WO2020032742A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2020032742A1
WO2020032742A1 PCT/KR2019/010161 KR2019010161W WO2020032742A1 WO 2020032742 A1 WO2020032742 A1 WO 2020032742A1 KR 2019010161 W KR2019010161 W KR 2019010161W WO 2020032742 A1 WO2020032742 A1 WO 2020032742A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
pusch
transmission
rnti
msgb
Prior art date
Application number
PCT/KR2019/010161
Other languages
English (en)
French (fr)
Inventor
양석철
김선욱
박창환
안준기
윤석현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/267,448 priority Critical patent/US12082257B2/en
Publication of WO2020032742A1 publication Critical patent/WO2020032742A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving wireless signals.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and an apparatus for performing the wireless signal transmission and reception process efficiently.
  • a random access request message including a random access preamble (RAP) transmission and a physical uplink shared channel (PUSCH) transmission PUSCH transmission is transmitted using a resource associated with the RAP transmission and includes a Cell-Radio Network Temporary Identifier (C-RNTI); And monitoring a Physical Downlink Control Channel (PDCCH) within a time window to receive a response to the random access request message, wherein the first PDCCH is accompanied with a Timing Advance (TA) command within the time window.
  • TA Timing Advance
  • a communication apparatus for use in a wireless communication system, comprising: a memory; And a processor, wherein the processor transmits a random access request message including a random access preamble (RAP) transmission and a physical uplink shared channel (PUSCH) transmission, wherein the PUSCH transmission uses resources related to the RAP transmission Transmitted and including a Cell-Radio Network Temporary Identifier (C-RNTI), and configured to monitor a Physical Downlink Control Channel (PDCCH) within a time window to receive a response to the random access request message, the time window A communication device in which a process of receiving a response to the random access request message is terminated when a first PDCCH accompanied by a TA (Timing Advance) command is detected and the first PDCCH is indicated by the C-RNTI Is provided.
  • RAP random access preamble
  • PUSCH physical uplink shared channel
  • C-RNTI Cell-Radio Network Temporary Identifier
  • receiving the response to the random access request message may include monitoring the PDCCH indicated by the RA-RNTI within the time window.
  • the TA command may be included in the first PDCCH or in a physical downlink shared channel (PDSCH) corresponding to the first PDCCH.
  • PDSCH physical downlink shared channel
  • the RAP transmission is performed in one RO of a plurality of random access occsions (ROs), and each RO may correspond to one or more PUSCH resources.
  • ROs random access occsions
  • the RO may include a time frequency resource used for the RAP transmission
  • the PUSCH resource may include at least one of a PUSCH time-frequency resource, a PUSCH scrambling ID, and a PUSCH demodulation reference signal (DMRS) resource.
  • DMRS PUSCH demodulation reference signal
  • the random access request message transmission may be performed in a Radio Access Control (RRC) connected state.
  • RRC Radio Access Control
  • said wireless communication system may comprise a 3rd Generation Partnership Project (3GPP) -based wireless communication system.
  • 3GPP 3rd Generation Partnership Project
  • the communication device may comprise an autonomous vehicle capable of communicating with at least a terminal, a network, and an autonomous vehicle other than the communication device.
  • the communication device may include a radio frequency (RF) unit.
  • RF radio frequency
  • FIG. 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • 3 illustrates a resource grid of a slot.
  • FIG. 5 shows an example in which a physical channel is mapped within a self-serving slot.
  • PUSCH 7 illustrates a process of transmitting a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • FIG 9 illustrates a wireless communication system supporting an unlicensed band.
  • FIG. 10 illustrates a method of occupying resources in an unlicensed band.
  • RACH random access channel
  • RAR Medium Access Control Random Access Response
  • 15 to 18 illustrate a communication system and a wireless device to which the present invention is applied.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) is an evolved version of 3GPP LTE.
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE / LTE-A is an evolution of 3GPP LTE / LTE-A.
  • next-generation communication As more communication devices demand larger communication capacities, there is a need for improved mobile broadband communication compared to the existing radio access technology (RAT).
  • massive MTC Machine Type Communications
  • massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communication
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • 1 is a diagram for explaining physical channels used in a 3GPP NR system and a general signal transmission method using the same.
  • the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the terminal receives a synchronization signal block (SSB) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on the PSS / SSS, and acquires information such as a cell identity.
  • the UE may obtain intra-cell broadcast information based on the PBCH.
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell discovery, the UE receives a physical downlink control channel (PDSCH) according to physical downlink control channel (PDCCH) and physical downlink control channel information in step S102 to provide more specific information.
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • System information can be obtained.
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106). ) Can be performed.
  • the UE After performing the above-described procedure, the UE performs a physical downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
  • Physical Uplink Control Channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like.
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • each radio frame has a length of 10 ms and is divided into two 5 ms half-frames (HFs). Each half-frame is divided into five 1 ms subframes (Subframes, SFs). The subframe is divided into one or more slots, and the number of slots in the subframe depends on the subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols according to a cyclic prefix (CP). If a normal CP is used, each slot contains 14 OFDM symbols. If extended CP is used, each slot includes 12 OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Table 1 exemplarily shows that when CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • Table 2 illustrates that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • the structure of the frame is merely an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed.
  • OFDM numerology may be set differently between a plurality of cells merged into one UE.
  • the (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit e.g. a time unit (TU) for convenience
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), SC-FDMA symbol (or Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • the slot includes a plurality of symbols in the time domain. For example, in general, one slot includes 14 symbols in case of CP, but one slot includes 12 symbols in case of extended CP.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block (RB) is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain.
  • the bandwidth part (BWP) is defined as a plurality of consecutive physical RBs (PRBs) in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE.
  • Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-complete structure in which all of a DL control channel, DL or UL data, UL control channel, etc. may be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter DL control region), and the last M symbols in the slot may be used to transmit a UL control channel (hereinafter UL control region).
  • N and M are each an integer of 0 or more.
  • a resource region hereinafter, referred to as a data region
  • the DL control region and the UL control region may be used for DL data transmission, or may be used for UL data transmission.
  • Each interval is listed in chronological order.
  • DL area (i) DL data area, (ii) DL control area + DL data area
  • UL region (i) UL data region, (ii) UL data region + UL control region
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in the subframe may be set to GP.
  • PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH resource allocation information for uplink shared channel
  • PCH paging information for paging channel
  • It carries system information on the DL-SCH, resource allocation information for higher layer control messages such as random access response transmitted on the PDSCH, transmission power control command, activation / deactivation of configured scheduling (CS), and the like.
  • DCI includes a cyclic redundancy check (CRC), which is masked / scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner of PDCCH or the intended use.
  • CRC cyclic redundancy check
  • the CRC is masked with a terminal identifier (eg, Cell-RNTI, C-RNTI). If the PDCCH is about paging, the CRC is masked with P-RNTI (P-RNTI). If the PDCCH is for system information (eg, System Information Block, SIB), the CRC is masked with a System Information RNTI (SI-RNTI). If the PDCCH is for a random access response, the CRC is masked with a Random Access-RNTI (RA-RNTI).
  • a terminal identifier eg, Cell-RNTI, C-RNTI
  • SIB System Information Block
  • SI-RNTI System Information RNTI
  • RA-RNTI Random Access-RNTI
  • the PDCCH is composed of 1, 2, 4, 8, 16 CCEs (Control Channel Elements) according to an aggregation level (AL).
  • CCE is a logical allocation unit used to provide a PDCCH of a predetermined code rate according to a radio channel state.
  • the CCE consists of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P) RB.
  • the PDCCH is transmitted through a CORESET (Control Resource Set).
  • CORESET is defined as a REG set with a given pneumonology (eg SCS, CP length, etc.).
  • a plurality of CORESET for one terminal may be overlapped in the time / frequency domain.
  • CORESET may be set through system information (eg, Master Information Block, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
  • system information eg, Master Information Block, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of OFDM symbols (maximum 3) constituting CORESET may be set by higher layer signaling.
  • the UE monitors PDCCH candidates.
  • the PDCCH candidate represents CCE (s) that the UE should monitor for PDCCH detection.
  • Each PDCCH candidate is defined as 1, 2, 4, 8, 16 CCEs according to AL.
  • Monitoring includes (blind) decoding PDCCH candidates.
  • the set of PDCCH candidates monitored by the UE is defined as a PDCCH search space (SS).
  • the search space includes a common search space (CSS) or a UE-specific search space (USS).
  • the UE may acquire the DCI by monitoring the PDCCH candidate in one or more search spaces set by MIB or higher layer signaling.
  • Each CORESET is associated with one or more search spaces, and each search space is associated with one COREST.
  • the search space can be defined based on the following parameters.
  • controlResourceSetId indicates a CORESET associated with the search space
  • monitoringSlotPeriodicityAndOffset indicates the PDCCH monitoring interval (slot unit) and PDCCH monitoring interval offset (slot unit).
  • monitoringSymbolsWithinSlot represents the PDCCH monitoring symbol in the slot (e.g., the first symbol (s) of CORESET)
  • An opportunity (eg, time / frequency resource) to monitor PDCCH candidates is defined as a PDCCH (monitoring) opportunity.
  • PDCCH monitoring
  • One or more PDCCH (monitoring) opportunities can be configured in the slot.
  • Table 3 illustrates the features of each search space type.
  • Type Search space RNTI Use case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI (s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI (s) User specific PDSCH decoding
  • Table 4 illustrates the DCI formats transmitted on the PDCCH.
  • DCI format 0_0 is used for scheduling TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or Code Block Group (CBG) -based (or CBG-level) PUSCH It can be used to schedule.
  • DCI format 1_0 is used for scheduling TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used for scheduling TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH.
  • DCI format 0_0 / 0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0 / 1_1 may be referred to as DL grant DCI or UL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the UE
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the UE.
  • DCI format 2_0 and / or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
  • DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
  • the fallback DCI format remains the same in the DCI size / field configuration regardless of the UE setting.
  • the non-fallback DCI format the DCI size / field configuration varies according to UE configuration.
  • PDSCH carries downlink data (eg, DL-SCH transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are applied. do.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude Modulation
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping may be performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • UCI Uplink Control Information
  • SR Service Request: Information used for requesting a UL-SCH resource.
  • HARQ (Hybrid Automatic Repeat reQuest) -ACK (Acknowledgement): A response to a downlink data packet (eg, a codeword) on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of HARQ-ACK may be transmitted in response to a single codeword, and two bits of HARQ-ACK may be transmitted in response to two codewords.
  • HARQ-ACK responses include positive ACK (simply ACK), negative ACK (NACK), DTX, or NACK / DTX.
  • HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
  • CSI Channel State Information
  • MIMO Multiple Input Multiple Output
  • RI rank indicator
  • PMI precoding matrix indicator
  • Table 5 illustrates the PUCCH formats. According to the PUCCH transmission length may be divided into Short PUCCH (format 0, 2) and Long PUCCH (format 1, 3, 4).
  • PUCCH format 0 carries a UCI of up to 2 bits in size, and is mapped and transmitted on a sequence basis. Specifically, the terminal transmits one sequence of the plurality of sequences through the PUCCH of PUCCH format 0 to transmit a specific UCI to the base station. Only when a positive SR is transmitted, the UE transmits a PUCCH having a PUCCH format 0 in a PUCCH resource for corresponding SR configuration.
  • PUCCH format 1 carries UCI of up to 2 bits in size, and modulation symbols are spread by an orthogonal cover code (OCC) that is set differently depending on whether frequency hopping or not.
  • OCC orthogonal cover code
  • the DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, transmitted by time division multiplexing (TDM)).
  • PUCCH format 2 carries UCI of a bit size larger than 2 bits, and modulation symbols are transmitted by DMRS and Frequency Division Multiplexing (FDM).
  • the DM-RS is located at symbol indexes # 1, # 4, # 7 and # 10 in a given resource block with a density of 1/3.
  • PN Pulseudo Noise sequence is used for the DM_RS sequence.
  • Frequency hopping may be enabled for two symbol PUCCH format 2.
  • PUCCH format 3 is not UE multiplexed in the same physical resource blocks and carries a UCI of a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbol is transmitted after being time division multiplexed (DMD) with DMRS.
  • PUCCH format 4 supports multiplexing up to 4 terminals in the same physical resource block, and carries UCI of a bit size larger than 2 bits.
  • the PUCCH resource in PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted after being time division multiplexed (DMD) with DMRS.
  • PUSCH carries uplink data (eg, UL-SCH transport block, UL-SCH TB) and / or uplink control information (UCI), and uses a Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform or It is transmitted based on a Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the terminal transmits the PUSCH by applying transform precoding.
  • the UE transmits a PUSCH based on the CP-OFDM waveform
  • conversion precoding eg, transform precoding is enabled
  • the terminal is CP- PUSCH may be transmitted based on an OFDM waveform or a DFT-s-OFDM waveform.
  • PUSCH transmissions are dynamically scheduled by UL grants in DCI or semi-static based on higher layer (eg RRC) signaling (and / or Layer 1 (L1) signaling (eg PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed based on codebook or non-codebook.
  • the terminal may detect the PDCCH in slot #n.
  • the PDCCH includes downlink scheduling information (eg, DCI formats 1_0 and 1_1), and the PDCCH indicates a DL assignment-to-PDSCH offset (K0) and a PDSCH-HARQ-ACK reporting offset (K1).
  • the DCI formats 1_0 and 1_1 may include the following information.
  • Frequency domain resource assignment indicates the RB set allocated to the PDSCH
  • Time domain resource assignment K0, indicating the start position (eg OFDM symbol index) and length (eg number of OFDM symbols) of the PDSCH in the slot.
  • PDSCH-to-HARQ_feedback timing indicator indicates K1
  • the UE may transmit UCI through PUCCH in slot # (n + K1).
  • the UCI includes a HARQ-ACK response to the PDSCH.
  • the HARQ-ACK response may be configured with 1-bit.
  • the HARQ-ACK response may consist of two bits if spatial bundling is not configured, and one bit if spatial bundling is configured.
  • the UCI transmitted in slot # (n + K1) includes HARQ-ACK responses for the plurality of PDSCHs.
  • the terminal may detect the PDCCH in slot #n.
  • the PDCCH includes uplink scheduling information (eg, DCI formats 0_0 and 0_1).
  • the DCI formats 0_0 and 0_1 may include the following information.
  • Frequency domain resource assignment indicates the RB set allocated to the PUSCH
  • Time domain resource assignment indicates slot offset K2, starting position (eg symbol index) and length (eg number of OFDM symbols) of the PUSCH in the slot.
  • the start symbol and the length may be indicated through a SLIV (Start and Length Indicator Value) or may be indicated separately.
  • the UE may transmit the PUSCH in slot # (n + K2) according to the scheduling information of slot #n.
  • the PUSCH includes a UL-SCH TB.
  • UCI may be transmitted through PUSCH as shown (UCI piggyback or PUSCH piggyback). 8 illustrates a case in which HARQ-ACK and CSI are carried on a PUSCH resource.
  • the 3GPP standardization organization is progressing the standardization of 5G wireless communication system named NR (New RAT).
  • the 3GPP NR system supports multiple logical networks in a single physical system, and has various requirements by changing transmission time interval (TTI), OFDM numerology (e.g., OFDM symbol duration, subcarrier spacing). It is designed to support services (eg eMBB, mMTC, URLLC, etc.).
  • TTI transmission time interval
  • OFDM numerology e.g., OFDM symbol duration, subcarrier spacing
  • eMBB eMBB
  • mMTC subcarrier spacing
  • URLLC etc.
  • LAA licensed-assisted access
  • NR UCells NR cells in the unlicensed band are aimed at standalone (SA) operation.
  • SA standalone
  • PUCCH and PUSCH transmission may be supported in the NR UCell.
  • a cell operating in a licensed band (hereinafter referred to as L-band) is defined as an LCell, and a carrier of the LCell is defined as (DL / UL) LCC.
  • a cell operating in an unlicensed band (hereinafter, referred to as a U-band) is defined as a UCell, and a carrier of the UCell is defined as (DL / UL) UCC.
  • the carrier of the cell may mean an operating frequency (eg, a center frequency) of the cell.
  • a cell / carrier (eg, CC) may be collectively referred to as a cell.
  • one terminal may transmit and receive a signal with a base station through a plurality of merged cells / carriers.
  • one CC may be set as a primary CC (PCC) and the other CC may be set as a secondary CC (SCC).
  • Specific control information / channel eg, CSS PDCCH, PUCCH
  • PUCCH primary CC
  • Data can be sent and received via PCC / SCC.
  • 9 (a) illustrates a case in which a terminal and a base station transmit and receive signals through an LCC and a UCC (NSA (non-standalone) mode).
  • the LCC may be set to PCC and the UCC may be set to SCC.
  • one specific LCC may be set to PCC and the other LCCs may be set to SCC.
  • 9 (a) corresponds to LAA of 3GPP LTE system.
  • 9 (b) illustrates a case in which the terminal and the base station transmit and receive signals through one or more UCCs without the LCC (SA mode). in this case.
  • One of the UCCs may be set to PCC and the other UCC may be set to SCC. In the unlicensed band of 3GPP NR system, both NSA mode and SA mode can be supported.
  • a communication node in the unlicensed band must determine whether the channel of other communication node (s) is used before transmitting a signal.
  • the communication node may first perform carrier sensing (CS) before signal transmission to determine whether other communication node (s) transmit signal.
  • CS carrier sensing
  • CCA clear channel assessment
  • the communication node determines the channel state to be busy if energy above the CCA threshold is detected in the channel, otherwise the channel state.
  • the CCA threshold is defined as -62dBm for non-Wi-Fi signals and -82dBm for Wi-Fi signals. If it is determined that the channel state is idle, the communication node may start signal transmission in the UCell.
  • the above-described series of processes may be referred to as Listen-Before-Talk (LBT) or Channel Access Procedure (CAP). LBT and CAP can be used interchangeably.
  • NR including existing LTE
  • PRACH preamble Msg1 transmission from the terminal to the base station
  • RAR Random Access Response
  • Msg2 4-step RACH process consisting of transmission
  • Msg3 transmission Msg3 transmission from the terminal to the base station
  • Msg4 transmission for contention resolution
  • FIG. 11 illustrates a conventional 4-step RACH process.
  • signals / information transmitted through each step and specific operations performed in each step are as follows.
  • Msg1 PRACH: It is transmitted from the terminal to the base station (S710).
  • Each Msg1 may be divided into a time / frequency resource (RACH Occasion, RO) and a preamble index (RAAPID) in which a random access (RA) preamble is transmitted.
  • RACH Occasion RO
  • RAAPID preamble index
  • Msg2 (RAR PDSCH): This is a response message for Msg1, and is transmitted from the base station to the terminal (S720).
  • the UE may perform PDCCH monitoring whether there is an RA-RNTI-based PDCCH (eg, CRC of the PDCCH masked to RA-RNTI) within a time window (hereinafter, referred to as an RAR window) related to Msg1.
  • an RA-RNTI-based PDCCH eg, CRC of the PDCCH masked to RA-RNTI
  • RAR window time window
  • the UE may receive the RAR from the PDSCH indicated by the RA-RNTI PDCCH.
  • RA-RNTI may be determined as follows.
  • RA-RNTI 1 + s_id + 14 ⁇ t_id + 14 * 80 * f_id + 14 * 80 * 8 * ul_carrier_id
  • s_id represents the index of the first OFDM symbol of the PRACH (for example, 0 to 13)
  • t_id represents the index of the first slot of the PRACH in the frame (for example, 0 to 79)
  • f_id represents the frequency resource of the PRACH.
  • Ul_carrier_id indicates the UL carrier (type) used for PRACH transmission (e.g. 0-1) (e.g. 0 for Normal Uplink (NUL) carrier, 1 for Supplementary Uplink (SUL) ) carrier).
  • s_id corresponds to the beam and t_id / f_id corresponds to the time-frequency resource (eg, RO) used for PRACH transmission.
