WO2020032756A1 - 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2020032756A1
WO2020032756A1 PCT/KR2019/010175 KR2019010175W WO2020032756A1 WO 2020032756 A1 WO2020032756 A1 WO 2020032756A1 KR 2019010175 W KR2019010175 W KR 2019010175W WO 2020032756 A1 WO2020032756 A1 WO 2020032756A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
base station
terminal
random access
dqi
Prior art date
Application number
PCT/KR2019/010175
Other languages
English (en)
French (fr)
Inventor
박창환
양석철
안준기
김선욱
황승계
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/255,216 priority Critical patent/US11503490B2/en
Publication of WO2020032756A1 publication Critical patent/WO2020032756A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving downlink channel quality information.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, shortage of resources and users demand faster services, a more advanced mobile communication system is required. .
  • An object of the present invention is to provide a method and an apparatus therefor for efficiently transmitting and receiving downlink channel quality information.
  • Another object of the present invention is to provide a method and an apparatus therefor for efficiently transmitting and receiving downlink channel quality information through a random access procedure.
  • Another object of the present invention is to provide a method and apparatus for efficiently transmitting and receiving downlink channel quality information in an RRC connection state.
  • Another object of the present invention is to provide a method and apparatus for efficiently transmitting and receiving downlink channel quality information for a physical downlink control channel and / or a physical downlink shared channel.
  • a method for transmitting downlink quality information to a base station by a user equipment (UE) in a wireless communication system comprising a random access preamble (random access preamble) Transmitting) to the base station; Receiving a random access response from the base station; And transmitting the downlink quality information to the base station through a physical uplink shared channel based on the random access response, wherein the physical downlink control channel associated with the random access response is physical.
  • the downlink quality information may include information about wideband downlink quality.
  • a user equipment configured to transmit downlink quality information to a base station in a wireless communication system
  • the user equipment comprising: a radio frequency (RF) transceiver; And a processor operatively connected to the RF transceiver, wherein the processor controls the RF transceiver to transmit a random access preamble to the base station, and random access response from the base station.
  • receive a response and transmit the downlink quality information to the base station through a physical uplink shared channel based on the random access response, and control a physical downlink associated with the random access response
  • the downlink quality information may include information about wideband downlink quality.
  • the downlink quality information may include information about wideband downlink quality.
  • a method for a base station to receive downlink quality information from a user equipment (UE) in a wireless communication system comprising a random access preamble (random access preamble) Receiving) from the user device; Sending a random access response to the user device; And receiving the downlink quality information from the user equipment through a physical uplink shared channel based on the random access response, wherein the physical downlink control channel associated with the random access response includes:
  • the downlink quality information may include information about wideband downlink quality.
  • a base station configured to receive downlink quality information from a user equipment (UE) in a wireless communication system, the base station comprising: a radio frequency (RF) transceiver; And a processor operatively connected to the RF transceiver, wherein the processor controls the RF transceiver to receive a random access preamble from the user device and to send a random access response to the user device. transmit a random access response, and receive the downlink quality information from the user equipment through a physical uplink shared channel based on the random access response, and transmit a physical associated with the random access response
  • the downlink quality information may include information about wideband downlink quality.
  • an apparatus for a base station configured to operate in a wireless communication system, the apparatus comprising: a memory including instructions; And a processor coupled to the memory upon operation, wherein the processor is configured to execute the instructions to perform specific operations, the specific operations comprising: receiving a random access preamble from a user device; Transmitting a random access response to the user device and receiving downlink quality information from the user device through a physical uplink shared channel based on the random access response.
  • the downlink quality information may include information about wideband downlink quality. .
  • the wideband downlink quality may include a repetition number required for decoding a physical downlink control channel in a reference resource for downlink quality measurement.
  • the reference resource for downlink quality measurement may include a group of downlink physical resource blocks for all narrowbands associated with the number of repetitions.
  • the downlink quality information may further include information about narrowband downlink quality on a preferred narrowband and information about the location of the preferred narrowband.
  • the preferred narrow band may be selected within a reference resource for the downlink quality measurement.
  • said wideband downlink quality may further comprise a merge level necessary for decoding said physical downlink control channel.
  • the wideband downlink quality may include the number of repetitions required to actually decode the physical downlink control channel associated with the random access response.
  • the downlink quality information may further include information about narrowband downlink quality on a preferred narrowband and information about the location of the preferred narrowband.
  • said preferred narrowband may be selected from the narrowbands used to monitor the physical downlink control channel associated with said random access response.
  • said wideband downlink quality may further comprise a merge level necessary for actually decoding a physical downlink control channel associated with said random access response.
  • the physical downlink control channel associated with the random access response may be a machine type communication (MTC) physical downlink control channel (PDCCH).
  • MTC machine type communication
  • PDCH physical downlink control channel
  • 1 illustrates physical channels and general signal transmission used in a 3GPP system.
  • FIG. 4 illustrates a slot structure of an LTE frame.
  • FIG. 5 illustrates the structure of a radio frame used in an NR system.
  • FIG. 6 illustrates a slot structure of an NR frame.
  • FIG. 10 illustrates transmission of an NB-IoT downlink physical channel / signal.
  • FIG. 11 illustrates a network initial access and subsequent communication process in an NR system.
  • FIG. 13 illustrates a DRX cycle for paging.
  • FIG. 15 illustrates a time flow of channels and signals transmitted / received by a terminal in a random access procedure.
  • 16 to 19 illustrate a flowchart of a method performed in a terminal and a base station according to the proposal of the present invention.
  • 20 to 25 illustrate a system and a communication apparatus to which the methods proposed in the present invention can be applied.
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of a base station.
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) / LTE-A pro is an evolution of 3GPP LTE.
  • 3GPP NR New Radio or New Radio Access Technology
  • 5G is an evolution of 3GPP LTE / LTE-A / LTE-A pro.
  • LTE refers to technology after 3GPP TS (Technical Specification) 36.xxx Release 8.
  • LTE-A the LTE technology after 3GPP TS 36.xxx Release 10
  • 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro.
  • 3GPP 5G means technology after TS 36.xxx Release 15, and 3GPP NR means technology after TS 38.xxx Release 15.
  • LTE / NR may be referred to as a 3GPP system.
  • "xxx" means standard document detail number.
  • LTE / NR may be collectively referred to as 3GPP system.
  • Background, terminology, abbreviations, and the like used in the description of the present invention may refer to the matters described in the standard documents published prior to the present invention. For example, see the following document:
  • RRC Radio Resource Control
  • E-UTRAN evolved-UMTS terrestrial radio access network
  • LTE long term evolution
  • LTE-A / LTE-A Pro / 5G system may be collectively referred to as LTE system.
  • NG-RAN may be referred to as an NR system.
  • a user equipment (UE) may be fixed or mobile and may be referred to by other terms such as a terminal, mobile station (MS), user terminal (UT), subscriber station (SS), mobile terminal (MT), wireless device, and the like. Can be.
  • a base station (BS) is generally a fixed station that communicates with a UE.
  • Other terms such as evolved Node-B (eNB), general Node-B (gNB), base transceiver system (BTS), access point (AP), etc. It may be referred to as.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • an initial cell search operation such as synchronization with a base station is performed (S11).
  • the terminal receives a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) from the base station, synchronizes with the base station, and acquires information such as a cell identity.
  • the terminal may receive a broadcast broadcast (PBCH) from the base station to obtain broadcast information in the cell.
  • the UE may check the downlink channel state by receiving a DL RS (Downlink Reference Signal) in the initial cell search step.
  • PBCH broadcast broadcast
  • DL RS Downlink Reference Signal
  • the UE may obtain more specific system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) corresponding thereto (S12).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure (for example, see FIG. 2 and related description) to complete the access to the base station (S13 to S16).
  • the UE may transmit a random access preamble through a physical random access channel (PRACH) (S13) and receive a random access response (RAR) for the preamble through a PDCCH and a PDSCH corresponding thereto (S14).
  • the UE may transmit a physical uplink shared channel (PUSCH) using scheduling information in the RAR (S15) and perform a contention resolution procedure such as a PDCCH and a PDSCH corresponding thereto (S16).
  • PRACH physical random access channel
  • RAR random access response
  • PUSCH physical uplink shared channel
  • the UE may perform PDCCH / PDSCH reception (S17) and PUSCH / PUCCH (Physical Uplink Control Channel) transmission (S18) as a general uplink / downlink signal transmission procedure.
  • Control information transmitted from the terminal to the base station is referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like.
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • the UCI is generally transmitted through the PUCCH, but may be transmitted through the PUSCH when control information and data should be transmitted at the same time.
  • the UE may transmit the UCI aperiodically through the PUSCH according to the request / instruction of the network.
  • the random access procedure may include an initial access in RRC Idle Mode (or RRC_IDLE state), an initial access after a radio link failure, a handover requiring a random access process, an RRC Connected Mode (or RRC_CONNECTED state). ) Is performed when uplink / downlink data is generated that requires a random access procedure.
  • the random access process may be referred to as a random access channel (RACH) process.
  • RACH random access channel
  • Some RRC messages such as an RRC connection request message, a cell update message, and an URA update message, are also transmitted using a random access procedure.
  • the logical channels Common Control Channel (CCCH), Dedicated Control Channel (DCCH), and Dedicated Traffic Channel (DTCH) may be mapped to the transport channel RACH.
  • CCCH Common Control Channel
  • DCCH Dedicated Control Channel
  • DTCH Dedicated Traffic Channel
  • the transport channel RACH is mapped to a physical channel physical random access channel (PRACH).
  • PRACH physical channel physical random access channel
  • the UE physical layer first selects one access slot and one signature and transmits the PRACH preamble in uplink.
  • the random access process is classified into a contention based process and a non-contention based process.
  • the terminal receives and stores information about a random access from a base station through system information. After that, if a random access is required, the UE transmits a random access preamble (also referred to as message 1 or Msg1) to the base station (S21).
  • the random access preamble may be referred to as a RACH preamble or a PRACH preamble.
  • the base station transmits a random access response message (also referred to as message 2 or Msg2) to the terminal (S22).
  • downlink scheduling information on the random access response message may be CRC masked by a random access-RNTI (RA-RNTI) and transmitted on an L1 / L2 control channel (PDCCH).
  • RA-RNTI random access-RNTI
  • the UE may receive and decode a random access response message from a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the terminal checks whether the random access response information includes random access response information indicated to the terminal. Whether the random access response information indicated to the presence of the self may be determined by whether there is a random access preamble (RAID) for the preamble transmitted by the terminal.
  • RAID random access preamble
  • the random access response information includes a timing advance (TA) indicating timing offset information for synchronization, radio resource allocation information used for uplink, and a temporary identifier (eg, Temporary C-RNTI) for terminal identification. do.
  • TA timing advance
  • radio resource allocation information used for uplink and a temporary identifier (eg, Temporary C-RNTI) for terminal identification.
  • uplink transmission including an RRC connection request message on an uplink shared channel according to radio resource allocation information included in the response information (also referred to as message 3 or Msg3).
  • Msg3 radio resource allocation information included in the response information
  • the base station After receiving the uplink transmission from the terminal, the base station transmits a message for contention resolution (also referred to as message 4 or Msg4) to the terminal (S24).
  • the message for contention resolution may be referred to as a contention resolution message and may include an RRC connection establishment message.
  • the terminal completes the connection setup and transmits a connection setup complete message (also called message 5 or Ms
  • the base station may allocate a non-contention random access preamble to the terminal before the terminal transmits the random access preamble (S21).
  • the non-competitive random access preamble may be allocated through dedicated signaling such as a handover command or a PDCCH.
  • the UE may transmit the allocated non-competitive random access preamble to the base station similarly to step S21.
  • the base station may transmit a random access response to the terminal similarly to the step S22.
  • LTE supports frame type 1 for frequency division duplex (FDD), frame type 2 for time division duplex (TDD) and frame type 3 for unlicensed cell (UCell).
  • FDD frequency division duplex
  • TDD time division duplex
  • Uell unlicensed cell
  • PCell Primary Cell
  • SCells Secondary Cells
  • the operations described herein may be applied independently for each cell.
  • different frame structures can be used for different cells.
  • time resources eg, subframes, slots, and subslots
  • TU time unit
  • the downlink radio frame is defined as ten 1 ms subframes (SFs).
  • the subframe includes 14 or 12 symbols according to a cyclic prefix (CP). If a normal CP is used, the subframe includes 14 symbols. If extended CP is used, the subframe includes 12 symbols.
  • the symbol may mean an OFDM (A) symbol or an SC-FDM (A) symbol according to a multiple access scheme. For example, the symbol may mean an OFDM (A) symbol in downlink and an SC-FDM (A) symbol in uplink.
  • the OFDM (A) symbol is referred to as a Cyclic Prefix-OFDM (A) symbol
  • SC-FDM (A) symbol is a DFT-s-OFDM (A) (Discrete Fourier Transform-spread-OFDM) symbol. (A)) may be referred to as a symbol.
  • Frame type 2 consists of two half frames.
  • the half frame includes 4 (or 5) general subframes and 1 (or 0) special subframes.
  • the general subframe is used for uplink or downlink according to the UL-Downlink configuration.
  • the subframe consists of two slots.
  • the structure of the above-described radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 4 illustrates a slot structure of an LTE frame.
  • a slot includes a plurality of symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • the symbol may mean a symbol section.
  • the slot structure may be represented by a resource grid composed of N DL / UL RB ⁇ N RB sc subcarriers and N DL / UL symb symbols.
  • N DL RB represents the number of RBs in the downlink slot
  • N UL RB represents the number of RBs in the UL slot.
  • N DL RB and N UL RB depend on the DL bandwidth and the UL bandwidth, respectively.
  • N DL symb represents the number of symbols in the DL slot
  • N UL symb represents the number of symbols in the UL slot
  • N RB sc represents the number of subcarriers constituting the RB.
  • the number of symbols in the slot can be variously changed according to the length of the SCS, CP. For example, one slot includes 7 symbols in the case of a normal CP, but one slot includes 6 symbols in the case of an extended CP.
  • RB is defined as N DL / UL symb (e.g. 7) consecutive symbols in the time domain and N RB sc (e.g. 12) consecutive subcarriers in the frequency domain.
  • the RB may mean a physical resource block (PRB) or a virtual resource block (VRB), and the PRB and the VRB may be mapped one-to-one.
  • Two RBs, one located in each of two slots of a subframe, are called RB pairs.
  • Two RBs constituting the RB pair have the same RB number (or also referred to as an RB index).
  • a resource composed of one symbol and one subcarrier is called a resource element (RE) or tone.
  • RE resource element
  • Each RE in a resource grid may be uniquely defined by an index pair (k, l) in a slot.
  • k is an index given from 0 to N DL / UL RB ⁇ N RB sc ⁇ 1 in the frequency domain
  • l is an index given from 0 to N DL / UL symb ⁇ 1 in the time domain.
  • Up to three (or four) OFDM (A) symbols located in front of the first slot in the subframe correspond to a control region to which a downlink control channel is allocated.
  • the remaining OFDM (A) symbols correspond to the data region to which the PDSCH is allocated, and the basic resource unit of the data region is RB.
  • the downlink control channel includes a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information on the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH is a response to uplink transmission and carries an HARQ ACK / NACK (acknowledgment / negative-acknowledgment) signal.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain group of terminals.
  • the subframe consists of two 0.5ms slots. Each slot is composed of a plurality of symbols and one symbol corresponds to one SC-FDMA symbol.
  • RB is a resource allocation unit corresponding to 12 subcarriers in the frequency domain and one slot in the time domain.
  • the structure of an uplink subframe of LTE is largely divided into a data region and a control region.
  • the data area means a communication resource used in transmitting data such as voice and packet transmitted to each terminal, and includes a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the control region means a communication resource used to transmit an uplink control signal, for example, a downlink channel quality report from each user equipment, a reception ACK / NACK for the downlink signal, an uplink scheduling request, and a PUCCH (Physical Uplink). Control Channel).
  • the sounding reference signal (SRS) is transmitted through the SC-FDMA symbol which is located last on the time axis in one subframe.
  • FIG. 5 illustrates the structure of a radio frame used in an NR system.
  • uplink and downlink transmission are composed of frames.
  • the radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HFs).
  • the half-frame is defined by five 1 ms subframes (SFs).
  • the subframe is divided into one or more slots, and the number of slots in the subframe depends on the subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). When a normal CP is used, each slot includes 14 symbols. If extended CP is used, each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 1 exemplarily shows that when CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • Table 2 illustrates that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • the (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • FIG. 6 illustrates a slot structure of an NR frame.
  • the slot includes a plurality of symbols in the time domain. For example, in general, one slot includes 14 symbols in case of CP, but one slot includes 12 symbols in case of extended CP.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • a bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg 5) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE.
  • Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
  • RE resource element
  • the base station transmits the related signal to the terminal through the downlink channel, and the terminal receives the related signal from the base station through the downlink channel.
  • PDSCH physical downlink shared channel
  • the PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are used. Apply.
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8, 16 CCEs (Control Channel Elements) according to an aggregation level (AL).
  • One CCE consists of six Resource Element Groups (REGs).
  • REG Resource Element Groups
  • One REG is defined by one OFDM symbol and one (P) RB.
  • the PDCCH is transmitted through a control resource set (CORESET).
  • CORESET is defined as a REG set with a given pneumonology (eg SCS, CP length, etc.).
  • a plurality of CORESET for one terminal may be overlapped in the time / frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
  • system information eg, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of symbols (up to three) constituting the CORESET may be set by higher layer signaling.
  • the UE performs decoding (aka blind decoding) on the set of PDCCH candidates to obtain a DCI transmitted through the PDCCH.
  • the set of PDCCH candidates decoded by the UE is defined as a PDCCH search space set.
  • the search space set may be a common search space or a UE-specific search space.
  • the UE may acquire the DCI by monitoring PDCCH candidates in one or more sets of search spaces set by MIB or higher layer signaling.
  • Each CORESET setting is associated with one or more sets of search spaces, and each set of search spaces is associated with one COREST setting.
  • One set of search spaces is determined based on the following parameters.
  • controlResourceSetId indicates the control resource set associated with the search space set
  • monitoringSymbolsWithinSlot indicates the PDCCH monitoring pattern in the slot for PDCCH monitoring (eg, indicates the first symbol (s) of the control resource set)
  • Table 3 illustrates the features of each search space type.
  • Table 4 illustrates the DCI formats transmitted on the PDCCH.
  • DCI format 0_0 is used for scheduling TB-based (or TB-level) PUSCH
  • DCI format 0_1 is used for scheduling TB-based (or TB-level) PUSCH or Code Block Group (CBG) -based (or CBG-level) PUSCH. It can be used to schedule.
  • DCI format 1_0 is used for scheduling TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used for scheduling TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH. Can be.
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the UE
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the UE.
  • DCI format 2_0 and / or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • the terminal transmits the related signal to the base station through the uplink channel, and the base station receives the related signal from the terminal through the uplink channel.
  • PUSCH physical uplink shared channel
  • PUSCH carries uplink data (eg, UL-shared channel transport block, UL-SCH TB) and / or uplink control information (UCI), and uses a Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform. Or based on a Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on a CP-OFDM waveform, and when conversion precoding is possible (eg, transform precoding is enabled), the UE is CP-OFDM.
  • PUSCH may be transmitted based on the waveform or the DFT-s-OFDM waveform.
  • PUSCH transmissions are dynamically scheduled by UL grants in DCI or semi-static based on higher layer (eg RRC) signaling (and / or Layer 1 (L1) signaling (eg PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed based on codebook or non-codebook.
  • the PUCCH carries uplink control information, HARQ-ACK and / or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • Table 5 illustrates the PUCCH formats.
  • MTC Machine Type Communication
  • MTC is a form of data communication that includes one or more machines, and may be applied to machine-to-machine (M2M) or Internet-of-Things (IoT).
  • a machine refers to an object that does not require human direct manipulation or intervention.
  • the machine may include a smart meter equipped with a mobile communication module, a bending machine, a portable terminal having an MTC function, and the like.
  • MTC can provide services such as meter reading, water level measurement, the use of surveillance cameras, and inventory reporting of vending machines.
  • MTC communication has a characteristic of small amount of transmission data and occasional up / down link data transmission and reception. Therefore, it is efficient to lower the cost of the MTC device and reduce the battery consumption at the low data rate.
  • MTC devices are generally less mobile, and thus MTC communication has the characteristic that the channel environment hardly changes.
  • 3GPP Release 12 adds features for low-cost MTC devices, for which UE category 0 is defined.
  • the UE category is an index indicating how much data the terminal can process in the communication modem.
  • UE category 0 can reduce baseband / RF complexity by using a reduced peak data rate, half-duplex operation with relaxed Radio Frequency (RF) requirements, and a single receive antenna.
  • RF Radio Frequency
  • 3GPP Release 12 enhanced MTC (eMTC) was introduced, and the MTC terminal lowered the cost and power consumption by only operating at 1.08MHz (that is, 6 RBs), which is the minimum frequency bandwidth supported by legacy LTE.
  • MTC Mobility Management Entity
  • Coverage enhancement may be referred to as coverage extension, and the techniques for coverage enhancement described with respect to MTC may apply equally or similarly to NB-IoT and 5G (or NR).
  • a base station / terminal can transmit / receive one physical channel / signal over a plurality of occasions (bundle of physical channels).
  • the physical channel / signal may be repeatedly transmitted / received according to a pre-defined rule.
  • the receiving device can increase the decoding success rate of the physical channel / signal by decoding part or all of the physical channel / signal bundle.
  • the opportunity may refer to a resource (eg, time / frequency) to which a physical channel / signal may be transmitted / received.
  • Opportunities for physical channels / signals may include subframes, slots or symbol sets in the time domain.
  • the symbol set may consist of one or more consecutive OFDM-based symbols.
  • Opportunities for physical channels / signals may include frequency bands, RB sets in the frequency domain. For example, PBCH, PRACH, MPDCCH, PDSCH, PUCCH and PUSCH may be repeatedly transmitted / received.
  • the MTC supports an operation mode for coverage enhancement or coverage (CE), and a mode supporting repetitive transmission / reception of signals for coverage enhancement or extension may be referred to as a CE mode.
  • a CE mode supporting repetitive transmission / reception of signals for coverage enhancement or extension
  • the number of repetitive transmissions / receptions of a signal for coverage enhancement or extension may be referred to as a CE level Table 6 exemplifies a CE mode / level supported by the MTC.
  • the first mode (eg, CE Mode A) is defined for small coverage enhancement with full mobility and channel state information (CSI) feedback, and is a mode with no or few repetitions.
  • the operation of the first mode may be the same as the operation range of the UE category 1.
  • the second mode (eg CE Mode B) is defined for UEs in extremely poor coverage conditions that support CSI feedback and limited mobility, and a large number of repetitive transmissions are defined.
  • the second mode provides up to 15dB of coverage enhancement based on the range of UE category 1.
  • Each level of the MTC is defined differently in a random access procedure (or RACH procedure) and a paging procedure.
  • the MTC is a specific band (or channel band) of the system bandwidth of the cell (MTC subband or narrow band) regardless of the system bandwidth of the cell. narrowband (NB)).
  • MTC subband or narrow band the system bandwidth of the cell
  • narrowband (NB) narrowband
  • the uplink / downlink operation of the MTC terminal may be performed only in the 1.08 MHz frequency band.
  • 1.08 MHz corresponds to six consecutive Physical Resource Blocks (PRBs) in an LTE system, and is defined to follow the same cell search and random access procedure as that of an LTE terminal.
  • FIG. 8A illustrates a case in which MTC subbands are configured in a cell center (eg, six center PRBs), and FIG.
  • the MTC subband may be defined in consideration of frequency range and subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • the size of the MTC subband may be defined as X consecutive PRBs (that is, 0.18 * X * (2 ⁇ ⁇ ) MHz bandwidths) ( ⁇ may refer to Table 1).
  • X may be defined as 20 according to the size of the SS / PBCH (Synchronization Signal / Physical Broadcast Channel) block.
  • the MTC may operate in at least one bandwidth part (BWP). In this case, a plurality of MTC subbands may be configured in the BWP.
  • BWP bandwidth part
  • a PDSCH is scheduled using a PDCCH.
  • MTC PDSCH is scheduled using MPDCCH.
  • the MTC terminal may monitor the MPDCCH candidate in a search space in a subframe.
  • monitoring includes blind decoding MPDCCH candidates.
  • the MPDCCH transmits a DCI, and the DCI includes uplink or downlink scheduling information.
  • MPDCCH is multiplexed into PDSCH and FDM in a subframe.
  • the MPDCCH is repeatedly transmitted in a maximum of 256 subframes, and the DCI transmitted by the MPDCCH includes information on the number of MPDCCH repetitions.
