WO2022071755A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents
무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDFInfo
- Publication number
- WO2022071755A1 WO2022071755A1 PCT/KR2021/013349 KR2021013349W WO2022071755A1 WO 2022071755 A1 WO2022071755 A1 WO 2022071755A1 KR 2021013349 W KR2021013349 W KR 2021013349W WO 2022071755 A1 WO2022071755 A1 WO 2022071755A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- rar
- pdcch
- random access
- ssb
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 116
- 238000004891 communication Methods 0.000 title claims abstract description 72
- 238000012544 monitoring process Methods 0.000 claims abstract description 55
- 230000005540 biological transmission Effects 0.000 claims description 81
- 230000008569 process Effects 0.000 claims description 39
- 230000004044 response Effects 0.000 claims description 22
- 238000004590 computer program Methods 0.000 claims description 2
- 230000015654 memory Effects 0.000 description 34
- 238000005516 engineering process Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 18
- 230000011664 signaling Effects 0.000 description 15
- 239000010410 layer Substances 0.000 description 12
- 101100533725 Mus musculus Smr3a gene Proteins 0.000 description 9
- 235000019527 sweetened beverage Nutrition 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000013468 resource allocation Methods 0.000 description 7
- 238000013473 artificial intelligence Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000008054 signal transmission Effects 0.000 description 6
- 101100274486 Mus musculus Cited2 gene Proteins 0.000 description 5
- 101150096622 Smr2 gene Proteins 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000009469 supplementation Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000010408 sweeping Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 102100022734 Acyl carrier protein, mitochondrial Human genes 0.000 description 1
- 101000678845 Homo sapiens Acyl carrier protein, mitochondrial Proteins 0.000 description 1
- 101000687448 Homo sapiens REST corepressor 1 Proteins 0.000 description 1
- 102100024864 REST corepressor 1 Human genes 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/0015—Synchronization between nodes one node acting as a reference for the others
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/232—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/004—Transmission of channel access control information in the uplink, i.e. towards network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving a wireless signal.
- a wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) systems.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- a terminal to perform a random access (RA) process in a wireless communication system on ROs in a first RO group among a plurality of random access channel occasion (RO) groups, the same index transmitting a plurality of RA preambles with receiving a random access response (RAR) by monitoring a plurality of physical downlink control channel (PDCCH) search spaces associated with the first RO group based on the transmission of the plurality of RA preambles; and transmitting an uplink signal corresponding to the RAR, wherein the time resource of each PDCCH search space associated with the first RO group is associated with each RO in the first RO group.
- RAR random access response
- a terminal used in a wireless communication system comprising: at least one RF (Radio Frequency) unit; at least one processor; and at least one computer memory operatively coupled to the at least one processor and, when executed, causing the at least one processor to perform an operation, the operation comprising: a plurality of transmitting a plurality of random access (RA) preambles having the same index on ROs in a first RO group among random access channel occasion (RO) groups; receiving a random access response (RAR) by monitoring a plurality of physical downlink control channel (PDCCH) search spaces associated with the first RO group based on the transmission of the plurality of RA preambles; and transmitting an uplink signal corresponding to the RAR, wherein a time resource of each PDCCH search space associated with the first RO group is associated with each RO in the first RO group.
- RA random access
- RAR random access response
- PDCCH physical downlink control channel
- an apparatus for a terminal comprising: at least one processor; and at least one computer memory operatively coupled to the at least one processor and when executed causes the at least one processor to perform an operation, the operation comprising: a plurality of transmitting a plurality of random access (RA) preambles having the same index on ROs in a first RO group among random access channel occasion (RO) groups; receiving a random access response (RAR) by monitoring a plurality of physical downlink control channel (PDCCH) search spaces associated with the first RO group based on the transmission of the plurality of RA preambles; and transmitting an uplink signal corresponding to the RAR, wherein a time resource of each PDCCH search space associated with the first RO group is associated with each RO in the first RO group.
- RA random access
- RAR random access response
- PDCCH physical downlink control channel
- a computer-readable storage medium comprising at least one computer program that, when executed, causes the at least one processor to perform an operation, the operation comprising: a plurality of ROs (Random access channel Occasion) transmitting a plurality of RA (Random Access) preambles having the same index on ROs in a first RO group among the groups; receiving a random access response (RAR) by monitoring a plurality of physical downlink control channel (PDCCH) search spaces associated with the first RO group based on the transmission of the plurality of RA preambles; and transmitting an uplink signal corresponding to the RAR, wherein a time resource of each PDCCH search space associated with the first RO group is associated with each RO in the first RO group.
- ROs Random access channel Occasion
- RA Random Access
- a fifth aspect of the present invention in a method for a base station to perform a random access (RA) process in a wireless communication system, on ROs in a first RO group among a plurality of random access channel occasion (RO) groups, the same index receiving a plurality of RA preambles with transmitting a random access response (RAR) on a plurality of physical downlink control channel (PDCCH) search spaces associated with the first RO group based on receiving the plurality of RA preambles; and receiving an uplink signal corresponding to the RAR, wherein the time resource of each PDCCH search space associated with the first RO group is associated with each RO in the first RO group.
- RAR random access response
- PDCCH physical downlink control channel
- a base station used in a wireless communication system comprising: at least one Radio Frequency (RF) unit; at least one processor; and at least one computer memory operatively coupled to the at least one processor and, when executed, causing the at least one processor to perform an operation, the operation comprising: a plurality of receiving a plurality of random access (RA) preambles having the same index on ROs in a first RO group among random access channel occasion (RO) groups; transmitting a random access response (RAR) on a plurality of physical downlink control channel (PDCCH) search spaces associated with the first RO group based on receiving the plurality of RA preambles; and receiving an uplink signal corresponding to the RAR, wherein a time resource of each PDCCH search space associated with the first RO group is associated with each RO in the first RO group.
- RF Radio Frequency
- the uplink signal may be transmitted for only one RAR.
- SSB synchronization signal block
- one RO group may include M ROs in a time division multiplexing (TDM) relationship with each other while being linked to the M SSB indexes.
- TDM time division multiplexing
- each RO group corresponds to a base station receive beam sweep period, and each RO belonging to one RO group may correspond to each base station receive beam.
- wireless signal transmission and reception can be efficiently performed in a wireless communication system.
- FIG. 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using the same.
- FIG. 2 illustrates the structure of a radio frame.
- 3 illustrates a resource grid of slots.
- FIG. 4 shows an example in which a physical channel is mapped in a slot.
- RACH Random Access Channel
- FIG 13 illustrates the RACH process according to the present invention.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
- UTRA is part of the Universal Mobile Telecommunications System (UMTS).
- 3GPP (3rd Generation Partnership Project) long term evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA
- LTE-A Advanced
- 3GPP NR New Radio or New Radio Access Technology
- 3GPP LTE/LTE-A is an evolved version of 3GPP LTE/LTE-A.
- next-generation communication As more and more communication devices require a larger communication capacity, the need for improved mobile broadband communication compared to the existing RAT (Radio Access Technology) is emerging.
- massive MTC Machine Type Communications
- massive MTC Machine Type Communications
- a communication system design in consideration of a service/terminal sensitive to reliability and latency is being discussed.
- the introduction of the next-generation RAT in consideration of eMBB (enhanced Mobile BroadBand Communication), massive MTC, and URLLC (Ultra-Reliable and Low Latency Communication) is being discussed, and in the present invention, for convenience, the technology is NR (New Radio or New RAT). it is called
- 3GPP NR is mainly described, but the technical spirit of the present invention is not limited thereto.
- a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
- Information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
- 1 is a diagram for explaining physical channels used in a 3GPP NR system and a general signal transmission method using them.
- a terminal newly entering a cell performs an initial cell search operation such as synchronizing with the base station in step S101.
- the terminal receives a synchronization signal block (SSB) from the base station.
- the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- PBCH Physical Broadcast Channel
- the UE synchronizes with the base station based on PSS/SSS and acquires information such as cell identity.
- the UE may acquire intra-cell broadcast information based on the PBCH.
- the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
- DL RS downlink reference signal
- the UE After completing the initial cell search, the UE receives a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to information on the physical downlink control channel in step S102 to receive more specific information.
- System information can be obtained.
- the terminal may perform a random access procedure such as steps S103 to S106 to complete access to the base station.
- the terminal transmits a preamble through a physical random access channel (PRACH) (S103), and a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel can be received (S104).
- PRACH physical random access channel
- S104 a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel can be received
- a contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106) can be done.
- the UE After performing the procedure as described above, the UE performs a physical downlink control channel/physical downlink shared channel reception (S107) and a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH)/ A physical uplink control channel (PUCCH) transmission (S108) may be performed.
- Control information transmitted by the terminal to the base station is collectively referred to as uplink control information (UCI).
- UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgment/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
- CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), and a Rank Indication (RI).
- CQI Channel Quality Indicator
- PMI Precoding Matrix Indicator
- RI Rank Indication
- UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data are to be transmitted at the same time. In addition, UCI may be transmitted aperiodically through PUSCH according to a request/instruction of a network.
- uplink and downlink transmission consists of frames.
- Each radio frame has a length of 10 ms, and is divided into two 5 ms half-frames (HF).
- Each half-frame is divided into 5 1ms subframes (Subframe, SF).
- a subframe is divided into one or more slots, and the number of slots in a subframe depends on subcarrier spacing (SCS).
- SCS subcarrier spacing
- Each slot includes 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols according to a cyclic prefix (CP).
- OFDM Orthogonal Frequency Division Multiplexing
- CP cyclic prefix
- Table 1 exemplifies that the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS when CP is usually used.
- N slot symb The number of symbols in the slot
- Table 2 illustrates that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
- the structure of the frame is only an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed.
- OFDM numerology eg, SCS
- the (absolute time) interval of a time resource eg, SF, slot, or TTI
- TU Time Unit
- the symbol may include an OFDM symbol (or a CP-OFDM symbol) and an SC-FDMA symbol (or a Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
- a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
- the carrier includes a plurality of subcarriers in the frequency domain.
- a resource block (RB) is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
- a bandwidth part (BWP) is defined as a plurality of consecutive physical RBs (PRBs) in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
- a carrier may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
- Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
- RE resource element
- the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
- the PUCCH may be transmitted in the UL control region, and the PUSCH may be transmitted in the UL data region.
- the GP provides a time gap between the base station and the terminal in the process of switching from the transmission mode to the reception mode or in the process of switching from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in a subframe may be set to GP.
- the PDCCH carries Downlink Control Information (DCI).
- DCI Downlink Control Information
- DL-SCH downlink shared channel
- UL-SCH uplink shared channel
- PCH paging information for a paging channel
- It carries system information on DL-SCH, resource allocation information for higher layer control messages such as random access response transmitted on PDSCH, transmit power control commands, activation/deactivation of CS (Configured Scheduling), and the like.
- DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or use purpose of the PDCCH. For example, if the PDCCH is for a specific terminal, the CRC is masked with a terminal identifier (eg, Cell-RNTI, C-RNTI). If the PDCCH relates to paging, the CRC is masked with a Paging-RNTI (P-RNTI). If the PDCCH relates to system information (eg, System Information Block, SIB), the CRC is masked with a System Information RNTI (SI-RNTI). If the PDCCH relates to a random access response, the CRC is masked with RA-RNTI (Random Access-RNTI).
- RNTI Radio Network Temporary Identifier
- the PDCCH is composed of 1, 2, 4, 8, or 16 CCEs (Control Channel Elements) according to an Aggregation Level (AL).
- the CCE is a logical allocation unit used to provide a PDCCH of a predetermined code rate according to a radio channel state.
- CCE consists of 6 REGs (Resource Element Groups).
- REG is defined by one OFDM symbol and one (P)RB.
- the PDCCH is transmitted through a control resource set (CORESET).
- CORESET is defined as a set of REGs with a given pneumonology (eg, SCS, CP length, etc.).
- a plurality of CORESETs for one UE may overlap in the time/frequency domain.
- CORESET may be set through system information (eg, Master Information Block, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs and the number of OFDM symbols (maximum 3) constituting CORESET may be set by higher layer signaling.
- system information eg, Master Information Block, MIB
- UE-specific higher layer eg, Radio Resource Control, RRC, layer
- RRC Radio Resource Control
- the number of RBs and the number of OFDM symbols (maximum 3) constituting CORESET may be set by higher layer signaling.
- the UE monitors PDCCH candidates.
- the PDCCH candidate indicates CCE(s) that the UE needs to monitor for PDCCH detection.
- Each PDCCH candidate is defined as 1, 2, 4, 8, or 16 CCEs according to the AL.
- Monitoring includes (blind) decoding of PDCCH candidates.
- a set of PDCCH candidates monitored by the UE is defined as a PDCCH search space (SS).
- the search space includes a common search space (CSS) or a UE-specific search space (USS).
- the UE may acquire DCI by monitoring PDCCH candidates in one or more search spaces configured by MIB or higher layer signaling.
- Each CORESET is associated with one or more search spaces, and each search space is associated with one COREST.
- the search space may be defined based on the following parameters.
- controlResourceSetId indicates the CORESET related to the search space
- monitoringSlotPeriodicityAndOffset indicates the PDCCH monitoring period (slot unit) and PDCCH monitoring interval offset (slot unit)
- - monitoringSymbolsWithinSlot indicates the PDCCH monitoring symbol in the slot (eg indicates the first symbol(s) of CORESET)
- An opportunity eg, time/frequency resource
- PDCCH monitoring
- One or more PDCCH (monitoring) opportunities may be configured within a slot.
- Table 3 exemplifies the characteristics of each search space type.
- Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
- Table 4 illustrates DCI formats transmitted through the PDCCH.
- DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
- DCI format 0_1 is TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH can be used to schedule
- DCI format 1_0 is used to schedule a TB-based (or TB-level) PDSCH
- DCI format 1_1 is used to schedule a TB-based (or TB-level) PDSCH or a CBG-based (or CBG-level) PDSCH.
- Can DL grant DCI).
- DCI format 0_0/0_1 may be referred to as UL grant DCI or UL scheduling information
- DCI format 1_0/1_1 may be referred to as DL grant DCI or UL scheduling information
- DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
- DCI format 2_1 is used to deliver downlink pre-emption information to the terminal.
- DCI format 2_0 and/or DCI format 2_1 may be delivered to terminals in a corresponding group through a group common PDCCH, which is a PDCCH delivered to terminals defined as one group.
- DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
- DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
- the DCI size/field configuration remains the same regardless of the UE configuration.
- the non-fallback DCI format the DCI size/field configuration varies according to UE configuration.
- PDSCH carries downlink data (eg, DL-SCH transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are applied. do.
- QPSK Quadrature Phase Shift Keying
- QAM 16 Quadrature Amplitude Modulation
- a codeword is generated by encoding the TB.
- the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to a resource together with a demodulation reference signal (DMRS), is generated as an OFDM symbol signal, and is transmitted through a corresponding antenna port.
- DMRS demodulation reference signal
- UCI Uplink Control Information
- UCI includes:
- - SR (Scheduling Request): Information used to request a UL-SCH resource.
- Hybrid Automatic Repeat reQuest-ACK (Acknowledgment): It is a response to a downlink data packet (eg, codeword) on the PDSCH. Indicates whether the downlink data packet has been successfully received. 1 bit of HARQ-ACK may be transmitted in response to a single codeword, and 2 bits of HARQ-ACK may be transmitted in response to two codewords.
- the HARQ-ACK response includes positive ACK (simply, ACK), negative ACK (NACK), DTX or NACK/DTX.
- HARQ-ACK is mixed with HARQ ACK/NACK and ACK/NACK.
- MIMO-related feedback information includes a Rank Indicator (RI) and a Precoding Matrix Indicator (PMI).
- RI Rank Indicator
- PMI Precoding Matrix Indicator
- Table 5 illustrates PUCCH formats. According to the PUCCH transmission length, it can be divided into Short PUCCH (formats 0, 2) and Long PUCCH (formats 1, 3, 4).
- PUCCH format 0 carries UCI having a maximum size of 2 bits, and is mapped and transmitted based on a sequence. Specifically, the UE transmits a specific UCI to the base station by transmitting one of the plurality of sequences through the PUCCH having the PUCCH format 0. The UE transmits a PUCCH of PUCCH format 0 in a PUCCH resource for configuring a corresponding SR only when transmitting a positive SR.
