  • the terminal may perform Tx burst transmission (S1534).
  • the terminal decreases the backoff counter value by 1 according to step 2 (S1540).
  • the UE checks whether the channel of UCell(s) is in the idle state (S1550), and if the channel is in the idle state (S1550; Y), it checks whether the backoff counter value is 0 (S1530). Conversely, if the channel is not in an idle state in step S1550, that is, if the channel is in a busy state (S1550; N), the terminal has a delay period longer than the slot time (eg, 9us) in step 5 (defer duration T d ; 25usec or more) During the period, it is checked whether the corresponding channel is in an idle state (S1560). If the channel is in the idle state during the delay period (S1570; Y), the terminal may resume the CAP process again.
  • the slot time eg, 9us
  • the delay period may consist of a 16usec period and m p consecutive slot times (eg 9us) immediately following.
  • the terminal performs step S1560 again to check whether the channel is in the idle state during the new delay period.
  • Table 6 shows m p applied to CAP according to the channel access priority class (p), minimum CW (CW min,p ), maximum CW (CW max,p ), maximum channel occupancy time (Maximum Channel Occupancy Time, MCOT) (T ulmcot,p ) and allowed CW sizes are different.
  • the CW size (CWS) applied to the Type 1 CAP may be determined based on various methods. As an example, the CWS may be adjusted based on whether to toggle a New Data Indicator (NDI) value for at least one HARQ processor related to HARQ_ID_ref, which is the HARQ process ID of the UL-SCH within a certain time period (eg, a reference TU).
  • NDI New Data Indicator
  • the UE performs signal transmission using the Type 1 CAP related to the channel access priority class p on the carrier, the UE will toggle all priority classes p ⁇ 1 when the NDI value for at least one HARQ process related to HARQ_ID_ref is toggled.
  • Set CW p CW min,p in ,2,3,4 ⁇ , and if not, set CW p to the next higher allowed value in all priority classes p ⁇ 1,2,3,4 ⁇ allowed value).
  • Reference subframe n ref (or reference slot n ref ) is determined as follows.
  • the UE receives a UL grant in subframe (or slot) n g and starts from subframe (or slot) n 0 in subframe (or slot) n 0 , n 1 ,... n w and has no gap.
  • a reference subframe (or slot) n ref is a subframe (or slot) n 0 .
  • T short_ul 25us
  • the UE may perform uplink transmission (eg, PUSCH) in the unlicensed band immediately after sensing is terminated.
  • Embodiment HARQ-ACK feedback in U-band
  • HARQ-ACK is collectively referred to as A/N for convenience.
  • PUCCH/PUSCH represents PUCCH or PUSCH.
  • the base station schedules DL data transmission to the terminal through the Channel Occupancy Time (COT) interval secured by performing an LBT (CCA) operation, and HARQ-ACK for reception of the corresponding DL data from the terminal through the same COT interval.
  • COT Channel Occupancy Time
  • CCA LBT
  • a process of instructing the feedback to be transmitted may be considered (hereinafter, LBT or CCA is collectively referred to as LBT for convenience).
  • LBT LBT
  • CCA CCA
  • HARQ-ACK feedback for the reception of the scheduled/transmitted DL data through a specific COT interval is different from the corresponding COT.
  • a process of instructing to transmit through the COT interval may also be considered.
  • a HARQ-ACK feedback (hereinafter, A/N) configuration/transmission method in the U-band is proposed.
  • the A/N configuration/transmission method may be performed in consideration of an LBT operation, a COT configuration, and the like.
  • the matters proposed in the present specification are not limited to the HARQ-ACK feedback transmission method through PUCCH/PUSCH, and may be similarly applied to other UCI (eg, CSI, SR) transmission methods through PUCCH/PUSCH.
  • the matters proposed in the present specification are not limited to LBT-based U-band operation, and may be similarly applied to L-band (or U-band) operation that does not involve LBT.
  • a plurality of CCs is replaced by a plurality of BWPs (indexes) configured in one (or more) CC/(serving) cells, or a plurality of CC/(serving) cells composed of a plurality of BWPs ( That is, it can be replaced by a combination of CC (index) and BWP (index)).
  • UCI refers to control information transmitted by the UE by UL.
  • UCI includes various types of control information (ie, UCI type).
  • UCI includes HARQ-ACK, SR, and CSI.
  • -HARQ-ACK indicates whether DL data (eg, transport block (TB), codeword (CW)) on the PDSCH has been successfully received.
  • HARQ-ACK 1 bit may be transmitted in response to single DL data
  • HARQ-ACK 2 bits may be transmitted in response to two DL data.
  • the HARQ-ACK response/result includes positive ACK (ACK), negative ACK (NACK), DTX or NACK/DTX.
  • HARQ-ACK is mixed with ACK/NACK, A/N, and AN.
  • -HARQ process number/ID indicates the number or identifier of the HARQ process.
  • the HARQ process manages state variables related to the number of transmissions of MAC PDUs in the buffer, HARQ feedback for MAC PDUs in the buffer, and the current redundancy version.
  • -PUCCH means a physical layer UL channel for UCI transmission.
  • PUCCH resources set by the base station and/or indicating transmission are referred to as A/N PUCCH resources, SR PUCCH resources, and CSI PUCCH resources, respectively.
  • -PUSCH refers to a physical layer UL channel for UL data transmission.
  • -Slot means a basic time unit (time unit (TU), or time interval) for data scheduling.
  • the slot includes a plurality of symbols.
  • the symbol includes an OFDM-based symbol (eg, CP-OFDM symbol, DFT-s-OFDM symbol).
  • symbols, OFDM-based symbols, OFDM symbols, CP-OFDM symbols, and DFT-s-OFDM symbols may be replaced with each other.
  • the A/N triggering DCI includes at least a DL grant DCI, and may further include a specific DCI that does not schedule UL grant DCI and/or PDSCH/PUSCH transmission (in addition to the DL grant DCI).
  • the base station may indicate to the terminal one of the plurality of candidate HARQ timings through (DL grant) DCI.
  • the UE operates to transmit A/N feedback for (plural) PDSCH reception in a plurality of slots (or slot set; for convenience, bundling window) corresponding to the entire candidate HARQ timing set through the indicated HARQ timing. can do.
  • the HARQ timing means PDSCH-to-A/N timing/interval.
  • HARQ timing may be expressed in units of slots.
  • the A/N information may include response information for PDSCH reception in slot #(m-i).
  • slot #(m-i) corresponds to a slot corresponding to the candidate HARQ timing.
  • the A/N response to reception of the PDSCH in slot #n+1/#n+3 may be processed as NACK.
  • this A/N feedback configuration/transmission scheme is referred to as a “type-1 A/N codebook”.
  • counter Downlink Assignment Index (c-DAI) and/or total-DAI (t-DAI) may be signaled together through (DL grant) DCI.
  • the c-DAI (DL grant) may indicate the number of times the PDSCH corresponding to the DCI is scheduled.
  • the t-DAI may inform the total number of PDSCHs scheduled up to the current (slot) (or the total number of slots in which the PDSCH exists). Accordingly, the terminal may operate to transmit the A/N for the PDSCH corresponding to the c-DAI values from the c-DAI initial value to the (received) last t-DAI value through the indicated HARQ timing.
  • c-DAI and t-DAI may have the same meaning. Therefore, t-DAI can be included in DCI only when the number of serving cells is plural (DL grant).
  • the c-DAI is a cell-domain counted first, and then a scheduling order of the PDSCH counted in a time-domain (or the order of (serving cell, slot) in which the PDSCH exists). I can tell you.
  • the t-DAI may inform the total number of PDSCHs scheduled up to the current (slot) (or the total number of PDSCHs (serving cells, slots)).
  • c-DAI/t-DAI may be defined based on PDCCH.
  • the PDSCH is replaced with a PDCCH
  • a slot in which the PDCCH is present may be replaced with a PDCCH monitoring opportunity in which the PDCCH (or DCI) related to the PDCCH is present.
  • Each c-DAI/t-DAI may be indicated using a 2-bit value.
  • a number greater than 4 can be indicated as follows using the modulo operation.
  • n represents an integer of 0 or more.
  • 12(b) illustrates a case in which DAI is signaled through (DL grant) DCI in the same situation as in FIG. 12(a).
  • an operation of deferring (pending/deferring) A/N feedback transmission for a corresponding PDSCH may be indicated.
  • transmission of A/N feedback for the PDSCH corresponding to (i) all DL HARQ process IDs, or (ii) specific partial DL HARQ process ID(s) may be indicated through DCI (pooling).
  • the A/N feedback may be transmitted through a timing set/instructed based on a specific signal (eg, RRC or DCI signaling).
  • A/N pooling may be indicated through a DL grant (eg, DCI format 1_0/1_1), a UL grant (eg, DCI format 0_0/0_1), or another DCI (eg, a terminal (group) common DCI).
  • DCI indicating A/N pooling is referred to as pooling DCI.
  • the HARQ process ID to be pooled may be set/defined in advance, or may be indicated through pooling DCI.
  • A/N pooling may be indicated in units of all/group/individual HARQ process IDs.
  • a UE may receive three PDSCHs from a base station, and HARQ process IDs (HpIDs) allocated to each PDSCH may be 0, 3, and 2.
  • the terminal may transmit A/N for reception of the PDSCH corresponding to the entire HpID or partial HpID at once.
  • A/N pooling corresponds to HARQ process ID (indicated through pooling DCI) It may be defined as pooling the A/N transmission for the PDSCH to be used, or pooling the A/N transmission for the PDSCH corresponding to the t-DAI value (indicated through the pooling DCI). In the latter case, the UE may transmit A/N information for PDSCH reception corresponding to the c-DAI initial value to the t-DAI value at one time.
  • Timing-D indicating A/N timing may be signaled.
  • the terminal may operate to transmit A/N feedback for a slot group corresponding to timing-D (receiving PDSCH through this) through a time point indicated by timing-A.
  • the A/N payload may be mapped (eg, ordered) in the order of the slot index belonging to the corresponding slot group.
  • the UE may operate to transmit A/N feedback for a slot group (ie, PDSCH reception through this) corresponding to slot # (n + K-L) through slot # (n + K).
  • the UE may operate to transmit A/N feedback for a slot group (receiving PDSCH through this) corresponding to slot # (n + K-L) through slot # (n + K).
  • the terminal 1) timing- A/N feedback for the bundling window corresponding to A (receiving PDSCH through this) and 2) A/N feedback for a slot group corresponding to timing-D (receiving PDSCH through this) are combined (at the same time, for example, For example, it may operate to transmit) through one PUCCH/PUSCH.
  • the terminal 1) slot # (n + K ) A/N feedback for the bundling window (receiving PDSCH through this) corresponding to), and 2) A/N feedback for a slot group (receiving PDSCH through this) corresponding to slot # (n + K-L)
  • it can operate to transmit through slot #(n + K).
  • timing-D a specific value (eg, 0) is set, it may indicate that there is no corresponding slot group (a/N feedback request for this).
  • a specific part of the slots belonging to the bundling window corresponding to timing-A (or the slot group corresponding to timing-D) through DCI ( Yes, it can be instructed to transmit A/N feedback only for the first or last slot (eg, through a timing-D indication field).
  • a structure for signaling timing-A/timing-D and A/N feedback transmission triggering for a corresponding slot group (eg, bundling window) through a terminal (group)-common DCI may also be considered.
  • the reference A/N timing (the corresponding A/N feedback target slot group) that can be indicated by timing-D may be limited.
  • A/N feedback for PDSCH reception corresponding to all (not a specific slot group) or (pre-designated) specific partial HARQ process IDs is transmitted through a specific state of the timing-D indication field. Can be instructed to do.
  • the A/N transmission PUCCH/PUSCH resource (set) may be differently set for each timing-D value.
  • A/N transmission PUCCH/PUSCH resources (sets) may be differently set for each slot group corresponding to each timing-D value.
  • the timing-D value corresponding to each A/N transmission PUCCH/PUSCH resource (set) (e.g., corresponding to the A/N feedback target slot group to the corresponding PUCCH/PUSCH resource (set)) is set differently.
  • a slot group corresponding to each PUCCH/PUSCH resource (set) is set differently, and accordingly, a timing-D value may be set differently.
  • the terminal may transmit A/N feedback for a slot group corresponding to the feedback-ID (receiving PDSCH through this) through a time point (eg, a slot) indicated by the A/N transmission timing.
  • a time point eg, a slot
  • the current-ID of the same value as the feedback-ID is signaled/received through the previously signaled/received current-ID of the same value as the feedback-ID, that is, through the DL grant DCI. Includes the received slot.
  • the A/N payload is received through the DL grant DCI (e.g., from 1 to N) for the slot group corresponding to the feedback-ID (in a state in which counter-DAI is signaled through the DL grant DCI). ) Can be mapped in the order of counter-DAI values.
  • the counter-DAI may be determined/signaled to have a continuous value (starting from an initial value (eg, 1)) within one slot group (ID) as shown in FIG. 12(b). That is, the counter-DAI value may be independently determined/signaled between different slot groups.
  • the slot group may be defined in the form of a DAI sequence consisting of counter-DAI values from 1 to N corresponding to the same slot group ID value (indicated through DCI). In this case, the slot group may be composed of discontinuous slots based on the received/detected counter-DAI.
  • the slot group ID and the DAI sequence ID may be substituted/compatible with each other.
  • the terminal 1) timing A/N feedback for a bundling window corresponding to -A or a slot group corresponding to current-ID (receiving PDSCH through this), and 2) A/N for a slot group corresponding to feedback-ID (receiving PDSCH through this) N feedback can be combined (eg, concatenate) and transmitted (simultaneously, eg, through one PUCCH/PUSCH).
  • A/N triggering DCI e.g., DL grant DCI, UL grant DCI
  • a total-ID indicating the number of (PDSCH) slot groups (IDs) is signaled, and it may mean that a specific slot group ID determined from total-ID and current-ID is applied as a feedback-ID.
  • total-DAI and/or NFI for the feedback-ID (the corresponding (PDSCH) slot group) signaled/instructed through the A/N triggering DCI (eg, DL grant DCI, UL grant DCI) New Feedback Indicator) means total-DAI and/or NFI for feedback-ID determined according to Method 1, or other- having a value different from current-ID (regardless of the value indicated by total-ID). It may mean total-DAI and/or NFI for ID (slot group corresponding to this).
  • Method 2 This other-ID determination and total-DAI/NFI application method is referred to as "Method 2" for convenience.
  • NFI is 1-bit information
  • the UE configures updated A/N feedback by processing the rest of the parts except for the A/N corresponding to the PDSCH scheduled after the previous A/N transmission with NACK or DTX (feedback configuration/transmission omitted). /Can be sent.
  • the UE may configure/transmit A/N feedback by maintaining the rest of the parts except for the A/N corresponding to the PDSCH scheduled after the previous A/N transmission.
  • the toggled NFI value from the NFI value received through the previous DCI is indicated through the current DCI.
  • an NFI value that is not toggled from an NFI value received through a previous DCI may be indicated through the current DCI.
  • the feedback-ID (or other-ID) and/or the corresponding slot group (request A/N feedback for this) through the DCI None may be indicated (eg, through a feedback-ID (or total-ID) indication field).
  • feedback-ID or total-ID indication field
  • the terminal configures A/N feedback only for (one) slot group corresponding to current-ID / Can act to transmit.
  • a bundling window corresponding to timing-A or a slot group corresponding to current-ID (or feedback-ID (or other -ID) to transmit A/N feedback only for a specific part (eg, first or last slot) among slots belonging to) (eg, through a feedback-ID (or total-ID) indication field) I can instruct.
  • terminal (group)-common DCI #1 and/or feedback-ID are signaled through terminal (group)-common DCI #1 and/or feedback-ID and A/N feedback transmission triggering for a corresponding slot group is performed by terminal (group)-common DCI #
  • a structure signaling through 2 may also be considered.
  • the terminal (group)-common DCI #1 and #2 may be separate DCIs from each other or may be configured with the same single DCI.
  • total-DAI is signaled through A/N triggering DCI, and the terminal is in a slot group corresponding to feedback-ID (or a bundling window corresponding to timing-A or a slot group corresponding to current-ID).
  • it can operate to configure/transmit A/N feedback only for the counter-DAI value(s) up to the total-DAI value (from 1). That is, A/N feedback can be configured/transmitted only for slot(s) (PDSCHs scheduled through this) corresponding to counter-DAI value(s) from 1 to total-DAI value.
  • total-DAI may be respectively signaled for a slot group corresponding to feedback-ID (or other-ID) and a slot group corresponding to current-ID (or a bundling window corresponding to timing-A) through DCI.
  • the terminal may operate to configure/transmit A/N feedback based on total-DAI for each slot group.
  • the A/N feedback configuration related information indicated through the DL grant DCI is at least (i) current-ID, (ii) counter/total for a slot group (PDSCHs scheduled through this) corresponding to the current-ID.
  • -DAI, and (iii) feedback-ID may be included.
  • the total-DAI for the slot group (PDSCHs scheduled through this) corresponding to the feedback-ID (or other-ID) may be further included in the DL grant DCI (ie, A/N feedback configuration related information).
  • current-ID may be indicated.
  • feedback-ID may be defined/generalized as two feedback-IDs #1 and #2.
  • the terminal may operate to transmit (eg, in the form of UCI piggyback) A/N feedback for a slot group corresponding to feedback-ID #1 and #2 through (PUCCH or) PUSCH.
  • current-ID may not be included in the UL grant DCI. That is, signaling through the UL grant DCI may be omitted for the current-ID (and/or feedback-ID (or total-ID)).
  • the terminal may operate to configure/transmit A/N feedback (on PUSCH) based on current-ID (and/or feedback-ID (or total-ID)) information received through the DL grant DCI.
  • it may be indicated through a specific field that there is no A/N feedback transmission request (eg, a slot group subject to A/N feedback) through the UL grant DCI.
  • the specific field is, for example, feedback-ID (or total-ID) and/or current-ID (and/or feedback-ID (or other-ID) and/or total-DAI corresponding to current-ID) May include an indication field.
  • current-ID and starting-ID may be indicated through A/N triggering DCI (eg, DL grant DCI, UL grant DCI).
  • the UE configures/transmits A/N feedback for a slot group set A (receiving PDSCH through this) corresponding to (a plurality of) consecutive slot group ID(s) from starting-ID to current-ID. It can work.
  • starting-ID is indicated to be the same value as current-ID
  • the terminal may operate to configure/transmit A/N feedback only for (one) slot group corresponding to current-ID.
  • current-ID may be defined/generalized as ending-ID.
  • the A/N feedback configuration related information indicated through the DL grant DCI is at least (i) current-ID, (ii) counter/total for a slot group (PDSCHs scheduled through this) corresponding to the current-ID.
  • -DAI, (iii) may include starting-ID.
  • the (single) total-DAI commonly applied to each of the (multiple) slot group(s) belonging to the slot group set A (excluding the slot group corresponding to the current-ID) is the DL grant DCI (i.e., A/N Feedback configuration related information) may be further included.
  • the terminal may operate to transmit (eg, in the form of UCI piggyback) A/N feedback for the slot group set corresponding to the starting-ID to the current-ID through (PUCCH or) PUSCH.
  • current-ID may not be included in the UL grant DCI. That is, signaling through the UL grant DCI may be omitted for the current-ID (and/or starting-ID).
  • the UE may operate to configure/transmit A/N feedback (on PUSCH) based on current-ID (and/or starting-ID) information received through the DL grant DCI.
  • A/N feedback on PUSCH
  • it may be indicated through a specific field that there is no A/N feedback transmission request (eg, a slot group subject to A/N feedback) through the UL grant DCI.
  • the specific field may include, for example, a starting-ID and/or current-ID (and/or a corresponding total-DAI) indication field.
  • the number of slot groups to be configured for (single) A/N feedback simultaneously transmitted e.g., 2 including current-ID, or including current-ID
  • A/N triggering DCI e.g, DL grant DCI
  • UL grant DCI e.g., DL grant DCI
  • each of a plurality of slot groups to be configured for A/N feedback excluding the slot group corresponding to the current-ID
  • Commonly applied (single) total-DAI can be indicated.
  • a slot group ID (a corresponding A/N feedback target slot group) that can be indicated by current-ID/feedback-ID (or total-ID).
  • current-ID/feedback-ID or total-ID
  • all (not a specific slot group) or some specific HARQ process IDs (specified in advance) It can be instructed to transmit A/N feedback for PDSCH reception.
  • A/N transmission PUCCH/PUSCH resources (sets) are set differently for each slot group ID value (for a slot group corresponding to the corresponding ID), or corresponding A/N transmission PUCCH/PUSCH resources (sets) are set differently.
  • a slot group ID value eg, a target for A/N feedback to the corresponding PUCCH/PUSCH resource (set)
  • the slot group ID is Opt 1-1) for all multiple carriers at the same time (eg, slot timing) or time period.
  • the same slot group ID is indicated/defined, or the slot group ID is individually indicated/defined for each carrier in the order of Opt 1-2) frequency (carrier)-first time (slot group)-second Can be.
  • the counter-DAI is 1) (with Opt 1-1 applied) within one slot group (ID) frequency (carrier)-first time (The PDSCH scheduling counter value is determined/indicated in the order of slot)-second, or 2) the PDSCH scheduling counter value is independently determined/indicated within one slot group (ID) for each carrier (with Opt 1-2 applied) Can be.
  • A/N feedback configuration/transmission and related basic operation methods will be described as follows.
  • the tA/N method and the pA/N method are substantially the same as those described with reference to FIGS. 12 to 13, and are described again below to classify the A/N feedback configuration/transmission method (or A/N codebook method). .
  • Timing-based A/N feedback method (t-A/N method)
  • the base station may indicate to the terminal one of the plurality of candidate HARQ timings through (DL grant) DCI.
  • the UE may operate to transmit A/N feedback for (multiple) PDSCH reception in a plurality of slots (or slot set; bundling window) corresponding to the entire candidate HARQ timing set through the indicated HARQ timing.
  • the HARQ timing means PDSCH-to-A/N timing/interval.
  • HARQ timing may be expressed in units of slots.
  • the above-described scheme is referred to as a Type-1 A/N codebook.
  • counter Downlink Assignment Index (c-DAI) and/or total-DAI (t-DAI) may be signaled together through (DL grant) DCI.
  • the c-DAI (DL grant) may indicate the number of times the PDSCH corresponding to the DCI is scheduled.
  • the t-DAI may inform the total number of PDSCHs scheduled up to the current (slot) (or the total number of slots in which the PDSCH exists). Accordingly, the terminal may operate to transmit the A/N for the PDSCH corresponding to the c-DAI values from the c-DAI initial value to the (received) last t-DAI value through the indicated HARQ timing.
  • the above-described scheme is referred to as a Type-2 A/N codebook.
  • the current-ID may be signaled through the DL grant DCI, and the feedback-ID may be signaled through the A/N triggering DCI.
  • the current-ID is used to indicate the slot group ID to which the slot in which the DL grant DCI or the corresponding PDSCH is transmitted belongs.
  • the feedback-ID is used to indicate the (DL PDSCH) slot group ID to be subjected to A/N feedback.
  • total-ID is signaled through DCI, and feedback-ID may be inferred from total-ID based on Method 1.
  • the UE may transmit A/N feedback for a slot group (receiving PDSCH through this) corresponding to the feedback-ID through a time point indicated by the A/N transmission timing.
  • the terminal When the A/N triggering DCI is the same as the DL grant DCI (i.e., both current-ID and feedback-ID (or total-ID) are signaled through the DL grant DCI), the terminal , 1) A/N feedback for a bundling window corresponding to timing-A or a slot group corresponding to current-ID (receiving PDSCH through this), and 2) a slot group corresponding to feedback-ID (receiving PDSCH through this) A/N feedback for is combined and transmitted (at the same time, for example, through one PUCCH/PUSCH).
  • an operation of deferring (pending/deferring) A/N feedback transmission for a corresponding PDSCH may be indicated.
  • transmission of A/N feedback for the PDSCH corresponding to (i) all DL HARQ process IDs, or (ii) specific partial DL HARQ process ID(s) may be indicated through DCI (pooling).
  • the A/N feedback may be transmitted through a timing set/instructed based on a specific signal (eg, RRC or DCI signaling).
  • a specific signal eg, RRC or DCI signaling
  • A/N pooling corresponds to HARQ process ID (indicated through pooling DCI) It may be defined as pooling the A/N transmission for the PDSCH to be used, or pooling the A/N transmission for the PDSCH corresponding to the t-DAI value (indicated through the pooling DCI). In the latter case, the UE may transmit A/N information for PDSCH reception corresponding to the c-DAI initial value to the t-DAI value at one time.
  • switching between the t-A/N scheme and the p-A/N scheme may be indicated through the DL grant DCI. That is, it is possible to indicate whether to configure/transmit A/N feedback by applying any of the t-A/N scheme and the p-A/N scheme through the DL grant DCI. Additionally, both A/N pending and A/N pooling for the p-A/N scheme may be indicated through the same DL grant DCI. For example, when the DL grant DCI indicates the p-A/N scheme, the DL grant DCI may further indicate whether to indicate whether to pending A/N feedback transmission or to indicate pooling.
  • switching between the t-A/N scheme and the A/N pending operation for applying the p-A/N scheme may be instructed through the DL grant DCI. That is, whether to apply the t-A/N scheme or pending A/N feedback transmission for the p-A/N scheme may be indicated through the DL grant DCI.
  • the A/N pooling operation for the p-A/N scheme may be indicated through a UL grant DCI or a (terminal (group)) common DCI.
  • switching between t-A/N schemes and A/N pending for p-A/N may be indicated through DL grant DCI including PDSCH scheduling. That is, whether to apply t-A/N or to pending A/N transmission for the p-A/N scheme may be indicated through the DL grant DCI.
  • A/N pooling for the p-A/N scheme may be indicated through a DL grant DCI that does not include PDSCH scheduling.