  • downlink scheduling when repetitive transmission of the MPDCCH ends in subframe #N, transmission of PDSCH scheduled by the MPDCCH starts in subframe # N + 2.
  • the PDSCH may be repeatedly transmitted in up to 2048 subframes.
  • MPDCCH and PDSCH may be transmitted in different MTC subbands.
  • uplink scheduling when repetitive transmission of the MPDCCH ends in subframe #N, the PUSCH scheduled by the MPDCCH starts transmission in subframe # N + 4.
  • the PDSCH is repeatedly transmitted in 32 subframes, the PDSCH is transmitted in the first MTC subband in the first 16 subframes, and the PDSCH is transmitted in the second MTC subband in the remaining 16 subframes. Can be sent.
  • MTC operates in half duplex mode.
  • HARQ retransmission of the MTC is an adaptive, asynchronous scheme.
  • NB-IoT Narrowband Internet of Things
  • NB-IoT represents a narrowband IoT technology that supports low-power wide area networks through existing wireless communication systems (eg, LTE, NR).
  • NB-IoT may refer to a system for supporting low complexity and low power consumption through a narrowband.
  • the NB-IoT system uses OFDM parameters such as subcarrier spacing (SCS) in the same manner as the existing system, and thus does not need to allocate an additional band separately for the NB-IoT system.
  • SCS subcarrier spacing
  • one PRB of the existing system band can be allocated for NB-IoT. Since the NB-IoT terminal recognizes a single PRB as each carrier, the PRB and the carrier may be interpreted to have the same meaning in the description of the NB-IoT.
  • the NB-IoT may operate in a multi-carrier mode.
  • the carriers in the NB-IoT are anchor type carriers (ie, anchor carriers, anchor PRBs) and non-anchor type carriers (ie, non-anchor type carriers).
  • Anchor carrier non-anchor carrier, non-anchor PRB
  • the anchor carrier may refer to a carrier for transmitting NPSS, NSSS, NPBCH, and NPDSCH for system information block (N-SIB) for initial access from a base station perspective.
  • the carrier for initial connection in the NB-IoT may be referred to as an anchor carrier, and the other one (s) may be referred to as a non-anchor carrier.
  • only one anchor carrier may exist on the system, or a plurality of anchor carriers may exist.
  • the description of the NB-IoT mainly describes the case where it is applied to the existing LTE system, but the description of the present specification may be extended to the next-generation system (eg, NR system).
  • the content related to the NB-IoT herein may be extended to MTC for a similar technical purpose (eg, low-power, low-cost, improved coverage, etc.).
  • NB-IoT may be replaced with other equivalent terms such as NB-LTE, NB-IoT enhancement, enhanced NB-IoT, further enhanced NB-IoT, NB-NR, and the like.
  • NB-IoT downlink is provided with physical channels such as narrowband physical broadcast channel (NPBCH), narrowband physical downlink shared channel (NPDSCH), narrowband physical downlink control channel (NPDCCH), narrowband primary synchronization signal (NPSS), narrowband (NSSS) Physical signals such as Primary Synchronization Signal (NRS) and Narrowband Reference Signal (NRS) are provided.
  • NPBCH narrowband physical broadcast channel
  • NPDSCH narrowband physical downlink shared channel
  • NPDCCH narrowband physical downlink control channel
  • NPSS narrowband primary synchronization signal
  • NSSS narrowband Physical signals
  • NRS Primary Synchronization Signal
  • NRS Narrowband Reference Signal
  • the NB-IoT frame structure may be set differently according to subcarrier spacing. For example, in a NB-IoT system, 15 kHz subcarrier spacing and 3.75 kHz subcarrier spacing may be supported.
  • the NB-IoT frame structure is not limited thereto, and NB-IoT for another subcarrier interval (eg, 30 kHz, etc.) may also be considered by different time / frequency units.
  • the NB-IoT frame structure based on the LTE system frame structure has been described as an example, but this is only for convenience of description and the present invention is not limited thereto.
  • the method described herein may be a next-generation system (eg, an NR system). It can be extended to NB-IoT based on the frame structure of).
  • the NB-IoT frame structure for the 15 kHz subcarrier interval may be set to be the same as the frame structure of the legacy system (ie, LTE system) described above. That is, the 10 ms NB-IoT frame may include 10 1 ms NB-IoT subframes, and the 1 ms NB-IoT subframe may include two 0.5 ms NB-IoT slots. In addition, each 0.5 ms NB-IoT may include seven OFDM symbols.
  • a 10 ms NB-IoT frame contains five 2 ms NB-IoT subframes, and the 2 ms NB-IoT subframe contains seven OFDM symbols and one guard period (GP). It may include.
  • the 2ms NB-IoT subframe may be represented by an NB-IoT slot or an NB-IoT resource unit (RU).
  • NB-IoT downlink physical resources are physical resources of other wireless communication systems (e.g., LTE system, NR system, etc.), except that the system bandwidth is a certain number of RBs (e.g., one RB, i.e., 180 kHz). It can be set by reference. For example, when the NB-IoT downlink supports only the 15kHz subcarrier interval as described above, the physical resource of the NB-IoT downlink is 1 RB (that is, the frequency grid) of the LTE system shown in FIG. , 1 PRB). In the case of NB-IoT uplink physical resources, as in the case of downlink, the system bandwidth may be limited to one RB.
  • the downlink physical channel / signal is transmitted through one PRB and supports 15kHz subcarrier spacing / multi-tone transmission.
  • NPSS is transmitted in the sixth subframe of every frame and NSSS is transmitted in the last (eg, tenth) subframe of every even frame.
  • the terminal may acquire frequency, symbol, and frame synchronization using the sync signals NPSS and NSSS, and search for 504 physical cell IDs (ie, base station IDs).
  • NPBCH is transmitted in the first subframe of every frame and carries the NB-MIB.
  • the NRS is provided as a reference signal for downlink physical channel demodulation and is generated in the same manner as in LTE.
  • NB-PCID Physical Cell ID
  • NCell ID or NCell ID, NB-IoT base station ID
  • NRS is transmitted through one or two antenna ports.
  • NPDCCH and NPDSCH may be transmitted in the remaining subframes except NPSS / NSSS / NPBCH.
  • NPDCCH and NPDSCH cannot be transmitted together in the same subframe.
  • NPDCCH carries DCI and DCI supports three types of DCI formats.
  • DCI format N0 includes narrowband physical uplink shared channel (NPUSCH) scheduling information, and DCI formats N1 and N2 include NPDSCH scheduling information.
  • NPDCCH can be repeated up to 2048 times to improve coverage.
  • the NPDSCH is used to transmit data (eg, TB) of a transport channel such as a downlink-shared channel (DL-SCH) and a paging channel (PCH).
  • the maximum TBS is 680 bits, and up to 2048 repetitive transmissions can be used to improve coverage.
  • the uplink physical channel includes a narrowband physical random access channel (NPRACH) and an NPUSCH, and supports single-tone transmission and multi-tone transmission.
  • NPRACH narrowband physical random access channel
  • NPUSCH NPUSCH
  • Single-tone transmissions are supported for subcarrier spacings of 3.5 kHz and 15 kHz, and multi-tone transmissions are only supported for 15 kHz subcarrier intervals.
  • Single carrier frequency division multiple access may be applied to the NB-IoT uplink based on a subcarrier interval of 15 kHz or 3.75 kHz.
  • SC-FDMA Single carrier frequency division multiple access
  • uplink of NB-IoT multi-tone transmission and single-tone transmission may be supported.
  • multi-tone transmissions are only supported at subcarrier intervals of 15 kHz, and single-tone transmissions may be supported for subcarrier intervals of 15 kHz and 3.75 kHz.
  • the physical channel of the NB-IoT system may be expressed in the form of 'N (Narrowband)' added to distinguish it from the existing system.
  • the uplink physical channel may be defined as a narrowband physical random access channel (NPRACH) and a narrowband physical uplink shared channel (NPUSCH), and the uplink physical signal may be defined as a narrowband demodulation reference signal (NDMRS).
  • NPRACH narrowband physical random access channel
  • NPUSCH narrowband physical uplink shared channel
  • NMRS narrowband demodulation reference signal
  • the NPUSCH may be configured of NPUSCH format 1, NPUSCH format 2, and the like.
  • NPUSCH format 1 may be used for UL-SCH transmission (or transport)
  • NPUSCH format 2 may be used for uplink control information transmission such as HARQ ACK signaling.
  • repetition transmission may be performed for coverage enhancement.
  • repetitive transmission may be performed by applying frequency hopping.
  • the terminal may perform a network access procedure to perform the procedures and / or methods described / proposed herein.
  • the terminal may receive and store system information and configuration information necessary to perform the procedures and / or methods described / proposed herein while accessing a network (eg, a base station) and store them in a memory.
  • Configuration information required for the present invention may be received through higher layer (eg, RRC layer; Medium Access Control, MAC, layer, etc.) signaling.
  • a network initial access and subsequent communication process in an NR system illustrates a network initial access and subsequent communication process in an NR system.
  • a reference signal may be transmitted using beam-forming. If beam-forming-based signal transmission is supported, a beam management process may be involved to align the beam between the base station and the terminal.
  • the signal proposed in the present invention may be transmitted / received using beam-forming.
  • RRC Radio Resource Control
  • beam alignment may be performed based on SSB.
  • beam alignment in the RRC CONNECTED mode may be performed based on CSI-RS (in DL) and SRS (in UL).
  • CSI-RS in DL
  • SRS in UL
  • a base station may periodically transmit an SSB (S1902).
  • SSB includes PSS / SSS / PBCH.
  • SSB may be transmitted using beam sweeping.
  • the PBCH may include a master information block (MIB), and the MIB may include scheduling information regarding a retaining minimum system information (RMI).
  • RMSI master information block
  • OSI Operating System Information
  • the RMSI may include information (eg, PRACH configuration information) necessary for the terminal to initially access the base station. Meanwhile, the terminal identifies the best SSB after performing SSB detection.
  • the terminal may transmit the RACH preamble (Message 1, Msg1) to the base station by using the PRACH resources linked / corresponding to the index (ie, beam) of the best SSB (S1906).
  • the beam direction of the RACH preamble is associated with a PRACH resource.
  • the association between the PRACH resource (and / or RACH preamble) and the SSB (index) may be established through system information (eg, RMSI).
  • the base station transmits a random access response (RAR) (Msg2) in response to the RACH preamble (S1908), the terminal using the Msg3 (eg, UL grant in the RAR)
  • RAR random access response
  • Msg4 may include an RRC Connection Setup.
  • subsequent beam alignment may be performed based on SSB / CSI-RS (in DL) and SRS (in UL).
  • the terminal may receive the SSB / CSI-RS (S1914).
  • the SSB / CSI-RS may be used by the terminal to generate a beam / CSI report.
  • the base station may request the terminal to the beam / CSI report through the DCI (S1916).
  • the terminal may generate a beam / CSI report based on the SSB / CSI-RS and transmit the generated beam / CSI report to the base station through the PUSCH / PUCCH (S1918).
  • the beam / CSI report may include a beam measurement result, information on a preferred beam, and the like.
  • the base station and the terminal may switch the beam based on the beam / CSI report (S1920a, S1920b).
  • the terminal and the base station may perform the above-described procedures and / or methods.
  • the terminal and the base station process the information in the memory according to the proposal of the present invention based on the configuration information obtained in the network access process (eg, system information acquisition process, RRC connection process through the RACH, etc.) Or transmit the received wireless signal to the memory.
  • the radio signal may include at least one of PDCCH, PDSCH, and RS (Reference Signal) in downlink, and at least one of PUCCH, PUSCH, and SRS in uplink.
  • MTC PDCCH MPDCCH
  • the MIB includes 10 reserved bits.
  • MTC 5 Most Significant Bits (MSBs) of 10 reserved bits in the MIB are used to indicate scheduling information for a system information block for bandwidth reduced device (SIB1-BR).
  • SIB1-BR 5 MSBs are used to indicate the number of repetitions of the SIB1-BR and the transport block size (TBS).
  • SIB1-BR is transmitted in the PDSCH.
  • SIB1-BR may not change in 512 radio frames (5120 ms) to allow multiple subframes to be combined.
  • the information carried in SIB1-BR is similar to SIB1 of LTE system.
  • the MTC random access procedure (or RACH procedure) is basically the same as the LTE random access procedure (or RACH procedure) (eg, see FIG. 2 and related description) and differs in the followings: MTC random access procedure (or RACH procedure) Is performed based on the Coverage Enhancement (CE) level.
  • CE Coverage Enhancement
  • CE Coverage Enhancement
  • the first mode eg, CE mode A
  • the second mode eg, CE mode B
  • the number of repetitions may be large.
  • the base station broadcasts system information including a plurality (eg, three) RSRP (Reference Signal Received Power) threshold values, and the terminal may determine the CE level by comparing the RSRP threshold value and the RSRP measurement value.
  • the following information can be configured independently through system information.
  • PRACH resource information period / offset of PRACH opportunity, PRACH frequency resource
  • Preamble group preamble set allocated for each CE level
  • RAR window time the length of time period for which RAR reception is expected (eg number of subframes)
  • Conflict Resolution Window Time The length of time period to expect to receive a conflict resolution message.
  • the UE may select a PRACH resource corresponding to its CE level and then perform PRACH transmission based on the selected PRACH resource.
  • the PRACH waveform used in MTC is the same as the PRACH waveform used in LTE (eg, OFDM and Zadoff-Chu sequences). Signals / messages transmitted after the PRACH may also be repeatedly transmitted, and the number of repetitions may be independently set according to the CE mode / level.
  • the process of accessing an NB-IoT network is further described based on LTE.
  • the following description may be extended to NR as well.
  • PSS, SSS and PBCH are replaced with NPSS, NSSS and NPBCH in NB-IoT, respectively.
  • Reference to FIG. 10 may refer to NPSS, NSSS, and NPBCH.
  • PDCCH, PDSCH, PUSCH, PRACH are replaced with NPDCCH, NPDSCH, NPUSCH, NPRACH.
  • the NB-IoT random access procedure (or RACH process) is basically the same as the LTE random access process (or RACH process) (for example, see FIG. 2 and related description), and differs in the following matters.
  • the RACH preamble format is different.
  • the preamble is based on code / sequence (eg, Zadoff-Chu sequence), while in NB-IoT the preamble is a subcarrier.
  • the NB-IoT random access procedure (or RACH procedure) is performed based on the CE level. Therefore, PRACH resources are allocated differently for each CE level.
  • the uplink resource allocation request in the NB-IoT is performed using a random access procedure (or RACH procedure).
  • the NPRACH preamble consists of four symbol groups, and each symbol group may consist of a CP and a plurality of SC-FDMA symbols.
  • the SC-FDMA symbol may be replaced with an OFDM symbol or a DFT-s-OFDM symbol.
  • the NPRACH only supports single-tone transmissions with 3.75kHz subcarrier spacing, and offers 66.7 ⁇ s and 266.67 ⁇ s length CPs to support different cell radii.
  • Each symbol group performs frequency hopping and the hopping pattern is as follows. The subcarrier transmitting the first symbol group is determined in a pseudo-random manner.
  • the second symbol group is one subcarrier leap
  • the third symbol group is six subcarrier leaps
  • the fourth symbol group is one subcarrier leap.
  • the frequency hopping procedure is repeatedly applied, and the NPRACH preamble can be repeatedly transmitted ⁇ 1, 2, 4, 8, 16, 32, 64, 128 ⁇ to improve coverage.
  • NPRACH resources may be configured for each CE level.
  • the UE may select the NPRACH resource based on the CE level determined according to the downlink measurement result (eg, RSRP) and transmit the RACH preamble using the selected NPRACH resource.
  • the NPRACH may be transmitted on an anchor carrier or on a non-anchor carrier with NPRACH resources configured.
  • the terminal may support operations such as exception report, periodic report, network command, software update / reset, and the like.
  • the terminal may be configured to perform UL / DL data transmission and reception while most of the time stays in the battery efficiency state and wakes up in a specific subframe (s) within a certain period.
  • the aforementioned specific subframe (s) may be UE-specifically configured by using the IMSI of the UE, and the paging opportunity (PO) is mainly used for periodic paging confirmation. It is called).
  • the base station sets terminal-specific at least one paging occasion (PO) every specific paging period, and allows the terminal to obtain a paging message at the paging opportunity set specifically for the terminal.
  • the paging period may refer to a period during which the paging message is transmitted.
  • the terminal in the RRC-IDLE or RRC-SUSPENDED state may recover from the paging opportunity set to the connected state and receive the paging message.
  • UE specific paging opportunity may be determined using parameters signaled via SIB2 and UE identification information (eg, IMSI).
  • FIG. 13 illustrates a DRX cycle for paging.
  • Discontinuous reception may be configured by the base station to reduce power consumption.
  • the terminal may receive DRX configuration information from the base station through higher layer signaling (eg, RRC layer signaling).
  • the DRX configuration information may include configuration information about a DRX cycle, a DRX offset, a DRX timer, and the like.
  • the terminal may repeat the sleep mode and the wakeup mode according to the DRX cycle set by the base station based on the DRX configuration information.
  • the DRX cycle may not be aligned with the paging cycle.
  • the terminal may switch to the wakeup mode to receive the paging message.
  • the UE may monitor a physical channel related to paging (eg, PDCCH, MPDCCH, NPDCCH scrambled with P-RNTI) and detect the corresponding physical channel.
  • a physical channel related to paging eg, PDCCH, MPDCCH, NPDCCH scrambled with P-RNTI
  • the terminal receives information indicating a change in its paging ID and / or system information through the detected physical channel
  • the terminal initializes (or resets) the connection with the base station or receives new system information from the base station (or Acquisition).
  • the terminal switches to the sleep mode and may maintain the sleep mode until the next ON period.
  • the terminal does not perform an operation for detecting / decoding physical channels transmitted from the base station, but may maintain power for a circuit for maintaining a connection with the base station.
  • the maximum cycle duration may be limited to 2.56 seconds.
  • unnecessary power consumption may occur during a DRX cycle.
  • PSM power saving mode
  • PW paging transmission window
  • the UE may perform a DRX cycle to switch from its paging opportunity PO to a wake-up mode and monitor a channel related to paging.
  • the UE may repeat one or more DRX cycles (eg, wake-up mode and sleep mode).
  • the number of DRX cycles within the PTW period may be configured by the base station via a higher layer signal (eg, RRC layer signal).
  • a proposal related to a procedure for reporting downlink signal / channel quality in a random access procedure is provided.
  • the terminal since the terminal does not measure the channel quality during the random access process (or, in the RRC (Radio Resource Control) connected state, triggers a contention free random access (Downlink Control Information) in the DCI (Downlink Control Information)) In case of triggering, it may be instructed to report channel quality indicator (CQI) information to Msg. 3), and the base station performs conservative downlink scheduling until an RRC connection is established.
  • CQI channel quality indicator
  • the LTE terminal is characterized by repetitive transmission, so even conservative downlink scheduling in a random access process may waste too much resources.
  • the present patent proposes an early DQI report method for efficiently helping downlink scheduling of a base station in a random access process.
  • the present invention relates to a method and procedure in which the network informs the system information and the Msg.2 information necessary for reporting a CQI to Msg. 3 in order to minimize the change of the existing random access procedure.
  • the most effective system includes NB-IoT, MTC (or Bandwidth reduced and Low cost) / Coverage Enhancement (CE), and CE in UE mode.
  • NB-IoT Bandwidth reduced and Low cost
  • CE Coverage Enhancement
  • the present invention mainly focuses on the NB-IoT, but is not limited to the NB-IoT.
  • the present invention may be applied to a terminal (eg, a machine type communication (MTC) terminal, a BL / CE terminal, etc.) and a related system requiring coverage improvement.
  • MTC machine type communication
  • CE Bandwidth reduced and Low cost
  • CE Coverage Enhancement
  • CRS Common or Cell-specific Reference Signal
  • DCI Downlink Control Information
  • DMRS DeModulation Reference Signal
  • DQI Downlink (channel) Quality Information
  • DQI-RS DQI-Reference reSource
  • NRS Narrowband Reference Signal
  • PRB Physical Resource Block
  • RSRP Reference Signal Received Power
  • SIB System Information Block
  • TBS Transport Block Size
  • the random access procedure generally consists of six steps.
  • a base station e.g., eNB, gNB, network, etc.
  • Configuration of downlink resources and uplink resources used by a terminal may be performed using system information ( It is broadcasted from the base station to the terminal through system information (see, for example, step S12 of FIG. 1 or step S1904 of FIG. 11).
  • the terminal After acquiring downlink synchronization, the terminal checks the random access related setting from the broadcast information of the base station, and the terminal attempts to access by transmitting msg.1 (eg, S13 of FIG. 1). Step or step S1906 of FIG. 11).
  • msg.1 may be referred to as a random access preamble or a RACH preamble or a PRACH preamble.
  • the available Msg.1 time / frequency / sequence may be defined differently according to the coverage extension or enhancement level of the terminal.
  • the resources available in (RA-1), (RA-2), (RA-3), and (RA-4) can be set differently for each CE level.
  • the CE level is determined according to the RSRP (Reference Signal Received Power) reference value broadcast by the base station as a system information, and the terminal selects the CE level by comparing the RSRP value measured in downlink with the RSRP value broadcast by the base station. .
  • CE mode is further defined, with CE mode A and CE mode B (see Table 6 and related descriptions).
  • the CE mode may be set by the base station when the terminal enters an RRC connected state, but in the initial random access procedure, CE levels 0 and 1 are set to CE mode A, and CE level 2 And 3 operate under the assumption that CE mode B.
  • the terminal first determines its CE level and transmits a preamble (Msg.1) (eg, random access preamble or RACH preamble or PRACH preamble) to the Msg.1 resource configured for the corresponding CE level (eg , Step S13 of FIG. 1 or step S1906 of FIG. 11).
  • Msg.1 eg, random access preamble or RACH preamble or PRACH preamble
  • the RA-RNTI value is defined according to the time / frequency resource on which Msg.1 is transmitted, and the Msg.1 preamble selected by the terminal is used as a RAP-ID (Random Access Preamble IDentifier) value.
  • the base station transmits a response to the detected Msg. 1 to the terminal as Msg. 2
  • Msg. 2 transmitted by the base station is called a RAR (Random Access Response), and the RAR is transmitted by being included in the (N) PDSCH, which is scheduled by (N) PDCCH or MPDCCH (e.g., step S14 or FIG. 1 of FIG. 1). See step 11 of step S1908).
  • the UE monitors (N) PDCCH or MPDCCH after Msg.1 transmission, and time / frequency (eg NB (Narrow Band), NB-IoT carrier) resource and maximum number of repetitive transmission attempts to detect this).
  • time / frequency eg NB (Narrow Band), NB-IoT carrier
  • the terminal transmitting Msg.1 to the same time / frequency resource is the same (RA- (N) PDCCH or MPDCCH scrambled with RNTI may be detected. If it is successfully detected, the RAR information is obtained by detecting the (N) PDSCH indicated by the corresponding DCI.
  • the RAR may include information on a plurality of Msg. 1s detected by the base station in step (RA-1), which is divided into RA-RNTIs.
  • the terminal finds the RA-RNTI value corresponding to the Msg.1 preamble used in the (RA-1) step in the (N) PDSCH and acquires the RAR information corresponding to the corresponding RA-RNTI.
  • the RAR information includes a setting for Msg. 3 to be transmitted by the terminal in step (RA-3) and a timing advertisement (TA) value estimated in step (RA-1).
  • the setting for Msg. 3 transmitted in the (RA-3) step may be referred to as a UL grant.
  • even information on the frequency resource (NB) of the MPDCCH to be monitored in the (RA-4) step is included in the RAR.
  • RA-3 The terminal sends Msg.3 to the base station as instructed in Msg.2.
  • the terminal transmits the (N) PUSCH to Msg. 3 according to the indication of the UL grant obtained in step (RA-2) (for example, see step S15 of FIG. 1 or step S1910 of FIG. 11), and (RA-4 In step), it may include its ID (eg, S-TMSI) value for contention resolution.
  • ID eg, S-TMSI
  • the base station detects Msg. 3 and transmits Msg. 4 to the terminal in response.
  • the terminal attempts to detect Msg.4 in response to Msg. 3 transmitted in step (RA-3) (see, for example, step S16 of FIG. 1 or step S1912 of FIG. 11).
  • the (RA-2) process it attempts to detect (N) PDCCH or MPDCCH preferentially, wherein the RNTI used for scrambling may be a TC-RNTI received by the RAR in the (RA-2) step.
  • the detected (N) PDCCH or MPDCCH may be a DL grant that schedules an (N) PDSCH that includes a UL grant indicating Msg. 3 retransmission or includes a response to Msg. 3.
  • the terminal when the UL grant is detected, the terminal performs the (RA-3) process again according to the indication of the UL grant, and when the DL grant is detected, the terminal detects the (N) PDSCH according to the indication and responds to Msg.3. can confirm.