- PUCCH format 1 carries UCI with a maximum size of 2 bits, and a modulation symbol is spread by an orthogonal cover code (OCC) (set differently depending on whether or not frequency hopping is performed) in the time domain.
- OCC orthogonal cover code
- DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, time division multiplexing (TDM) is performed and transmitted).
- PUCCH format 2 carries UCI having a bit size greater than 2 bits, and a modulation symbol is transmitted through frequency division multiplexing (FDM) with DMRS.
- FDM frequency division multiplexing
- DM-RS is located at symbol indexes #1, #4, #7, and #10 in a given resource block with a density of 1/3.
- a Pseudo Noise (PN) sequence is used for the DM_RS sequence.
- PN Pseudo Noise
- PUCCH format 3 UE multiplexing is not performed in the same physical resource blocks, and UCI of a bit size greater than 2 bits is carried.
- the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
- the modulation symbol is transmitted through DMRS and time division multiplexing (TDM).
- PUCCH format 4 multiplexing is supported for up to 4 UEs in the same physical resource blocks, and UCI of a bit size greater than 2 bits is carried.
- the PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
- the modulation symbol is transmitted through DMRS and time division multiplexing (TDM).
- PUSCH carries uplink data (eg, UL-SCH transport block, UL-SCH TB) and/or uplink control information (UCI), and CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) waveform or It is transmitted based on a Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform.
- DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
- the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on the CP-OFDM waveform, and when transform precoding is possible (eg, transform precoding is enabled), the UE transmits CP- PUSCH may be transmitted based on an OFDM waveform or a DFT-s-OFDM waveform.
- PUSCH transmission is dynamically scheduled by a UL grant in DCI, or based on higher layer (eg, RRC) signaling (and/or Layer 1 (L1) signaling (eg, PDCCH)) semi-statically. Can be scheduled (configured grant).
- PUSCH transmission may be performed on a codebook-based or non-codebook-based basis.
- a transmitter may transmit a signal while changing a direction of a beam over time (transmit beamforming), and a receiver may also receive a signal while changing a direction of a beam over time (receive beamforming).
- transmit beamforming transmit beamforming
- receive beamforming receive beamforming
- the transmit beam and the receive beam change the direction of the beam at the same time according to time
- only the direction of the receive beam changes with time while the transmit beam is fixed
- receive beam receive In a state where the beam is fixed, only the direction of the transmission beam may change with time.
- the UE may perform cell search, system information acquisition, beam alignment for initial access, DL measurement, and the like based on the SSB.
- the SSB is mixed with an SS/PBCH (Synchronization Signal/Physical Broadcast channel) block.
- SSB is composed of PSS, SSS and PBCH.
- the SSB is configured in four consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH, and PBCH are transmitted for each OFDM symbol.
- the SSB is transmitted periodically according to the SSB period (periodicity).
- the basic SSB period assumed by the UE during initial cell discovery is 20 ms.
- the SSB period may be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by a network (eg, a base station).
- a network eg, a base station.
- the SSB burst set consists of a 5 ms time window (ie, half-frame), and within the SSB burst set, the SSB can be transmitted up to L times.
- the SSB may be transmitted periodically using beam sweeping.
- Beam sweeping means that a transmission reception point (TRP) (eg, a base station/cell) changes a beam (direction) of a radio signal according to time (hereinafter, a beam and a beam direction may be used interchangeably).
- TRP transmission reception point
- a beam and a beam direction may be used interchangeably.
- the SSB index is implicitly linked with the SSB beam.
- the SSB beam may be changed in units of SSB (index).
- the maximum number of SSB transmissions L in the SSB burst set has a value of 4, 8, or 64 depending on the frequency band to which the carrier belongs. Accordingly, the maximum number of SSB beams in the SSB burst set may also be given as follows according to the frequency band of the carrier.
- Max number of beams 64
- the number of SSB beams is one.
- CORESET may be set corresponding to the SSB.
- the CORESET corresponding to SSB #n is to be set as 1-symbol CORESET (C1/C2) in symbol #0 and/or symbol #1 and/or 2-symbol CORESET (C3) in symbol #0/1.
- the CORESET corresponding to SSB #n+1 is to be set as 1-symbol CORESET (C4/C5) in symbol #6 and/or symbol #7 and/or 2-symbol CORESET (C6) in symbol #6/7.
- FIG. 8 illustrates a 4-step RACH process.
- signals/information transmitted through each step and specific operations performed in each step are as follows.
- Msg1 PRACH: transmitted from the terminal to the base station (S710).
- Each Msg1 may be divided into a time/frequency resource (RACH Occasion, RO) and a preamble index (RA Preamble Index, RAPID) through which a random access (RA) preamble is transmitted.
- RACH Occasion RO
- RAPID preamble index
- Msg2 (RAR PDSCH): This is a response message to Msg1 and is transmitted from the base station to the terminal (S720).
- the UE may perform PDCCH monitoring to see if there is an RA-RNTI-based PDCCH (eg, the CRC of the PDCCH is masked with an RA-RNTI) within a time window (hereinafter, RAR window) related to Msg1.
- RAR window time window
- the UE may receive the RAR from the PDSCH indicated by the RA-RNTI PDCCH.
- the RA-RNTI may be determined as follows.
- Msg3 transmitted from the terminal to the base station (S730).
- Msg3 is performed based on the UL grant in the RAR.
- Msg3 may include contention resolution identity (and/or Buffer Status Report (BSR) information, RRC connection request, etc.).
- BSR Buffer Status Report
- Retransmission according to the HARQ process may be applied to Msg3 (PUSCH).
- the collision resolution ID includes a UL Common Control Channel (CCCH) Service Data Unit (SDU). If the UL CCCH SDU is greater than 48 bits, only the first 48 bits of the UL CCCH SDU may be included in Msg3.
- CCCH Common Control Channel
- SDU Service Data Unit
- Msg4 (PDSCH): transmitted from the base station to the terminal (S740).
- Msg4 may include a terminal (global) ID (and/or RRC connection related information) for conflict resolution. Whether conflict resolution succeeds/fails may be determined based on Msg4.
- the UE If Msg2/Msg4 is not successfully received, the UE retransmits Msg1. In this case, the UE increases the transmission power of Msg1 (power ramping) and increases the RACH retransmission counter value. When the value of the RACH retransmission counter reaches the maximum value, it is determined that the RACH process has completely failed. In this case, after performing random back-off, the UE may initialize a RACH-related parameter (eg, a RACH retransmission counter) to start a new RACH process.
- a RACH-related parameter eg, a RACH retransmission counter
- the terminal may transmit a random access request message (eg, MsgA) to the base station.
- MsgA transmission includes RAP (Random Access Preamble) transmission (S1302) and PUSCH transmission (S1304).
- MsgB Random Access Preamble
- the UE may monitor the PDCCH within a time window related to the RAP.
- the UE may receive a PDCCH scheduling MsgB within a time window (hereinafter, MsgB PDCCH) (S1306), and may receive MsgB based thereon (S1308).
- the UE may monitor a specific RNTI-based PDCCH (eg, the CRC of the PDCCH is masked with a specific-RNTI).
- PDCCH monitoring includes blind decoding of PDCCH candidates.
- a specific RNTI may include an RA-RNTI. If MsgB is not successfully received and/or conflict resolution fails, the UE may perform MsgA retransmission. On the other hand, if the MsgB is received and the conflict resolution is successful, the RACH process is successfully completed.
- MsgB includes PUCCH resource allocation information for HARQ-ACK feedback transmission, the UE may transmit HARQ-ACK feedback for MsgB reception using the allocated PUCCH resource.
- the MsgB includes the TA command and PUSCH resource allocation information (eg, UL grant)
- the UE may transmit the PUSCH based on the TA command and PUSCH resource allocation information.
- NR New RAT
- eMBB enhanced mobile broadband
- mMTC massive machine type communications
- URLLC Universal Mobile Broadband
- NR hereinafter, HF (High Frequency) NR
- SCS Small Carrier System
- the OFDM symbol and slot period become smaller, so cell planning that operates/operates by reducing cell coverage can be considered.
- coverage supplementation may be required for physical channel/signal (physical channel/signal) transmission.
- Coverage supplementation is, for example, so that a DL physical channel/signal can reach a terminal located at the edge/boundary of the target cell coverage according to cell planning, or a UL physical transmitted from a terminal located at the edge/boundary of the target cell coverage It refers to a method for coverage extension/supplementation in physical channel/signal processing so that the channel/signal can reach the base station.
- the CP length is reduced due to the use of a large SCS, it is necessary to consider the delay spread and/or the effect of phase noise of the radio channel, and/or the beam switching time.
- the present specification proposes a RACH process in consideration of the above-described communication environment.
- the RACH process/operation method/apparatus proposed in this specification may consider at least one of (i) HF NR operation, (ii) large SCS usage, and/or (iii) symbol length reduction.
- the present specification proposes a RACH process based on an RO (RACH Occasion) group.
- PRACH transmission coverage supplementation in consideration of OFDM symbol shortening due to the use of large SCS, which is an operation characteristic of HF NR system, beam refinement/sweeping support in consideration of beam quality deterioration due to sharp multi-beam transmission
- RACH Occasions a plurality of ROs linked to one or a plurality of SSBs (indexes).
- the following description focuses on 4-step RACH, but the proposed method of the present specification can also be used for 2-step RACH.
- RO 10 illustrates a plurality of RACH Occasions (ROs) configured in the RACH resource interval.
- the RO may be referred to as a PRACH opportunity or RA-opportunity for short.
- RO may mean time/frequency resource(s) capable of transmitting the UE's PRACH (eg, Msg1 or MsgA including the RA preamble).
- SCS 120 kHz
- a maximum of 80 RACH slots may be configured within the RACH-resource period (eg, 10 ms) in the time domain, and a plurality of (eg, up to 8) RO frequency resources (eg, RB) in the frequency domain This can be set.
- RO may be defined as one RACH slot and one RACH frequency resource.
- the UE may select one of a plurality of ROs to transmit a PRACH (ie, an RA preamble).
- a PRACH ie, an RA preamble
- the UE monitors a PDCCH (hereinafter, RAR PDCCH) for scheduling RAR within the RAR window (or RA-window).
- RAR PDCCH a PDCCH
- the RAR window starts based on the RO transmission time (ie, the PRACH transmission time), and specifically, it may start from the first PDCCH opportunity (eg, PDCCH search space) for RAR PDCCH monitoring that exists after the RO transmission time.
- the time interval of the RAR window may be adjusted based on a timer set by a higher layer (eg, RRC).
- RAR window ie, timer
- the UE monitors the RAR PDCCH for each PDCCH search space, and when the RAR PDCCH for the UE is detected, the RAR window may be terminated.
- RAR PDCCH is distinguished by RA-RNTI.
- RAR may be replaced with MsgB
- RA-RNTI may be replaced with MsgB-RNTI.
- the RA-RNTI applied to the PDCCH scheduling RAR in the existing 4-step RACH and the MsgB-RNTI applied to the PDCCH scheduling MsgB in the 2-step RACH are the following parameters to distinguish a plurality of ROs set within a 10 ms interval. can be calculated/determined as a function of
- RA-RNTI 1 + s + ⁇ 14*t ⁇ + ⁇ 14*80*f ⁇ + ⁇ 14*80*8*u ⁇
- MsgB-RNTI 1 + s + ⁇ 14*t ⁇ + ⁇ 14*80*f ⁇ + ⁇ 14*80*8*u ⁇ + 14*80*8*2, where
- - RNTI consists of 16-bit and has a value from 0 to 65535
- Equation 1 The RA-RNTI/MsgB-RNTI of Equation 1 can be generalized as follows. For the definition of the parameter of Equation 2, reference may be made to Equation 1.
- - s is a symbol index and has a value of 0 to 13,
- - t is a slot index and has a value from 0 to 79
- -f is a frequency resource index and has a value of 0 to 7,
- - u is 0 or 1 as a value related to the carrier on which the RA preamble is transmitted
- - r may have 0 or 2 as a value for the RACH type. For example, when the PRACH is transmitted through the 4-step RACH, r may be set to 0. On the other hand, when the PRACH is transmitted through the 2-step RACH, r may be set to 2.
- the number of slots (indexes) within the 10 ms period may increase in proportion to the SCS size.
- the PRACH SCS is 480 KHz or 960 KHz
- the number of slots (indexes) within a 10 ms period is 320 or 640, respectively.
- the PRACH SCS means the SCS configured in the PRACH (or the RA preamble) or the SCS of the band/carrier/cell in which the PRACH (or the RA preamble) transmission is performed.
- the maximum value of RA-RNTI is approximately 71680 or 143360, respectively, and the maximum value of MsgB-RNTI is approximately 143360 or 286720, respectively. Due to this, a problem occurs outside the range of values (0 to 65535) that the 16-bit RNTI can have.
- RO group type(s) may be proposed for the RO group-based RACH process.
- the following two types may be considered/configured (by the terminal/base station).
- the terminal TX beam eg, PRACH transmission of the terminal, Msg1 and/or MsgA transmission
- the base station RX beam eg, PRACH reception of the base station, Msg1 and/or MsgA reception
- the present invention is not limited to the following two RO group types.
- additional RO group types may be defined, or some of the RO group types described in this specification may be replaced/omitted with other RO group types.
- some combinations may form one RO group type.
- FIG. 11 illustrates RO group type-1
- FIG. 12 illustrates RO group type-2.
- RO group type-1 a set of multiple (TDMed) ROs associated with the same single SSB (index)
- RO beam comb-A structure in which the terminal TX beam is repeated within the RO group
- RO beam comb-B structure in which the terminal TX beam is swept within the RO group
- i. Beam configuration Transmitted using a different terminal TX beam for each RO belonging to one RO group
- RO group type-2 a set of (TDMed) ROs associated with a plurality of different SSBs (indexes)
- RO beam comb-C structure in which the base station RX beam is swept within the RO group
- i. Beam configuration Reception using a different base station RX beam for each RO belonging to one RO group
- an RO group type may be determined/set based on whether the RO group is associated with a single SSB.
- the RO group type-2 may be interpreted to mean that it is not guaranteed that the RO group is associated with a single SSB, and the number of SSBs associated with the RO group may be variously set. For example, as shown in FIG. 12 , the number of ROs in the RO group and the number of SSBs may be linked to each other, but the same SSB may be commonly linked to some ROs in the RO group.
- the UE may transmit (repeat) the same (beam-formed) PRACH for each RO within the RO group. Due to repeated PRACH transmission, there may be an effect of PRACH transmission success possibility and coverage improvement.
- the Tx beam of the UE for PRACH transmission may be changed according to/based on each RO (or a specific RO pattern) within the RO group.
- a base station that attempts to detect a PRACH on a first RO within an RO group uses a first RX beam
- a base station that attempts to detect a PRACH on a second RO uses a second RX beam.
- the first RX beam and the second RX beam may be determined based on the SSB associated with the corresponding RO, respectively.
- the RO group type and/or RO beam combination information may be provided by the base station to the terminal.
- the RO group type and/or RO beam combination information may be configured in the UE through system information (eg, SIB) or RRC signaling, and may be configured using, for example, the following method.
- SIB system information
- RRC signaling e.g., RRC Reference Signal
- Alt 1 Through SIB or RRC signaling, Alt 1) a set of M SSB indexes associated with the size (M) of a single RO group and a plurality of (M) ROs belonging to each RO group (index), or Alt 2) Whether all the associated SSB indices are the same or (at least some of them) are different from each other (that is, whether the corresponding RO group type is RO group type-1 or type-2) can be set by the terminal/base station has exist
- the corresponding RO beam combination is either RO beam comb-A or comb-B (ie, multiple ROs belonging to the RO group) Whether all of the TX beams used for transmission of them are the same or different) may be additionally set by the terminal / base station
- the terminal/base station configures the RO group in the following way
- the terminal / base station is linked to M SSB indexes based on a specific (eg, radio frame (SFN) start) time point and the M fastest (in time) ROs in a TDM relationship with each other form an RO group by tying them together (if a plurality of sets of M ROs exist over a plurality of frequencies, the RO group is sequentially formed from the low-frequency RO set (to have a low index)), and then again under the same conditions (i.e. , SSB association, TDM allocation) configures an RO group in such a way that the M fastest ROs (from the low-frequency RO set) are bundled together (hereinafter, RO grouping method A)
- SFN radio frame
- the terminal/base station forms an RO group by binding the M fastest (in time) ROs in a TDM relationship with each other while being linked to the same set SSB index ( If a plurality of sets of M ROs exist over a plurality of frequencies, the RO groups are sequentially configured from the low-frequency RO set (to have a low index), and then again under the same conditions (ie, SSB association, TDM allocation) Configure the RO group in such a way that the M fastest ROs in
- the terminal/base station configures the RO group in the following way
- the RO group is configured by applying the RO grouping method A to the lowest M SSB indexes, (the corresponding M SSB indexes) ) Afterwards, configure the RO group in such a way that the RO grouping method A is applied to the lowest M SSB indexes again.