  • the NFI can indicate the following information in the form of toggling.
  • previous A/N feedback Signaling whether the A/N feedback transmitted at the previous (recent) point in time (hereinafter, previous A/N feedback) was properly detected/received by (a) the base station, and (b) whether the base station failed to detect/receive. Can be.
  • the UE configures updated A/N feedback by processing the rest of the parts except for the A/N corresponding to the PDSCH scheduled after the previous A/N transmission with NACK or DTX (feedback configuration/transmission omitted). /Can be sent.
  • the UE may configure/transmit A/N feedback by maintaining the rest of the parts except for the A/N corresponding to the PDSCH scheduled after the previous A/N transmission.
  • the toggled NFI value from the NFI value received through the previous DCI is indicated through the current DCI.
  • an NFI value that is not toggled from an NFI value received through a previous DCI may be indicated through the current DCI.
  • a method of configuring a DL/UL grant DCI and signaling information when setting a Type-2a and Type-1 A/N codebook is proposed.
  • a DCI (format) in which the field configuration and each field size in the DCI format are configurable (ie, changeable) is referred to as a non-fallback DCI, and the DCI field configuration and each size are configured.
  • the DCI (format) that is not possible (i.e., fixed) is referred to as a fallback DCI.
  • DCI which is not separately specified as a fallback DCI in the present specification, may mean a non-fallback DCI.
  • A may contain the following information (for convenience, basic information).
  • total-ID is signaled through DCI, and feedback-ID information can be determined based on Method 1.
  • NFI information for A/N feedback corresponding to current-ID i.e., NFI for current-ID
  • NFI information for A/N feedback corresponding to feedback-ID ie, NFI for feedback-ID
  • NFI information for A/N feedback corresponding to other-ID having a value different from current-ID (i.e., NFI for other-ID)
  • Type-3 codebook e.g., CTI (Codebook Type Indicator) signaling indicating which A/N codebook is configured/transmitted from Type-2a and Type-3
  • NFI information ie, NFI for Type-3 codebook-based A/N feedback may be additionally signaled through the DCI.
  • CTI information may be explicitly signaled using a dedicated 1-bit or implicitly signaled in the following way.
  • the NFI for feedback-ID (or NFI for other-ID) bit/ CTI information may be signaled through the field.
  • Type-3 is indicated through the CTI, through the counter-DAI, the total-DAI bit/field, and/or the NFI for current-ID bit/field, the HARQ process ID group that is the A/N feedback target and/or (In CA situation) CC/cell group may be indicated or/and NFI for Type-3 information may be signaled
  • total-DAI for feedback-ID (or total-DAI for other- ID) CTI information can be signaled through bit/field.
  • Type-3 is indicated through CTI, counter-DAI, total-DAI (for current-ID) bit/field, NFI for current-ID, and/or NFI for feedback-ID (or NFI for other-ID)
  • the HARQ process ID group and/or the CC/cell group (in CA context) to be A/N feedback target may be indicated or/and NFI for Type-3 information may be signaled.
  • the fallback DCI format may include/signal only current-ID information and/or counter-DAI information (related to the (PDSCH) slot group corresponding to the ID) among the above-described basic information (for convenience, Case 1 )
  • the fallback DCI format may include/signal all of the above basic information except total-DAI for current-ID.
  • the terminal is the most recently detected/received information through the non-fallback DL DCI (e.g., feedback-ID (or, total-ID), NFI, CTI)
  • A/N codebook (payload) can be configured/transmitted based on.
  • the non-fallback DL DCI related to the recently detected/received information refers to the HARQ-ACK (PUCCH) transmission time point (slot) indicated through the fallback DL DCI, and only the DCI indicated as the HARQ-ACK (PUCCH) transmission time point. May be limited.
  • the UE configures A/N feedback only for the slot group corresponding to the current-ID/ Transmit and operate by assuming/applying in a toggled form (or non-toggled form) for the NFI for current-ID (compared to the previous A/N feedback or compared to the previously received NFI bit (i.e., the latest)).
  • the terminal can operate by assuming/applying that the CTI is indicated by the Type-2a codebook.
  • a plurality of fallback DL DCIs indicating the same HARQ-ACK (PUCCH) transmission time are All can be specified to indicate the same current-ID. Accordingly, the UE operates under the assumption that a plurality of fallback DL DCIs indicating the same HARQ-ACK (PUCCH) transmission time point all indicate the same current-ID, and if a DCI that does not are detected, the DCI may be ignored. There is (discard). For example, the terminal may not perform an operation indicated by the corresponding DCI.
  • CBG CB group
  • total-DAI for feedback-ID (or total-DAI for other-ID) information corresponds to an A/N sub-codebook corresponding to transmission in units of TB and a transmission in units of CBG.
  • A/N sub-codebooks can be individually signaled
  • A may contain the following information (for convenience, basic information).
  • first-ID Total-DAI information for the first (PDSCH) slot group ID
  • Second-ID Total-DAI information for the second (PDSCH) slot group ID
  • first-ID and second-ID may correspond to slot group indexes 0 and 1, respectively.
  • first-ID and second-ID may be set/replaced as current-ID and feedback-ID (or other-ID), respectively.
  • current-ID information and feedback-ID (or total-ID) information may be additionally signaled through DCI.
  • feedback-ID total-ID is signaled through DCI, and feedback-ID information can be determined based on Method 1.
  • the other-ID can be determined as a slot group ID having a value different from the current-ID based on Method 2
  • group ID-bitmap it may be indicated for each slot group ID whether or not the slot group corresponding to the ID is an A/N feedback request/transmission target.
  • the UL grant DCI may not include slot group ID/index-related information/signaling.
  • the terminal may operate to configure/transmit an A/N codebook (payload) based on the most recently detected/received slot group ID/index information through the DL grant DCI.
  • the DL grant DCI related to the slot group ID/index may be limited only to the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • A/N feedback transmission (via PUSCH) may be instructed to the terminal without additional DL (PDSCH) scheduling/transmission from the base station.
  • the UL grant DCI may not include NFI information for A/N feedback.
  • the UE can operate to configure/transmit an A/N codebook (payload) based on the most recently detected/received NFI information through the DL grant DCI (for each (PDSCH) slot group).
  • the DL grant DCI related to the NFI information may be limited only to the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • Type-3 codebook e.g., indicate which A/N codebook will be configured/transmitted from Type-2a or Type-3)
  • NFI information for Type-3 codebook-based A/N feedback may be additionally signaled through the DCI.
  • the fallback DCI format may be in a (omitted) form in which all basic information is not included/signaled.
  • the fallback DCI format may include/signal all basic information (eg, total-DAI and/or group ID-bitmap information for each of first-ID and second-ID).
  • the fallback DCI format may be in the form of including/signaling ⁇ total-DAI for first-ID, total-DAI for second-ID, NFI for first-ID, NFI for second-ID ⁇
  • the fallback DCI format may include/signal ⁇ NFI for first-ID, NFI for second-ID ⁇ (and/or group ID-bitmap information).
  • the UE is A based on the most recently detected/received information (e.g., slot group ID/index, total-DAI, NFI, CTI) through the DL grant DCI.
  • the DL grant DCI related to the recently detected/received information may be limited only to the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • the terminal when the A/N is piggybacked and transmitted through a CG-PUSCH transmitted without DCI in a configured (Configured Grant, CG) form rather than scheduling accompanying dynamic grant DCI transmission, the terminal is impersonated through the DL grant DCI. It can operate to configure/transmit A/N codebook (payload) based on recently detected/received information (eg, slot group ID/index, total-DAI, NFI, CTI).
  • the DL grant DCI related to the recently detected/received information may be limited only to the DCI indicating the CG-PUSCH transmission time (slot) as the HARQ-ACK transmission time for the PDSCH.
  • CBG CB group
  • total-DAI eg, total-DAI for first-ID and total-DAI for second-ID
  • A/N sub-codebook corresponding to TB unit transmission.
  • Each of the A/N sub-codebooks corresponding to unit transmission can be individually signaled
  • the base station instructs/recognizes "no A/N feedback to be piggybacked on PUSCH" to the terminal. You may need a way to do it. To this end, the following DCI signaling and operation may be considered.
  • the total-DAI bit in the UL grant DCI is indicated as '11' (or the total-DAI value is 4), and the bundling window period corresponding to the PUSCH transmission time (or previous (e.g., recent) A/N feedback)
  • the bundling window period corresponding to the PUSCH transmission time or previous (e.g., recent) A/N feedback
  • the NFI bit indicated through the UL grant DCI is (compared to or before the previous A/N feedback).
  • the UE can operate so as not to piggyback any A/N on the PUSCH.
  • This scheme can be applied to a structure for signaling NFI information through UL grant DCI.
  • DCI information check and terminal operation accordingly can be performed independently/individually for each (PDSCH) slot group (ID).
  • the DCI check/terminal operation is applied/performed, but the NFI bit is (formerly A /N Can be assumed to be non-toggled (or toggled) against feedback or against previous (recent) received NFI bits.
  • This method can be applied to the case of UL grant DCI (format) without separate NFI information signaling (e.g., fallback)
  • One of the states signaled by the total-DAI field in the UL grant DCI may be defined as indicating "no A/N feedback" (to be piggybacked by PUSCH).
  • the UE may operate so as not to piggyback any A/N on the PUSCH.
  • This method can be applied to a structure without NFI information signaling through UL grant DCI.
  • DCI information check and terminal operation accordingly can be performed independently/individually for each (PDSCH) slot group (ID).
  • PDSCH Only one
  • first-ID is indicated through the first-ID and second-ID (or current-ID and feedback-ID (or total-ID)) bit/field in the UL grant DCI Can be.
  • a specific total-DAI field eg, total-DAI field for second-ID
  • 1) A/N feedback for only one indicated slot group eg, first-ID
  • Piggyback to PUSCH To configure/transmit, or 2)
  • A/N to be piggybacked with PUSCH even for the indicated slot group (eg, first-ID) (that is, for all slot groups (first-ID and second-ID)) Can indicate that there is no feedback.
  • slot group ID information includes first-ID and second-ID (or current-ID and feedback-ID (or total-ID)) information.
  • a) the most recently detected/received information through the DL grant DCI e.g., slot group ID/index, total-DAI, NFI, CTI, and/or whether the following fallback A/N A/N codebook (payload) is configured/transmitted based on indication information, pended A/N presence/absence indication information), and/or b) a specific (eg, default) value can be assumed/applied for the information.
  • DCI e.g., slot group ID/index, total-DAI, NFI, CTI, and/or whether the following fallback A/N A/N codebook (payload) is configured/transmitted based on indication information, pended A/N presence/absence indication information
  • a specific (eg, default) value can be assumed/applied for the information.
  • the DL grant DCI related to the recently detected/received information may be limited to only the DCI indicating the PUSCH transmission time point (slot) as the HARQ-ACK transmission time point for the PDSCH.
  • at least one can be assumed/applied as follows.
  • the information may indicate whether only one fallback DCI scheduling PCell (PDSCH transmission through this) is transmitted during one bundling window period.
  • the above information can be configured/signaled with only 1-bit
  • Type-3 codebook e.g., CTI signaling indicating which A/N codebook will be configured/transmitted from Type-1 or Type-3
  • NFI information for Type-3 codebook-based A/N feedback may be additionally signaled through the DCI.
  • the information further includes an A/N (ie, pended A/N) in which pending is indicated (at a previous point in time) in the A/N payload configured based on the Type-1 codebook, so that the final A/N Can dictate whether to configure feedback
  • the DCI format (corresponding to at least PCell/PSCell) may include/signal the basic information.
  • the fallback DCI format corresponding to the SCell may include/not signal the basic information.
  • CBG CB group
  • the pended A/N payload is the maximum number of (transmittable) CBGs set in all cells/CCs, i.e. It can be determined based on the maximum value among the number of (transmittable) CBGs set for each cell/CC.
  • the pended A/N payload is the maximum number of (transmittable) TBs set for all cells/CCs, that is, set per cell/CC (Transferable) Can be determined based on the maximum value among TB numbers
  • the information is whether the A/N payload configured based on the type-1 codebook is piggybacked to PUSCH and transmitted (or 0-bit (i.e., piggyback is omitted) or only the fallback A/N is piggybacked). Can instruct
  • Type-3 codebook e.g., indicate which A/N codebook to configure/transmit from Type-1 or Type-3)
  • NFI information for Type-3 codebook-based A/N feedback may be additionally signaled through the DCI.
  • the information further includes an A/N (ie, pended A/N) in which pending is indicated (at a previous point in time) in the A/N payload configured based on the Type-1 codebook, so that the final A/N Can dictate whether to configure feedback
  • the fallback DCI format may include/not signal the basic information.
  • the UE For information not included/signaled in the UL grant DCI, the UE is based on the most recently detected/received information (e.g., fallback A/N indication information, CTI, pended A/N presence indication information) through the DL grant DCI. Can operate to configure/send A/N codebook (payload).
  • the DL grant DCI related to the recently detected/received information may be limited only to the DCI indicating the PUSCH transmission time (slot) scheduled through the UL grant DCI as the HARQ-ACK transmission time for the PDSCH.
  • the terminal reads the A/N codebook (payload) based on the most recently detected/received information (eg, fallback A/N indication information, CTI, pended A/N presence indication information) through the DL grant DCI.
  • the most recently detected/received information eg, fallback A/N indication information, CTI, pended A/N presence indication information
  • the DL grant DCI related to the recently detected/received information may be limited to only the DCI indicating the CG-PUSCH transmission time (slot) as the HARQ-ACK transmission time for the PDSCH.
  • CBG CB group
  • the pended A/N payload may be determined based on the maximum number of (transmittable) CBGs or TBs set in all cells/CCs.
  • (Type-2a or Type-1 A/N codebook setting and accordingly) DL/UL grant DCI information configuration and signaling operation is a PUCCH cell/CC (e.g., PCell or PSCell) configured to perform PUCCH transmission in a CA situation. ) May be limited to the case of a cell/CC operating on the U-band.
  • the DL/UL grant DCI corresponding to all CA cells/CCs may be configured according to the proposed method of the present specification.
  • the PUCCH cell/CC is a cell/CC operating on the L-band (with the existing Type-1 or Type-2 A/N codebook set)
  • the same DL/UL grant DCI information configuration and signaling operation as before Can be applied.
  • the DL/UL grant DCI corresponding to all the merged cells/CCs may be configured the same as before.
  • the configuration/signaling of the Type-2a or Type-1 A/N codebook and the configuration/signaling of the DL/UL grant DCI information accordingly is a multi-carrier, i.e., a U-band It may be limited to a case in which a cell/CC operating on the phase is included.
  • the DL/UL grant DCI corresponding to all the merged cells/CCs can be configured as in the above-described proposed method.
  • the configuration/signaling of the existing Type-1 or Type-2 A/N codebook and the configuration/signaling of the existing DL/UL grant DCI information accordingly may be applied.
  • the DL/UL grant DCI corresponding to all the merged cells/CCs may be configured the same as before.
  • Processing time (required for PDSCH decoding and A/N preparation operation) for a specific PDSCH or HARQ process ID may be insufficiently scheduled/instructed from the base station (compared to the minimum processing time that can be supported by the terminal).
  • the terminal operates to feedback (or DTX) NACK for the corresponding PDSCH (or HARQ process ID) through the (initial) A/N (PUCCH) transmission time point indicated by the DCI (corresponding to the corresponding PDSCH) can do.
  • A/N feedback transmission (based on the Type-2a codebook) for the slot group ID including the PDSCH or A/N feedback transmission (based on the Type-3 codebook) for the HARQ process group including the HARQ process ID may be indicated (again) from the base station.
  • the UE may update the A/N feedback for the corresponding PDSCH (or HARQ process ID) by reflecting the actual/final decoding result of the corresponding PDSCH (or HARQ process ID). For example, when the decoding result is ACK, ACK may be fed back to the corresponding PDSCH (or HARQ process ID) through the A/N (PUCCH) transmission time point indicated by the base station (again).
  • the above operation may be applied irrespective of whether the NFI corresponding to the PDSCH (or HARQ process ID) is toggled, or may be applied only in one of the cases where the corresponding NFI is non-toggled or toggled.
  • the above feedback update may be omitted (eg, previous feedback is maintained).
  • the update of the HARQ-ACK feedback transmitted by the terminal through the corresponding HARQ-ACK transmission time point is the corresponding HARQ process. It may vary according to the NDI value indicated for the ID. As an example, in a state in which the NDI value is not toggled (compared to the previous value), if the UE has previously fed back ACK for the corresponding HARQ process ID or / and the actual / final PDSCH decoding result is ACK, the UE is HARQ- ACK feedback (eg, updated feedback) may be updated/reported as ACK.
  • the terminal in a state in which the NDI value is not toggled (compared to the previous value), if the terminal previously fed back NACK for the corresponding HARQ process ID or / and the actual / final PDSCH decoding result was NACK, the terminal is HARQ- ACK feedback (eg, updated feedback) may be reported as NACK.
  • HARQ-ACK feedback e.g. , updated feedback
  • the UE is due to lack of processing time for the corresponding TB or PDSCH, and HARQ-ACK feedback (e.g. , updated feedback) may be reported as an invalid value (eg, NACK).
  • the A/N payload size transmitted through PUCCH is the number of CCs configured for the terminal, HARQ configured for each CC. It may increase proportionally to the number of processes, the maximum number of TBs set for each CC, or the maximum number of CBGs. Among these, in particular, the number of CBGs may be a factor that rapidly increases the A/N payload size compared to other parameters, and this may cause a lot of PUCCH resource overhead.
  • each HARQ process ID It can operate to generate/map/transmit TB-level A/N.
  • the TB-level A/N for a CC in which CBG unit (re) transmission is configured may be generated by bundling A/N between CBs corresponding to the same HARQ process ID or between CBGs.
  • the TB-level A/N may be generated by applying a logical AND operation between CB-level A/Ns for each of a plurality of CBs or between CBG-level A/Ns for each of a plurality of CBGs.
  • the A/N payload size and PUCCH resource overhead can be reduced.
  • the type-3 codebook-based A/N feedback transmission is not (e.g., Type-1/2 codebook), for a CC in which CBG unit (re) transmission is set, for a corresponding PDSCH (or HARQ process ID) It can operate to generate/map/transmit CBG-level A/N.
  • Type-3 codebook when A/N feedback transmission based on Type-3 codebook is instructed, whether to generate/transmit TB-level A/N, or CBG-level A/N for a CC in which CBG unit (re) transmission is set. Whether to generate/transmit can be set through an upper layer signal (eg, RRC signaling).
  • an upper layer signal eg, RRC signaling
  • the UE schedules PDSCH transmission and indicates slot Y as A/N transmission timing.
  • a specific point in time e.g, slot Y
  • the UE schedules PDSCH transmission and indicates slot Y as A/N transmission timing.
  • scheduling the initial transmission of a new TB or indicating a toggled NDI value
  • the terminal may ignore the DCI (discard). For example, the terminal may not perform an operation indicated by the corresponding DCI.
  • a DCI indicating type-3 codebook-based A/N transmission while scheduling PDSCH transmission may be excluded. That is, the terminal can perform a corresponding operation without ignoring the DCI.
  • the terminal may configure/transmit type-3 codebook-based A/N feedback including A/N for the PDSCH scheduled by the corresponding DCI.
  • the A/N timing for the PDSCH is indicated as invalid or non-numerical value through a specific DL grant DCI.
  • the A/N feedback for the corresponding PDSCH (hereinafter, pended A/N) is 1) by instructing a separate A/N pooling through a specific DCI (terminal In the form of transmitting the corresponding pended A/N in the form of a Type-3 A/N codebook, or 2) another (e.g., A/N timing for PDSCH is valid) without separate A/N pooling
  • An operation of adding the corresponding pended A/N to the Type-1 A/N codebook transmitted through the A/N timing indicated by the DL grant DCI (indicated in the form of a numeric value) may be considered.
  • the (maximum) pended A/N information/number of bits (e.g., P bits) that can be added to the Type-1 A/N codebook can be set to the UE through RRC signaling. .
  • the UE can configure the final A/N payload by always adding the corresponding P bit to the Type-1 A/N codebook, regardless of the presence or absence of the actual pended A/N.
  • the (base station) may indicate the presence or absence of a pended A/N (or whether the P-bit is added) to the terminal.
  • the terminal configures the final A/N payload in the form of adding or not adding pended A/N bit(s) (or the corresponding P bit) to the Type-1 A/N codebook. can do.
  • a plurality of candidates (having different values including 0) for the number of added pended A/N bits P may be set to the terminal (via RRC), and DCI (e.g., DL grant)
  • DCI e.g., DL grant
  • One of the corresponding candidates may be indicated through a specific field in the.
  • the terminal may configure the final A/N payload by adding the number of bits corresponding to the indicated value to the Type-1 A/N codebook.
  • the final A/N payload from the Type-1 A/N codebook, it is mapped to the lower bit index portion starting with the Most Significant Bit (MSB) first (eg, configured in the form of the first A/N sub-codebook).
  • MSB Most Significant Bit
  • the pended A/N information may be mapped (to a high bit index portion) (eg, configured in the form of a second A/N sub-codebook).
  • the (base station) in order to match the mapping order between the pended A/N information/bits on the A/N payload, through a specific field in the DCI (eg, DL grant) indicating the A/N pending operation, the (base station) to the terminal The number of times the PDCCH/PDSCH corresponding to the indicated A/N pending is scheduled/transmitted (out of all PDCCH/PDSCHs for which A/N pending is indicated), and the order value (e.g., counter-DAI) can be informed. have.
  • the terminal can configure the final A/N payload in the form of adding pended A/N bit(s) (payload) configured/mapped according to the order of the corresponding order values (in the Type-1 A/N codebook). have.
  • the field indicating the order value in the DCI (e.g., DL grant) is applied as a field used for counter-DAI signaling, or a field for allocating PUCCH resources (to be used for A/N feedback transmission) (e.g., PUCCH Resource Indicator, PRI) can be determined/considered.
  • the (pended) A/N feedback for the corresponding PDSCH is then transmitted from another DCI at a specific time ( It can be transmitted through the indicated A/N timing) as a Type-1 codebook-based A/N feedback time point. In this case, it may be necessary to determine the corresponding A/N timing (to which the pending A/N is to be transmitted).
  • the DCI may include, for example, a DCI that triggers A/N feedback based on a Type-1 codebook.
  • DCI transmitted after the point in time when A/N pending is indicated (DCI or PDSCH transmission) (e.g., A/N timing for PDSCH is indicated by a valid or numeric value)
  • a corresponding pended A/N may be transmitted (in addition) through the earliest time point among A/N timings indicated by them.
  • the DCI may include, for example, a DCI that triggers A/N feedback based on a Type-1 codebook.
  • the pended A/N transmission is performed in the manner described above (added to the Type-1 A/N codebook and transmitted through the same UL time point). You can consider how to set/designate possible points of time. Specifically, when an A/N pending operation is instructed through DCI (eg, DL grant) transmitted in slot #n or for a PDSCH transmitted in slot #n, including/after slot #(n+T) (And/or, set to enable the corresponding pended A/N transmission only through PUCCH (PUSCH) (carrying Type-1 A/N codebook) transmitted through slot #(n+T+F) included/previous time point) /Can be specified.
  • DCI eg, DL grant
  • PUSCH physical channels allocation
  • Type-1 A/N codebook transmitted through slot #(n+T+F
  • the terminal A Type-1 A/N codebook for a corresponding bundling window may be configured in a form of mapping pended A/N information/bits to A/N bits corresponding to.
  • the (pended) A/N feedback for the corresponding PDSCH is 1) by instructing a separate A/N pooling through a specific DCI (to cause the terminal) to change the corresponding pended A/N to Type-3 A Transmission in the form of /N codebook, or 2) A/N timing indicated by another DL grant DCI (e.g., A/N timing for PDSCH is indicated in the form of valid or numeric value) without separate A/N pooling
  • An operation of adding a corresponding pended A/N to the Type-2 A/N codebook transmitted through may be considered.
  • the terminal adds the configured/mapped pended A/N bit(s) (payload) based on the total value (to the Type-2 A/N codebook) and/or according
  • the final A/N payload can be configured in the form.
  • the type-2 A/N codebook is preferentially mapped to a lower bit index portion starting with MSB (e.g., configured in the form of the first sub-codebook), followed by pended A/N information. May be configured in the form of being mapped (to the high bit index portion) (eg, configured in the form of a second sub-codebook).
  • the (pended) A/N feedback for the corresponding PDSCH is then transmitted from another DCI at a specific time (Type-2 codebook-based A/N feedback time) can be transmitted through the indicated A/N timing.
  • a DCI e.g., a DL grant
  • Type-2 codebook-based A/N feedback time can be transmitted through the indicated A/N timing.
  • the DCI may include, for example, a DCI that triggers A/N feedback based on a Type-2 codebook.
  • DCI transmitted after the point in time when A/N pending is indicated (DCI or PDSCH transmission) (e.g., A/N timing for PDSCH is indicated by a valid or numeric value)
  • the pended A/N may be transmitted (in addition) through the earliest time point among the A/N timings indicated by them.
  • the DCI may include, for example, a DCI that triggers A/N feedback based on a Type-2 codebook.
  • the corresponding PDSCH For (pended) A/N feedback 1) by instructing a separate A/N pooling through a specific DCI (to cause the terminal) to transmit a pended A/N in the form of a Type-3 A/N codebook, or 2)
  • A/N timing at which the pended A/N feedback is to be transmitted it may be necessary to determine the A/N timing at which the pended A/N feedback is to be transmitted.
  • Type-1 or Type-2 A/N codebook method when the Type-1 or Type-2 A/N codebook method is set, an operation of dynamically triggering A/N feedback transmission based on the Type-3 A/N codebook method through a specific DCI may be applied/allowed. .
  • DCI-based dynamic Type-3 A/N codebook triggering may be defined/defined so that it is not applied/permitted.