  • the terminal may report the information on the DQI to the base station in the random access procedure RA-1 or RA-3, and the method may be different according to the reporting step. That is, the terminal may transmit (or report) Msg. 1 (preamble) and / or Msg. 3 including information on the DQI to the base station.
  • Msg.1 resources time and / or frequency and / or preamble available to the terminal according to downlink channel quality in step (RA-0) can be set differently. That is, the resource of Msg.1 transmitted by the terminal is first selected according to the CE level, and may be configured to use resources subdivided into one or more levels according to DQI in the corresponding resource. In other words, the resource of Msg.
  • the DQI included in Msg.1 indicates a high or low level based on a specific value among the various levels of DQI proposed below, and the offset level of the DQI based on the value is determined in Msg.3 or another time point. It can be delivered to the base station using other resources.
  • the CE level selected by the terminal is set only on the basis of RSRP, so that only the information of the signal strength can be included. For example, although signal strength is high, signal / channel quality may be low due to interference between adjacent cells and spatial correlation of base station multiple antennas. This means that even when the CE level is low (a situation where RSRP is relatively high), the UE may not perform poorly in (N) PDCCH or MPDCCH or (N) PDSCH in the (RA-2) or (RA-4) process. do. That is, since the reception performance of the terminal is more closely related to the signal / channel quality rather than the signal strength, the resource of Msg.1 can be classified according to the downlink channel even within the same CE level for the purpose of informing the base station. The base station can efficiently perform downlink scheduling by obtaining channel quality information from the detected resources of Msg.1.
  • the terminal may provide the DQI in the RA-3 process, so that the base station may utilize the downlink scheduling in the RA-4. This may be considered another method according to the type of random access procedure.
  • the terminal may report the DQI at (RA-3), and the information is related to the (N) PDCCH / MPDCCH reception performance of (RA-4) and / or at (RA-4).
  • (N) may be information related to PDSCH reception performance.
  • the reported DQI may include the following information.
  • the information is only divided for convenience of description, and may include all or some of the information described below.
  • the RSRQ is a value representing channel quality of an actual downlink reference signal and is a reference metric that can be directly or indirectly used for downlink scheduling of a base station. Unlike general CQI information, RSRQ does not require the setting of a specific reference MCS, PMI, RI, etc., and thus has an advantage that it can be implemented with a lower complexity than the CQI estimation. There is an advantage that does not require a constraint related to the transmission mode (transmission mode) to be used for scheduling. This may be used as a DQI that is more suitable for a situation in which the reference MCS and the PMI are not set in the random access process.
  • the difference of one level (or one level) of the reported logical values may be a value that does not divide the RSRQ expression range by equal intervals.
  • the frequency resource may include a reception performance information (eg, a condition for satisfying a specific BLER) for a specific channel (eg, (N) PDCCH / MPDCCH or (N) PDSCH) whose DQI is not RSRQ.
  • a reception performance information eg, a condition for satisfying a specific BLER
  • a specific channel eg, (N) PDCCH / MPDCCH or (N) PDSCH
  • frequency resource information having the highest RSRQ or RSRQ for each frequency resource
  • the RSRQ for each frequency resource is derived from RSRP and RSSI
  • RSSI may be a specific frequency resource or an average value of RSSI for each acquired frequency resource
  • RSRP may be RSRP for each frequency resource.
  • the RSSI may be an RSSI for each frequency resource.
  • Rmax maximum number of repetitive transmissions of (N) PDCCH or MPDCCH or (N) PDSCH is obtained in step (RA-0), and the terminal may successfully detect this at a value R smaller than the set Rmax.
  • R can be used to represent the DQI of the terminal.
  • aggregation level (AL) information that has been successfully detected may be utilized.
  • the reporting units of the reporting range and / or the reporting R and / or AL may be set differently.
  • the minimum value of the expression range may be set to a specific value (X) other than 1. This is because a value lower than X means that the channel quality is already good enough, so that more granular information may not be needed. In other words, if the actual R value is less than X, the reported value is logically the smallest value (or the minimum value except the reserved value to maintain backward compatibility with legacy systems). Mapped and reported.
  • the maximum value of the expression range may be limited to aR (the actual number of repetitive transmissions used by the base station for (N) PDCCH or MPDCCH or (N) PDSCH transmission), which may be less than or equal to Rmax, which is indicated by DCI. .
  • the maximum value of the expression range may be limited to Rmax, or to a value that is K times greater than (eg, twice) Rmax.
  • the reason that a value larger than Rmax is allowed is that the number of repetitions (for example, the maximum value Rmax) that can be used for (N) PDCCH / MPDCCH or (N) PDSCH scheduling of Msg.4 may differ from that of Msg.2. Because.
  • the representation unit is not set evenly within the allowed representation range, but may be set evenly. That is, the units / spacings of R and / or AL actually represented by one unit (or one unit) in the low range and one unit (or one unit) in the high range may be different. This means that inaccurate values (errors in quantization) at low R and / or AL values have no significant effect on (RA-4) scheduling, but one step difference at high R and / or AL values is (RA-4 This is because the number of repetitive transmissions applied to actual downlink scheduling at step) may vary significantly.
  • the expression range of the proposed DQI may be applied to the case where R or AL is included in the DQI proposed below.
  • reference AL and reference R need to be defined in obtaining R and AL, respectively. That is, in deriving R that satisfies a specific performance requirement from (N) PDCCH / MPDCCH, a reference AL value that the terminal can assume may be needed. Similarly, when deriving AL, a reference R value that the terminal can assume may be needed.
  • Each reference AL and R value may be derived by the Rmax of the Msg.2 MPDCCH, set independently from the base station, or derived from the AL and / or R values actually applied to the Msg.2 MPDCCH transmission.
  • the DQI information may optionally include an AL.
  • the DQI when R has a value (eg, 1) satisfying a specific performance requirement, the DQI may include AL together with R.
  • the DQI information may include R but not AL and the AL may assume a reference AL value (eg, 24).
  • the UE is a value (eg, 1) where R of (N) PDCCH / MPDCCH or (N) PDSCH when a successful reception of (N) PDCCH or MPDCCH or (N) PDSCH satisfies a specific performance requirement. If the reference AL value can be derived from R (eg, 1).
  • the DQI is the R (repetition number) and / or AL (aggregation level) of (N) PDCCH / MPDCCH or (N) PDSCH when the UE successfully receives (N) PDCCH or MPDCCH or (N) PDSCH of Msg.2.
  • the reason for reporting the value is that the R value is too small to calculate the CQI assuming the RSRQ and the channel of a particular format (e.g., (N) PDCCH, MPDCCH, PDSCH), so that the RSRQ or CQI is referenced for an additional time to measure the RSRQ or CQI. This is because there may be a burden of receiving a reference signal.
  • the terminal may receive information indicating that the downlink channel quality is sufficiently good rather than measuring the RSRQ or CQI. Indirectly reporting to the base station may be a benefit in terms of power savings.
  • the base station may reserve certain value (s) of the DQI to be reported for such a report. That is, the terminal may select and report R and / or AL from the reserved state when R and / or AL is small enough. If the reserved state for this is not defined separately, it may be reported as a specific value of DQI (a value indicating good channel quality).
  • the terminal may acquire a frequency resource (eg, (NB-IoT) carrier or NB) that may or may be used in the (RA-0) step and / or in the (RA-4) step. Can be.
  • a frequency resource eg, (NB-IoT) carrier or NB
  • the first step in which the DQI transmitted to Msg.3 can be utilized is (N) PDCCH / MPDCCH scheduling of (RA-4), so that frequency resource information available in (RA-4) step can be used. It may be desirable to report the DQI of.
  • Msg.3 is transmitted after the information is correctly obtained. Enough time may not be guaranteed to calculate the DQI of the frequency resource for the remaining time until. Therefore, the following method can be considered.
  • the DQI is calculated for each frequency resource that may be used in the (RA-4) step, and the information obtained in the RAR (e.g., the Only DQI corresponding to frequency resource) can be reported.
  • the frequency resource that was used for hopping by X time before transmitting Msg. 3 may be excluded from DQI measurement and reporting.
  • DQI reporting may be omitted or a maximum value of the reportable DQI may be limited to a specific value according to X.
  • iii. Msg.2 is composed of (N) PDCCH / MPDCCH and (N) PDSCH.
  • the DQI reference resource used for DQI measurement may be limited to (N) PDCCH / MPDCCH. It may be limited to resources within the initial Y time at which PDCCH / MPDCCH transmission is started (or the set Msg.2 monitoring interval starts). This may be to lower the processing power of the terminal as much as possible. Alternatively, if the processing power of the terminal is sufficient, even if (N) PDCCH / MPDCCH is detected before Rmax, it may be configured to additionally receive more intervals / resources (less than Rmax) to measure DQI. It may be.
  • a time / frequency for receiving the (N) PDSCH may also be included in a DQI reference resource (a virtual resource that may be used for DQI measurement or a channel related to the DQI).
  • a DQI reference resource a virtual resource that may be used for DQI measurement or a channel related to the DQI.
  • the Msg.2 (N) PDCCH / MPDCCH frequency resource is not completely included in the (N) PDCCH / MPDCCH frequency resource of Msg.4, but the (N) PDSCH frequency resource is the (N) PDCCH / MPDCCH of Msg.4.
  • DQI reference resource extension to include (N) PDSCH resources may be further needed.
  • RSSI is an average value and RSRP is an independently measured value by NB, and noise is reported when reporting information related to RSRQ or reception performance.
  • the information may be calculated based on the average value and the quality information may be calculated based on the value measured for each NB.
  • the DQI difference (eg, expressed as a delta or offset based on the mean or representative value) along with the average or representative value of the value measured for each frequency resource for the remaining or all frequency resources.
  • a DQI difference (eg, based on an average value or a representative value) of a specific frequency resource (for example, NB or NB-IoT carrier) among DQI reference resources together with an average value or a representative value of the value measured for each frequency resource. Delta or offset) is reported for the remaining or all frequency resources, or
  • a frequency resource or standard or system information to be monitored in the information obtained from the RAR (RA-4) step used by a center 6RB or Msg.2 where a specific resource (eg anchor-carrier or PSS / SSS is transmitted). Only the DQI corresponding to the frequency resource set to report only on the frequency resource that is closest to the frequency resource used by Msg.2 among the frequency resources to be used for Msg.4
  • N of the best measured values for each frequency resource (for example, can be set to system information or can be indicated in Msg.2).
  • the worst N of the measured values for each frequency resource (eg, may be set as system information or indicated by Msg.2) may be reported as a frequency resource index of frequency resource and / or corresponding channel quality information. .
  • the channel quality information measured as proposed above is based on the information obtained before the (RA-3) process.
  • a specific reference DCI format e.g., the DCI format of (N) PDCCH / MPDCCCH expected in Msg.4
  • the minimum value of the UE's preference and / or the minimum value of the AL and / or the port information of the reference signal for example, DMRS
  • the resource allocation type for example, distributed or localized
  • the reference DCI format may be allowed to assume a specific DMRS port.
  • step (RA-4) If the R (terminal preferred) value of Msg.4 (N) PDCCH / MPDCCH is reported in step (RA-4), in step (RA-4) acquired before step (RA-3), It can be expressed as information on the ratio of Rmax values to be used. That is, the range of logical values of the reported DQI may be interpreted differently depending on Rmax to be used in the (RA-4) step obtained in the (RA-3) process. In the above proposal, the units of logical representation values may not be uniformly distributed within the actual representation range of R.
  • a reference AL value that the terminal can assume may be needed in deriving R that satisfies a specific performance requirement from (N) PDCCH / MPDCCH.
  • a reference R value that the terminal can assume may be needed in deriving AL.
  • Each reference AL and R value may be derived by the Rmax of the Msg.2 MPDCCH, set independently from the base station, or derived from the AL and / or R values actually applied to the Msg.2 MPDCCH transmission.
  • the DQI information may optionally include an AL.
  • the DQI when R has a value (eg, 1) satisfying a specific performance requirement, the DQI may include AL together with R. Or as another example, if R has a value (eg, 1) that satisfies a particular performance requirement, the DQI information may include R but not AL and the AL may assume a reference AL value (eg, 24). .
  • the UE is a value (eg, 1) where R of (N) PDCCH / MPDCCH or (N) PDSCH when a successful reception of (N) PDCCH or MPDCCH or (N) PDSCH satisfies a specific performance requirement. If the reference AL value can be derived from R (eg, 1).
  • the terminal may acquire a frequency resource (eg, (NB-IoT) carrier or NB) that may or may be used in the (RA-4) step in the (RA-0) step.
  • a frequency resource eg, (NB-IoT) carrier or NB
  • the frequency resource NB within the LTE system bandwidth in which the Msg.4 PDSCH can be scheduled is indicated in the Msg.4 MPDCCH.
  • N PDSCH scheduling information e.g., MCS, TBS, resource allocation, number of repetitions
  • the DQI transmitted to Msg.3 is Msg.4 (N) PDSCH It can also be used for scheduling. Therefore, the DQI transmitted to Msg. 3 may include the following information.
  • step (RA-0) Based on the information obtained in step (RA-0), the DQI is calculated for each frequency resource that may be used in step (RA-4), and additional information (for example, monitoring in step (RA-4) is performed in the RAR). In case of acquiring a frequency resource), only a corresponding DQI may be reported.
  • the frequency resource used for hopping by X time before transmitting Msg. 3 may be excluded from DQI measurement and reporting.
  • DQI reporting may be omitted or a maximum value of the reportable DQI may be limited to a specific value according to X.
  • iii. Msg.2 is composed of (N) PDCCH / MPDCCH and (N) PDSCH.
  • the DQI reference resource used for DQI measurement may be limited to (N) PDCCH / MPDCCH. It may be limited to resources within the initial Y time at which PDCCH / MPDCCH transmission is started (or the set Msg.2 monitoring interval starts). This may be to lower the processing power of the terminal as much as possible. Alternatively, if the processing power of the terminal is sufficient, even if (N) PDCCH / MPDCCH is detected before Rmax, it may be configured to additionally receive more intervals / resources (less than Rmax) to measure DQI. It may be.
  • the time / frequency for receiving the (N) PDSCH may also be included in the DQI reference resource.
  • DQI reference resource extension e.g., (N) To include PDSCH resources.
  • RSSI is an average value and RSRP is an independently measured value by NB, and noise is reported when reporting information related to RSRQ or reception performance.
  • the information may be calculated based on the average value and the quality information may be calculated based on the value measured for each NB.
  • channel quality differences e.g., expressed in deltas or offsets based on average or representative values
  • average or representative values of the values measured for each frequency resource are reported for the remaining or all frequency resources
  • specific resources eg, anchor-carrier or PSS / SSS are transmitted as frequency resources or standard or system information to be monitored in the information obtained from RAR (eg, (RA-4) step).
  • RAR eg, (RA-4) step.
  • the best N of the values measured for each frequency resource (e.g., can be set as system information or can be indicated in Msg.2).
  • the worst N of the measured values for each frequency resource (eg, may be set as system information or indicated by Msg.2) may be reported as a frequency resource index of frequency resource and / or corresponding channel quality information. .
  • the channel quality information measured as proposed above is based on the information obtained before the (RA-3) process.
  • a specific reference format (e.g., TBS and / or MCS of the (N) PDSCH expected in Msg.4 and / or repetition number and / or DMRS port, etc., which are predefined in the standard) Minimum value of R (terminal preferred) and / or minimum value of AL which can expect BLER Z% (e.g. 1%) based on system information or Msg.2) and Port information and / or resource allocation type (e.g. distributed or localized) and / or PMI and / or frequency resource information (e.g., the least amount of reference signal (e.g. CRS or DMRS) NB or RB indexes that require resource amounts (ie, low R and / or AL).
  • the CQI and / or RI may also be included in the DQI.
  • precoding information eg, DMRS port information or correlation between CRS and DMRS such as PMI
  • precoding information eg, DMRS port information or correlation between CRS and DMRS such as PMI
  • R (terminal preferred) value of Msg.4 (N) PDSCH is reported in step (RA-4), Rmax to be used in step (RA-4) obtained before step (RA-3). It can be expressed as information about a ratio of values. That is, the range of logical values of the reported DQI information may be interpreted differently depending on Rmax to be used in the (RA-4) step obtained in the (RA-3) process. In the above proposal, the units of logical representation values may not be uniformly distributed within the actual representation range of R.
  • the terminal may assume a specific transmission mode (TM) and estimate the DQI.
  • TM transmission mode
  • the TM used in the random access procedure is always assumed to be a fallback TM (for example, TM1 or TM2), or depending on the number of transmit antennas (for example, the number of CRS antenna ports) of the base station.
  • a reference TM may be derived and the DQI may be measured based on the reference TM.
  • the base station may directly indicate a reference TM that can be used to measure the DQI.
  • the DQI in case of not receiving a response (Msg. 4) to Msg. 3 or retransmitting Msg. 3, the DQI may be treated as follows.
  • the DQI is channel encoded in the physical layer together with the data of Msg.3, the DQI used in the previous transmission is continuously transmitted.
  • the DQI used for the previous transmission can be maintained or updated. If it is updated, a value equal to or lower than a previously reported DQI (eg, when a lower DQI value is better as a downlink channel state is good) may not be allowed for reporting.
  • UCI Uplink Control Information
  • Time resources of Msg.2 and / or Msg.4 associated with Msg.1 used in retransmission e.g., the maximum number of repetitive transmissions of Msg.2 or Msg.4, etc.
  • the resource eg, (NB-IoT) carrier or NB
  • the DQI may be newly measured.
  • a value less than or equal to the DQI reported in the previous random access attempt may not be allowed for reporting.
  • it may be allowed to report to a value higher than a previously reported DQI by a specific value (for example, when a higher value of the DQI is worse in downlink channel status) without newly remeasurement.
  • R repetition number
  • AL aggregation level
  • the MPDCCH transmitted to Msg.2 and Msg.4 is transmitted through the DMRS port, not the CRS port.
  • the terminal it is difficult for the terminal to predict the MPDCCH performance in advance using the CRS. That is, it may not be easy to derive a specific condition from the CRS in which the probability of MPDCCH decoding failure is not worse than a specific value.
  • a reference channel which is a performance inference object, may be defined as a channel other than the MPDCCH.
  • a reference channel eg, a PDCCH format for out-of-sync test or PDCCH format for in-sync test
  • a third PDCCH format or PDSCH format assuming a specific TM is used.
  • the DQI may define information for predicting reception performance based on the previously listed channels based on the CRS.
  • TM may be given as TM1 or TM2 depending on the number of CRS ports.
  • the CFRA is a case in which Msg.1 resources (eg, time and / or frequency and / or preamble resources) to be used by the terminal are given UE-specifically by the base station.
  • Msg.1 resources eg, time and / or frequency and / or preamble resources
  • TA timing
  • first uplink TA after updating Used to reduce performance degradation due to timing misalignment when receiving feedback (e.g., ACK / NACK) and / or CSI on the PUCCH and / or (N) PUSCH for the scheduled downlink. Can be.
  • feedback e.g., ACK / NACK
  • CSI CSI on the PUCCH and / or (N) PUSCH for the scheduled downlink.
  • the base station plans to perform downlink scheduling in the terminal after the CFRA procedure.
  • Receiving DQI information in Msg. 3 may also help minimize downlink scheduling performance deterioration in the CFRA process.
  • the terminal since the terminal is already registered in a cell and UE additional information is additionally acquired through the RRC message, refer to the DQI.
  • the terminal may be additionally configured with reference resources (for example, different from the DQI reference resources used in the CBRA) to measure the DQI to be reported in the random access procedure from the base station, which is an RRC or Msg.1.
  • a specific resource may be indicated in the triggering DCI or in the DQI reference resource set set to RRC in DCI. In this case, it may be reported in Msg. 3 (or (N) PUSCH first transmitted after Msg. 2) in the form of UCI rather than the MAC message.
  • the terminal may assume a specific transmission mode (TM) and estimate the DQI.
  • TM transmission mode
  • the TM used in the random access procedure is always assumed to be a fallback TM (for example, TM1 or TM2), or depending on the number of transmit antennas (for example, the number of CRS antenna ports) of the base station.
  • a reference TM may be derived and the DQI may be measured based on the reference TM.
  • the base station may directly indicate a reference TM that can be used to measure the DQI, or may measure the DQI assuming a TM used by a terminal in an RRC connected state.
  • the reference TM referenced in the DQI derivation process of the CBRA and the CFRA may be specifically defined according to the number of CRS ports of the base station as follows.
  • TM1 is assumed as the reference TM
  • the base station may configure the UL SPS to reduce resources for uplink scheduling of the terminal.
  • the UL SPS since a UL grant for uplink scheduling is not transmitted every time, it may also be effective in power saving by downlink monitoring of the terminal.
  • the UL SPS is configured by the terminal to directly determine the UL SPS resource without the dynamic uplink scheduling of the base station in a state of presetting a plurality of time domain uplink resources to be used by the terminal. It is a technique that can transmit data. This may be similar to the SPS already defined in the existing LTE or another system, and may be independent of the RRC state. That is, in the present proposal, the UL SPS refers to a communication procedure and method in which UL transmission is allowed without the UE being instructed to perform UL scheduling every time prior to every UL transmission of the terminal.
  • the downlink signal or channel eg, For example, it is necessary to receive (N) PDCCH, MPDCCH, (N) PDSCH, WUS (Wake-up Signal, etc.).
  • the base station may need to transmit a specific channel to the corresponding terminal in downlink, and at this time, measurement report during the G.1.1 ('Competition Based Random Access (CBRA)) process' is performed for link adaptation.
  • G.1.2 Measurement reporting during non-competitive random access (CFRA) procedures'
  • the UL SPS may have a different time / frequency resource to be used by Msg. 2 and / or Msg. 4 in the general random access procedure (e.g., feedback to UL SPS reception is received from the base station).
  • the DL resource to be used when transmitting to this DL (that is, the DL resource to be monitored by the terminal) may be separate from Msg.2 / Msg.4 of the random access procedure, and the DQI reference resource for the UL SPS is independent.
  • the DQI reported in the UL SPS process may have a definition or expression range different from that reported in the random access procedure.
  • a downlink channel e.g., a specific DCI
  • UL SPS activation / deactivation and / or HARQ-feedback is downlink of Msg. 2 and / or Msg. 4 of the random access procedure. It may be different from the link channel (e.g., DCI of type-2 CSS (DCI with type-2 CSS)), in which case a reference (or reference) to a downlink channel defined for UL SPS Reference channel), DQI can be measured and reported.
  • DCI of type-2 CSS DCI with type-2 CSS
  • channel quality may be defined differently according to the receiver type of the terminal.
  • the receiver type of the terminal may be one of the receiver types defined to satisfy specific performance requirements required by the standard.
  • LTE may include Maximum Ratio Combining (MRC) and Minimum Mean Square (MMSE-IRC). Error-Interference Rejection and Combining), Enhanced MMSE-IRC (eMMSE-IRC), Maximum Likelihood (ML), Successive Interference Cancellation (SIC), and the like.
  • MRC Maximum Ratio Combining
  • MMSE-IRC Minimum Mean Square
  • Error-Interference Rejection and Combining Error-Interference Rejection and Combining
  • eMMSE-IRC Enhanced MMSE-IRC
  • ML Maximum Likelihood
  • SIC Successive Interference Cancellation
  • the DQI may be reported as a value considering this, and assumes the multiple reception antenna information of the terminal (eg, the actual number of reception antennas or the number of single reception antennas). May be included in the measurement report along with the DQI.
  • the DQI reported by the terminal is a value derived assuming a single receiving antenna, and if there is a receiving antenna that can be additionally used by the terminal (ie, multiple receiving antennas), it may be reported further.
  • the corresponding receive antenna information can provide additional gain (e.g., RSRQ) when using multiple receive antennas (i.e., the number of antennas used to receive Msg.2 and / or Msg.4).
  • Gain, SNR gain, Msg.2 and / or Msg.4 in the form of expressing a reduction in the number of repetitions that can be expected to receive in a particular detection performance condition (e.g., BLER) or simply a multiple receive antenna.
  • the proposed DQI measurement information may be utilized for downlink scheduling and resource allocation (code-rate, repetition number, etc.) of the base station. Although this requires an additional operation for measuring the DQI of a low cost terminal, it may cause a failure in detecting the downlink received signal of the terminal due to an incorrect link adaptation of the base station (for example, too low repetitive transmission times). There may be an advantage to prevent the loss of power saving in advance. However, if the maximum number of repetitive transmissions of Msg.4 is initially lower than a specific value, since link adaptation may not be important, DQI measurement may be omitted to save power of the terminal.