- RO group type-1 When RO group type-1 is set (that is, all associated SSB indices are the same), the RO group is configured by applying RO grouping method B to the lowest one SSB index, and after (corresponding SSB index) again The RO group is configured in such a way that the RO grouping method B is applied to the lowest one SSB index.
- a and B are an example of configuring an RO group based on the SSB index, and the proposed invention of the present specification is not limited thereto.
- the RO group may be determined based on the RO grouping function using the SSB index as an input value.
- the terminal The RACH process can be performed by selecting one RO group type or one RO beam combination based on the signal reception quality (eg, Reference Signals Received Power, RSRP).
- the signal reception quality eg, Reference Signals Received Power, RSRP
- a specific level eg, the first reference value
- select the RO beam comb-A if the RSRP of the SSB is less than a specific level (eg, the first reference value), select the RO beam comb-A, and if the RSRP of the SSB is above a specific level, the RO beam action to select comb-B
- RO group type-1/2 if the RSRP of the SSB is less than a specific level (eg, the second reference value), select the RO beam comb-A, and if the RSRP of the SSB is above a specific level Action to select RO beam comb-C
- the UE may operate to select/transmit the same PRACH preamble index for a plurality of ROs belonging to the same single RO group (that is, a single UE may select/transmit a plurality of ROs belonging to the same single RO group) All of the preamble indices of the PRACH signal transmitted through the
- the PRACH transmission signal of the RO group unit and the existing single RO unit PRACH transmission signal are divided/set into (TDM type) ROs at different times, Alt A), or Alt B) different frequencies (FDM type) of) can be differentiated/set by RO, or Alt C) can be distinguished/set using different PRACH preamble index sets while (same) RO of the same time point/frequency is set
- Alt 1/2 a combination of Alt 1/2 is possible.
- Alt 2 information indicates that the SSB indices linked to ROs of the RO group are different from each other (type-2)
- Alt 1 information linked to the ROs of the RO group
- a set of M SSB indices may be provided.
- the size M of the RO group may also be signaled/configured or predefined. As an example, the size M of the RO group may be determined based on various parameters (eg, SCS, (OFDM) symbol length, numerology, and/or HF frequency band), but is not limited thereto.
- the following methods are considered/configured for the RAR reception operation of the UE corresponding to the RO group transmission (RAR window setting for this) and the RA-RNTI determination of the PDCCH scheduling the RAR.
- RAR may be replaced with MsgB in the case of 2-step RACH.
- the RAR reception method and/or RA-RNTI determination described below are exemplary and may be mutually combined or omitted within a range that does not conflict with each other.
- RAR window setting and the RA-RNTI determination method reference may be made to the description of FIG. 10 and Equation 1 .
- Option 1 The UE starts the RAR window based on the transmission time of the last (or first) RO belonging to the RO group (in time) and receives the RAR (corresponding to the entire RO group).
- starting the RAR window based on the RO transmission time may mean starting the RAR window from the first PDCCH monitoring opportunity existing after the RO transmission time.
- the PDCCH monitoring opportunity means a PDCCH monitoring opportunity for RAR PDCCH monitoring.
- Option 2 The UE receives RAR (corresponding to each RO in the RO group) by starting the RAR window based on each RO transmission time for each of a plurality of ROs belonging to the RO group
- Option A (If Option 1 is applied) The terminal/base station determines the RA-RNTI based on the (in time) last (or first) RO index belonging to the RO group. That is, the RA-RNTI is determined based on the last (or first) RO in the RO group (refer to Equation 1)
- the UE performs RAR detection for only one RA-RNTI
- Option B (If Option 2 is applied) The terminal/base station determines the RA-RNTI based on the RO index of each of a plurality of ROs belonging to the RO group, that is, the RA-RNTI is determined based on each RO in the RO group. Decision (see Equation 1)
- the UE performs RAR detection for a plurality of RA-RNTIs
- Option A may be understood as an example in which one (common) RA-RNTI is linked to ROs belonging to the same RO group.
- Option B may be understood as an example in which a different RA-RNTI is linked for each RO in the same RO group.
- At least one of Option 1/2 and/or Option A/B or their Combinations can be applied/set.
- the UE may select/set its own final (best) TX beam in the following manner according to Option 1/2.
- Information (eg, index) on a specific RO belonging to the RO group may be indicated to the UE through the RAR (or the PDCCH scheduling it) corresponding to the RO group.
- the UE may operate to apply the TX beam used for reception/indicated specific RO (index) transmission to subsequent UL channel/signal transmission (eg, Msg3 PUSCH).
- the base station based on the information of the RO indicated through the RAR or the PDCCH that scheduled it (eg, assuming that the terminal will transmit a UL channel/signal based on the information on the corresponding RO, use the corresponding Rx beam) , the corresponding UL channel/signal may be received.
- a specific RO (index) indicated through RAR may be an RO (index) with the best reception quality from the viewpoint of the base station.
- the UE may operate to apply the TX beam used for RO (index) transmission corresponding to the received RAR (RA-RNTI of the PDCCH scheduling it) to subsequent UL channel/signal transmission (eg, Msg3 PUSCH).
- Option X The terminal monitors the RAR (PDCCH scheduling it) corresponding to each of a plurality of ROs belonging to the RO group, and transmits the corresponding Msg3 (by applying the TX beam determination method) only for the first received RAR (in time) action to do
- the UE operates to perform Msg3 transmission corresponding to only one specific RAR (by applying the TX beam determination method) among RAR(s) received corresponding to a plurality of ROs belonging to the RO group. That is, when a plurality of RARs are received by one UE, the UE may transmit Msg3 only for one RAR (ie, a specific RAR).
- the specific RAR may include the RAR corresponding to the fastest/slowest RO in time, the RAR determined based on the scheduled Transport Block Size (TBS) of Msg3, and/or the last received RAR in time.
- TBS Transport Block Size
- Option 2/Option B may be applied/configured for RAR reception operation and RA-RNTI determination.
- the following issues may be additionally considered in relation to the RAR/Msg3/Msg4 transmission/reception operation.
- Option X The UE monitors the RAR (PDCCH scheduling it) corresponding to each of a plurality of ROs belonging to the RO group, and performs the subsequent RACH process (including the corresponding Msg3 transmission) only for the first received RAR (in time) action to perform
- Option Y The UE performs a subsequent RACH process (including Msg3 transmission) for only one RAR among a plurality of RARs received corresponding to a plurality of ROs belonging to the RO group.
- a specific RAR is the RAR corresponding to the RO associated with the SSB with the best reception quality (eg RSRP), the RAR corresponding to the RO associated with the lowest/highest SSB index, and the fastest/slowest RO in time. It may include the corresponding RAR, the RAR determined based on the scheduled Transport Block Size (TBS) of Msg3, and/or the last received RAR in time.
- TBS Transport Block Size
- Option Z The UE operates to perform a subsequent RACH process (including Msg3 transmission) for all RARs received corresponding to a plurality of ROs belonging to the RO group
- the UE may operate to transmit each Msg3 (corresponding to different RARs) based on a plurality of TC-RNTIs (Temporary C-RNTIs) indicated through a plurality of RARs.
- TC-RNTIs Temporal C-RNTIs
- the UE may operate to perform PDCCH monitoring for the plurality of TC-RNTIs.
- RA-RNTI PDCCH monitoring setting eg, the UE scrambles the CRC of the PDCCH to the RA-RNTI based on at least one of the following RA-RNTI, PDCCH search space configuration information, SSB and/or RO It is possible to perform blind detection on the masked PDCCH candidates (eg, candidates in the search space), and for this, UE/base station configuration and signaling are proposed)
- Method 1 Through SIB or RRC signaling, for each of a plurality of different SSB indices (or sub-groups of the corresponding SSB indices) (associated with a plurality of ROs (indexes) belonging to the RO group) , the corresponding (Scheduling RAR) PDCCH search space for RA-RNTI-based PDCCH monitoring (eg, information such as PDCCH monitoring period and monitoring start offset) is each SSB index (sub-group) (that is, each SSB index ( Can be set per RO) associated with sub-groups)
- RA-RNTI-based PDCCH monitoring eg, information such as PDCCH monitoring period and monitoring start offset
- the UE performs PDCCH monitoring (using the RX beam corresponding to each of the SSB indices) for the PDCCH search spaces set in the SSB indices associated with the RO group (ROs belonging to it) transmitted by the UE. can act to
- Method 2 One or a plurality of PDCCH search spaces for RA-RNTI-based PDCCH monitoring (scheduling RAR) will be set (by each RO group or by a set of SSB indexes associated with ROs belonging to each RO group) can In this state, through SIB or RRC signaling, a plurality of different SSB indexes (or sub-groups of the corresponding SSB indexes) (associated with a plurality of RO (indexes) belonging to the RO group) on the corresponding PDCCH search space, respectively PDCCH monitoring time corresponding to can be set for each SSB index (sub-group) (that is, the RO associated with each SSB index (sub-group))
- the UE performs PDCCH monitoring (using the RX beam corresponding to each of the SSB indices) for monitoring time points set in the SSB indexes associated with the RO group (ROs belonging to it) transmitted by the UE. can work
- Method 3 (Scheduling RAR) One or a plurality of PDCCH search spaces for RA-RNTI-based PDCCH monitoring are set (for each RO group or for each set of SSB indexes associated with ROs belonging to each RO group) can be In this state, based on a specific rule, corresponding to each of a plurality of different SSB indexes (or sub-groups of the corresponding SSB indexes) (associated with a plurality of RO (indexes) belonging to the RO group) on the PDCCH search space
- the PDCCH monitoring time point (opportunity) to be can be set for each SSB index (sub-group) (ie, RO associated with each SSB index (sub-group))
- K may mean the number of SSB indexes associated with the RO group (ROs belonging to it) or the total number of SSB indexes.
- k may mean the k-th SSB index among the SSB indexes associated with the RO group or the k-th SSB index among all SSB indexes
- TC-RNTI PDCCH monitoring setting eg, the UE scrambles the CRC of the corresponding PDCCH to TC-RNTI based on at least one of the following TC-RNTI, PDCCH search space configuration information, SSB and/or RO
- TC-RNTI PDCCH monitoring setting
- Method 1 Through SIB or RRC signaling, for each of a plurality of different SSB indexes (or sub-groups of the corresponding SSB indexes) (associated with a plurality of RO (indexes) belonging to the RO group), PDCCH search space for TC-RNTI based PDCCH monitoring (for scheduling Msg3 retransmission or Msg4 transmission) for Msg3 transmission scheduled from the corresponding RAR (eg, information such as PDCCH monitoring period and monitoring start offset) is each SSB index Can be set per (sub-group) (ie RO associated with each SSB index (sub-group))
- the UE performs PDCCH monitoring (using the RX beam corresponding to each of the SSB indices) for the PDCCH search spaces set in the SSB indices associated with the RO group (ROs belonging to it) transmitted by the UE. can act to
- Method 2 (Scheduling Msg3 retransmission or Msg4 transmission for Msg3 scheduled as RAR)
- One or a plurality of PDCCH search spaces for TC-RNTI based PDCCH monitoring may be set for each SSB index set associated with the ROs).
- a plurality of different SSB indexes (or sub-groups of the corresponding SSB indexes) (associated with a plurality of RO (indexes) belonging to the RO group) on the corresponding PDCCH search space, respectively PDCCH monitoring time corresponding to can be set for each SSB index (sub-group) (that is, the RO associated with each SSB index (sub-group))
- the UE performs PDCCH monitoring (using the RX beam corresponding to each of the SSB indices) for monitoring time points set in the SSB indexes associated with the RO group (ROs belonging to it) transmitted by the UE. can work
- Method 3 (Scheduling Msg3 retransmission or Msg4 transmission for Msg3 scheduled as RAR)
- One or more PDCCH search spaces for TC-RNTI based PDCCH monitoring may be set for each SSB index set associated with the In this state, based on a specific rule, corresponding to each of a plurality of different SSB indexes (or sub-groups of the corresponding SSB indexes) (associated with a plurality of RO (indexes) belonging to the RO group) on the PDCCH search space
- the PDCCH monitoring time point (opportunity) to become can be set for each SSB index (sub-group) (that is, the RO associated with each SSB index (sub-group))
- K may mean the number of SSB indexes associated with the RO group (ROs belonging to it) or the total number of SSB indexes.
- k may mean the k-th SSB index among the SSB indexes associated with the RO group or the k-th SSB index among all SSB indexes
- PDCCH monitoring time points (based on RA-RNTI scheduling RAR) corresponding to different ROs (indexes) belonging to the same RO group (associated with different SSB indexes) may overlap.
- the UE may perform PDCCH (RA-RNTI) monitoring for only one specific RO (SSB).
- SSB specific RO
- a particular RO may include the RO associated with the SSB with the best reception quality (eg RSRP), the RO associated with the lowest/highest SSB index, or the fastest/slowest RO in time.
- PDCCH monitoring time (based on TC-RNTI scheduling Msg3 retransmission or Msg4 transmission) for a plurality of Msg3 transmissions corresponding to different ROs (indexes) belonging to the same RO group (associated with different SSB indexes) This can overlap.
- the UE may perform PDCCH (TC-RNTI) monitoring for only one specific Msg3 (SSB).
- a specific Msg3 is Msg3 corresponding to the RO associated with the SSB with the best reception quality (eg RSRP), Msg3 corresponding to the RO associated with the lowest/highest SSB index, or the fastest/slowest RO in time. May contain Msg3 corresponding to
- the following method may be performed according to the RO group type.
- the power offset value added to all ROs belonging to the RO group is the same, and the final PRACH power to which the corresponding offset is added may also be set equally among all ROs belonging to the RO group.
- the RO group belongs to Operate to collectively increase PRACH transmission power (compared to previous power) in multiple ROs (associated with different SSBs (indexes))
- the final PRACH power to which the corresponding offset is added can be individually/independently set for each RO among the multiple ROs. Accordingly, the final PRACH power may be set differently (or identically) among a plurality of ROs in the RO group. For example, the final PRACH power of each RO can be individually/independently set based on the difference in RSRP (path-loss based on it) between SSBs (indexes) associated with the RO.
- RSRP path-loss based on it
- FIG. 13 illustrates an RO group-based RACH procedure.
- the present invention is not limited to FIG. 13 , and descriptions overlapping with those described above may be omitted.
- the terminal may receive information on the RO group from the base station (S1302).
- Information on the RO group may be received through system information or may be configured/reset through RRC signaling (in the RRC connection state).
- the information on the RO group may include Alt 1) and/or Alt 2), but is not limited thereto.
- information on the RO group for the neighboring base station may be provided for handover or dual-connectivity.
- the UE may identify or configure the RO group based on the information on the RO group. As the RO grouping method, various methods described above may be used.
- the UE may transmit the PRACH through at least one RO among the RO groups (S1304(s)).
- the PRACH may be transmitted, for example, via Msg 1 or via MsgA.
- the PRACH may be transmitted through each RO in the RO group.
- the UE may configure the PRACH transmission method based on the RO group type. For example, the PRACH may be transmitted based on the RO beam comb-A/B/C according to the RO group type.
- the terminal may receive a base station response (ie, RAR) to the RO group (ie, PRACH) from the base station (S1306).
- RAR may be received, for example, via Msg 2 or via MsgB.
- the UE may receive the RAR based on at least one of Option 1/2/A/B.
- the base station may generate and transmit the RAR based on at least one of Option 1/2/A/B. More specifically, based on at least some of Issue 1, Issue 3, and/or Issue 5 (or a combination thereof), the terminal/base station may transmit/receive an Msg2 signal.
- the terminal/base station may transmit/receive a DL/UL signal (S1308).