  • the Type-1 or Type-2 A/N codebook method when the Type-1 or Type-2 A/N codebook method is set, the above-described (invalid or non-numeric A/N timing value for PDSCH) is indicated through DCI (e.g., DL grant). Of) A/N pending instruction operation may not be applied/permitted.
  • an A/N pending instruction operation in the form of indicating an invalid or non-numeric A/N timing value
  • DCI e.g., DL grant
  • SPS Semi-Persistent Scheduling
  • resources are dynamically allocated for each transmission by scheduling (eg, DCI).
  • scheduling eg, DCI
  • SPS is a method in which resources are reserved in advance for traffic that periodically occurs with a required data rate of medium/low speed, such as VoIP or streaming. The SPS can reduce scheduling overhead and stably allocate resources by pre-reserving resources for specific traffic.
  • SPS configuration information is given by Radio Resource Control (RRC) signaling
  • SPS configuration information may include SPS PDSCH period/offset, and the like.
  • the SPS configuration information may include information on an SPS time resource, and the SPS time resource may include an SPS PDSCH period/offset, and the like.
  • the UE does not immediately receive the SPS PDSCH even if SPS configuration information is allocated through RRC signaling, and SPS activation/release is performed through the PDCCH.
  • SPS activation PDCCH SPS activation PDCCH
  • it receives the SPS PDSCH in the slot allocated by RRC signaling.
  • the SPS-activated PDCCH carries RB allocation information and MCS (Modulation and Coding Scheme) information for the SPS PDSCH. Thereafter, based on the scheduling information in the SPS-activated PDCCH, the SPS PDSCH is periodically received according to the SPS PDSCH period without a corresponding PDCCH. Meanwhile, the UE stops receiving the SPS PDSCH upon receiving the SPS release PDCCH (SPS release PDCCH).
  • the A/N information for the SPS PDSCH may be transmitted based on PUCCH resource information/HARQ timing information (eg, PDSCH-to-HARQ-ACK reporting offset (K1); see FIG. 6) in the SPS-activated PDCCH.
  • PUCCH resource information/HARQ timing information eg, PDSCH-to-HARQ-ACK reporting offset (K1); see FIG. 6
  • FIG. 16 illustrates a conventional Type-2 A/N codebook scheme.
  • FIG. 16 is basically the same as FIG. 12(b) and is different in that an SPS PDSCH is added.
  • the UE may receive the SPS PDSCH in slot #(n+1).
  • the A/N for the SPS PDSCH is added to the end of the DAI-based A/N codebook.
  • the UE may generate/transmit A/N information for PDSCH reception in all slots corresponding to the candidate HARQ timing.
  • the A/N for the DAI sequence is placed in the MSB portion of the A/N payload, and the A/N for the SPS PDSCH is placed at the end of the A/N payload.
  • the SPS PDSCH transmitted without a corresponding DCI (eg, DL grant) and A/N feedback therefor may be considered.
  • DCI eg, DL grant
  • A/N feedback therefor may be considered.
  • Proposed Method 3 For more details about the Type-2a (or Type-1 or Type-2) A/N codebook scheme, refer to Proposed Method 3.
  • the SPS PDSCH period is set to L slots and the A/N timing (delay) corresponding to the SPS PDSCH is indicated to K slots. have.
  • the A/N feedback for the SPS PDSCH transmitted in slot #n is through all A/N timings indicated within the interval of slot #(n + K) ⁇ slot #(n + K + L-1). It can be transmitted (repeatedly).
  • the Type-2a (or Type-1 or Type-2) codebook-based A/N feedback for the SPS PDSCH transmitted in slot #n is transmitted only through slot #(n + K), and additionally slot # (n + K) ⁇ slot # (n + K + L-1) can be transmitted (additionally) through a point in time indicated by the A/N timing based on the Type-3 codebook.
  • a specific (slot) group ID to which SPS PDSCHs to be transmitted later belong may be designated through SPS activation DCI (eg, SPS activation PDCCH). Accordingly, when configuring/transmitting the A/N feedback for the corresponding (slot) group ID (according to the request from the base station), it can be configured/transmitted including the A/N for the corresponding SPS PDSCH.
  • 17 illustrates a problem in A/N configuration/mapping for an SPS PDSCH on a Type-2a A/N codebook. 17 illustrates a case in which the A/N for the SPS PDSCH in the A/N codebook and the A/N for the PDSCHs for which the slot group ID is specified through DCI (eg, DL grant) are not separated and configured/mapped. .
  • the UE receives PDSCH(s) corresponding to group #A (eg, group ID #0) and PDSCH(s) corresponding to group #B (eg, group ID #1).
  • the terminal receives the SPS PDSCH in the candidate HARQ timing interval corresponding to group #A.
  • the UE has received a request for A/N transmission for group #A/#B.
  • the A/N transmission timing for the SPS PDSCH may overlap with the A/N transmission timing for the group #A/#B.
  • the A/N for the SPS PDSCH may be added to the end of the A/N information for the group #A.
  • A/N information for groups #A/#B can each request A/N retransmission, but since the SPS PDSCH does not have a group ID, it is impossible to request A/N retransmission. Accordingly, when A/N information for groups #A/#B is initially transmitted and when retransmitted, A/N payload configuration/mapping is different. This is because the SPS PDSCH may not exist or a new SPS PDSCH may exist when A/N information for groups #A/#B is retransmitted.
  • the location of the A/N information for the group #B within the A/N payload may vary according to the A/N transmission time, and the A/N between the terminal and the base station Problems such as N mismatch may occur.
  • the slot group ID is separated from A/N for PDSCHs designated through DCI (eg, DL grant). It can be configured/mapped into a shape. For example, from A/N for a PDSCH in which a slot group ID is assigned on the A/N payload of the Type-2 codebook, it is mapped to a lower bit index portion starting with the Most Significant Bit (MSB) (eg, the first sub- It may be configured in the form of a codebook), followed by mapping of the A/N to the SPS PDSCH (to the high bit index portion) (eg, configured in the form of a second sub-codebook).
  • MSB Most Significant Bit
  • the UE may receive PDSCH(s) belonging to a first PDSCH group and PDSCH(s) belonging to a second PDSCH group (S1802).
  • the PDSCH group corresponds to a (slot) group, and each PDSCH group is used as a basic group for A/N requests.
  • the terminal may receive the SPS PDSCH (S1804). Thereafter, the UE may generate first A/N information for the first PDSCH group and/or second A/N information for the second PDSCH group.
  • the A/N for the SPS PDSCH is the first A/N information It may be added after (and the second A/N information).
  • the terminal may transmit the first A/N information (and the second A/N information) and control information including the A/N for the SPS PDSCH (S1806).
  • the control information may be transmitted through PUCCH or PUSCH.
  • the SPS PDSCH may be generalized to a specific PDSCH that does not belong to any PDSCH group (ie, a PDSCH without a designated group ID).
  • A/N retransmission is allowed for each of the first and second A/N information, but A/N retransmission may not be allowed for A/N for the SPS PDSCH.
  • it may further include receiving a DCI for PDSCH scheduling, and the DCI may include A/N request information for the first PDSCH group and A/N request information for the second PDSCH group.
  • the proposed method can be applied only when operating in an unlicensed band (eg, shared spectrum). For example, the control information may be transmitted in an unlicensed band.
  • an A/N payload may be configured as a part of FIG. 18.
  • the base station requests only the first A/N information for (case 1) the first PDSCH group (eg, group #A) from the terminal, or (case 2) the second PDSCH group (eg, group #B). Only A/N information may be requested, or (case 3) A/N for both the first and second PDSCH groups may be requested.
  • the A/N for each group and the A/N for the SPS PDSCH in the A/N payload may be configured as follows.
  • A/N configuration/mapping for SPS PDSCH in Type-3 A/N codebook it is configured in a form separated from A/N for PDSCHs for which HARQ process ID is specified through DCI (e.g., DL grant). /Can be mapped.
  • the HARQ process ID on the A/N payload of the Type-3 codebook is mapped to the lower bit index portion starting with MSB from A/N for the designated PDSCH as DCI (e.g., in the form of the first sub-codebook. Configuration), after that, the A/N for the SPS PDSCH may be mapped (to a high bit index portion) (eg, configured in the form of a second sub-codebook).
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices. It can be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f/base station 200, and the base station 200/base station 200.
  • wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive radio signals to each other.
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • At least some of a process of setting various configuration information various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation process, and the like may be performed.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation process e.g., resource allocation process, and the like.
  • 21 illustrates a wireless device applicable to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. 20 ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed herein. It is possible to store software code including:
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • Transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 and one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It is possible to store software code including:
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or operational flow chart disclosed herein. At least one processor (102, 202) generates a signal (e.g., a baseband signal) containing PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , Can be provided to one or more transceivers (106, 206).
  • a signal e.g., a baseband signal
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are configured to perform firmware or software included in one or more processors 102, 202, or stored in one or more memories 104, 204, and It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions, and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more of the memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc., mentioned in the description, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document from one or more other devices. have.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), one or more transceivers (106, 206) through the one or more antennas (108, 208), the description and functions disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
  • the wireless device 22 shows another example of a wireless device applied to the present invention.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 20).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 21, and various elements, components, units/units, and/or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 may include one or more processors 102,202 and/or one or more memories 104,204 of FIG. 21.
  • the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 21.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally through the communication unit 110 (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • an external eg, other communication device
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 20, 100a), vehicles (FIGS. 20, 100b-1, 100b-2), XR devices (FIGS. 20, 100c), portable devices (FIGS. 20, 100d), and home appliances (FIGS. 20, 100e), IoT devices (FIGS. 20, 100f), digital broadcasting terminals, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate/environment devices, It may be implemented in the form of an AI server/device (FIGS. 20 and 400), a base station (FIGS. 20 and 200), and a network node.
  • the wireless device can be used in a mobile or fixed place depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit eg, 130, 140
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the control unit 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a unit (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110/130/140a to 140d correspond to blocks 110/130/140 of FIG. 22, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside base stations, etc.), and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c is an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement. /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc. can be included.
  • the autonomous driving unit 140d is a technology that maintains a driving lane, a technology that automatically adjusts the speed such as adaptive cruise control, a technology that automatically travels along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a so that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
  • the communication unit 110 asynchronously/periodically acquires the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like, based on information collected from the vehicle or autonomously driving vehicles, and may provide the predicted traffic information data to the vehicle or autonomously driving vehicles.
  • the present invention can be used in a terminal, a base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 제1 PDSCH 그룹에 대한 제1 A/N 정보, 및 제2 PDSCH 그룹에 대한 제2 A/N 정보를 생성하되, 각 PDSCH 그룹은 A/N 요청을 위한 기본 그룹인 단계; 어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH에 대한 A/N이 상기 제1 및 제2 A/N 정보와 함께 전송되는 것에 기반하여, 상기 특정 PDSCH에 대한 A/N을 상기 제1 및 제2 A/N 정보의 뒤에 추가하는 단계; 및 상기 제1 및 제2 A/N 정보와 상기 특정 PDSCH에 대한 A/N을 포함하는 제어 정보를 전송하는 단계를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 양상으로, 무선 통신 시스템에서 단말에 의해 사용되는 방법에 있어서, 제1 PDSCH (physical downlink shared channel) 그룹에 대한 제1 A/N (acknowledgement/negative acknowledgement) 정보, 및 제2 PDSCH 그룹에 대한 제2 A/N 정보를 생성하되, 각 PDSCH 그룹은 A/N 요청을 위한 기본 그룹인 단계; 어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH에 대한 A/N이 상기 제1 및 제2 A/N 정보와 함께 전송되는 것에 기반하여, 상기 특정 PDSCH에 대한 A/N을 상기 제1 및 제2 A/N 정보의 뒤에 추가하는 단계; 및 상기 제1 및 제2 A/N 정보와 상기 특정 PDSCH에 대한 A/N을 포함하는 제어 정보를 전송하는 단계를 포함하는 방법이 제공된다.
본 발명의 제2 양상으로, 무선 통신 시스템에 사용되는 단말에 있어서, 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하는 단말이 제공되며, 상기 동작은 다음을 포함한다: 제1 PDSCH (physical downlink shared channel) 그룹에 대한 제1 A/N (acknowledgement/negative acknowledgement) 정보, 및 제2 PDSCH 그룹에 대한 제2 A/N 정보를 생성하되, 각 PDSCH 그룹은 A/N 요청을 위한 기본 그룹이고; 어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH에 대한 A/N이 상기 제1 및 제2 A/N 정보와 함께 전송되는 것에 기반하여, 상기 특정 PDSCH에 대한 A/N을 상기 제1 및 제2 A/N 정보의 뒤에 추가하며; 상기 제1 및 제2 A/N 정보와 상기 특정 PDSCH에 대한 A/N을 포함하는 제어 정보를 전송한다.
본 발명의 제3 양상으로, 단말을 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하는 장치가 제공되며, 상기 동작은 다음을 포함한다: 제1 PDSCH (physical downlink shared channel) 그룹에 대한 제1 A/N (acknowledgement/negative acknowledgement) 정보, 및 제2 PDSCH 그룹에 대한 제2 A/N 정보를 생성하되, 각 PDSCH 그룹은 A/N 요청을 위한 기본 그룹이고; 어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH에 대한 A/N이 상기 제1 및 제2 A/N 정보와 함께 전송되는 것에 기반하여, 상기 특정 PDSCH에 대한 A/N을 상기 제1 및 제2 A/N 정보의 뒤에 추가하며; 상기 제1 및 제2 A/N 정보와 상기 특정 PDSCH에 대한 A/N을 포함하는 제어 정보를 전송한다.
본 발명의 제4 양상으로, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하는 컴퓨터 판독가능한 저장 매체가 제공되며, 상기 동작은 다음을 포함한다: 제1 PDSCH (physical downlink shared channel) 그룹에 대한 제1 A/N (acknowledgement/negative acknowledgement) 정보, 및 제2 PDSCH 그룹에 대한 제2 A/N 정보를 생성하되, 각 PDSCH 그룹은 A/N 요청을 위한 기본 그룹이고; 어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH에 대한 A/N이 상기 제1 및 제2 A/N 정보와 함께 전송되는 것에 기반하여, 상기 특정 PDSCH에 대한 A/N을 상기 제1 및 제2 A/N 정보의 뒤에 추가하며; 상기 제1 및 제2 A/N 정보와 상기 특정 PDSCH에 대한 A/N을 포함하는 제어 정보를 전송한다.
본 발명의 제5 양상으로, 무선 통신 시스템에서 기지국에 의해 수행되는 방법에 있어서, 제1 PDSCH (physical downlink shared channel) 그룹에 속하는 적어도 하나의 PDSCH, 및 제2 PDSCH 그룹에 속하는 적어도 하나의 PDSCH를 전송하되, 각 PDSCH 그룹은 A/N (acknowledgement/negative acknowledgement) 요청을 위한 기본 그룹인 단계; 어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH를 전송하는 단계; 및 상기 제1 PDSCH 그룹에 대한 제1 A/N 정보, 제2 PDSCH 그룹에 대한 제2 A/N 정보, 및 상기 특정 PDSCH에 대한 A/N을 포함하는 제어 정보를 수신하는 단계를 포함하고, 상기 특정 PDSCH에 대한 A/N은 상기 제1 및 제2 A/N 정보의 뒤에 위치하는 방법이 제공된다.
본 발명의 제6 양상으로, 무선 통신 시스템에 사용되는 기지국에 있어서, 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하는 기지국이 제공되며, 상기 동작은 다음을 포함한다: 제1 PDSCH (physical downlink shared channel) 그룹에 속하는 적어도 하나의 PDSCH, 및 제2 PDSCH 그룹에 속하는 적어도 하나의 PDSCH를 전송하되, 각 PDSCH 그룹은 A/N (acknowledgement/negative acknowledgement) 요청을 위한 기본 그룹이고; 어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH를 전송하며; 상기 제1 PDSCH 그룹에 대한 제1 A/N 정보, 제2 PDSCH 그룹에 대한 제2 A/N 정보, 및 상기 특정 PDSCH에 대한 A/N을 포함하는 제어 정보를 수신하는 것을 포함하고, 상기 특정 PDSCH에 대한 A/N은 상기 제1 및 제2 A/N 정보의 뒤에 위치한다.
바람직하게, 상기 특정 PDSCH는 SPS (semi-persistent scheduling) PDSCH를 포함할 수 있다.
바람직하게, 상기 제1 및 제2 A/N 정보에 대해서는 각각 A/N 재전송이 허용되지만, 상기 SPS PDSCH에 대한 A/N에 대해서는 A/N 재전송이 허용되지 않을 수 있다.
바람직하게, PDSCH 스케줄링을 위한 DCI (downlink control information)를 수신하는 것을 더 포함하고, 상기 DCI는 상기 제1 PDSCH 그룹에 대한 A/N 요청 정보 및 상기 제2 PDSCH 그룹에 대한 A/N 요청 정보를 포함할 수 있다.
바람직하게, 상기 제어 정보는 비면허 대역에서 전송될 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 자기-완비(self-contained) 슬롯의 구조를 예시한다.
도 5는 자기-완비 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 6은 ACK/NACK 전송 과정을 예시한다.
도 7은 PUSCH(Physical Uplink Shared Channel) 전송 과정을 예시한다.
도 8은 제어 정보를 PUSCH에 다중화하는 예를 나타낸다.
도 9는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다.
도 10은 비면허 밴드 내에서 자원을 점유하는 방법을 예시한다.
도 11은 상향링크 신호 전송을 위한 단말의 Type 1 CAP 동작 흐름도이다.
도 12~14는 본 발명의 예에 따른 A/N 전송을 예시한다.
도 15은 SPS(Semi-Persistent Scheduling)을 예시한다.
도 16은 Type-2 코드북 기반의 A/N 페이로드 구성을 예시한다.
도 17은 SPS PDSCH에 대한 A/N을 동시 전송 시의 문제점을 예시한다.
도 18~19는 본 발명의 예에 따른 A/N 전송을 예시한다.
도 20~23은 본 발명에 적용되는 통신 시스템(1)과 무선 기기를 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 제어 영역과 데이터 영역 사이에는 DL-to-UL 혹은 UL-to-DL 스위칭을 위한 시간 갭이 존재할 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
도 5는 자기-완비 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16개의 CCE(Control Channel Element)로 구성된다. CCE는 무선 채널 상태에 따라 소정 부호율의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 6개의 REG(Resource Element Group)로 구성된다. REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, Master Information Block, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB 개수 및 OFDM 심볼 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PDCCH 수신/검출을 위해, 단말은 PDCCH 후보들을 모니터링 한다. PDCCH 후보는 PDCCH 검출을 위해 단말이 모니터링 해야 하는 CCE(들)을 나타낸다. 각 PDCCH 후보는 AL에 따라 1, 2, 4, 8, 16개의 CCE로 정의된다. 모니터링은 PDCCH 후보들을 (블라인드) 디코딩 하는 것을 포함한다. 단말이 모니터링 하는 PDCCH 후보들의 세트를 PDCCH 검색 공간(Search Space, SS)이라고 정의한다. 검색 공간은 공통 검색 공간(Common Search Space, CSS) 또는 단말-특정 검색 공간(UE-specific search space, USS)을 포함한다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간에서 PDCCH 후보를 모니터링 하여 DCI를 획득할 수 있다. 각각의 CORESET는 하나 이상의 검색 공간과 연관되고, 각 검색 공간은 하나의 COREST과 연관된다. 검색 공간은 다음의 파라미터들에 기초하여 정의될 수 있다.
- controlResourceSetId: 검색 공간과 관련된 CORESET를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: 슬롯 내 PDCCH 모니터링 심볼을 나타냄(예, CORESET의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타냄
* PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)을 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 3은 검색 공간 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 UL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 5는 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format Length in OFDM symbols N PUCCH symb Number of bits Usage Etc
0 1 - 2 ≤2 HARQ, SR Sequence selection
1 4 - 14 ≤2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM
(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM
(Pre DFT OCC)
PUCCH 포맷 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.
PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH 포맷 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH 포맷 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH 포맷 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH 포맷 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 6은 ACK/NACK 전송 과정을 예시한다. 도 6참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: K0, 슬롯 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
- HARQ process number (4비트): 데이터(예, PDSCH, TB)에 대한 HARQ process ID(Identity)를 나타냄
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서 PDSCH를 수신한 뒤, 슬롯 #(n+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함한다. PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
기지국/단말에는 DL 전송을 위해 복수의 병렬 DL HARQ 프로세스가 존재한다. 복수의 병렬 HARQ 프로세스는 이전 DL 전송에 대한 성공 또는 비성공 수신에 대한 HARQ 피드백을 기다리는 동안 DL 전송이 연속적으로 수행되게 한다. 각각의 HARQ 프로세스는 MAC(Medium Access Control) 계층의 HARQ 버퍼와 연관된다. 각각의 DL HARQ 프로세스는 버퍼 내의 MAC PDU(Physical Data Block)의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전(redundancy version) 등에 관한 상태 변수를 관리한다. 각각의 HARQ 프로세스는 HARQ 프로세스 ID에 의해 구별된다.
도 7은 PUSCH 전송 과정을 예시한다. 도 7을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
도 8은 UCI를 PUSCH에 다중화 하는 예를 나타낸다. 슬롯 내에 복수의 PUCCH 자원과 PUSCH 자원이 중첩되고, PUCCH-PUSCH 동시 전송이 설정되지 않은 경우, UCI는 도시된 바와 같이 PUSCH를 통해 전송될 수 있다(UCI 피기백 또는 PUSCH 피기백). 도 8은 HARQ-ACK과 CSI가 PUSCH 자원에 실리는 경우를 예시한다.
도 9는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다. 편의상, 면허 대역(이하, L-밴드)에서 동작하는 셀을 LCell로 정의하고, LCell의 캐리어를 (DL/UL) LCC(Licensed Component Carrier)로 정의한다. 또한, 비면허 대역(이하, U-밴드)에서 동작하는 셀을 UCell로 정의하고, UCell의 캐리어를 (DL/UL) UCC(Unlicensed Component Carrier)로 정의한다. 셀의 캐리어는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, Component Carrier, CC)는 셀로 통칭될 수 있다.
캐리어 병합(Carrier Aggregation, CA)이 지원되는 경우, 하나의 단말은 병합된 복수의 셀/캐리어를 통해 기지국과 신호를 송수신할 수 있다. 하나의 단말에게 복수의 CC가 구성된 경우, 하나의 CC는 PCC(Primary CC)로 설정되고, 나머지 CC는 SCC(Secondary CC)로 설정될 수 있다. 특정 제어 정보/채널(예, CSS PDCCH, PUCCH)은 PCC를 통해서만 송수신 되도록 설정될 수 있다. 데이터는 PCC/SCC를 통해 송수신 될 수 있다. 도 9(a)는 단말과 기지국은 LCC 및 UCC를 통해 신호를 송수신 하는 경우를 예시한다(NSA(non-standalone) 모드). 이 경우, LCC는 PCC로 설정되고 UCC는 SCC로 설정될 수 있다. 단말에게 복수의 LCC가 구성된 경우, 하나의 특정 LCC는 PCC로 설정되고 나머지 LCC는 SCC로 설정될 수 있다. 도 9(a)는 3GPP LTE 시스템의 LAA에 해당한다. 도 9(b)는 단말과 기지국은 LCC 없이 하나 이상의 UCC를 통해 신호를 송수신 하는 경우를 예시한다(SA(standalone) 모드). 이 경우. UCC들 중 하나는 PCC로 설정되고 나머지 UCC는 SCC로 설정될 수 있다. 이에 따라, NR UCell에서는 PUCCH, PUSCH, PRACH 전송 등이 지원될 수 있다. 3GPP NR 시스템의 비면허 대역에서는 NSA 모드와 SA 모드가 모두 지원될 수 있다.
도 10은 비면허 대역에서 자원을 점유하는 방법을 예시한다. 비면허 대역에 대한 지역별 규제(regulation)에 따르면, 비면허 대역 내의 통신 노드는 신호 전송 전에 다른 통신 노드(들)의 채널 사용 여부를 판단해야 한다. 구체적으로, 통신 노드는 신호 전송 전에 먼저 CS(Carrier Sensing)를 수행하여 다른 통신 노드(들)이 신호 전송을 하는지 여부를 확인할 수 있다. 다른 통신 노드(들)이 신호 전송을 하지 않는다고 판단된 경우를 CCA(Clear Channel Assessment)가 확인됐다고 정의한다. 기-정의된 혹은 상위계층(예, RRC) 시그널링에 의해 설정된 CCA 임계치가 있는 경우, 통신 노드는 CCA 임계치보다 높은 에너지가 채널에서 검출되면 채널 상태를 비지(busy)로 판단하고, 그렇지 않으면 채널 상태를 아이들(idle)로 판단할 수 있다. 참고로, Wi-Fi 표준(802.11ac)에서 CCA 임계치는 non Wi-Fi 신호에 대하여 -62dBm, Wi-Fi 신호에 대하여 -82dBm으로 규정되어 있다. 채널 상태가 아이들이라고 판단되면, 통신 노드는 UCell에서 신호 전송을 시작할 수 있다. 상술한 일련의 과정은 LBT(Listen-Before-Talk) 또는 CAP(Channel Access Procedure)로 지칭될 수 있다. LBT와 CAP는 혼용될 수 있다.
유럽에서는 FBE(Frame Based Equipment)와 LBE(Load Based Equipment)로 명명되는 2가지의 LBT 동작을 예시하고 있다. FBE는 통신 노드가 채널 접속에 성공했을 때 송신을 지속할 수 있는 시간을 의미하는 채널 점유 시간(channel occupancy time)(예, 1~10ms)과 상기 채널 점유 시간의 최소 5%에 해당되는 아이들 기간(idle period)이 하나의 고정(fixed) 프레임을 구성하며, CCA는 아이들 기간 내 끝 부분에 CCA 슬롯 (최소 20μs) 동안 채널을 관측하는 동작으로 정의된다. 통신 노드는 고정 프레임 단위로 주기적으로 CCA를 수행하고, 채널이 비점유(unoccupied) 상태인 경우에는 채널 점유 시간 동안 데이터를 송신하고 채널이 점유(occupied) 상태인 경우에는 전송을 보류하고 다음 주기의 CCA 슬롯까지 기다린다.