  • Msg3 (PUSCH): It is transmitted from the terminal to the base station (S730). Msg3 is performed based on the UL grant in the RAR. Msg3 may include a conflict resolution identity (and / or buffer status report (BSR) information, an RRC connection request, etc.). Msg3 (PUSCH) may be retransmission according to the HARQ process.
  • the collision resolution ID includes a UL Common Control Channel (CCCH) Service Data Unit (SDU). If the UL CCCH SDU is larger than 48 bits, only the first 48 bits of the UL CCCH SDU may be included in Msg3.
  • CCCH Common Control Channel
  • SDU Service Data Unit
  • Msg4 (PDSCH): It is transmitted from the base station to the terminal (S740).
  • Msg4 may include a terminal (global) ID (and / or RRC connection related information) for conflict resolution. Based on Msg4, it may be determined whether the conflict resolution succeeds or fails.
  • the terminal retransmits Msg1.
  • the UE increases the transmission power of Msg1 (power ramping) and increases the RACH retransmission counter value.
  • the RACH retransmission counter value reaches a maximum value, it is determined that the RACH procedure has failed completely.
  • the UE may initiate a RACH process by initializing the RACH-related parameters (eg, the RACH retransmission counter) after performing random back-off.
  • FIG. 12 illustrates a structure of a MAC PDU (Protocol Data Unit) including a RAR.
  • MAC PDU Protocol Data Unit
  • a MAC PDU includes one or more MAC subPDUs.
  • the MAC subPDU may have one of the following structures.
  • Consists of only MAC subheaders with a random access preamble index (eg, response to an SI request)
  • the MAC subheader with BI consists of the E / T / R / R / BI fields.
  • the MAC subheader with RAPID consists of an E / T / RAPID field.
  • the E field indicates whether additional MAC subheaders are present (1-bit)
  • the T field indicates whether the information contained in the MAC subheader is BI or RAPID (1-bit)
  • the R field consists of reserved bits. do.
  • the MAC RAR may include a UL grant for Msg3, a Temporary C-RNTI (TC-RNTI), and a Timing Advance (TA) command.
  • TC-RNTI Temporary C-RNTI
  • TA Timing Advance
  • the conventional 4-step RACH process may not be suitable for a situation (eg, URLLC) that requires fast channel access because the terminal and the base station exchange a plurality of messages under a collision situation.
  • the existing 4-step RACH process may not succeed in UL / DL LBT sequentially while the terminal and the base station intersect (eg, related to RAR / Msg3 scheduling / transmission). In this case, resource efficiency may decrease and connection latency of the terminal may increase.
  • the present invention proposes a RACH process for providing fast channel access.
  • UL signal eg, random access request message
  • MsgA UL signal
  • DL signal eg, random access response message
  • MsgB 2-step RACH procedure consisting of MsgB
  • a plurality of CCs refers to a plurality of CCs / cells (i.e., CCs (index) and BWPs (index)) composed of multiple BWPs (index) or multiple BWPs configured in one (or more) CCs or (serving) cells. Combination).
  • the terminal may transmit a random access request message (eg, MsgA) to the base station.
  • the MsgA transmission includes a random access preamble (RAP) transmission (S1302) and a PUSCH transmission (S1304).
  • RAP random access preamble
  • S1304 a PUSCH transmission
  • the UE may monitor the PDCCH within a time window associated with the RAP.
  • the UE may receive a PDCCH (hereinafter, referred to as MsgB PDCCH) for scheduling MsgB within a time window (S1306), and may receive MsgB based on this (S1308).
  • MsgB PDCCH a PDCCH
  • the UE may monitor a specific RNTI-based PDCCH (eg, CRC of the PDCCH is masked with a specific-RNTI).
  • PDCCH monitoring includes blind decoding PDCCH candidates.
  • certain RNTIs may include RA-RNTIs. If MsgB is not successfully received and / or conflict resolution fails, the terminal may perform MsgA retransmission.
  • MsgB includes PUCCH resource allocation information for HARQ-ACK feedback transmission
  • the UE may transmit HARQ-ACK feedback for MsgB reception using the allocated PUCCH resource.
  • MsgB includes a TA command and PUSCH resource allocation information (eg, an UL grant)
  • the terminal may transmit a PUSCH based on the TA command and the PUSCH resource allocation information.
  • the MsgA signal may be configured in a form in which the RACH preamble and the PUSCH part are combined.
  • the RACH preamble and the PUSCH part may be combined, for example, by TDM / FDM.
  • TDM / FDM TDM / FDM.
  • RO RACH Occasion
  • PI Preamble Index
  • SCID Scmbling ID: Seed used for (data) scrambling of the PUSCH part.
  • the SCID is used as a seed value for generating a scrambling sequence, and the generated scrambling sequence is used for scrambling data of the PUSCH part.
  • the PUSCH part carries terminal data (eg, UL-SCH data) related to the RACH. For example, an RRC connection request, a buffer status report (BSR), a conflict resolution ID, etc. may be transmitted through the PUSCH part.
  • the conflict resolution ID may include a terminal (global) ID, a CCCH SDU, and the like.
  • the terminal (global) ID may include an International Mobile Subscriber Identity (IMSI), a C-RNTI, and the like.
  • IMSI International Mobile Subscriber Identity
  • DMRS Demodulation RS
  • DMRS may be classified into a sequence, a cyclic shift, an RE pattern / location, an orthogonal cover code (OCC) and / or SCID, and the like.
  • ULRA UL Resource
  • ULRA may be identified / differentiated by ULRA (Resource) Index.
  • the (resource) index can be divided into a time (resource) index and a frequency (resource) index.
  • the MsgA signal / index may be configured as (1) a combination of a RACH preamble based on a ⁇ RO, PI ⁇ combination and a PUSCH part based on a ⁇ SCID + DMRS, ULRA ⁇ combination (for example, TDM / FDM). have.
  • the following options may be considered for MsgA configuration.
  • One ULRA may correspond to one RO.
  • Different SCID + DMRS combinations may correspond to each PI (for one ⁇ RO, ULRA ⁇ pair).
  • the SCID + DMRS combination may be determined based on the PI value.
  • the SCID + DMRS combination can be determined based on the function value of the PI value.
  • a plurality of ULRAs may be set to correspond to one RO.
  • Different ULRAs may correspond to each PI group (in one RO).
  • PIs in one RO may be divided into a plurality of PI groups, and ULRAs of different frequency resources may correspond to each PI group.
  • the ULRA can be determined based on the PI value (in the PI group).
  • the ULRA may be determined based on a function value of a PI (or PI MOD PI group number) value.
  • the ULRA frequency resource may be determined based on the PI group, and the ULRA time resource may be determined based on the PI value (in the PI group).
  • a different SCID + DMRS combination may correspond to each PI (for one ⁇ PI group, ULRA ⁇ pair).
  • the SCID + DMRS combination can be determined based on the PI value (in the PI group).
  • the SCID + DMRS combination may be determined based on a function value of a PI (or PI MOD PI group number) value.
  • the pairing information of the ⁇ RO, PI ⁇ combination for the RACH preamble and the ⁇ SCID + DMRS, ULRA ⁇ combination of the corresponding PUSCH part, including the above options, may be pre-defined or broadcast through PBCH / SIB or the like. Can be.
  • the UE may select a RACH preamble based on a specific ⁇ RO, PI ⁇ combination and may select a PUSCH part based on a ⁇ SCID + DMRS, ULRA ⁇ combination corresponding to a specific ⁇ RO, PI ⁇ combination.
  • the terminal may perform MsgA transmission in the form of combining / transmitting the finally selected RACH preamble and the PUSCH part.
  • the UE may transmit its UE (global) ID information (and / or BSR information) through a PUSCH part based on a combination of ⁇ SCID + DMRS, ULRA ⁇ .
  • one PI corresponds to one SCID + DMRS combination or one ⁇ SCID + DMRS, ULRA ⁇ combination.
  • a plurality of SCID + DMRS combinations or a plurality of ⁇ SCID + DMRS, ULRA ⁇ combinations may be set to correspond to one PI.
  • a CP (hereinafter, referred to as RACH-CP) applied to a RACH preamble (configured in a TDM form) in MsgA and a CP applied to an OFDM symbol constituting a PUSCH part may be configured as follows. 1) CP length applied to all OFDM symbols in the PUSCH part is configured equal to the RACH-CP length, or 2) CP length applied to the first OFDM symbol in the PUSCH part is configured equal to the RACH-CP length and the PUSCH part The CP length applied to the remaining OFDM symbols in the block may be configured to be smaller than the RACH-CP length. In case 2), the CP length applied to the remaining OFDM symbols in the PUSCH part may be configured to be the same as the CP length applied to the general PUSCH.
  • the PRACH preamble can be used as a DMRS for the PUSCH part. Therefore, the PUSCH part may be set / transmitted without a corresponding DMRS.
  • the SCID may be defined / configured in a form replaced by TC-RNTI.
  • the PUSCH SCID may be derived / determined based on the TC-RNTI.
  • the MsgB signal may have a different transmission format and content configuration according to a form in which the base station instructs / transmits the RO information.
  • PDCCH scheduling MsgB is referred to as MsgB PDCCH.
  • PDSCH scheduled by MsgB PDCCH is referred to as MsgB PDSCH or PDSCH # 1.
  • Option 1 Indicate RO information through RNTI of MsgB PDCCH (eg, RNTI is generated based on RO; see Equation 1)
  • MsgBs may be included in the (single) PDSCH scheduled from the MsgB PDCCH.
  • MsgB may be configured in MAC CE (Control Element) or a similar format.
  • information on which PI value MsgB corresponds to may be included in the MsgB PDSCH or each MsgB.
  • PI (s) may be included in the MsgB PDSCH or in each MsgB.
  • a TA command may be transmitted as well as UE (global) ID information (for collision resolution).
  • C-RNTI information (and / or UE-specific Search Space (USS) configuration information for monitoring C-RNTI-based UE-specific PDCCH) may be transmitted through MsgB.
  • the USS configuration information includes, for example, time / frequency resources to which the USS can be configured / transmitted, period / slot information for performing PDCCH monitoring (eg, blind decoding) operation, and the like.
  • Option 2 Indicate RO information through RNTI of MsgB PDCCH
  • PDSCH # 1 In (scheduled) PDSCH # 1 scheduled from MsgB PDCCH, one or more DL grant information scheduling PDSCH # 2 carrying individual MsgB may be included. In this case, the information on whether the DL grant for MsgB corresponding to a PI value (DL grant information) may be included in PDSCH # 1.
  • PDSCH # 1 may include one or more (PI, DL grant), and PDSCH # 2 corresponding to PI may include individual MsgB.
  • PDSCH # 2 carrying a single MsgB corresponding to each PI value may be transmitted based on each DL grant information in PDSCH # 1.
  • Information included in MsgB may be configured in the same manner as Option 1.
  • part of the terminal (global) ID may be transmitted on PDSCH # 1, and the remaining part of the terminal ID may be transmitted on PDSCH # 2 or MsgB.
  • PDSCH # 1 and PDSCH # 2 may be transmitted in a TDM form that is continuous in time.
  • PDSCH # 2 may be transmitted continuously after PDSCH # 1.
  • PDSCH # 1 may include one or more DL grant information for scheduling PDSCH # 2 carrying MsgB for a PI group. Information about whether the DL grant information corresponds to a DL grant for MsgB corresponding to which PI group may be included in PDSCH # 1.
  • PDSCH # 2 may include MsgB (s) corresponding to one or more PI value (s) belonging to a PI group. In this case, information on which PI value MsgB corresponds to may be included in PDSCH # 2 or each MsgB.
  • Option 3 Indicate RO information through RNTI of MsgB PDCCH
  • An individual MsgB corresponding to a specific PI value may be included in the (single) PDSCH scheduled from the MsgB PDCCH.
  • information on which PI value MsgB corresponds to (MsgB) may be indicated through a specific field in the MsgB PDCCH.
  • MsgB may be configured in the same manner as Option 1.
  • MsgB may further include RRC connection related information.
  • PUCCH resource information for HARQ-ACK feedback transmission for MsgB reception may be indicated through MsgB PDCCH.
  • One or more MsgB (s) corresponding to one specific PI group may be included in the (single) PDSCH scheduled from the MsgB PDCCH.
  • information on which PI group (MsgB (s)) corresponds to which PI group may be indicated through a specific field in the MsgB PDCCH.
  • each MsgB may be included in each MsgB or PDSCH scheduled from the MsgB PDCCH.
  • Option 4 indicate RO information through a specific field in MsgB PDCCH
  • the RNTI used for MsgB PDCCH transmission may be set for each PI value or SCID value (used for the PUSCH part of MsgA).
  • the RNTI may be pre-defined (per PI or SCID), broadcast via PBCH / SIB, or the like, or determined as a function of PI or SCID.
  • the SCID value may be derived / determined based on the RNTI.
  • MsgB On the PDSCH scheduled from the MsgB PDCCH, a (single) MsgB corresponding to the PI value linked to the RNTI value may be transmitted.
  • Information included in MsgB may be configured as Option 1.
  • MsgB may further include RRC connection related information.
  • PUCCH resource information for HARQ-ACK feedback transmission for MsgB reception may be indicated through MsgB PDCCH.
  • One or more MsgB (s) corresponding to one particular RO group may be included in the (one) PDSCH scheduled from the MsgB PDCCH.
  • information on which RO group (MsgB (s)) corresponds to which RO group may be indicated through a specific field in the MsgB PDCCH.
  • each MsgB corresponds to MsgB
  • information on which RO in each RO group (each MsgB) corresponds to MsgB may be included in the PDSCH or each MsgB.
  • Option 5 Indicate RO information through MsgB or PDSCH carrying it
  • the RNTI used for MsgB PDCCH transmission may be set in the same manner as Option 4.
  • One or more MsgBs may be included in the (one) MsgB PDSCH scheduled from the MsgB PDCCH.
  • MsgB Information included in MsgB may be configured in the same manner as Option 1.
  • Option 6 Indicate RO information through MsgB or PDSCH carrying it
  • the RNTI used for MsgB PDCCH transmission may be set as Option 4.
  • one or more DL grant information may be included in (single) PDSCH # 1 scheduled from MsgB PDCCH to schedule PDSCH # 2 carrying individual MsgB.
  • PDSCH # 1 Information on which DL grant is for a MsgB corresponding to which RO (DL grant information in PDSCH # 1) may be included in PDSCH # 1.
  • PDSCH # 2 carrying a single MsgB corresponding to each RO may be transmitted.
  • Information included in MsgB may be configured in the same manner as Option 1.
  • part of the terminal (global) ID may be transmitted through PDSCH # 1, and part of the terminal (global) ID may be transmitted through PDSCH # 2 or MsgB.
  • v. PDSCH # 1 and PDSCH # 2 may be transmitted in a TDM form that is continuous in time.
  • PDSCH # 2 may be transmitted continuously after PDSCH # 1.
  • PDSCH # 1 one or more DL grant information for scheduling PDSCH # 2 may be transmitted.
  • PDSCH # 2 carries MsgB corresponding to each RO group.
  • PDSCH # 2 may include MsgB (s) corresponding to one or more RO (s) belonging to one RO group. Information on which RO (MsgB) corresponds to which RO may be included in PDSCH # 2 or each MsgB.
  • Option 7 Instruct ⁇ RO, PI ⁇ combination through RNTI of MsgB PDCCH
  • the RNTI used for MsgB PDCCH transmission may be set for each ⁇ RO, PI ⁇ combination corresponding to MsgA.
  • the RNTI may be pre-defined (per ⁇ PO, PI ⁇ combination), broadcast over PBCH / SIB, or the like, or determined as a function of the ⁇ PO, PI ⁇ combination.
  • the SCID value may be derived / determined based on the RNTI.
  • the (single) MsgB corresponding to the ⁇ RO, PI ⁇ combination linked to the RNTI value may be transmitted through the PDSCH scheduled from the MsgB PDCCH.
  • Information included in MsgB may be configured in the same manner as Option 1.
  • MsgB may further include RRC connection related information.
  • PUCCH resource information for HARQ-ACK feedback transmission for MsgB reception may be indicated through MsgB PDCCH.
  • One or more MsgB (s) corresponding to ⁇ RO, PI group ⁇ combination, ⁇ RO group, PI ⁇ combination, or ⁇ RO group, PI group ⁇ combination may be included in the (single) PDSCH scheduled from MsgB PDCCH. Can be.
  • Information about the ⁇ RO (group), PI (group) ⁇ combination may be indicated through the RNTI of the MsgB PDCCH.
  • the RNTI of the MsgB PDCCH may be pre-defined / configured for each ⁇ RO (group), PI (group) ⁇ combination or determined as a function of the combination.
  • ⁇ RO group
  • PI group ⁇ corresponding to RNTI
  • information on which ⁇ RO, PI ⁇ combination (MsgB) corresponds to a combination of ⁇ RO, PI ⁇ may be included in the PDSCH or each MsgB. .
  • the UE checks whether a combination of MsgB PDCCH, PDSCH scheduled from MsgB PDCCH, and / or ⁇ RO, PI ⁇ combination indicated through MsgB matches the ⁇ RO, PI ⁇ combination corresponding to MsgA transmitted by the UE. Can be.
  • the UE when the UE (global) ID included in the MsgB matches its ID, the UE transmits HARQ-ACK (eg, ACK) feedback on MsgB reception by applying the received TA command and PUCCH resource information. can do.
  • HARQ-ACK eg, ACK
  • the UE may perform operations such as monitoring and detecting the PDCCH / PDSCH scheduled / transmitted to the MS or scrambling the PUSCH transmitted by the UE based on the C-RNTI and PDCCH USS information included in the MsgB.
  • the PDCCH monitoring opportunity / slot for the MsgB PDCCH may be set differently for each RO (group) and / or PI (group).
  • the related signaling and the UE operation may vary depending on whether 1) retransmission is performed in MsgA unit (ie, including RACH preamble) or 2) retransmission is performed only for the PUSCH part in MsgA.
  • the following options can be considered.
  • MsgA retransmission may be scheduled through a specific PDCCH (hereinafter, MsgA_re PDCCH).
  • MsgA_re PDCCH For example, RO and / or PI information of MsgA to be used for MsgA retransmission may be scheduled through MsgA_re PDCCH.
  • the RO and PI information previously detected by the base station to be retransmitted may be indicated to the terminal.
  • RO information may be indicated through RNTI of MsgA_re PDCCH, and PI value may be indicated through a specific field in MsgA_re PDCCH.
  • the RNTI of the MsgA_re PDCCH is set according to the PI value or the SCID value (and / or the SCID value is derived / determined based on the corresponding RNTI) and the specific value in the MsgA_re PDCCH PDCCH.
  • RO information may be indicated through the field.
  • MsgA_re PDCCH may be divided into 1-bit flags in DCI while using the same RNTI as MsgB PDCCH.
  • the MsgA retransmission scheduling information may be automatically set to MsgA corresponding to the indicated ⁇ RO, PI ⁇ combination.
  • MsgA retransmission (eg, RO and / or PI information of MsgA to be used for retransmission) may be scheduled through a PDSCH corresponding to the MsgB PDCCH (hereinafter, referred to as PDSCH # 1).
  • PDSCH # 1 a PDSCH corresponding to the MsgB PDCCH
  • MsgB PDCCH eg, RNTI, field
  • RO information may be indicated through RNTI of MsgB PDCCH and a PI value may be indicated through MsgB PDSCH.
  • the RNTI of the MsgB PDCCH is set according to the PI value or the SCID value (used in the PUSCH part of MsgA) (and / or the SCID value is derived / determined based on that RNTI), and the RO information is obtained through the MsgB PDSCH. Can be indicated.
  • the RO information and the PI value may be indicated through a combination of the RNTI and the specific field of the MsgB PDCCH.