  • the maximum number of repetitive transmissions of Msg.4 is set higher than a certain value, or if the RSRP or SNR of the terminal is very low (for example, the CE level is high or the highest CE level set in the cell). ), The accuracy of the DQI measurement information of the terminal may be very low. Therefore, in certain conditions, there may be a condition in which DQI measurement is not performed or reported in order to prevent unnecessary or meaningless power consumption of the terminal.
  • each specific value may be information defined in a standard or broadcasted by a base station.
  • the terminal may omit DQI measurement and reporting or a specific value (eg, the downlink channel quality is the worst). Value).
  • the term 'insufficient time for measuring DQI' may correspond to a relative time interval between Msg. 2 and Msg. 3 and may be defined as a capability of the terminal.
  • DQI reporting in selecting a TBS to be transmitted to Msg.3 Information size necessary for the above may not be considered. If, among the TBSs allowed for the terminal to use in Msg.3, among the TBSs that are larger than the data / information that the terminal wants to send to Msg.3, the actual data / information that the terminal wants to transmit in Msg.3 In addition, if it is possible to include all the sizes as large as the size that can report the DQI, the terminal may transmit Msg. 3 including the DQI in addition to the Msg.3.
  • MO-EDT Mobile Oriented Early Data Transmission-when transmitting data in the uplink during the random access procedure
  • the base station is MT-EDT (Mobile Terminated Early Data Transmission-when the base station transmits data in downlink during the random access procedure) after the terminal starts the random access procedure, Msg. 3 and / or Msg. 4 Thereafter, it may be requested to report the DQI to the uplink.
  • Msg. 3 and / or Msg. 4 Mobile Terminated Early Data Transmission-when the base station transmits data in downlink during the random access procedure
  • Msg. 3 and / or Msg. 4 Thereafter, it may be requested to report the DQI to the uplink.
  • the UE may complete data transmission and reception with the base station in the RRC idle state without entering the RRC connected state in the case of an EDT. This is because information may not be obtained freely as in the RRC connection state. That is, the UE may measure and report only the DQI of the level allowed by the random access in terms of the DQI measurement.
  • the DQI measurement reported after Msg.4 may be set to perform measurement based on
  • FIG. 15 The time flow of channels and signals transmitted / received by a terminal until receiving Msg.4 in a random access procedure is represented in FIG. FIG. 15 is written on the basis of eMTC and may correspond to the example of FIG. 1 or 11.
  • the UL grant received by the terminal after Msg. 3 transmission is scheduling information for Msg. 3 retransmission, which uses the same format as Msg. 3/4 MPDCCH.
  • NPSS / NSSS / NPBCH is transmitted to an anchor carrier
  • SIB information may be transmitted in anchor carrier or non-anchor carrier according to NPBCH information in case of TDD in anchor carrier in case of FDD (eg , See description of D.
  • NB-IoT Nearband Internet of Things
  • Msg.2 NPDCCH and NPDSCH, Msg.3 / 4 NPDSCH, Msg.4 NPDSCH are all transmitted on the same NB-IoT carrier, which can be either an anchor carrier or a non-anchor carrier.
  • NB-IoT carrier which can be either an anchor carrier or a non-anchor carrier.
  • -NB / RB location transmitted in distributed RBs within LTE system bandwidth and used according to downlink bandwidth and cell ID may be different.
  • -NB / RB location is determined according to scheduling information for SI of SIB1-BR
  • PDSCH of Msg. 2 (PDSCH of Msg. 2)
  • frequency hopping can be applied according to rar-HoppingConfig
  • PDSCH of Msg. 4 (PDSCH of Msg. 4)
  • DL frequency resources used before Msg.4 reception are defined in a complex relationship, and in some cases, Msg.4 DL frequency resources to which DQI information is applied for the first time are transmitted before Msg.3 transmission. It may be a resource that the terminal does not need to receive (according to the existing random access procedure). That is, depending on how the DQI reference resource is defined, it may be determined whether the corresponding information can be effectively used for Msg.4 scheduling.
  • DQI-RS DQI-Reference Resource
  • the DQI-RS can represent the channel quality of the resource reserved for Msg.3 / 4 MPDCCH and / or (N) PDSCH transmission and needs to be selected within the resources that the terminal can receive before transmitting Msg.3. have. If the Msg.3 / 4 MPDCCH resource is the same as the Msg.2 receiving resource, the DQI-RS may be defined as part or all of the Msg.2 MPDCCH / NPDCCH. The following is a method for selecting DQI-RS when Msg.2 MPDCCH / NPDCCH is expected to have a different resource from Msg.3 / 4 MPDCCH / NPDCCH and / or (N) PDSCH.
  • the NB in which the center 6RB and / or system information is transmitted and / or the NB in which the Msg.2 PDSCH is transmitted may be additionally included in the DQI reference resource.
  • the actual application of the additional DQI reference resource may be determined according to Msg.2 MPDCCH hopping and / or Msg.2 PDSCH hopping
  • the method is a resource that the MTC terminal can expect to receive basically before Msg.3 transmission.
  • the terminal may not need to perform an additional reception operation for measuring the DQI.
  • a base station sets N (NB-IoT) carrier sets, and a terminal randomly selects a carrier from among N sets, measures and reports a CQI of the corresponding carrier, or averages the N sets Report DQI and / or Worst DQI and / or Best DQI
  • CQI information may include preferred carrier and / or repetition
  • the method can be applied only in case of non-anchor carrier DL CQI so as not to cause ambiguity and CQI state of the existing early CQI report.
  • the carrier of the DQI-RS is selected based on the UE ID
  • Msg.1 transmission is performed by selecting the NPRACH carrier among UL carriers associated with the DL carrier.
  • Msg. 1 carrier selection generally selects a UL carrier first and measures a DQI in a corresponding DL carrier, but the method determines a DQI report of a specific carrier among several DL carriers (for example, For example, a DL carrier corresponding to a best DQI) may be selected.
  • the base station may vary the configuration of the DQI-RS carrier set for each UL carrier for Msg.1
  • the base station may directly indicate the DQI-RS carrier when instructing NPDCCH order-based Msg.1 transmission, and the terminal induces DQI in the carrier.
  • the base station After Msg.3 transmission, the base station can change the DL carrier of the terminal to the corresponding carrier.
  • the terminal may receive an indication from the base station of the DQI-RS carrier to be used for DQI measurement in the RRC idle state.
  • the RAR monitoring NB may include a case in which a specific number of Msg. 3/4 MPDCCH NBs is included or more, or a case in which the interval between the RAR monitoring NBs and the Msg. 3/4 MPDCCH NBs is less than or equal to a specific value.
  • Msg.2 indicates that the EDT request of the terminal has been accepted from the base station, it is recognized as a DQI report indication.
  • the specific reserved bit of the RAR may be interpreted as a DQI report indication.
  • CQI and repetition number can be selectively indicated among DQI information.
  • CE modes can be fixed between CQI and the number of iterations.
  • the reserved bits of the RAR can be used to trigger DQI reporting, which is characterized by
  • ⁇ (semi-) static whether or not the base station can receive / support DQI reports at a high-layer (for example, system information or RRC messages). Signaling and dynamically turning off (or on) whether the DSI is reported in the CSI report field (if CE mode A of eMTC) or in the reserved bits of the RAR in the UL grant of the RAR. ) Can be directed to a high-layer (for example, system information or RRC messages). Signaling and dynamically turning off (or on) whether the DSI is reported in the CSI report field (if CE mode A of eMTC) or in the reserved bits of the RAR in the UL grant of the RAR. ) Can be directed
  • the RAR may follow the DQI reporting configuration indicated by the high-layer rather than the reserved bit (that is, DQI measurement and / or reporting of the terminal at high-layer If set, whether to report the DQI may not follow the indication of the dynamic signal, which means that there is no reserved bit in the RAR, such as eMTC CE mode B, or the CSI report field in the UL grant of the RAR. Can be applied if there is no)
  • the reserved bits of the RAR may be used for the purpose of providing additional information related to the DQI reporting setup (this is the CSI reporting of the UL grant). The same applies if the reserved bits of the field and the RAR are applied across each other)
  • the DQI reporting setting includes whether to report DQI, the range of DQI values and the number of DQI bits, CSI resources (for example, NB-IoT downlink carrier set such as narrowband set, reference TM), and DQI report mode. (Eg, wideband or selected (by eNB or UE) or preferred (by eNB or UE) or preferred subband / narrowband)), etc.
  • the DQI reporting configuration may be determined by the CSI report field and the reserved bits of the RAR in the UL grant of the RAR, but may be determined differently according to the TBS and / or duplex mode of Msg3 indicated in the UL grant of the RAR.
  • ⁇ DQI reporting can be disabled if the TBS of Msg3 corresponds to (or is less than) a specific value
  • the DQI reporting mode (eg, wideband or (by base station or UE)) is selected or Alternatively, the preferred subband / narrowband (selected (by eNB or UE) or preferred subband / narrowband)) or the range of DQI values and the number of DQI bits may be different.
  • DQI can be used directly for Msg. 3/4 MPDCCH. If the DQI-RS is different from the Msg.3 / 4 MPDCCH (frequency) resource, the DQI-RS is based on the reported DQI-RS (DQI-RS) in order to use the DQI information more actively. Can be induced.
  • DQI-RS reported DQI-RS
  • the base station sets the set for the Msg.3 / 4 MPDCCH resource as system information, since it is not easy to change, if there is no misunderstanding of the DQI-RS between the base station and the terminal, According to the DQI-RS of the DQI reported by the UE, it may be allowed to interpret Msg.3 / 4 MPDCCH and / or PDSCH (frequency) resources differently from values obtained from system information.
  • the proposed method can be applied to any case that is not in conflict with other proposals described in this patent.
  • Msg.2 MPDCCH NB interpret Msg.3 / 4 MPDCCH NB index of UL grant in RAR differently
  • the frequency hopping field may be included in the DCI information of Msg.3 / 4 MPDCCH or the frequency hopping field may be allowed to be used in the Msg.3 / 4 reception step.
  • the terminal may assume or be instructed that frequency hopping of the Msg. 3/4 MPDCCH and / or the Msg. 4 PDSCH is turned off.
  • a frequency hopping on / off field may be added to the Msg.4 DL grant or indirectly derived from other field combinations.
  • the frequency hopping field in the Msg.4 DL grant can be used for frequency hopping of the PDSCH scheduled by the corresponding DCI.
  • MTC and NB-IoT terminals support various CE levels and CE modes. This reflects the characteristics of the distance from the base station (ie, SNR) and mobility, and further, the characteristics of the processing power of the terminal. Therefore, in consideration of such various surrounding information, it is necessary to limit the DQI information that the terminal can measure or generate.
  • This section proposes a structure and range of information included in the DQI. The proposed method can be applied to any case that is not in conflict with other proposals described in this patent.
  • the following DQI configuration information may be included in part and reported to the base station.
  • the DQI table may be configured to include both the CQI and the number of repetitions, and may be a CQI or a form in which a repetition number is reported according to the index of the DQI table selected by the UE.
  • the lowest CQI of the DQI table may be configured to mean a similar or better state (eg, in terms of BLER) to the channel state indicated by the lowest number of iterations of the DQI table.
  • the reporting type is (a) wideband CQI or repetition, (b) wideband (CQI or repetition) and UE (or base station) selected NB index and (CQI or repetition) on the corresponding NB (wideband (CQI) or Repetition) and UE (or eNB) selected NB index and (CQI or Repetition) on corresponding NB), (c) wideband (CQI or Repetition) with PMI, (d) PMI There may be wideband (CQI or Repetition) without PMI.
  • the number of Rx.antenna ports (specifically, if the number of receive antenna port ports is greater than 1, the CQI (or repetition) is fixed at the highest value (or the lowest value) )
  • the DQI information configuration may be different depending on CE level and / or Msg.2 MPDCCH repetition (eg, actual number of transmissions or maximum number of repetitions) and hopping and / or PRACH format and repetition and hopping.
  • Msg.1 is transmitted for an EDT request or if a random access procedure is in progress as part of the EDT process, it may be set to select and report a CQI.
  • the number of repetitions assumed for the CQI measurement may be directly selected by the DQI terminal and included in the DQI to inform the base station together with the CQI, but may be defined so that the base station can be directly set or derived by a specific parameter. . That is, the number of repetitions that the terminal assumes for the CQI measurement may be a specific value that is already set, not a value that the terminal can directly select.
  • the value may be broadcast, for example, directly from the base station, or may be defined as a relationship determined according to the CE level and the parameters of the channel to be monitored or referenced by the terminal in the CQI calculation.
  • R_TM and / or R_DQI and / or R_CQI and / or R_Rep that the terminal can assume in the DQI derivation process may be defined differently.
  • R_TM, R_DQI, R_CQI, and R_Rep represent reference TM, reference DQI-RS, reference CQI and reference repetition number, respectively, and the terminal Only some of the information can be used to estimate the information suitable for the DQI configuration information.
  • the reference refers to a parameter that can be assumed to be used for virtual downlink channel transmission in deriving reception performance of a hypothetical downlink channel that the DQI intends to indicate.
  • the set of available DQIs may be different according to the number of Rx antenna ports.
  • the terminal may additionally inform the number of Rx antenna ports or set information used. Need
  • the DQI range configuration and number of sets may differ depending on CE level and / or Msg.2 MPDCCH repetition (e.g., actual number of transmissions or maximum number of repetitions) and hopping and / or PRACH format and repetition and hopping
  • the specific value may be set as follows for a subframe or a value corresponding to a repetition or aggregation level received until detection.
  • a specific value is a value set by a base station or a value predetermined by a specific ratio of the maximum repetitive transmission value of a channel (eg, MPDCCH (or NPDCCH) and / or (N) PDSCH) associated with the RAR (eg May be a value configurable by the base station or fixed to a standard, and the range / value of the ratio may also be the maximum repetitive transmission value of the channel (eg, MPDCCH (or NPDCCH) and / or (N) PDSCH) associated with the RAR and And / or frequency hopping)
  • a channel eg, MPDCCH (or NPDCCH) and / or (N) PDSCH
  • the DQI value is the smallest value among the given values equal to or greater than the actual received subframe or repetition value.
  • This section proposes various modes for reporting DQI.
  • the MTC and NB-IoT systems support various CE levels and CE modes, and in particular, in case of MTC, DL NB resources have frequency hopping characteristics. In consideration of this, it is necessary to support the DQI reporting mode suitable for each setting.
  • the proposed method can be applied to any case that is not in conflict with other proposals described in this patent.
  • CE mode A reports CQI based DQI.
  • the terminal follows a similar method to the CSI reporting mode 2-0 for the existing BL / CE UE, and the following changes and additions are required.
  • R CSI may be defined as a cell common or defined by CE level, or may be defined as a value dependent on the number of RAR MPDCCH repetitions (actual MPDCCH repetition number or maximum repetition number mpdcch-NumRepetition-RA). has exist. This value may be signaled via RRC signaling such as SIB or Msg.2.
  • Preferred NB NB and frequency domain used for monitoring Msg.3 / 4 MPDCCH derived from Msg.3 / 4 MPDSCH NB index among information transmitted from UL grant included in RAR. It may be selected as the nearest NB from the CSI reference resource in the frequency domain.
  • the terminal calculates the DQI (CSI) only up to a specific step based on CRS in the MPDCCH monitoring process for receiving Msg.2, and the actual DQI (CQI) information is preferred to the wideband CSI after wideband CSI.
  • the DQI (CQI) of the preferred NB can be calculated in its entirety.
  • CSI reference resource can be replaced by the DQI-RS of this patent.
  • the terminal follows a similar method to the CSI reporting mode 1-0 for the existing BL / CE UE, the following changes and additions are required
  • R CSI defined as cell common or defined by CE level, or defined as a value dependent on the number of RAR MPDCCH repetitions (eg, actual MPDCCH repetition number or maximum repetition number mpdcch-NumRepetition-RA). Can be. This value may be signaled via RRC signaling such as SIB or Msg.2.
  • the terminal follows the CSI reporting mode 1-1 method for the existing BL / CE UE, and the following changes and additions are required.
  • R CSI defined as cell common or defined by CE level, or defined as a value dependent on the number of RAR MPDCCH repetitions (eg, actual MPDCCH repetition number or maximum repetition number mpdcch-NumRepetition-RA). Can be. This value may be signaled via RRC signaling such as SIB or Msg.2.
  • R_TM A reference transmission mode may be defined, which may be signaled from the base station through RRC signaling such as SIB or Msg. 2 or determined according to the number of base station CRS ports.
  • the base station may consider the PDSCH TM to be used after the reception of Msg. 3 in advance and inform the terminal.
  • PMI subset may be defined in cell common or per CE level or in accordance with RTM.
  • the terminal follows the CSI reporting mode 2-0 method for the existing BL / CE UE, and the following changes and additions are required.
  • R CSI defined as cell common or defined by CE level, or defined as a value dependent on the number of RAR MPDCCH repetitions (eg, actual MPDCCH repetition number or maximum repetition number mpdcch-NumRepetition-RA). Can be. This value may be signaled via RRC signaling such as SIB or Msg.2.
  • the terminal adds a channel to which the frequency hopping is applied to the CSI reference resource.
  • Preferred NB Preferred NB: CSI reference of NB and frequency domain used to monitor Msg.3 / 4 MPDCCH derived from Msg.3 / 4 MPDSCH NB index among information received from UL grant included in RAR. It may be selected as the nearest NB among the resources (CSI reference resource in the frequency domain).
  • the terminal calculates the CSI up to a specific stage based on the CRS in the MPDCCH monitoring process for Msg.2, and the actual CSI (CQI) information is analyzed by the wideband CSI and the preferred NB after interpreting the RAR. ) Can be calculated completely.
  • CE mode B reports the required repetition number based DQI.
  • the DQI report may be measured / reported based on the DQI instead of the CQI in the manner described with respect to CE mode A.
  • the DQI report may include only the wideband DQI, or may include information about the location of the narrowband DQI and the preferred NB as measured on the preferred NB as well as the wideband DQI (eg, the preferred NB index). can do.
  • wideband DQI and / or narrowband DQI may be measured based on the scheme described in section G.1 and described in the section G.1 (number of repetitions (R) and / or merge level (AL)). Related information).
  • the wideband DQI and / or narrowband DQI may have an RSRP / RSRQ value, and / or (N) PDCCH or MPDCCH or (N) PDSCH reception information of Msg.2, and / or (N) PDCCH of Msg.4. / MPDCCH reception capability information, and / or (N) PDSCH reception capability information of Msg.4.
  • R CQI A CQI value that can be used as a reference needs to be defined, which is the MCS (code rate, number of layers, modulation order, etc.). ) May be defined as a reference MCS (report MCS) value for reporting the number of repetitions satisfying a specific target reception performance (eg, BER). This can be defined as cell common or by CE level, or as a value dependent on the number of RAR MPDCCH repetitions (e.g., actual MPDCCH repetition transmissions or maximum repetition transmissions mpdcch-NumRepetition-RA). May also be a value derived indirectly from Msg.2 MPDCCH. This value may be signaled via RRC signaling such as SIB or Msg.2.
  • the modulation order of the Msg.2 MPDCCH and the TBS may be used as parameters for this, and the reference aggregation level is independently determined by the terminal. Can be given.
  • R_AL can be defined in all the above methods.
  • R_AL means a reference aggregation level of MPDCCH of the MPDCCH, which may estimate information suitable for DQI configuration information.
  • the reference refers to a parameter that can be assumed to be used for virtual downlink channel transmission in deriving reception performance of a virtual downlink channel (eg, MPDCCH) that the DQI intends to indicate. do.
  • DQI report mode e.g., wideband or selected (by eNB or UE) or preferred subband / narrowband
  • the determination method may be as follows.
  • the DQI reporting mode may be determined by the narrowband (or NB-IoT carrier) relationship between Msg2 and Msg3 / Msg4.
  • DQI wideband DQI
  • DQI narrowband or narrowband DQI
  • DQI can be selectively defined differently between CQI and repetition number / aggregation level, Ranges can also be defined differently
  • the wideband may be based only on the actual NB used by the base station for Msg. 2 transmission. That is, even when the base station enables frequency hopping of a reference resource (for example, Type2 CSS) that is a reference for DQI measurement, in some cases, only some frequency resources (NB) may be used for transmission. For example, when the number of repetitive transmissions is small, the base station may not have used all NBs that can be used for frequency hopping.
  • a reference resource for example, Type2 CSS
  • NB frequency resources
  • a non-BL UE operating in CE mode may use two or more receiving antennas, and may measure and report a DQI based thereon.
  • the base station may not know exactly the number of receiving antennas of the terminal, and also the range of suitable DQI value may vary depending on the number of receiving antennas used for DQI measurement.
  • DQI measurement and reporting of the non-BL UE may have the following characteristics.
  • the base station can set the number of receiving antennas that such a terminal can use for DQI measurement.
  • the DQI may be measured based on a single antenna to reduce power consumption. However, if the DQI value indicates a specific value or worse quality, two or more receiving antennas may be used. Can be forced or set to measure / report DQI
  • the terminal may be instructed to perform DQI measurement on one or more NB-IoT downlink carriers and report the result thereof. In particular, this may be indicated / configured by a network in order to use the auxiliary information for redirection downlink carriers.
  • the carrier set is set to high layer signaling (high layer signaling or higher layer signaling) (for example, system information or RRC message), or a carrier to be actually measured and reported by the terminal from among a set of carriers set to higher layer signaling.
  • S may be indicated in DCI (e.g., triggering (N) PRACH based on (N) PDCCH order)
  • the carrier set (which the terminal must perform the measurement) may be composed of a combination of an anchor carrier and one non-anchor carrier (which is an additional power consumption according to the measurement of the terminal). Adding an anchor carrier to the measurement carrier, which the terminal may have already received during the CE level selection process, may reduce the reception complexity and power consumption of the terminal.
  • the measurement period of the anchor carrier may be limited to the (N) PRSRP interval for CE level selection.
  • Measurement intervals for non-anchor carriers may be limited after Msg2 reception
  • Additional measurement gaps or time may be given to perform the additional measurements
  • the additional time for the terminal to transmit Msg3 after the corresponding DCI can be set
  • the carrier type eg, anchor carrier or non-anchor carrier
  • the terminal may be allowed not to receive all or part of a particular search space.
  • the terminal may report the measurement results on a carrier (s) other than the Msg2 receiving carrier associated with Msg1
  • the terminal selects a preferred NB-IoT downlink carrier based on the measurement result and may be configured to report only the corresponding information (this is limited to the field configuration for the measurement report). Because there may be)
  • the Msg2 configuration may be determined / interpreted based on the Msg2 configuration of the downlink carrier associated with Msg1 transmission or based on the Msg2 configuration of the downlink carrier selected (or reported) based on the measurement.
  • the Msg2 configuration of the downlink carrier associated with the existing Msg1 transmission may be followed or the Msg2 configuration to be referred to at this time may be separately defined or given.
  • the terminal may be allowed to select a preferred NB-IoT downlink carrier based on the measurement result and transmit Msg1 to a UL carrier that can expect Msg2 in the downlink carrier.
  • the terminal may be configured to perform NPDCCH monitoring related to Msg2 and / or Msg3 / 4 on the carrier.
  • the base station may present a reference value for selecting a preferred NB-IoT downlink carrier.
  • the repetition number estimated by the terminal that the UE needs to decode hypothetical NPDCCH in Type2-CSS with BLER of 1% upon the NB-IoT downlink carrier
  • DQI can be measured / reported on the indicated carrier.
  • the Msg2 configuration information may still be based on the carrier of the Msg2 associated with Msg1 or based on the Msg2 configuration of the indicated carrier (performing measurement).
  • the preferred carrier may be the most preferred carrier or the least preferred carrier in terms of reception performance.
  • the preferred carrier refers to a carrier predicted to have the best downlink reception performance quality
  • the unfavorable carrier refers to a carrier predicted to have the worst downlink reception performance quality.
  • the DQI may not be reported separately, or a conservative value (eg, the least preferred carrier) among other carriers' DQI information (for example, the number of repetitions) may be used. The number of repetitions in the excluded carriers) may be reported.
  • the reason for reporting unfavorable carrier information is that when the base station redirects the downlink carrier of the terminal, the terminal may utilize the information that the carrier does not want to be set as the downlink carrier.
  • the DQI report may include DQI information measured by two or more NB-IoT downlink carriers.
  • Each DQI information may be transmitted at the same time, but may be reported at different times or resources.
  • the range and / or representation interval of the DQI value may be smaller or narrower than the DQI information for one NB-IoT downlink carrier
  • the terminal When there are a plurality of carriers that can expect to receive Msg.2 corresponding to a carrier capable of transmitting Msg.1, the terminal has the best downlink channel quality among the plurality of downlink carriers.
  • the channel may satisfy the specific reception performance with the smallest number of repetitions), and may attempt to transmit Msg.1 to the uplink carrier corresponding to the selected downlink carrier.