한편, LBE의 경우, 통신 노드는 먼저 q∈{4, 5, … , 32}의 값을 설정한 후 1개 CCA 슬롯에 대한 CCA를 수행하고. 첫 번째 CCA 슬롯에서 채널이 비점유 상태이면, 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다. 첫 번째 CCA 슬롯에서 채널이 점유 상태이면 통신 노드는 랜덤하게 N∈{1, 2, … , q}의 값을 골라 카운터의 초기값으로 저장하고, 이후 CCA 슬롯 단위로 채널 상태를 센싱하면서 CCA 슬롯 단위로 채널이 비점유 상태이면 카운터에 저장된 값을 1개씩 줄여나간다. 카운터 값이 0이 되면, 통신 노드는 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다.
구체적으로, 비면허 대역에서의 상향링크 전송을 위해 복수의 CAP Type (즉, LBT Type)이 정의될 수 있다. 예를 들어, 상향링크 전송을 위해 Type 1 또는 Type 2 CAP가 정의될 수 있다. 단말은 상향링크 신호 전송을 위해 기지국이 설정/지시한 CAP(예, Type 1 또는 Type 2)를 수행할 수 있다.
(1) Type 1 상향링크 CAP 방법
도 11은 상향링크 신호 전송을 위한 단말의 Type 1 CAP 동작 흐름도이다.
단말은 비면허 대역을 통한 신호 전송을 위해 CAP를 개시할 수 있다(S1510). 단말은 스텝 1에 따라 경쟁 윈도우(CW) 내에서 백오프 카운터 N을 임의로 선택할 수 있다. 이때, N 값은 초기 값 N init으로 설정된다(S1520). N init은 0 내지 CW p 사이의 값 중 임의의 값으로 선택된다. 이어서, 스텝 4에 따라 백오프 카운터 값(N)이 0이면(S1530; Y), 단말은 CAP 과정을 종료한다(S1532). 이후, 단말은 Tx 버스트 전송을 수행할 수 있다(S1534). 반면, 백오프 카운터 값이 0이 아니면(S1530; N), 단말은 스텝 2에 따라 백오프 카운터 값을 1만큼 줄인다(S1540). 이후, 단말은 UCell(s)의 채널이 아이들 상태인지 확인하고(S1550), 채널이 아이들 상태이면(S1550; Y) 백오프 카운터 값이 0인지 확인한다(S1530). 반대로, S1550 단계에서 채널이 아이들 상태가 아니면 즉, 채널이 비지 상태이면(S1550; N), 단말은 스텝 5에 따라 슬롯 시간(예, 9us)보다 긴 지연 기간(defer duration T d; 25usec 이상) 동안 해당 채널이 아이들 상태인지 확인한다(S1560). 지연 기간 동안 채널이 아이들 상태이면(S1570; Y), 단말은 다시 CAP 과정을 재개할 수 있다. 여기서, 지연 기간은 16usec 구간 및 바로 뒤따르는 m p개의 연속하는 슬롯 시간(예, 9us)으로 구성될 수 있다. 반면, 지연 기간 동안 채널이 비지 상태이면(S1570; N), 단말은 S1560 단계를 재수행하여 새로운 지연 기간 동안 채널이 아이들 상태인지 다시 확인한다.
표 6은 채널 접속 우선 순위 클래스(p)에 따라 CAP에 적용되는 m p, 최소 CW(CW min,p), 최대 CW(CW max,p), 최대 채널 점유 시간(Maximum Channel Occupancy Time, MCOT)(T ulmcot,p) 및 허용된 CW 크기(allowed CW sizes)가 달라지는 것을 예시한다.
Channel Access Priority Class (p) m p CW min,p CW max,p T ulmcot,p allowed CWp sizes
1 2 3 7 2 ms {3,7}
2 2 7 15 4 ms {7,15}
3 3 15 1023 6ms or 10 ms {15,31,63,127,255,511,1023}
4 7 15 1023 6ms or 10 ms {15,31,63,127,255,511,1023}
Type 1 CAP에 적용되는 CW 사이즈(CWS)는 다양한 방법에 기초하여 결정될 수 있다. 일 예로, CWS는 일정 시간 구간(예, 참조 TU) 내 UL-SCH의 HARQ 프로세스 ID인 HARQ_ID_ref와 관련된 적어도 하나의 HARQ 프로세서를 위한 NDI(New Data Indicator) 값의 토글 여부에 기초하여 조정될 수 있다. 단말이 반송파 상에서 채널 접속 우선순위 클래스 p와 관련된 Type 1 CAP를 이용하여 신호 전송을 수행하는 경우, 단말은 HARQ_ID_ref와 관련된 적어도 하나의 HARQ 프로세스를 위한 NDI 값이 토글되면 모든 우선순위 클래스 p∈{1,2,3,4}에서 CW p=CW min,p로 설정하고, 아닌 경우, 모든 우선순위 클래스 p∈{1,2,3,4}에서 CW p를 다음으로 높은 허락된 값(next higher allowed value)로 증가시킨다.
참조 서브프레임 n ref (또는 참조 슬롯 n ref)는 다음과 같이 결정된다.
단말이 서브프레임 (또는 슬롯) n g에서 UL 그랜트를 수신하고 서브프레임 (또는 슬롯) n 0,n 1,...n w내에서 서브프레임 (또는 슬롯) n 0부터 시작하고 갭이 없는 UL-SCH를 포함한 전송을 수행하는 경우, 참조 서브프레임 (또는 슬롯) n ref는 서브프레임 (또는 슬롯) n 0이다.
(2) Type 2 상향링크 CAP 방법
적어도 센싱 구간 T short_ul=25us 동안 채널이 아이들이라고 센싱되면, 단말은 센싱이 종료된 바로 직후(immediately after)부터 비면허 대역에서 상향링크 전송(예, PUSCH)을 할 수 있다. T short_ul은 T sl (=9us) + T f (=16us)로 구성될 수 있다.
실시예: U-밴드에서의 HARQ-ACK 피드백
U-밴드에서의 스탠드-얼론 동작을 지원하기 위해, DL 데이터(예, PDSCH) 수신에 대해서, 단말의 U-밴드 PUCCH/PUSCH 전송에 기반한 HARQ-ACK 피드백 동작이 필수적일 수 있다(이하, HARQ-ACK을 편의상 A/N으로 통칭함). PUCCH/PUSCH는 PUCCH 또는 PUSCH를 나타낸다. 일 예로, 기지국은 LBT (CCA) 동작을 수행하여 확보한 COT(Channel Occupancy Time) 구간을 통해 단말에게 DL 데이터 전송을 스케줄링하고, 동일한 COT 구간을 통해 해당 단말로부터 해당 DL 데이터 수신에 대한 HARQ-ACK 피드백이 전송되도록 지시하는 과정이 고려될 수 있다(이하, LBT 또는 CCA를 편의상 LBT로 통칭함). 다른 예로, DL 데이터 신호의 디코딩 및 대응되는 HARQ-ACK 신호의 인코딩에 수반되는 단말 프로세싱 시간으로 인해, 특정 COT 구간을 통해 스케줄링/전송된 DL 데이터 수신에 대한 HARQ-ACK 피드백을 해당 COT 이후의 다른 COT 구간을 통해 전송하도록 지시하는 과정도 고려될 수 있다.
이하, 본 명세서에서는 U-밴드에서의 HARQ-ACK 피드백(이하, A/N) 구성/전송 방법에 대해 제안한다. 여기서, A/N 구성/전송 방법은 LBT 동작, COT 구성 등을 고려하여 수행될 수 있다. 본 명세서에서 제안된 사항은 PUCCH/PUSCH를 통한 HARQ-ACK 피드백 전송 방법에만 국한되지 않으며, PUCCH/PUSCH를 통한 다른 UCI(예, CSI, SR) 전송 방법에도 유사하게 적용될 수 있다. 또한, 본 명세서에서 제안된 사항은 LBT 기반의 U-밴드 동작에만 국한되지 않으며, LBT를 수반하지 않는 L-밴드 (또는, U-밴드) 동작에도 유사하게 적용될 수 있다. 또한, 이하의 설명에서 복수의 CC (인덱스)는 하나 (이상)의 CC/(서빙) 셀 내에 구성된 복수의 BWP (인덱스)으로 대체되거나, 복수의 BWP로 구성된 복수의 CC/(서빙) 셀(즉, CC (인덱스)와 BWP (인덱스)의 조합)로 대체될 수 있다.
먼저, 다음과 같이 용어를 정의한다.
- UCI: 단말이 UL 전송하는 제어 정보를 의미한다. UCI는 여러 타입의 제어 정보(즉, UCI 타입)를 포함한다. 예를 들어, UCI는 HARQ-ACK, SR, CSI를 포함한다.
- HARQ-ACK: PDSCH 상의 DL 데이터(예, 전송블록(TB), 코드워드(CW))가 성공적으로 수신됐는지 여부를 나타낸다. 단일 DL 데이터에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 DL 데이터에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답/결과는 포지티브 ACK(ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 ACK/NACK, A/N, AN과 혼용된다.
- HARQ 프로세스 번호/ID: HARQ 프로세스의 번호 또는 식별자를 나타낸다. HARQ 프로세스는 버퍼 내의 MAC PDU의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전 등에 관한 상태 변수를 관리한다.
- PUCCH: UCI 전송을 위한 물리계층 UL 채널을 의미한다. 편의상, A/N, SR, CSI 전송을 위해, 기지국이 설정한 및/또는 전송을 지시한 PUCCH 자원을 각각 A/N PUCCH 자원, SR PUCCH 자원, CSI PUCCH 자원으로 명명한다.
- PUSCH: UL 데이터 전송을 위한 물리계층 UL 채널을 의미한다.
- 슬롯: 데이터 스케줄링을 위한 기본 시간 단위(time unit (TU), 또는 time interval)를 의미한다. 슬롯은 복수의 심볼을 포함한다. 여기서, 심볼은 OFDM-기반 심볼(예, CP-OFDM 심볼, DFT-s-OFDM 심볼)을 포함한다. 본 명세서에서 심볼, OFDM-기반 심볼, OFDM 심볼, CP-OFDM 심볼 및 DFT-s-OFDM 심볼은 서로 대체될 수 있다.
아래에서 설명하는 각 제안 방안은 다른 제안 방안들과 상호 배치되지 않는 한 결합되어 함께 적용될 수 있다.
(1) 기본 동작 방식
본 명세서에서 제안하는 A/N 피드백 구성/전송 방법을 위한 기본 동작 방식들에 대하여 설명하면 다음과 같다. 본 명세서에서 A/N 트리거링 DCI는 적어도 DL 그랜트 DCI를 포함하며, (DL 그랜트 DCI에 추가로) UL 그랜트 DCI 및/또는 PDSCH/PUSCH 전송을 스케줄링 하지 않는 특정 DCI를 더 포함할 수 있다.
1) 타이밍 기반의 A/N 피드백 방식(이하, t-A/N 방식)(도 12)
A. 사전에 RRC 시그널링을 통해 복수의 후보 HARQ 타이밍을 설정한 뒤, 기지국은 (DL 그랜트) DCI를 통해 복수의 후보 HARQ 타이밍 중 하나를 단말에게 지시할 수 있다. 이 경우, 단말은 전체 후보 HARQ 타이밍 세트에 대응되는 복수 슬롯(혹은, 슬롯 집합; 편의상, 번들링 윈도우)에서의 (복수) PDSCH 수신에 대한 A/N 피드백을, 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 여기서, HARQ 타이밍은 PDSCH-to-A/N 타이밍/간격을 의미한다. HARQ 타이밍은 슬롯 단위로 표현될 수 있다.
예를 들어, A/N 전송이 슬롯 #m에서 지시된 경우, A/N 정보는 슬롯 #(m-i)에서의 PDSCH 수신에 대한 응답 정보를 포함할 수 있다. 여기서, 슬롯 #(m-i)는 후보 HARQ 타이밍에 대응하는 슬롯에 해당한다. 도 12(a)는 후보 HARQ 타이밍이 i={2, 3, 4, 5}로 설정된 경우를 예시한다. 이 경우, A/N 전송 시점이 #(n+5)(=m)로 지시되면, 단말은 슬롯 #n~#(n+3)(=m-i)의 PDSCH 수신에 대한 A/N 정보를 생성/전송할 수 있다(즉, 4개 슬롯 모두에 대해 A/N 피드백). 여기서, 슬롯 #n+1/#n+3의 PDSCH 수신에 대한 A/N 응답은 NACK으로 처리될 수 있다.
편의상, 본 A/N 피드백 구성/전송 방식을 "타입-1 A/N 코드북"으로 지칭한다.
B. HARQ 타이밍 지시에 추가하여, (DL 그랜트) DCI를 통해 c-DAI(counter Downlink Assignment Index) 및/또는 t-DAI(total-DAI)가 함께 시그널링 될 수 있다. c-DAI는 (DL 그랜트) DCI에 대응되는 PDSCH가 몇 번째로 스케줄링된 것인지 알려줄 수 있다. t-DAI는 현재 (슬롯)까지 스케줄링된 PDSCH의 총 개수 (또는, PDSCH가 존재하는 슬롯의 총 개수)를 알려줄 수 있다. 이에 따라, 단말은 c-DAI 초기값부터 (수신된) 마지막 t-DAI 값까지의 c-DAI 값들에 대응되는 PDSCH에 대한 A/N을 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 단말에게 구성된 서빙 셀의 개수가 하나인 경우, c-DAI와 t-DAI는 동일한 의미를 가질 수 있다. 따라서, t-DAI는 서빙 셀의 개수가 복수인 경우에만 (DL 그랜트) DCI에 포함될 수 있다. 단말에게 복수의 서빙 셀이 구성된 경우, c-DAI는 셀-도메인에서 먼저 계수된 뒤, 시간-도메인에서 계수된 PDSCH의 스케줄링 순서 (또는, PDSCH가 존재하는 (서빙 셀, 슬롯)의 순서)를 알려줄 수 있다. 유사하게, t-DAI는 현재 (슬롯)까지 스케줄링된 PDSCH의 총 개수 (또는, PDSCH가 존재하는 (서빙 셀, 슬롯)의 총 개수)를 알려줄 수 있다. 여기서, c-DAI/t-DAI는 PDCCH를 기준으로 정의될 수도 있다. 이 경우, 앞의 설명에서 PDSCH는 PDCCH로 대체되고, PDCCH가 존재하는 슬롯은 상기 PDCCH와 관련된 PDCCH (혹은, DCI)가 존재하는 PDCCH 모니터링 기회로 대체될 수 있다.
c-DAI/t-DAI는 각각 2-비트 값을 이용하여 지시될 수 있다. 4보다 큰 수는 modulo 연산을 이용하여 다음과 같이 지시될 수 있다.
- DAI 비트가 00 (예, DAI 값=1)인 경우: 4n+1을 지시 (즉, 1, 5, 9, ...)
- DAI 비트가 01 (예, DAI 값=2)인 경우: 4n+2을 지시 (즉, 2, 6, 10, ...)
- DAI 비트가 10 (예, DAI 값=3)인 경우: 4n+3을 지시 (즉, 3, 7, 11, ...)
- DAI 비트가 11 (예, DAI 값=4)인 경우: 4n+4를 지시 (즉, 4, 8, 12, ...)
* n은 0 이상의 정수를 나타낸다.
도 12(b)는 도 12(a)와 동일한 상황에서 (DL 그랜트) DCI를 통해 DAI가 시그널링 되는 경우를 예시한다. 도 12(b)를 참조하면, 슬롯 #n에서 DAI=00을 갖는 DCI에 의해 스케줄링된 PDSCH가 수신되고, 슬롯 #(n+2)에서 DAI=10을 갖는 DCI에 의해 스케줄링된 PDSCH가 수신될 수 있다. 이 경우, 단말은 연속된 DAI 값(즉, DAI=00/01/11)(이하, DAI 시퀀스)에 해당하는 3개의 PDSCH 수신에 대해서만 A/N 정보를 생성/전송할 수 있다. 여기서, DAI=01에 대응하는 PDSCH 수신에 대한 A/N 응답은 NACK으로 처리될 수 있다.
2) 풀링(pooling) 기반의 A/N 피드백 방식(이하, p-A/N 방식)(도 13)
A. DL 그랜트 DCI를 통해, 대응되는 PDSCH에 대한 A/N 피드백 전송을 연기 (pending/deferring)시키는 동작을 지시할 수 있다. 이후, DCI를 통해, (i) 전체 DL HARQ 프로세스 ID들, 혹은 (ii) 특정 일부 DL HARQ 프로세스 ID(들)에 대응되는 PDSCH에 대한 A/N 피드백의 전송을 지시할 수 있다(pooling). A/N 피드백은 특정 신호(예, RRC 또는 DCI 시그널링)를 기반으로 설정/지시된 타이밍을 통해 전송될 수 있다. A/N 풀링은 DL 그랜트(예, DCI 포맷 1_0/1_1), UL 그랜트(예, DCI 포맷 0_0/0_1) 또는 다른 DCI(예, 단말 (그룹) 공통 DCI)를 통해 지시될 수 있다. 편의상, A/N 풀링을 지시하는 DCI를 풀링 DCI라고 지칭한다. 풀링 대상이 되는 HARQ 프로세스 ID는 미리 설정/정의되어 있거나, 풀링 DCI를 통해 지시될 수 있다. A/N 풀링은 전체/그룹/개별 HARQ 프로세스 ID 단위로 지시될 수 있다.
예를 들어, 도 13을 참조하면, 단말은 기지국으로부터 3개의 PDSCH를 수신할 수 있고, 각각의 PDSCH에 할당된 HARQ 프로세스 ID(HpID)는 0, 3 및 2일 수 있다. 또한, 각각의 DL 그랜트 DCI를 통해 3개의 PDSCH에 대해 A/N 펜딩(AN=pe)이 지시될 수 있다. 이 경우, 단말은 HpID=0/3/2에 대응하는 PDSCH 수신에 대한 A/N 전송을 연기한다. 이후, 기지국으로부터 풀링 DCI(AN=pooling)를 수신하면, 단말은 전체 HpID 혹은 일부 HpID에 대응하는 PDSCH 수신에 대한 A/N을 한 번에 전송할 수 있다.
B. t-A/N 방식에 c-/t-DAI 시그널링이 설정된 경우(예, DL 그랜트 DCI를 통해 DAI가 시그널링 되는 경우), A/N 풀링은 (풀링 DCI를 통해 지시된) HARQ 프로세스 ID에 대응되는 PDSCH에 대한 A/N 전송을 풀링하거나, (풀링 DCI를 통해 지시된) t-DAI 값에 대응되는 PDSCH에 대한 A/N 전송을 풀링하는 것으로 정의될 수 있다. 후자의 경우, 단말은 c-DAI 초기 값 ~ t-DAI 값에 대응하는 PDSCH 수신에 대한 A/N 정보를 한 번에 전송할 수 있다.
(2) 제안 방법 1
제안 방법 1의 경우, A/N 트리거링 DCI를 통해 1) 실제 A/N 전송 타이밍을 지시하는 타이밍-A와, 2) A/N 피드백 대상이 되는 (DL PDSCH) 슬롯 그룹에 대응되는 기준(reference) A/N 타이밍을 지시하는 타이밍-D가 시그널링 될 수 있다.
이를 기반으로, 단말은 타이밍-A로 지시된 시점을 통해 타이밍-D에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 전송하도록 동작할 수 있다. 이 경우, A/N 페이로드는 해당 슬롯 그룹에 속한 슬롯 인덱스 순서로 매핑(예, ordering)될 수 있다.
일 예로, A/N 트리거링 DCI (혹은, A/N 트리거링 DCI가 DL 그랜트 DCI인 경우, 대응되는 PDSCH)가 슬롯 #n을 통해 전송/검출되고, 해당 DCI를 통하여 타이밍-A = K와 타이밍-D = L이 지시될 수 있다. 이 경우, 단말은 슬롯 #(n + K - L)에 대응되는 슬롯 그룹 (즉, 이를 통한 PDSCH 수신)에 대한 A/N 피드백을 슬롯 #(n + K)를 통해 전송하도록 동작할 수 있다. 여기서, 슬롯 그룹은 복수(예, M개)의 후보 타이밍 값 D_m (m = 0, 1, ..., M-1)들로 구성된 타이밍 세트로 규정될 수 있다. 예를 들어, 슬롯 #n에 대응되는 슬롯 그룹은 슬롯 #(n - D_m) 또는 슬롯 #(n + D_m) (m = 0, 1, ..., M-1)에 해당하는 M개의 슬롯들로 구성/정의될 수 있다. 이 경우, 슬롯 #(n + K - L)에 대응되는 슬롯 그룹은 슬롯 #(n + K - L - Dm) 또는 슬롯 #( n + K - L + D_m) (m = 0, 1, ..., M-1)로 구성/정의될 수 있다.
한편, 슬롯 그룹을 규정하는 타이밍 세트는 타이밍-A로 지시 가능한 후보 타이밍-A 값들의 집합(예, K_m; m = 0, 1, ..., M-1)과 동일하게 설정되거나, 독립적으로 (상이하게) 설정될 수 있다. 예를 들어, 슬롯 #n에 대응되는 번들링 윈도우는 슬롯 #(n - K_m)으로 구성되며, 슬롯 #n에 대응되는 슬롯 그룹도 K_m (m = 0, 1, ..., M-1)으로 구성된 타이밍 세트에 의해 규정될 수 있다. 일 예로, A/N 트리거링 DCI (혹은, A/N 트리거링 DCI가 DL 그랜트 DCI인 경우, 대응되는 PDSCH)가 슬롯 #n을 통해 전송/검출되고, 해당 DCI를 통하여 타이밍-A = K와 타이밍-D = L이 지시될 수 있다. 이 경우, 단말은 슬롯 #(n + K - L)에 대응하는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 슬롯 #(n + K)를 통해 전송하도록 동작할 수 있다. 여기서, 슬롯 #(n + K - L)에 대응하는 슬롯 그룹은 슬롯 #(n + K - (K_m + L)) (m = 0, 1, ..., M-1)로 구성될 수 있다.
한편, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우(즉, 타이밍-A와 타이밍-D가 모두 DL 그랜트 DCI를 통해 시그널링됨), 단말은 타이밍-A로 지시된 시점을 통해 1) 타이밍-A에 대응되는 번들링 윈도우 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) 타이밍-D에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여 (동시에, 예를 들어 하나의 PUCCH/PUSCH를 통해) 전송하도록 동작할 수 있다.
일 예로, DL 그랜트 DCI 혹은 대응되는 PDSCH가 슬롯 #n을 통해 전송/검출되고 해당 DCI를 통하여 타이밍-A = K와 타이밍-D = L이 지시된 경우, 단말은 1) 슬롯 #(n + K)에 대응되는 번들링 윈도우 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) 슬롯 #(n + K - L)에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여, 슬롯 #(n + K)를 통해 전송하도록 동작할 수 있다. 여기서, 슬롯 #(n + K - L)에 대응되는 슬롯 그룹은 (i) 슬롯 #(n + K - L - Dm) 또는 슬롯 #(n + K - L + D_m) (m = 0, 1, ..., M-1)로 구성/정의되거나, (ii) 슬롯 #(n + K - (K_m + L)) (m = 0, 1, ..., M-1)로 구성/정의될 수 있다.
추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 타이밍-D 및/또는 이에 대응되는 슬롯 그룹 (이에 대한 A/N 피드백 요청)이 없음을 지시할 수 있다. 예를 들어, 타이밍-D = 특정 값(예, 0)으로 설정된 경우, 대응되는 슬롯 그룹 (이에 대한 A/N 피드백 요청)이 없음을 지시할 수 있다.
추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 타이밍-A에 대응되는 번들링 윈도우 (혹은 타이밍-D에 대응되는 슬롯 그룹)에 속한 슬롯들 중에서 특정 일부(예, 최초 혹은 마지막 슬롯)에 대해서만 A/N 피드백을 전송하도록 (예, 타이밍-D 지시 필드를 통해) 지시할 수 있다.
또 다른 방법으로, 타이밍-A/타이밍-D 및 이에 대응되는 슬롯 그룹(예, 번들링 윈도우)에 대한 A/N 피드백 전송 트리거링을 단말 (그룹)-공통 DCI를 통해 시그널링하는 구조도 고려할 수 있다.
한편, 제한된 DCI 필드 사이즈/비트 수로 인해, 타이밍-D로 지시 가능한 기준 A/N 타이밍 (이에 대응되는 A/N 피드백 대상 슬롯 그룹)은 한계가 있을 수 있다. 이를 고려하여, 타이밍-D 지시 필드의 특정 상태(state)를 통해 (특정 슬롯 그룹이 아닌) 전체 혹은 (사전에 지정된) 특정 일부 HARQ 프로세스 ID들에 대응되는 PDSCH 수신에 대한 A/N 피드백을 전송하도록 지시할 수 있다.
한편, 타이밍-D 값 별로 A/N 전송 PUCCH/PUSCH 자원 (세트)이 상이하게 설정될 수 있다. 예를 들어, 각각의 타이밍-D 값에 대응되는 슬롯 그룹 별로 A/N 전송 PUCCH/PUSCH 자원 (세트)이 상이하게 설정될 수 있다. 또한, 각각의 A/N 전송 PUCCH/PUSCH 자원 (세트) 별로 대응되는 (예, 해당 PUCCH/PUSCH 자원 (세트)로의 A/N 피드백 대상 슬롯 그룹에 대응되는) 타이밍-D 값이 상이하게 설정될 수 있다. 예를 들어, PUCCH/PUSCH 자원 (세트) 별로 대응되는 슬롯 그룹이 상이하게 설정되고, 그에 따라 타이밍-D 값도 상이하게 설정될 수 있다.