- the DL/UL signal may include Msg 3/4.
- the DL/UL signal may include a UL/DL signal exchanged after the RACH procedure ends. Specifically, based on at least some of Issue 1, Issue 2, Issue 4 and/or Issue 5 (or a combination thereof), the terminal/base station may transmit/receive an Msg3/4 signal.
- a "beam” may be expressed/replaced using a (beamformed) signal/channel/resource transmitted through the corresponding beam.
- a beam index may be expressed/replaced by an index of a signal/channel/resource corresponding to a corresponding beam.
- "beam” may be expressed/replaced by using a signal/channel/resource that is associated with a corresponding beam to identify the corresponding beam.
- the base station may determine the TX beam used by the terminal through the RO index, or through the SSB index associated with the RO, or the like.
- a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
- the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
- the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400 .
- the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
- the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
- UAV Unmanned Aerial Vehicle
- XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
- the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
- Home appliances may include a TV, a refrigerator, a washing machine, and the like.
- the IoT device may include a sensor, a smart meter, and the like.
- the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
- the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
- AI Artificial Intelligence
- the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
- the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
- the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
- the IoT device eg, sensor
- the IoT device may communicate directly with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
- Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
- the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), communication between base stations 150c (e.g. relay, IAB (Integrated Access Backhaul), etc.)
- This can be done through technology (eg 5G NR)
- Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other.
- the wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
- various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
- resource allocation processes etc.
- the first wireless device 100 and the second wireless device 200 may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
- ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 14 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
- the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
- the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
- the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
- the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store information obtained from signal processing of the second information/signal in the memory 104 .
- the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
- memory 104 may provide instructions for performing some or all of the processes controlled by processor 102 , or for performing descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
- the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
- a wireless communication technology eg, LTE, NR
- the transceiver 106 may be coupled to the processor 102 , and may transmit and/or receive wireless signals via one or more antennas 108 .
- the transceiver 106 may include a transmitter and/or a receiver.
- the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
- RF radio frequency
- a wireless device may refer to a communication modem/circuit/chip.
- the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
- the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed herein.
- the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
- the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
- the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
- the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
- the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
- the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
- the transceiver 206 may include a transmitter and/or a receiver.
- the transceiver 206 may be used interchangeably with an RF unit.
- a wireless device may refer to a communication modem/circuit/chip.
- one or more protocol layers may be implemented by one or more processors 102 , 202 .
- one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
- the one or more processors 102, 202 are configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein.
- PDUs Protocol Data Units
- SDUs Service Data Units
- One or more processors 102 , 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein.
- the one or more processors 102 and 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , to one or more transceivers 106 and 206 .
- the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
- PDUs, SDUs, messages, control information, data, or information may be acquired according to the fields.
- One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
- One or more processors 102 , 202 may be implemented by hardware, firmware, software, or a combination thereof.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- firmware or software may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
- the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed in this document provide that firmware or software configured to perform is contained in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
- the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
- One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 , and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
- the one or more memories 104 and 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
- One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 . Additionally, one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
- One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
- One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. there is.
- one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
- one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
- one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
- one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , may be set to transmit and receive user data, control information, radio signals/channels, etc.
- one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
- the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
- One or more transceivers 106 , 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 , 202 from baseband signals to RF band signals.
- one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
- the wireless device 16 shows another example of a wireless device to which the present invention is applied.
- the wireless device may be implemented in various forms according to use-examples/services (see FIG. 14 ).
- the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 15 , and various elements, components, units/units, and/or modules ) can be composed of
- the wireless devices 100 and 200 may include a communication unit 110 , a control unit 120 , a memory unit 130 , and an additional element 140 .
- the communication unit may include communication circuitry 112 and transceiver(s) 114 .
- communication circuitry 112 may include one or more processors 102 , 202 and/or one or more memories 104 , 204 of FIG. 15 .
- the transceiver(s) 114 may include one or more transceivers 106 , 206 and/or one or more antennas 108 , 208 of FIG. 15 .
- the control unit 120 is electrically connected to the communication unit 110 , the memory unit 130 , and the additional element 140 , and controls general operations of the wireless device.
- the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130 .
- control unit 120 transmits information stored in the memory unit 130 to the outside (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally (eg, through the communication unit 110 ) Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130 .
- the additional element 140 may be configured in various ways according to the type of the wireless device.
- the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
- a wireless device may include a robot ( FIGS. 14 and 100a ), a vehicle ( FIGS. 14 , 100b-1 , 100b-2 ), an XR device ( FIGS. 14 and 100c ), a mobile device ( FIGS. 14 and 100d ), and a home appliance. (FIG. 14, 100e), IoT device (FIG.
- digital broadcasting terminal digital broadcasting terminal
- hologram device public safety device
- MTC device medical device
- fintech device or financial device
- security device climate/environment device
- It may be implemented in the form of an AI server/device ( FIGS. 14 and 400 ), a base station ( FIGS. 14 and 200 ), and a network node.
- the wireless device may be mobile or used in a fixed location depending on the use-example/service.
- various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110 .
- the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 , 140 ) are connected to the communication unit 110 through the communication unit 110 . It can be connected wirelessly.
- each element, component, unit/unit, and/or module within the wireless device 100 , 200 may further include one or more elements.
- the controller 120 may be configured with one or more processor sets.
- control unit 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
- memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
- the vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, and the like.
- AV aerial vehicle
- the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c , and autonomous driving. It may include a part 140d.
- the antenna unit 108 may be configured as a part of the communication unit 110 .
- Blocks 110/130/140a-140d correspond to blocks 110/130/140 of FIG. 16, respectively.
- the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (e.g., base stations, roadside units, etc.), servers, and the like.
- the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
- the controller 120 may include an Electronic Control Unit (ECU).
- the driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground.
- the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
- the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
- the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
- the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
- IMU inertial measurement unit
- a collision sensor a wheel sensor
- a speed sensor a speed sensor
- an inclination sensor a weight sensor
- a heading sensor a position module
- a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
- the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
- the communication unit 110 may receive map data, traffic information data, and the like from an external server.
- the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
- the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
- the communication unit 110 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles.
- the sensor unit 140c may acquire vehicle state and surrounding environment information.
- the autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information.
- the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
- the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
- the present invention can be used in a terminal, a base station, or other equipment of a wireless mobile communication system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 복수의 RO 중 하나의 RO 상에서 RA 프리앰블을 전송하는 단계로서, 복수의 RO 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA 프리앰블을 전송하는 단계; 상기 복수의 RA 프리앰블을 전송한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH 검색 공간을 모니터링 하여 RAR을 수신하는 단계; 및 상기 RAR에 대응되는, 상향링크 신호를 전송하는 단계를 포함하고, 상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계되는 방법 및 이를 위한 장치에 관한 것이다.
Description
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 양상으로, 무선 통신 시스템에서 단말이 RA(Random Access) 과정을 수행하는 방법에 있어서, 복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA 프리앰블을 전송하는 단계; 상기 복수의 RA 프리앰블을 전송한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간을 모니터링 하여 RAR(Random Access Response)을 수신하는 단계; 및 상기 RAR에 대응되는, 상향링크 신호를 전송하는 단계를 포함하고, 상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계되는 방법이 제공된다.
본 발명의 제2 양상으로, 무선 통신 시스템에 사용되는 단말에 있어서, 적어도 하나의 RF(Radio Frequency) 유닛; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하는 단말이 제공되며, 상기 동작은 다음을 포함한다: 복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA(Random Access) 프리앰블을 전송하는 단계; 상기 복수의 RA 프리앰블을 전송한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간을 모니터링 하여 RAR(Random Access Response)을 수신하는 단계; 및 상기 RAR에 대응되는, 상향링크 신호를 전송하는 단계를 포함하고, 상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계된다.
본 발명의 제3 양상으로, 단말을 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하는 장치가 제공되며, 상기 동작은 다음을 포함한다: 복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA(Random Access) 프리앰블을 전송하는 단계; 상기 복수의 RA 프리앰블을 전송한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간을 모니터링 하여 RAR(Random Access Response)을 수신하는 단계; 및 상기 RAR에 대응되는, 상향링크 신호를 전송하는 단계를 포함하고, 상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계된다.
본 발명의 제4 양상으로, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하는 컴퓨터 판독가능한 저장 매체가 제공되며, 상기 동작은 다음을 포함한다: 복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA(Random Access) 프리앰블을 전송하는 단계; 상기 복수의 RA 프리앰블을 전송한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간을 모니터링 하여 RAR(Random Access Response)을 수신하는 단계; 및 상기 RAR에 대응되는, 상향링크 신호를 전송하는 단계를 포함하고, 상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계된다.
본 발명의 제5 양상으로, 무선 통신 시스템에서 기지국이 RA(Random Access) 과정을 수행하는 방법에 있어서, 복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA 프리앰블을 수신하는 단계; 상기 복수의 RA 프리앰블을 수신한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간 상에서 RAR(Random Access Response)을 전송하는 단계; 및 상기 RAR에 대응되는, 상향링크 신호를 수신하는 단계를 포함하고, 상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계되는 방법이 제공된다.
본 발명의 제6 양상으로, 무선 통신 시스템에 사용되는 기지국에 있어서, 적어도 하나의 RF(Radio Frequency) 유닛; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하는 기지국이 제공되며, 상기 동작은 다음을 포함한다: 복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA(Random Access) 프리앰블을 수신하는 단계; 상기 복수의 RA 프리앰블을 수신한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간 상에서 RAR(Random Access Response)을 전송하는 단계; 및 상기 RAR에 대응되는, 상향링크 신호를 수신하는 단계를 포함하고, 상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계된다.
바람직하게, 상기 제1 RO 그룹에 연계된 복수의 PDCCH 검색 공간에서 복수의 RAR이 수신된 것에 기반하여, 상기 복수의 RAR 중 가장 우수한 수신 품질을 갖는 SSB(Synchronization Signal Block)에 연계된 RO에 대응하는 하나의 RAR에 대해서만 상기 상향링크 신호가 전송될 수 있다.
바람직하게, 하나의 RO 그룹은 M개의 SSB 인덱스에 연계되면서 서로 TDM(Time Division Multiplexing) 관계에 있는 M개의 RO들을 포함할 수 있다.
바람직하게, 각각의 RO 그룹은 기지국 수신 빔 스윕(sweep) 구간에 대응하며, 하나의 RO 그룹에 속한 각각의 RO는 각각의 기지국 수신 빔에 대응될 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 5는 아날로그 빔포밍을 예시한다.
도 6은 SSB 전송을 예시한다.
도 7은 SSB 전송과 CORESET 설정을 예시한다.
도 8은 4-Step RACH(Random Access Channel) 과정을 예시한다.
도 9는 2-Step RACH 과정을 예시한다.
도 10은 RO(RACH Occasion)을 예시한다.
도 11~12는 본 발명에 적용되는 RO 그룹을 예시한다.
도 13은 본 발명에 따른 RACH 과정을 예시한다.
도 14~17은 본 발명에 적용되는 통신 시스템과 무선 기기를 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) | Nslot symb | Nframe,u slot | Nsubframe,u slot |
15KHz (u=0) | 14 | 10 | 1 |
30KHz (u=1) | 14 | 20 | 2 |
60KHz (u=2) | 14 | 40 | 4 |
120KHz (u=3) | 14 | 80 | 8 |
240KHz (u=4) | 14 | 160 | 16 |
* Nslot
symb: 슬롯 내 심볼의 개수
* Nframe,u
slot: 프레임 내 슬롯의 개수
* Nsubframe,u
slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) | Nslot symb | Nframe,u slot | Nsubframe,u slot |
60KHz (u=2) | 12 | 40 | 4 |
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16개의 CCE(Control Channel Element)로 구성된다. CCE는 무선 채널 상태에 따라 소정 부호율의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 6개의 REG(Resource Element Group)로 구성된다. REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, Master Information Block, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB 개수 및 OFDM 심볼 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PDCCH 수신/검출을 위해, 단말은 PDCCH 후보들을 모니터링 한다. PDCCH 후보는 PDCCH 검출을 위해 단말이 모니터링 해야 하는 CCE(들)을 나타낸다. 각 PDCCH 후보는 AL에 따라 1, 2, 4, 8, 16개의 CCE로 정의된다. 모니터링은 PDCCH 후보들을 (블라인드) 디코딩 하는 것을 포함한다. 단말이 모니터링 하는 PDCCH 후보들의 세트를 PDCCH 검색 공간(Search Space, SS)이라고 정의한다. 검색 공간은 공통 검색 공간(Common Search Space, CSS) 또는 단말-특정 검색 공간(UE-specific search space, USS)을 포함한다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간에서 PDCCH 후보를 모니터링 하여 DCI를 획득할 수 있다. 각각의 CORESET는 하나 이상의 검색 공간과 연관되고, 각 검색 공간은 하나의 COREST과 연관된다. 검색 공간은 다음의 파라미터들에 기초하여 정의될 수 있다.
- controlResourceSetId: 검색 공간과 관련된 CORESET를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: 슬롯 내 PDCCH 모니터링 심볼을 나타냄(예, CORESET의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타냄
PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)을 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 3은 검색 공간 타입별 특징을 예시한다.
Type | Search Space | RNTI | Use Case |
Type0-PDCCH | Common | SI-RNTI on a primary cell | SIB Decoding |
Type0A-PDCCH | Common | SI-RNTI on a primary cell | SIB Decoding |
Type1-PDCCH | Common | RA-RNTI or TC-RNTI on a primary cell | Msg2, Msg4 decoding in RACH |
Type2-PDCCH | Common | P-RNTI on a primary cell | Paging Decoding |
Type3-PDCCH | Common | INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) | |
UE Specific | C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) | User specific PDSCH decoding |
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format | Usage |
0_0 | Scheduling of PUSCH in one cell |
0_1 | Scheduling of PUSCH in one cell |
1_0 | Scheduling of PDSCH in one cell |
1_1 | Scheduling of PDSCH in one cell |
2_0 | Notifying a group of UEs of the slot format |
2_1 | Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE |
2_2 | Transmission of TPC commands for PUCCH and PUSCH |
2_3 | Transmission of a group of TPC commands for SRS transmissions by one or more UEs |
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 UL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보(예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취(pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH(Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 5는 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format | Length in OFDM symbols NPUCCH symb | Number of bits | Usage | Etc |
0 | 1 - 2 | ≤2 | HARQ, SR | Sequence selection |
1 | 4 - 14 | ≤2 | HARQ, [SR] | Sequence modulation |
2 | 1 - 2 | >2 | HARQ, CSI, [SR] | CP-OFDM |
3 | 4 - 14 | >2 | HARQ, CSI, [SR] | DFT-s-OFDM (no UE multiplexing) |
4 | 4 - 14 | >2 | HARQ, CSI, [SR] | DFT-s-OFDM (Pre DFT OCC) |
PUCCH 포맷 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.
PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH 포맷 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH 포맷 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH 포맷 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH 포맷 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 5는 아날로그 빔포밍을 예시한다. 도 5를 참조하면, 송신기는 시간에 따라 빔의 방향을 바꿔가며 신호를 전송하고(송신 빔포밍), 수신기도 시간에 따라 빔의 방향을 바꿔가며 신호를 수신할 수 있다(수신 빔포밍). 일정 시구간 내에서 (i) 송신 빔과 수신 빔은 시간에 따라 동시에 빔의 방향을 바뀌거나, (ii) 송신 빔은 고정된 상태에서 수신 빔의 방향만 시간에 따라 바뀌거나, (iii) 수신 빔은 고정된 상태에서 송신 빔의 방향만 시간에 따라 바뀔 수 있다.
한편, 단말은 SSB에 기반하여 셀 탐색, 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다. SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms이다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB 버스트 세트 내에서 SSB는 최대 L번 전송될 수 있다.
도 6은 SSB의 멀티-빔 전송을 예시한다. SSB는 빔 스위핑을 이용하여 주기적으로 전송될 수 있다. 빔 스위핑은 TRP(Transmission Reception Point)(예, 기지국/셀)가 무선 신호의 빔 (방향)을 시간에 따라 다르게 하는 것을 의미한다(이하, 빔과 빔 방향은 혼용될 수 있다). 이 경우, SSB 인덱스는 SSB 빔과 묵시적(implicitly)으로 링크된다. SSB 빔은 SSB (인덱스) 단위로 변경될 수 있다. SSB 버스트 세트 내에서 SSB의 최대 전송 횟수 L은 캐리어가 속하는 주파수 대역에 따라 4, 8 또는 64의 값을 가진다. 따라서, SSB 버스트 세트 내에서 SSB 빔의 최대 개수도 캐리어의 주파수 대역에 따라 다음과 같이 주어질 수 있다.