  • the MsgA retransmission scheduling information in the PDSCH corresponding to the MsgB PDCCH may be divided into DL grant information for scheduling a PDSCH carrying the MsgB (hereinafter, referred to as PDSCH # 2) and a 1-bit flag. Accordingly, the terminal may interpret the grant information in PDSCH # 1 as MsgA retransmission scheduling information or DL grant information for PDSCH # 2 reception according to the 1-bit flag value.
  • the MsgA retransmission scheduling information may be automatically set to MsgA corresponding to the indicated ⁇ RO, PI ⁇ combination.
  • the UE may increase MsgA transmission power and increase an RACH retransmission counter value. In this case, the UE may increase the transmission power of the entire MsgA including the PUSCH part.
  • MsgA retransmission (eg, SCID + DMRS, UL grant for PUSCH, TA and / or TPC command information) may be scheduled over a specific (hereinafter, MsgA_re PDCCH) PDCCH.
  • MsgA_re PDCCH specific (hereinafter, MsgA_re PDCCH) PDCCH.
  • RO and PI (or SCID) information (previously detected by the base station) to be retransmitted may be indicated through the RNTI and the specific field of the MsgA_re PDCCH.
  • RO information may be indicated through RNTI of MsgA_re PDCCH and a PI (or SCID) value may be indicated through a specific field in MsgA_re PDCCH.
  • the RNTI of the MsgA_re PDCCH is set according to the PI value or the SCID value (and / or the SCID value is derived / determined based on that RNTI) based on the specific field in the MsgA_re PDCCH.
  • RO information may be indicated.
  • MsgA_re PDCCH may be divided into 1-bit flags in DCI while using the same RNTI as MsgB PDCCH. For example, whether the content in the PDSCH corresponding to the PDCCH is MsgA retransmission scheduling information or MsgB itself (or DL grant information scheduling MsgB PDSCH) may be indicated by a 1-bit DCI flag.
  • MsgA retransmission scheduling information is a combination of ⁇ SCID + DMRS, ULRA ⁇ corresponding to the indicated ⁇ RO, PI ⁇ combination. It may be set automatically for the PUSCH part based on the.
  • MsgA retransmission scheduling information may be determined based on UL grant (and / or TA and / or TPC command) information for the PUSCH.
  • MsgA retransmission (eg, SCID + DMRS, UL grant for PUSCH and / or TA and / or TPC command information) may be scheduled through a PDSCH corresponding to the MsgB PDCCH (hereinafter, referred to as PDSCH # 1).
  • RO and PI (or SCID) information (previously detected by the base station) to be retransmitted may be indicated to the terminal through PDSCH # 1 and / or MsgB PDCCH (eg, RNTI, field).
  • RO information may be indicated through RNTI of MsgB PDCCH and a PI (or SCID) value may be indicated through PDSCH # 1.
  • the RNTI of the MsgB PDCCH is set according to the PI value or the SCID value (used in the PUSCH part of MsgA) (and / or the SCID value is derived / determined based on the corresponding RNTI), and the RO information through PDSCH # 1. May be indicated.
  • the RO information and the PI (or SCID) value may be indicated through a combination of the RNTI and the specific field of the MsgB PDCCH.
  • MsgA retransmission scheduling information in PDSCH # 1 is divided into MsgB itself and 1-bit flag in PDSCH # 1 (eg, in case of Option 1/3/4/5/7 among MsgB configuration options), or (eg In the case of Option 2/6 among the MsgB configuration options, DL grant information scheduling the PDSCH carrying the MsgB (hereinafter referred to as PDSCH # 2) and a 1-bit flag may be divided. That is, in the former case, whether the content contained in PDSCH # 1 is MsgA retransmission scheduling information or MsgB itself may be indicated by a 1-bit flag. In the latter case, whether the content contained in PDSCH # 1 is MsgA retransmission scheduling information or DL grant information for scheduling PDSCH # 2 carrying MsgB may be indicated by a 1-bit flag.
  • MsgA retransmission scheduling information is a combination of ⁇ SCID + DMRS, ULRA ⁇ corresponding to the indicated ⁇ RO, PI ⁇ combination. It may be set automatically for the PUSCH part based on the.
  • MsgA retransmission scheduling information may be determined based on UL grant (and / or TA and / or TPC command) information for the PUSCH.
  • the UE may not increase the RACH retransmission counter value without increasing the transmission power of the PUSCH part (automatically without a non-zero TPC command).
  • Option 1 uses a specific PDCCH
  • Option 2 uses a PDSCH corresponding to the MsgB PDCCH, and 1) retransmits the entire MsgA including the RACH preamble based on Case # 1, and 2) based on Case # 2. Whether to perform retransmission only for the PUSCH part in the MsgA may be signaled.
  • a method of combining or selectively applying a 2-step RACH operation and a 4-step RACH operation may be considered. Specifically, the following options may be considered.
  • the terminal may include the C-RNTI (and / or BSR information) (not the terminal (global) ID) in the PUSCH part of MsgA.
  • the UE may monitor Opt 1) MsgB PDCCH (within the RAR window) and / or Opt 2) PDCCH based on its C-RNTI.
  • MsgB can include C-RNTI (rather than terminal (global) ID). After confirming that the C-RNTI included in the MsgB matches its C-RNTI, the UE may transmit HARQ-ACK feedback for MsgB reception (by applying a TA command included in MsgB).
  • MsgB PDCCH may be monitored based on RA-RNTI.
  • the UE may recognize that the collision resolution succeeded / completed when the C-RNTI-based PDCCH is detected (regardless of the DCI format type (eg, DL or UL grant)) after MsgA transmission.
  • the TA command may be indicated through the PDCCH or the PDSCH scheduled therefrom. Recognizing that the conflict resolution is successful / completed may be limited to the case where a TA command is involved in the C-RNTI based PDCCH.
  • the UE may perform an operation according to the control information of the detected PDCCH (eg, Opt 1 operation). If conflict resolution is successful / completed, the UE may determine that the RACH process has been successfully completed. Accordingly, an operation for receiving MsgB (eg, Opt 1 operation) may be stopped.
  • the control information of the detected PDCCH eg, Opt 1 operation
  • the above operation may be applied to the case where the terminal performs the CB-RACH process for the purpose of transmitting UL SR information or when the base station instructs the terminal to perform the CB-RACH process directly through PDCCH order signal transmission.
  • the terminal may include the C-RNTI (and / or BSR information) (not the terminal (global) ID) in the PUSCH part of MsgA.
  • the UE may monitor Opt 1) MsgB PDCCH (within the RAR window) and / or Opt 2) PDCCH based on its C-RNTI.
  • MsgB may contain a C-RNTI (not a terminal (global) ID), or MsgB may not contain a C-RNTI (as well as a terminal ID).
  • the UE may transmit HARQ-ACK feedback for MsgB reception (by applying a TA command included in MsgB).
  • MsgB PDCCH may be monitored based on RA-RNTI.
  • the UE may recognize that the collision resolution succeeded / completed when the C-RNTI-based PDCCH is detected (regardless of the DCI format type (eg, DL or UL grant)) after MsgA transmission.
  • the TA command may be indicated through the PDCCH or the PDSCH scheduled therefrom. Recognizing that the conflict resolution is successful / completed may be limited to the case where a TA command is involved in the C-RNTI based PDCCH.
  • the UE may perform an operation according to the control information of the detected PDCCH (eg, Opt 1 operation). If conflict resolution is successful / completed, the UE may determine that the RACH process has been successfully completed. Accordingly, an operation for receiving MsgB (eg, Opt 1 operation) may be stopped.
  • the control information of the detected PDCCH eg, Opt 1 operation
  • ⁇ RO, PI ⁇ for MsgA to be transmitted by the UE through the PDCCH order is provided.
  • ⁇ SCID + DMRS, ULRA ⁇ combination information may be signaled.
  • 14 shows an example of performing a RACH process according to the present invention. 14 may be applied to CB / CF RACH operation after RRC connection.
  • the terminal may transmit a random access request message (eg, MsgA) to the base station.
  • the MggA transmission includes a random access preamble (RAP) transmission (S1402) and a PUSCH transmission (S140.)
  • RAP is transmitted in one RO of a plurality of ROs, and each RO may correspond to one or more PUSCH resources. May include a time frequency resource used for RAP transmission, and the PUSCH resource may include at least one of a PUSCH time-frequency resource, a PUSCH scrambling ID, and a PUSCH DMRS resource, and accordingly, the PUSCH transmission (S140 may be a RAP transmission (S1402).
  • MsgA may be performed in an RRC connected state
  • the PUSCH S1404 may include a C-RNTI of the UE, in order to receive the MsgB, the UE is associated with the RAP.
  • the UE may monitor a specific RNTI-based PDCCH (eg, CRC of the PDCCH is masked to a specific-RNTI) within the time window for MsgB reception.
  • Specific RNTI is RA-RNTI
  • the UE may perform PDCCH monitoring to check whether there is a C-RNTI-based PDCCH (eg, CRC of the PDCCH is masked with C-RNTI) of S1404 within a time window.
  • the -RNTI-based PDCCH is detected (S1406), and the TA command may be included in the PDSCH indicated by the PDCCH of S1406 (S1408).
  • the UE determines that the collision resolution is successful and terminates the RACH process. Accordingly, even if the MsgB is not received, the UE may terminate the PDCCH monitoring process for receiving the MsgB in the remaining time window, for example, the UE monitors the PDCCH to check whether there is a RA-RNTI-based PDCCH. You can end your work.
  • the UE may check whether the C-RNTI-based PDCCH in the time window is a response to MsgA or represents a general PDCCH. For example, when a C-RNTI-based PDCCH without a TA command is received, the UE may continue to perform a PDCCH monitoring process for MsgB reception in the remaining time window.
  • the TA command may be received through the PDCCH of S1406, unlike the illustrated. In this case, S1408 can be omitted.
  • the TA command may be received through the PDCCH.
  • PDSCH reception according to S1408 may be omitted.
  • a plurality of bits constituting an RA field in a C-RNTI-based PDCCH indicate an invalid resource allocation (e.g., in RB or RBG units).
  • DCI C-RNTI-based PDCCH
  • the UE may consider a method of operating in a state where it is considered / interpreted that the TA command is indicated (without PDSCH scheduling) through the corresponding PDCCH (DCI).
  • the TA command may be indicated through the remaining fields (eg, MCS / TBS, HARQ process ID, NDI / RV) in the corresponding DCI.
  • the UE feeds back the ACK response to the DCI reception by applying the A / N transmission timing and A / N PUCCH resources indicated through the A / N timing indication field and the A / N PUCCH resource allocation field in the corresponding DCI.
  • the UE may operate in the state of considering / interpreting the corresponding PDCCH (DCI) as a general PDCCH (scheduling PDSCH transmission). Can be.
  • the same method as described above may be applied in a state where the PDCCH (DCI) is replaced with the UL grant PDCCH (DCI).
  • the TBS value / range that can be transmitted through MsgA of the 2-step RACH (that is, the PUSCH part in MsgA) and the TBS value / range that can be transmitted through Msg3 of the 4-step RACH may be defined / configured differently. That is, it is possible to define / set whether transmission based on which format of MsgA of 2-step RACH and Msg3 of 4-step RACH is possible for each TBS value / range.
  • the information may be pre-defined or broadcast through PBCH / SIB.
  • the UE may switch to the 2-step RACH process. Accordingly, the terminal may perform MsgA transmission.
  • the R value may be pre-defined or broadcast over PBCH / SIB.
  • the UE may switch to the 4-step RACH process (see FIG. 11). Accordingly, the terminal may perform Msg1 transmission.
  • the R value may be pre-defined or broadcast over PBCH / SIB.
  • the TBS value / range that can be transmitted through MsgA (ie, PUSCH part in MsgA) of the 2-step RACH may be defined / configured differently for each PI (group) or RO (group) or ⁇ PI, RO ⁇ combination.
  • the information may be pre-defined or broadcast through PBCH / SIB. That is, it is possible to define / set which PI (group), RO (group) or MsgA transmission based on ⁇ PI, RO ⁇ combination is possible for each TBS value / range.
  • the terminal may select a PI / RO set / corresponding to its preferred TBS transmission and transmit a corresponding / configured MsgA.
  • resources allocated to the PUSCH part of MsgA may be defined / configured differently for each TBS value / range (and / or PUSCH part (re) transmission) that can be transmitted through MsgA.
  • the information may be pre-defined or broadcast through PBCH / SIB. For example, allocating more frequency resources (e.g., RB) to the PUSCH part of MsgA set / corresponding to a larger TBS transmission (with the same number of time resources (e.g., symbols)) or (e.g., frequency resources (e.g., The number of RBs) can allocate more time resources (e.g., symbols) to larger TBS transmissions.
  • frequency resources e.g., symbols
  • frequency resources e.g., RB
  • More time resources may be allocated to the (m + k) th PUSCH part retransmission than to the m-th PUSCH part transmission (with the same number of frequency resources (eg, RB)).
  • the number of retransmissions of MsgA eg, PUSCH part in MsgA
  • a specific value R change to a TBS smaller than the corresponding TBS to perform corresponding MsgA transmission.
  • the R value may be pre-defined or broadcast through PBCH / SIB.
  • the UE may select which operation of 2-step RACH and 4-step RACH to perform according to the measured RSRP, path loss and / or the required TX power level.
  • the PUSCH part transmission included in MsgA in the 2-step RACH process is likely to require a relatively large amount of resources as compared to the PUSCH transmission carrying Msg3 in the 4-step RACH process.
  • the PUSCH transmission power levels associated with the 2-step RACH and the 4-step RACH may be different, or the maximum transmission power of the UE may be insufficient for a specific X-step RACH.
  • the UE may select one of two RACHs according to the PUSCH transmission power that the base station wants to receive and / or the PUSCH transmission power required for path loss compensation in the terminal.
  • the foregoing is applied as a condition for determining switching between MsgA transmission of 2-step RACH and Msg1 transmission of 4-step RACH, and / or switching between MsgA transmission of 2-step RACH and Msg3 transmission of 4-step RACH.
  • the UE may select one of two-step RACH and four-step RACH.
  • the U-band channel state according to LBT is (statistically) dependent on the level of idle / busy (e.g., whether the probability of idle / busy is greater than or equal to Y% or less, and the ratio between children and busyness is greater than or less than Z).
  • the UE may select one of two RACH processes.
  • the Y value and / or Z value may be pre-defined or broadcast over PBCH / SIB or the like.
  • the MsgA maximum retransmission counter value A or the LBT maximum failure counter value B may be defined / set separately from the Msg1 maximum retransmission counter value of the 4-step RACH. For example, if the number of (re) transmissions of MsgA exceeds A, the UE may switch to a 4-step RACH process (ie, perform Msg1 transmission; see FIG. 11).
  • the A value and / or B value may be pre-defined or broadcast over PBCH / SIB or the like.
  • the LBT type for the (first) UL transmission (eg, Msg1 or MsgA) of the 2-step RACH and the 4-step RACH may be defined / configured differently.
  • the UE may try both LBT types and select a RACH process including a UL transmission format in which a successful LBT type is set.
  • the PDCCH / PDSCH scheduling the retransmission of the PUSCH part of the MsgA may be instructed to switch the retransmission of the corresponding PUSCH part to the Msg3 type / format.
  • the TC-RNTI may be included in the corresponding PDCCH / PDSCH.
  • the UE may perform scrambling on the Msg3 PUSCH (scheduled through the PDCCH / PDSCH) based on the TC-RNTI.
  • MsgB may be transmitted (the UE monitors the MsgB PDCCH) or Msg4 may be transmitted (in this case, the UE monitors the TC-RNTI based PDCCH).
  • the MsgB may not include additional C-RNTI information. Instead, the terminal may use the TC-RNTI as the C-RNTI.
  • the 1st of the Y-step RACH (relative to the latest 1st-Msg transmit power (and / or RACH retransmission counter value) in the previous X-step RACH). Whether to increase or maintain the Msg transmit power (and / or RACH retransmission counter value) may be signaled.
  • the transmission resource can be set.
  • Opt 1 With the same RO set between 2 / 4-step RP, different PI values can be set between 2-step RP and 4-step RP (within one RO). That is, 2 / 4-step RP share RO and can be distinguished by PI value.
  • Opt 2 With the same PI values (sets) set (to share) between 2 / 4-step RPs, different ROs can be set between 2-step and 4-step RPs. That is, the 2 / 4-step RP shares the PI and can be distinguished by RO.
  • Opt 4 Whether Opt 1/2/3 (or Opt 1/2 or Opt 1/3 or Opt 2/3) is applied (and corresponding RO / PI setting information) depends on the PBCH / SIB, etc. Can be broadcast via
  • 2-step MsgB and 4-step RAR may be included together in the PDSCH scheduled from the RNTI-based PDCCH (determined by RO).
  • the PDSCH (payload) is RAR may be mapped first (eg, to the lower / fast bit index portion), and then MsgB may be mapped.
  • RNTI Through (i) RNTI of PDCCH scheduling MsgB or RAR, or (ii) 1-bit flag in corresponding PDCCH, it may be indicated whether MsgB or RAR is included in corresponding PDSCH.
  • the RNTI may be determined based on the RO and RACH types. For example, Equation 1 may be modified as follows.
  • RA-RNTI 1 + s_id + 14 ⁇ t_id + 14 * 80 * f_id + 14 * 80 * 8 * ul_carrier_id + 14 * 80 * 8 * 2 * rach_step
  • rach_step may be 0 for 4-step RACH and 1 for 2-step RACH.
  • the DCI payload size of the PDCCH scheduling MsgB and the DCI payload size of the PDCCH scheduling RAR may be set differently.
  • PUSCH resource allocation through MsgB (or PDCCH scheduling it) and It may be applied in place of the corresponding PUSCH transmission operation (to which TA command is applied).
  • a communication system 1 applied to the present invention includes a wireless device, a base station and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G New RAT (Long Term), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device.
  • the wireless device may be a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, a home appliance 100e. ), IoT (Internet of Thing) device (100f), AI device / server 400 may be included.
  • the vehicle may include a vehicle having a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an unmanned aerial vehicle (UAV) (eg, a drone).
  • UAV unmanned aerial vehicle
  • XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, Head-Mounted Device (HMD), Head-Up Display (HUD), television, smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smartphone, a smart pad, a wearable device (eg, smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • the home appliance may include a TV, a refrigerator, a washing machine, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg LTE) network or a 5G (eg NR) network.
  • the wireless devices 100a-100f may communicate with each other via the base station 200 / network 300, but may also communicate directly (e.g. sidelink communication) without going through the base station / network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. vehicle to vehicle (V2V) / vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with another IoT device (eg, sensor) or another wireless device 100a to 100f.
  • Wireless communication / connection 150a, 150b, 150c may be performed between the wireless devices 100a-100f / base station 200 and base station 200 / base station 200.
  • the wireless communication / connection is various wireless connections such as uplink / downlink communication 150a, sidelink communication 150b (or D2D communication), inter-base station communication 150c (eg relay, integrated access backhaul), and the like.
  • Technology eg, 5G NR
  • wireless communication / connections 150a, 150b, 150c, the wireless device and the base station / wireless device, the base station and the base station may transmit / receive radio signals to each other.
  • the wireless communication / connection 150a, 150b, 150c may transmit / receive signals over various physical channels.
  • a wireless signal for transmission / reception At least some of various configuration information setting processes, various signal processing processes (eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.) and resource allocation processes may be performed.
  • FIG. 16 illustrates a wireless device that can be applied to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • the ⁇ first wireless device 100 and the second wireless device 200 ⁇ may refer to the ⁇ wireless device 100x, the base station 200 ⁇ and / or the ⁇ wireless device 100x, the wireless device 100x of FIG. ⁇ .
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108.
  • the processor 102 controls the memory 104 and / or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 102 may process the information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106.
  • the processor 102 may receive the radio signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104.
  • the memory 104 may be coupled to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform instructions to perform some or all of the processes controlled by the processor 102 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them.
  • processor 102 and memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled to the processor 102 and may transmit and / or receive wireless signals via one or more antennas 108.
  • the transceiver 106 may include a transmitter and / or a receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • a wireless device may mean a communication modem / circuit / chip.