(3) 제안 방법 2
제안 방법 2의 경우, 하나의 슬롯 그룹 사이즈 (예, 단일 슬롯 그룹 내 슬롯 개수 N 혹은 단일 슬롯 그룹 내 스케줄링 가능한 최대 PDSCH 수 N)가 사전에 미리 설정된 상태에서, 1) DL 그랜트 DCI를 통해 해당 DCI 혹은 대응되는 PDSCH가 전송된 슬롯이 속한 슬롯 그룹 ID를 지시하는 current-ID (c-ID)가 시그널링 되고, 2) A/N 트리거링 DCI를 통해 A/N 피드백 대상이 되는 (DL PDSCH) 슬롯 그룹 ID를 지시하는 feedback-ID (f-ID)가 시그널링 될 수 있다.
이를 기반으로, 단말은 A/N 전송 타이밍으로 지시된 시점(예, 슬롯)을 통해, feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 전송할 수 있다. 여기서, feedback-ID에 대응되는 슬롯 그룹은, 이전에 feedback-ID와 동일한 값의 current-ID가 시그널링/수신된 슬롯, 즉 DL 그랜트 DCI를 통해 feedback-ID와 동일한 값의 current-ID가 시그널링/수신된 슬롯을 포함한다.
이때, A/N 페이로드는 (DL 그랜트 DCI를 통해 counter-DAI가 시그널링되도록 설정된 상태에서) feedback-ID에 대응되는 슬롯 그룹에 대해, DL 그랜트 DCI를 통해 수신된 (예, 1부터 N까지의) counter-DAI 값 순서로 매핑(ordering)될 수 있다.
일 예로, 도 14를 참조하면, A/N 트리거링 DCI (혹은, A/N 트리거링 DCI가 DL 그랜트 DCI인 경우, 대응되는 PDSCH)가 슬롯 #n을 통해 전송/검출되고, 해당 DCI를 통하여 타이밍-A (T-A) = K와 feedback-ID (f-ID) = X가 지시될 수 있다. 이 경우, 단말은 슬롯 그룹 ID = X에 대응되는 (즉, DL 그랜트 DCI를 통해 current-ID (c-ID) = X로 수신된) 슬롯 그룹에서의 PDSCH 수신에 대한 A/N 피드백을 슬롯 #(n + K)에서 전송할 수 있다.
한편, counter-DAI는 도 12(b)와 같이 하나의 슬롯 그룹 (ID) 내에서 (초기 값(예, 1)부터 시작하여) 연속하는 값을 가지도록 결정/시그널링 될 수 있다. 즉, 서로 다른 슬롯 그룹간에 counter-DAI 값은 독립적으로 결정/시그널링 될 수 있다. 또한, 슬롯 그룹은 (DCI를 통해 지시되는) 동일한 슬롯 그룹 ID 값에 대응되는 1부터 N까지의 counter-DAI 값들로 구성된 DAI 시퀀스 형태로 규정될 수 있다. 이 경우, 슬롯 그룹은 수신/검출된 counter-DAI에 기반해 불연속 슬롯들로 구성될 수 있다. 본 명세서에서 슬롯 그룹 ID와 DAI 시퀀스 ID는 서로 대체/호환될 수 있다.
한편, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우(즉, current-ID와 feedback-ID가 모두 DL 그랜트 DCI를 통해 시그널링됨), 단말은 타이밍-A로 지시된 시점을 통해, 1) 타이밍-A에 대응되는 번들링 윈도우 혹은 current-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여(예, concatenate) (동시, 예를 들어 하나의 PUCCH/PUSCH를 통해) 전송하도록 동작할 수 있다.
한편, 본 명세서에서 A/N 트리거링 DCI (예, DL 그랜트 DCI, UL 그랜트 DCI)를 통해 feedback-ID가 시그널링/지시된다 함은, 해당 DCI를 통해서는 A/N 피드백 전송/요청 대상이 되는 총 (PDSCH) 슬롯 그룹 (ID) 수를 지시하는 total-ID가 시그널링되고, total-ID와 current-ID로부터 결정되는 특정 슬롯 그룹 ID를 feedback-ID로 적용함을 의미할 수 있다. 일 예로, 최대 2개의 (PDSCH) 슬롯 그룹 ID (예, ID=0 또는 ID=1)가 설정/구성된 상태에서, current-ID가 X로 지시되고 total-ID가 1로 지시된 경우, feedback-ID는 (current-ID와 동일한 값인) X로 결정/적용될 수 있다. 다른 예로, 최대 2개의 (PDSCH) 슬롯 그룹 ID (예, ID=0 또는 ID=1)가 설정/구성된 상태에서, current-ID가 X로 지시되고 total-ID가 2로 지시된 경우, feedback-ID는 (current-ID와 다른 값인) Y로 결정/적용될 수 있다. 이 경우, X와 Y는 서로 다른 값으로 결정될 수 있다(예, X=0이면 Y=1, 또는 X=1이면 Y=0). 이러한 feedback-ID 결정 방법을, 편의상 "Method 1"로 칭한다.
일 예로, DL 그랜트 DCI 혹은 대응되는 PDSCH가 슬롯 #n을 통해 전송/검출되고 해당 DCI를 통해 타이밍-A = K, current-ID = X, 및 feedback-ID = Y (또는 total-ID = 2로)가 지시될 수 있다. 이 경우, 단말은 1) 슬롯 #(n + K)에 대응되는 번들링 윈도우 혹은 ID = X에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) ID = Y에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여, 슬롯 #(n + K)를 통해 전송할 수 있다.
한편, 본 명세서에서 A/N 트리거링 DCI (예, DL 그랜트 DCI, UL 그랜트 DCI)를 통해 시그널링/지시되는 feedback-ID (이에 대응되는 (PDSCH) 슬롯 그룹)에 대한 total-DAI 및/또는 NFI(New Feedback Indicator)는, Method 1에 따라 결정되는 feedback-ID에 대한 total-DAI 및/또는 NFI를 의미하거나, (total-ID로 지시된 값에 관계없이) current-ID와 다른 값을 가지는 other-ID (이에 대응되는 슬롯 그룹)에 대한 total-DAI 및/또는 NFI를 의미할 수 있다. 후자의 예로, 최대 2개의 (PDSCH) 슬롯 그룹 ID (예, ID=0 또는 ID=1)가 설정/구성된 상태에서, current-ID = X로 지시된 경우, "feedback-ID에 대한 total-DAI 및/또는 NFI"는 other-ID = Y에 대응되는 슬롯 그룹에 대한 total-DAI 및/또는 NFI를 의미할 수 있다. 이 경우, X와 Y는 서로 다른 값으로 결정될 수 있다(예, X=0이면 Y=1, 또는 X=1이면 Y=0). 이러한 other-ID 결정 및 total-DAI/NFI 적용 방법을, 편의상 "Method 2"로 칭한다.
여기서, NFI는 1-비트 정보로서, 이전(예, 최근) 시점에 전송했던 A/N 피드백(이하, 이전 A/N 피드백)이 (a) 기지국에서 제대로 검출/수신되었는지, (b) 기지국이 검출/수신에 실패했는지 여부가 시그널링 할 수 있다. (a)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 NACK 또는 DTX (피드백 구성/전송 생략)로 처리하여 업데이트된 A/N 피드백을 구성/전송할 수 있다. (b)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 그대로 유지하여 A/N 피드백을 구성/전송할 수 있다. (a)의 경우 이전 DCI를 통해 수신된 NFI 값에서 토글링된 NFI 값이 현재 DCI를 통해 지시된다. (b)의 경우 이전 DCI를 통해 수신된 NFI 값에서 토글링되지 않은 NFI 값이 현재 DCI를 통해 지시될 수 있다.
일 예로, DL 그랜트 DCI 혹은 대응되는 PDSCH가 슬롯 #n을 통해 전송/검출되고 해당 DCI를 통하여 timing-A=K, current-ID=X 및 feedback-ID=Y로 (또는, total-ID 값이 2로) 각각 지시된 경우, 단말은 1) 슬롯 #(n+K)에 대응되는 번들링 윈도우 혹은 ID=X에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) ID=Y에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여, 슬롯 #(n+K)를 통해 전송하도록 동작할 수 있다.
추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 feedback-ID (또는 other-ID) 및/또는 이에 대응되는 슬롯 그룹 (이에 대한 A/N 피드백 요청)이 없음을 (예, feedback-ID (또는 total-ID) 지시 필드를 통해) 지시할 수 있다. 일 예로, feedback-ID가 current-ID와 동일한 값으로 (또는 total-ID 값이 1로) 지시된 경우, 단말은 current-ID에 대응되는 (하나의) 슬롯 그룹에 대해서만 A/N 피드백을 구성/전송하도록 동작할 수 있다.
또한, 추가적으로, (예를 들어, A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우) DCI를 통해 타이밍-A에 대응되는 번들링 윈도우 또는 current-ID에 대응되는 슬롯 그룹 (혹은 feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹)에 속한 슬롯들 중에서 특정 일부(예, 최초 혹은 마지막 슬롯)에 대해서만 A/N 피드백을 전송하도록 (예, feedback-ID (또는 total-ID) 지시 필드를 통해) 지시할 수 있다.
다른 방법으로, current-ID를 단말 (그룹)-공통 DCI #1을 통해 시그널링하고 및/또는 feedback-ID 및 이에 대응되는 슬롯 그룹에 대한 A/N 피드백 전송 트리거링을 단말 (그룹)-공통 DCI #2를 통해 시그널링하는 구조도 고려할 수 있다. 이 경우, 단말 (그룹)-공통 DCI #1과 #2는 서로 별개의 DCI들이거나, 동일한 하나의 DCI로 구성될 수 있다.
또 다른 방법으로, A/N 트리거링 DCI를 통해 total-DAI가 시그널링되고, 단말은 feedback-ID에 대응되는 슬롯 그룹 (혹은 타이밍-A에 대응되는 번들링 윈도우 또는 current-ID에 대응되는 슬롯 그룹)에 대하여 (1부터) total-DAI 값까지의 counter-DAI 값(들)에 대해서만 A/N 피드백을 구성/전송하도록 동작할 수 있다. 즉, 1부터 total-DAI 값까지의 counter-DAI 값(들)에 대응하는 슬롯(들) (이를 통해 스케줄링된 PDSCH들)에 대해서만 A/N 피드백을 구성/전송할 수 있다. 또는, DCI를 통해 feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹과 current-ID에 대응되는 슬롯 그룹 (혹은, 타이밍-A에 대응되는 번들링 윈도우)에 대해 total-DAI를 각각 시그널링할 수 있다. 이 경우, 단말은 각 슬롯 그룹에 대한 total-DAI에 기반하여 A/N 피드백을 구성/전송하도록 동작할 수 있다.
일 예로, DL 그랜트 DCI를 통해 지시되는 A/N 피드백 구성 관련 정보는 적어도 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 counter/total-DAI, 및 (iii) feedback-ID (또는, total-ID)를 포함할 수 있다. 또한, feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 total-DAI가 DL 그랜트 DCI (즉, A/N 피드백 구성 관련 정보)에 더 포함될 수 있다.
한편, UL 그랜트 DCI를 통해서는 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 total-DAI, (iii) feedback-ID (또는 total-ID), (iv) feedback-ID (또는 other-ID)에 대응되는 슬롯 그룹에 대한 total-DAI가 지시될 수 있다. 여기서, current-ID와 feedback-ID는 2개의 feedback-ID #1과 #2로 정의/일반화될 수 있다. 이에 따라, 단말은 feedback-ID #1과 #2에 대응되는 슬롯 그룹에 대한 A/N 피드백을 (PUCCH 또는) PUSCH를 통해 (예, UCI 피기백 형태로) 전송하도록 동작할 수 있다.
다른 방법으로, current-ID (및/또는 feedback-ID (또는 total-ID))는 UL 그랜트 DCI에 포함되지 않을 수 있다. 즉, current-ID (및/또는 feedback-ID (또는 total-ID))는 UL 그랜트 DCI를 통한 시그널링이 생략될 수 있다. 이 경우, 단말은 DL 그랜트 DCI를 통해 수신된 current-ID (및/또는 feedback-ID (또는 total-ID)) 정보를 기반으로 (PUSCH 상의) A/N 피드백을 구성/전송하도록 동작할 수 있다. 추가적으로, UL 그랜트 DCI를 통하여 A/N 피드백 전송 요청 (예, A/N 피드백 대상이 되는 슬롯 그룹)이 없음을 특정 필드를 통해 지시할 수 있다. 여기서, 특정 필드는 예를 들어, feedback-ID (또는 total-ID) 및/또는 current-ID (및/또는 feedback-ID (또는 other-ID) 및/또는 current-ID에 대응되는 total-DAI) 지시 필드를 포함할 수 있다.
또 다른 방법으로, A/N 트리거링 DCI(예, DL 그랜트 DCI, UL 그랜트 DCI)를 통해 current-ID와 starting-ID가 지시될 수 있다. 이 경우, 단말은 starting-ID부터 current-ID까지의 (복수의) 연속적인 슬롯 그룹 ID(들)에 대응되는 슬롯 그룹 집합 A (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 구성/전송하도록 동작할 수 있다. starting-ID가 current-ID와 동일한 값으로 지시된 경우, 단말은 current-ID에 대응되는 (하나의) 슬롯 그룹에 대해서만 A/N 피드백을 구성/전송하도록 동작할 수 있다. 여기서, current-ID는 ending-ID로 정의/일반화될 수 있다.
일 예로, DL 그랜트 DCI를 통해 지시되는 A/N 피드백 구성 관련 정보는 적어도 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 counter/total-DAI, (iii) starting-ID를 포함할 수 있다. 또한, (current-ID에 대응되는 슬롯 그룹을 제외한) 슬롯 그룹 집합 A에 속한 (복수) 슬롯 그룹(들) 각각에 공통적으로 적용되는 (단일) total-DAI가 DL 그랜트 DCI(즉, A/N 피드백 구성 관련 정보)에 더 포함될 수 있다.
다른 예로, UL 그랜트 DCI를 통해서는 (i) current-ID, (ii) current-ID에 대응되는 슬롯 그룹 (이를 통해 스케줄링된 PDSCH들)에 대한 total-DAI, (iii) starting-ID, (iv) (current-ID에 대응되는 슬롯 그룹을 제외한) 슬롯 그룹 집합 A에 속한 (복수) 슬롯 그룹(들) 각각에 공통으로 적용되는 (단일) total-DAI가 지시될 수 있다. 이에 따라, 단말은 starting-ID부터 current-ID까지에 대응되는 슬롯 그룹 집합에 대한 A/N 피드백을 (PUCCH 또는) PUSCH를 통해 (예, UCI 피기백 형태로) 전송하도록 동작할 수 있다.
또 다른 예로, current-ID (및/또는 starting-ID)는 UL 그랜트 DCI에 포함되지 않을 수 있다. 즉, current-ID (및/또는 starting-ID)는 UL 그랜트 DCI를 통한 시그널링이 생략될 수 있다. 이 경우, 단말은 DL 그랜트 DCI를 통해 수신된 current-ID (및/또는 starting-ID) 정보를 기반으로 (PUSCH 상의) A/N 피드백을 구성/전송하도록 동작할 수 있다. 추가적으로, UL 그랜트 DCI를 통해 A/N 피드백 전송 요청 (예, A/N 피드백 대상이 되는 슬롯 그룹)이 없음을 특정 필드를 통해 지시할 수 있다. 여기서, 특정 필드는 예를 들어 starting-ID 및/또는 current-ID (및/또는 대응되는 total-DAI) 지시 필드를 포함할 수 있다.
한편, 상술한 방법 혹은 여타의 다른 방법을 적용했을 때에 동시에 전송되는 (단일) A/N 피드백 구성 대상이 되는 슬롯 그룹 개수가 (예, current-ID를 포함하여 2개로, 또는 current-ID를 포함하여 3개 이상으로) 동적으로 변경될 수 있다. 이 경우, A/N 트리거링 DCI (예, DL 그랜트 DCI) 및/또는 UL 그랜트 DCI를 통해 A/N 피드백 구성 대상이 되는 (current-ID에 대응되는 슬롯 그룹을 제외한) 복수의 슬롯 그룹들 각각에 공통으로 적용되는 (단일) total-DAI가 지시될 수 있다.
한편, 제한된 DCI 필드 사이즈/비트 수로 인해, current-ID/feedback-ID (또는 total-ID)로 지시 가능한 슬롯 그룹 ID (이에 대응되는 A/N 피드백 대상 슬롯 그룹)에 한계가 있을 수 있다. 이를 고려하여, current-ID/feedback-ID (또는 total-ID) 지시 필드의 특정 상태(state)를 통해 (특정 슬롯 그룹이 아닌) 전체 혹은 (사전에 지정된) 특정 일부 HARQ 프로세스 ID들에 대응되는 PDSCH 수신에 대한 A/N 피드백을 전송하도록 지시할 수 있다.
한편, 각 슬롯 그룹 ID 값 별로 (해당 ID에 대응되는 슬롯 그룹에 대한) A/N 전송 PUCCH/PUSCH 자원 (세트)이 상이하게 설정되거나, 각 A/N 전송 PUCCH/PUSCH 자원 (세트)별로 대응되는 (예, 해당 PUCCH/PUSCH 자원 (세트)로의 A/N 피드백 대상이 되는) 슬롯 그룹 ID 값이 상이하게 설정될 수 있다. 일 예로, 슬롯 그룹 ID = X에 대한 A/N 피드백에 대하여, 단말은 슬롯 그룹 ID = X에 설정된 PUCCH/PUSCH 자원 (세트)을 선택/사용하여 전송하도록 동작할 수 있다.
추가적으로, 하나의 단말에게 복수의 캐리어가 병합/설정된 상황에서(즉, CA 상황), 슬롯 그룹 ID는, Opt 1-1) 동일 시점 (예, 슬롯 타이밍) 또는 시간 구간에서 모든 복수 캐리어들에 대해 공통적으로 동일한 슬롯 그룹 ID가 지시/규정되거나, Opt 1-2) 주파수 (캐리어)-퍼스트(first) 시간 (슬롯 그룹)-세컨드(second) 순서로 각 캐리어 별로 슬롯 그룹 ID가 개별적으로 지시/규정될 수 있다.
추가적으로, CA 상황에서 슬롯 그룹 ID가 지시/규정된 상태에서, counter-DAI는, 1) (Opt 1-1이 적용된 상태에서) 하나의 슬롯 그룹 (ID) 내에서 주파수 (캐리어)-퍼스트 시간 (슬롯)-세컨드 순서로 PDSCH 스케줄링 카운터 값이 결정/지시되거나, 2) (Opt 1-2가 적용된 상태에서) 각 캐리어 별로 하나의 슬롯 그룹 (ID) 내에서 PDSCH 스케줄링 카운터 값이 독립적으로 결정/지시될 수 있다.
(4) 제안 방법 3
제안 방법의 설명에 앞서, A/N 피드백 구성/전송 및 관련 기본 동작 방식들에 대하여 설명하면 다음과 같다. t-A/N 방식과 p-A/N 방식은 도 12~13을 참조하여 설명한 것과 실질적으로 동일하며, A/N 피드백 구성/전송 방식(혹은, A/N 코드북 방식)을 분류하기 위해 아래에 다시 기재하였다.
1) 타이밍 기반의 A/N 피드백 방식(t-A/N 방식)
A. 사전에 RRC 시그널링을 통해 복수의 후보 HARQ 타이밍을 설정한 뒤, 기지국은 (DL 그랜트) DCI를 통해 복수의 후보 HARQ 타이밍 중 하나를 단말에게 지시할 수 있다. 이 경우, 단말은 전체 후보 HARQ 타이밍 세트에 대응되는 복수 슬롯(혹은, 슬롯 집합; 번들링 윈도우)에서의 (복수) PDSCH 수신에 대한 A/N 피드백을, 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 여기서, HARQ 타이밍은 PDSCH-to-A/N 타이밍/간격을 의미한다. HARQ 타이밍은 슬롯 단위로 표현될 수 있다. 이하, 상술한 방식을 Type-1 A/N 코드북으로 지칭한다.
B. HARQ 타이밍 지시에 추가하여, (DL 그랜트) DCI를 통해 c-DAI(counter Downlink Assignment Index) 및/또는 t-DAI(total-DAI)가 함께 시그널링 될 수 있다. c-DAI는 (DL 그랜트) DCI에 대응되는 PDSCH가 몇 번째로 스케줄링된 것인지 알려줄 수 있다. t-DAI는 현재 (슬롯)까지 스케줄링된 PDSCH의 총 개수 (또는, PDSCH가 존재하는 슬롯의 총 개수)를 알려줄 수 있다. 이에 따라, 단말은 c-DAI 초기값부터 (수신된) 마지막 t-DAI 값까지의 c-DAI 값들에 대응되는 PDSCH에 대한 A/N을 지시된 HARQ 타이밍을 통해 전송하도록 동작할 수 있다. 이하, 상술한 방식을 Type-2 A/N 코드북으로 지칭한다.
C. PDSCH (슬롯) 그룹 ID 기반의 A/N 피드백 방식(이하, Type-2a A/N 코드북)
i. DL 그랜트 DCI를 통해 current-ID가 시그널링되고, A/N 트리거링 DCI를 통해 feedback-ID를 시그널링될 수 있다. 여기서, current-ID는 DL 그랜트 DCI 혹은 대응되는 PDSCH가 전송된 슬롯이 속한 슬롯 그룹 ID를 지시하는데 사용된다. 또한, feedback-ID는 A/N 피드백 대상이 되는 (DL PDSCH) 슬롯 그룹 ID를 지시하는데 사용된다. 여기서, DCI를 통해 total-ID가 시그널링되고, Method 1에 기반하여 total-ID로부터 feedback-ID가 유추될 수 있다.
ii. 단말은 A/N 전송 타이밍으로 지시된 시점을 통해 feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 전송할 수 있다.
iii. A/N 트리거링 DCI가 DL 그랜트 DCI와 동일한 경우(즉, current-ID와 feedback-ID (또는 total-ID)가 모두 DL 그랜트 DCI를 통해 시그널링됨), 단말은 타이밍-A로 지시된 시점을 통해, 1) 타이밍-A에 대응되는 번들링 윈도우 혹은 current-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백과, 2) feedback-ID에 대응되는 슬롯 그룹 (이를 통한 PDSCH 수신)에 대한 A/N 피드백을 결합하여 (동시에, 예를 들어 하나의 PUCCH/PUSCH를 통해) 전송하도록 동작할 수 있다.
2) 풀링 기반의 A/N 피드백 방식(p-A/N 방식)
A. DL 그랜트 DCI를 통해, 대응되는 PDSCH에 대한 A/N 피드백 전송을 연기 (pending/deferring)시키는 동작을 지시할 수 있다. 이후, DCI를 통해, (i) 전체 DL HARQ 프로세스 ID들, 혹은 (ii) 특정 일부 DL HARQ 프로세스 ID(들)에 대응되는 PDSCH에 대한 A/N 피드백의 전송을 지시할 수 있다(pooling). A/N 피드백은 특정 신호(예, RRC 또는 DCI 시그널링)를 기반으로 설정/지시된 타이밍을 통해 전송될 수 있다. 이하, 상술한 방식을 Type-3 A/N 코드북으로 지칭한다.
B. t-A/N 방식에 c-/t-DAI 시그널링이 설정된 경우(예, DL 그랜트 DCI를 통해 DAI가 시그널링 되는 경우), A/N 풀링은 (풀링 DCI를 통해 지시된) HARQ 프로세스 ID에 대응되는 PDSCH에 대한 A/N 전송을 풀링하거나, (풀링 DCI를 통해 지시된) t-DAI 값에 대응되는 PDSCH에 대한 A/N 전송을 풀링하는 것으로 정의될 수 있다. 후자의 경우, 단말은 c-DAI 초기 값 ~ t-DAI 값에 대응하는 PDSCH 수신에 대한 A/N 정보를 한 번에 전송할 수 있다.
3) t-A/N 방식과 p-A/N 방식간 다이나믹 스위칭 동작 방법
A. 일 예로, DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N 방식간 스위칭을 지시할 수 있다. 즉, DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N 방식 중 어느 방식을 적용하여 A/N 피드백을 구성/전송할지 지시할 수 있다. 추가적으로, 동일한 DL 그랜트 DCI를 통해 p-A/N 방식을 위한 A/N 펜딩과 A/N 풀링까지 모두 지시될 수 있다. 예를 들어, DL 그랜트 DCI가 p-A/N 방식을 지시하는 경우, DL 그랜트 DCI는 A/N 피드백 전송을 펜딩할지 아니면 풀링을 지시할지 여부를 더 지시할 수 있다.
B. 다른 예로, DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N 방식 적용을 위한 A/N 펜딩 동작간 스위칭을 지시할 수 있다. 즉, DL 그랜트 DCI를 통해 t-A/N 방식을 적용할지, p-A/N 방식을 위해 A/N 피드백 전송을 펜딩할지 여부를 지시할 수 있다. 이때, p-A/N 방식을 위한 A/N 풀링 동작은 UL 그랜트 DCI 혹은 (단말 (그룹)) 공통 DCI를 통해 지시될 수 있다.
C. 또 다른 예로, PDSCH 스케줄링을 포함하는 DL 그랜트 DCI를 통해 t-A/N 방식과 p-A/N을 위한 A/N 펜딩간 스위칭을 지시할 수 있다. 즉, DL 그랜트 DCI를 통해 t-A/N을 적용할지, p-A/N 방식을 위해 A/N 전송을 펜딩할지 여부를 지시할 수 있다. 이때, p-A/N 방식을 위한 A/N 풀링은 PDSCH 스케줄링을 포함하지 않는 DL 그랜트 DCI를 통해 지시될 수 있다.