- For 주파수 레인지 up to 3 GHz, Max number of beams = 4
- For 주파수 레인지 from 3GHz to 6 GHz, Max number of beams = 8
- For 주파수 레인지 from 6 GHz to 52.6 GHz, Max number of beams = 64
* 멀티-빔 전송이 적용되지 않는 경우, SSB 빔의 개수는 1개이다.
도 7은 SSB 전송과 CORESET 설정을 예시한다. 도 7을 참조하면, CORESET는 SSB에 대응되어 설정될 수 있다. 예를 들어, SSB #n에 대응되는 CORESET은 심볼 #0 및/혹은 심볼 #1에서 1-심볼 CORESET(C1/C2) 및/혹은 심볼 #0/1에서 2-심볼 CORESET (C3)으로 설정될 수 있다. 또한, SSB #n+1에 대응되는 CORESET은 심볼 #6 및/혹은 심볼 #7에서 1-심볼 CORESET(C4/C5) 및/혹은 심볼 #6/7에서 2-심볼 CORESET(C6)으로 설정될 수 있다.
도 8은 4-step RACH 과정을 예시한다. 도 8을 참조하면, 각 단계를 통해 전송되는 신호/정보 및 각 단계에서 수행되는 구체적인 동작은 다음과 같다.
1) Msg1 (PRACH): 단말로부터 기지국으로 전송된다(S710). 각각의 Msg1은 RA(Random Access) 프리앰블이 전송되는 시간/주파수 자원(RACH Occasion, RO) 및 프리앰블 인덱스(RA Preamble Index, RAPID)로 구분될 수 있다.
2) Msg2 (RAR PDSCH): Msg1에 대한 응답 메세지이며, 기지국으로부터 단말로 전송된다(S720). Msg2 수신을 위해, 단말은 Msg1과 관련된 시간 윈도우(이하, RAR 윈도우) 내에서 RA-RNTI-기반 PDCCH(예, PDCCH의 CRC가 RA-RNTI로 마스킹됨)가 있는지 PDCCH 모니터링을 수행할 수 있다. RA-RNTI로 마스킹된 PDCCH를 수신한 경우, 단말은 RA-RNTI PDCCH에 의해 지시된 PDSCH로부터 RAR을 수신할 수 있다. RA-RNTI는 다음과 같이 결정될 수 있다.
3) Msg3 (PUSCH): 단말로부터 기지국으로 전송된다(S730). Msg3은 RAR 내의 UL 그랜트에 기반하여 수행된다. Msg3은 충돌 해결 ID(contention resolution identity) (및/또는 BSR(Buffer Status Report) 정보, RRC 연결 요청, 등)를 포함할 수 있다. Msg3 (PUSCH)에는 HARQ 과정에 따른 재전송이 적용될 수 있다. 여기서, 충돌 해결 ID는 UL CCCH(Common Control Channel) SDU(Service Data Unit)를 포함한다. UL CCCH SDU가 48비트보다 큰 경우, UL CCCH SDU의 처음 48비트만 Msg3에 포함될 수 있다.
4) Msg4 (PDSCH): 기지국으로부터 단말로 전송된다(S740). Msg4는 충돌 해결을 위한 단말 (글로벌) ID (및/또는 RRC 연결 관련 정보)를 포함할 수 있다. Msg4에 기반하여 충돌 해결 성공/실패 여부가 판단될 수 있다.
Msg2/Msg4가 성공적으로 수신되지 않으면, 단말은 Msg1을 재전송한다. 이때, 단말은 Msg1의 전송 파워를 증가시키고(파워 램핑), RACH 재전송 카운터 값을 증가시킨다. RACH 재전송 카운터 값이 최대 값에 도달하면, RACH 과정은 완전히 실패한 것으로 판단된다. 이 경우, 단말은 랜덤 백-오프를 수행한 뒤, RACH 관련 파라미터(예, RACH 재전송 카운터)를 초기화하여 RACH 과정을 새로 개시할 수 있다.
도 9는 2-step RACH 과정을 예시한다. 도 9를 참조하면, 단말은 기지국에게 랜덤 접속 요청 메시지(예, MsgA)를 전송할 수 있다. MsgA 전송은 RAP(Random Access Preamble) 전송(S1302)과 PUSCH 전송(S1304)을 포함한다. 이후, MsgA에 대한 응답(즉, MsgB)을 수신하기 위해, 단말은 RAP와 관련된 시간 윈도우 내에서 PDCCH를 모니터링 할 수 있다. 구체적으로, MsgB 수신을 위해, 단말은 시간 윈도우 내에서 MsgB를 스케줄링 하는 PDCCH(이하, MsgB PDCCH)를 수신하고(S1306), 이에 기반해 MsgB를 수신할 수 있다(S1308). MsgB PDCCH 수신을 위해, 단말은 특정 RNTI-기반의 PDCCH(예, PDCCH의 CRC가 특정-RNTI로 마스킹됨)를 모니터링 할 수 있다. 여기서, PDCCH 모니터링은 PDCCH 후보를 블라인드 디코딩 하는 것을 포함한다. 또한, 특정 RNTI는 RA-RNTI를 포함할 수 있다. MsgB가 성공적으로 수신되지 않거나/않고, 충돌 해결이 실패하면, 단말은 MsgA 재전송을 수행할 수 있다. 한편, MsgB가 수신되고 충돌 해결이 성공하면, RACH 과정은 성공적으로 완료된다. MsgB가 HARQ-ACK 피드백 전송을 위한 PUCCH 자원 할당 정보를 포함하는 경우, 단말은 할당된 PUCCH 자원을 이용하여 MsgB 수신에 대한 HARQ-ACK 피드백을 전송할 수 있다. 또한, MsgB가 TA 커맨드와 PUSCH 자원 할당 정보(예, UL 그랜트)를 포함하는 경우, 단말은 TA 커맨드 및 PUSCH 자원 할당 정보에 기반하여 PUSCH를 전송할 수 있다.
실시예: RACH 과정
최근까지 (Rel-15 및 Rel-16에 걸쳐) 3GPP에서는 New RAT(이하, NR)으로 명명되는 5G 시스템에 대한 표준화를 진행하고 있다. NR 시스템은 단일 물리 시스템에서 복수의 논리 네트워크 지원을 목표로 하고 있으며, 이를 위해 다양한 OFDM 뉴머놀로지(예, OFDM 심볼 구간, SCS, CP 길이) 및 넓은 (대략 50 GHz까지에 이르는) 동작 주파수 범위, 고 주파수 대역의 특성을 고려한 아날로그/하이브리드 빔포밍 동작 등을 운영/변경하여 다양한 요구 조건을 가지는 서비스(예, eMBB, mMTC, URLLC) 지원이 가능하도록 설계되고 있다.
한편, 최근 3GPP Rel-17에서는 3GPP Rel-15/16 기반의 기존 NR 시스템보다 더 높은 (예, 60~70 GHz에 해당하는 혹은 그 이상의) 고 주파수 대역에서 동작하는 NR (이하, HF(High Frequency) NR) 시스템에 대한 개발 필요성이 고려되고 있다. HF NR 시스템의 경우, 기존 NR 대비, 더 높은 주파수, 더 넓은 대역폭, 고 주파수 대역에 기인한 더 큰 위상 노이즈 및/또는 더 큰 도플로 쉬프트 등의 무선 채널 특성을 고려하여, 기존 NR의 SCS(예, 15 KHz, 30 KHz, 60 KHz, 120 KHz)보다 큰 SCS(이하, large SCS)(예, 240 KHz, 480 KHz, 960 KHz 등)에 기반한 새로운 OFDM 뉴모놀로지의 도입 및 적용이 고려될 수 있다.
한편, HF NR 시스템에서 large SCS를 사용하면 OFDM 심볼 및 슬롯 구간이 작아지므로, 셀 커버리지를 줄여서 운영/동작시키는 셀 플래닝을 고려할 수 있다. 하지만, 그렇지 않을 경우(예, 셀 커버리지는 기존 NR 수준에 상응하도록 유지되거나, 시스템의 SCS가 기존 NR SCS에서 HF NR을 위한 large SCS로 증가하였으나 SCS 증가에 반비례적으로 셀 커버리지가 줄어들지 않을 경우), 물리 채널/신호 (물리 채널/신호) 전송에 커버리지 보완이 필요할 수 있다. 커버리지 보완은, 예를 들어, DL 물리 채널/신호가 셀 플래닝에 따른 타겟 셀 커버리지의 엣지/바운더리에 위치한 단말까지 도달할 수 있도록, 또는 타겟 셀 커버리지의 엣지/바운더리에 위치한 단말에서 전송된 UL 물리 채널/신호가 기지국에 이를 수 있도록 물리 채널/신호 처리에 있어서 커버리지 확장/보완을 위한 방식을 의미한다. 또한, large SCS 사용으로 인해 CP 길이가 작아지므로 무선 채널의 딜레이 스프레드 및/또는 위상 노이즈 영향, 그리고/또는 빔 스위칭 시간 등을 고려할 필요가 있다.
이하, 본 명세에서는 상술한 통신 환경을 고려한 RACH 과정을 제안한다. 예를 들어, 본 명세에서 제안된 RACH 과정/동작 방법/장치는 (i) HF NR 동작, (ii) large SCS 사용, 및/또는 (iii) 심볼 길이 감소 중 적어도 하나를 고려할 수 있다. 구체적으로, 본 명세에서는 RO(RACH Occasion) 그룹 기반의 RACH 과정을 제안한다. 예를 들어, 본 명세에서는 HF NR 시스템 동작 특성인 large SCS 사용으로 인한 OFDM 심볼 단축화(shortening)를 감안한 PRACH 전송 커버리지 보완, 샤프 멀티-빔 전송으로 인한 빔 품질 열화를 감안한 빔 리파인먼트/스위핑 지원을 위하여, 하나 혹은 복수의 SSB (인덱스)에 연계된 복수의 RO(RACH Occasion)들로 구성/설정된 RO 그룹 기반의 RACH 과정/동작 방법을 제안한다. 이하의 설명은 4-step RACH를 위주로 설명하지만, 본 명세의 제안 방법은 2-step RACH에도 사용될 수 있다.
도 10은 RACH 자원 구간 내에 설정된 복수의 RO(RACH Occasion)를 예시한다. RO는 PRACH 기회 또는 간략히 RA-기회로 지칭될 수 있다. RO는 단말의 PRACH(예, RA 프리앰블을 포함하는 Msg1 또는 MsgA) 전송이 가능한 시간/주파수 자원(들)을 의미할 수 있다. SCS=120kHz의 경우, 시간 도메인에서 RACH-자원 주기(예, 10ms) 내에 최대 80개의 RACH 슬롯이 설정될 수 있고, 주파수 도메인에서 복수(예, 최대 8개)의 RO 주파수 자원(예, RB)이 설정될 수 있다. RO는 하나의 RACH 슬롯과 하나의 RACH 주파수 자원으로 정의될 수 있다.
단말은 복수의 RO 중 하나를 선택하여 PRACH(즉, RA 프리앰블)를 전송할 수 있다. PRACH가 전송되면, 단말은 RAR 윈도우(혹은, RA-윈도우) 내에서 RAR을 스케줄링 하는 PDCCH(이하, RAR PDCCH)를 모니터링 한다. RAR 윈도우는 RO 전송 시점(즉, PRACH 전송 시점)을 기준으로 시작되며, 구체적으로 RO 전송 시점 이후에 존재하는, RAR PDCCH 모니터링을 위한 첫 번째 PDCCH 기회(예, PDCCH 검색 공간)부터 시작될 수 있다. RAR 윈도우의 시간 구간은 상위계층(예, RRC)에 의해 설정된 타이머에 기반하여 조절될 수 있다. RAR 윈도우(즉, 타이머)가 런닝하고 있는 동안 단말은 PDCCH 검색 공간마다 RAR PDCCH를 모니터링하며, 상기 단말을 위한 RAR PDCCH가 검출되면 RAR 윈도우를 종료할 수 있다. RAR PDCCH는 RA-RNTI에 의해 구분된다. 2-step RACH의 경우, RAR은 MsgB로 대체되고, RA-RNTI는 MsgB-RNTI로 대체될 수 있다.
기존 4-step RACH에서 RAR을 스케줄링 하는 PDCCH에 적용되는 RA-RNTI 및 2-step RACH에서 MsgB를 스케줄링 하는 PDCCH에 적용되는 MsgB-RNTI는, 10 ms 구간 내 설정된 복수의 RO를 구분하기 위해 다음 파라미터들의 함수로 산출/결정될 수 있다.
[수학식 1]
RA-RNTI = 1 + s + {14*t} + {14*80*f} + {14*80*8*u}
MsgB-RNTI = 1 + s + {14*t} + {14*80*f} + {14*80*8*u} + 14*80*8*2, 여기서,
- RNTI는 16-비트로 구성되며 0부터 65535까지의 값을 가지고,
- PRACH의 첫 번째 OFDM 심볼 인덱스 (s): 0 <= s < 14이며(단말에 의해 검출된 (베스트) SSB의 인덱스에 대응; 멀티-빔 전송 시, SSB 빔 방향에 대응),
- 무선 프레임 내에서 PRACH의 첫 번째 슬롯 인덱스 (t): 0 <= t < 80 (t는 최대 SCS 값인 120 KHz까지 고려한 값에 해당)이고,
- 주파수 도메인 RO 인덱스 (f): 0 <= f < 8이며,
- PRACH 전송에 사용된 UL 캐리어 타입/인덱스 (u): 0 <= u < 2 (예, 0 for Normal Uplink (NUL) carrier, 1 for Supplementary Uplink (SUL) carrier)이다.
수학식 1의 RA-RNTI/MsgB-RNTI는 다음과 같이 일반화 될 수 있다. 수학식 2의 파라미터에 관한 정의는 수학식 1을 참조할 수 있다.
[수학식 2]
1 + s + {14*t} + {14*80*f} + {14*80*8*u} + 14*80*8*r, 여기서,
- s는 심볼 인덱스로서 0~13의 값을 가지며,
- t는 슬롯 인덱스로서 0~79의 값을 가지고,
- f는 주파수 자원 인덱스로서 0~7의 값을 가지며,
- u는 상기 RA 프리앰블이 전송된 캐리어와 관련된 값으로서 0 또는 1이고,
- r은 RACH 타입에 관한 값으로서 0 또는 2를 가질 수 있다. 예를 들어, PRACH가 4-step RACH를 통해 전송된 경우 r은 0으로 설정될 수 있다. 반면, PRACH가 2-step RACH를 통해 전송된 경우 r은 2로 설정될 수 있다.
한편, 120 KHz보다 큰 SCS (예, 240 KHz, 480 KHz, 960 KHz)(즉, large SCS)가 도입될 경우, 10 ms 구간 내 슬롯 (인덱스) 개수가 SCS 크기에 비례하여 증가할 수 있다. 일 예로, PRACH SCS가 480 KHz 또는 960 KHz인 경우에는 10 ms 구간 내 슬롯 (인덱스) 개수가 각각 320 또는 640이 된다. 여기서, PRACH SCS는 PRACH (혹은, RA 프리앰블)에 설정된 SCS 또는 해당 PRACH (혹은, RA 프리앰블) 전송이 수행되는 밴드/캐리어/셀의 SCS를 의미한다. 이 경우, 기존 수식에 의해 산출 시(수학식 1 참조), RA-RNTI의 최대 값은 각각 대략 71680 또는 143360 정도가 되고, MsgB-RNTI의 최대 값은 각각 대략 143360 또는 286720 정도가 된다. 이로 인해, 16-비트 RNTI가 가질 수 있는 값의 범위(0~65535)를 벗어나는 문제가 발생한다.
이하, RO 그룹-기반 RACH 과정에 대해 보다 자세히 설명한다. 이하의 설명은 기존의 RACH 과정을 전제로 RO 그룹과 관련된 내용 위주로 설명한다. 따라서, 본 명세에서 RO 그룹과 관련하여 특별히 기재된 사항을 제외하고는 기존 RACH 과정(예, 도 8~10)에 관해 정의된 동작을 참조할 수 있다.