  • the second wireless device 200 may include one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208.
  • the processor 202 controls the memory 204 and / or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information / signal, and then transmit the wireless signal including the third information / signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information / signal through the transceiver 206 and then store information obtained from the signal processing of the fourth information / signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and store various information related to the operation of the processor 202. For example, the memory 204 may perform instructions to perform some or all of the processes controlled by the processor 202 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them.
  • processor 202 and memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be coupled with the processor 202 and may transmit and / or receive wireless signals via one or more antennas 208.
  • the transceiver 206 may include a transmitter and / or a receiver.
  • the transceiver 206 may be mixed with an RF unit.
  • a wireless device may mean a communication modem / circuit / chip.
  • One or more protocol layers may be implemented by one or more processors 102, 202, although not limited thereto.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may employ one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • One or more processors 102, 202 may generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information in accordance with the functions, procedures, suggestions and / or methods disclosed herein.
  • signals eg, baseband signals
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and include descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • a PDU, an SDU, a message, control information, data, or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be included in one or more processors (102, 202) or stored in one or more memories (104, 204) of It may be driven by the above-described processor (102, 202).
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software in the form of code, instructions, and / or a set of instructions.
  • One or more memories 104, 204 may be coupled to one or more processors 102, 202 and may store various forms of data, signals, messages, information, programs, codes, instructions, and / or instructions.
  • One or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage medium, and / or combinations thereof.
  • One or more memories 104, 204 may be located inside and / or outside one or more processors 102, 202.
  • one or more memories 104, 204 may be coupled with one or more processors 102, 202 through various techniques, such as a wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, wireless signals / channels, etc., as mentioned in the methods and / or operational flowcharts of this document, to one or more other devices.
  • One or more transceivers 106 and 206 may receive, from one or more other devices, user data, control information, wireless signals / channels, etc., as mentioned in the description, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. have.
  • one or more transceivers 106 and 206 may be coupled with one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102 and 202 may control one or more transceivers 106 and 206 to transmit user data, control information or wireless signals to one or more other devices.
  • one or more processors 102 and 202 may control one or more transceivers 106 and 206 to receive user data, control information or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled with one or more antennas 108, 208, and one or more transceivers 106, 206 may be connected to one or more antennas 108, 208 through the description, functions, and features disclosed herein.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers 106, 206 may process the received wireless signal / channel or the like in an RF band signal to process received user data, control information, wireless signals / channels, etc. using one or more processors 102,202.
  • the baseband signal can be converted.
  • One or more transceivers 106 and 206 may use the one or more processors 102 and 202 to convert processed user data, control information, wireless signals / channels, etc. from baseband signals to RF band signals.
  • one or more transceivers 106 and 206 may include (analog) oscillators and / or filters.
  • FIG. 17 shows another example of a wireless device to which the present invention is applied.
  • the wireless device may be implemented in various forms depending on the use-example / service (see FIG. 15).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 16 and may correspond to various elements, components, units / units, and / or modules. It can be composed of).
  • the wireless device 100, 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include communication circuitry 112 and transceiver (s) 114.
  • communication circuitry 112 may include one or more processors 102, 202 and / or one or more memories 104, 204 of FIG. 16.
  • the transceiver (s) 114 may include one or more transceivers 106, 206 and / or one or more antennas 108, 208 of FIG. 16.
  • the controller 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, other communication devices) through the communication unit 110 through a wireless / wired interface, or externally (eg, through the communication unit 110). Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130.
  • the outside eg, other communication devices
  • Information received through a wireless / wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit / battery, an I / O unit, a driver, and a computing unit.
  • the wireless device may be a robot (FIGS. W1, 100a), a vehicle (FIGS. W1, 100b-1, 100b-2), an XR device (FIGS. W1, 100c), a portable device (FIGS. W1, 100d), a home appliance (Fig. W1, 100e), IoT devices (Fig.
  • W1, 100f terminals for digital broadcasting, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate / environment devices, It may be implemented in the form of an AI server / device (FIG. W1, 400), a base station (FIG. W1, 200), a network node, or the like.
  • the wireless device may be used in a mobile or fixed location depending on the usage-example / service.
  • various elements, components, units / units, and / or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a part of them may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire in the wireless device 100 or 200, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit / unit, and / or module in wireless device 100, 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • the controller 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, a memory control processor, and the like.
  • the memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and / or combinations thereof.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • a vehicle or an autonomous vehicle 100 may include an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a portion 140d.
  • the antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130 / 140a through 140d respectively correspond to blocks 110/130/140 in FIG.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles, a base station (e.g. base station, road side unit, etc.), a server, and other external devices.
  • the controller 120 may control various elements of the vehicle or the autonomous vehicle 100 to perform various operations.
  • the control unit 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driver 140a may include an engine, a motor, a power train, wheels, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired / wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, a vehicle forward / Reverse sensors, battery sensors, fuel sensors, tire sensors, steering sensors, temperature sensors, humidity sensors, ultrasonic sensors, illuminance sensors, pedal position sensors, and the like.
  • the autonomous driving unit 140d is a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and automatically setting a route when a destination is set. Technology and the like.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the obtained data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous vehicle 100 along the autonomous driving path according to the driving plan (eg, speed / direction adjustment).
  • the communication unit 110 may acquire the latest traffic information data aperiodically from an external server and may obtain the surrounding traffic information data from the surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly obtained data / information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • the present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 RAP 전송과 PUSCH전송을 포함하는 랜덤 접속 요청 메시지를 전송하되, 상기 PUSCH 전송은 상기 RAP 전송과 관련된 자원을 이용하여 전송되며 C-RNTI를 포함하는 단계; 및 상기 랜덤 접속 요청 메시지에 대한 응답을 수신하기 위해, 시간 윈도우 내에서 PDCCH를 모니터링 하는 단계를 포함하되, 상기 시간 윈도우 내에서 TA 커맨드가 수반된 제1 PDCCH가 검출되고, 상기 제1 PDCCH가 상기 C-RNTI에 의해 지시되는 경우, 상기 랜덤 접속 요청 메시지에 대한 응답을 수신하는 과정은 종료되는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 통신 장치가 신호를 전송하는 방법에 있어서, RAP(Random Access Preamble) 전송과 PUSCH(Physical Uplink shared Channel) 전송을 포함하는 랜덤 접속 요청 메시지를 전송하되, 상기 PUSCH 전송은 상기 RAP 전송과 관련된 자원을 이용하여 전송되며 C-RNTI(Cell-Radio Network Temporary Identifier)를 포함하는 단계; 및 상기 랜덤 접속 요청 메시지에 대한 응답을 수신하기 위해, 시간 윈도우 내에서 PDCCH(Physical Downlink Control Channel)를 모니터링 하는 단계를 포함하되, 상기 시간 윈도우 내에서 TA(Timing Advance) 커맨드가 수반된 제1 PDCCH가 검출되고, 상기 제1 PDCCH가 상기 C-RNTI에 의해 지시되는 경우, 상기 랜덤 접속 요청 메시지에 대한 응답을 수신하는 과정은 종료되는 방법이 제공된다.
본 발명의 다른 양상으로, 무선 통신 시스템에 사용되는 통신 장치에 있어서, 메모리; 및 프로세서를 포함하고, 상기 프로세서는, RAP(Random Access Preamble) 전송과 PUSCH(Physical Uplink shared Channel) 전송을 포함하는 랜덤 접속 요청 메시지를 전송하되, 상기 PUSCH 전송은 상기 RAP 전송과 관련된 자원을 이용하여 전송되며 C-RNTI(Cell-Radio Network Temporary Identifier)를 포함하고, 상기 랜덤 접속 요청 메시지에 대한 응답을 수신하기 위해, 시간 윈도우 내에서 PDCCH(Physical Downlink Control Channel)를 모니터링 하도록 구성되고, 상기 시간 윈도우 내에서 TA(Timing Advance) 커맨드가 수반된 제1 PDCCH가 검출되고, 상기 제1 PDCCH가 상기 C-RNTI에 의해 지시되는 경우, 상기 랜덤 접속 요청 메시지에 대한 응답을 수신하는 과정은 종료되는 통신 장치가 제공된다.
바람직하게, 상기 랜덤 접속 요청 메시지에 대한 응답을 수신하는 과정은, 상기 시간 윈도우 내에서 RA-RNTI에 의해 지시된 PDCCH를 모니터링 것을 포함할 수 있다.
바람직하게, 상기 TA 커맨드는 상기 제1 PDCCH에 포함되거나, 상기 제1 PDCCH에 대응하는 PDSCH(Physical Downlink Shared Channel)에 포함될 수 있다.
바람직하게, 상기 RAP 전송은 복수의 RO(Random Access Occasion) 중 하나의 RO에서 수행되며, 각각의 RO는 하나 이상의 PUSCH 자원에 대응할 수 있다.
바람직하게, 상기 RO는 상기 RAP 전송에 사용되는 시간 주파수 자원을 포함하고, 상기 PUSCH 자원은 PUSCH 시간-주파수 자원, PUSCH 스크램블링 ID 및 PUSCH DMRS(Demodulation Reference Signal) 자원 중 적어도 하나를 포함할 수 있다.
바람직하게, 상기 랜덤 접속 요청 메시지 전송은 RRC(Radio Access Control) 연결 상태에서 수행될 수 있다.
바람직하게, 상기 무선 통신 시스템은 3GPP(3rd Generation Partnership Project)-기반 무선 통신 시스템을 포함할 수 있다.
바람직하게, 상기 통신 장치는 적어도 단말, 네트워크 및 상기 통신 장치 외의 다른 자율 주행 차량과 통신할 수 있는 자율 주행 차량을 포함할 수 있다.
바람직하게, 상기 통신 장치는 RF(Radio Frequency) 유닛을 포함할 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 자기-완비(self-contained) 슬롯의 구조를 예시한다.
도 5는 자기-완비 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 6은 ACK/NACK 전송 과정을 예시한다.
도 7은 PUSCH(Physical Uplink Shared Channel) 전송 과정을 예시한다.
도 8은 제어 정보를 PUSCH에 다중화하는 예를 나타낸다.
도 9는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다.
도 10은 비면허 밴드 내에서 자원을 점유하는 방법을 예시한다.
도 11은 RACH(Random Access Channel) 과정을 예시한다.
도 12는 MAC RAR(Medium Access Control Random Access Response)을 예시한다.
도 13~14는 본 발명에 따른 RACH 과정을 예시한다.
도 15~18은 본 발명에 적용되는 통신 시스템과 무선 기기를 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 제어 영역과 데이터 영역 사이에는 DL-to-UL 혹은 UL-to-DL 스위칭을 위한 시간 갭이 존재할 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
도 5는 자기-완비 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16개의 CCE(Control Channel Element)로 구성된다. CCE는 무선 채널 상태에 따라 소정 부호율의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 6개의 REG(Resource Element Group)로 구성된다. REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, Master Information Block, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB 개수 및 OFDM 심볼 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PDCCH 수신/검출을 위해, 단말은 PDCCH 후보들을 모니터링 한다. PDCCH 후보는 PDCCH 검출을 위해 단말이 모니터링 해야 하는 CCE(들)을 나타낸다. 각 PDCCH 후보는 AL에 따라 1, 2, 4, 8, 16개의 CCE로 정의된다. 모니터링은 PDCCH 후보들을 (블라인드) 디코딩 하는 것을 포함한다. 단말이 모니터링 하는 PDCCH 후보들의 세트를 PDCCH 검색 공간(Search Space, SS)이라고 정의한다. 검색 공간은 공통 검색 공간(Common Search Space, CSS) 또는 단말-특정 검색 공간(UE-specific search space, USS)을 포함한다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간에서 PDCCH 후보를 모니터링 하여 DCI를 획득할 수 있다. 각각의 CORESET는 하나 이상의 검색 공간과 연관되고, 각 검색 공간은 하나의 COREST과 연관된다. 검색 공간은 다음의 파라미터들에 기초하여 정의될 수 있다.
- controlResourceSetId: 검색 공간과 관련된 CORESET를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: 슬롯 내 PDCCH 모니터링 심볼을 나타냄(예, CORESET의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타냄
* PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)을 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 3은 검색 공간 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 UL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 5는 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format Length in OFDM symbols N PUCCH symb Number of bits Usage Etc
0 1 - 2 ≤2 HARQ, SR Sequence selection
1 4 - 14 ≤2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(Pre DFT OCC)
PUCCH 포맷 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.
PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH 포맷 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH 포맷 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH 포맷 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH 포맷 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 6은 ACK/NACK 전송 과정을 예시한다. 도 6을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: K0, 슬롯 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서 PDSCH를 수신한 뒤, 슬롯 #(n+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함한다. PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
도 7은 PUSCH 전송 과정을 예시한다. 도 7을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
도 8은 UCI를 PUSCH에 다중화 하는 예를 나타낸다. 슬롯 내에 복수의 PUCCH 자원과 PUSCH 자원이 중첩되고, PUCCH-PUSCH 동시 전송이 설정되지 않은 경우, UCI는 도시된 바와 같이 PUSCH를 통해 전송될 수 있다(UCI 피기백 또는 PUSCH 피기백). 도 8은 HARQ-ACK과 CSI가 PUSCH 자원에 실리는 경우를 예시한다.
최근 3GPP 표준화 단체에서는 NR(New RAT)로 명명된 5G 무선 통신 시스템에 대한 표준화가 진행되고 있다. 3GPP NR 시스템은 단일 물리 시스템에서 복수의 논리 네트워크를 지원하며, TTI(Transmission Time Interval), OFDM 뉴머놀로지(예, OFDM 심볼 구간(duration), SCS(subcarrier spacing))를 변경하여 다양한 요구 조건을 갖는 서비스(예, eMBB, mMTC, URLLC 등)를 지원하도록 설계되고 있다. 한편, 최근 스마트 기기 등의 등장으로 데이터 트래픽이 급격하게 증가함에 따라, 기존 3GPP LTE 시스템의 LAA(Licensed-Assisted Access)와 유사하게, 3GPP NR 시스템에서도 비 면허 대역을 셀룰러 통신에 활용하는 방안이 고려되고 있다. 단, LAA와 달리, 비면허 대역 내의 NR 셀(이하, NR UCell)은 스탠드얼론(standalone, SA) 동작을 목표로 하고 있다. 일 예로, NR UCell에서 PUCCH, PUSCH 전송 등이 지원될 수 있다.
도 9는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다. 편의상, 면허 대역(이하, L-밴드)에서 동작하는 셀을 LCell로 정의하고, LCell의 캐리어를 (DL/UL) LCC로 정의한다. 또한, 비면허 대역(이하, U-밴드)에서 동작하는 셀을 UCell로 정의하고, UCell의 캐리어를 (DL/UL) UCC로 정의한다. 셀의 캐리어는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, CC)는 셀로 통칭될 수 있다.
캐리어 병합(carrier aggregation)이 지원되는 경우, 하나의 단말은 병합된 복수의 셀/캐리어를 통해 기지국과 신호를 송수신할 수 있다. 하나의 단말에게 복수의 CC가 구성된 경우, 하나의 CC는 PCC(Primary CC)로 설정되고, 나머지 CC는 SCC(Secondary CC)로 설정될 수 있다. 특정 제어 정보/채널(예, CSS PDCCH, PUCCH)은 PCC를 통해서만 송수신 되도록 설정될 수 있다. 데이터는 PCC/SCC를 통해 송수신 될 수 있다. 도 9(a)는 단말과 기지국은 LCC 및 UCC를 통해 신호를 송수신 하는 경우를 예시한다(NSA(non-standalone) 모드). 이 경우, LCC는 PCC로 설정되고 UCC는 SCC로 설정될 수 있다. 단말에게 복수의 LCC가 구성된 경우, 하나의 특정 LCC는 PCC로 설정되고 나머지 LCC는 SCC로 설정될 수 있다. 도 9(a)는 3GPP LTE 시스템의 LAA에 해당한다. 도 9(b)는 단말과 기지국은 LCC 없이 하나 이상의 UCC를 통해 신호를 송수신 하는 경우를 예시한다(SA 모드). 이 경우. UCC들 중 하나는 PCC로 설정되고 나머지 UCC는 SCC로 설정될 수 있다. 3GPP NR 시스템의 비면허 대역에서는 NSA 모드와 SA 모드가 모두 지원될 수 있다.
도 10은 비면허 대역에서 자원을 점유하는 방법을 예시한다. 비면허 대역에 대한 지역별 규제(regulation)에 따르면, 비면허 대역 내의 통신 노드는 신호 전송 전에 다른 통신 노드(들)의 채널 사용 여부를 판단해야 한다. 구체적으로, 통신 노드는 신호 전송 전에 먼저 CS(Carrier Sensing)를 수행하여 다른 통신 노드(들)이 신호 전송을 하는지 여부를 확인할 수 있다. 다른 통신 노드(들)이 신호 전송을 하지 않는다고 판단된 경우를 CCA(Clear Channel Assessment)가 확인됐다고 정의한다. 기-정의된 혹은 상위계층(예, RRC) 시그널링에 의해 설정된 CCA 임계치가 있는 경우, 통신 노드는 CCA 임계치보다 높은 에너지가 채널에서 검출되면 채널 상태를 비지(busy)로 판단하고, 그렇지 않으면 채널 상태를 아이들(idle)로 판단할 수 있다. 참고로, Wi-Fi 표준(802.11ac)에서 CCA 임계치는 non Wi-Fi 신호에 대하여 -62dBm, Wi-Fi 신호에 대하여 -82dBm으로 규정되어 있다. 채널 상태가 아이들이라고 판단되면, 통신 노드는 UCell에서 신호 전송을 시작할 수 있다. 상술한 일련의 과정은 LBT(Listen-Before-Talk) 또는 CAP(Channel Access Procedure)로 지칭될 수 있다. LBT와 CAP는 혼용될 수 있다.
실시예: 2-step RACH
(기존 LTE를 비롯하여) NR에서는 단말의 (초기) 랜덤 접속 동작을 지원하기 위해, 1) 단말로부터 기지국으로의 PRACH 프리앰블(Msg1) 전송, 2) 기지국으로부터 단말로의 RAR(Random Access Response)(Msg2) 전송, 3) 단말로부터 기지국으로의 Msg3 전송, 4) 기지국으로부터 단말로의 (충돌 해결(contention resolution)을 위한) Msg4 전송으로 구성된 4-step RACH 과정을 정의하고 있다.
도 11은 기존의 4-step RACH 과정을 예시한다. 도 11을 참조하면, 각 단계를 통해 전송되는 신호/정보 및 각 단계에서 수행되는 구체적인 동작은 다음과 같다.
1) Msg1 (PRACH): 단말로부터 기지국으로 전송된다(S710). 각각의 Msg1은 RA(Random Access) 프리앰블이 전송되는 시간/주파수 자원(RACH Occasion, RO) 및 프리앰블 인덱스(RA Preamble Index, RAPID)로 구분될 수 있다.
2) Msg2 (RAR PDSCH): Msg1에 대한 응답 메세지이며, 기지국으로부터 단말로 전송된다(S720). Msg2 수신을 위해, 단말은 Msg1과 관련된 시간 윈도우(이하, RAR 윈도우) 내에서 RA-RNTI-기반 PDCCH(예, PDCCH의 CRC가 RA-RNTI로 마스킹됨)가 있는지 PDCCH 모니터링을 수행할 수 있다. RA-RNTI로 마스킹된 PDCCH를 수신한 경우, 단말은 RA-RNTI PDCCH에 의해 지시된 PDSCH로부터 RAR을 수신할 수 있다. RA-RNTI는 다음과 같이 결정될 수 있다.