4) NFI(New Feedback Indicator) 정보 시그널링
A. LBT 실패에 따른 단말의 A/N 피드백 전송 드랍 및/또는 기지국에서의 A/N 피드백 검출 실패 등으로 인한, 단말과 기지국간 A/N 코드북 (페이로드) 구성 상의 불일치 방지 (및, A/N PUCCH (이를 포함한 PUSCH 등의 UL 전송)에 수반되는 LBT 동작을 위한 CWS(Contention Window Size) 업데이트)를 목적으로, A/N 피드백 전송을 트리거하는 (예, DL 그랜트 또는 UL 그랜트) DCI를 통해 1-비트 NFI가 시그널링 될 수 있다. NFI는 토글링 형태로 다음의 정보를 지시할 수 있다.
i. 이전 (최근) 시점에 전송했던 A/N 피드백(이하, 이전(previous) A/N 피드백)이 (a) 기지국에서 제대로 검출/수신되었는지, (b) 기지국이 검출/수신에 실패했는지 여부가 시그널링 될 수 있다. (a)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 NACK 또는 DTX (피드백 구성/전송 생략)로 처리하여 업데이트된 A/N 피드백을 구성/전송할 수 있다. (b)의 경우, 단말은 이전 A/N 전송 이후에 스케줄링된 PDSCH에 대응되는 A/N을 제외한 나머지 부분을 그대로 유지하여 A/N 피드백을 구성/전송할 수 있다.
ii. (a)의 경우에는 이전의 DCI를 통해 수신된 NFI 값에서 토글링된 NFI 값이 현재의 DCI를 통해 지시된다. (b)의 경우에는 이전의 DCI를 통해 수신된 NFI 값에서 토글링되지 않은 NFI 값이 현재의 DCI를 통해 지시될 수 있다. 단말은 토글된 NFI를 수신한 경우 A/N PUCCH (및/또는 PUSCH) 전송을 위한 CWS를 최소 값으로 리셋하는 반면 비-토글된 NFI를 수신한 경우에는 CWS 값을 (일정 단위로) 증가시키도록 동작할 수 있다.
이하, Type-2a 및 Type-1 A/N 코드북 설정시 DL/UL 그랜트 DCI 구성 방법 및 시그널링 정보에 대하여 제안한다. 한편, 본 명세서에서는, DCI 포맷 내의 필드 구성 및 각 필드 사이즈 등이 구성 가능한(configurable)(즉, 변경 가능한) DCI (포맷)를 non-폴백 DCI로 칭하고, DCI 필드 구성 및 각각의 사이즈 등이 구성 가능하지 않은(즉, 고정된) DCI (포맷)를 폴백 DCI로 칭한다. 본 명세서에서 별도로 폴백 DCI라 명시하지 않은 DCI는 non-폴백 DCI를 의미할 수 있다.
(a) Type-2a A/N 코드북 설정시 DCI 구성 및 시그널링 정보
1) DL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보들을 포함할 수 있음 (편의상, 기본 정보).
i. current-ID 정보
ii. current-ID에 대응되는 (PDSCH) 슬롯 그룹과 관련된 counter-DAI 및 total-DAI 정보
iii. feedback-ID 정보
1. 또는, DCI를 통해서는 total-ID가 시그널링되고, feedback-ID 정보는 Method 1을 기반으로 결정될 수 있음
iv. current-ID에 대응되는 A/N 피드백에 대한 NFI 정보 (즉, NFI for current-ID)
v. feedback-ID에 대응되는 A/N 피드백에 대한 NFI 정보 (즉, NFI for feedback-ID)
1. Method 2를 기반으로 (total-ID로 지시된 값에 관계없이) current-ID와 다른 값을 갖는 other-ID에 대응되는 A/N 피드백에 대한 NFI 정보로 대체될 수 있음 (즉, NFI for other-ID)
B. 추가적으로 다음 정보를 더 포함할 수 있음.
i. feedback-ID에 대응되는 (PDSCH) 슬롯 그룹과 관련된 total-DAI 정보
1. Method 2를 기반으로 (total-ID로 지시된 값에 관계없이) current-ID과 다른 값을 갖는 other-ID에 대응되는 A/N 피드백에 대한 total-DAI 정보로 대체될 수 있음 (즉, total-DAI for other-ID)
C. 추가적으로 다음 정보를 더 포함할 수 있음.
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-2a와 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시하는 CTI(Codebook Type Indicator) 시그널링)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보 (즉, NFI for Type-3)가 추가 시그널링 될 수 있음
2. CTI 정보는 전용의 1-비트를 이용하여 명시적으로(explicit) 시그널링되거나, 아래와 같은 방법으로 묵시적으로(implicit) 시그널링 될 수 있음
3. 첫 번째 방법은, DCI를 통해 current-ID에 대응되는 하나의 (PDSCH) 슬롯 그룹에 대해서만 A/N 피드백 전송이 지시된 경우, NFI for feedback-ID (또는 NFI for other-ID) 비트/필드를 통해 CTI 정보가 시그널링 될 수 있음. CTI를 통해 Type-3이 지시된 경우, counter-DAI, total-DAI 비트/필드, 및/또는 NFI for current-ID 비트/필드를 통해, A/N 피드백 대상이 되는 HARQ 프로세스 ID 그룹 및/또는 (CA 상황에서) CC/셀 그룹이 지시되거나/되고 NFI for Type-3 정보가 시그널링 될 수 있음
4. 두 번째 방법은, DCI를 통해 current-ID에 대응되는 하나의 (PDSCH) 슬롯 그룹에 대해서만 A/N 피드백 전송이 지시된 경우, total-DAI for feedback-ID (또는 total-DAI for other-ID) 비트/필드를 통해 CTI 정보가 시그널링 될 수 있음. CTI를 통해 Type-3가 지시된 경우, counter-DAI, total-DAI (for current-ID) 비트/필드, NFI for current-ID, 및/또는 NFI for feedback-ID (또는 NFI for other-ID) 비트/필드를 통해, A/N 피드백 대상이 되는 HARQ 프로세스 ID 그룹 및/또는 (CA 상황에서) CC/셀 그룹이 지시되거나/되고 NFI for Type-3 정보가 시그널링 될 수 있음
D. 폴백 DCI 기반의 DL 스케줄링 관련
i. 기본적으로, 폴백 DCI 포맷에는 상술한 기본 정보들 중에서 current-ID 정보 및/또는 (해당 ID에 대응되는 (PDSCH) 슬롯 그룹과 관련된) counter-DAI 정보만 포함/시그널링 될 수 있음 (편의상, Case 1)
ii. 또 다른 방법으로, 폴백 DCI 포맷에는 total-DAI for current-ID를 제외한 상기 모든 기본 정보들이 포함/시그널링 될 수 있음
iii. 이 경우, 폴백 DCI에 포함/시그널링되지 않는 정보에 대해, 단말은 non-폴백 DL DCI를 통해 가장 최근에 검출/수신된 정보 (예, feedback-ID (또는, total-ID), NFI, CTI)를 기반으로 A/N 코드북 (페이로드)를 구성/전송할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 non-폴백 DL DCI는, 폴백 DL DCI를 통해 지시된 HARQ-ACK (PUCCH) 전송 시점 (슬롯)을, HARQ-ACK (PUCCH) 전송 시점으로 지시한 DCI만으로 국한될 수 있음. 만약, 폴백 DCI와 동일한 HARQ-ACK (PUCCH) 전송 시점을 지시하는 non-폴백 DCI가 존재하지 않는 경우, Case 1에 따라 단말은 current-ID에 대응되는 슬롯 그룹에 대해서만 A/N 피드백을 구성/전송하고 NFI for current-ID에 대해서는 (이전 A/N 피드백 대비 혹은 이전(즉, 최근)에 수신된 NFI 비트와 비교하여) 토글된 형태 (또는 non-토글된 형태)로 가정/적용하여 동작할 수 있음. 또한, 단말은 CTI가 Type-2a 코드북으로 지시됨을 가정/적용하여 동작할 수 있음
iv. 한편, 단말의 DL DCI 검출 실패 등으로 인한 단말과 기지국간 A/N 피드백 불일치를 사전에 방지하기 위하여, 동일한 HARQ-ACK (PUCCH) 전송 시점(예, 슬롯)을 지시하는 복수의 폴백 DL DCI들은 모두 동일한 current-ID를 지시하도록 규정될 수 있다. 이에 따라, 단말은 동일한 HARQ-ACK (PUCCH) 전송 시점을 지시하는 복수의 폴백 DL DCI들은 모두 동일한 current-ID를 지시한다고 가정한 상태에서 동작하고, 그렇지 않은 DCI가 검출될 경우 해당 DCI를 무시할 수 있다(discard). 예를 들어, 단말은 해당 DCI에 의해 지시되는 동작을 수행하지 않을 수 있다.
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. CBG 단위 DL 전송이 설정된 CC/셀의 경우, total-DAI for feedback-ID (또는 total-DAI for other-ID) 정보가 TB 단위 전송에 대응되는 A/N 서브-코드북과 CBG 단위 전송에 대응되는 A/N 서브-코드북에 대해 각각 개별적으로 시그널링 될 수 있음
2) UL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보들을 포함할 수 있음 (편의상, 기본 정보).
i. 첫 번째 (PDSCH) 슬롯 그룹 ID (이하, first-ID)에 대한 total-DAI 정보
ii. 두 번째 (PDSCH) 슬롯 그룹 ID (이하, second-ID)에 대한 total-DAI 정보
iii. Notes
1. 일 예로, 최대 2개까지의 (PDSCH) 슬롯 그룹 (인덱스 = 0, 1)이 정의/설정될 경우, first-ID와 second-ID는 각각 슬롯 그룹 인덱스 0와 1에 대응될 수 있음
2. 다른 예로, first-ID와 second-ID가 각각 current-ID와 feedback-ID (또는 other-ID)로 설정/대체될 수 있음. 이 경우, DCI를 통해 추가적으로 current-ID 정보와 feedback-ID (또는 total-ID) 정보가 더 시그널링 될 수 있음
A. feedback-ID의 경우, DCI를 통해서는 total-ID가 시그널링되고, feedback-ID 정보는 Method 1을 기반으로 결정될 수 있음
B. other-ID는 Method 2를 기반으로 current-ID와 다른 값을 가지는 슬롯 그룹 ID로 결정될 수 있음
3. 또 다른 예로, 전체 슬롯 그룹 ID/인덱스 집합 (예, ID/인덱스 = 0, 1)에 대한 비트맵 정보가 DCI를 통해 시그널링 될 수 있음. 해당 그룹 ID-비트맵을 통해 각 슬롯 그룹 ID 별로 해당 ID에 대응되는 슬롯 그룹이 A/N 피드백 요청/전송 대상인지 여부가 지시될 수 있음
4. 한편, UL 그랜트 DCI가 슬롯 그룹 ID/인덱스-관련 정보/시그널링을 포함하지 않을 수 있다. 이 경우, 단말은 DL 그랜트 DCI를 통해 가장 최근에 검출/수신된 슬롯 그룹 ID/인덱스 정보를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 슬롯 그룹 ID/인덱스와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
B. 추가적으로 다음 정보를 더 포함할 수 있음
i. first-ID에 대응되는 A/N 피드백에 대한 NFI 정보
ii. second-ID에 대응되는 A/N 피드백에 대한 NFI 정보
iii. Notes
1. 이 경우, 기지국으로부터 추가 DL (PDSCH) 스케줄링/전송 없이도 단말에게 (PUSCH를 통한) A/N 피드백 전송이 지시될 수 있음
2. 그렇지 않고, UL 그랜트 DCI가 A/N 피드백에 대한 NFI 정보를 포함하지 않을 수 있다. 이 경우, 단말은 (각 (PDSCH) 슬롯 그룹에 대해) DL 그랜트 DCI를 통해 가장 최근 검출/수신한 NFI 정보를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, NFI 정보와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
C. 추가적으로 다음 정보를 더 포함할 수 있음.
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-2a와 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보가 추가 시그널링 될 수 있음
D. 폴백 DCI 기반의 UL 스케줄링 관련
i. 기본적으로, 폴백 DCI 포맷은 기본 정보들이 모두 포함/시그널링되지 않는 (생략된) 형태일 수 있음
ii. 다른 방법으로, 폴백 DCI 포맷은 모든 기본 정보들(예, first-ID 및 second-ID 각각에 대한 total-DAI 및/또는 그룹 ID-비트맵 정보)이 포함/시그널링되는 형태일 수 있음
iii. 또는, 폴백 DCI 포맷은 {first-ID에 대한 total-DAI, second-ID에 대한 total-DAI, first-ID에 대한 NFI, second-ID에 대한 NFI}가 포함/시그널링되는 형태일 수 있음
iv. 또는, 폴백 DCI 포맷은 {first-ID에 대한 NFI, second-ID에 대한 NFI} (및/또는 그룹 ID-비트맵 정보)가 포함/시그널링되는 형태일 수 있음
v. 이 경우, UL 그랜트 DCI에 포함/시그널링되지 않는 정보에 대하여 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보 (예, 슬롯 그룹 ID/인덱스, total-DAI, NFI, CTI)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시하는 DCI만으로 국한될 수 있음
vi. 한편, 다이나믹 그랜트 DCI 전송을 수반하는 스케줄링이 아닌, 구성된(Configured Grant, CG) 형태로 DCI없이 전송되는 CG-PUSCH를 통해 A/N을 피기백하여 전송하는 경우, 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, 슬롯 그룹 ID/인덱스, total-DAI, NFI, CTI)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, CG-PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시하는 DCI만으로 국한될 수 있음
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. CBG 단위 DL 전송이 설정된 CC/셀의 경우, total-DAI(예, total-DAI for first-ID 및 total-DAI for second-ID) 정보가 TB 단위 전송에 대응되는 A/N 서브-코드북과 CBG 단위 전송에 대응되는 A/N 서브-코드북에 대해 각각 개별적으로 시그널링 될 수 있음
한편, 단말이 Type-2a 코드북에 기반하여 PUCCH/PUSCH 상에 A/N 피드백을 구성/전송하는 경우, 기지국은 단말에게 "PUSCH에 피기백되어 전송될 A/N 피드백이 없음"을 지시/인지하도록 하는 방법이 필요할 수 있다. 이를 위해, 다음과 같은 DCI 시그널링 및 동작을 고려할 수 있다.
1) 방법 1
A. UL 그랜트 DCI 내의 total-DAI 비트가 '11'로 (또는, total-DAI 값이 4로) 지시되고, PUSCH 전송 시점에 대응되는 번들링 윈도우 구간 (또는 이전(예, 최근) A/N 피드백 전송 시점 (혹은, 해당 전송 타이밍으로 지시된 시점) 이후부터 PUSCH 전송 시점까지의 구간) 동안 검출된 DL 그랜트 DCI가 없고, UL 그랜트 DCI를 통해 지시된 NFI 비트가 (이전 A/N 피드백 대비 혹은 이전(예, 최근) 수신된 NFI 비트와 비교하여) 토글된 경우, 단말은 PUSCH 상에 어떤 A/N도 피기백하지 않도록 동작할 수 있음. 본 방식은 UL 그랜트 DCI를 통해 NFI 정보를 시그널링하는 구조에 적용될 수 있음. 여기서, DCI 정보 체크 및 그에 따른 단말 동작은 각 (PDSCH) 슬롯 그룹 (ID)별로 독립/개별적으로 수행될 수 있음
B. 다른 방식으로, (UL 그랜트 DCI를 통한 별도의 NFI 정보 시그널링이 없는 상태에서) 검출/수신된 UL 그랜트 DCI에 대하여, 상기 DCI 체크/단말 동작을 적용/수행하되, NFI 비트는 (이전 A/N 피드백 대비 혹은 이전 (최근) 수신된 NFI 비트와 비교하여) non-토글된 (또는 토글된) 것으로 가정될 수 있음. 본 방식은 별도의 NFI 정보 시그널링이 없는 (예, 폴백) UL 그랜트 DCI (포맷)인 경우에 대해 적용될 수 있음
2) 방법 2
A. UL 그랜트 DCI 내의 total-DAI 필드로 시그널링 되는 상태(state)들 중 하나를 (PUSCH로 피기백될) "A/N 피드백이 없음"을 지시하는 것으로 정의할 수 있음. 단말은 DCI를 통해 해당 상태가 지시된 경우, PUSCH 상에 아무런 A/N도 피기백하지 않도록 동작할 수 있음. 본 방법은 UL 그랜트 DCI를 통한 NFI 정보 시그널링이 없는 구조에 적용될 수 있음. 여기서, DCI 정보 체크 및 그에 따른 단말 동작은 각 (PDSCH) 슬롯 그룹 (ID)별로 독립/개별적으로 수행될 수 있음
3) 방법 3
A. UL 그랜트 DCI 내의 first-ID 및 second-ID (또는 current-ID 및 feedback-ID (또는 total-ID)) 비트/필드를 통해 하나의 (PDSCH) 슬롯 그룹 (예, first-ID)만 지시될 수 있다. 이 경우, 특정 total-DAI 필드(예, second-ID에 대한 total-DAI 필드)를 통해, 1) 지시된 슬롯 그룹(예, first-ID) 하나에 대해서만 A/N 피드백을 (PUSCH에 피기백하여) 구성/전송하도록 지시하거나, 2) 지시된 슬롯 그룹(예, first-ID)에 대해서도 (즉, 모든 슬롯 그룹(first-ID 및 second-ID)에 대해) PUSCH로 피기백될 A/N 피드백이 없음을 지시할 수 있음. 본 방법은 (UL 그랜트 DCI를 통한 NFI 정보 시그널링이 없고) UL 그랜트 DCI를 통해 (PDSCH) 슬롯 그룹 ID 정보를 시그널링 하는 구조에 적용될 수 있음. 예를 들어, 슬롯 그룹 ID 정보는 first-ID 및 second-ID (또는, current-ID 및 feedback-ID (또는 total-ID)) 정보)를 포함함
한편, 단일 UL 그랜트 DCI를 통해, 복수 슬롯들에 걸쳐 전송되는 복수의 PUSCH 자원을 스케줄링/지시하는 (멀티-슬롯 스케줄링의) 경우, 해당 DCI를 통해 시그널링되는 total-DAI, NFI, 및/또는 CTI 정보를 적용하는 동작이 필요할 수 있다. 해당 정보의 경우, DCI를 통해 스케줄링된 복수의 슬롯 또는 PUSCH 자원들 중에서, 1) (a) 최초 슬롯 내 PUSCH 자원(즉, first-슬롯 PUSCH), (b) 최초 PUSCH 자원(즉, first PUSCH), (c) 특정 심볼 수 (혹은 non-DMRS 심볼 수) 및/또는 특정 RB 수 (혹은 RE 수 혹은 non-DMRS RE 수) 이상으로 구성된 최초 PUSCH 자원, (d) PUSCH 전송이 지시된 최초 슬롯의 바로 다음 슬롯 내에 할당된 PUSCH 자원, 혹은 (e) 슬롯 구간(duration)과 동일한 심볼 구간을 가지는 최초 PUSCH 자원(즉, first full-PUSCH)에만 (예를 들어, 상기 복수의 자원들 중 특정 하나의 자원 또는 특정 자원 조합에만) 적용되거나, 2) (a) LBT (이를 통한 CCA)에 최초 성공한 first-슬롯 PUSCH, (b) first PUSCH, 혹은 (c) first full-PUSCH에만 적용되거나, 3) (a) A/N 피드백이 피기백된 형태로 전송되는 first-슬롯 PUSCH, (b) first PUSCH, 혹은 (c) first full-PUSCH에만 적용될 수 있다. 상기를 제외한 나머지 슬롯 또는 PUSCH 자원에 대해서는 a) DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, 슬롯 그룹 ID/인덱스, total-DAI, NFI, CTI, 및/또는 하기 폴백 A/N 여부 지시 정보, pended A/N 유무 지시 정보)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하거나, 및/또는 b) 상기 정보에 대해 특정(예, 디폴트) 값을 가정/적용할 수 있다.
a)의 경우, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있다. 한편, b)의 경우, 적어도 하나에 대해 다음과 같이 가정/적용할 수 있다.
1) total-DAI에 대해서는 total-DAI 비트를 '11'로 (또는, total-DAI 값을 4로) 가정/적용하고,
2) NFI에 대해서는 (이전 A/N 피드백 대비 혹은 이전(예, 최근) 수신된 NFI 비트와 비교하여) 토글된 (또는 non-토글된) 것으로 가정/적용하고,
3) CTI로는 Type-2a (또는, 하기의 경우 Type-1) 코드북이 지시됨을 가정/적용하고,
4) 하기에서 "Type-1 코드북 기반 A/N 피드백 여부를 지시하는 정보"에 대해서는 해당 필드/시그널링이 없다고 가정/적용하고,
5) 하기에서 "Pended A/N 유무를 지시하는 정보"에 대해서는 해당 pended A/N 피드백이 없다고 가정/적용할 수 있다.
(b) Type-1 A/N 코드북 설정시 DCI 구성 및 시그널링 정보
1) DL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보를 포함할 수 있음 (편의상, 기본 정보).
i. 폴백 A/N 여부를 지시하는 정보
ii. Notes
1. 상기 정보는, 하나의 번들링 윈도우 구간 동안 PCell (이를 통한 PDSCH 전송)을 스케줄링하는 폴백 DCI 하나만 전송되었는지 여부를 지시할 수 있음. 상기 정보는 1-비트만으로 구성/시그널링 될 수 있음
B. 추가적으로 다음 정보를 더 포함할 수 있음
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-1과 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시하는 CTI 시그널링)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보가 추가 시그널링 될 수 있음
C. 추가적으로 다음 정보를 더 포함할 수 있음
i. Pended A/N 유무를 지시하는 정보
ii. Notes
1. 상기 정보는, Type-1 코드북에 기반하여 구성된 A/N 페이로드에 (이전 시점에) 펜딩이 지시된 A/N (즉, pended A/N)을 추가로 더 포함시켜 최종 A/N 피드백을 구성할지 여부를 지시할 수 있음
D. 폴백 DCI 기반의 DL 스케줄링 관련
i. 기본적으로, (적어도 PCell/PSCell에 대응되는) 해당 DCI 포맷에는 상기 기본 정보가 포함/시그널링되는 형태일 수 있음
ii. 추가적으로, (PCell/PSCell을 제외한) SCell에 대응되는 폴백 DCI 포맷에는 상기 기본 정보가 포함/시그널링되지 않는 형태일 수 있음
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. CBG 단위 DL 전송이 설정된 CC/셀의 경우 또는 CBG 단위 DL 전송이 설정된 CC/셀을 포함한 CA인 경우, pended A/N 페이로드는 모든 셀/CC들에 설정된 최대 (전송 가능) CBG 수, 즉 셀/CC별로 설정된 (전송 가능) CBG 수들 중 최대값에 기반하여 결정될 수 있음. TB 단위 전송이 설정된 CC/셀의 경우 또는 TB 단위 전송이 설정된 CC/셀만 병합된 경우 pended A/N 페이로드는 모든 셀/CC들에 설정된 최대 (전송 가능) TB 수, 즉 셀/CC별로 설정된 (전송 가능) TB 수들 중 최대값에 에 기반하여 결정될 수 있음
2) UL 그랜트 DCI를 통해 시그널링되는 정보
A. 기본적으로 다음 정보를 포함할 수 있음 (편의상, 기본 정보).
i. Type-1 코드북 기반 A/N 피드백 여부를 지시하는 정보
ii. Notes
1. 상기 정보는, type-1 코드북에 기반하여 구성된 A/N 페이로드를 PUSCH로 피기백하여 전송할지 (아니면, 0-비트 (즉 피기백 생략) 혹은 폴백 A/N만을 피기백할지) 여부를 지시할 수 있음
B. 추가적으로 다음 정보를 더 포함할 수 있음
i. Type-3 코드북에 기반한 A/N 피드백 구성/전송 여부 (예, Type-1과 Type-3 중에서 어느 A/N 코드북으로 구성/전송할지 지시)
ii. Notes
1. (특정 시점에) DCI를 통해 Type-3가 지시되면, 해당 DCI를 통해 Type-3 코드북 기반 A/N 피드백에 대한 NFI 정보가 추가 시그널링 될 수 있음
C. 추가적으로 다음 정보를 더 포함할 수 있음
i. Pended A/N 유무를 지시하는 정보
ii. Notes
1. 상기 정보는, Type-1 코드북에 기반하여 구성된 A/N 페이로드에 (이전 시점에) 펜딩이 지시된 A/N (즉, pended A/N)을 추가로 더 포함시켜 최종 A/N 피드백을 구성할지 여부를 지시할 수 있음
D. 폴백 DCI 기반의 UL 스케줄링 관련
i. 기본적으로, 폴백 DCI 포맷에는 상기 기본 정보가 포함/시그널링되지 않는 형태일 수 있음
ii. UL 그랜트 DCI에 포함/시그널링되지 않는 정보에 대하여 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, 폴백 A/N 여부 지시 정보, CTI, pended A/N 유무 지시 정보)를 기반으로 A/N 코드북 (페이로드)를 구성/전송하도록 동작할 수 있음. 여기서, 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, UL 그랜트 DCI를 통해 스케줄링된 PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
iii. 한편, 다이나믹 그랜트 DCI 전송을 수반하는 스케줄링이 아닌, CG(Configured Grant) 형태로 DCI없이 전송되는 CG-PUSCH를 통해 A/N을 피기백하여 전송할 수 있음. 이 경우, 단말은 DL 그랜트 DCI를 통해 가장 최근 검출/수신된 정보(예, 폴백 A/N 여부 지시 정보, CTI, pended A/N 유무 지시 정보)를 기반으로 A/N 코드북 (페이로드)를 구성/전송할 수 있음. 최근 검출/수신된 정보와 관련된 DL 그랜트 DCI는, CG-PUSCH 전송 시점 (슬롯)을, PDSCH에 대한 HARQ-ACK 전송 시점으로 지시한 DCI만으로 국한될 수 있음
E. CB 그룹 (CBG) 단위 DL 전송 동작 관련
i. 앞서 DL 그랜트 DCI의 경우와 유사하게, pended A/N 페이로드가 모든 셀/CC들에 설정된 최대 (전송 가능) CBG 수 혹은 TB 수에 기반하여 결정될 수 있음
한편, (Type-2a 또는 Type-1 A/N 코드북 설정 및 이에 따른) DL/UL 그랜트 DCI 정보 구성 및 시그널링 동작은, CA 상황에서 PUCCH 전송을 수행하도록 설정된 PUCCH 셀/CC (예, PCell 또는 PSCell)가 U-밴드 상에서 동작하는 셀/CC인 경우로 한정될 수 있다. 이 경우, CA된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI는 본 명세서의 제안 방법에 따라 구성될 수 있다. 한편, PUCCH 셀/CC가 L-밴드 상에서 동작하는 셀/CC인 경우 (기존 Type-1 또는 Type-2 A/N 코드북을 설정한 상태에서) 기존과 동일한 DL/UL 그랜트 DCI 정보 구성 및 시그널링 동작이 적용될 수 있다. 이 경우, 병합된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI는 기존과 동일하게 구성될 수 있음.