먼저, RO 그룹-기반 RACH 과정을 위해 RO 그룹 타입(들)이 제안될 수 있다. RO 그룹의 경우, 일 예로 아래와 같은 2가지 타입이 (단말/기지국에 의해) 고려/설정될 수 있다. RO 그룹 타입 별로 가능한 단말 TX 빔 (예, 단말의 PRACH 전송, Msg1 및/또는 MsgA 전송)및 기지국 RX 빔 (예, 기지국의 PRACH 수신, Msg1 및/또는 MsgA 수신)조합까지 고려할 경우, 다음과 같은 3가지 RO 빔 조합이 고려/설정될 수 있다. 본 발명은 아래 2가지 RO 그룹 타입에 한정되지 않는다. 예를 들어, 추가적인 RO 그룹 타입이 정의되거나, 본 명세에서 설명하는 RO 그룹 타입 중 일부는 다른 RO 그룹 타입으로 교체/생략될 수 있다. 또한, 일부 조합이 하나의 RO 그룹 타입을 형성할 수 있다.
도 11은 RO 그룹 타입-1을 예시하고, 도 12는 RO 그룹 타입-2를 예시한다.
1) RO 그룹 타입-1: 동일한 하나의 SSB (인덱스)에 연계된 복수 (TDM된) RO들의 집합
A. RO 빔 comb-A: RO 그룹 내에서 단말 TX 빔이 반복되는 구조
i. 빔 구성: 하나의 RO 그룹에 속한 모든 RO들이 동일한 단말 TX 빔을 사용하여 전송됨
ii. Use case: PRACH 전송 자체에 대한 커버리지 인핸스먼트 지원
B. RO 빔 comb-B: RO 그룹 내에서 단말 TX 빔이 스위핑 되는 구조
i. 빔 구성: 하나의 RO 그룹에 속한 각 RO별로 서로 다른 단말 TX 빔을 사용하여 전송됨
ii. Use case: TX/RX 빔 대응성(correspondence)이 없는 단말에 대한 빔 리파인먼트(refinement) 지원
2) RO 그룹 타입-2: 서로 다른 복수의 SSB (인덱스)들에 연계된 (TDM된) RO들의 집합
A. RO 빔 comb-C: RO 그룹 내에서 기지국 RX 빔이 스위핑 되는 구조
i. 빔 구성: 하나의 RO 그룹에 속한 각 RO별로 서로 다른 기지국 RX 빔을 사용하여 수신
ii. Use case: 고 주파수 대역에서 빔 품질이 급변하는 상황 지원
도 11~12를 참조하면, RO 그룹이 싱글 SSB에 연계되는지 여부에 기반하여 RO 그룹 타입이 결정/설정될 수 있다. RO 그룹 타입-2는 RO 그룹이 싱글 SSB과 연계되는 것이 보장되지 않는다는 의미로 해석될 수 있으며, RO 그룹과 연계되는 SSB들의 개수는 다양하게 설정될 수 있다. 일 예로, 도 12와 같이, RO 그룹 내 RO 개수와 SSB들의 개수가 서로 연계될 수 있으나, 동일한 SSB가 RO 그룹 내 일부 RO들에 공통으로 연계되는 것도 가능하다.
일 예로, RO 빔 comb-A에 따르면 RO 그룹 내에서 각 RO 마다 단말은 동일한 (빔-포밍된) PRACH를 전송(반복)할 수 있다. PRACH 반복 전송으로 인해 PRACH 송신 성공 가능성과 커버리지 향상 효과가 있을 수 있다.
일 예로, RO 빔 comb-B에 따르면 RO 그룹 내에서 각 RO 마다 (또는 특정 RO 패턴)에 따라/기반하여 PRACH 전송을 위한 단말의 Tx 빔이 변경될 수 있다.
일 예로, RO 빔 comb-C에 따르면 RO 그룹 내에서 제1 RO 상에서 PRACH 검출을 시도하는 기지국은 제1 RX 빔을 이용하고, 제2 RO 상에서 PRACH 검출을 시도하는 기지국은 제2 RX 빔을 이용할 수 있다. 제1 RX 빔과 제2 RX 빔은 각각 해당 RO와 연계된 SSB에 기초하여 결정될 수 있다.
한편, RO 그룹 타입 및/또는 RO 빔 조합 정보는 기지국이 단말에 제공할 수 있다. 일 예로, RO 그룹 타입 및/또는 RO 빔 조합 정보는 시스템 정보(예, SIB) 또는 RRC 시그널링을 통해 단말에 설정될 수 있으며, 예를 들어 다음과 같은 방법을 이용하여 설정될 수 있다. 이하에서 설명되는 방법들은 예시적인 것으로 서로 상충하지 않는 범위 내에서 상호 조합될 수 있다.
1) SIB 또는 RRC 시그널링을 통해, 단일 RO 그룹의 사이즈(M) 및 각 RO 그룹 (인덱스)에 속한 복수의 (M개) RO들에 대해, Alt 1) 연계된 M개 SSB 인덱스들의 집합, 또는 Alt 2) 연계된 SSB 인덱스들이 모두 동일한지, (적어도 일부가) 서로 다른지 여부(즉, 해당 RO 그룹 타입이 RO 그룹 타입-1과 타입-2 중 어느 것인지)가 단말/기지국에 의해 설정될 수 있음
A. 추가로, M개 SSB 인덱스가 모두 동일한 경우(즉, RO 그룹 타입-1), 대응되는 RO 빔 조합이 RO 빔 comb-A와 comb-B 중 어느 것인지(즉, RO 그룹에 속한 복수 RO들의 전송에 사용되는 TX 빔들이 모두 동일한지 아니면 서로 다른지 여부)가 추가적으로 단말/기지국에 의해 설정될 수 있음
2) Alt 1이 적용될 경우, 단말/기지국은 다음 방식으로 RO 그룹을 구성
A. 각 RO 그룹 설정에 대해, 단말/기지국은 특정(예, 무선 프레임 (SFN) 시작) 시점을 기준으로 M개 SSB 인덱스에 연계되면서 서로 TDM 관계에 있는 (시간 상으로) 가장 빠른 M개 RO들을 묶어서 RO 그룹을 구성하고(만약, M개 RO들의 집합이 복수의 주파수에 걸쳐 복수 존재하는 경우 낮은 주파수의 RO 집합부터 (낮은 인덱스 갖도록) 순차적으로 RO 그룹을 구성), 이후 다시 동일한 조건(즉, SSB 연계(association), TDM 할당)에 있는 가장 빠른 M개 RO들을 (낮은 주파수의 RO 집합부터) 묶어가는 방식으로 RO 그룹을 구성 (이하, RO 그룹핑 방법 A)
B. 만약, M개 SSB 인덱스들이 모두 동일하게 설정된 경우, 단말/기지국은 설정된 동일한 하나의 SSB 인덱스에 연계되면서 서로 TDM 관계에 있는 (시간상으로) 가장 빠른 M개 RO들을 묶어서 RO 그룹을 구성하고(만약, M개 RO들의 집합이 복수의 주파수에 걸쳐 복수 존재하는 경우 낮은 주파수의 RO 집합부터 (낮은 인덱스를 갖도록) 순차적으로 RO 그룹을 구성), 이후 다시 동일한 조건(즉, SSB 연계, TDM 할당)에 있는 가장 빠른 M개 RO들을 (낮은 주파수의 RO 집합부터) 묶어가는 방식으로 RO 그룹을 구성(이하, RO 그룹핑 방법 B)
3) Alt 2가 적용될 경우, 단말/기지국은 다음 방식으로 RO 그룹을 구성
A. RO 그룹 타입-2가 설정된 경우(즉, 연계된 SSB 인덱스들이 서로 다름), 가장 낮은 M개의 SSB 인덱스들에 대해 RO 그룹핑 방법 A를 적용하여 RO 그룹을 구성하고, (해당 M개 SSB 인덱스들) 이후 다시 가장 낮은 M개 SSB 인덱스에 대해 RO 그룹핑 방법 A를 적용하는 방식으로 RO 그룹을 구성
B. RO 그룹 타입-1가 설정된 경우(즉, 연계된 SSB 인덱스들이 모두 동일), 가장 낮은 하나의 SSB 인덱스에 대해 RO 그룹핑 방법 B를 적용하여 RO 그룹을 구성하고, (해당 SSB 인덱스) 이후 다시 가장 낮은 하나의 SSB 인덱스에 대해 상기 RO 그룹핑 방법 B를 적용하는 방식으로 RO 그룹을 구성
C. A와 B는 SSB 인덱스에 기초하여 RO 그룹을 구성하는 일 예이며, 본 명세의 제안 발명은 이에 한정되지 않는다. 예를 들어, SSB 인덱스를 입력 값으로 하는 RO 그룹핑 함수에 기초하여 RO 그룹이 결정될 수 있다.
4. 추가로, SIB 또는 RRC 시그널링을 통해 복수의 RO 그룹 타입(예, type-1/2) 또는 복수의 RO 빔 조합(예, comb-A/B/C)이 동시 설정된 경우, 단말은 SSB 신호의 수신 품질(예, Reference Signals Received Power, RSRP)을 기준으로 하나의 RO 그룹 타입 또는 하나의 RO 빔 조합을 선택하여 RACH 과정을 수행할 수 있음
A. 일 예로, RO 그룹 타입-1에 대하여, SSB의 RSRP가 특정 수준(예, 제1 기준 값) 미만인 경우에는 RO 빔 comb-A를 선택하고, SSB의 RSRP가 특정 수준 이상인 경우에는 RO 빔 comb-B를 선택하도록 동작
B. 다른 예로, RO 그룹 타입-1/2에 대하여, SSB의 RSRP가 특정 수준(예, 제2 기준 값) 미만인 경우에는 RO 빔 comb-A를 선택하고, SSB의 RSRP가 특정 수준 이상인 경우에는 RO 빔 comb-C를 선택하도록 동작
C. 또 다른 예로, RO 그룹 타입-1/2에 대하여, SSB의 RSRP가 특정 수준(예, 제3 기준 값) 미만인 경우에는 RO 빔 comb-B를 선택하고, SSB의 RSRP가 특정 수준 이상인 경우에는 RO 빔 comb-C를 선택하도록 동작
5. 추가로, 동일한 하나의 RO 그룹에 속한 복수의 RO들에 대하여 단말은 모두 동일한 PRACH 프리앰블 인덱스를 선택/전송하도록 동작할 수 있음 (즉, 단일 단말이 동일한 하나의 RO 그룹에 속한 복수 RO들을 통해 전송하는 PRACH 신호의 프리앰블 인덱스는 모두 동일하도록 선택될 수 있음)
A. 한편, RO 그룹 단위의 PRACH 전송 신호와 기존 단일 RO 단위 PRACH 전송 신호는, Alt A) 서로 다른 시점의 (TDM 형태의) RO로 구분/설정되거나, Alt B) 서로 다른 주파수의 (FDM 형태의) RO로 구분/설정되거나, Alt C) 동일한 시점/주파수의 (동일) RO가 설정된 상태에서 서로 다른 PRACH 프리앰블 인덱스 집합을 사용하여 구분/설정될 수 있음
또한, Alt 1/2의 조합도 가능하다. 예를 들어, Alt 2) 정보를 통해 RO 그룹의 RO들에 연계된 SSB 인덱스들이 서로 다르다고 지시된 경우(type-2), (추가로) Alt 1) 정보를 통해 RO 그룹의 RO들에 연계된 M개 SSB 인덱스들의 집합 (또는 이들의 리스트)가 제공될 수 있다. RO 그룹의 사이즈 M도 시그널링/설정되거나 사전 정의될 수도 있다. 일 예로, RO 그룹의 사이즈 M은 다양한 파라미터(예, SCS, (OFDM) 심볼 길이, 뉴머놀로지, 및/또는 HF 주파수 대역)에 기초하여 결정될 수 있으나, 이에 한정되지 않는다.
RAR 수신 동작
먼저, RO 빔 comb-A의 경우, RO 그룹 전송에 대응되는 단말의 RAR 수신 동작 (이를 위한 RAR 윈도우 설정) 및 해당 RAR을 스케줄링하는 PDCCH의 RA-RNTI 결정을 위하여, 다음 방법들이 고려/설정될 수 있다. 한편, 이하의 설명에서 RAR은 2-step RACH의 경우 MsgB로 대체될 수 있다. 또한, 이하에서 설명되는 RAR 수신 방법 및/또는 RA-RNTI 결정은 예시적인 것으로 서로 상충하지 않는 범위 내에서 상호 조합되거나 생략될 수 있다. RAR 윈도우 설정 및 RA-RNTI 결정 방법에 대해서는 도 10 및 수학식 1에 관한 설명을 참조할 수 있다.
1) RAR 수신 동작 (이를 위한 RAR 윈도우 설정)
A. Option 1: 단말이 RO 그룹에 속한 (시간상으로) 마지막 (혹은 최초) RO의 전송 시점을 기준으로 RAR 윈도우를 시작하여 (해당 RO 그룹 전체에 대응되는) RAR 수신. 본 명세에서, RO 전송 시점을 기준으로 RAR 윈도우를 시작한다는 것은, RO 전송 시점 이후에 존재하는 첫 번째 PDCCH 모니터링 기회로부터 RAR 윈도우를 시작한다는 것을 의미할 수 있다. 여기서, PDCCH 모니터링 기회는 RAR PDCCH 모니터링을 위한 PDCCH 모니터링 기회를 의미한다.
i. Note: RAR 송수신 동작을 보다 심플하게 수행 가능
B. Option 2: 단말이 RO 그룹에 속한 복수 RO들 각각에 대해 각 RO 전송 시점 기준으로 RAR 윈도우를 시작하여 (RO 그룹 내 각 RO에 대응되는) RAR 수신
ii. Note: PRACH에 대한 기지국의 조기 검출 시 레이턴시 감소
2) RAR을 스케줄링하는 PDCCH의 RA-RNTI 결정
A. Option A: (Option 1이 적용될 경우) 단말/기지국은 RO 그룹에 속한 (시간상으로) 마지막 (혹은 최초) RO 인덱스를 기반으로 RA-RNTI를 결정. 즉, RO 그룹 내 마지막 (혹은 최초) RO를 기반으로 RA-RNTI를 결정 (수학식 1 참조)
i. Note: 단일 RO 그룹에 대해 단말은 하나의 RA-RNTI에 대해서만 RAR 검출 수행
B. Option B: (Option 2가 적용될 경우) 단말/기지국은 RO 그룹에 속한 복수 RO들 각각의 RO 인덱스를 기반으로 RA-RNTI를 결정 즉, RO 그룹 내 각각의 RO를 기반으로 RA-RNTI를 결정 (수학식 1 참조)
ii. Note: 단일 RO 그룹에 대해 단말은 복수의 RA-RNTI들에 대하여 RAR 검출 수행
Option A는 동일한 RO 그룹에 속한 RO들에 대해서 하나의 (공통) RA-RNTI가 연계되는 일 예로 이해될 수 있다. Option B는 동일한 RO 그룹 내 각 RO 마다 다른 RA-RNTI가 연계되는 일 예로 이해될 수 있다.
다음으로, RO 빔 comb-B의 경우에도 RO 그룹 전송에 대응되는 RAR 수신 동작 및 RAR을 스케줄링하는 PDCCH의 RA-RNTI 결정을 위해 Option 1/2 및/또는 Option A/B 중 적어도 하나 또는 이들의 조합이 적용/설정될 수 있다.
추가적으로, RO 빔 comb-B의 경우, Option 1/2에 따라 다음 방식으로 단말이 자신의 최종 (best) TX 빔을 선택/설정할 수 있다.