[수학식 1]
RA-RNTI= 1 + s_id + 14×t_id + 14*80*f_id + 14*80*8*ul_carrier_id
여기서, s_id는 PRACH의 첫 번째 OFDM 심볼의 인덱스를 나타내고(예, 0~13), t_id는 프레임 내에서 PRACH의 첫 번째 슬롯의 인덱스를 나타내며(예, 0~79), f_id는 PRACH의 주파수 자원 인덱스를 나타내고(예, 0~7), ul_carrier_id는 PRACH 전송에 사용된 UL 캐리어 (타입)를 나타낸다(예, 0~1)(예, 0 for Normal Uplink (NUL) carrier, 1 for Supplementary Uplink (SUL) carrier). s_id는 빔에 대응하고, t_id/f_id는 PRACH 전송에 사용되는 시간-주파수 자원(예, RO)에 대응한다.
3) Msg3 (PUSCH): 단말로부터 기지국으로 전송된다(S730). Msg3은 RAR 내의 UL 그랜트에 기반하여 수행된다. Msg3은 충돌 해결 ID(contention resolution identity) (및/또는 BSR(Buffer Status Report) 정보, RRC 연결 요청, 등)를 포함할 수 있다. Msg3 (PUSCH)에는 HARQ 과정에 따른 재전송이 적용될 수 있다. 여기서, 충돌 해결 ID는 UL CCCH(Common Control Channel) SDU(Service Data Unit)를 포함한다. UL CCCH SDU가 48비트보다 큰 경우, UL CCCH SDU의 처음 48비트만 Msg3에 포함될 수 있다.
4) Msg4 (PDSCH): 기지국으로부터 단말로 전송된다(S740). Msg4는 충돌 해결을 위한 단말 (글로벌) ID (및/또는 RRC 연결 관련 정보)를 포함할 수 있다. Msg4에 기반하여 충돌 해결 성공/실패 여부가 판단될 수 있다.
Msg2/Msg4가 성공적으로 수신되지 않으면, 단말은 Msg1을 재전송한다. 이때, 단말은 Msg1의 전송 파워를 증가시키고(파워 램핑), RACH 재전송 카운터 값을 증가시킨다. RACH 재전송 카운터 값이 최대 값에 도달하면, RACH 과정은 완전히 실패한 것으로 판단된다. 이 경우, 단말은 랜덤 백-오프를 수행한 뒤, RACH 관련 파라미터(예, RACH 재전송 카운터)를 초기화하여 RACH 과정을 새로 개시할 수 있다.
도 12는 RAR을 포함하는 MAC PDU(Protocol Data Unit)의 구조를 예시한다.
도 12를 참조하면, MAC PDU는 하나 이상의 MAC subPDU를 포함한다. MAC subPDU는 다음 중 하나의 구조를 가질 수 있다.
- BI(Back-off Indicator)를 갖는 MAC 서브헤더로만 구성됨
- RAPID(Random Access Preamble Index)를 갖는 MAC 서브헤더로만 구성됨(예, SI 요청에 대한 응답)
- RAPID를 갖는 MAC 서브헤더, 및 maRAR로 구성됨
BI를 갖는 MAC 서브헤더는 E/T/R/R/BI 필드로 구성된다. 또한, RAPID를 갖는 MAC 서브헤더는 E/T/RAPID 필드로 구성된다. E 필드는 MAC 서브헤더가 추가로 있는지 여부를 알려주고(1-비트), T 필드는 MAC 서브헤더에 포함된 정보가 BI 또는 RAPID인지 알려주며(1-비트), R 필드는 유보(reserved) 비트로 구성된다.
MAC RAR은 Msg3를 위한 UL 그랜트, TC-RNTI(Temporary C-RNTI) 및 TA(Timing Advance) 커맨드를 포함할 수 있다.
한편, 기존 4-step RACH 과정은 충돌 상황을 전제로 단말과 기지국이 다수의 메세지를 교환하므로 빠른 채널 접속을 요구하는 상황(예, URLLC)에는 적합하지 않을 수 있다. 또한, U-밴드 상황에서 기존의 4-step RACH 과정을 그대로 적용하면, 단말과 기지국이 교차하면서 순차적으로 UL/DL LBT에 성공하지 못할 수 있다(예, RAR/Msg3 스케줄링/전송과 관련한). 이 경우, 자원 효율이 저하되고 단말의 접속 레이턴시가 증가할 수 있다.
이하, 본 발명에서는 빠른 채널 접속을 제공하는 RACH 과정에 대해 제안한다. 구체적으로, 본 발명에서는, 1) 단말로부터 기지국으로의 UL 신호(예, 랜덤 접속 요청 메시지)(이하, MsgA) 전송, 2) 기지국으로부터 단말로의 DL 신호(예, 랜덤 접속 응답 메시지)(이하, MsgB) 전송으로 구성된 2-step RACH 과정에 대해 제안한다. 이하, 초기 RACH 과정을 위주로 설명하지만, 이에 국한되지 않고 RRC 연결 이후의 RACH 과정에도 본 발명의 제안 방법이 동일/유사하게 적용될 수 있다. 또한, U-밴드 상황을 위주로 설명하지만, 본 발명의 RACH 과정은 L-밴드에도 적용될 수 있다. 또한, 이하에서 복수 CC (인덱스)는 하나 (이상)의 CC 또는 (서빙) 셀 내에 구성된 복수 BWP (인덱스) 혹은 복수 BWP로 구성된 복수 CC/셀 (즉, CC (인덱스)와 BWP (인덱스)의 조합)로 대체될 수 있다.
도 13은 본 발명에 따른 2-step RACH 과정을 예시한다. 도 13을 참조하면, 단말은 기지국에게 랜덤 접속 요청 메시지(예, MsgA)를 전송할 수 있다. MsgA 전송은 RAP(Random Access Preamble) 전송(S1302)과 PUSCH 전송(S1304)을 포함한다. 이후, MsgA에 대한 응답(즉, MsgB)을 수신하기 위해, 단말은 RAP와 관련된 시간 윈도우 내에서 PDCCH를 모니터링 할 수 있다. 구체적으로, MsgB 수신을 위해, 단말은 시간 윈도우 내에서 MsgB를 스케줄링 하는 PDCCH(이하, MsgB PDCCH)를 수신하고(S1306), 이에 기반해 MsgB를 수신할 수 있다(S1308). MsgB PDCCH 수신을 위해, 단말은 특정 RNTI-기반의 PDCCH(예, PDCCH의 CRC가 특정-RNTI로 마스킹됨)를 모니터링 할 수 있다. 여기서, PDCCH 모니터링은 PDCCH 후보를 블라인드 디코딩 하는 것을 포함한다. 또한, 특정 RNTI는 RA-RNTI를 포함할 수 있다. MsgB가 성공적으로 수신되지 않거나/않고, 충돌 해결이 실패하면, 단말은 MsgA 재전송을 수행할 수 있다. 한편, MsgB가 수신되고 충돌 해결이 성공하면, RACH 과정은 성공적으로 완료된다. MsgB가 HARQ-ACK 피드백 전송을 위한 PUCCH 자원 할당 정보를 포함하는 경우, 단말은 할당된 PUCCH 자원을 이용하여 MsgB 수신에 대한 HARQ-ACK 피드백을 전송할 수 있다. 또한, MsgB가 TA 커맨드와 PUSCH 자원 할당 정보(예, UL 그랜트)를 포함하는 경우, 단말은 TA 커맨드 및 PUSCH 자원 할당 정보에 기반하여 PUSCH를 전송할 수 있다.
이하, RACH 전송 포맷 구성 및 단말 동작 등에 대해 자세히 설명한다.
(1) MsgA 전송 포맷 및 파라미터 구성
MsgA 신호는 RACH 프리앰블과 PUSCH 파트가 결합된 형태로 구성될 수 있다. RACH 프리앰블과 PUSCH 파트는 예를 들어 TDM/FDM 등으로 결합될 수 있다. 관련 파라미터들을 정의하면 다음과 같다.
1) RACH 프리앰블 (또는, RA 프리앰블)
A. RO(RACH Occasion): 하나의 RACH 프리앰블 신호가 전송될 수 있는 시간/주파수 자원을 의미한다.
B. PI(Preamble Index): 하나의 RO에서 시퀀스상으로 구분 가능한 RACH 프리앰블 인덱스를 의미한다. 예를 들어, 셀 내에서 N개의 RACH 프리앰블이 가용한 경우, PI는 0 ~ N-1으로 설정될 수 있다. 이로 제한되는 것은 아니지만, RACH 프리앰블은 Zadoff-Chu 시퀀스로 구성될 수 있다. PI는 RAPID로 대체될 수 있다.
2) PUSCH 파트
A. SCID(Scrambling ID): PUSCH 파트의 (데이터) 스크램블링에 사용되는 씨드(seed). SCID는 스크램블링 시퀀스를 생성하기 위한 씨드 값으로 사용되며, 생성된 스크램블링 시퀀스는 PUSCH part의 데이터를 스크램블링 하는데 사용된다. PUSCH 파트는 RACH와 관련된 단말 데이터(예, UL-SCH 데이터)를 나른다. 예를 들어, PUSCH 파트를 통해 RRC 연결 요청, BSR(Buffer Status Report), 충돌 해결 ID 등이 전송될 수 있다. 충돌 해결 ID는 단말 (글로벌) ID, CCCH SDU 등을 포함할 수 있다. 일 예로, 단말 (글로벌) ID는 IMSI(International Mobile Subscriber Identity), C-RNTI 등을 포함할 수 있다.
B. DMRS(Demodulation RS): PUSCH 파트의 복조에 사용되는 RS. DMRS는 시퀀스, 사이클릭 쉬프트, RE 패턴/위치, 직교 커버 코드(OCC) 및/또는 SCID 등으로 구분될 수 있다.
C. UL 자원(ULRA): PUSCH 파트 전송에 사용되는 UL (시간/주파수) 자원을 의미한다. ULRA는 ULRA (자원) 인덱스에 의해 식별/구분될 수 있다. (자원) 인덱스는 시간 (자원) 인덱스와 주파수 (자원) 인덱스로 구분될 수 있다.
따라서, MsgA 신호/인덱스는 (1) {RO, PI} 조합에 기반한 RACH 프리앰블과 {SCID+DMRS, ULRA} 조합에 기반한 PUSCH 파트가 (예, TDM/FDM 등으로) 결합된 형태로 구성될 수 있다. MsgA 구성을 위해 다음의 옵션들을 고려할 수 있다.
1) Option 1
A. 하나의 RO에 하나의 ULRA가 대응되도록 설정될 수 있다.
B. (하나의 {RO, ULRA} 페어에 대해) 각 PI에는 서로 다른 SCID+DMRS 조합이 대응될 수 있다. 이를 위해, SCID+DMRS 조합은 PI 값에 기반하여 결정될 수 있다. 예를 들어, SCID+DMRS 조합은 PI 값의 함수 값에 기반하여 결정될 수 있다.
2) Option 2
A. 하나의 RO에 복수의 ULRA가 대응되도록 설정될 수 있다.
B. (하나의 RO 내의) 각 PI 그룹에는 서로 다른 ULRA가 대응될 수 있다. 예를 들어, 하나의 RO 내의 PI들은 복수의 PI 그룹으로 구분되고, 각 PI 그룹에는 상이한 주파수 자원의 ULRA가 대응될 수 있다. 다른 방법으로, ULRA는 (PI 그룹 내의) PI 값에 기반하여 결정될 수 있다. 예를 들어, ULRA는 PI (또는, PI MOD PI 그룹 개수) 값의 함수 값에 기반하여 결정될 수 있다. 또한, ULRA 주파수 자원은 PI 그룹에 기반하여 결정되고, ULRA 시간 자원은 (PI 그룹 내의) PI 값에 기반하여 결정될 수 있다.
C. (하나의 {PI 그룹, ULRA} 페어에 대해) 각 PI에 서로 다른 SCID+DMRS 조합이 대응될 수 있다. 이를 위해, SCID+DMRS 조합은 (PI 그룹 내의) PI 값에 기반하여 결정될 수 있다. 예를 들어, SCID+DMRS 조합은 PI (또는, PI MOD PI 그룹 개수) 값의 함수 값에 기반하여 결정될 수 있다.
3) 관련 설정 및 단말 동작
A. 상기 옵션들을 포함하여, RACH 프리앰블을 위한 {RO, PI} 조합과 이에 대응되는 PUSCH 파트의 {SCID+DMRS, ULRA} 조합의 페어링 정보는, 기-정의되거나 PBCH/SIB 등을 통해 브로드캐스트 될 수 있다.
B. 단말은 특정 {RO, PI} 조합에 기반한 RACH 프리앰블을 선택하고, 특정 {RO, PI} 조합에 대응되는 {SCID+DMRS, ULRA} 조합에 기반한 PUSCH 파트를 선택할 수 있다. 단말은 최종적으로 선택된 RACH 프리앰블과 PUSCH 파트를 결합/전송하는 형태로 MsgA 전송을 수행할 수 있다.
C. 단말은 {SCID+DMRS, ULRA} 조합에 기반한 PUSCH 파트를 통해 자신의 단말 (글로벌) ID 정보 (및/또는 BSR 정보)를 전송할 수 있다.
4) 추가 고려 사항
A. Option 1/2의 경우, 기본적으로 하나의 PI에는 하나의 SCID+DMRS 조합 혹은 하나의 {SCID+DMRS, ULRA} 조합이 대응된다. 한편, 다른 방법으로, 하나의 PI에 복수의 SCID+DMRS 조합 혹은 복수의 {SCID+DMRS, ULRA} 조합이 대응되도록 설정하는 것도 가능하다.
B. 후자의 경우, MsgB (혹은 이를 나르는 PDSCH)를 통해, 특정 하나의 PI에 링크된 복수의 SCID+DMRS 조합 혹은 복수의 {SCID+DMRS, ULRA} 조합들 중 어느 조합에 기반한 PUSCH 파트 전송에 대한 RACH 응답인지를 지시할 수 있다.
C. MsgA 내 (TDM 형태로 구성되는) RACH 프리앰블에 적용되는 CP(이하, RACH-CP)와 PUSCH 파트를 구성하는 OFDM 심볼에 적용되는 CP는 다음과 같이 구성될 수 있다. 1) PUSCH 파트 내의 모든 OFDM 심볼들에 적용되는 CP 길이가 RACH-CP 길이와 동일하게 구성되거나, 2) PUSCH 파트 내의 최초 OFDM 심볼에 적용되는 CP 길이는 RACH-CP 길이와 동일하게 구성되고 PUSCH 파트 내의 나머지 OFDM 심볼에 적용되는 CP 길이는 RACH-CP 길이보다 작게 구성될 수 있다. 2)의 경우, PUSCH 파트 내의 나머지 OFDM 심볼에 적용되는 CP 길이는 일반 PUSCH에 적용되는 CP 길이와 동일하게 구성될 수 있다.
D. 하나의 MsgA에 대해, RACH 프리앰블이 전송되는 자원과 이에 대응되는 PUSCH 파트가 전송되는 자원이 주파수상에서 동일하거나, 특정 수준 미만으로 이격된 경우, (PRACH 프리앰블을 PUSCH 파트에 대한 DMRS로 사용 가능하므로) PUSCH 파트는 대응되는 DMRS없이 설정/전송될 수 있다.
한편, 앞에서 SCID는 TC-RNTI에 의해 대체된 형태로 정의/설정될 수 있다. 예를 들어, PUSCH SCID는 TC-RNTI를 기반으로 유도/결정될 수 있다.
(2) MsgB 전송 포맷 및 컨텐츠 구성
MsgB 신호는 (기지국이 단말에게) RO 정보를 지시/전송하는 형태에 따라 전송 포맷 및 컨텐츠 구성이 달라질 수 있다. MsgB 구성을 위해 다음 옵션을 고려할 수 있다. 이하, MsgB를 스케줄링 하는 PDCCH를 MsgB PDCCH로 지칭한다. 또한, MsgB PDCCH에 의해 스케줄링된 PDSCH를 MsgB PDSCH 혹은 PDSCH#1로 지칭한다.
1) Option 1: MsgB PDCCH의 RNTI를 통해 RO 정보를 지시(예, RO에 기반하여 RNTI가 생성됨; 수학식 1 참조)
i. MsgB PDCCH로부터 스케줄링된 (하나의) PDSCH 내에는 하나 혹은 복수의 MsgB가 포함될 수 있다. 여기서, MsgB는 MAC CE(Control Element) 혹은 이와 유사한 포맷으로 구성될 수 있다. 이때, (MsgB가) 어느 PI 값에 대응되는 MsgB인지에 대한 정보가 MsgB PDSCH 혹은 각각의 MsgB에 포함될 수 있다. 예를 들어, PI(들)가 MsgB PDSCH 혹은 각각의 MsgB에 포함될 수 있다.
ii. MsgB를 통해 (충돌 해결을 위한) 단말 (글로벌) ID 정보를 비롯하여 TA 커맨드, (MsgB 수신에 대한 HARQ-ACK 피드백 전송을 위한) PUCCH 자원 정보, RRC 연결 관련 정보 등이 전송될 수 있다.
iii. 또한, MsgB를 통해 단말이 사용할 C-RNTI 정보 (및/또는 C-RNTI 기반의 단말-특정 PDCCH를 모니터링 하기 위한 USS(UE-specific Search Space) 구성 정보)가 전송될 수 있다. 여기서, USS 구성 정보는 예를 들어 USS가 구성/전송될 수 있는 시간/주파수 자원, PDCCH 모니터링(예, 블라인드 디코딩) 동작 수행을 위한 주기/슬롯 정보 등을 포함한다.
2) Option 2: MsgB PDCCH의 RNTI를 통해 RO 정보를 지시
i. MsgB PDCCH로부터 스케줄링된 (하나의) PDSCH#1 내에는, 개별 MsgB를 나르는 PDSCH#2를 스케줄링 하는 DL 그랜트 정보가 하나 이상 포함될 수 있다. 이때, (DL 그랜트 정보가) 어느 PI 값에 대응되는 MsgB에 대한 DL 그랜트인지에 대한 정보가 PDSCH#1에 포함될 수 있다. 예를 들어, PDSCH#1은 하나 이상의 (PI, DL 그랜트)를 포함하고, PI에 대응하는 PDSCH#2는 개별 MsgB를 포함할 수 있다.
ii. 이에 따라, PDSCH#1 내의 각 DL 그랜트 정보를 기반으로, 각 PI 값에 대응되는 단일 MsgB를 나르는 PDSCH#2가 전송될 수 있다. MsgB에 포함되는 정보는 Option 1과 동일하게 구성될 수 있다.
iii. 다른 방법으로, 단말 (글로벌) ID의 일부는 PDSCH#1를 통해 전송되고, 단말 ID의 나머지 부분은 PDSCH#2 혹은 MsgB를 통해 전송될 수 있다.
iv. PDSCH#1과 PDSCH#2는 시간상 연속하는 TDM 형태로 전송될 수 있다. 예를 들어, 시간 도메인에서, PDSCH#1 이후에 PDSCH#2가 연속하여 전송될 수 있다.
v. 또 다른 방법
1. PDSCH#1에는 PI 그룹에 대한 MsgB를 나르는 PDSCH#2를 스케줄링 하는 DL 그랜트 정보가 하나 이상 포함될 수 있다. (DL 그랜트 정보가) 어느 PI 그룹에 대응되는 MsgB에 대한 DL 그랜트인지에 대한 정보는 PDSCH#1에 포함될 수 있다.
2. PDSCH#2에는 PI 그룹에 속한 하나 이상의 PI 값(들)에 대응되는 MsgB(들)이 포함될 수 있다. 이때, (MsgB가) 어느 PI 값에 대응되는 MsgB인지에 대한 정보는 PDSCH#2 혹은 각각의 MsgB에 포함될 수 있다.