다른 방안으로, Type-2a 또는 Type-1 A/N 코드북 설정 및 이에 따른 DL/UL 그랜트 DCI 정보의 구성/시그널링은, 멀티-캐리어, 즉 단말에게 CA로 설정된 복수 셀/CC 집합에 U-밴드 상에서 동작하는 셀/CC이 포함된 경우로 한정될 수 있다. 이 경우, 병합된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI를 상술한 제안 방법처럼 구성할 수 있음. 한편, 멀티-캐리어에 L-밴드 상에서 동작하는 셀/CC만 포함된 경우 기존 Type-1 또는 Type-2 A/N 코드북 설정 및 이에 따른 기존 DL/UL 그랜트 DCI 정보의 구성/시그널링이 적용될 수 있다. 이 경우, 병합된 모든 셀/CC들에 대응되는 DL/UL 그랜트 DCI는 기존과 동일하게 구성될 수 있음
(5) 제안 방법 4
(a) 특정 PDSCH에 대한 A/N 피드백 업데이트
특정 PDSCH 혹은 HARQ 프로세스 ID에 대하여 (PDSCH 디코딩 및 A/N 준비(preparation) 동작에 소요되는) 프로세싱 시간이 기지국으로부터 (단말이 지원할 수 있는 최소 프로세싱 시간에 비해) 부족하게 스케줄링/지시될 수 있다. 이 경우, 단말은 (해당 PDSCH에 대응되는) DCI로부터 지시된 (최초) A/N (PUCCH) 전송 시점을 통해서는 해당 PDSCH (또는, HARQ 프로세스 ID)에 대해 NACK을 피드백 (혹은 DTX)하도록 동작할 수 있다.
이후, (상기 PDSCH (또는, HARQ 프로세스 ID)에 대한 기지국로부터의 별도의 재전송 스케줄링은 없었던 상태에서) 상기 PDSCH를 포함하는 슬롯 그룹 ID에 대한 (Type-2a 코드북 기반의) A/N 피드백 전송 또는 상기 HARQ 프로세스 ID를 포함하는 HARQ 프로세스 그룹에 대한 (Type-3 코드북 기반의) A/N 피드백 전송이 기지국으로부터 (다시) 지시될 수 있다. 이 경우, 단말은 해당 PDSCH (또는, HARQ 프로세스 ID)의 실제/최종 디코딩 결과를 반영하여 해당 PDSCH (또는, HARQ 프로세스 ID)에 대한 A/N 피드백을 업데이트 할 수 있다. 일 예로, 디코딩 결과가 ACK인 경우, 기지국으로부터 (다시) 지시된 A/N (PUCCH) 전송 시점을 통해서는 해당 PDSCH (또는, HARQ 프로세스 ID)에 대해 ACK을 피드백 할 수 있다.
한편, 위의 동작은 PDSCH (또는, HARQ 프로세스 ID)에 대응되는 NFI의 토글링 여부와 무관하게 적용하거나, 해당 NFI가 non-toggled인 경우와 toggled인 경우 중에서 하나의 경우에만 적용될 수 있다. 이 경우, 다른 하나의 경우에는 상기와 같은 피드백 업데이트를 생략(예, 이전 피드백을 유지) 할 수 있다.
추가적으로, HARQ 프로세스 ID에 대하여 프로세싱 시간이 기지국으로부터 부족하게 스케줄링/지시된 경우, 이에 대응되는 HARQ-ACK 전송 시점을 통해 단말이 전송하는 HARQ-ACK 피드백의 업데이트(이하, updated feedback)는 해당 HARQ 프로세스 ID에 대해 지시된 NDI 값에 따라 달라질 수 있다. 일 예로, NDI 값이 (이전 값과 비교하여) 토글되지 않은 상태에서, 단말이 해당 HARQ 프로세스 ID에 대해 이전에 ACK을 피드백 했거나/했고 실제/최종 PDSCH 디코딩 결과가 ACK이었을 경우, 단말은 HARQ-ACK 피드백(예, updated feedback)을 ACK으로 업데이트/보고할 수 있다. 다른 예로, NDI 값이 (이전 값과 비교하여) 토글되지 않은 상태에서, 단말이 해당 HARQ 프로세스 ID에 대해 이전에 NACK을 피드백 했거나/했고 실제/최종 PDSCH 디코딩 결과가 NACK이었을 경우, 단말은 HARQ-ACK 피드백(예, updated feedback)을 NACK으로 보고할 수 있다. 또 다른 예로, NDI가 (이전 값과 비교하여) 토글된 상태로 지시되어 새로운 TB 또는 PDSCH가 스케줄링/전송된 경우, 단말은 해당 TB 또는 PDSCH에 대한 프로세싱 시간 부족으로 인해, HARQ-ACK 피드백(예, updated feedback)을 유효(valid)하지 않은 값(예, NACK)으로 보고할 수 있다.
(b) CBG 재전송이 설정된 CC 관련 A/N 피드백
Type-3 코드북 기반의 A/N 피드백 전송이 기지국으로부터 지시된 경우, PUCCH (또는, PUSCH)를 통해 전송되는 A/N 페이로드 사이즈는, 단말에게 설정된(configured) CC 개수, 각 CC별로 설정된 HARQ 프로세스 개수, 각 CC별로 설정된 최대 TB 개수 또는 최대 CBG 개수에 비례적으로 증가할 수 있다. 이들 중, 특히 CBG 개수는 다른 파라미터들에 비해 급격히 A/N 페이로드 사이즈를 증가시키는 요인이 될 수 있으며, 이로 인해 많은 PUCCH 자원 오버헤드가 유발될 수 있다.
위와 같이 UL (PUCCH) 자원 오버헤드가 증가하는 문제를 고려하여, Type-3 코드북 기반의 A/N 피드백 전송이 지시된 경우, CBG 단위 (재)전송이 설정된 CC에 대해서는, 각 HARQ 프로세스 ID별로 TB-레벨(level) A/N을 생성/매핑/전송하도록 동작할 수 있다. 이로 제한되는 것은 아니지만, CBG 단위 (재)전송이 설정된 CC에 대해서 TB-레벨 A/N은 동일한 하나의 HARQ 프로세스 ID에 대응되는 CB들간 또는 CBG들간에 A/N을 번들링 함으로써 생성될 수 있다. 일 예로, TB-레벨 A/N은 복수 CB들 각각에 대한 CB-레벨 A/N들간 또는 복수 CBG들 각각에 대한 CBG-레벨 A/N들간에 logical AND 연산을 적용함으로써 생성될 수 있다. 이를 통해, A/N 페이로드 사이즈와 PUCCH 자원 오버헤드가 감소될 수 있다. 한편, Type-3 코드북 기반의 A/N 피드백 전송이 아닌 경우(예, Type-1/2 코드북), CBG 단위 (재)전송이 설정된 CC에 대해서는, 해당 PDSCH (또는, HARQ 프로세스 ID)에 대하여 CBG-레벨 A/N을 생성/매핑/전송하도록 동작할 수 있다.
또는, Type-3 코드북 기반의 A/N 피드백 전송이 지시된 경우, CBG 단위 (재)전송이 설정된 CC에 대하여, TB-레벨 A/N을 생성/전송할지, 아니면 CBG-레벨 A/N을 생성/전송할지를 상위계층 신호(예, RRC 시그널링)를 통해 설정할 수 있다.
(c) A/N 피드백 불일치(misalignment)에 대한 핸들링
Type-1 코드북 기반의 A/N 피드백 전송이 설정된 상황에서 단말이 특정 시점(예, 슬롯 #n)에서 HARQ 프로세스 ID=X에 대하여 ACK을 피드백/전송할 수 있다. 이후, 다른 특정 시점(예, 슬롯 #(n+K))에서의 type-3 코드북 기반의 A/N 피드백 전송이, 기지국으로부터 단말에게 지시될 수 있다. 한편, 특정 DCI가 HARQ 프로세스 ID=X에 대응되는 PDSCH를 스케줄링하면서 이에 대한 A/N 전송 타이밍을, type-3 코드북 기반 A/N 전송이 지시된 시점(예, 슬롯 #(n+K))과 동일한 시점으로 지시할 수 있다. 만약, 단말이 해당 DCI의 검출에 실패하면 type-3 코드북 상에서 HARQ 프로세스 ID=X에 대해 단말과 기지국간에 A/N 피드백 불일치(예, DTX-to-ACK 에러)가 발생될 수 있다. 이로 인해, 비효율적인 (RLC 레벨) 재전송이 불필요하게 초래될 수 있다.
위의 문제를 해결하기 위해, 특정 시점(예, 슬롯 Y)이 type-3 코드북 기반 A/N 전송 시점으로 지시된 경우, 단말은 PDSCH 전송을 스케줄링 하면서 슬롯 Y를 A/N 전송 타이밍으로 지시하는 (및/또는, 새로운 TB의 최초 전송을 스케줄링 (혹은, 토글된 NDI 값을 지시)하는) DCI (수신)을 기대하지 않고 그러한 DCI는 없다고 가정한 상태에서 동작할 수 있다. 이에 따라, 상기와 같은 DCI를 수신/한 경우, 단말은 해당 DCI를 무시할 수 있다(discard). 예를 들어, 단말은 해당 DCI에 의해 지시되는 동작을 수행하지 않을 수 있다.
한편, 상기에서 단말이 기대하지 않고 무시할 대상이 되는 DCI에서, PDSCH 전송을 스케줄링 하면서 동시에 type-3 코드북 기반 A/N 전송을 지시하는 DCI는 제외될 수 있다. 즉, 단말은 해당 DCI를 무시하지 않고 대응되는 동작을 수행할 수 있다. 예를 들어, 단말은 해당 DCI에 의해 스케줄링된 PDSCH에 대한 A/N까지 포함하여 type-3 코드북 기반 A/N 피드백을 구성/전송할 수 있다.
(d) A/N pending이 지시된 PDSCH 처리
먼저, 단말에게 Type-1 A/N 코드북 방식이 설정된 상태에서 특정 DL 그랜트 DCI를 통해 (예, PDSCH에 대한 A/N 타이밍이 무효(invalid) 또는 비-숫자 값(non-numerical value)로 지시되는 형태로) A/N 펜딩이 지시된 PDSCH의 경우, 해당 PDSCH에 대한 A/N 피드백(이하, pended A/N)은, 1) 특정 DCI를 통해 별도의 A/N 풀링을 지시함으로써 (단말로 하여금) 해당 pended A/N을 Type-3 A/N 코드북 형태로 전송하는 형태이거나, 2) 별도의 A/N 풀링 없이 또 다른 (예, PDSCH에 대한 A/N 타이밍이 유효(valid) 또는 숫자 값(numerical value) 형태로 지시되는) DL 그랜트 DCI로 지시된 A/N 타이밍을 통해 전송되는 Type-1 A/N 코드북에 해당 pended A/N을 추가하는 동작을 고려할 수 있다. 한편, 상기와 같이 Type-1 A/N 코드북에 pended A/N을 추가하는 형태로 A/N 페이로드를 구성하여 전송하는 동작을 고려할 경우, 1) 추가되는 총 pended A/N 정보/비트 개수, 및 2) A/N 페이로드 상의 해당 pended A/N 정보/비트 매핑 순서가, 단말과 기지국간에 일치되도록 구성/매핑하는 것이 필수적이다. 만약, A/N 페이로드 상의 pended A/N 개수/매핑에 대하여 단말과 기지국간에 불일치가 생길 경우에는 UCI 디코딩 성능이 저하될 뿐만 아니라 심각한 ACK/NACK 에러(예, NACK-to-ACK)가 발생되어 불필요한 PDSCH 재전송 오버헤드 및 큰 레이턴시를 초래할 수 있다.
위의 문제를 고려하여, Type-1 A/N 코드북에 추가될 수 있는 (최대) pended A/N 정보/비트 개수(예, P bits)를 (기지국이) 단말에게 RRC 시그널링을 통해 설정할 수 있다. 단말은 실제 pended A/N의 유무에 관계없이 항상 Type-1 A/N 코드북에 해당 P 비트를 추가하여 최종 A/N 페이로드를 구성할 수 있다. 또 다른 방법으로, DCI(예, DL 그랜트) 내의 특정(예, 1-비트) 필드를 통해 (기지국이) 단말에게 pended A/N 유무 (혹은, 상기 P 비트 추가 여부)를 지시할 수 있다. 해당 필드로 지시된 정보에 따라, 단말은 Type-1 A/N 코드북에 pended A/N 비트(들) (혹은, 해당 P 비트)를 추가하거나 추가하지 않는 형태로 최종 A/N 페이로드를 구성할 수 있다. 또 다른 방법으로, 상기 추가되는 pended A/N 비트 개수 P에 대하여 (0을 포함하여 상이한 값을 갖는) 복수의 후보들이 (RRC를 통해) 단말에게 설정될 수 있고, DCI(예, DL 그랜트) 내의 특정 필드를 통해 해당 후보들 중 하나의 값이 지시될 수 있다. 단말은 지시된 값에 상응하는 비트 개수를 Type-1 A/N 코드북에 추가하여 최종 A/N 페이로드를 구성할 수 있다.
한편, 최종 A/N 페이로드 상에는 Type-1 A/N 코드북부터 우선적으로 MSB(Most Significant Bit)로 시작하는 낮은 비트 인덱스 부분에 매핑되고(예, 첫 번째 A/N 서브-코드북 형태로 구성), 그 뒤에 pended A/N 정보가 (높은 비트 인덱스 부분에) 매핑되는 형태로 구성될 수 있다(예, 두 번째 A/N 서브-코드북 형태로 구성). 추가적으로, A/N 페이로드 상의 pended A/N 정보/비트간 매핑 순서를 일치시키기 위해, A/N 펜딩 동작을 지시하는 DCI(예, DL 그랜트) 내의 특정 필드를 통해, (기지국이) 단말에게 지시된 A/N 펜딩에 대응되는 PDCCH/PDSCH가 (A/N 펜딩이 지시된 전체 PDCCH/PDSCH들 중) 몇 번째로 스케줄링/전송된 것인지, 그 순서 값(예, counter-DAI)을 알려줄 수 있다. 단말은 (Type-1 A/N 코드북에) 해당 순서 값의 순서에 따라 구성/매핑된 pended A/N 비트(들) (페이로드)를 추가하는 형태로 최종 A/N 페이로드를 구성할 수 있다. 이 경우, DCI(예, DL 그랜트) 내에 상기 순서 값을 지시하는 필드는 counter-DAI 시그널링에 사용되는 필드로 적용되거나, (A/N 피드백 전송에 사용될) PUCCH 자원을 할당하는 필드(예, PUCCH Resource Indicator, PRI)로 결정/고려될 수 있다.
한편, 특정 시점의 DCI(예, DL 그랜트)를 통해 대응되는 PDSCH에 대하여 A/N 펜딩 동작이 지시된 상태에서, 해당 PDSCH에 대한 (pended) A/N 피드백을 이후 특정 시점의 다른 DCI로부터 (Type-1 코드북 기반 A/N 피드백 시점으로) 지시된 A/N 타이밍을 통해 전송할 수 있다. 이 경우, (pended A/N이 전송될) 해당 A/N 타이밍에 대한 결정이 필요할 수 있다. 이를 위한 방안으로, 각 DCI를 통해 해당 DCI로부터 지시된 A/N 타이밍에 (이전 시점에 A/N 펜딩이 지시된 PDSCH에 대한) pended A/N을 (추가하여) 전송할지 여부를 직접 지시할 수 있다. 여기서, DCI는 예를 들어 Type-1 코드북 기반 A/N 피드백을 트리거하는 DCI를 포함할 수 있다. 또 다른 방안으로, A/N 펜딩이 지시된 (DCI 또는 PDSCH 전송) 시점 이후에 전송된 (예, PDSCH에 대한 A/N 타이밍이 유효(valid) 또는 숫자 값(numerical value)로 지시되는) DCI들로부터 지시된 A/N 타이밍들 중 가장 빠른 시점을 통해 해당 pended A/N을 (추가하여) 전송할 수 있다. 여기서, DCI는 예를 들어 Type-1 코드북 기반 A/N 피드백을 트리거하는 DCI를 포함할 수 있다.
추가적으로, A/N 페이로드에 대한 단말과 기지국간 불일치를 방지하기 위해, 상기와 같은 (Type-1 A/N 코드북에 추가되어 동일 UL 시점을 통해 전송되는) 방식으로, pended A/N 전송이 가능한 시점을 설정/지정하는 방법을 고려할 수 있다. 구체적으로, 슬롯 #n에서 전송된 DCI(예, DL 그랜트)를 통해, 또는 슬롯 #n에서 전송된 PDSCH에 대해 A/N 펜딩 동작이 지시된 경우, 슬롯 #(n+T) 포함/이후 시점 (및/또는, 슬롯 #(n+T+F) 포함/이전 시점)을 통해 전송되는 (Type-1 A/N 코드북을 나르는) PUCCH (PUSCH)를 통해서만 해당 pended A/N 전송이 가능하도록 설정/지정될 수 있다. 또한, 추가적으로, pended A/N에 대응되는 PDSCH 수신 슬롯이 DCI(예, DL 그랜트)를 통해 지시된 A/N 전송 타이밍에 대응되는 번들링 윈도우에 포함된 슬롯 X와 일치할 경우, 단말은 슬롯 X에 대응되는 A/N 비트에 pended A/N 정보/비트를 매핑하는 형태로 해당 번들링 윈도우에 대한 Type-1 A/N 코드북을 구성할 수 있다.
또한, 단말에게 Type-2 A/N 코드북 방식이 설정된 상태에서, 특정 DL 그랜트 DCI를 통해 (예, PDSCH에 대한 A/N 타이밍이 무효 또는 비-숫자 값으로 지시되는 형태로) A/N 펜딩이 지시된 PDSCH의 경우, 해당 PDSCH에 대한 (pended) A/N 피드백은, 1) 특정 DCI를 통해 별도의 A/N 풀링을 지시함으로써 (단말로 하여금) 해당 pended A/N을 Type-3 A/N 코드북 형태로 전송하도록 하거나, 2) 별도의 A/N 풀링 없이 또 다른 (예, PDSCH에 대한 A/N 타이밍이 유효 또는 숫자 값 형태로 지시되는) DL 그랜트 DCI로 지시된 A/N 타이밍을 통해 전송되는 Type-2 A/N 코드북에 해당 pended A/N을 추가하는 동작을 고려할 수 있다. 한편, 이 경우에도 상기와 같이 Type-2 A/N 코드북에 pended A/N을 추가하는 형태로 A/N 페이로드를 구성하여 전송하는 동작을 고려할 경우, 1) 추가되는 총 pended A/N 정보/비트 개수, 및 2) A/N 페이로드 상의 pended A/N 정보/비트 매핑 순서가, 단말과 기지국간에 일치되도록 구성/매핑하는 것이 (UCI 디코딩 성능 및 PDSCH 재전송 오버헤드/레이턴시 측면에서) 필수적일 수 있다.
이를 고려하여, A/N 페이로드 상의 총 pended A/N 정보/비트 개수, 및 pended A/N 정보/비트간 매핑 순서를 (단말과 기지국간에) 일치시키기 위하여, (기지국이) A/N pending 동작을 지시하는 DCI(예, DL 그랜트) 내의 특정 필드를 통해, 해당 DCI를 통해 지시된 A/N 펜딩에 대응되는 PDCCH/PDSCH가 (A/N 펜딩이 지시된 전체 PDCCH/PDSCH들 중) 몇 번째로 스케줄링/전송된 것인지 순서 값(예, counter-DAI) 및/또는 현재 시점까지 단말에게 A/N 펜딩이 지시된 PDCCH/PDSCH의 개수가 총 몇 개인지 총합 값(예, total-DAI)에 대한 정보를 알려줄 수 있다. 이에 따라, 단말은 (Type-2 A/N 코드북에) 해당 총합 값을 기반으로 및/또는 해당 순서 값의 순서에 따라 구성/매핑된 pended A/N 비트(들) (페이로드)를 추가하는 형태로 최종 A/N 페이로드를 구성할 수 있다. 한편, 최종 A/N 페이로드 상에는 Type-2 A/N 코드북부터 우선적으로 MSB로 시작하는 낮은 비트 인덱스 부분에 매핑되고(예, 첫 번째 서브-코드북 형태로 구성), 그 뒤에 pended A/N 정보가 (높은 비트 인덱스 부분에) 매핑되는 형태로 구성될 수 있다(예, 두 번째 서브-코드북 형태로 구성).
한편, 특정 시점의 DCI(예, DL 그랜트)를 통해 대응되는 PDSCH에 대하여 A/N 펜딩 동작이 지시된 상태에서, 해당 PDSCH에 대한 (pended) A/N 피드백을 이후 특정 시점의 다른 DCI로부터 (Type-2 코드북 기반 A/N 피드백 시점으로) 지시된 A/N 타이밍을 통해 전송할 수 있다. 이 경우, (pended A/N이 전송될) 해당 A/N 타이밍에 대한 결정이 필요할 수 있다. 이를 위한 방안으로, 각 DCI를 통해 해당 DCI로부터 지시된 A/N 타이밍에 (이전 시점에 A/N 펜딩이 지시된 PDSCH에 대한) pended A/N을 (추가하여) 전송할지 여부를 직접 지시할 수 있다. 여기서, DCI는 예를 들어 Type-2 코드북 기반 A/N 피드백을 트리거하는 DCI를 포함할 수 있다. 또 다른 방안으로, A/N 펜딩이 지시된 (DCI 또는 PDSCH 전송) 시점 이후에 전송된 (예, PDSCH에 대한 A/N 타이밍이 유효(valid) 또는 숫자 값(numerical value)로 지시되는) DCI들로부터 지시된 A/N 타이밍들 중 가장 빠른 시점을 통해 pended A/N을 (추가하여) 전송하도록 동작할 수 있다. 여기서, DCI는 예를 들어 Type-2 코드북 기반 A/N 피드백을 트리거하는 DCI를 포함할 수 있다.
또한, 단말에게 Type-2a A/N 코드북 방식이 설정된 상태에서 특정 DL 그랜트 DCI를 통하여 (특정 (PDSCH) 슬롯 그룹 ID = X로 지정됨과 동시에) A/N 펜딩이 지시된 PDSCH의 경우, 해당 PDSCH에 대한 (pended) A/N 피드백은, 1) 특정 DCI를 통해 별도의 A/N 풀링을 지시함으로써 (단말로 하여금) pended A/N을 Type-3 A/N 코드북 형태로 전송하거나, 2) 별도의 A/N 풀링 없이 또 다른 특정 (예, 슬롯 그룹 ID = X에 대한 A/N 피드백을 요청하는) DL 그랜트 DCI로 지시된 A/N 타이밍을 통해 전송되는 Type-2a A/N 코드북에 pended A/N을 포함할 수 있다. 한편, 후자의 경우, pended A/N 피드백이 전송될 A/N 타이밍에 대한 결정이 필요할 수 있다. 이를 위한 방안으로, A/N 펜딩이 지시된 (DCI 또는 PDSCH 전송) 시점 이후에 전송된 특정 (예, (Type-2a 코드북 기반 A/N 피드백을 트리거하면서) 슬롯 그룹 ID = X에 대한 A/N 피드백을 요청하는) (예, PDSCH에 대한 A/N 타이밍이 유효(valid) 또는 숫자 값(numerical value)로 지시되는) DCI들로부터 지시된 A/N 타이밍들 중 가장 빠른 시점을 통해 pended A/N을 (추가하여) 전송할 수 있다.
추가적으로, Type-1 혹은 Type-2 A/N 코드북 방식이 설정된 경우에는 특정 DCI를 통해 Type-3 A/N 코드북 방식에 기반한 A/N 피드백 전송을 동적으로 트리거하는 동작이 적용/허용될 수 있다. 반면, Type-2a A/N 코드북 방식이 설정된 경우에는 DCI 기반의 동적 Type-3 A/N 코드북 트리거링이 적용/허용되지 않도록 규정/정의될 수 있다. 또한, 추가적으로, Type-1 혹은 Type-2 A/N 코드북 방식이 설정된 경우에는 DCI(예, DL 그랜트)를 통한 상기와 같은 (PDSCH에 대해 무효 또는 비-숫자 A/N 타이밍 값을 지시하는 형태의) A/N 펜딩 지시 동작이 적용/허용되지 않을 수 있다. 반면, Type-2a 방식이 설정된 경우에는 DCI를 통한 (무효 또는 비-숫자 A/N 타이밍 값을 지시하는 형태의) A/N 펜딩 지시 동작이 적용/허용되도록 규정/정의될 수 있다.