  • the UE may inform that the reason for transmitting Msg.1 to the corresponding uplink carrier is that downlink channel quality is the best.
  • the information may report together the CQI information required for the selected downlink carrier (eg, the smallest number of repetitions that can expect to receive a specific channel while satisfying a specific reception performance).
  • This may be used as indirect information for the base station to avoid allocating another downlink carrier to itself after the random access procedure.
  • Rate-matching is to allocate data to be transmitted in Msg.3 to REs except for REs to which CQI information is transmitted in (N) PUSCH.
  • the number of REs to be used for data transmission between the terminal and the base station is misunderstood. It is necessary to ensure that there is no. For example, if a misunderstanding of the number of REs occurs, the base station may misunderstand the code rate to refer to data decoding, in which case the decoding cannot be successfully performed. May occur.
  • the puncturing technique is a method of performing data mapping without considering the number of REs required for CQI transmission and the number of REs available for data to be transmitted to Msg.3. This is advantageous in that there is no misunderstanding of the code rate in terms of data decoding of Msg. 3 even when the base station does not know whether the terminal transmits the CQI.
  • the rate-matching and puncturing described above may be selectively applied depending on whether the base station knows before the decoding attempt whether information on whether the terminal transmits the CQI. For example, when transmitting the CQI to Msg.3 during the initial random access process, the CQI information may be transmitted by a puncturing technique, and the CQI information by the request of the base station is transmitted in the MRC.
  • a rate-matching technique may be used.
  • the terminal transmits a CQI from a base station to a preconfigured uplink resource (PUR) previously set in an RRC idle mode
  • PUR preconfigured uplink resource
  • a rate-matching scheme may be applied. If the PUR is configured in the RRC idle mode instead of the RRC connected mode, the puncturing technique may be applied since the base station may not have information about the capability of supporting the CQI measurement and reporting of the terminal. have.
  • the base station may redirect the NB-IoT terminal to a non-anchor carrier in a random access procedure. That is, the terminal allocates a non-anchor carrier to the terminal that is not a downlink carrier receiving Msg.2 and Msg.4 (that is, not a downlink carrier derived from the CQI reported by Msg.3). The terminal may then be required to perform subsequent operations on the established non-anchor carrier. In such a case, since the base station cannot know the CQI information of the terminal in the corresponding non-anchor carrier, it is necessary to request to measure and report the CQI in the configured carrier separately from the CQI reported by the terminal in the random access procedure. There can be.
  • Msg. 3 This may be followed by a procedure of reporting a CQI to an (N) PUSCH (hereinafter referred to as Msg. 3) indicated by Msg.2 in a (N) PDCCH order-based random access procedure, in which case Msg Whether to report CQI in .3 may be indicated using the 'R' bit (or reserved bit) not used in Msg.2's MAC RAR. However, in such a case, since there may not be enough time to measure CQI after successfully detecting Msg.2, a DCI (eg, (N) PDCCH order) based on Msg.1 transmission is triggered. It may be indicated by using a specific state or bit that is not used in the DCI requesting Msg.1 transmission or is always set to a specific value.
  • the CQI measured by the terminal may be different from the definition of CQI when CQI reporting is used in the random access procedure. For example, since there is no information about USS in the initial random access process, it is based on a parameter related to resource setting for detecting Msg.2 (for example, the maximum number of repetitive transmissions of type-2 CSS). Although CQI may be defined, when CQI measurement and reporting is requested in the RRC connected mode, the CQI may be defined based on a USS-related parameter (eg, the maximum number of repeated transmissions) that has already been set.
  • a USS-related parameter eg, the maximum number of repeated transmissions
  • the CQI may be the actual number of repetitions that have been successful in detecting a PDCCH (e.g., MPDCCH or (N) PDCCH) associated with Msg.2 or the number of repetitions required to decode a (virtual) PDCCH (e.g.
  • the CQI may be defined based on the maximum number of repeated transmissions.
  • CQI may be defined as the ratio of the maximum number of repetitions (Rmax), and the actual number of repetitions or (virtual) successful in detecting the PDCCH (e.g., MPDCCH or (N) PDCCH) associated with Msg.2.
  • the number of repetitions required to decode a PDCCH (eg MPDCCH or (N) PDCCH) is equal to ⁇ 1, 2, 4, 8,... ⁇
  • CQI is ⁇ Rmax, Rmax / 2, Rmax / 4, Rmax / 8,... ⁇ Can be defined as a value.
  • the CQI may be defined based on a value having a larger or smaller maximum number of repetitive transmissions among the above-described CSS and USS, and may be selected from two among specific signaling of the base station. If the CQI is defined based on USS, the NRS received by the terminal for CQI measurement may be included in CSS Type 2, which is a type 2 CSS in a non-anchor carrier. This is because there is always an expectation of NRS.
  • the base station may set the CE level of the Msg.1 resource to a value different from the actual CE level of the terminal, the terminal is Msg.1 received from the base station
  • the CQI may be derived based on its downlink CE level rather than the CE level associated with the related information.
  • the base station may need the CQI information of the terminal. That is, the base station uses the downlink CQI information of the corresponding terminal to repeat the number of times of transmission and / or aggregation level and / or code rate of (N) PDCCH or MPDCCH and / or (N) PDSCH. Can be determined by resource size and MCS). This may be similar to the reason why the base station needs the CQI information of the terminal in the initial random access process, but since the uplink channel structure used is different from the initial random access and PUR transmission, It may be necessary in addition.
  • CQI definition may be related to PUR type because downlink feedback channel structure may be different according to PUR type.
  • a time / frequency resource of a PUR may be a UE dedicated resource, or a time / frequency resource may be shared by a plurality of terminals, but a spatial and / or code resource may be dedicated to a UE. (UE dedicated) is set (e.g., collision may occur, but contention does not occur), or multiple terminals may share all resources (e.g., contention may occur) There may be a type).
  • the structure of a downlink channel monitored by a terminal may be different.
  • a downlink channel to be monitored may be shared among a plurality of users (for example, RAR of Msg.2 and Similar structure) or downlink channel to be monitored may be set for each user (eg, (N) PDCCH / MPDCCH of USS).
  • the downlink channel is defined independently for each user, CQI information is reported for each user.
  • a plurality of users share a downlink channel and decode the corresponding channel, the information of each user is individually. Or, if the group exists, only a specific user may be set to report the CQI.
  • the base station may be configured to report the CQI only when the specific condition is satisfied or not satisfied, where the specific condition may mean, for example, that the CQI information measured by the terminal is worse than the specific value.
  • the CQI information may be different from the CQI information of the initial access process, and the reference channel required for deriving the CQI may be defined according to a PUR type and / or a downlink channel.
  • the CQI information reported to the PUR may be defined to report only the difference information (delta) information based on some attributes of the downlink channel parameter set in comparison to the existing CQI.
  • the CQI measurement may be performed not in every PUR transmission unit, but only when downlink reception is needed to determine whether PUR transmission can be continuously performed. That is, such an operation may be limited only when an operation for determining whether a PUR set due to a change in the surrounding environment of the terminal is still valid is performed.
  • the present patent proposes a method of reporting CQI information of a downlink control channel (eg, MPDCCH, NPDCCH, PDSCH) of a terminal, which may be applied regardless of an RRC state.
  • the control channel that the terminal attempts to detect in the RRC connected mode may be different from the control channel that attempts to detect in the RRC idle mode, and thus the method and reporting method of measuring the CQI differs from the RRC idle mode. can do.
  • This section proposes a series of procedures related to the method of reporting CQI information of a downlink control channel in the RRC connected mode, and is described based on the MPDCCH of the eMTC system for convenience of description.
  • the proposed method can be applied not only to eMTC system but also to other communication systems such as NB-IoT, LTE, and NR system.
  • Specific examples of the proposed method and channel / signal names are examples and channels of the same / similar purpose in the system. It can also be interpreted as a / signal name.
  • the MPDCCH may be monitored in a UE-specific search space (USS) configured for each terminal.
  • USS UE-specific search space
  • the terminal monitors the same DCI format (for example, DCI formats 6-0A and 6-1A or 6-0B and 6-1B)
  • the DCI size of the USS is the capability of the terminal (for example, Since it may be different depending on sub-PRB, 64QAM, wideband support, etc., a reference channel (eg, hypothetical MPDCCH) for measuring / calculating CQI may be different.
  • the terminal using CE mode A can monitor not only USS but also Type0-CSS in RRC connected mode, so that the reference format for measuring CQI (and / or search space type-CE mode A only) can be monitored.
  • the base station needs to be set up or defined by a specific appointment. That is, even in the same terminal, the size of the reference format may be changed according to parameter information set by the base station in the USS with reference to the capability of the terminal.
  • the ECCE is a unit configuring the MPDCCH, and the minimum number of ECCEs for configuring the MPDCCH may be different for each subframe in which the MPDCCH is transmitted. Accordingly, the standard of CQI information may vary. That is, when CQI is a value representing the number of repetitions of MPDCCH and / or AL (eg, a value in which hypothetical MPDCCH reception detection performance can satisfy a certain criterion), a reference MPDCCH format (eg, TS36.211) for deriving it Table 6.8B.1-2) reports the corresponding CQI from the MPDCCH in an MPDCCH (e.g., aperiodic CQI trigger) method that is “directed from the base station” or “fixed to the standard” or “triggers that CQI report”. May be fixed and signaled to a point in time at which the signal is received or relative to the point in time.
  • a reference MPDCCH format e.g., TS36.211
  • A “Number of hopping narrow bands (NBs) used for MPDCCH transmission X number of times the MPDCCH subframe can be repeatedly transmitted within each hop)” (this is called A) rather than “reference MPDCCH format.
  • Rmax the maximum number of MPDCCHs that can be repeatedly transmitted in that search space
  • CQI the terminal has a hypothetical MPDCCH equal to or higher than a certain reference performance
  • each terminal can set its own preferred configuration information (e.g., use minimum resources to satisfy the MPDCCH detection performance among various configurable MPDCCH or USS configuration information).
  • Information which is included in the CQI, is reported to the base station, and the base station may change the MPDCCH configuration information of the corresponding UE by reflecting it.
  • the contents that may be included in the preference information may include the following information.
  • hopping enable / disable information of MPDCCH (specifically, the information is limited to be included in CQI only when hopping setting of MPDCCH is enabled at the time of triggering MPDCCH CQI reporting).
  • the MPDCCH is transmitted by applying the same precoding as the DMRS port related to the ECCE constituting the MPDCCH, and the precoding information applied to the DMRS based on the CRS is generally not provided to the terminal. If all or some of the above information can be additionally provided due to the improvement of MPDCCH detection performance, etc., the terminal additionally provides the information (for example, the relationship between the MPDCCH DMRS port and the CRS port) together with the CQI or You can report to the base station separately.
  • the precoder information preferred by the terminal e.g., cyclic may include information indicating preference for cycling, or request to use a specific precoder, or report cycling in a particular manner.
  • the base station may indicate the precoder relationship between the assumed CRS and the DMRS port when the terminal derives the MPDCCH CQI information.
  • the information may be for instructing to assume a specific precoder, or may be information that a specific precoder combination does not need to be assumed.
  • Precoder information to be assumed when the terminal calculates the MPDCCH CQI (eg, the number of repeated transmissions of the hypothetical MPDCCH and / or AL) reports the CSI for the PDSCH at the most recent (or presumption recent) point in time. It may be set to assume the precoder information (eg, PMI) that was included when.
  • the MPDCCH CQI eg, the number of repeated transmissions of the hypothetical MPDCCH and / or AL
  • PMI precoder information
  • FIG. 16 illustrates a flowchart of a method in which a terminal transmits (or reports) information on a DQI to a base station through Msg.1.
  • the example of FIG. 16 may be performed by a terminal in an RRC idle state or an RRC connected state.
  • (RA-0) to (RA-4) in the description of FIG. 16 refer to the random access procedure described in section G.
  • the terminal may be referred to by other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device, and the like. .
  • step S102 the terminal may receive random access related configuration information from the base station through system information (or system information block (SIB)).
  • system information or system information block (SIB)
  • step S102 may correspond to (RA-0).
  • the terminal may include system information including random access related configuration information according to the operation described in relation to (RA-0) and / or the operation proposed in the present invention (eg, see sections G.1 to G.16). (Or SIB) may be received.
  • SIB system information block
  • step S104 the terminal may transmit a random access preamble (or Msg. 1) to the base station based on the received configuration information.
  • step S104 may correspond to (RA-1).
  • the terminal may transmit the information on the DQI to the base station through the random access preamble according to the present invention.
  • the UE may perform operations described with reference to (RA-1), operations described in Section G.1, and / or proposed operations (eg, Section G.2). To Section G.16).
  • the terminal may perform the same process as (RA-2), (RA-3), (RA-4).
  • FIG. 17 illustrates a flowchart of a method for a base station to receive (or receive a report on) information on a DQI from a terminal through Msg.1.
  • the example of FIG. 17 may be performed by a base station with a terminal in an RRC idle state or an RRC connected state.
  • (RA-0) to (RA-4) in the description of FIG. 17 refer to the random access procedure described in section G.
  • a base station (BS) is a wireless device that communicates with a terminal and is referred to by other terms such as an evolved Node-B (eNB), a General Node-B (gNB), a base transceiver system (BTS), an access point (AP), and the like. Can be.
  • eNB evolved Node-B
  • gNB General Node-B
  • BTS base transceiver system
  • AP access point
  • the base station may transmit random access related configuration information to the terminal through system information (or system information block (SIB)).
  • system information or system information block (SIB)
  • step S202 may correspond to (RA-0).
  • the base station may include system information including random access related configuration information according to the operation described in relation to (RA-0) and / or the operation proposed in the present invention (eg, see sections G.1 to G.16). (Or SIB) may be transmitted to the terminal.
  • SIB system information block
  • the base station may receive a random access preamble (or Msg. 1) from the terminal based on the transmitted configuration information.
  • step S204 may correspond to (RA-1).
  • the base station may receive information on the DQI from the terminal through the random access preamble according to the present invention.
  • the base station may perform operations described in connection with (RA-1), operations described in section G.1, and / or proposed operations in the present invention (eg, Section G.2). To Section G.16).
  • the base station may perform the same process as (RA-2), (RA-3), (RA-4).
  • the terminal may provide a DQI in the process (RA-3), so that the base station can utilize it for downlink scheduling in (RA-4).
  • FIG. 18 illustrates a flowchart of a method of transmitting (or reporting) information on DQI to a base station through Msg.3.
  • the example of FIG. 18 may be performed in a terminal in an RRC idle state or an RRC connected state.
  • (RA-0) to (RA-4) in the description of FIG. 18 refer to the random access procedure described in section G.
  • the terminal may be referred to by other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device, and the like. .
  • step S302 the terminal may transmit a random access preamble (or Msg. 1) to the base station.
  • step S302 may correspond to (RA-1).
  • the terminal may transmit the random access preamble to the base station according to the operation described in (RA-1) and / or the operation proposed in the present invention.
  • the configuration for random access preamble transmission may be set in advance according to the operation described in (RA-0) and / or the operation proposed in the present invention (eg, sections G.1 to G.16).
  • an operation corresponding to (RA-0) may be performed before step S302 (not shown), and reporting of information on DQI through Msg. 3 is based on system information broadcasted from a base station. It may be enabled.
  • step S304 the terminal may receive a random access response (or Msg. 2) from the base station in response to the transmitted random access preamble (or Msg. 1).
  • step S304 may correspond to (RA-2), and the random access response may include the information described herein and / or the information proposed in the present invention.
  • the terminal may receive a random access response from the base station according to the operation described in (RA-2) and / or the operation proposed in the present invention (for example, see G.1 to G.16).
  • the random access response may include an instruction (or information indicating) to report information on the DQI to Msg. 3 to the UE.
  • step S306 the terminal may transmit a message for solving contention (or Msg. 3) to the base station through a physical uplink channel (eg, PUSCH or NPUSCH) based on the received random access response (or Msg. 2). .
  • step S306 may correspond to (RA-3).
  • the terminal may transmit information on the DQI to the base station through a physical uplink channel (eg, PUSCH or NPUSCH) (or via a message for contention resolution) according to the present invention.
  • the physical uplink channel eg, PUSCH or NPUSCH
  • the physical uplink channel (eg, PUSCH or NPUSCH) (or message for contention resolution) may include the information described herein and / or the information proposed in the present invention.
  • the UE may (or may perform) a physical uplink channel (eg, PUSCH or NPUSCH) according to the operation described in (RA-3) and / or the operation proposed in the present invention (see, for example, G.1 to G.16).
  • Information on the DQI may be transmitted to the base station through a message for contention resolution.
  • the information on the DQI may be transmitted to the base station through an upper layer signal (eg, a MAC message or an RRC message).
  • the terminal may perform the same process as (RA-4).
  • FIG. 19 illustrates a flowchart of a method for a base station to receive (or receive a report on) information on a DQI from a terminal through Msg.3.
  • the example of FIG. 19 may be performed by a base station with a UE in an RRC idle state or an RRC connected state.
  • (RA-0) to (RA-4) in the description of FIG. 19 refer to the random access procedure described in section G.
  • a base station (BS) is a wireless device that communicates with a terminal and is referred to by other terms such as an evolved Node-B (eNB), a General Node-B (gNB), a base transceiver system (BTS), an access point (AP), and the like. Can be.
  • eNB evolved Node-B
  • gNB General Node-B
  • BTS base transceiver system
  • AP access point
  • step S402 the base station may receive a random access preamble (or Msg. 1) from the terminal.
  • step S402 may correspond to (RA-1).
  • the base station may receive a random access preamble from the terminal according to the operation described in (RA-1) and / or the operation proposed in the present invention.
  • the configuration for random access preamble transmission may be set in advance according to the operation described in (RA-0) and / or the operation proposed in the present invention (eg, sections G.1 to G.16).
  • step S404 the base station may transmit a random access response (or Msg. 2) to the terminal in response to the received random access preamble (or Msg. 1).
  • step S404 may correspond to (RA-2), and the random access response may include the information described herein and / or the information proposed in the present invention.
  • the base station may transmit the random access response to the terminal according to the operation described in (RA-2) and / or the operation proposed in the present invention (for example, see G.1 to G.16).
  • the base station may receive a message for solving contention (or Msg. 3) from the terminal through a physical uplink channel (eg, PUSCH or NPUSCH) in response to the transmitted random access response (or Msg. 2). Can be.
  • step S406 may correspond to (RA-3).
  • the base station may receive information on the DQI from the terminal through a physical uplink channel (eg, PUSCH or NPUSCH) (or via a message for contention resolution) according to the present invention.
  • the physical uplink channel eg, PUSCH or NPUSCH
  • the physical uplink channel (eg, PUSCH or NPUSCH) (or message for contention resolution) may include the information described herein and / or the information proposed in the present invention.
  • the base station may be connected to a physical uplink channel (e.g., PUSCH or NPUSCH) according to the operation described in (RA-3) and / or the operation proposed in the present invention (e.g., G.1 to G.16).
  • a physical uplink channel e.g., PUSCH or NPUSCH
  • Information about the DQI may be received from the terminal through a message for contention resolution.
  • the base station may perform a process such as (RA-4).
  • the downlink quality information according to the present invention may include information about wideband downlink quality (eg, G.6, G.7, G.9, G.10, G. See section 16).
  • the downlink quality information according to the present invention includes only the information on the broadband downlink quality, or in addition to the broadband downlink quality, the information on the narrowband downlink quality on the preferred narrowband (preferred narrowband) and It may contain information about the location of the preferred narrowband (eg index information of the preferred narrowband) (see eg G.10).
  • the preferred narrowband may be selected within narrowbands where the wideband downlink quality is measured.
  • the wideband downlink quality may be based on CQI or may be based on the number of repetitions R (and / or merge level AL). More specifically, when the broadband downlink quality is based on the CQI, the broadband downlink quality may be reported as described in section G.10. Or if the broadband downlink quality is based on the number of repetitions (R) (and / or the merge level (AL)), the broadband downlink quality is described in Section G.1, G.6, G.7, G.9, and G. It may be configured and reported as described in 10, G.16.
  • broadband downlink quality is the number of iterations (R) needed to decode a (virtual) physical downlink control channel (e.g., PDCCH or NPDCCH or MPDCCH) in a reference resource for downlink quality measurement.
  • R virtual physical downlink control channel
  • NPDCCH NPDCCH
  • MPDCCH Physical downlink control channel
  • the reference resource for downlink quality measurement may include all narrowbands (eg, number of repetitions R (and / or merge level) related to the number of repetitions R (and / or merge level AL).
  • (AL)) may include all the narrowbands upon which it is based (or a group of (downlink) physical resource blocks associated with these narrowbands), with the preferred narrowband being downlink It can be selected within a reference resource for quality measurement.
  • wideband downlink quality is the number of iterations (R) (and / or merge level (AL) required to actually decode the physical downlink control channel (eg, PDCCH or NPDCCH or MPDCCH) associated with the random access response. ) (See eg G.1, G.10).
  • the preferred narrowband may be selected from narrowbands used for monitoring a physical downlink control channel (eg, PDCCH or NPDCCH or MPDCCH) related to the random access response.
  • the present invention has been described in connection with a random access procedure, the present invention is not limited to the random access procedure and may be applied to the same / similarly even when measuring / reporting downlink channel quality information in an RRC connection state. have.
  • FIG. 20 illustrates a block diagram of a wireless communication device to which the methods proposed herein can be applied.
  • a wireless communication system includes a base station 10 and a plurality of terminals 20 located in a base station area.
  • the base station may be represented by a transmitting device
  • the terminal may be represented by a receiving device, and vice versa.
  • the base station and the terminal are a processor (processor, 11, 21), memory (memory, 14, 24), one or more transmit (Tx) / receive (Rx) radio frequency module (15, 25) (or RF transceiver), Tx processors 12 and 22, Rx processors 13 and 23, and antennas 16 and 26.
  • the processor implements the salping functions, processes and / or methods above. More specifically, in downlink DL (communication from the base station to the terminal), upper layer packets from the core network are provided to the processor 11.
  • the processor implements the functionality of the L2 layer.
  • the processor provides the terminal 20 with multiplexing and radio resource allocation between logical channels and transport channels, and is responsible for signaling to the terminal.
  • the transmit (TX) processor 12 implements various signal processing functions for the L1 layer (ie, the physical layer).
  • the signal processing function facilitates forward error correction (FEC) in the terminal and includes coding and interleaving.
  • FEC forward error correction
  • the encoded and modulated symbols are divided into parallel streams, each stream mapped to an OFDM subcarrier, multiplexed with a reference signal (RS) in the time and / or frequency domain, and using an Inverse Fast Fourier Transform (IFFT). To be combined together to create a physical channel carrying a time-domain OFDMA symbol stream.
  • RS reference signal
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Each spatial stream may be provided to a different antenna 16 via a separate Tx / Rx module (or transceiver) 15.
  • Each Tx / Rx module can modulate an RF carrier with each spatial stream for transmission.
  • each Tx / Rx module (or transceiver) 25 receives a signal through each antenna 26 of each Tx / Rx module.
  • Each Tx / Rx module recovers information modulated onto an RF carrier and provides it to a receive (RX) processor 23.
  • the RX processor implements the various signal processing functions of layer 1.
  • the RX processor may perform spatial processing on the information to recover any spatial stream destined for the terminal.
  • the RX processor uses fast Fourier transform (FFT) to convert the OFDMA symbol stream from the time domain to the frequency domain.
  • the frequency domain signal includes a separate OFDMA symbol stream for each subcarrier of the OFDM signal.
  • the symbols and reference signal on each subcarrier are recovered and demodulated by determining the most likely signal placement points sent by the base station. Such soft decisions may be based on channel estimate values. Soft decisions are decoded and de-interleaved to recover the data and control signals originally transmitted by the base station on the physical channel. The corresponding data and control signals are provided to the processor 21.
  • Each Tx / Rx module (or transceiver) 25 receives a signal via each antenna 26.
  • Each Tx / Rx module provides an RF carrier and information to the RX processor 23.
  • the processor 21 may be associated with a memory 24 that stores program code and data.
  • the memory may be referred to as a computer readable medium.
  • the present invention described above may be performed by the base station 10 and the terminal 20 which are the wireless communication device described with reference to FIG.
  • FIG. 21 illustrates a communication system 1 applied to the present invention.
  • a communication system 1 applied to the present invention includes a wireless device, a base station and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G New RAT (Long Term), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device.
  • the wireless device may be a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, a home appliance 100e. ), IoT (Internet of Thing) device (100f), AI device / server 400 may be included.
  • the vehicle may include a vehicle having a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an unmanned aerial vehicle (UAV) (eg, a drone).