3) Option 3: MsgB PDCCH의 RNTI를 통해 RO 정보를 지시
i. MsgB PDCCH로부터 스케줄링된 (하나의) PDSCH 내에는 특정 하나의 PI 값에 대응되는 개별 MsgB가 포함될 수 있다. 이때, (MsgB가) 어느 PI 값에 대응되는 MsgB 전송인지에 대한 정보는 MsgB PDCCH 내의 특정 필드를 통해 지시될 수 있다.
ii. MsgB에 포함되는 정보는 Option 1과 동일하게 구성될 수 있다. 또한, MsgB에는 RRC 연결 관련 정보가 더 포함될 수 있다.
iii. MsgB 수신에 대한 HARQ-ACK 피드백 전송을 위한 PUCCH 자원 정보가, MsgB PDCCH를 통해 지시될 수 있다.
iv. 또 다른 방법
1. MsgB PDCCH로부터 스케줄링된 (하나의) PDSCH 내에는 특정 하나의 PI 그룹에 대응되는 하나 이상의 MsgB(들)이 포함될 수 있다. 이때, (MsgB(들)이) 어느 PI 그룹에 대응되는 MsgB(들)인지에 대한 정보는 MsgB PDCCH 내의 특정 필드를 통해 지시될 수 있다.
2. 이 경우, (각 MsgB가) PI 그룹 내 어느 PI 값에 대응되는 MsgB인지에 대한 정보는, MsgB PDCCH로부터 스케줄링된 PDSCH 혹은 각 MsgB에 포함될 수 있다.
Option 4: MsgB PDCCH 내 특정 필드를 통해 RO 정보를 지시
i. MsgB PDCCH 전송에 사용되는 RNTI는, PI 값 혹은 (MsgA의 PUSCH 파트에 사용되는) SCID 값 별로 설정될 수 있다. 예를 들어, RNTI는 (PI 또는 SCID 별로) 기-정의되거나, PBCH/SIB 등을 통해 브로드캐스트되거나, PI 또는 SCID의 함수로 결정될 수 있다. 또한, RNTI를 기반으로 SCID 값을 유도/결정할 수 있다.
ii. MsgB PDCCH로부터 스케줄링된 PDSCH를 통해, RNTI 값에 링크된 PI 값에 대응되는 (단일) MsgB가 전송될 수 있다. MsgB에 포함되는 정보는 Option 1과 같이 구성될 수 있다. 추가적으로, MsgB에 RRC 연결 관련 정보가 더 포함될 수 있다.
iii. 또한, MsgB 수신에 대한 HARQ-ACK 피드백 전송을 위한 PUCCH 자원 정보가, MsgB PDCCH를 통해 지시될 수 있다.
iv. 또 다른 방법
1. MsgB PDCCH로부터 스케줄링된 (하나의) PDSCH 내에는 특정 하나의 RO 그룹에 대응되는 하나 이상의 MsgB(들)이 포함될 수 있다. 이때, (MsgB(들)이) 어느 RO 그룹에 대응되는 MsgB인지에 대한 정보는 MsgB PDCCH 내의 특정 필드를 통해 지시될 수 있다.
2. 이 경우, (각 MsgB가) RO 그룹 내의 어느 RO에 대응되는 MsgB인지에 대한 정보는 상기 PDSCH 혹은 각각의 MsgB에 포함될 수 있다.
5) Option 5: MsgB 혹은 이를 나르는 PDSCH를 통해 RO 정보를 지시
i. MsgB PDCCH 전송에 사용되는 RNTI는 Option 4와 동일한 방식으로 설정될 수 있다. MsgB PDCCH로부터 스케줄링된 (하나의) MsgB PDSCH 내에는 하나 이상의 MsgB가 포함될 수 있다.
ii. (MsgB PDSCH 내의 MsgB(들)가) 어느 RO에 대응되는 MsgB인지에 대한 정보가 상기 PDSCH 혹은 각각의 MsgB에 포함될 수 있다.
iii. MsgB에 포함되는 정보는 Option 1과 동일하게 구성될 수 있다.
6) Option 6: MsgB 혹은 이를 나르는 PDSCH를 통해 RO 정보를 지시
i. MsgB PDCCH 전송에 사용되는 RNTI는 Option 4와 같이 설정될 수 있다. 구체적으로, MsgB PDCCH로부터 스케줄링된 (하나의) PDSCH#1 내에는, 개별 MsgB를 나르는 PDSCH#2를 스케줄링 하는 DL 그랜트 정보가 하나 이상 포함될 수 있다.
ii. (PDSCH#1 내의 DL 그랜트 정보가) 어느 RO에 대응되는 MsgB에 대한 DL 그랜트인지에 대한 정보는 PDSCH#1에 포함될 수 있다.
iii. 이에 따라, PDSCH#1 내의 각 DL 그랜트 정보를 기반으로, 각 RO에 대응되는 단일 MsgB를 나르는 PDSCH#2가 전송될 수 있다. MsgB에 포함되는 정보는 Option 1과 동일하게 구성될 수 있다.
iv. 다른 방법으로, 단말 (글로벌) ID의 일부는 PDSCH#1을 통해 전송되고, 단말 (글로벌) ID의 나머지 일부는 PDSCH#2 혹은 MsgB를 통해 전송될 수 있다.
v. PDSCH#1과 PDSCH#2은 시간상으로 연속하는 TDM 형태로 전송될 수 있다. 예를 들어, 시간 도메인에서, PDSCH#1 이후에 PDSCH#2가 연속하여 전송될 수 있다.
vi. 또 다른 방법
1. PDSCH#1을 통해, PDSCH#2를 스케줄링 하는 DL 그랜트 정보가 하나 이상 전송될 수 있다. PDSCH#2는 각 RO 그룹에 대응되는 MsgB를 나른다. (PDSCH#1 내의 DL 그랜트 정보가) 어느 RO 그룹에 대응되는 MsgB에 대한 DL 그랜트인지에 대한 정보는 PDSCH#1에 포함될 수 있다.
2. PDSCH#2에는 하나의 RO 그룹에 속한 하나 이상의 RO(들)에 대응되는 MsgB(들)이 포함될 수 있다. (MsgB가) 어느 RO에 대응되는 MsgB인지에 대한 정보는 PDSCH#2 혹은 각각의 MsgB에 포함될 수 있다.
7) Option 7: MsgB PDCCH의 RNTI를 통해 {RO, PI} 조합을 지시
i. MsgB PDCCH 전송에 사용되는 RNTI는 MsgA에 대응되는 {RO, PI} 조합별로 설정될 수 있다. 예를 들어, RNTI는 ({PO, PI} 조합별로) 기-정의되거나, PBCH/SIB 등을 통해 브로드캐스트되거나, {PO, PI} 조합의 함수로 결정될 수 있다. 또한, RNTI를 기반으로 SCID 값을 유도/결정할 수 있다.
ii. MsgB PDCCH로부터 스케줄링된 PDSCH를 통해서 RNTI 값에 링크된 {RO, PI} 조합에 대응되는 (단일) MsgB가 전송될 수 있다. MsgB에 포함되는 정보는 Option 1과 동일하게 구성될 수 있다. 추가적으로, MsgB에는 RRC 연결 관련 정보가 더 포함될 수 있다.
iii. 또한, MsgB 수신에 대한 HARQ-ACK 피드백 전송을 위한 PUCCH 자원 정보가, MsgB PDCCH를 통해 지시될 수 있다.
iv. 또 다른 방법
1. MsgB PDCCH로부터 스케줄링된 (하나의) PDSCH 내에는 {RO, PI 그룹} 조합, {RO 그룹, PI} 조합, 혹은 {RO 그룹, PI 그룹} 조합에 대응되는 하나 이상의 MsgB(들)이 포함될 수 있다. {RO (그룹), PI (그룹)} 조합에 관한 정보는 MsgB PDCCH의 RNTI를 통해 지시될 수 있다. 일 예로, MsgB PDCCH의 RNTI는 각 {RO (그룹), PI (그룹)} 조합별로 기-정의/구성되거나 해당 조합의 함수로 결정될 수 있다.
2. RNTI에 대응되는 {RO (그룹), PI (그룹)} 내에서, (MsgB가) 어느 {RO, PI} 조합에 대응되는 MsgB인지에 대한 정보는 상기 PDSCH 혹은 각각의 MsgB에 포함될 수 있다.
8) 관련 단말 동작
i. 상기 옵션들을 토대로, 단말은 MsgB PDCCH, MsgB PDCCH로부터 스케줄링된 PDSCH 및/또는 MsgB를 통해 지시된 {RO, PI} 조합이, 자신이 전송했던 MsgA에 대응되는 {RO, PI} 조합과 일치하는지를 확인할 수 있다.
ii. 또한, 단말은 MsgB에 포함된 단말 (글로벌) ID가 자신의 ID와 일치할 경우, 수신된 TA 커맨드 및 PUCCH 자원 정보를 적용하여 MsgB 수신에 대한 HARQ-ACK (예, ACK) 피드백을 전송하도록 동작할 수 있다.
iii. 또한, 단말은 MsgB에 포함된 C-RNTI 및 PDCCH USS 정보를 기반으로 자신에게 스케줄링/전송된 PDCCH/PDSCH에 대한 모니터링 및 검출, 혹은 자신이 전송하는 PUSCH에 스크램블링 등의 동작을 수행할 수 있다.
추가적으로, MsgB PDCCH에 대한 SS(Search Space)를 RO (그룹) 및/또는 PI (그룹) 별로 다르게 설정하는 방식도 가능하다. 일 예로, MsgB PDCCH에 대한 PDCCH 모니터링 기회/슬롯을 RO (그룹) 및/또는 PI (그룹) 별로 다르게 설정할 수 있다.
(3) MsgA 재전송 시그널링 및 단말 동작
MsgA 재전송 동작과 관련하여, 1) MsgA 단위로(즉, RACH 프리앰블까지 포함) 재전송을 수행하는지, 2) MsgA 내의 PUSCH 파트에 대해서만 재전송을 수행하는지에 따라 관련 시그널링과 단말 동작이 달라질 수 있다. 다음 옵션들을 고려할 수 있다.
1) Case #1: RACH 프리앰블까지 포함하여 MsgA 전체를 재전송
A. Option 1
i. 특정 PDCCH(이하, MsgA_re PDCCH)를 통해 MsgA 재전송이 스케줄링 될 수 있다. 예를 들어, MsgA_re PDCCH를 통해 MsgA 재전송에 사용할 MsgA의 RO 및/또는 PI 정보가 스케줄링 될 수 있다. 구체적으로, MsgA_re PDCCH의 RNTI 및 특정 필드를 통해, 재전송 대상이 되는 (이전에 기지국에 의해 검출된) RO 및 PI 정보가 단말에게 지시될 수 있다.
ii. 예를 들어, 1) MsgA_re PDCCH의 RNTI를 통해 RO 정보가 지시되고, MsgA_re PDCCH 내 특정 필드를 통해 PI 값이 지시될 수 있다. 또한, 2) MsgA_re PDCCH의 RNTI는 PI 값 혹은 (MsgA의 PUSCH 파트에 사용되는) SCID 값에 따라 설정되고 (및/또는 SCID 값이 해당 RNTI를 기반으로 유도/결정되고), MsgA_re PDCCH PDCCH 내 특정 필드를 통해 RO 정보가 지시될 수 있다.
iii. 한편, MsgA_re PDCCH는 MsgB PDCCH와 동일한 RNTI를 사용하면서 DCI 내의 1-비트 플래그로 구분될 수 있다.
iv. 또 다른 방법
1. 위와 같은 방식으로, (기지국에 의해 검출된) RO 및 PI 정보가 단말에게 지시되면, MsgA 재전송 스케줄링 정보는 지시된 {RO, PI} 조합에 대응되는 MsgA로 자동 설정될 수 있다.
B. Option 2
i. MsgB PDCCH에 대응되는 PDSCH(이하, PDSCH#1)를 통해 MsgA 재전송(예, 재전송에 사용할 MsgA의 RO 및/또는 PI 정보)이 스케줄링 될 수 있다. PDSCH#1 및/또는 MsgB PDCCH(예, RNTI, 필드)를 통해 재전송 대상이 되는 (이전에 기지국에 의해 검출된) RO 및/또는 PI 정보가 지시될 수 있다.
ii. 예를 들어, 1) MsgB PDCCH의 RNTI를 통해 RO 정보가 지시되고, MsgB PDSCH를 통해 PI 값이 지시될 수 있다. 2) MsgB PDCCH의 RNTI가 PI 값 혹은 (MsgA의 PUSCH 파트에 사용되는) SCID 값에 따라 설정되고 (및/또는 SCID 값이 해당 RNTI를 기반으로 유도/결정되고), MsgB PDSCH를 통해 RO 정보가 지시될 수 있다. 3) MsgB PDCCH의 RNTI와 특정 필드의 조합을 통해 RO 정보와 PI 값이 지시될 수 있다.
iii. 한편, MsgB PDCCH에 대응되는 PDSCH(즉, PDSCH#1) 내의 MsgA 재전송 스케줄링 정보는, MsgB를 나르는 PDSCH(이하, PDSCH#2)를 스케줄링 하는 DL 그랜트 정보와 1-비트 플래그로 구분될 수 있다. 따라서, 단말은 1-비트 플래그 값에 따라 PDSCH#1 내의 그랜트 정보를 MsgA 재전송 스케줄링 정보로 해석하거나, PDSCH#2 수신을 위한 DL 그랜트 정보로 해석할 수 있다.
iv. 또 다른 방법
1. 위와 같은 방식으로, (이전에 기지국에 의해 검출된) RO 및 PI 정보가 단말에게 지시되면, MsgA 재전송 스케줄링 정보는 지시된 {RO, PI} 조합에 대응되는 MsgA로 자동 설정될 수 있다.
C. 파워 램핑 및 RACH 카운터
i. Case #1 기반의 MsgA 재전송인 경우, 단말은 MsgA 전송 파워를 증가시키고 RACH 재전송 카운터 값을 증가시킬 수 있다. 이때, 단말은 PUSCH 파트를 포함한 MsgA 전체의 전송 파워를 증가시킬 수 있다.
ii. 다른 방법으로, MsgA 재전송을 스케줄링 하는 PDCCH/PDSCH를 통해 MsgA 전송 파워 (및/또는 RACH 재전송 카운터 값)을 증가시킬지 아니면 유지할지 여부가 시그널링 될 수 있다.
2) Case #2: MsgA 내의 PUSCH 파트에 대해서만 재전송
A. Option 1
i. 특정(이하, MsgA_re PDCCH) PDCCH를 통해 MsgA 재전송 (예, SCID+DMRS, PUSCH용 UL 그랜트, TA 및/또는 TPC 커맨드 정보)이 스케줄링 될 수 있다. MsgA_re PDCCH의 RNTI 및 특정 필드를 통해 재전송 대상이 되는 (이전에 기지국에 의해 검출된) RO 및 PI (또는, SCID) 정보가 지시될 수 있다.
ii. 예를 들어, 1) MsgA_re PDCCH의 RNTI를 통해 RO 정보가 지시되고, MsgA_re PDCCH 내 특정 필드를 통해 PI (또는, SCID)값이 지시될 수 있다. 2) MsgA_re PDCCH의 RNTI가 PI 값 혹은 (MsgA의 PUSCH 파트에 사용되는) SCID 값에 따라 설정되고 (및/또는 SCID값이 해당 RNTI를 기반으로 유도/결정되고), MsgA_re PDCCH 내 특정 필드를 통해 RO 정보가 지시될 수 있다.
iii. MsgA_re PDCCH는 MsgB PDCCH와 동일한 RNTI를 사용하면서 DCI 내의 1-비트 플래그로 구분될 수 있다. 예를 들어, PDCCH에 대응되는 PDSCH 내의 컨텐츠가 MsgA 재전송 스케줄링 정보인지, MsgB 자체 (혹은, MsgB PDSCH을 스케줄링 하는 DL 그랜트 정보)인지가, 1-비트 DCI 플래그로 지시될 수 있다.
iv. 또 다른 방법
1. 위와 같은 방식으로, (이전에 기지국에 의해 검출된) RO 및 PI 정보가 단말에게 지시되면, MsgA 재전송 스케줄링 정보는 지시된 {RO, PI} 조합에 대응되는 {SCID+DMRS, ULRA} 조합에 기반한 PUSCH 파트에 대해 자동 설정될 수 있다.
2. 또는, 위와 같은 방식으로, (이전에 기지국에 의해 검출된) RO 및 PI 정보가 단말에게 지시되면, 지시된 {RO, PI} 조합에 대응되는 SCID+DMRS 조합 및 MsgA_re PDCCH를 통해 시그널링 되는 PUSCH용 UL 그랜트 (및/또는 TA 및/또는 TPC 커맨드) 정보를 기반으로 MsgA 재전송 스케줄링 정보가 결정될 수 있다.
B. Option 2
i. MsgB PDCCH에 대응되는 PDSCH(이하, PDSCH#1)를 통해 MsgA 재전송(예, SCID+DMRS, PUSCH용 UL 그랜트 및/또는 TA 및/또는 TPC 커맨드 정보)이 스케줄링 될 수 있다. PDSCH#1 및/또는 MsgB PDCCH(예, RNTI, 필드)를 통해 재전송 대상이 되는 (이전에 기지국에 의해 검출된) RO 및 PI (또는, SCID) 정보가 단말에게 지시될 수 있다.
ii. 예를 들어, 1) MsgB PDCCH의 RNTI를 통해 RO 정보가 지시되고, PDSCH#1를 통해 PI (또는, SCID) 값이 지시될 수 있다. 2) MsgB PDCCH의 RNTI가 PI 값 혹은 (MsgA의 PUSCH 파트에 사용되는) SCID 값에 따라 설정되고 (및/또는 SCID 값이 해당 RNTI를 기반으로 유도/결정되고), PDSCH#1를 통해 RO 정보가 지시될 수 있다. 3) MsgB PDCCH의 RNTI와 특정 필드의 조합을 통해 RO 정보와 PI (또는, SCID) 값이 지시될 수 있다.
iii. 한편, PDSCH#1 내의 MsgA 재전송 스케줄링 정보는, PDSCH#1 내에서 (예, MsgB 구성 옵션 중 Option 1/3/4/5/7의 경우) MsgB 자체와 1-비트 플래그로 구분되거나, (예, MsgB 구성 옵션 중 Option 2/6의 경우) MsgB를 나르는 PDSCH(이하, PDSCH#2)를 스케줄링 하는 DL 그랜트 정보와 1-비트 플래그로 구분될 수 있다. 즉, 전자의 경우, PDSCH#1 내에 실린 컨텐츠가 MsgA 재전송 스케줄링 정보인지, MsgB 자체인지가 1-비트 플래그로 지시될 수 있다. 후자의 경우, PDSCH#1 내에 실린 컨텐츠가 MsgA 재전송 스케줄링 정보인지, MsgB를 나르는 PDSCH#2를 스케줄링 하는 DL 그랜트 정보인지가 1-비트 플래그로 지시될 수 있다.
iv. 또 다른 방법
1. 위와 같은 방식으로, (이전에 기지국에 의해 검출된) RO 및 PI 정보가 단말에게 지시되면, MsgA 재전송 스케줄링 정보는 지시된 {RO, PI} 조합에 대응되는 {SCID+DMRS, ULRA} 조합에 기반한 PUSCH 파트에 대해 자동 설정될 수 있다.
2. 또는, 위와 같은 방식으로 (이전에 기지국에 의해 검출된) RO 및 PI 정보가 단말에게 지시되면, 지시된 {RO, PI} 조합에 대응되는 SCID+DMRS 조합 및 PDSCH#1를 통해 시그널링 되는 PUSCH용 UL 그랜트 (및/또는 TA 및/또는 TPC 커맨드) 정보를 기반으로 MsgA 재전송 스케줄링 정보가 결정될 수 있다.
C. 파워 램핑 및 RACH 카운터
i. Case #2 기반의 MsgA 재전송인 경우, 단말은 PUSCH 파트의 전송 파워를 (non-zero TPC 커맨드없이 자동적으로) 증가시키지 않고 RACH 재전송 카운터 값을 증가시키지 않을 수 있다.
ii. 다른 방법으로, MsgA 재전송을 스케줄링 하는 PDCCH/PDSCH를 통해 PUSCH 파트의 전송 파워 (및/또는 RACH 재전송 카운터 값)를 증가시킬지, 유지할지 여부가 시그널링 될 수 있다.