1) Option 1이 적용될 경우
A. RO 그룹에 속한 특정 RO에 관한 정보(예, 인덱스)가 해당 RO 그룹에 대응되는 RAR (또는 이를 스케줄링하는 PDCCH)을 통해 단말에게 지시될 수 있다. 단말은 수신/지시된 특정 RO (인덱스) 전송에 사용됐던 TX 빔을 이후의 UL 채널/신호 전송(예, Msg3 PUSCH)에 적용하도록 동작할 수 있음. 일 예로, 기지국은 RAR 또는 이를 스케줄링한 PDCCH를 통해 지시한 RO의 정보에 기초하여(예, 단말이 해당 RO에 관한 정보에 기초하여 UL 채널/신호를 송신할 것이라고 가정하고 해당 Rx 빔을 이용), 해당 UL 채널/신호를 수신할 수 있다.
i. Note: 일 예로, RAR (또는 PDCCH)을 통해 지시되는 특정 RO (인덱스)는, 기지국 관점에서 수신 품질이 가장 우수한 RO (인덱스)일 수 있음
2) Option 2가 적용될 경우
A. 단말은 수신된 RAR (이를 스케줄링하는 PDCCH의 RA-RNTI)에 대응되는 RO (인덱스) 전송에 사용했던 TX 빔을 이후의 UL 채널/신호 전송(예, Msg3 PUSCH)에 적용하도록 동작할 수 있음
i. Option X: 단말은 RO 그룹에 속한 복수 RO 각각에 대응되는 RAR (이를 스케줄링하는 PDCCH)을 모니터링하여, (시간상으로) 최초로 수신된 RAR에 대해서만 (상기 TX 빔 결정 방법을 적용하여) 대응되는 Msg3 전송을 수행하도록 동작
ii. Option Y: 단말은 RO 그룹에 속한 복수 RO들에 대응되어 수신된 RAR(들) 중에서 특정 하나의 RAR에 대해서만 (상기 TX 빔 결정 방법을 적용하여) 대응되는 Msg3 전송을 수행하도록 동작. 즉, 복수의 RAR들이 한 단말에 의해 수신되는 경우 단말은 어느 하나의 RAR(즉, 특정 RAR)에 대해서만 Msg3를 전송할 수 있음. 특정 RAR은 시간상 가장 빠른/느린 RO에 대응되는 RAR, 스케줄링된 Msg3의 TBS(Transport Block Size)를 기반으로 결정된 RAR, 그리고/또는 시간상 가장 마지막에 수신된 RAR을 포함할 수 있다.
한편, RO 빔 comb-C의 경우, RO 그룹에 속한 RO들에 연계된 SSB (인덱스)들이 서로 다르므로 RAR 수신 동작 및 RA-RNTI 결정에 Option 2/Option B가 적용/설정될 수 있다. 이 경우, RAR/Msg3/Msg4 송수신 동작과 관련하여 다음 이슈들이 추가로 고려될 수 있다.
1) Issue 1: RAR 수신 및 Msg3 전송
A. Option X: 단말은 RO 그룹에 속한 복수 RO 각각에 대응되는 RAR (이를 스케줄링하는 PDCCH)을 모니터링하여, (시간상으로) 최초로 수신된 RAR에 대해서만 (대응되는 Msg3 전송을 포함한) 후속 RACH 과정을 수행하도록 동작
B. Option Y: 단말은 RO 그룹에 속한 복수 RO들에 대응되어 수신된 복수 RAR들 중 특정 하나의 RAR에 대해서만 (Msg3 전송을 포함한) 후속 RACH 과정을 수행하도록 동작. 예를 들어, 특정 RAR은 가장 우수한 수신 품질(예, RSRP)을 갖는 SSB에 연계된 RO에 대응되는 RAR, 가장 낮은/높은 SSB 인덱스에 연계된 RO에 대응되는 RAR, 시간상 가장 빠른/느린 RO에 대응되는 RAR, 스케줄링된 Msg3의 TBS(Transport Block Size)를 기반으로 결정된 RAR, 그리고/또는 시간상 가장 마지막에 수신된 RAR을 포함할 수 있다.
C. Option Z: 단말은 RO 그룹에 속한 복수 RO들에 대응되어 수신된 복수 RAR들 모두에 대해, 각각 (Msg3 전송을 포함한) 후속 RACH 과정을 수행하도록 동작
2) Issue 2: Msg3 재전송 및 Msg4 수신
A. Option Z가 적용될 경우, 단말은 복수의 RAR들을 통해 지시된 복수의 TC-RNTI(Temporary C-RNTI)들을 기반으로 (서로 다른 RAR에 대응되는) 각각의 Msg3들을 전송하도록 동작할 수 있음
B. 이후, 상기 복수 Msg3에 대한 재전송 스케줄링 DCI 수신 또는 Msg4 전송에 대한 스케줄링 관련 DCI 수신을 위해, 단말은 상기 복수의 TC-RNTI들에 대하여 PDCCH 모니터링을 수행하도록 동작할 수 있음
3) Issue 3: RA-RNTI PDCCH 모니터링 설정 (예, 단말은 하기 RA-RNTI, PDCCH 검색 공간 구성 정보, SSB 및/또는 RO 중 적어도 하나에 기초하여, PDCCH의 CRC가 RA-RNTI로 스크램블(또는 마스킹)된 PDCCH의 후보들(예, 검색 공간 상의 후보들)에 대한 블라인드 검출을 수행할 수 있으며, 이를 위한 단말/기지국의 설정과 시그널링을 제안)
A. Method 1: SIB 또는 RRC 시그널링을 통해, (RO 그룹에 속한 복수의 RO (인덱스)들에 연계된) 서로 다른 복수의 SSB 인덱스들 (또는, 해당 SSB 인덱스들의 서브-그룹들) 각각에 대하여, 대응되는 (RAR을 스케줄링하는) RA-RNTI 기반 PDCCH 모니터링을 위한 PDCCH 검색 공간(예, PDCCH 모니터링 주기 및 모니터링 시작 오프셋 등의 정보)가 각 SSB 인덱스 (서브-그룹)(즉, 각 SSB 인덱스 (서브-그룹)에 연계된 RO)별로 설정될 수 있음
i. Note: 단말은 자신이 전송한 RO 그룹 (이에 속한 RO들)에 연계된 SSB 인덱스들에 설정된 PDCCH 검색 공간들에 대하여, (해당 SSB 인덱스들 각각에 대응되는 RX 빔을 사용하여) PDCCH 모니터링을 수행하도록 동작할 수 있음
B. Method 2: (RAR을 스케줄링하는) RA-RNTI 기반 PDCCH 모니터링을 위한 하나 또는 복수의 PDCCH 검색 공간이 (각 RO 그룹별로 또는 각 RO 그룹에 속한 RO들에 연계된 SSB 인덱스 집합 별로) 설정될 수 있다. 이러한 상태에서 SIB 또는 RRC 시그널링을 통해, 해당 PDCCH 검색 공간 상에서 (RO 그룹에 속한 복수의 RO (인덱스)들에 연계된) 서로 다른 복수의 SSB 인덱스들 (또는 해당 SSB 인덱스들의 서브-그룹들) 각각에 대응되는 PDCCH 모니터링 시점이 각 SSB 인덱스 (서브-그룹) (즉 각 SSB 인덱스 (서브-그룹)에 연계된 RO)별로 설정될 수 있음
i. Note: 단말은 자신이 전송한 RO 그룹 (이에 속한 RO들)에 연계된 SSB 인덱스들에 설정된 모니터링 시점들에 대하여, (해당 SSB 인덱스들 각각에 대응되는 RX 빔을 사용하여) PDCCH 모니터링을 수행하도록 동작할 수 있음
C. Method 3: (RAR을 스케줄링하는) RA-RNTI 기반 PDCCH 모니터링을 위한 하나 또는 복수의 PDCCH 검색 공간이 (각 RO 그룹별로, 또는 각 RO 그룹에 속한 RO들에 연계된 SSB 인덱스 집합별로) 설정될 수 있다. 이러한 상태에서 특정 규칙에 기반하여, PDCCH 검색 공간 상에서 (RO 그룹에 속한 복수의 RO (인덱스)들에 연계된) 서로 다른 복수의 SSB 인덱스들 (또는 해당 SSB 인덱스들의 서브-그룹들) 각각에 대응되는 PDCCH 모니터링 시점 (기회)이 각각의 SSB 인덱스 (서브-그룹)(즉, 각 SSB 인덱스 (서브-그룹)에 연계된 RO)별로 설정될 수 있음
i. Note: 특정 규칙의 일 예로, PDCCH 검색 공간 상의 전체 모니터링 기회(MO) 집합 내에서, k번째 SSB 인덱스 (이에 연계된 RO)에 대해서 단말은 {n * K + k}번째 MO를 모니터링하도록 동작할 수 있음(n = 0, 1, ...). 여기서, K는 RO 그룹 (이에 속한 RO들)에 연계된 SSB 인덱스 개수 또는 전체 SSB 인덱스 개수를 의미할 수 있다. k는 RO 그룹에 연계된 SSB 인덱스들 중에서 k번째 SSB 인덱스 또는 전체 SSB 인덱스들 중에서 k번째 SSB 인덱스를 의미할 수 있음
4) Issue 4: TC-RNTI PDCCH 모니터링 설정(예, 단말은 하기 TC-RNTI, PDCCH 검색 공간 구성 정보, SSB 및/또는 RO 중 적어도 하나에 기초하여, 해당 PDCCH의 CRC가 TC-RNTI로 스크램블(또는 마스킹)된 PDCCH의 후보들(예, 해당 검색 공간 상의 후보들)에 대한 블라인드 검출을 수행할 수 있으며, 이를 위한 단말/기지국의 설정과 시그널링을 제안)
A. Method 1: SIB 또는 RRC 시그널링을 통해, (RO 그룹에 속한 복수의 RO (인덱스)들에 연계된) 서로 다른 복수의 SSB 인덱스들 (또는 해당 SSB 인덱스들의 서브-그룹들) 각각에 대하여, 대응되는 RAR로부터 스케줄링된 Msg3 전송에 대한 (Msg3 재전송 또는 Msg4 전송을 스케줄링하는) TC-RNTI 기반 PDCCH 모니터링을 위한 PDCCH 검색 공간(예, PDCCH 모니터링 주기 및 모니터링 시작 오프셋 등의 정보)이 각각의 SSB 인덱스 (서브-그룹)(즉 각 SSB 인덱스 (서브-그룹)에 연계된 RO)별로 설정될 수 있음
i. Note: 단말은 자신이 전송한 RO 그룹 (이에 속한 RO들)에 연계된 SSB 인덱스들에 설정된 PDCCH 검색 공간들에 대하여, (해당 SSB 인덱스들 각각에 대응되는 RX 빔을 사용하여) PDCCH 모니터링을 수행하도록 동작할 수 있음
B. Method 2: (RAR로 스케줄링된 Msg3에 대한 Msg3 재전송 또는 Msg4 전송을 스케줄링하는) TC-RNTI 기반 PDCCH 모니터링을 위한 하나 또는 복수의 PDCCH 검색 공간이 (각 RO 그룹별로, 또는 각 RO 그룹에 속한 RO들에 연계된 SSB 인덱스 집합 별로) 설정될 수 있다. 이러한 상태에서 SIB 또는 RRC 시그널링을 통해, 해당 PDCCH 검색 공간 상에서 (RO 그룹에 속한 복수의 RO (인덱스)들에 연계된) 서로 다른 복수의 SSB 인덱스들 (또는 해당 SSB 인덱스들의 서브-그룹들) 각각에 대응되는 PDCCH 모니터링 시점이 각 SSB 인덱스 (서브-그룹) (즉 각 SSB 인덱스 (서브-그룹)에 연계된 RO)별로 설정될 수 있음
i. Note: 단말은 자신이 전송한 RO 그룹 (이에 속한 RO들)에 연계된 SSB 인덱스들에 설정된 모니터링 시점들에 대하여, (해당 SSB 인덱스들 각각에 대응되는 RX 빔을 사용하여) PDCCH 모니터링을 수행하도록 동작할 수 있음
C. Method 3: (RAR로 스케줄링된 Msg3에 대한 Msg3 재전송 또는 Msg4 전송을 스케줄링하는) TC-RNTI 기반 PDCCH 모니터링을 위한 하나 또는 복수의 PDCCH 검색 공간이 (각 RO 그룹별로 또는 각 RO 그룹에 속한 RO들에 연계된 SSB 인덱스 집합 별로) 설정될 수 있다. 이러한 상태에서 특정 규칙에 기반하여, PDCCH 검색 공간 상에서 (RO 그룹에 속한 복수의 RO (인덱스)들에 연계된) 서로 다른 복수의 SSB 인덱스들 (또는 해당 SSB 인덱스들의 서브-그룹들) 각각에 대응되는 PDCCH 모니터링 시점 (기회)이 각 SSB 인덱스 (서브-그룹) (즉 각 SSB 인덱스 (서브-그룹)에 연계된 RO)별로 설정될 수 있음
i. Note: 특정 규칙의 일 예로, PDCCH 검색 공간 상의 전체 모니터링 기회 (MO) 집합 내에서, k번째 SSB 인덱스 (이에 연계된 RO)에 대해서 단말은 {n * K + k}번째 MO를 모니터링하도록 동작할 수 있음 (n = 0, 1, ...). 여기서, K는 RO 그룹 (이에 속한 RO들)에 연계된 SSB 인덱스 개수 또는 전체 SSB 인덱스 개수를 의미할 수 있다. k는 RO 그룹에 연계된 SSB 인덱스들 중에서 k번째 SSB 인덱스 또는 전체 SSB 인덱스들 중에서 k번째 SSB 인덱스를 의미할 수 있음
5) Issue 5: PDCCH 모니터링 시점간 충돌
A. 동일한 하나의 RO 그룹에 속한 (서로 다른 SSB 인덱스에 연계된) 서로 다른 RO (인덱스)에 대응되는 (RAR을 스케줄링하는 RA-RNTI 기반) PDCCH 모니터링 시점이 겹칠 수 있다. 이 경우(즉, 수신 빔 방향이 서로 다른 복수 PDCCH간에 모니터링 시점이 겹칠 경우), 단말은 특정 하나의 RO (SSB)에 대해서만 PDCCH (RA-RNTI) 모니터링을 수행할 수 있음. 예를 들어, 특정 RO는 가장 우수한 수신 품질(예, RSRP)를 갖는 SSB에 연계된 RO, 가장 낮은/높은 SSB 인덱스에 연계된 RO, 또는 시간상 가장 빠른/느린 RO를 포함할 수 있음
B. 동일한 하나의 RO 그룹에 속한 (서로 다른 SSB 인덱스에 연계된) 서로 다른 RO (인덱스)에 대응되는 복수의 Msg3 전송에 대한 (Msg3 재전송 또는 Msg4 전송을 스케줄링하는 TC-RNTI 기반) PDCCH 모니터링 시점이 겹칠 수 있다. 이 경우(즉, 수신 빔 방향이 서로 다른 복수 PDCCH간에 모니터링 시점이 겹칠 경우), 단말은 특정 하나의 Msg3 (SSB)에 대해서만 PDCCH (TC-RNTI) 모니터링을 수행할 수 있음. 예를 들어, 특정 Msg3는 가장 우수한 수신 품질 (예, RSRP)를 갖는 SSB에 연계된 RO에 대응되는 Msg3, 가장 낮은/높은 SSB 인덱스에 연계된 RO에 대응되는 Msg3, 또는 시간상 가장 빠른/느린 RO에 대응되는 Msg3를 포함할 수 있음
PRACH 파워 램핑(ramping)
한편, PRACH 전송에 대한 파워 램핑의 경우 RO 그룹 타입에 따라 다음과 같은 방식으로 수행될 수 있다.
1) RO 그룹 타입-1의 경우
A. 특정 단일 SSB (인덱스)에 연계된 RO 그룹 전송에 대응되는 RAR 수신에 실패한 후, 단말이 PRACH 재전송을 위해 동일한 SSB (인덱스)에 연계된 RO 그룹을 선택한 경우, 해당 RO 그룹에 속한 복수 RO에서의 PRACH 전송 파워를 (이전 파워 대비) 일괄적으로 증가시키도록 동작
i. Note: RO 그룹에 속한 모든 RO들에 더해지는 파워 오프셋 값은 모두 동일하며, 해당 오프셋이 더해진 최종 PRACH 파워도 RO 그룹에 속한 모든 RO들간에 동일하게 설정될 수 있음
2) RO 그룹 타입-2의 경우
A. 특정 복수 SSB (인덱스)들에 연계된 RO 그룹 전송에 대응되는 RAR 수신에 실패한 후, 단말이 PRACH 재전송을 위해 동일한 SSB (인덱스) 그룹에 연계된 RO 그룹을 선택한 경우, 해당 RO 그룹에 속한 (서로 다른 SSB (인덱스)들에 연계된) 복수 RO에서의 PRACH 전송 파워를 (이전 파워 대비) 일괄적으로 증가시키도록 동작
i. Note: RO 그룹에 속한 복수 RO들에 더해지는 파워 오프셋 값은 모두 동일한 반면, 해당 오프셋이 더해진 최종 PRACH 파워는 복수의 RO들간에 RO마다 개별/독립적으로 설정될 수 있음. 이에 따라, 최종 PRACH 파워는 RO 그룹 내 복수의 RO들간에 상이 (또는 동일)하게 설정될 수 있음. 예를 들어, 각 RO의 최종 PRACH 파워는 해당 RO에 연계된 SSB (인덱스)들간의 RSRP (이에 기반한 경로-손실) 차이에 기반하여 개별/독립적으로 설정될 수 있음
도 13은 RO 그룹-기반 RACH 과정을 예시한다. 본 발명은 도 13으로 제한되지 않으며, 앞서 설명된 내용과 중복하는 설명은 생략될 수 있다.