  • UAV unmanned aerial vehicle
  • XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, Head-Mounted Device (HMD), Head-Up Display (HUD), television, smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smartphone, a smart pad, a wearable device (eg, smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • the home appliance may include a TV, a refrigerator, a washing machine, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg LTE) network or a 5G (eg NR) network.
  • the wireless devices 100a-100f may communicate with each other via the base station 200 / network 300, but may also communicate directly (eg, sidelink communication) without passing through the base station / network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (eg, vehicle to vehicle (V2V) / vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with another IoT device (eg, sensor) or another wireless device 100a to 100f.
  • Wireless communication / connection 150a, 150b, 150c may be performed between the wireless devices 100a-100f / base station 200 and base station 200 / base station 200.
  • the wireless communication / connection is a variety of radios such as uplink / downlink communication (150a) and sidelink communication (150b) (or D2D communication), inter-base station communication (150c) (e.g. relay, Integrated Access Backhaul (IAB)) Connection technology (eg, 5G NR) via wireless communication / connections 150a, 150b, 150c, the wireless device and the base station / wireless device, the base station and the base station may transmit / receive radio signals to each other.
  • uplink / downlink communication 150a
  • sidelink communication 150b
  • IAB Integrated Access Backhaul
  • Connection technology eg, 5G NR
  • wireless communications / connections 150a, 150b, 150c may transmit / receive signals over various physical channels.
  • the transmission / reception of wireless signals may be performed.
  • At least some of various configuration information setting processes, various signal processing processes (eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.), resource allocation processes, and the like may be performed.
  • 22 illustrates a wireless device that can be applied to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • the ⁇ first wireless device 100 and the second wireless device 200 ⁇ may refer to the ⁇ wireless devices 100a to 100f, the base station 200 ⁇ and / or the ⁇ wireless devices 100a to 100f, wireless of FIG. 21.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108.
  • the processor 102 controls the memory 104 and / or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 102 may process the information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106.
  • the processor 102 may receive the radio signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104.
  • the memory 104 may be coupled to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform instructions to perform some or all of the processes controlled by the processor 102 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them.
  • processor 102 and memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled to the processor 102 and may transmit and / or receive wireless signals via one or more antennas 108.
  • the transceiver 106 may include a transmitter and / or a receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • a wireless device may mean a communication modem / circuit / chip.
  • the second wireless device 200 may include one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208.
  • the processor 202 controls the memory 204 and / or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information / signal, and then transmit the wireless signal including the third information / signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information / signal through the transceiver 206 and then store information obtained from the signal processing of the fourth information / signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and store various information related to the operation of the processor 202. For example, the memory 204 may perform instructions to perform some or all of the processes controlled by the processor 202 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them.
  • processor 202 and memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be coupled with the processor 202 and may transmit and / or receive wireless signals via one or more antennas 208.
  • the transceiver 206 may include a transmitter and / or a receiver.
  • the transceiver 206 may be mixed with an RF unit.
  • a wireless device may mean a communication modem / circuit / chip.
  • One or more protocol layers may be implemented by one or more processors 102, 202, although not limited thereto.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may employ one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • One or more processors 102, 202 may generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information in accordance with the functions, procedures, suggestions and / or methods disclosed herein.
  • signals eg, baseband signals
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and include descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • a PDU, an SDU, a message, control information, data, or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be included in one or more processors (102, 202) or stored in one or more memories (104, 204) of It may be driven by the above-described processor (102, 202).
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software in the form of code, instructions, and / or a set of instructions.
  • One or more memories 104, 204 may be coupled to one or more processors 102, 202 and may store various forms of data, signals, messages, information, programs, codes, instructions, and / or instructions.
  • One or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage medium, and / or combinations thereof.
  • One or more memories 104, 204 may be located inside and / or outside one or more processors 102, 202.
  • one or more memories 104, 204 may be coupled with one or more processors 102, 202 through various techniques, such as a wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, wireless signals / channels, etc., as mentioned in the methods and / or operational flowcharts of this document, to one or more other devices.
  • One or more transceivers 106 and 206 may receive, from one or more other devices, user data, control information, wireless signals / channels, etc., as mentioned in the description, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. have.
  • one or more transceivers 106 and 206 may be coupled with one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102 and 202 may control one or more transceivers 106 and 206 to transmit user data, control information or wireless signals to one or more other devices.
  • one or more processors 102 and 202 may control one or more transceivers 106 and 206 to receive user data, control information or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled with one or more antennas 108, 208, and one or more transceivers 106, 206 may be connected to one or more antennas 108, 208 through the description, functions, and features disclosed herein.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers 106, 206 may process the received wireless signal / channel or the like in an RF band signal to process received user data, control information, wireless signals / channels, etc. using one or more processors 102,202.
  • the baseband signal can be converted.
  • One or more transceivers 106 and 206 may use the one or more processors 102 and 202 to convert processed user data, control information, wireless signals / channels, etc. from baseband signals to RF band signals.
  • one or more transceivers 106 and 206 may include (analog) oscillators and / or filters.
  • the wireless device 23 shows another example of a wireless device to which the present invention is applied.
  • the wireless device may be implemented in various forms depending on the use-example / service (see FIG. 21).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 22, and various elements, components, units / units, and / or modules are illustrated. It can be composed of).
  • the wireless device 100, 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include communication circuitry 112 and transceiver (s) 114.
  • communication circuitry 112 may include one or more processors 102, 202 and / or one or more memories 104, 204 of FIG. 22.
  • the transceiver (s) 114 may include one or more transceivers 106, 206 and / or one or more antennas 108, 208 of FIG. 22.
  • the controller 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, other communication devices) through the communication unit 110 through a wireless / wired interface, or externally (eg, through the communication unit 110). Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130.
  • the outside eg, other communication devices
  • Information received through a wireless / wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit / battery, an I / O unit, a driver, and a computing unit.
  • the wireless device may be a robot (FIGS. 21, 100 a), a vehicle (FIGS. 21, 100 b-1, 100 b-2), an XR device (FIGS. 21, 100 c), a portable device (FIGS. 21, 100 d), a home appliance. (FIG. 21, 100e), IoT device (FIG.
  • the server may be implemented in the form of an AI server / device (FIGS. 21 and 400), a base station (FIGS. 21 and 200), a network node, and the like.
  • the wireless device may be used in a mobile or fixed location depending on the usage-example / service.
  • various elements, components, units / units, and / or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire in the wireless device 100 or 200, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit / unit, and / or module in wireless device 100, 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • the controller 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, a memory control processor, and the like.
  • the memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and / or combinations thereof.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, smart watch, smart glasses), a portable computer (eg, a notebook, etc.).
  • the mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input / output unit 140c. ) May be included.
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • Blocks 110 to 130 / 140a to 140c correspond to blocks 110 to 130/140 of FIG. 23, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may control various components of the mobile device 100 to perform various operations.
  • the control unit 120 may include an application processor (AP).
  • the memory unit 130 may store data / parameters / programs / codes / commands necessary for driving the portable device 100. In addition, the memory unit 130 may store input / output data / information and the like.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired / wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support the connection of the mobile device 100 to another external device.
  • the interface unit 140b may include various ports (eg, audio input / output port and video input / output port) for connecting to an external device.
  • the input / output unit 140c may receive or output image information / signal, audio information / signal, data, and / or information input from a user.
  • the input / output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and / or a haptic module.
  • the input / output unit 140c obtains information / signals (eg, touch, text, voice, image, and video) input from the user, and the obtained information / signal is stored in the memory unit 130. Can be stored.
  • the communication unit 110 may convert the information / signal stored in the memory into a wireless signal, and directly transmit the converted wireless signal to another wireless device or to the base station.
  • the communication unit 110 may receive a radio signal from another wireless device or a base station, and then restore the received radio signal to original information / signal.
  • the restored information / signal may be stored in the memory unit 130 and then output in various forms (eg, text, voice, image, video, heptic) through the input / output unit 140c.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • the vehicle or the autonomous vehicle 100 may include an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a portion 140d.
  • the antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130 / 140a through 140d respectively correspond to blocks 110/130/140 in FIG.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other devices such as another vehicle, a base station (eg, a base station, a road side unit), a server, and the like.
  • the controller 120 may control various elements of the vehicle or the autonomous vehicle 100 to perform various operations.
  • the control unit 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driver 140a may include an engine, a motor, a power train, wheels, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired / wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, a vehicle forward / Reverse sensors, battery sensors, fuel sensors, tire sensors, steering sensors, temperature sensors, humidity sensors, ultrasonic sensors, illuminance sensors, pedal position sensors, and the like.
  • the autonomous driving unit 140d is a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and automatically setting a route when a destination is set. Technology and the like.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the obtained data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous vehicle 100 along the autonomous driving path according to the driving plan (eg, speed / direction adjustment).
  • the communication unit 110 may acquire the latest traffic information data aperiodically from an external server and may obtain the surrounding traffic information data from the surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly obtained data / information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • the present invention can be applied not only to 3GPP LTE / LTE-A system / 5G system (or NR (New RAT) system) but also to wireless communication devices such as terminals, base stations, etc. that operate in various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서 하향링크 품질 정보(downlink quality information)를 송수신하는 방법 및 이를 위한 장치에 관한 것으로서, 보다 구체적으로는 랜덤 접속 프리앰블(random access preamble)을 송수신하는 단계; 상기 랜덤 접속 응답에 기반하여 랜덤 접속 응답(random access response)을 송수신하는 단계; 및 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 송수신하는 단계를 포함하되, 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위해 주파수 호핑이 설정된 경우, 상기 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 하향링크 채널 품질 정보를 송수신하는 방법 및 이를 위한 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은 하향링크 채널 품질 정보를 효율적으로 송수신하기 위한 방법 및 이를 위한 장치를 제공하는 데 있다.
또한, 본 발명의 목적은 랜덤 접속 과정을 통해 하향링크 채널 품질 정보를 효율적으로 송수신하기 위한 방법 및 이를 위한 장치를 제공하는 데 있다.
또한, 본 발명의 목적은 RRC 연결 상태에서 하향링크 채널 품질 정보를 효율적으로 송수신하기 위한 방법 및 이를 위한 장치를 제공하는 데 있다.
또한, 본 발명의 목적은 물리 하향링크 제어 채널 및/또는 물리 하향링크 공유 채널에 대한 하향링크 채널 품질 정보를 효율적으로 송수신하기 위한 방법 및 이를 위한 장치를 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 양상으로, 무선 통신 시스템에서 사용자 기기(user equipment, UE)가 하향링크 품질 정보(downlink quality information)를 기지국으로 전송하는 방법이 제공되며, 상기 방법은 랜덤 접속 프리앰블(random access preamble)을 상기 기지국으로 전송하는 단계; 상기 기지국으로부터 랜덤 접속 응답(random access response)을 수신하는 단계; 및 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 기지국으로 전송하는 단계를 포함하되, 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위해 주파수 호핑이 설정된 경우, 상기 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함할 수 있다.
본 발명의 제2 양상으로, 무선 통신 시스템에서 하향링크 품질 정보를 기지국으로 전송하도록 구성된 사용자 기기(user equipment, UE)가 제공되며, 상기 사용자 기기는 RF(Radio Frequency) 송수신기(transceiver); 및 상기 RF 송수신기와 동작시(operatively) 연결되는 프로세서를 포함하고, 상기 프로세서는 상기 RF 송수신기를 제어하여 랜덤 접속 프리앰블(random access preamble)을 상기 기지국으로 전송하고, 상기 기지국으로부터 랜덤 접속 응답(random access response)을 수신하고, 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 기지국으로 전송하도록 구성되며, 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위해 주파수 호핑이 설정된 경우, 상기 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함할 수 있다.
본 발명의 제3 양상으로, 무선 통신 시스템에서 동작하도록 구성된 사용자 기기(user equipment, UE)를 위한 장치가 제공되며, 상기 장치는 명령어(instruction)를 포함하는 메모리; 및 상기 메모리에 동작시 연결되는 프로세서를 포함하되, 상기 프로세서는 상기 명령어를 실행하여 특정 동작들을 수행하도록 구성되며, 상기 특정 동작들은, 랜덤 접속 프리앰블(random access preamble)을 기지국으로 전송하는 것과, 상기 기지국으로부터 랜덤 접속 응답(random access response)을 수신하는 것과, 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 하향링크 품질 정보를 상기 기지국으로 전송하는 것을 포함하되, 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위해 주파수 호핑이 설정된 경우, 상기 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함할 수 있다.
본 발명의 제4 양상으로, 무선 통신 시스템에서 기지국이 하향링크 품질 정보(downlink quality information)를 사용자 기기(user equipment, UE)로부터 수신하는 방법이 제공되며, 상기 방법은 랜덤 접속 프리앰블(random access preamble)을 상기 사용자 기기로부터 수신하는 단계; 상기 사용자 기기로 랜덤 접속 응답(random access response)을 전송하는 단계; 및 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 사용자 기기로부터 수신하는 단계를 포함하되, 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위해 주파수 호핑이 설정된 경우, 상기 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함할 수 있다.
본 발명의 제5 양상으로, 무선 통신 시스템에서 하향링크 품질 정보를 사용자 기기(user equipment, UE)로부터 수신하도록 구성된 기지국이 제공되며, 상기 기지국은 RF(Radio Frequency) 송수신기(transceiver); 및 상기 RF 송수신기와 동작시(operatively) 연결되는 프로세서를 포함하고, 상기 프로세서는 상기 RF 송수신기를 제어하여 랜덤 접속 프리앰블(random access preamble)을 상기 사용자 기기로부터 수신하고, 상기 사용자 기기로 랜덤 접속 응답(random access response)을 전송하고, 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 사용자 기기로부터 수신하도록 구성되며, 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위해 주파수 호핑이 설정된 경우, 상기 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함할 수 있다.
본 발명의 제6 양상으로, 무선 통신 시스템에서 동작하도록 구성된 기지국을 위한 장치가 제공되며, 상기 장치는 명령어(instruction)를 포함하는 메모리; 및 상기 메모리에 동작시 연결되는 프로세서를 포함하되, 상기 프로세서는 상기 명령어를 실행하여 특정 동작들을 수행하도록 구성되며, 상기 특정 동작들은, 랜덤 접속 프리앰블(random access preamble)을 사용자 기기로부터 수신하는 것과, 상기 사용자 기기로 랜덤 접속 응답(random access response)을 전송하는 것과, 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 하향링크 품질 정보를 상기 사용자 기기로부터 수신하는 것을 포함하되, 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위해 주파수 호핑이 설정된 경우, 상기 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함할 수 있다.
바람직하게는, 상기 광대역 하향링크 품질은 하향링크 품질 측정을 위한 참조 자원(reference resource)에서 물리 하향링크 제어 채널을 디코딩하는데 필요한 반복 횟수(repetition number)를 포함할 수 있다.
바람직하게는, 상기 하향링크 품질 측정을 위한 참조 자원은 상기 반복 횟수와 관련된 모든 협대역(narrowband)들을 위한 하향링크 물리 자원 블록(physical resource block)의 그룹을 포함할 수 있다.
바람직하게는, 상기 하향링크 품질 정보는 선호 협대역(preferred narrowband) 상에서의 협대역 하향링크 품질에 관한 정보와 상기 선호 협대역의 위치에 관한 정보를 더 포함할 수 있다.
바람직하게는, 상기 선호 협대역은 상기 하향링크 품질 측정을 위한 참조 자원 내에서 선택될 수 있다.
바람직하게는, 상기 광대역 하향링크 품질은 상기 물리 하향링크 제어 채널을 디코딩하는데 필요한 병합 레벨을 더 포함할 수 있다.
바람직하게는, 상기 광대역 하향링크 품질은 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널을 실제 디코딩하는데 필요한 반복 횟수를 포함할 수 있다.
바람직하게는, 상기 하향링크 품질 정보는 선호 협대역(preferred narrowband) 상에서의 협대역 하향링크 품질에 관한 정보와 상기 선호 협대역의 위치에 관한 정보를 더 포함할 수 있다.
바람직하게는, 상기 선호 협대역은 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널을 모니터링하는데 사용된 협대역 중에서 선택될 수 있다.
바람직하게는, 상기 광대역 하향링크 품질은 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널을 실제 디코딩하는데 필요한 병합 레벨을 더 포함할 수 있다.
바람직하게는, 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널은 MTC(Machine Type Communication) PDCCH(Physical Downlink Control Channel)일 수 있다.
본 발명에 따르면, 하향링크 채널 품질 정보를 효율적으로 송수신할 수 있다.
또한, 본 발명에 따르면, 랜덤 접속 과정을 통해 하향링크 채널 품질 정보를 효율적으로 송수신할 수 있다.
또한, 본 발명에 따르면, RRC 연결 상태에서 하향링크 채널 품질 정보를 효율적으로 송수신할 수 있다.
또한, 본 발명에 따르면, 물리 하향링크 제어 채널 및/또는 물리 하향링크 공유 채널에 대한 하향링크 채널 품질 정보를 효율적으로 송수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다.
도 2는 랜덤 접속 과정(Random Access Procedure)을 예시한다.
도 3은 LTE 무선 프레임 구조(radio frame structure)를 예시한다.
도 4는 LTE 프레임의 슬롯 구조를 예시한다.
도 5는 NR 시스템에서 사용되는 무선 프레임의 구조를 예시한다.
도 6은 NR 프레임의 슬롯 구조를 예시한다.
도 7은 MTC에서의 셀 커버리지 향상을 예시한다.
도 8은 MTC를 위한 신호 대역을 예시한다.
도 9는 레가시 LTE와 MTC에서의 스케줄링을 예시한다.
도 10은 NB-IoT 하향링크 물리 채널/신호의 전송을 예시한다.
도 11은 NR 시스템에서 네트워크 초기 접속 및 이후의 통신 과정을 예시한다.
도 12는 NB-IoT RACH에서 프리앰블 전송을 예시한다.
도 13은 페이징을 위한 DRX 사이클을 예시한다.
도 14는 확장된 DRX(extended DRX, eDRX) 사이클을 예시한다.
도 15는 랜덤 접속 절차에서 단말기가 송/수신하는 채널 및 신호의 시간 흐름을 예시한다.
도 16 내지 도 19는 본 발명의 제안에 따라 단말 및 기지국에서 수행되는 방법의 순서도를 예시한다.
도 20 내지 도 25는 본 발명에서 제안하는 방법들이 적용될 수 있는 시스템 및 통신 장치를 예시한다.
본 명세서에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
본 명세서에서 설명된 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology) 또는 5G는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS (Technical Specification) 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP 5G는 TS 36.xxx Release 15 이후의 기술을 의미하고, 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 발명의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE
- 36.211: Physical channels and modulation
- 36.212: Multiplexing and channel coding
- 36.213: Physical layer procedures
- 36.300: Overall description
- 36.304: User Equipment (UE) procedures in idle mode
- 36.331: Radio Resource Control (RRC)
3GPP NR
- 38.211: Physical channels and modulation
- 38.212: Multiplexing and channel coding
- 38.213: Physical layer procedures for control
- 38.214: Physical layer procedures for data
- 38.300: NR and NG-RAN Overall Description
- 38.304: User Equipment (UE) procedures in Idle mode and RRC Inactive state
- 36.331: Radio Resource Control (RRC) protocol specification
E-UTRAN (evolved-UMTS terrestrial radio access network) 또는 LTE (long term evolution) / LTE-A / LTE-A Pro / 5G 시스템은 LTE 시스템으로 통칭될 수 있다. NG-RAN은 NR 시스템으로 지칭될 수 있다. 사용자 기기(User Equipment, UE)는 고정식 또는 이동식 일 수 있고, 단말, MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal), 무선 디바이스 등과 같은 다른 용어로 지칭될 수 있다. 기지국(Base Station, BS)는 일반적으로 UE와 통신하는 고정된 station으로 eNB(evolved Node-B), gNB(general Node-B), BTS(base transceiver system), AP(access point) 등과 같은 다른 용어로 지칭 될 수 있다.
A. 물리 채널 및 프레임 구조(frame structure)
물리 채널 및 일반적인 신호 전송
도 1은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다. 무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S11). 이를 위해 단말은 기지국으로부터 PSS(Primary Synchronization Signal) 및 SSS(Secondary Synchronization Signal)을 수신하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 기지국으로부터 PBCH(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 또한, 단말은 초기 셀 탐색 단계에서 DL RS(Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 PDCCH(Physical Downlink Control Channel) 및 이에 대응되는 PDSCH(Physical Downlink Control Channel)를 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다(S12).
이후, 단말은 기지국에 접속을 완료하기 위해 랜덤 접속 과정(Random Access Procedure)(예, 도 2 및 관련 설명 참조)을 수행할 수 있다(S13~S16). 구체적으로, 단말은 PRACH(Physical Random Access Channel)를 통해 랜덤 접속 프리앰블을 전송하고(S13), PDCCH 및 이에 대응하는 PDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)을 수신할 수 있다(S14). 이후, 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH(Physical Uplink Shared Channel)을 전송하고(S15), PDCCH 및 이에 대응하는 PDSCH과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S16).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S17) 및 PUSCH/PUCCH(Physical Uplink Control Channel) 전송(S18)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 UCI(Uplink Control Information)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 랜덤 접속 과정(Random Access Procedure)을 예시한다.
랜덤 접속 과정은 RRC 유휴 모드(RRC Idle Mode)(또는 RRC_IDLE 상태)에서의 초기 접속, 무선 링크 실패 후의 초기 접속, 랜덤 접속 과정을 요구하는 핸드오버, RRC 연결 모드(RRC Connected Mode)(또는 RRC_CONNECTED 상태) 중에 랜덤 접속 과정이 요구되는 상향링크/하향링크 데이터 발생시에 수행된다. 랜덤 접속 과정은 RACH(Random Access CHannel) 과정으로 지칭될 수 있다. RRC 연결 요청 메시지(RRC Connection Request Message)와 셀 갱신 메시지(Cell Update Message), URA 갱신 메시지(URA Update Message) 등의 일부 RRC 메시지도 랜덤 접속 과정을 이용하여 전송된다. 논리채널 CCCH(Common Control Channel), DCCH(Dedicated Control Channel), DTCH(Dedicated Traffic Channel)가 전송채널 RACH에 매핑될 수 있다. 전송채널 RACH는 물리채널 PRACH(Physical Random Access Channel)에 매핑된다. 단말의 MAC 계층이 단말 물리계층에 PRACH 전송을 지시하면, 단말 물리계층은 먼저 하나의 접속 슬롯(access slot)과 하나의 시그너처(signature)를 선택하여 PRACH 프리앰블을 상향링크로 전송한다. 랜덤 접속 과정은 경쟁 기반(contention based) 과정과 비경쟁 기반(non-contention based) 과정으로 구분된다.
도 2를 참조하면, 단말은 시스템 정보를 통해 기지국으로부터 랜덤 접속에 관한 정보를 수신하여 저장한다. 그 후, 랜덤 접속이 필요하면, 단말은 랜덤 접속 프리앰블(Random Access Preamble; 메시지 1 또는 Msg1이라고도 함)을 기지국으로 전송한다(S21). 랜덤 접속 프리앰블은 RACH 프리앰블 또는 PRACH 프리앰블로 지칭될 수 있다. 기지국이 상기 단말로부터 랜덤 접속 프리앰블을 수신하면, 상기 기지국은 랜덤 접속 응답 메시지(Random Access Response; 메시지 2 또는 Msg2라고도 함)를 단말에게 전송한다(S22). 구체적으로, 상기 랜덤 접속 응답 메시지에 대한 하향 스케줄링 정보는 RA-RNTI(Random Access-RNTI)로 CRC 마스킹되어 L1/L2 제어 채널(PDCCH) 상에서 전송될 수 있다. RA-RNTI로 마스킹된 하향 스케줄링 신호를 수신한 단말은 PDSCH(Physical Downlink Shared Channel)로부터 랜덤 접속 응답 메시지를 수신하여 디코딩할 수 있다. 그 후, 단말은 상기 랜덤 접속 응답 메시지에 자신에게 지시된 랜덤 접속 응답 정보가 있는지 확인한다. 자신에게 지시된 랜덤 접속 응답 정보가 존재하는지 여부는 단말이 전송한 프리앰블에 대한 RAID(Random Access preamble ID)가 존재하는지 여부로 확인될 수 있다. 상기 랜덤 접속 응답 정보는 동기화를 위한 타이밍 옵셋 정보를 나타내는 타이밍 어드밴스(Timing Advance; TA), 상향링크에 사용되는 무선자원 할당정보, 단말 식별을 위한 임시 식별자(예: Temporary C-RNTI) 등을 포함한다. 단말은 랜덤 접속 응답 정보를 수신하면, 상기 응답 정보에 포함된 무선자원 할당 정보에 따라 상향링크 공유 채널(Uplink Shared Channel)로 RRC 연결 요청 메시지를 포함하는 상향링크 전송(메시지 3 또는 Msg3이라고도 함)을 수행한다(S23). 기지국은 단말로부터 상기 상향링크 전송을 수신한 후에, 경쟁 해결(contention resolution)을 위한 메시지(메시지 4 또는 Msg4라고도 함)를 단말에게 전송한다(S24). 경쟁 해결을 위한 메시지는 경쟁 해결 메시지라고 지칭될 수 있으며, RRC 연결 설정 메시지를 포함할 수 있다. 단말은 기지국으로부터 경쟁 해결 메시지를 수신한 후에, 연결 설정을 완료한 후 연결 설정 완료 메시지(메시지 5 또는 Msg5라고도 함)를 기지국으로 전송한다(S25).