한편, Option 1의 경우 특정 PDCCH를 통해, Option 2의 경우 MsgB PDCCH에 대응되는 PDSCH를 통해, 1) Case #1을 기반으로 RACH 프리앰블까지 포함한 MsgA 전체를 재전송할지, 2) Case #2를 기반으로 MsgA 내의 PUSCH 파트에 대해서만 재전송을 수행할지 여부가 시그널링 될 수 있다.
(4) 2-step RACH와 4-step RACH의 운영
2-step RACH 동작과 4-step RACH 동작을 결합하여 적용하거나, 선택적으로 적용하는 방법을 고려할 수 있다. 구체적으로 다음의 옵션들을 고려할 수 있다.
1) RRC 연결 이후의 RACH 과정
A. CB(Contention-based) RACH 동작
i. 단말은 MsgA의 PUSCH 파트에 (단말 (글로벌) ID가 아닌) C-RNTI (및/또는 BSR 정보)를 포함할 수 있다. MsgA 전송 이후, 단말은 (RAR 윈도우 내에서) Opt 1) MsgB PDCCH를 모니터링하거나/하고, Opt 2) 자신의 C-RNTI에 기반한 PDCCH를 모니터링 할 수 있다.
1. Opt 1의 경우, MsgB에 (단말 (글로벌) ID가 아닌) C-RNTI가 포함될 수 있다. 단말은 MsgB에 포함된 C-RNTI가 자신의 C-RNTI와 일치하는지 확인한 후, (MsgB에 포함된 TA 커맨드를 적용하여) MsgB 수신에 대한 HARQ-ACK 피드백을 전송할 수 있다. 여기서, MsgB PDCCH는 RA-RNTI에 기반하여 모니터링 될 수 있다.
2. Opt 2의 경우, 단말은 MsgA 전송 이후에 (DCI 포맷 타입(예, DL 또는 UL 그랜트)에 관계없이) C-RNTI 기반 PDCCH가 검출되면 충돌 해결이 성공/완료됐다고 인식할 수 있으며, 상기 PDCCH 혹은 이로부터 스케줄링된 PDSCH를 통해 TA 커맨드가 지시될 수 있다. 충돌 해결이 성공/완료됐다고 인식하는 것은, C-RNTI 기반 PDCCH에 TA 커맨드가 수반된 경우로 한정될 수 있다. C-RNTI 기반 PDCCH에 TA 커맨드가 수반되지 않는 경우, 보통의 C-RNTI 기반 PDCCH에 해당하므로, 단말은 검출된 PDCCH의 제어 정보에 따른 동작을 수행할 수 있다(예, Opt 1 동작). 충돌 해결이 성공/완료된 경우, 단말은 RACH 과정이 성공적으로 완료됐다고 판단할 수 있다. 이에 따라, MsgB를 수신하기 위한 동작(예, Opt 1 동작)을 중단할 수 있다.
ii. 상기 동작은 단말이 UL SR 정보를 전송할 목적으로 CB-RACH 과정을 수행하거나, 기지국이 PDCCH 오더 신호 전송을 통해 직접 단말에게 CB-RACH 과정을 수행하도록 지시하는 경우에 모두 적용될 수 있다.
B. CF(Contention-free) RACH 동작
i. 단말은 MsgA의 PUSCH 파트에 (단말 (글로벌) ID가 아닌) C-RNTI (및/또는 BSR 정보)를 포함할 수 있다. MsgA 전송 이후, 단말은 (RAR 윈도우 내에서) Opt 1) MsgB PDCCH를 모니터링하거나/하고, Opt 2) 자신의 C-RNTI에 기반한 PDCCH를 모니터링 할 수 있다.
1. Opt 1의 경우, MsgB에 (단말 (글로벌) ID가 아닌) C-RNTI가 포함되거나, MsgB에 (단말 ID뿐만 아니라) C-RNTI도 포함되지 않을 수 있다. 단말은 MsgB에 포함된 C-RNTI가 자신의 C-RNTI와 일치하는지 확인한 후, (MsgB에 포함된 TA 커맨드를 적용하여) MsgB 수신에 대한 HARQ-ACK 피드백을 전송할 수 있다. 여기서, MsgB PDCCH는 RA-RNTI에 기반하여 모니터링 될 수 있다.
2. Opt 2의 경우, 단말은 MsgA 전송 이후에 (DCI 포맷 타입(예, DL 또는 UL 그랜트)에 관계없이) C-RNTI 기반 PDCCH가 검출되면 충돌 해결이 성공/완료됐다고 인식할 수 있으며, 상기 PDCCH 혹은 이로부터 스케줄링된 PDSCH를 통해 TA 커맨드가 지시될 수 있다. 충돌 해결이 성공/완료됐다고 인식하는 것은, C-RNTI 기반 PDCCH에 TA 커맨드가 수반된 경우로 한정될 수 있다. C-RNTI 기반 PDCCH에 TA 커맨드가 수반되지 않는 경우, 보통의 C-RNTI 기반 PDCCH에 해당하므로, 단말은 검출된 PDCCH의 제어 정보에 따른 동작을 수행할 수 있다(예, Opt 1 동작). 충돌 해결이 성공/완료된 경우, 단말은 RACH 과정이 성공적으로 완료됐다고 판단할 수 있다. 이에 따라, MsgB를 수신하기 위한 동작(예, Opt 1 동작)을 중단할 수 있다.
ii. 여기서, 기지국이 PDCCH 오더를 통해, 단말에게 CF-RACH (혹은 CB-RACH) 수행을 지시하는 경우, PDCCH 오더를 통해 단말이 전송할 MsgA을 위한 {RO, PI} 조합 (및 이에 대응되는 PUSCH 파트를 위한 {SCID+DMRS, ULRA} 조합) 정보가 시그널링 될 수 있다.
도 14는 본 발명에 따른 RACH 과정을 수행하는 예를 나타낸다. 도 14는 RRC 연결 이후의 CB/CF RACH 동작에 적용될 수 있다.
도 14를 참조하면, 단말은 기지국에게 랜덤 접속 요청 메시지(예, MsgA)를 전송할 수 있다. MggA 전송은 RAP(Random Access Preamble) 전송(S1402)과 PUSCH 전송(S140을 포함한다. RAP는 복수의 RO 중 하나의 RO에서 전송되며, 각 RO는 하나 이상의 PUSCH 자원에 대응할 수 있다. 여기서, RO는 RAP 전송에 사용되는 시간 주파수 자원을 포함하고, PUSCH 자원은 PUSCH 시간-주파수 자원, PUSCH 스크램블링 ID 및 PUSCH DMRS 자원 중 적어도 하나를 포함할 수 있다. 이에 따라, PUSCH 전송(S140은 RAP 전송(S1402)과 관련된 자원을 이용해 수행될 수 있다. MsgA는 RRC 연결 상태에서 수행될 수 있으며, PUSCH(S1404)는 단말의 C-RNTI를 포함할 수 있다. 이후, MsgB 수신을 위해, 단말은 RAP와 관련된 시간 윈도우 내에서 PDCCH를 모니터링 할 수 있다. 구체적으로, MsgB 수신을 위해, 단말은 시간 윈도우 내에서 특정 RNTI-기반의 PDCCH(예, PDCCH의 CRC가 특정-RNTI로 마스킹됨)를 모니터링 할 수 있다. 특정 RNTI는 RA-RNTI를 포함할 수 있다. 또한, 단말은 시간 윈도우 내에서 S1404의 C-RNTI-기반 PDCCH(예, PDCCH의 CRC가 C-RNTI로 마스킹됨)가 있는지 확인하기 위해 PDCCH 모니터링을 할 수 있다. 이때, C-RNTI-기반 PDCCH가 검출되고(S1406), S1406의 PDCCH에 의해 지시된 PDSCH에 TA 커맨드가 포함될 수 있다(S1408). 이 경우, 단말은 충돌 해결이 성공했다고 판단하고, RACH 과정을 종료할 수 있다. 이에 따라, MsgB를 수신되지 않았더라도, 단말은 남은 시간 윈도우에서 MsgB 수신을 위한 PDCCH 모니터링 과정을 종료할 수 있다. 예를 들어, 단말은 RA-RNTI-기반 PDCCH가 있는지 확인하기 위해 PDCCH 모니터링 하는 것을 종료할 수 있다.
TA 커맨드 유무에 기반하여, 단말은 시간 윈도우 내의 C-RNTI-기반 PDCCH가 MsgA에 대한 응답인지, 일반적인 PDCCH를 나타내는 것인지 확인할 수 있다. 예를 들어, TA 커맨드가 미수반된 C-RNTI-기반 PDCCH가 수신된 경우, 단말은 남은 시간 윈도우에서 MsgB 수신을 위한 PDCCH 모니터링 과정을 계속 수행할 수 있다. 한편, TA 커맨드는 도시된 것과 달리, S1406의 PDCCH를 통해 수신될 수도 있다. 이 경우, S1408은 생략될 수 있다.
도 14의 예에서 TA 커맨드는 PDCCH를 통해 수신될 수 있다. 이 경우, S1408에 따른 PDSCH 수신은 생략될 수 있다. TA 커맨드는 PDCCH를 통해 수신되는 구체적인 일 예로, C-RNTI-기반 PDCCH (DCI)내의 RA 필드를 구성하는 복수의 비트가 유효하지 않은 자원 할당을 지시한 경우(예, (RB 또는 RBG 단위의) RIV 자원 할당 방식이 지시된 상태에서 RA 필드 비트들이 모두 '1'로 지시되거나, (RB 또는 RBG 단위의) 비트맵 자원 할당 방식이 지시된 상태에서 RA 필드 비트들이 모두 '0'으로 지시된 경우), 단말은 해당 PDCCH (DCI)를 통해 (PDSCH 스케줄링 없이) TA 커맨드가 지시되었다고 간주/해석한 상태에서 동작하는 방법을 고려할 수 있다. 이 경우, 해당 DCI 내의 나머지 필드(예, MCS/TBS, HARQ 프로세스 ID, NDI/RV)를 통해 TA 커맨드가 지시될 수 있다. 이 경우, 단말은 해당 DCI 내의 A/N 타이밍 지시 필드 및 A/N PUCCH 자원 할당 필드를 통해 지시된 A/N 전송 타이밍 및 A/N PUCCH 자원을 적용하여, 해당 DCI 수신에 대한 ACK 응답을 피드백/전송하도록 동작할 수 있다. 반면, C-RNTI-기반 PDCCH (DCI)내의 RA 필드를 통해 유효한 자원 할당이 지시된 경우, 단말은 해당 PDCCH (DCI)를 (PDSCH 전송을 스케줄링하는) 일반 PDCCH로 간주/해석한 상태에서 동작할 수 있다.
한편, 상술한 설명에서 PDCCH (DCI)를 UL 그랜트 PDCCH (DCI)로 대체한 상태에서 상기와 동일한 방법이 적용될 수 있다.
2) 2-step RACH 과정과 4-step 선택
A. 단말이 전송할 TBS(Transport Block Size) 값/범위에 따른 RACH 과정 선택
i. 2-step RACH의 MsgA (즉, MsgA 내의 PUSCH 파트)를 통해 전송 가능한 TBS 값/범위와 4-step RACH의 Msg3를 통해 전송 가능한 TBS 값/범위가 상이하게 정의/설정될 수 있다. 즉, TBS 값/범위별로 2-step RACH의 MsgA와 4-step RACH의 Msg3 중 어느 포맷에 기반한 전송이 가능한지를 정의/설정할 수 있다. 해당 정보는 기-정의되거나 PBCH/SIB 등을 통해 브로드캐스트 될 수 있다.
ii. 따라서, 단말은 자신이 선호하는 TBS 전송이 가능한 RACH 과정을 선택하고, 선택된 RACH 과정에 따라 MsgA 혹은 Msg1을 전송하도록 동작할 수 있다. 이후, UL 재전송을 스케줄링 하는 PDCCH/PDSCH를 통해 TBS 정보가 지시될 수 있다. 해당 TBS 값이 단말이 최초 선택했던 X-step RACH가 아닌 Y-step RACH를 통해서만 전송 가능한 값일 경우(예, {X=2, Y=4} 또는 {X=4, Y=2}), 단말은 Y-step RACH의 UL 전송 포맷을 기반으로 해당 TBS를 전송하도록 동작할 수 있다.
iii. 추가적으로, 4-step RACH 과정에서 Msg3 재전송 수행 횟수가 특정 값 R을 초과하는 경우(도 11 참조), 단말은 2-step RACH 과정으로 전환할 수 있다. 이에 따라, 단말은 MsgA 전송을 수행할 수 있다. R 값은 기-정의되거나, PBCH/SIB 등을 통해 브로드캐스트 될 수 있다.
iv. 다른 방안으로, 2-step RACH 과정에서 MsgA (혹은 이에 포함된 PUSCH 파트) 재전송 횟수가 특정 값 R을 초과하는 경우, 단말은 4-step RACH 과정으로 전환할 수 있다(도 11 참조). 이에 따라, 단말은 Msg1 전송을 수행할 수 있다. R 값은 기-정의되거나, PBCH/SIB 등을 통해 브로드캐스트 될 수 있다.
B. 단말이 전송할 TBS 값/범위에 따른 2-step RACH 동작
i. 2-step RACH의 MsgA (즉, MsgA 내의 PUSCH 파트)를 통해 전송 가능한 TBS 값/범위가 PI (그룹) 또는 RO (그룹) 또는 {PI, RO} 조합별로 상이하게 정의/설정될 수 있다. 해당 정보는 기-정의되거나, PBCH/SIB 등을 통해 브로드캐스트 될 수 있다. 즉, TBS 값/범위별로 어느 PI (그룹), RO (그룹) 또는 {PI, RO} 조합에 기반한 MsgA 전송이 가능한지 정의/설정될 수 있다. 단말은 자신이 선호하는 TBS 전송에 설정된/대응되는 PI/RO를 선택하고, 이에 대응되는/설정된 MsgA를 전송할 수 있다.
ii. 추가적으로, MsgA를 통해 전송 가능한 TBS 값/범위 (및/또는 PUSCH 파트 (재)전송)별로 MsgA의 PUSCH 파트에 할당되는 자원이 상이하게 정의/설정될 수 있다. 해당 정보는 기-정의되거나, PBCH/SIB 등을 통해 브로드캐스트 될 수 있다. 일 예로, (시간 자원(예, 심볼) 수는 동일한 상태에서) 더 큰 TBS 전송에 설정된/대응되는 MsgA의 PUSCH 파트에 더 많은 주파수 자원(예, RB)을 할당하거나, (주파수 자원(예, RB) 수는 동일한 상태에서) 더 큰 TBS 전송에 더 많은 시간 자원(예, 심볼)을 할당할 수 있다. 다른 예로, (시간 자원(예, 심볼) 수는 동일한 상태에서) m번째 PUSCH 파트 전송보다 (m+k)번째 (k>0) PUSCH 파트 재전송에 더 많은 주파수 자원(예, RB)을 할당하거나, (주파수 자원(예, RB) 수는 동일한 상태에서) m번째 PUSCH 파트 전송보다 (m+k)번째 PUSCH 파트 재전송에 더 많은 시간 자원(예, 심볼)을 할당할 수 있다.
iii. 추가적으로, 2-step RACH 과정에서 특정 TBS에 대응되는 MsgA (예, MsgA 내의 PUSCH 파트)의 재전송 횟수가 특정 값 R을 초과하는 경우, 해당 TBS보다 작은 TBS로 변경하여 이에 대응되는 MsgA 전송을 수행할 수 있다. 여기서, R 값은 기-정의되거나 PBCH/SIB 등을 통해 브로드캐스트 될 수 있다.
C. 단말의 전송 파워를 고려한 RACH 과정 선택
i. 단말은 측정된 RSRP, 경로손실 및/또는 이에 따른 요구(required) TX 파워 수준에 따라, 2-step RACH와 4-step RACH 중 어느 동작을 수행할지 선택할 수 있다. 구체적으로, 2-step RACH 과정에서 MsgA에 포함된 PUSCH 파트 전송은, 4-step RACH 과정에서 Msg3를 나르는 PUSCH 전송과 비교하여 상대적으로 많은 자원을 필요로 할 가능성이 높다. 이에 따라, 2-step RACH과 4-step RACH에 수반되는 PUSCH 전송 파워 수준이 상이하거나, 단말의 최대 전송 파워가 특정 X-step RACH에 대해 불충분할 수 있다. 따라서, 기지국이 수신하길 원하는 PUSCH 전송 파워 및/또는 단말에서의 경로손실 보상에 필요한 PUSCH 전송 파워에 따라, 단말은 두 개의 RACH 중 하나를 선택할 수 있다. 상술한 사항은, 2-step RACH의 MsgA 전송과 4-step RACH의 Msg1 전송간 전환을 결정하는 조건으로 적용되거나, 및/또는 2-step RACH의 MsgA 전송과 4-step RACH의 Msg3 전송간 전환을 결정하는 조건으로 적용될 수 있다.
D. U-밴드 채널 및 LBT 동작에 기반한 RACH 과정 선택
i. U-밴드 무선 채널에 대한 LBT 결과/통계에 기반하여, 단말은 2-step RACH와 4-step RACH 중 하나의 RACH 과정을 선택할 수 있다. 일 예로, LBT에 따른 U-밴드 채널 상태가 (통계적으로) 아이들/비지한 수준 (예, 아이들/비지 확률이 Y% 이상인지 미만인지, 아이들과 비지간 비율이 Z 이상인지 미만인지)에 따라, 단말은 두 개의 RACH 과정 중 하나를 선택할 수 있다. Y 값 및/또는 Z 값은 기-정의되거나, PBCH/SIB 등을 통해 브로드캐스트 될 수 있다.
ii. 다른 방법으로, MsgA 최대 재전송 카운터 값 A 혹은 LBT 최대 실패 카운터 값 B를, 4-step RACH의 Msg1 최대 재전송 카운터 값과 별도로 정의/설정할 수 있다. 일 예로, MsgA의 (재)전송 횟수가 A를 초과하는 경우, 단말은 4-step RACH 과정으로 전환할 수 있다(즉, Msg1 전송을 수행; 도 11 참조). 또는, X-step RACH의 최초 UL 전송(예, Msg1 또는 MsgA)에 대하여 LBT 실패(예, 비지) 횟수가 B를 초과하는 경우, 단말은 Y-step RACH 과정으로 전환할 수 있다(예, {X=2, Y=4} 또는 {X=4, Y=2}). A 값 및/또는 B 값은 기-정의되거나, PBCH/SIB 등을 통해 브로드캐스트 될 수 있다.
iii. 다른 방법으로, 2-step RACH와 4-step RACH의 (최초) UL 전송(예, Msg1 또는 MsgA)에 대한 LBT 타입이 상이하게 정의/설정될 수 있다. 일 예로, 단말은 두 가지 LBT 타입을 모두 시도해보고 그 중 성공한 LBT 타입이 설정된 UL 전송 포맷을 포함하는 RACH 과정을 선택할 수 있다.
3) 2-step RACH 과정과 4-step 전환
A. MsgA의 PUSCH 파트 재전송을 Msg3 형태/포맷으로 수행
i. MsgA의 PUSCH 파트에 대한 재전송을 스케줄링 하는 PDCCH/PDSCH를 통해 해당 PUSCH 파트에 대한 재전송을 Msg3 형태/포맷으로 전환하도록 지시할 수 있다. 이 경우, 해당 PDCCH/PDSCH에는 TC-RNTI가 포함될 수 있다.
ii. 이에 따라, 단말은 TC-RNTI를 기반으로 (상기 PDCCH/PDSCH를 통해 스케줄링된) Msg3 PUSCH에 대한 스크램블링을 수행할 수 있다. 이때, Msg3 전송에 대한 충돌 해결을 위해, MsgB가 전송되거나(이때, 단말은 MsgB PDCCH를 모니터링), Msg4가 전송될 수 있다(이 경우, 단말은 TC-RNTI 기반의 PDCCH를 모니터링).
iii. 여기서, 충돌 해결을 위해 MsgB 포맷이 전송되는 경우, MsgB에는 별도의 C-RNTI 정보가 포함되지 않을 수 있다. 대신, 단말은 TC-RNTI를 C-RNTI로 사용할 수 있다.