도 13을 참조하면, 단말은 기지국으로부터 RO 그룹에 대한 정보를 수신할 수 있다(S1302). RO 그룹에 대한 정보는 시스템 정보를 통해 수신되거나, (RRC 연결 상태에서) RRC 시그널링을 통해 설정/재설정 될 수 있다. RO 그룹에 대한 정보는 Alt 1) 및/또는 Alt 2)를 포함할 수 있으며, 이에 한정되지 않는다. RO 그룹에 대한 정보는 해당 기지국에 대한 것이라고 가정하나, 핸드오버 또는 Dual-connectivity를 위해 이웃 기지국에 대한 RO 그룹에 대한 정보가 제공될 수도 있다. 단말은 RO 그룹에 대한 정보에 기초하여 RO 그룹을 식별 또는 설정할 수 있다. RO 그룹핑 방법은 앞서 설명된 다양한 방법들이 사용될 수 있다.
이후, 단말은 RO 그룹들 중 적어도 하나의 RO를 통해서 PRACH를 전송할 수 있다(S1304(들)). PRACH는 예를 들어 Msg 1을 통해 송신되거나 MsgA를 통해 송신될 수 있다. PRACH는 RO 그룹 내 각각의 RO를 통해 전송될 수 있다. 단말은 RO 그룹 타입에 기반하여 PRACH 전송 방식을 설정할 수 있다. 예를 들어, RO 그룹 타입에 따라 RO 빔 comb-A/B/C에 기반하여 PRACH가 전송될 수 있다.
RO 그룹을 통해 PRACH를 전송한 후, 단말은 기지국으로부터 RO 그룹(즉, PRACH)에 대한 기지국 응답(즉, RAR)을 수신할 수 있다(S1306). RAR은 예를 들어 Msg 2를 통해 수신되거나 MsgB를 통해 수신될 수 있다. 단말은 Option 1/2/A/B 중 적어도 하나에 기반하여 RAR을 수신할 수 있다. 또한, 기지국은 Option 1/2/A/B 중 적어도 하나에 기초하여 RAR을 생성하여 전송할 수 있다. 보다 구체적으로, Issue 1, Issue 3 및/또는 Issue 5 중 적어도 일부 (또는 이들의 조합)에 기초하여 단말/기지국은 Msg2 신호를 송수신할 수 있다.
이후, 단말/기지국은 DL/UL 신호를 송수신할 수 있다(S1308). DL/UL 신호는 Msg 3/4를 포함할 수 있다. 또한, DL/UL 신호는 RACH 절차 종료 이후에 교환되는 UL/DL 신호를 포함할 수 있다. 구체적으로, Issue 1, Issue 2, Issue 4 및/또는 Issue 5 중 적어도 일부 (또는 이들의 조합)에 기반하여 단말/기지국은 Msg3/4 신호를 송수신할 수 있다.
본 명세에서, "빔"은 해당 빔을 통해 전송되는 (빔포밍된) 신호/채널/자원을 이용하여 표현/대체될 수 있다. 예를 들어, 빔 인덱스는 해당 빔에 대응하는 신호/채널/자원의 인덱스로 표현/대체될 수 있다. 또한, "빔"은 해당 빔과 연계되어 해당 빔을 식별하게 하는 신호/채널/자원을 이용하여 표현/대체될 수 있다. 예를 들어, RO 그룹 내에서 RO에 따라 상이한 단말 Tx 빔이 설정되는 경우, 기지국은 단말이 사용한 TX 빔을 RO 인덱스를 통해 파악하거나, RO에 연계된 SSB 인덱스 등을 통해 파악할 수 있다.
도 14는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 14를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 15은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 15을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 14의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 16은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 14 참조).
도 16을 참조하면, 무선 기기(100, 200)는 도 15의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 15의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 15의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 14, 100a), 차량(도 14, 100b-1, 100b-2), XR 기기(도 14, 100c), 휴대 기기(도 14, 100d), 가전(도 14, 100e), IoT 기기(도 14, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 14, 400), 기지국(도 14, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 16에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 17는 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 17를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 16의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.
Claims (12)
- 무선 통신 시스템에서 단말이 RA(Random Access) 과정을 수행하는 방법에 있어서,복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA 프리앰블을 전송하는 단계;상기 복수의 RA 프리앰블을 전송한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간을 모니터링 하여 RAR(Random Access Response)을 수신하는 단계; 및상기 RAR에 대응되는, 상향링크 신호를 전송하는 단계를 포함하고,상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계되는 방법.
- 제1항에 있어서,상기 제1 RO 그룹에 연계된 복수의 PDCCH 검색 공간에서 복수의 RAR이 수신된 것에 기반하여, 상기 복수의 RAR 중 가장 우수한 수신 품질을 갖는 SSB(Synchronization Signal Block)에 연계된 RO에 대응하는 하나의 RAR에 대해서만 상기 상향링크 신호가 전송되는 방법.
- 제1항에 있어서,하나의 RO 그룹은 M개의 SSB 인덱스에 연계되면서 서로 TDM(Time Division Multiplexing) 관계에 있는 M개의 RO들을 포함하는 방법.
- 제1항에 있어서,각각의 RO 그룹은 기지국 수신 빔 스윕(sweep) 구간에 대응하며,하나의 RO 그룹에 속한 각각의 RO는 각각의 기지국 수신 빔에 대응되는 방법.
- 무선 통신 시스템에 사용되는 단말에 있어서,적어도 하나의 RF(Radio Frequency) 유닛;적어도 하나의 프로세서; 및상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은 다음을 포함하는 단말:복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA(Random Access) 프리앰블을 전송하는 단계;상기 복수의 RA 프리앰블을 전송한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간을 모니터링 하여 RAR(Random Access Response)을 수신하는 단계; 및상기 RAR에 대응되는, 상향링크 신호를 전송하는 단계를 포함하고,상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계된다.
- 제5항에 있어서,상기 제1 RO 그룹에 연계된 복수의 PDCCH 검색 공간에서 복수의 RAR이 수신된 것에 기반하여, 상기 복수의 RAR 중 가장 우수한 수신 품질을 갖는 SSB(Synchronization Signal Block)에 연계된 RO에 대응하는 하나의 RAR에 대해서만 상기 상향링크 신호가 전송되는 단말.
- 제5항에 있어서,하나의 RO 그룹은 M개의 SSB 인덱스에 연계되면서 서로 TDM(Time Division Multiplexing) 관계에 있는 M개의 RO들을 포함하는 단말.
- 제5항에 있어서,각각의 RO 그룹은 기지국 수신 빔 스윕(sweep) 구간에 대응하며,하나의 RO 그룹에 속한 각각의 RO는 각각의 기지국 수신 빔에 대응되는 단말.
- 단말을 위한 장치에 있어서,적어도 하나의 프로세서; 및상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은 다음을 포함하는 장치:복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA(Random Access) 프리앰블을 전송하는 단계;상기 복수의 RA 프리앰블을 전송한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간을 모니터링 하여 RAR(Random Access Response)을 수신하는 단계; 및상기 RAR에 대응되는, 상향링크 신호를 전송하는 단계를 포함하고,상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계된다.
- 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하며, 상기 동작은 다음을 포함하는 컴퓨터 판독가능한 저장 매체:복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA(Random Access) 프리앰블을 전송하는 단계;상기 복수의 RA 프리앰블을 전송한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간을 모니터링 하여 RAR(Random Access Response)을 수신하는 단계; 및상기 RAR에 대응되는, 상향링크 신호를 전송하는 단계를 포함하고,상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계된다.
- 무선 통신 시스템에서 기지국이 RA(Random Access) 과정을 수행하는 방법에 있어서,복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA 프리앰블을 수신하는 단계;상기 복수의 RA 프리앰블을 수신한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간 상에서 RAR(Random Access Response)을 전송하는 단계; 및상기 RAR에 대응되는, 상향링크 신호를 수신하는 단계를 포함하고,상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계되는 방법.
- 무선 통신 시스템에 사용되는 기지국에 있어서,적어도 하나의 RF(Radio Frequency) 유닛;적어도 하나의 프로세서; 및상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은 다음을 포함하는 기지국:복수의 RO(Random access channel Occasion) 그룹들 중 제1 RO 그룹 내 RO들 상에서, 동일한 인덱스를 갖는 복수의 RA(Random Access) 프리앰블을 수신하는 단계;상기 복수의 RA 프리앰블을 수신한 것에 기반하여, 상기 제1 RO 그룹에 연계된 복수의 PDCCH(Physical Downlink Control Channel) 검색 공간 상에서 RAR(Random Access Response)을 전송하는 단계; 및상기 RAR에 대응되는, 상향링크 신호를 수신하는 단계를 포함하고,상기 제1 RO 그룹에 연계된 각각의 PDCCH 검색 공간의 시간 자원은 상기 제1 RO 그룹 내 각각의 RO와 연계된다.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237011346A KR20230075464A (ko) | 2020-09-29 | 2021-09-29 | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 |
US18/028,963 US20230337287A1 (en) | 2020-09-29 | 2021-09-29 | Method and apparatus for transmitting and receiving wireless signal in wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0127190 | 2020-09-29 | ||
KR20200127190 | 2020-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022071755A1 true WO2022071755A1 (ko) | 2022-04-07 |
Family
ID=80951506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/013349 WO2022071755A1 (ko) | 2020-09-29 | 2021-09-29 | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230337287A1 (ko) |
KR (1) | KR20230075464A (ko) |
WO (1) | WO2022071755A1 (ko) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022203782A1 (en) * | 2021-03-23 | 2022-09-29 | Qualcomm Incorporated | Techniques for selecting a random access channel occasion |
WO2023217351A1 (en) * | 2022-05-09 | 2023-11-16 | Nokia Technologies Oy | Method and apparatus for beam management |
CN117099466A (zh) * | 2023-04-14 | 2023-11-21 | 上海移远通信技术股份有限公司 | 被用于无线通信的节点中的方法和装置 |
WO2024131710A1 (zh) * | 2022-12-23 | 2024-06-27 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
WO2024162894A1 (en) * | 2023-02-03 | 2024-08-08 | Panasonic Intellectual Property Corporation Of America | Ra-rnti calculation for multi-prach transmissions |
WO2024169493A1 (zh) * | 2023-02-15 | 2024-08-22 | 华为技术有限公司 | 通信方法、装置及系统 |
WO2024168703A1 (zh) * | 2023-02-16 | 2024-08-22 | 上海移远通信技术股份有限公司 | 用于无线通信的节点中的方法和装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220150873A1 (en) * | 2020-11-06 | 2022-05-12 | Electronics And Telecommunications Research Institute | Method and apparatus for operating frame in factory automation system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019099443A1 (en) * | 2017-11-15 | 2019-05-23 | Idac Holdings, Inc. | Multiple monitoring occasions at a random access channel control resource set |
KR101995798B1 (ko) * | 2012-07-03 | 2019-07-03 | 삼성전자주식회사 | 빔포밍을 사용하는 통신 시스템의 랜덤 억세스 장치 및 방법 |
US20190387541A1 (en) * | 2018-06-19 | 2019-12-19 | Samsung Electronics Co., Ltd. | Method and apparatus for performing random access backoff in wireless communication system |
US20200045748A1 (en) * | 2017-04-14 | 2020-02-06 | Huawei Technologies Co., Ltd. | Random Access Method, Random Access Response Method, Terminal Device, and Network Device |
US20200137806A1 (en) * | 2018-10-30 | 2020-04-30 | Qualcomm Incorporated | Multiple msg1 for pdcch ordered rach |
-
2021
- 2021-09-29 KR KR1020237011346A patent/KR20230075464A/ko active Search and Examination
- 2021-09-29 US US18/028,963 patent/US20230337287A1/en active Pending
- 2021-09-29 WO PCT/KR2021/013349 patent/WO2022071755A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101995798B1 (ko) * | 2012-07-03 | 2019-07-03 | 삼성전자주식회사 | 빔포밍을 사용하는 통신 시스템의 랜덤 억세스 장치 및 방법 |
US20200045748A1 (en) * | 2017-04-14 | 2020-02-06 | Huawei Technologies Co., Ltd. | Random Access Method, Random Access Response Method, Terminal Device, and Network Device |
WO2019099443A1 (en) * | 2017-11-15 | 2019-05-23 | Idac Holdings, Inc. | Multiple monitoring occasions at a random access channel control resource set |
US20190387541A1 (en) * | 2018-06-19 | 2019-12-19 | Samsung Electronics Co., Ltd. | Method and apparatus for performing random access backoff in wireless communication system |
US20200137806A1 (en) * | 2018-10-30 | 2020-04-30 | Qualcomm Incorporated | Multiple msg1 for pdcch ordered rach |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022203782A1 (en) * | 2021-03-23 | 2022-09-29 | Qualcomm Incorporated | Techniques for selecting a random access channel occasion |
US11690103B2 (en) | 2021-03-23 | 2023-06-27 | Qualcomm Incorporated | Techniques for selecting a random access channel occasion |
WO2023217351A1 (en) * | 2022-05-09 | 2023-11-16 | Nokia Technologies Oy | Method and apparatus for beam management |
WO2024131710A1 (zh) * | 2022-12-23 | 2024-06-27 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
WO2024162894A1 (en) * | 2023-02-03 | 2024-08-08 | Panasonic Intellectual Property Corporation Of America | Ra-rnti calculation for multi-prach transmissions |
WO2024169493A1 (zh) * | 2023-02-15 | 2024-08-22 | 华为技术有限公司 | 通信方法、装置及系统 |
WO2024168703A1 (zh) * | 2023-02-16 | 2024-08-22 | 上海移远通信技术股份有限公司 | 用于无线通信的节点中的方法和装置 |
CN117099466A (zh) * | 2023-04-14 | 2023-11-21 | 上海移远通信技术股份有限公司 | 被用于无线通信的节点中的方法和装置 |
CN117099466B (zh) * | 2023-04-14 | 2024-09-27 | 上海移远通信技术股份有限公司 | 被用于无线通信的节点中的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
US20230337287A1 (en) | 2023-10-19 |
KR20230075464A (ko) | 2023-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022071755A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020032742A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020032558A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2021206422A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020067847A1 (ko) | Nr v2x에서 참조 신호에 기반하여 dtx를 판단하는 방법 및 장치 | |
WO2020167056A1 (ko) | 다중 전송 블록 스케줄링을 위한 하향링크 신호의 송수신 방법 및 이를 위한 장치 | |
WO2021066595A1 (ko) | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2022154637A1 (ko) | 무선 통신 시스템에서 신호 송수신 방법 및 장치 | |
WO2020167059A1 (ko) | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2020032670A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020032757A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2021033952A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020222599A1 (ko) | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2021091289A1 (ko) | Nr v2x에서 사이드링크 자원을 할당하는 방법 및 장치 | |
WO2021162526A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020204560A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020111836A1 (ko) | 무선 통신 시스템에서 동작하는 방법 및 장치 | |
WO2020091574A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2021066519A1 (ko) | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2020226399A1 (ko) | Nr v2x에서 전송 자원을 선택하는 방법 및 장치 | |
WO2020091575A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020032683A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2022154393A1 (ko) | 무선 통신 시스템에서 신호 송수신 방법 및 장치 | |
WO2020032759A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 | |
WO2020222612A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21876030 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20237011346 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21876030 Country of ref document: EP Kind code of ref document: A1 |