비경쟁 기반 과정의 경우, 단말이 랜덤 접속 프리앰블을 전송(S21)하기 전에 기지국이 비경쟁 랜덤 접속 프리앰블(Non-contention Random Access Preamble)을 단말에게 할당할 수 있다. 비경쟁 랜덤 접속 프리앰블은 핸드오버 명령(handover command)나 PDCCH와 같은 전용 시그널링(dedicated signaling)을 통해 할당될 수 있다. 단말은 비경쟁 랜덤 접속 프리앰블을 할당받는 경우 S21 단계와 유사하게 할당받은 비경쟁 랜덤 접속 프리앰블을 기지국으로 전송할 수 있다. 기지국은 상기 단말로부터 비경쟁 랜덤 접속 프리앰블을 수신하면, S22 단계와 유사하게 상기 기지국은 랜덤 접속 응답을 단말에게 전송할 수 있다.
무선 프레임(radio frame) 구조
도 3은 LTE 무선 프레임 구조(radio frame structure)를 예시한다. LTE는 FDD(Frequency Division Duplex)용의 프레임 타입 1, TDD(Time Division Duplex)용의 프레임 타입 2와 UCell(Unlicensed Cell)용의 프레임 타입 3을 지원한다. PCell(Primary Cell)에 부가하여, 최대 31개의 SCell(Secondary Cell)이 병합(aggregated) 될 수 있다. 특별히 기술하지 않는 한, 본 명세서에서 설명하는 동작은 셀마다 독립적으로 적용될 수 있다. 다중-셀 병합 시, 서로 다른 프레임 구조가 서로 다른 셀에 사용될 수 있다. 또한, 프레임 구조 내의 시간 자원(예, 서브프레임, 슬롯, 서브슬롯)은 TU(Time Unit)로 통칭될 수 있다.
도 3(a)는 프레임 타입 1을 예시한다. 하향링크 무선 프레임은 10개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 CP(cyclic prefix)에 따라 14개 또는 12개의 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 서브프레임은 14개의 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 서브프레임은 12개의 심볼을 포함한다. 심볼은 다중 접속 방식에 따라 OFDM(A) 심볼, SC-FDM(A) 심볼을 의미할 수 있다. 예를 들어, 심볼은 하향링크에서 OFDM(A) 심볼을 의미하고, 상향링크에서 SC-FDM(A) 심볼을 의미할 수 있다. OFDM(A) 심볼은 CP-OFDM(A)(Cyclic Prefix-OFDM(A)) 심볼로 지칭되고, SC-FDM(A) 심볼은 DFT-s-OFDM(A)(Discrete Fourier Transform-spread-OFDM(A)) 심볼로 지칭될 수 있다.
도 3(b)는 프레임 타입 2를 예시한다. 프레임 타입 2는 2개의 하프 프레임(half frame)으로 구성된다. 하프 프레임은 4 (또는 5)개의 일반 서브프레임과 1 (또는 0)개의 스페셜 서브프레임을 포함한다. 일반 서브프레임은 UL-DL 구성(Uplink-Downlink Configuration)에 따라 상향링크 또는 하향링크에 사용된다. 서브프레임은 2개의 슬롯으로 구성된다.
상기 설명된 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 4는 LTE 프레임의 슬롯 구조를 예시한다.
도 4를 참조하면, 슬롯은 시간 도메인에서 복수의 심볼을 포함하고, 주파수 도메인에서 복수의 자원블록(resource block, RB)을 포함한다. 심볼은 심볼 구간을 의미하기도 한다. 슬롯의 구조는 N DL/UL RB×N RB sc개의 서브캐리어(subcarrier)와 N DL/UL symb개의 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, N DL RB은 하향링크 슬롯에서의 RB의 개수를 나타내고, N UL RB은 UL 슬롯에서의 RB 의 개수를 나타낸다. N DL RB와 N UL RB은 DL 대역폭과 UL 대역폭에 각각 의존한다. N DL symb은 DL 슬롯 내 심볼의 개수를 나타내며, N UL symb은 UL 슬롯 내 심볼의 개수를 나타낸다. N RB sc는 RB를 구성하는 서브캐리어의 개수를 나타낸다. 슬롯 내 심볼의 개수는 SCS, CP 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다.
RB는 시간 도메인에서 N DL/UL symb개(예, 7개)의 연속적인(consecutive) 심볼로 정의되며, 주파수 도메인에서 N RB sc개(예, 12개)의 연속적인 서브캐리어로 정의된다. 여기서, RB는 PRB(Physical Resource Block) 또는 VRB(Virtual Resource Block)를 의미할 수 있으며, PRB와 VRB는 1대1로 매핑될 수 있다. 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 RB 쌍이라고 한다. RB 쌍을 구성하는 2개의 RB는 동일한 RB 번호(혹은, RB 인덱스라고도 함)를 갖는다. 하나의 심볼과 하나의 서브캐리어로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다. 자원격자 내 각 RE는 슬롯 내 인덱스 쌍 (k, l)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 N DL/UL RB×N RB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 N DL/UL symb-1까지 부여되는 인덱스이다.
서브프레임 내에서 첫 번째 슬롯의 앞에 위치한 최대 3개 (또는 4개) 의 OFDM(A) 심볼이 하향링크 제어 채널이 할당되는 제어 영역에 해당한다. 남은 OFDM(A) 심볼은 PDSCH가 할당되는 데이터 영역에 해당하며, 데이터 영역의 기본 자원 단위는 RB이다. 하향링크 제어 채널은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid ARQ Indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되며 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답이고 HARQ ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보는 DCI(Downlink Control Information)라고 지칭된다. DCI는 상향링크 또는 하향링크 스케줄링 정보 또는 임의의 단말 그룹을 위한 상향링크 전송 전력 제어 명령(Transmit Power Control Command)를 포함한다.
서브프레임은 두 개의 0.5ms 슬롯으로 구성된다. 각 슬롯은 복수의 심볼로 구성되며 하나의 심볼은 하나의 SC-FDMA 심볼에 대응된다. RB는 주파수 영역에서 12개의 서브캐리어, 그리고 시간 영역에서 한 슬롯에 해당되는 자원 할당 단위이다. LTE의 상향링크 서브프레임의 구조는 크게 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 각 단말로 전송되는 음성, 패킷 등의 데이터를 송신함에 있어 사용되는 통신 자원을 의미하며 PUSCH(Physical Uplink Shared Channel)을 포함한다. 제어 영역은 상향링크 제어 신호, 예를 들어 각 단말로부터의 하향링크 채널 품질보고, 하향링크 신호에 대한 수신 ACK/NACK, 상향링크 스케줄링 요청 등을 전송하는데 사용되는 통신 자원을 의미하며 PUCCH(Physical Uplink Control Channel)를 포함한다. SRS(Sounding Reference Signal)는 하나의 서브프레임에서 시간 축 상에서 가장 마지막에 위치하는 SC-FDMA 심볼을 통하여 전송된다.
도 5는 NR 시스템에서 사용되는 무선 프레임의 구조를 예시한다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP(extended CP)가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
Figure PCTKR2019010175-appb-img-000001
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
Figure PCTKR2019010175-appb-img-000002
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
도 6은 NR 프레임의 슬롯 구조를 예시한다.
슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 서브캐리어를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 서브캐리어로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
B. 상향링크 및 하향링크 채널
하향링크 채널
기지국은 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
(1) 물리 하향링크 공유 채널(PDSCH)
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
(2) 물리 하향링크 제어 채널(PDCCH)
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
단말은 PDCCH 후보들의 세트에 대한 디코딩(일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간(Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
- controlResourceSetId: 검색 공간 세트와 관련된 제어 자원 세트를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: PDCCH 모니터링을 위한 슬롯 내 PDCCH 모니터링 패턴을 나타냄 (예, 제어 자원 세트의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)을 나타냄
표 3은 검색 공간 타입별 특징을 예시한다.
Figure PCTKR2019010175-appb-img-000003
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
Figure PCTKR2019010175-appb-img-000004
DCI format 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI format 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI format 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI format 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI format 2_0 및/또는 DCI format 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
상향링크 채널
단말은 상향링크 채널을 통해 관련 신호를 기지국으로 전송하고, 기지국은 상향링크 채널을 통해 관련 신호를 단말로부터 수신한다.
(1) 물리 상향링크 공유 채널(PUSCH)
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
(2) 물리 상향링크 제어 채널(PUCCH)
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다. 표 5는 PUCCH 포맷들을 예시한다.
Figure PCTKR2019010175-appb-img-000005
C. MTC (Machine Type Communication)
MTC는 머신(machine)이 하나 이상 포함된 데이터 통신의 한 형태이며, M2M(Machine-to-Machine) 또는 IoT(Internet-of-Things) 등에 적용될 있다. 여기서, 머신은 사람의 직접적인 조작이나 개입이 필요하지 않는 개체를 의미한다. 예를 들어, 머신은 이동 통신 모듈이 탑재된 스마트 미터(smart meter), 벤딩 머신(vending machine), MTC 기능을 가진 휴대 단말 등을 포함한다. 예를 들어, MTC를 통해 계량기 검침, 수위측정, 감시 카메라의 활용, 자판기의 재고보고 등의 서비스가 제공될 수 있다. MTC 통신은 전송 데이터량이 적고 상향/하향 링크 데이터 송수신이 가끔씩 발생하는 특성을 갖는다. 따라서, 낮은 데이터 전송률에 맞춰서 MTC 장치의 단가를 낮추고 배터리 소모를 줄이는 것이 효율적이다. MTC 장치는 일반적으로 이동성이 적고, 그에 따라 MTC 통신은 채널 환경이 거의 변하지 않는 특성을 가진다.
3GPP에서 MTC는 release 10부터 적용되었으며, 낮은 비용 & 낮은 복잡도(low cost & low complexity), 향상된 커버리지(enhanced coverage), 낮은 파워 소비(low power consumption)의 기준을 만족하도록 구현될 수 있다. 예를 들어, 3GPP Release 12에는 저비용 MTC 장치를 위한 특징이 추가되었으며, 이를 위해 UE category 0이 정의되었다. UE category는 단말이 얼마나 많은 데이터를 통신 모뎀에서 처리할 수 있는지를 나타내는 지표이다. UE category 0의 단말은 감소된 피크 데이터 레이트, 완화된 RF(Radio Frequency) 요구 사항을 가지는 하프-듀플렉스 동작, 단일 수신 안테나를 사용함으로써 베이스밴드/RF 복잡도를 줄일 수 있다. 3GPP Release 12에는 eMTC(enhanced MTC)가 도입됐으며, 레가시(legacy) LTE에서 지원하는 최소 주파수 대역폭인 1.08MHz (즉, 6개의 RB)에서만 동작하도록 하여 MTC 단말의 가격과 전력 소모를 더 낮추었다.
본 명세서에서 기술되는 내용은 주로 eMTC와 관련된 특징들이나, 특별한 언급이 없는 한 MTC, eMTC, 5G(또는 NR)에 적용될 MTC에도 동일하게 적용될 수 있다. 본 명세서에서는 설명의 편의를 위해 MTC로 통칭하여 설명하기로 한다.
도 7은 MTC에서의 셀 커버리지 향상을 예시한다. 커버리지 향상은 커버리지 확장이라고 지칭될 수 있으며, MTC와 관련하여 설명되는 커버리지 향상을 위한 기법은 NB-IoT 및 5G(또는 NR)에도 동일/유사하게 적용될 수 있다.
MTC 장치(1202)를 위해 기지국(1204)의 셀 커버리지(Coverage Extension 또는 Coverage Enhancement, CE)를 확장하기 위해 다양한 셀 커버리지 확장 기법들이 논의되고 있다. 예를 들어, 셀 커버리지 확장을 위해, 기지국/단말은 하나의 물리 채널/신호를 복수의 기회(occasion)에 걸쳐 전송/수신할 수 있다(물리 채널의 번들). 번들 구간 내에서 물리 채널/신호는 기-정의된 규칙에 따라 반복 전송/수신될 수 있다. 수신 장치는 물리 채널/신호 번들의 일부 또는 또는 전체를 디코딩함으로써 물리 채널/신호의 디코딩 성공율을 높일 수 있다. 여기서, 기회는 물리 채널/신호가 전송/수신될 수 있는 자원(예, 시간/주파수)을 의미할 수 있다. 물리 채널/신호를 위한 기회는 시간 도메인에서 서브프레임, 슬롯 또는 심볼 세트를 포함할 수 있다. 여기서, 심볼 세트는 하나 이상의 연속된 OFDM-기반 심볼로 구성될 수 있다. OFDM-기반 심볼은 OFDM(A) 심볼, DFT-s-OFDM(A) (= SC-FDM(A)) 심볼을 포함할 수 있다. 물리 채널/신호를 위한 기회는 주파수 도메인에서 주파수 밴드, RB 세트를 포함할 수 있다. 예를 들어, PBCH, PRACH, MPDCCH, PDSCH, PUCCH 및 PUSCH가 반복 전송/수신될 수 있다.
MTC는 커버리지 향상 또는 확장((Coverage Extension 또는 Coverage Enhancement, CE)을 위한 동작 모드를 지원하며, 커버리지 향상 또는 확장을 위해 신호의 반복 전송/수신을 지원하는 모드를 CE 모드(mode)라고 지칭할 수 있고, 커버리지 향상 또는 확장을 위한 신호의 반복 전송/수신 횟수를 CE 레벨이라고 지칭할 수 있다. 표 6은 MTC에서 지원하는 CE 모드/레벨을 예시한다.
Figure PCTKR2019010175-appb-img-000006
제 1 모드(예, CE Mode A)는 완전한 이동성 및 CSI (channel state information) 피드백이 지원되는 작은 커버리지(coverage) 향상을 위해 정의되어, 반복이 없거나 또는 반복 횟수가 적은 모드이다. 제 1 모드의 동작은 UE 카테고리(category) 1의 동작 범위와 동일할 수 있다. 제 2 모드(예, CE Mode B)는 CSI 피드백(feedback) 및 제한된 이동성을 지원하는 극히 열악한 커버리지 조건의 UE에 대해 정의되며, 많은 수의 반복 전송이 정의된다. 제 2 모드는 UE 카테고리(category) 1의 범위를 기준으로 최대 15dB의 커버리지 향상을 제공한다. MTC의 각 레벨(level)은 랜덤 접속 과정(또는 RACH 과정)과 페이징 과정(paging procedure)에서 다르게 정의된다.
도 8은 MTC를 위한 신호 대역을 예시한다.
도 8을 참조하면, MTC 단말의 단가를 낮추기 위한 방법으로, MTC는 셀의 시스템 대역폭(system bandwidth)과 무관하게, 셀의 시스템 대역폭 중 특정 대역(또는 채널 대역)(MTC 서브밴드 또는 협대역(narrowband, NB)으로 지칭)에서만 동작할 수 있다. 예를 들어, MTC 단말의 상향/하향링크 동작은 1.08 MHz 주파수 밴드에서만 수행될 수 있다. 1.08 MHz는 LTE 시스템에서 6개의 연속하는 PRB(Physical Resource Block)에 해당하며, LTE 단말과 동일한 셀 탐색 및 랜덤 액세스 절차를 따르도록 하기 위해 정의됐다. 도 8(a)는 셀의 중심(예, 중심 6개 PRB들)에 MTC 서브밴드가 구성된 경우를 예시하고, 도 8(b)는 셀 내에 복수의 MTC 서브밴드가 구성된 경우를 예시한다. 복수의 MTC 서브밴드는 주파수 영역에서 연속적/불연속적으로 구성될 수 있다. MTC를 위한 물리 채널/신호들은 하나의 MTC 서브밴드에서 송수신될 수 있다. NR 시스템에서 MTC 서브밴드는 주파수 범위(frequency range) 및 SCS(subcarrier spacing)를 고려하여 정의될 수 있다. 일 예로, NR 시스템에서 MTC 서브밴드의 크기는 X개의 연속하는 PRB(즉, 0.18*X*(2^μ)MHz 대역폭)로 정의될 수 있다(μ는 표 1을 참조). 여기서, X는 SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록의 사이즈에 맞춰 20으로 정의될 수 있다. NR 시스템에서 MTC는 적어도 하나의 BWP(Bandwidth Part)에서 동작할 수 있다. 이 경우, BWP 내에 복수의 MTC 서브밴드가 구성될 수 있다.
도 9는 레가시 LTE와 MTC에서의 스케줄링을 예시한다.
도 9를 참조하면, 레가시 LTE에서 PDSCH는 PDCCH를 이용하여 스케줄링 된다. 구체적으로, PDCCH는 서브프레임에서 처음 N개의 OFDM 심볼들에서 전송될 수 있고(N=1~3), 상기 PDCCH에 의해 스케줄링 되는 PDSCH는 동일한 서브프레임에서 전송된다. 한편, MTC에서 PDSCH는 MPDCCH를 이용하여 스케줄링 된다. 이에 따라, MTC 단말은 서브프레임 내의 검색 공간(search space)에서 MPDCCH 후보를 모니터링 할 수 있다. 여기서, 모니터링은 MPDCCH 후보들을 블라인드 디코딩 하는 것을 포함한다. MPDCCH는 DCI를 전송하며, DCI는 상향링크 또는 하향링크 스케줄링 정보를 포함한다. MPDCCH는 서브프레임에서 PDSCH와 FDM으로 다중화 된다. MPDCCH는 최대 256개의 서브프레임에서 반복 전송되며, MPDCCH에 의해 전송되는 DCI는 MPDCCH 반복 횟수에 관한 정보를 포함한다. 하향링크 스케줄링의 경우, MPDCCH의 반복 전송이 서브프레임 #N에서 끝난 경우, 상기 MPDCCH에 의해 스케줄링 되는 PDSCH는 서브프레임 #N+2에서 전송이 시작된다. PDSCH는 최대 2048개의 서브프레임에서 반복 전송될 수 있다. MPDCCH와 PDSCH는 서로 다른 MTC 서브밴드에서 전송될 수 있다. 상향링크 스케줄링의 경우, MPDCCH의 반복 전송이 서브프레임 #N에서 끝난 경우, 상기 MPDCCH에 의해 스케줄링 되는 PUSCH는 서브프레임 #N+4에서 전송이 시작된다. 예를 들어, 32개의 서브프레임들에서 PDSCH가 반복 전송되는 경우, 처음 16개의 서브프레임들에서 PDSCH는 제1 MTC 서브밴드에서 전송되고, 나머지 16개의 서브프레임들에서 PDSCH는 제2 MTC 서브밴드에서 전송될 수 있다. MTC는 하프-듀플렉스(half duplex) 모드로 동작한다. MTC의 HARQ 재전송은 적응적(adaptive), 비동기(asynchronous) 방식이다.
D. NB-IoT(Narrowband Internet of Things)
NB-IoT는 기존 무선 통신 시스템(예, LTE, NR)을 통해 저전력 광역망을 지원하는 협대역 사물 인터넷 기술을 나타낸다. 또한, NB-IoT는 협대역(narrowband)을 통해 낮은 복잡도(complexity), 낮은 전력 소비를 지원하기 위한 시스템을 의미할 수 있다. NB-IoT 시스템은 SCS(subcarrier spacing) 등의 OFDM 파라미터들을 기존 시스템과 동일하게 사용함으로써, NB-IoT 시스템을 위해 추가 대역을 별도로 할당할 필요가 없다. 예를 들어, 기존 시스템 대역의 1개 PRB를 NB-IoT 용으로 할당할 수 있다. NB-IoT 단말은 단일 PRB(single PRB)를 각 캐리어(carrier)로 인식하므로, NB-IoT에 관한 설명에서 PRB 및 캐리어는 동일한 의미로 해석될 수 있다.
NB-IoT는 다중 캐리어 모드로 동작할 수 있다. 이 때, NB-IoT에서 캐리어는 앵커 유형의 캐리어(anchor type carrier)(즉, 앵커 캐리어(anchor carrier), 앵커 PRB) 및 비-앵커 유형의 캐리어(non-anchor type carrier)(즉, 비-앵커 캐리어(non-anchor carrier), 비-앵커 PRB)로 정의될 수 있다. 앵커 캐리어는 기지국 관점에서 초기 접속(initial access)을 위해 NPSS, NSSS, NPBCH, 및 시스템 정보 블록(N-SIB)를 위한 NPDSCH 등을 전송하는 캐리어를 의미할 수 있다. 즉, NB-IoT에서 초기 접속을 위한 캐리어는 앵커 캐리어로 지칭되고, 그 외의 것(들)은 비-앵커 캐리어로 지칭될 수 있다. 이 때, 앵커 캐리어는 시스템 상에서 하나만 존재하거나, 다수의 앵커 캐리어들이 존재할 수도 있다.
본 명세서에서, NB-IoT에 관한 설명은 기존 LTE 시스템에 적용되는 경우를 위주로 기재하지만, 본 명세서의 설명은 차세대 시스템(예, NR 시스템 등)에도 확장 적용될 수 있다. 또한, 본 명세서에서 NB-IoT와 관련된 내용은 유사한 기술적 목적(예, 저-전력, 저-비용, 커버리지 향상 등)을 지향하는 MTC에 확장 적용될 수 있다. 또한, NB-IoT는 NB-LTE, NB-IoT enhancement, enhanced NB-IoT, further enhanced NB-IoT, NB-NR 등과 같이 등가의 다른 용어로 대체될 수 있다.
NB-IoT 하향링크에는 NPBCH(Narrowband Physical Broadcast Channel), NPDSCH(Narrowband Physical Downlink Shared Channel), NPDCCH(Narrowband Physical Downlink Control Channel)와 같은 물리 채널이 제공되며, NPSS(Narrowband Primary Synchronization Signal), NSSS(Narrowband Primary Synchronization Signal), NRS(Narrowband Reference Signal)와 같은 물리 신호가 제공된다.
NB-IoT 프레임 구조는 서브캐리어 간격(subcarrier spacing)에 따라 다르게 설정될 수 있다. 예를 들어, NB-IoT 시스템에서는 15kHz 서브캐리어 간격과 3.75kHz 서브캐리어 간격이 지원될 수 있다. NB-IoT 프레임 구조는 이에 한정되는 것은 아니며, 다른 서브캐리어 간격(예: 30kHz 등)에 대한 NB-IoT도 시간/주파수 단위를 달리하여 고려될 수 있음은 물론이다. 또한, 본 명세서에서는 LTE 시스템 프레임 구조에 기반한 NB-IoT 프레임 구조를 예시로 설명하였지만, 이는 설명의 편의를 위한 것일 뿐 이에 한정되는 것은 아니며, 본 명세서에서 설명하는 방식이 차세대 시스템(예: NR 시스템)의 프레임 구조에 기반한 NB-IoT에도 확장하여 적용될 수 있다.
15kHz 서브캐리어 간격에 대한 NB-IoT 프레임 구조는 상술한 레거시(legacy) 시스템(즉, LTE 시스템)의 프레임 구조와 동일하게 설정될 수 있다. 즉, 10ms NB-IoT 프레임은 1ms NB-IoT 서브프레임 10개를 포함하며, 1ms NB-IoT 서브프레임은 0.5ms NB-IoT 슬롯 2개를 포함할 수 있다. 또한, 각각의 0.5ms NB-IoT은 7개의 OFDM 심볼들을 포함할 수 있다.
3.75kHz 서브캐리어 간격의 경우, 10ms NB-IoT 프레임은 2ms NB-IoT 서브프레임 5개를 포함하며, 2ms NB-IoT 서브프레임은 7개의 OFDM 심볼들과 하나의 보호 구간(Guard Period, GP)을 포함할 수 있다. 또한, 상기 2ms NB-IoT 서브프레임은 NB-IoT 슬롯 또는 NB-IoT RU(resource unit) 등으로 표현될 수도 있다.