B. RACH 과정 전환 시 파워 램핑 및 RACH 카운터
i. X-step RACH에서 Y-step RACH로 전환 시(예, {X=2, Y=4} 또는 {X=4, Y=2}), (이전 X-step RACH에서의 최근 1st-Msg 전송 파워 대비) Y-step RACH의 1st-Msg 전송 파워를 증가시키지 않을 수 있다.
ii. 한편, X-step RACH에서 Y-step RACH로 전환 시(예, {X=2, Y=4} 또는 {X=4, Y=2}), 1) RACH 재전송 카운터 값을 증가시키거나, 2) RACH 재전송 카운터 값을 증가시키지 않고 유지할 수 있다.
iii. 다른 방법으로, Y-step RACH로의 전환을 트리거하는 PDCCH/PDSCH를 통해, (이전 X-step RACH에서의 최근 1st-Msg 전송 파워 (및/또는 RACH 재전송 카운터 값) 대비) Y-step RACH의 1st-Msg 전송 파워 (및/또는 RACH 재전송 카운터 값)를 증가시킬지, 유지할지 여부가 시그널링 될 수 있다.
4) RACH 과정간 PRACH 전송 자원 공유
A. 2-step RACH에서 MsgA를 구성하는 RACH 프리앰블(이하, 2-step RP)과 4-step RACH에서 Msg1에 해당하는 RACH 프리앰블(이하, 4-step RP)에 대해, 다음의 옵션을 기반으로 전송 자원을 설정할 수 있다.
i. Opt 1: 2/4-step RP간에 동일한 RO를 설정한 상태에서, (하나의 RO 내에서) 2-step RP와 4-step RP간에 서로 다른 PI 값들이 설정될 수 있다. 즉, 2/4-step RP는 RO를 공유하며, PI 값에 의해 구분될 수 있다.
ii. Opt 2: 2/4-step RP간에 동일한 PI 값 (집합)을 (공유하도록) 설정한 상태에서, 2-step RP와 4-step RP간에 서로 다른 RO가 설정될 수 있다. 즉, 2/4-step RP는 PI를 공유하며, RO에 의해 구분될 수 있다.
iii. Opt 3: 2/4-step RP간에 RO와 PI 값이 모두 상이하게 설정될 수 있다.
iv. Opt 4: Opt 1/2/3 (혹은, Opt 1/2 혹은 Opt 1/3 혹은 Opt 2/3) 중 어느 방식이 적용되는지 여부 (및 대응되는 RO/PI 설정 정보)가 PBCH/SIB 등을 통해 브로드캐스트 될 수 있다.
B. Opt 1의 경우, RO-기반으로 RNTI를 생성하는 경우, RNTI만으로는 2-step RACH의 MsgB(간단히, MsgB)와 4-step RACH의 RAR(간단히, RAR)을 스케줄링하는 PDCCH를 구분할 수 없다. 따라서, MsgB와 RAR을 구분하는 방법이 필요하다. 이를 위해, 다음의 옵션을 고려할 수 있다.
i. Opt 1: (RO에 따라 결정된) RNTI 기반의 PDCCH로부터 스케줄링된 PDSCH 내에, 2-step MsgB와 4-step RAR이 함께 포함될 수 있다. 이때, 레가시 단말은 4-step RACH 포맷만을 이해/적용하고, 개선된 단말은 4-step RACH 포맷과 2-step RACH 포맷을 모두 이해/적용할 수 있는 상황을 고려하면, PDSCH (페이로드) 내에서 RAR이 먼저(예, 더 낮은/빠른 비트 인덱스 부분에) 매핑되고, 그 다음에 MsgB가 매핑될 수 있다.
ii. Opt 2: (i) MsgB 혹은 RAR을 스케줄링 하는 PDCCH의 RNTI, 혹은 (ii) 해당 PDCCH 내 1-비트 플래그를 통해, 대응되는 PDSCH 내에 MsgB와 RAR 중 어느 것이 포함되는지 여부가 지시될 수 있다. 전자의 경우, RNTI는 RO와 RACH 타입에 기반하여 결정될 수 있다. 예를 들어, 수학식 1이 다음과 같이 변형될 수 있다.
[수학식 2]
RA-RNTI= 1 + s_id + 14×t_id + 14*80*f_id + 14*80*8*ul_carrier_id + 14*80*8*2*rach_step
여기서, rach_step는 4-step RACH의 경우 0, 2-step RACH의 경우 1일 수 있다.
iii. Opt 3: MsgB를 스케줄링 하는 PDCCH의 DCI 페이로드 사이즈와 RAR을 스케줄링 하는 PDCCH의 DCI 페이로드 사이즈가 서로 다르게 설정될 수 있다.
본 발명에서 MsgB (또는 이를 스케줄링하는 PDCCH)를 통한 PUCCH 자원 할당 및 (해당 PUCCH 자원을 통한) MsgB 수신에 대한 HARQ-ACK 피드백 전송의 경우, MsgB (또는 이를 스케줄링하는 PDCCH)를 통한 PUSCH 자원 할당 및 (TA command를 적용한) 해당 PUSCH 전송 동작으로 대체하여 적용될 수 있다.
도 15는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 15를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 16은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 16을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 W1의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 17은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 15 참조).
도 17을 참조하면, 무선 기기(100, 200)는 도 16의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 16의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 16의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 W1, 100a), 차량(도 W1, 100b-1, 100b-2), XR 기기(도 W1, 100c), 휴대 기기(도 W1, 100d), 가전(도 W1, 100e), IoT 기기(도 W1, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 W1, 400), 기지국(도 W1, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 17에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 18는 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 18를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 17의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 통신 장치가 신호를 전송하는 방법에 있어서,
    RAP(Random Access Preamble) 전송과 PUSCH(Physical Uplink shared Channel) 전송을 포함하는 랜덤 접속 요청 메시지를 전송하되, 상기 PUSCH 전송은 상기 RAP 전송과 관련된 자원을 이용하여 전송되며 C-RNTI(Cell-Radio Network Temporary Identifier)를 포함하는 단계; 및
    상기 랜덤 접속 요청 메시지에 대한 응답을 수신하기 위해, 시간 윈도우 내에서 PDCCH(Physical Downlink Control Channel)를 모니터링 하는 단계를 포함하되,
    상기 시간 윈도우 내에서 TA(Timing Advance) 커맨드가 수반된 제1 PDCCH가 검출되고, 상기 제1 PDCCH가 상기 C-RNTI에 의해 지시되는 경우, 상기 랜덤 접속 요청 메시지에 대한 응답을 수신하는 과정은 종료되는 방법.
  2. 제1항에 있어서,
    상기 랜덤 접속 요청 메시지에 대한 응답을 수신하는 과정은,
    상기 시간 윈도우 내에서 RA-RNTI에 의해 지시된 PDCCH를 모니터링 것을 포함하는 방법.
  3. 제1항에 있어서,
    상기 TA 커맨드는 상기 제1 PDCCH에 포함되거나, 상기 제1 PDCCH에 대응하는 PDSCH(Physical Downlink Shared Channel)에 포함되는 방법.
  4. 제1항에 있어서,
    상기 RAP 전송은 복수의 RO(Random Access Occasion) 중 하나의 RO에서 수행되며,
    각각의 RO는 하나 이상의 PUSCH 자원에 대응하는 방법.
  5. 제4항에 있어서,
    상기 RO는 상기 RAP 전송에 사용되는 시간 주파수 자원을 포함하고,
    상기 PUSCH 자원은 PUSCH 시간-주파수 자원, PUSCH 스크램블링 ID 및 PUSCH DMRS(Demodulation Reference Signal) 자원 중 적어도 하나를 포함하는 방법.
  6. 제1항에 있어서,
    상기 랜덤 접속 요청 메시지 전송은 RRC(Radio Access Control) 연결 상태에서 수행되는 방법.
  7. 제1항에 있어서,
    상기 무선 통신 시스템은 3GPP(3rd Generation Partnership Project)-기반 무선 통신 시스템을 포함하는 방법.
  8. 무선 통신 시스템에 사용되는 통신 장치에 있어서,
    메모리; 및
    프로세서를 포함하고, 상기 프로세서는,
    RAP(Random Access Preamble) 전송과 PUSCH(Physical Uplink shared Channel)을 포함하는 랜덤 접속 요청 메시지를 전송하되, 상기 PUSCH 전송은 상기 RAP 전송과 관련된 자원을 이용하여 전송되며 C-RNTI(Cell-Radio Network Temporary Identifier)를 포함하고,
    상기 랜덤 접속 요청 메시지에 대한 응답을 수신하기 위해, 시간 윈도우 내에서 PDCCH(Physical Downlink Control Channel)를 모니터링 하도록 구성되고,
    상기 시간 윈도우 내에서 TA(Timing Advance) 커맨드가 수반된 제1 PDCCH가 검출되고, 상기 제1 PDCCH가 상기 C-RNTI에 의해 지시되는 경우, 상기 랜덤 접속 요청 메시지에 대한 응답을 수신하는 과정은 종료되는 통신 장치.
  9. 제8항에 있어서,
    상기 랜덤 접속 요청 메시지에 대한 응답을 수신하는 과정은,
    상기 시간 윈도우 내에서 RA-RNTI에 의해 지시된 PDCCH를 모니터링 것을 포함하는 통신 장치.
  10. 제8항에 있어서,
    상기 TA 커맨드는 상기 제1 PDCCH에 포함되거나, 상기 제1 PDCCH에 대응하는 PDSCH(Physical Downlink Shared Channel)에 포함되는 통신 장치.
  11. 제8항에 있어서,
    상기 RAP 전송은 복수의 RO(Random Access Occasion) 중 하나의 RO에서 수행되며,
    각각의 RO는 하나 이상의 PUSCH 자원에 대응하는 통신 장치.
  12. 제11항에 있어서,
    상기 RO는 상기 RAP 전송에 사용되는 시간 주파수 자원을 포함하고,
    상기 PUSCH 자원은 PUSCH 시간-주파수 자원, PUSCH 스크램블링 ID 및 PUSCH DMRS(Demodulation Reference Signal) 자원 중 적어도 하나를 포함하는 통신 장치.
  13. 제8항에 있어서,
    상기 랜덤 접속 요청 메시지 전송은 RRC(Radio Access Control) 연결 상태에서 수행되는 통신 장치.
  14. 제8항에 있어서,
    상기 무선 통신 시스템은 3GPP(3rd Generation Partnership Project)-기반 무선 통신 시스템을 포함하는 통신 장치.
  15. 제8항에 있어서,
    상기 통신 장치는 적어도 단말, 네트워크 및 상기 통신 장치 외의 다른 자율 주행 차량과 통신할 수 있는 자율 주행 차량을 포함하는 통신 장치.
PCT/KR2019/010161 2018-08-09 2019-08-09 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2020032742A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/267,448 US12082257B2 (en) 2018-08-09 2019-08-09 Method and apparatus for performing a random access procedure in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862716952P 2018-08-09 2018-08-09
US62/716,952 2018-08-09
KR20180115387 2018-09-27
KR10-2018-0115387 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020032742A1 true WO2020032742A1 (ko) 2020-02-13

Family

ID=69414975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010161 WO2020032742A1 (ko) 2018-08-09 2019-08-09 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (2)

Country Link
US (1) US12082257B2 (ko)
WO (1) WO2020032742A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113395767A (zh) * 2020-03-12 2021-09-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113498212A (zh) * 2020-04-03 2021-10-12 中国移动通信有限公司研究院 随机接入方法、终端及网络侧设备
WO2021208048A1 (zh) * 2020-04-16 2021-10-21 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及存储介质
CN113677012A (zh) * 2020-05-15 2021-11-19 维沃移动通信有限公司 随机接入信号的传输方法和终端
CN113891394A (zh) * 2020-07-01 2022-01-04 华为技术有限公司 一种harq-ack传输方法和装置
CN115136713A (zh) * 2020-02-21 2022-09-30 Lg电子株式会社 用于执行随机接入过程的方法及其装置
CN115316036A (zh) * 2020-04-15 2022-11-08 高通股份有限公司 无线通信系统中用于随机接入信道(rach)类型选择和随机接入响应(rar)监测的用户设备(ue)过程的技术
CN115801854A (zh) * 2023-01-29 2023-03-14 安徽深迪科技有限公司 一种面向智能工厂的任务协同规划方法及系统
WO2023061489A1 (zh) * 2021-10-15 2023-04-20 维沃移动通信有限公司 随机接入处理方法、装置、终端、网络侧设备及存储介质
RU2815421C1 (ru) * 2020-05-13 2024-03-14 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ и устройство конфигурации ресурсов, терминальное устройство и сетевое устройство

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831230B (zh) * 2018-08-10 2021-10-01 华为技术有限公司 随机接入方法、装置、设备及存储介质
US11632801B2 (en) 2018-10-03 2023-04-18 Qualcomm Incorporated Message 1 of a two-step random access procedure
CN111263461B (zh) * 2018-11-30 2022-04-22 华为技术有限公司 传输方法及装置
EP3886522A4 (en) * 2018-12-12 2021-12-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. RANDOM ACCESS PROCESS, TERMINAL DEVICE, AND ACCESS NETWORK DEVICE
CN111372321B (zh) * 2018-12-26 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2020168331A1 (en) * 2019-02-15 2020-08-20 Apple Inc. 2-step rack initiated by pdcch order
CN113905453B (zh) * 2019-03-19 2024-03-05 Oppo广东移动通信有限公司 随机接入的方法和设备
JP7191248B2 (ja) * 2019-03-26 2022-12-16 オッポ広東移動通信有限公司 ランダムアクセス方法、端末装置及びネットワーク装置
JP7413398B2 (ja) * 2019-03-27 2024-01-15 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ランダムアクセスプロシージャのための方法、端末デバイスおよび基地局
US11818771B2 (en) * 2019-03-28 2023-11-14 Ntt Docomo, Inc. User equipment and communication method
US12052771B2 (en) * 2019-04-30 2024-07-30 Sharp Kabushiki Kaisha Random access method and user equipment
CN112449764B (zh) * 2019-07-03 2022-12-20 北京小米移动软件有限公司 随机接入方法、装置、系统及存储介质
US11864241B2 (en) * 2019-07-25 2024-01-02 Beijing Xiaomi Mobile Software Co., Ltd. Random access method and apparatus, and storage medium
CN110771248B (zh) * 2019-08-05 2023-08-22 北京小米移动软件有限公司 搜索空间配置、随机接入方法和装置、存储介质
EP3895499B1 (en) * 2019-08-15 2023-03-22 Beijing Xiaomi Mobile Software Co., Ltd. Reception of random access response
US11696332B2 (en) * 2019-08-16 2023-07-04 Qualcomm Incorporated Hybrid resource mapping for RAR
US20220295573A1 (en) * 2019-09-30 2022-09-15 Ntt Docomo, Inc. User equipment and communication method
CN115053630A (zh) * 2020-02-13 2022-09-13 瑞典爱立信有限公司 用于随机接入的方法和装置
US11903034B2 (en) * 2020-02-19 2024-02-13 Intel Corporation Aggregation indication for uplink transmission during random access channel procedures
US20230083682A1 (en) * 2020-02-28 2023-03-16 Qualcomm Incorporated Two step random access procedure in wireless communication
US20210360660A1 (en) * 2020-05-15 2021-11-18 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement of msg3
CN116097880A (zh) * 2020-12-03 2023-05-09 Oppo广东移动通信有限公司 随机接入的触发控制方法、装置、设备及存储介质
US20220295569A1 (en) * 2021-03-15 2022-09-15 Qualcomm Incorporated Random access channel process using single carrier waveforms

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155324A1 (ko) * 2016-03-10 2017-09-14 엘지전자 주식회사 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036058A (ja) * 2017-01-10 2020-03-05 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
KR102505734B1 (ko) * 2017-01-13 2023-03-03 모토로라 모빌리티 엘엘씨 캐리어 주파수에서 경합 기반 랜덤 액세스를 수행하기 위한 방법 및 장치
WO2019191978A1 (en) * 2018-04-04 2019-10-10 Zte Corporation Method and apparatus for performing multiple rach procedures
US11956831B2 (en) * 2018-08-09 2024-04-09 Lg Electronics Inc. Method and device for transmitting/receiving signal in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155324A1 (ko) * 2016-03-10 2017-09-14 엘지전자 주식회사 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "RACH procedure", R1-1806606. 3GPP TSG RAN WG1 MEETING #93, 12 May 2018 (2018-05-12), XP051462646 *
OPPO: "Random access procedure for NR-U", R2-1809922. 3GPP TSG-RAN WG2 MEETING #AH 1807, 22 June 2018 (2018-06-22), XP051525747 *
SAMSUNG ELECTRONICS: "Corrections for random access backoff", R2-1809471. 3GPP TSG-RAN2 ADHOC, 21 June 2018 (2018-06-21), XP051525331 *
ZTE: "Remaining details of RACH procedure", RL-1805945. 3GPP TSG RAN WG1 MEETING #93, 11 May 2018 (2018-05-11), XP051461653 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115136713A (zh) * 2020-02-21 2022-09-30 Lg电子株式会社 用于执行随机接入过程的方法及其装置
CN114944907B (zh) * 2020-03-12 2024-02-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113395767A (zh) * 2020-03-12 2021-09-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113395767B (zh) * 2020-03-12 2022-07-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114944907A (zh) * 2020-03-12 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113498212A (zh) * 2020-04-03 2021-10-12 中国移动通信有限公司研究院 随机接入方法、终端及网络侧设备
CN115316036A (zh) * 2020-04-15 2022-11-08 高通股份有限公司 无线通信系统中用于随机接入信道(rach)类型选择和随机接入响应(rar)监测的用户设备(ue)过程的技术
WO2021208048A1 (zh) * 2020-04-16 2021-10-21 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及存储介质
RU2815421C1 (ru) * 2020-05-13 2024-03-14 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ и устройство конфигурации ресурсов, терминальное устройство и сетевое устройство
CN113677012A (zh) * 2020-05-15 2021-11-19 维沃移动通信有限公司 随机接入信号的传输方法和终端
CN113891394A (zh) * 2020-07-01 2022-01-04 华为技术有限公司 一种harq-ack传输方法和装置
WO2023061489A1 (zh) * 2021-10-15 2023-04-20 维沃移动通信有限公司 随机接入处理方法、装置、终端、网络侧设备及存储介质
CN115801854B (zh) * 2023-01-29 2023-04-28 安徽深迪科技有限公司 一种面向智能工厂的任务协同规划方法及系统
CN115801854A (zh) * 2023-01-29 2023-03-14 安徽深迪科技有限公司 一种面向智能工厂的任务协同规划方法及系统

Also Published As

Publication number Publication date
US12082257B2 (en) 2024-09-03
US20210329703A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2020032742A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032745A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2020060367A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032558A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021015520A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021066595A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021066590A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020060372A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022071755A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020167059A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021091300A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2020167062A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021091306A1 (ko) 채널 점유 시간 내에서 물리 상향링크 공유 채널을 송수신하는 방법 및 이를 위한 장치
WO2021071194A1 (ko) Nr v2x에서 ul 전송의 우선 순위를 결정하는 방법 및 장치
WO2022216048A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020226406A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032683A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021071192A1 (ko) Nr v2x에서 harq 피드백을 기지국에게 보고하는 방법 및 장치
WO2021086084A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020091574A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022154614A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032672A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022203438A1 (ko) Nr v2x에서 sl harq 피드백을 전송하는 방법 및 장치
WO2020032759A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020222599A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846027

Country of ref document: EP

Kind code of ref document: A1