(e) SPS PDSCH에 대한 A/N 피드백 전송 동작
먼저, SPS(Semi-Persistent Scheduling)에 대해 설명한다. 일반적인 유니캐스트 데이터(예, PDSCH)는 스케줄링(예, DCI)에 의해 매 전송마다 동적으로 자원이 할당된다. 이와 달리, SPS는 VoIP나 스트리밍과 같이 중/저속의 요구 데이터 레이트를 가지고 주기적으로 발생하는 트래픽에 대해 자원을 미리 예약해 두는 방식이다. SPS는 특정 트래픽에 대해 자원을 미리 예약함으로써 스케줄링 오버헤드를 감소시키고 자원을 안정적으로 할당할 수 있다.
도 15는 DL SPS 전송을 예시한다. 도 15를 참조하면, SPS 구성 정보는 RRC(Radio Resource Control) 시그널링으로 주어지며, SPS 구성 정보는 SPS PDSCH 주기/오프셋 등을 포함할 수 있다. 여기서, SPS 구성 정보는 SPS 시간 자원에 대한 정보를 포함하고, SPS 시간 자원은 SPS PDSCH 주기/오프셋 등을 포함할 수 있다. 단말은 RRC 시그널링으로 SPS 구성 정보를 할당 받더라도 바로 SPS PDSCH를 수신하지 않으며, SPS 활성화(activation)/해제(release)는 PDCCH를 통해 이뤄진다. 단말은 SPS 활성화용 PDCCH(SPS 활성화 PDCCH)를 수신하면, RRC 시그널링으로 할당된 슬롯에서 SPS PDSCH를 수신한다. SPS 활성화 PDCCH는 SPS PDSCH를 위한 RB 할당 정보, MCS(Modulation and Coding Scheme) 정보를 나른다. 이후, SPS 활성화 PDCCH 내의 스케줄링 정보에 기반하여, SPS PDSCH는, 대응되는 PDCCH 없이, SPS PDSCH 주기에 맞춰 주기적으로 수신된다. 한편, 단말은 SPS 해제용 PDCCH (SPS 해제 PDCCH)를 수신하면 SPS PDSCH 수신을 중단한다. SPS PDSCH에 대한 A/N 정보는 SPS 활성화 PDCCH 내의 PUCCH 자원 정보/HARQ 타이밍 정보(예, PDSCH-to-HARQ-ACK reporting offset (K1); 도 6 참조)에 기반하여 전송될 수 있다.
도 16은 기존의 Type-2 A/N 코드북 방식을 예시한다. 도 16은 기본적으로 도 12(b)와 동일하며, SPS PDSCH가 추가된 점이 상이하다. 도 16을 참조하면, 단말은 슬롯 #n에서 DAI=00을 갖는 DCI에 의해 스케줄링된 PDSCH를 수신하고, 슬롯 #(n+2)에서 DAI=10을 갖는 DCI에 의해 스케줄링된 PDSCH를 수신할 수 있다. 또한, 단말은 슬롯 #(n+1)에서 SPS PDSCH를 수신할 수 있다. SPS PDSCH에 대한 A/N은 DAI-기반 A/N 코드북의 마지막에 부가된다. 구체적으로, t-DAI=3이 시그널링 된 경우, 단말은 연속된 DAI 값(즉, DAI=00/01/11)(이하, DAI 시퀀스)에 해당하는 3개의 PDSCH 수신에 대해서만 A/N 정보를 생성/전송할 수 있다. 여기서, DAI=01에 대응하는 PDSCH 수신에 대한 A/N 응답은 NACK으로 처리되고, SPS PDSCH에 대한 A/N은 DAI 시퀀스에 대한 A/N의 다음에 부가된다. 또한, t-DAI가 시그널링 되지 않은 경우, 단말은 후보 HARQ 타이밍에 대응하는 모든 슬롯에서의 PDSCH 수신에 대해 A/N 정보를 생성/전송할 수 있다. DAI 시퀀스에 대한 A/N은 A/N 페이로드의 MSB 부분에 배치되고, SPS PDSCH에 대한 A/N은 A/N 페이로드의 끝에 배치된다.
한편, Type-2a (또는 Type-1 또는 Type-2) A/N 코드북 방식이 설정/지시된 상황에서 대응되는 DCI(예, DL 그랜트) 없이 전송되는 SPS PDSCH 및 이에 대한 A/N 피드백을 고려할 수 있다. Type-2a (또는 Type-1 또는 Type-2) A/N 코드북 방식에 관해 보다 자세한 사항은 제안 방법 3을 참조할 수 있다. 이 경우, SPS PDSCH에 대한 별도의 슬롯 그룹 ID 지정이 없음으로 인해, SPS PDSCH에 대응되는 A/N 피드백에 대한 (예, 단말의 LBT 실패 및/또는 기지국의 A/N 검출 실패에 따른) 재전송 요청이 불가하므로, 1) SPS PDSCH에 대한 A/N 피드백 전송 시점, 및 2) Type-2a A/N 코드북 상에서의 A/N 피드백 구성/매핑에 대한 규칙이 필요할 수 있다.
먼저, SPS PDSCH에 대한 A/N 피드백 전송 시점의 경우, 예를 들어 SPS PDSCH 주기가 L개 슬롯으로 설정되고 SPS PDSCH에 대응되는 A/N 타이밍 (딜레이)가 K개 슬롯으로 지시됨을 가정할 수 있다. 이 경우, 슬롯 #n에서 전송된 SPS PDSCH에 대한 A/N 피드백은, 슬롯 #(n + K) ~ 슬롯 #(n + K + L - 1)의 구간 내에 지시된 모든 A/N 타이밍을 통해 (반복적으로) 전송될 수 있다. 다른 방법으로, 슬롯 #n에서 전송된 SPS PDSCH에 대한 Type-2a (또는 Type-1 또는 Type-2) 코드북 기반의 A/N 피드백은 슬롯 #(n + K)을 통해서만 전송되고, 추가적으로 슬롯 #(n + K) ~ 슬롯 #(n + K + L - 1)의 구간 내에 Type-3 코드북 기반의 A/N 타이밍으로 지시된 시점을 통해 (추가) 전송될 수 있다. 또 다른 방법으로, Type-2a A/N 코드북 방식으로 동작하는 경우에는 SPS 활성화 DCI(예, SPS 활성화 PDCCH)를 통해, 이후 전송될 SPS PDSCH들이 속하는 특정 (슬롯) 그룹 ID를 지정할 수 있다. 이에 따라, (기지국으로부터의 요청에 따른) 해당 (슬롯) 그룹 ID에 대한 A/N 피드백 구성/전송 시 해당 SPS PDSCH에 대한 A/N까지 포함하여 구성/전송할 수 있다.
도 17은 Type-2a A/N 코드북 상에서 SPS PDSCH에 대한 A/N 구성/매핑 시에 문제점을 예시한다. 도 17은 A/N 코드북 상에서 SPS PDSCH에 대한 A/N과, DCI(예, DL 그랜트)를 통해 슬롯 그룹 ID가 지정된 PDSCH들에 대한 A/N을 분리하지 않고 구성/매핑한 경우를 예시한다. 도 17을 참조하면, 단말은 그룹 #A (예, 그룹 ID #0)에 대응하는 PDSCH(들)과 그룹 #B (예, 그룹 ID #1)에 대응하는 PDSCH(들)을 수신한다. 또한, 단말은 그룹 #A에 대응하는 후보 HARQ 타이밍 구간에서 SPS PDSCH를 수신한다. 단말은 그룹 #A/#B에 대한 A/N 전송을 요청 받았다고 가정한다. 이때, SPS PDSCH에 대한 A/N 전송 시점이 그룹 #A/#B에 대한 A/N 전송 시점이 겹칠 수 있다. 이 경우, 도 16에 예시한 기존의 Type-2 A/N 코드북 방식에 따르면, SPS PDSCH에 대한 A/N은 그룹 #A에 대한 A/N 정보의 끝에 부가될 수 있다.
그러나, 그룹 #A/#B에 대한 A/N 정보는 각각 A/N 재전송 요청을 가능하지만, SPS PDSCH는 그룹 ID가 없으므로 A/N 재전송 요청이 불가하다. 이에 따라, 그룹 #A/#B에 대한 A/N 정보를 초기 전송할 때와 재전송할 때 A/N 페이로드 구성/매핑이 달라진다. 그룹 #A/#B에 대한 A/N 정보를 재전송할 때는 SPS PDSCH가 존재하지 않거나, 새로운 SPS PDSCH가 존재할 수 있기 때문이다. 이로 인해, 예를 들어, 도면에서 예시한 바와 같이, A/N 페이로드 내에서 그룹 #B에 대한 A/N 정보의 위치가 A/N 전송 시점에 따라 달라질 수 있고, 단말과 기지국간에 A/N 불일치 등의 문제가 발생할 수 있다.
따라서, 본 제안에서는 Type-2a A/N 코드북 상에서 SPS PDSCH에 대한 A/N 구성/매핑의 경우, DCI(예, DL 그랜트)를 통해 슬롯 그룹 ID가 지정된 PDSCH들에 대한 A/N과 분리된 형태로 구성/매핑될 수 있다. 일 예로, Type-2 코드북의 A/N 페이로드 상에 슬롯 그룹 ID가 지정된 PDSCH에 대한 A/N부터 MSB(Most Significant Bit)로 시작하는 낮은 비트 인덱스 부분에 매핑되고(예, 첫 번째 서브-코드북 형태로 구성), 그 뒤에 SPS PDSCH에 대한 A/N이 (높은 비트 인덱스 부분에) 매핑되는 형태로 구성될 수 있다(예, 두 번째 서브-코드북 형태로 구성).
도 18은 본 발명의 일 예에 따른 A/N 전송 과정을 예시한다. 도 18을 참조하면, 단말은 제1 PDSCH 그룹에 속하는 PDSCH(들)와 제2 PDSCH 그룹에 속하는 PDSCH(들)를 수신할 수 있다(S1802). 여기서, PDSCH 그룹은 (슬롯) 그룹에 대응하며, 각 PDSCH 그룹은 A/N 요청을 위한 기본 그룹으로 사용된다. 또한, 단말은 SPS PDSCH를 수신할 수 있다(S1804). 이후, 단말은 제1 PDSCH 그룹에 대한 제1 A/N 정보, 및/또는 제2 PDSCH 그룹에 대한 제2 A/N 정보를 생성할 수 있다. 이때, SPS PDSCH에 대한 A/N이 상기 제1 A/N 정보 (및 제2 A/N 정보)와 함께 전송되는 것에 기반하여, 상기 SPS PDSCH에 대한 A/N은 상기 제1 A/N 정보 (및 제2 A/N 정보)의 뒤에 추가될 수 있다. 이후, 단말은 상기 제1 A/N 정보 (및 제2 A/N 정보)와 상기 SPS PDSCH에 대한 A/N을 포함하는 제어 정보를 전송할 수 있다(S1806). 여기서, 제어 정보는 PUCCH 또는 PUSCH를 통해 전송될 수 있다.
또한, SPS PDSCH는 어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH(즉, 지정된 그룹 ID가 없는 PDSCH)로 일반화 될 수 있다. 또한, 상기 제1 및 제2 A/N 정보에 대해서는 각각 A/N 재전송이 허용되지만, 상기 SPS PDSCH에 대한 A/N에 대해서는 A/N 재전송이 허용되지 않을 수 있다. 또한, PDSCH 스케줄링을 위한 DCI를 수신하는 것을 더 포함할 수 있고, 상기 DCI는 상기 제1 PDSCH 그룹에 대한 A/N 요청 정보 및 상기 제2 PDSCH 그룹에 대한 A/N 요청 정보를 포함할 수 있다. 또한, 제안 방법은 비면허 대역(예, 공유 스펙트럼)에서 동작하는 경우에 국한하여 적용될 수 있다. 예를 들어, 상기 제어 정보는 비면허 대역에서 전송될 수 있다.
도 19는 본 발명의 일 예에 따른 A/N 페이로드 구성을 예시한다. 도 17의 PDSCH 수신 상황을 가정하며, 도 18의 일부로서 A/N 페이로드 구성이 가능하다. 기지국은 단말에게 (case 1) 제1 PDSCH 그룹(예, 그룹 #A)에 대한 제1 A/N 정보만을 요청하거나, (case 2) 제2 PDSCH 그룹(예, 그룹 #B)에 대한 제2 A/N 정보만을 요청하거나, (case 3) 제1 및 제2 PDSCH 그룹에 대한 A/N을 모두 요청할 수 있다. 이에 따라, A/N 페이로드 내에서 각 그룹에 대한 A/N과 SPS PDSCH에 대한 A/N은 다음과 같이 구성될 수 있다.
- Case 1: [그룹 #A에 대한 A/N 정보] + [SPS PDSCH에 대한 A/N]
- Case 2: [그룹 #A에 대한 A/N 정보] + [SPS PDSCH에 대한 A/N]
- Case 3: [그룹 #A/#B에 대한 A/N 정보] + [SPS PDSCH에 대한 A/N]
또한, Type-3 A/N 코드북 상에서 SPS PDSCH에 대한 A/N 구성/매핑의 경우, DCI(예, DL 그랜트)를 통해 HARQ 프로세스 ID가 지정된 PDSCH들에 대한 A/N과 분리된 형태로 구성/매핑될 수 있다. 일 예로, Type-3 코드북의 A/N 페이로드 상에 DCI로 HARQ 프로세스 ID가 지정된 PDSCH에 대한 A/N부터 MSB로 시작하는 낮은 비트 인덱스 부분에 매핑되고(예, 첫 번째 서브-코드북 형태로 구성), 그 뒤에 SPS PDSCH에 대한 A/N이 (높은 비트 인덱스 부분에) 매핑되는 형태로 구성될 수 있다(예, 두 번째 서브-코드북 형태로 구성).
도 20은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 20을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 21은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 21을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 20의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 22는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 20 참조).
도 22를 참조하면, 무선 기기(100, 200)는 도 21의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 21의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 21의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 20, 100a), 차량(도 20, 100b-1, 100b-2), XR 기기(도 20, 100c), 휴대 기기(도 20, 100d), 가전(도 20, 100e), IoT 기기(도 20, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 20, 400), 기지국(도 20, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 22에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 23은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 23을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 22의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말에 의해 사용되는 방법에 있어서,
    제1 PDSCH (physical downlink shared channel) 그룹에 대한 제1 A/N (acknowledgement/negative acknowledgement) 정보, 및 제2 PDSCH 그룹에 대한 제2 A/N 정보를 생성하되, 각 PDSCH 그룹은 A/N 요청을 위한 기본 그룹인 단계;
    어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH에 대한 A/N이 상기 제1 및 제2 A/N 정보와 함께 전송되는 것에 기반하여, 상기 특정 PDSCH에 대한 A/N을 상기 제1 및 제2 A/N 정보의 뒤에 추가하는 단계; 및
    상기 제1 및 제2 A/N 정보와 상기 특정 PDSCH에 대한 A/N을 포함하는 제어 정보를 전송하는 단계를 포함하는 방법.
  2. 제1항에 있어서,
    상기 특정 PDSCH는 SPS (semi-persistent scheduling) PDSCH를 포함하는 방법.
  3. 제2항에 있어서,
    상기 제1 및 제2 A/N 정보에 대해서는 각각 A/N 재전송이 허용되지만, 상기 SPS PDSCH에 대한 A/N에 대해서는 A/N 재전송이 허용되지 않는 방법.
  4. 제1항에 있어서,
    PDSCH 스케줄링을 위한 DCI (downlink control information)를 수신하는 것을 더 포함하고, 상기 DCI는 상기 제1 PDSCH 그룹에 대한 A/N 요청 정보 및 상기 제2 PDSCH 그룹에 대한 A/N 요청 정보를 포함하는 방법.
  5. 제1항에 있어서,
    상기 제어 정보는 비면허 대역에서 전송되는 방법.
  6. 무선 통신 시스템에 사용되는 단말에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은,
    제1 PDSCH (physical downlink shared channel) 그룹에 대한 제1 A/N (acknowledgement/negative acknowledgement) 정보, 및 제2 PDSCH 그룹에 대한 제2 A/N 정보를 생성하되, 각 PDSCH 그룹은 A/N 요청을 위한 기본 그룹인 것;
    어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH에 대한 A/N이 상기 제1 및 제2 A/N 정보와 함께 전송되는 것에 기반하여, 상기 특정 PDSCH에 대한 A/N을 상기 제1 및 제2 A/N 정보의 뒤에 추가하는 것; 및
    상기 제1 및 제2 A/N 정보와 상기 특정 PDSCH에 대한 A/N을 포함하는 제어 정보를 전송하는 것을 포함하는 단말.
  7. 제6항에 있어서,
    상기 특정 PDSCH는 SPS (semi-persistent scheduling) PDSCH를 포함하는 단말.
  8. 제7항에 있어서,
    상기 제1 및 제2 A/N 정보에 대해서는 각각 A/N 재전송이 허용되지만, 상기 SPS PDSCH에 대한 A/N에 대해서는 A/N 재전송이 허용되지 않는 단말.
  9. 제6항에 있어서,
    PDSCH 스케줄링을 위한 DCI (downlink control information)를 수신하는 것을 더 포함하고, 상기 DCI는 상기 제1 PDSCH 그룹에 대한 A/N 요청 정보 및 상기 제2 PDSCH 그룹에 대한 A/N 요청 정보를 포함하는 단말.
  10. 제6항에 있어서,
    상기 제어 정보는 비면허 대역에서 전송되는 단말.
  11. 단말을 위한 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은:
    제1 PDSCH (physical downlink shared channel) 그룹에 대한 제1 A/N (acknowledgement/negative acknowledgement) 정보, 및 제2 PDSCH 그룹에 대한 제2 A/N 정보를 생성하되, 각 PDSCH 그룹은 A/N 요청을 위한 기본 그룹인 것;
    어떤 PDSCH 그룹에도 속하지 않는 특정 PDSCH에 대한 A/N이 상기 제1 및 제2 A/N 정보와 함께 전송되는 것에 기반하여, 상기 특정 PDSCH에 대한 A/N을 상기 제1 및 제2 A/N 정보의 뒤에 추가하는 것; 및
    상기 제1 및 제2 A/N 정보와 상기 특정 PDSCH에 대한 A/N을 포함하는 제어 정보를 전송하는 것을 포함하는 장치.
  12. 제11항에 있어서,
    상기 특정 PDSCH는 SPS (semi-persistent scheduling) PDSCH를 포함하는 장치.
  13. 제12항에 있어서,
    상기 제1 및 제2 A/N 정보에 대해서는 각각 A/N 재전송이 허용되지만, 상기 SPS PDSCH에 대한 A/N에 대해서는 A/N 재전송이 허용되지 않는 장치.
  14. 제11항에 있어서,
    PDSCH 스케줄링을 위한 DCI (downlink control information)를 수신하는 것을 더 포함하고, 상기 DCI는 상기 제1 PDSCH 그룹에 대한 A/N 요청 정보 및 상기 제2 PDSCH 그룹에 대한 A/N 요청 정보를 포함하는 장치.
  15. 제11항에 있어서,
    상기 제어 정보는 비면허 대역에서 전송되는 장치.
PCT/KR2020/014121 2019-10-15 2020-10-15 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2021075886A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080072082.4A CN114556839B (zh) 2019-10-15 2020-10-15 用于在无线通信系统中发送或接收无线信号的方法和设备
JP2022522747A JP7375184B2 (ja) 2019-10-15 2020-10-15 無線通信システムにおいて無線信号送受信方法及び装置
EP20876674.1A EP4047848A4 (en) 2019-10-15 2020-10-15 METHOD AND APPARATUS FOR TRANSMITTING OR RECEIVING A WIRELESS SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
KR1020227007933A KR102478144B1 (ko) 2019-10-15 2020-10-15 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US17/694,939 US11563547B2 (en) 2019-10-15 2022-03-15 Method and apparatus for transmitting or receiving wireless signal in wireless communication system
US18/090,971 US11831580B2 (en) 2019-10-15 2022-12-29 Method and apparatus for transmitting or receiving wireless signal in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962915620P 2019-10-15 2019-10-15
US62/915,620 2019-10-15
US201962923436P 2019-10-18 2019-10-18
US62/923,436 2019-10-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/694,939 Continuation US11563547B2 (en) 2019-10-15 2022-03-15 Method and apparatus for transmitting or receiving wireless signal in wireless communication system

Publications (1)

Publication Number Publication Date
WO2021075886A1 true WO2021075886A1 (ko) 2021-04-22

Family

ID=75538805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014121 WO2021075886A1 (ko) 2019-10-15 2020-10-15 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (6)

Country Link
US (2) US11563547B2 (ko)
EP (1) EP4047848A4 (ko)
JP (1) JP7375184B2 (ko)
KR (1) KR102478144B1 (ko)
CN (1) CN114556839B (ko)
WO (1) WO2021075886A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4084561A1 (en) * 2021-04-27 2022-11-02 Apple Inc. Systems and methods for multi-pxsch scheduling in unlicensed channels

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848781B2 (en) * 2020-01-06 2023-12-19 Qualcomm Incorporated Hybrid automatic repeat request acknowledgement codebook determination with different downlink assignment indicator bitwidth
US11665705B2 (en) * 2020-04-20 2023-05-30 Qualcomm Incorporated Two-stage piggyback downlink control information (DCI)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180091527A (ko) * 2017-02-07 2018-08-16 삼성전자주식회사 무선 셀룰라 통신 시스템에서 제어 및 데이터 정보 전송방법 및 장치
KR20190028352A (ko) * 2017-09-08 2019-03-18 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US20190261354A1 (en) * 2018-02-22 2019-08-22 Qualcomm Incorporated Enhanced uplink grant-free/downlink semi-persistent scheduling for ultra-reliable low latency communications

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650393B (zh) * 2011-05-12 2016-10-12 Lg电子株式会社 发送控制信息的方法及其设备
WO2013105837A1 (ko) * 2012-01-15 2013-07-18 엘지전자 주식회사 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
KR102637865B1 (ko) * 2016-03-30 2024-02-20 주식회사 윌러스표준기술연구소 비인가 대역에서 채널 엑세스 방법, 장치 및 시스템
CN109474371B (zh) * 2017-09-08 2024-01-19 北京三星通信技术研究有限公司 一种harq-ack信息反馈方法和设备
WO2019066630A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. UPLINK TRANSMISSION METHOD AND CORRESPONDING EQUIPMENT
US11025372B2 (en) * 2017-10-26 2021-06-01 Qualcomm Incorporated Semi-persistent scheduling management in new radio
CN110149173B (zh) * 2018-02-13 2021-03-05 电信科学技术研究院有限公司 一种半持续调度传输方法、网络侧设备及用户终端
CN110278062B (zh) * 2018-03-14 2021-03-09 电信科学技术研究院有限公司 资源指示、确定方法及装置
US11233551B2 (en) * 2019-01-11 2022-01-25 Nokia Technologies Oy Dynamically enabling and disabling multiplexing of HARQ-ACK feedback for different types of traffic
US11349614B2 (en) * 2019-04-24 2022-05-31 Telefonaktiebolaget Lm Ericsson (Publ) HARQ-ACK reporting with PDSCH grouping
CN114270758B (zh) * 2019-08-23 2024-02-23 联想(北京)有限公司 用于确定harq-ack码本的方法及设备
US11496252B2 (en) * 2019-10-02 2022-11-08 Intel Corporation UE configured for type-2 HARQ-ACK codebook grouping and HARQ-ACK retransmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180091527A (ko) * 2017-02-07 2018-08-16 삼성전자주식회사 무선 셀룰라 통신 시스템에서 제어 및 데이터 정보 전송방법 및 장치
KR20190028352A (ko) * 2017-09-08 2019-03-18 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US20190261354A1 (en) * 2018-02-22 2019-08-22 Qualcomm Incorporated Enhanced uplink grant-free/downlink semi-persistent scheduling for ultra-reliable low latency communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion on DL SPS enhancement", 3GPP DRAFT; R1-1910189 DISCUSSION ON DL SPS ENHANCEMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051788996 *
OPPO: "HARQ enhancements for NR-U", 3GPP DRAFT; R1-1910792, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789580 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4084561A1 (en) * 2021-04-27 2022-11-02 Apple Inc. Systems and methods for multi-pxsch scheduling in unlicensed channels
JP2022169486A (ja) * 2021-04-27 2022-11-09 アップル インコーポレイテッド 無認可チャネルにおけるマルチPxSCHスケジューリングのためのシステム及び方法
JP7402268B2 (ja) 2021-04-27 2023-12-20 アップル インコーポレイテッド 無認可チャネルにおけるマルチPxSCHスケジューリングのためのシステム及び方法

Also Published As

Publication number Publication date
EP4047848A1 (en) 2022-08-24
US20220209924A1 (en) 2022-06-30
CN114556839B (zh) 2023-10-31
US11563547B2 (en) 2023-01-24
KR20220051352A (ko) 2022-04-26
US20230145092A1 (en) 2023-05-11
CN114556839A (zh) 2022-05-27
EP4047848A4 (en) 2022-11-30
JP7375184B2 (ja) 2023-11-07
JP2022551984A (ja) 2022-12-14
US11831580B2 (en) 2023-11-28
KR102478144B1 (ko) 2022-12-14

Similar Documents

Publication Publication Date Title
WO2021091258A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020032742A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021015520A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021091251A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020060367A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020197333A1 (ko) 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2021091292A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021091340A1 (en) Method and apparatus for transmitting psfch in nr v2x
WO2020060372A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022154613A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020197338A1 (ko) 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2021075886A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022080928A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020032670A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021091300A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2021066593A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2020226393A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2020226406A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021029708A1 (ko) 비면허 대역에서 수송 블록을 전송하는, 방법, 전송 기기 및 기록 매체
WO2022030945A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2022154614A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032672A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021066548A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2021066311A1 (ko) Pdcch의 수신을 위한 방법, 사용자기기, 장치 및 저장매체, 그리고 pdcch의 전송을 위한 방법 및 기지국
WO2022216045A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227007933

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022522747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020876674

Country of ref document: EP

Effective date: 20220516