NB-IoT 하향링크의 물리 자원은 시스템 대역폭이 특정 수의 RB(예: 1개의 RB 즉, 180kHz)되는 것을 제외하고는, 다른 무선 통신 시스템(예: LTE 시스템, NR 시스템 등)의 물리 자원을 참고하여 설정될 수 있다. 일례로, 상술한 바와 같이 NB-IoT 하향링크가 15kHz 서브캐리어 간격만을 지원하는 경우, NB-IoT 하향링크의 물리 자원은 상술한 도 4에 나타난 LTE 시스템의 자원 그리드를 주파수 영역 상의 1 RB(즉, 1 PRB)로 제한한 자원 영역으로 설정될 수 있다. NB-IoT 상향링크의 물리 자원의 경우에도 하향링크의 경우와 같이 시스템 대역폭은 1개의 RB로 제한되어 구성될 수 있다.
도 10은 NB-IoT 하향링크 물리 채널/신호의 전송을 예시한다. 하향링크 물리 채널/신호는 1개 PRB를 통해 전송되며 15kHz 서브캐리어 간격/멀티-톤 전송을 지원한다.
도 10을 참조하면, NPSS는 매 프레임의 6번째 서브프레임, NSSS는 매 짝수 프레임의 마지막(예, 10번째) 서브프레임에서 전송된다. 단말은 동기 신호(NPSS, NSSS)를 이용해 주파수, 심볼, 프레임 동기를 획득하고 504개의 PCID(Physical Cell ID)(즉, 기지국 ID)를 탐색할 수 있다. NPBCH는 매 프레임의 1번째 서브프레임에서 전송되고 NB-MIB를 나른다. NRS는 하향링크 물리 채널 복조를 위한 기준 신호로 제공되며 LTE와 동일한 방식으로 생성된다. 다만, NRS 시퀀스 생성을 위한 초기화 값으로 NB-PCID(Physical Cell ID)(또는 NCell ID, NB-IoT 기지국 ID)가 사용된다. NRS는 하나 또는 두 개의 안테나 포트를 통해 전송된다. NPDCCH와 NPDSCH는 NPSS/NSSS/NPBCH를 제외하고 남은 서브프레임에서 전송될 수 있다. NPDCCH와 NPDSCH는 동일 서브프레임에서 함께 전송될 수 없다. NPDCCH는 DCI를 나르며 DCI는 3종류의 DCI 포맷을 지원한다. DCI 포맷 N0는 NPUSCH(Narrowband Physical Uplink Shared Channel) 스케줄링 정보를 포함하며, DCI 포맷 N1과 N2는 NPDSCH 스케줄링 정보를 포함한다. NPDCCH는 커버리지 향상을 위해 최대 2048번의 반복 전송이 가능하다. NPDSCH는 DL-SCH(Downlink-Shared Channel), PCH(Paging Channel)와 같은 전송 채널의 데이터(예, TB)를 전송하는데 사용된다. 최대 TBS는 680비트이고, 커버리지 향상을 위해 최대 2048번 반복 전송이 가능하다.
상향링크 물리 채널은 NPRACH(Narrowband Physical Random Access Channel)과 NPUSCH를 포함하며, 싱글-톤 전송과 멀티-톤 전송을 지원한다. 싱글-톤 전송은 3.5kHz와 15kHz의 서브캐리어 간격에 대해서 지원되며, 멀티-톤 전송은 15kHz 서브캐리어 간격에 대해서만 지원된다.
NB-IoT 상향링크에는 15kHz 또는 3.75kHz의 서브캐리어 간격에 기반하여 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식이 적용될 수 있다. NB-IoT의 상향링크에서는 다중-톤(multi-tone) 전송 및 단일-톤(single-tone) 전송이 지원될 수 있다. 일례로, 다중-톤 전송은 15kHz의 서브캐리어 간격에서만 지원되며, 단일-톤 전송은 15kHz 및 3.75kHz의 서브캐리어 간격에 대해 지원될 수도 있다.
하향링크 부분에서 언급한 것과 같이, NB-IoT 시스템의 물리 채널은 기존의 시스템과의 구분을 위하여 ‘N(Narrowband)’이 추가된 형태로 표현될 수 있다. 예를 들어, 상향링크 물리 채널은 NPRACH(Narrowband Physical Random Access Channel) 및 NPUSCH(Narrowband Physical Uplink Shared Channel) 등으로 정의되고, 상향링크 물리 신호는 NDMRS(Narrowband Demodulation Reference Signal) 등으로 정의될 수 있다.
여기에서, NPUSCH는 NPUSCH 포맷 1과 NPUSCH 포맷 2 등으로 구성될 수 있다. 일례로, NPUSCH 포맷 1은 UL-SCH 전송(또는 운반)을 위해 이용되며, NPUSCH 포맷 2는 HARQ ACK 시그널링 등과 같은 상향링크 제어 정보 전송을 위해 이용될 수 있다.
또한, 특징적으로, NB-IoT 시스템의 하향링크 채널인 NPRACH 등의 경우, 커버리지 향상(coverage enhancement)을 위하여 반복 전송(repetition transmission)이 수행될 수 있다. 이 경우, 반복 전송은 주파수 호핑(frequency hopping)이 적용되어 수행될 수도 있다.
E. 네트워크 접속 및 통신 과정
단말은 본 명세서에서 설명/제안한 절차 및/또는 방법들을 수행하기 위해 네트워크 접속 과정을 수행할 수 있다. 예를 들어, 단말은 네트워크(예, 기지국)에 접속을 수행하면서, 본 명세서에서 설명/제안한 절차 및/또는 방법들을 수행하는데 필요한 시스템 정보와 구성 정보들을 수신하여 메모리에 저장할 수 있다. 본 발명에 필요한 구성 정보들은 상위 계층(예, RRC layer; Medium Access Control, MAC, layer 등) 시그널링을 통해 수신될 수 있다.
도 11은 NR 시스템에서 네트워크 초기 접속 및 이후의 통신 과정을 예시한다. NR에서 물리 채널, 참조 신호는 빔-포밍을 이용하여 전송될 수 있다. 빔-포밍-기반의 신호 전송이 지원되는 경우, 기지국과 단말간에 빔을 정렬하기 위해 빔-관리(beam management) 과정이 수반될 수 있다. 또한, 본 발명에서 제안하는 신호는 빔-포밍을 이용하여 전송/수신될 수 있다. RRC(Radio Resource Control) IDLE 모드에서 빔 정렬은 SSB를 기반하여 수행될 수 있다. 반면, RRC CONNECTED 모드에서 빔 정렬은 CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 한편, 빔-포밍-기반의 신호 전송이 지원되지 않는 경우, 본 명세서의 설명에서 빔과 관련된 동작은 생략될 수 있다.
도 11을 참조하면, 기지국(예, BS)는 SSB를 주기적으로 전송할 수 있다(S1902). 여기서, SSB는 PSS/SSS/PBCH를 포함한다. SSB는 빔 스위핑을 이용하여 전송될 수 있다. PBCH는 MIB(Master Information Block)를 포함하며, MIB는 RMSI(Remaining Minimum System Information)에 관한 스케줄링 정보를 포함할 수 있다. 이후, 기지국은 RMSI와 OSI(Other System Information)를 전송할 수 있다(S1904). RMSI는 단말이 기지국에 초기 접속하는데 필요한 정보(예, PRACH 구성 정보)를 포함할 수 있다. 한편, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블(Message 1, Msg1)을 기지국에게 전송할 수 있다(S1906). RACH 프리앰블의 빔 방향은 PRACH 자원과 연관된다. PRACH 자원 (및/또는 RACH 프리앰블)과 SSB (인덱스)간 연관성(association)은 시스템 정보(예, RMSI)를 통해 설정될 수 있다. 이후, 랜덤 접속 과정(또는 RACH 과정)의 일환으로, 기지국은 RACH 프리앰블에 대한 응답으로 RAR(Random Access Response)(Msg2)를 전송하고(S1908), 단말은 RAR 내 UL 그랜트를 이용하여 Msg3(예, RRC Connection Request)을 전송하고(S1910), 기지국은 충돌 해결(contention resolution) 메세지(Msg4)를 전송할 수 있다(S1920). Msg4는 RRC Connection Setup을 포함할 수 있다.
랜덤 접속 과정(또는 RACH 과정)을 통해 기지국과 단말간에 RRC 연결이 설정되면, 그 이후의 빔 정렬은 SSB/CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 예를 들어, 단말은 SSB/CSI-RS를 수신할 수 있다(S1914). SSB/CSI-RS는 단말이 빔/CSI 보고를 생성하는데 사용될 수 있다. 한편, 기지국은 DCI를 통해 빔/CSI 보고를 단말에게 요청할 수 있다(S1916). 이 경우, 단말은 SSB/CSI-RS에 기반하여 빔/CSI 보고를 생성하고, 생성된 빔/CSI 보고를 PUSCH/PUCCH를 통해 기지국에게 전송할 수 있다(S1918). 빔/CSI 보고는 빔 측정 결과, 선호하는 빔에 관한 정보 등을 포함할 수 있다. 기지국과 단말은 빔/CSI 보고에 기반하여 빔을 스위칭 할 수 있다(S1920a, S1920b).
이후, 단말과 기지국은 앞에서 설명/제안한 절차 및/또는 방법들을 수행할 수 있다. 예를 들어, 단말과 기지국은 네트워크 접속 과정(예, 시스템 정보 획득 과정, RACH를 통한 RRC 연결 과정 등)에서 얻은 구성 정보에 기반하여, 본 발명의 제안에 따라 메모리에 있는 정보를 처리하여 무선 신호를 전송하거나, 수신된 무선 신호를 처리하여 메모리에 저장할 수 있다. 여기서, 무선 신호는 하향링크의 경우 PDCCH, PDSCH, RS(Reference Signal) 중 적어도 하나를 포함하고, 상향링크의 경우 PUCCH, PUSCH, SRS 중 적어도 하나를 포함할 수 있다.
앞에서 설명한 내용은 기본적으로 MTC와 NB-IoT에 공통으로 적용될 수 있다. MTC와 NB-IoT에서 달라질 수 있는 부분에 대해서는 아래에서 추가로 설명한다.
MTC 네트워크 접속 과정
LTE를 기준으로 MTC 네트워크 접속 과정에 대해 추가로 설명한다. 이하의 설명은 NR에도 확장 적용될 수 있다. 도 1 및/또는 도 11에서 PDCCH는 MPDCCH(MTC PDCCH)(예, 도 9 및 관련 설명 참조)로 대체된다.
LTE에서 MIB는 10개의 예비 비트(reserved bit)를 포함한다. MTC에서 MIB 내 10개의 예비 비트 중 5개의 MSB(Most Significant Bit)는 SIB1-BR(System Information Block for bandwidth reduced device)에 대한 스케줄링 정보를 지시하는데 사용된다. 5개의 MSB는 SIB1-BR의 반복 횟수 및 TBS(Transport Block Size)를 지시하는데 사용된다. SIB1-BR은 PDSCH에서 전송된다. SIB1-BR은 다수의 서브프레임들이 결합되는 것을 허용하도록 512개의 무선 프레임들(5120ms)에서 변하지 않을 수 있다. SIB1-BR에서 운반되는 정보는 LTE 시스템의 SIB1과 유사하다.
MTC 랜덤 접속 과정(또는 RACH 과정)은 기본적으로 LTE 랜덤 접속 과정(또는 RACH 과정)(예, 도 2 및 관련 설명 참조)과 동일하며 다음 사항에서 차이가 있다: MTC 랜덤 접속 과정(또는 RACH 과정)은 CE(Coverage Enhancement) 레벨에 기반하여 수행된다. 예를 들어, PRACH 커버리지 향상을 위해 CE 레벨 별로 PRACH 반복 전송 여부/횟수가 달라질 수 있다. 표 6을 참조하여 설명한 바와 같이, 커버리지 향상 또는 확장을 위해 신호의 반복 전송을 지원하는 모드를 CE 모드라고 지칭하고, 커버리지 향상 또는 확장을 위한 신호의 반복 전송 횟수를 CE 레벨이라고 지칭한다. 예를 들어 표 6에 예시된 바와 같이, 제 1 모드(예, CE 모드 A)는 완전한 이동성 및 CSI 피드백이 지원되는 작은 커버리지 향상을 위한 모드이며, 반복이 없거나 반복 횟수가 작게 설정될 수 있다. 제 2 모드(예, CE 모드 B)는 CSI 피드백 및 제한된 이동성을 지원하는 극히 열악한 커버리지 조건의 단말을 위한 모드이며, 반복 횟수가 크게 설정될 수 있다.
기지국은 복수(예, 3개)의 RSRP(Reference Signal Received Power) 임계 값을 포함하는 시스템 정보를 방송하며, 단말은 상기 RSRP 임계 값과 RSRP 측정 값을 비교하여 CE 레벨을 결정할 수 있다. CE 레벨 별로 다음의 정보들이 시스템 정보를 통해 독립적으로 구성될 수 있다.
- PRACH 자원 정보: PRACH 기회(opportunity)의 주기/오프셋, PRACH 주파수 자원
- 프리앰블 그룹: 각 CE 레벨 별로 할당된 프리앰블 세트
- 프리앰블 시도(attempt) 별 반복 횟수, 최대 프리앰블 시도 횟수
- RAR 윈도우 시간: RAR 수신이 기대되는 시구간의 길이(예, 서브프레임 개수)
- 충돌 해결 윈도우 시간: 충돌 해결 메시지 수신이 기대되는 시구간의 길이
단말은 자신의 CE 레벨에 대응되는 PRACH 자원을 선택한 뒤, 선택된 PRACH 자원에 기반하여 PRACH 전송을 수행할 수 있다. MTC에서 사용되는 PRACH 파형(waveform)은 LTE에서 사용되는 PRACH 파형과 동일하다(예, OFDM 및 Zadoff-Chu 시퀀스). PRACH 이후에 전송되는 신호/메시지들도 반복 전송될 수 있으며, 반복 횟수는 CE 모드/레벨에 따라 독립적으로 설정될 수 있다.
NB-IoT 네트워크 접속 과정
LTE를 기준으로 NB-IoT 네트워크 접속 과정에 대해 추가로 설명한다. 이하의 설명은 NR에도 확장 적용될 수 있다. 도 1 및 도 11에서 PSS, SSS 및 PBCH는 각각 NB-IoT에서 NPSS, NSSS 및 NPBCH로 대체된다. NPSS, NSSS 및 NPBCH에 대한 사항은 도 10을 참조할 수 있다. 또한, 도 1 및/또는 도 11에서, PDCCH, PDSCH, PUSCH, PRACH는 NPDCCH, NPDSCH, NPUSCH, NPRACH로 대체된다.
NB-IoT 랜덤 접속 과정(또는 RACH 과정)은 기본적으로 LTE 랜덤 접속 과정(또는 RACH 과정)(예, 도 2 및 관련 설명 참조)과 동일하며 다음 사항에서 차이가 있다. 첫째, RACH 프리앰블 포맷이 상이하다. LTE에서 프리앰블은 코드/시퀀스(예, Zadoff-Chu 시퀀스)에 기반하는 반면, NB-IoT에서 프리앰블은 서브캐리어이다. 둘째, NB-IoT 랜덤 접속 과정(또는 RACH 과정)은 CE 레벨에 기반하여 수행된다. 따라서, CE 레벨 별로 PRACH 자원이 서로 다르게 할당된다. 셋째, NB-IoT에는 SR 자원이 구성되지 않으므로, NB-IoT에서 상향링크 자원 할당 요청은 랜덤 접속 과정(또는 RACH 과정)을 이용하여 수행된다.
도 12는 NB-IoT RACH에서 프리앰블 전송을 예시한다.
도 12를 참조하면, NPRACH 프리앰블은 4개 심볼 그룹으로 구성되며, 각 심볼 그룹은 CP와 복수(예, 5)의 SC-FDMA 심볼로 구성될 수 있다. NR에서 SC-FDMA 심볼은 OFDM 심볼 또는 DFT-s-OFDM 심볼로 대체될 수 있다. NPRACH는 3.75kHz 서브캐리어 간격의 싱글-톤 전송만 지원하며, 서로 다른 셀 반경을 지원하기 위해 66.7μs과 266.67μs 길이의 CP를 제공한다. 각 심볼 그룹은 주파수 호핑을 수행하며 호핑 패턴은 다음과 같다. 첫 번째 심볼 그룹을 전송하는 서브캐리어는 의사 랜덤(pseudo-random) 방식으로 결정된다. 두 번째 심볼 그룹은 1 서브캐리어 도약, 세 번째 심볼 그룹은 6 서브캐리어 도약, 그리고 네 번째 심볼 그룹은 1 서브캐리어 도약을 한다. 반복 전송의 경우에는 주파수 호핑 절차를 반복 적용하며, NPRACH 프리앰블은 커버리지 향상을 위해 {1, 2, 4, 8, 16, 32, 64, 128}번 반복 전송이 가능하다. NPRACH 자원은 CE 레벨 별로 구성될 수 있다. 단말은 하향링크 측정 결과(예, RSRP)에 따라 결정된 CE 레벨에 기반하여 NPRACH 자원을 선택하고, 선택된 NPRACH 자원을 이용하여 RACH 프리앰블을 전송할 수 있다. NPRACH는 앵커 캐리어에서 전송되거나, NPRACH 자원이 설정된 논-앵커 캐리어에서 전송될 수 있다.
F. DRX(discontinuous reception) 동작
MTC 및/또는 NB-IoT의 주요 시나리오로서, 단말은 예외 보고(exception report), 주기적 보고(periodic report), 네트워크 명령(Network command), 소프트웨어 업데이트/재설정 등과 같은 동작을 지원할 수 있다. 이러한 동작을 배터리 효율적으로 수행하기 위해서 단말은 대부분 배터리 효율 상태에 머물다가 이벤트가 발생할 경우 또는 일정 주기 안의 특정 서브프레임(들)에서 깨어나서 UL/DL 데이터 송수신을 수행하도록 설정될 수 있다. 단말 간의 충돌을 회피하기 위해서 앞서 언급한 특정 서브프레임(들)을 단말기의 IMSI 등을 이용하여 UE 특정(UE-specific)하게 설정할 수 있는데, 주기적인 페이징 확인을 위해 주로 이용되기 때문에 페이징 기회(PO)라고 부른다.
기지국은 특정 페이징 주기마다 적어도 하나의 페이징 기회(paging occasion, PO)를 단말 특정하게 설정하고, 단말은 단말 특정하게 설정된 페이징 기회에서 페이징 메시지를 획득할 수 있도록 한다. 페이징 주기는 페이징 메시지가 전송되는 주기를 지칭할 수 있다. RRC-IDLE 또는 RRC-SUSPENDED 상태의 단말은 자신에게 설정된 페이징 기회에서 연결 상태로 회복하여 페이징 메시지를 수신할 수 있다. UE 특정한 페이징 기회는 SIB2를 통해 시그널링되는 파라미터 및 UE 식별 정보(예, IMSI)를 이용하여 결정될 수 있다.
도 13은 페이징을 위한 DRX 사이클을 예시한다.
전력 소모 감소를 위해 기지국에 의해 불연속 수신(Discontinuous Reception, DRX)이 구성될 수 있다. 단말은 상위 계층 시그널링(예: RRC 계층 시그널링)을 통해 기지국으로부터 DRX 구성 정보(DRX configuration information)를 수신할 수 있다. DRX 구성 정보는 DRX 사이클, DRX 오프셋, DRX 타이머에 대한 구성 정보 등을 포함할 수 있다. 단말은 DRX 구성 정보에 기초하여 기지국에 의해 설정된 DRX 사이클에 따라 슬립(sleep) 모드와 웨이크업(wakeup) 모드를 반복할 수 있다. DRX 사이클은 페이징 사이클과 정렬(align)되지 않을 수 있다. DRX가 구성된 단말의 페이징 기회(PO)가 DRX 사이클의 슬립 구간(sleep duration)에 위치할 경우, 단말은 페이징 메시지를 수신하기 위해 웨이크업 모드로 전환할 수 있다.
웨이크업 모드에서 단말은 페이징과 관련된 물리 채널(예, P-RNTI로 스크램블링된 PDCCH, MPDCCH, NPDCCH)을 모니터링하고 해당 물리 채널을 검출할 수 있다. 또한, 단말은 검출된 물리 채널을 통해 자신의 페이징 ID 및/또는 시스템 정보의 변경을 나타내는 정보를 수신하는 경우, 기지국과의 연결을 초기화(또는 재설정)하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)할 수 있다. 단말은 ON 구간(ON duration)이 끝나면 슬립 모드로 전환하며, 다음 ON 구간까지 슬립 모드로 유지할 수 있다. 슬립 모드에서 단말은 기지국으로부터 전송되는 물리 채널들을 검출/디코딩하기 위한 동작을 수행하지 않지만 기지국과의 연결을 유지하기 위한 회로에 대한 전력은 유지할 수 있다.
도 14는 확장된 DRX(extended DRX, eDRX) 사이클을 예시한다.
DRX 사이클 구성에 따르면 최대 사이클 기간(cycle duration)은 2.56 초로 제한될 수 있다. 하지만, MTC 단말이나 NB-IoT 단말과 같이 데이터 송수신이 간헐적으로 수행되는 단말의 경우 DRX 사이클 동안 불필요한 전력 소모가 발생할 수 있다. 이러한 단말의 전력 소모를 줄이기 위해 PSM(power saving mode)와 PTW(paging time window 또는 paging transmission window)에 기초하여 DRX 사이클을 대폭 확장시키는 방안이 도입되었으며, 이러한 확장된 DRX 사이클을 간략히 eDRX 사이클이라고 지칭한다. PSM은 단말이 거의 0에 가까운 전력 소모를 하는 상태를 지칭하며, PSM에서 기지국은 단말과 전혀 통신할 수 없다. PTW 기간(duration)에서 단말은 DRX 사이클을 수행하여 자신의 페이징 기회(PO)에서 웨이크업 모드로 전환하여 페이징과 관련된 채널을 모니터링할 수 있다. 또한, PTW 기간에서 단말은 하나 이상의 DRX 사이클(예, 웨이크업 모드와 슬립 모드)을 반복할 수 있다. PTW 기간 내에 DRX 사이클의 횟수는 기지국에 의해 상위 계층 신호(예, RRC 계층 신호)를 통해 구성될 수 있다.
G. 본 발명에서 제안하는 방법
본 발명에서는 랜덤 접속 과정(Random Access Procedure)에서 하향링크(downlink) 신호/채널 품질(channel quality)에 대한 보고(report)를 하는 절차와 관련된 제안을 한다.
일반적으로 단말기는 랜덤 접속 과정에서 채널 품질에 대한 측정을 수행하지 않기 때문에(혹은 RRC(Radio Resource Control) 연결(connected) 상태에서 DCI(Downlink Control Information)에서 비경쟁 랜덤 접속(contention free random access)를 트리거(trigger)하는 경우에는 Msg.3에 CQI(Channel Quality Indicator) 정보를 보고 하도록 지시할 수도 있다), 기지국은 RRC 연결(RRC connection)을 맺기 전까지는 보수적으로 하향링크 스케줄링(downlink scheduling)을 한다. 커버리지 확장을 특징으로 하는 시스템(예를 들어, MTC, NB-IoT) 또는 커버리지 확장 모드(Coverage Enhancement(or Extension) mode, CE mode)를 지원하는 non-BL(Bandwidth reduced and Low complexity) UE(또는 일반적인 LTE 단말기)는 반복 전송을 특징으로 하기 때문에, 랜덤 접속 과정에서도 보수적으로 하향링크 스케줄링을 하면 너무 많은 자원이 낭비될 수 있다.
특히 MTC와 NB-IoT 같은 시스템의 특성(주로 metering and reporting의 서비스) RRC 연결 모드(RRC connected mode)(또는 RRC_CONNECTED 상태로 지칭될 수 있음)에서 장시간 동작하지 않을 것으로 예상되기 때문에, RRC 연결 모드 이전에 최대한 빨리 DQI(Downlink channel Quality Information)를 보고 받는 것이 자원 사용 효율 및 전력 절감(power saving) 측면에서 네트워크(network)과 단말에게 유리할 수 있다. 따라서, 본 특허에서는 랜덤 접속 과정에서 기지국의 하향링크 스케줄링을 효율적으로 돕기 위한 조기 DQI 보고(early DQI report) 방법을 제안한다. 본 발명은 기존 랜덤 접속 절차의 변경을 최소화 하기 위하여, Msg.3에 CQI를 보고하기 위해서 필요한 정보를 네트워크가 시스템 정보(system information) 및 Msg.2 단계에서 알려주는 방법과 절차에 관한 것이다.
본 발명이 적용되는 경우에 가장 큰 효과를 볼 수 있는 시스템은 NB-IoT와 MTC(또는 BL(Bandwidth reduced and Low cost)/CE(Coverage Enhancement) UE), CE 모드 UE(UE in CE mode)와 같이 반복 전송을 특징으로 하는 시스템인 점을 고려하여, 편의를 위해서 NB-IoT와 MTC를 예로 하여 설명된다. 즉, 본 특허에서 제안하는 기법은 반복 전송이 적용되지 않거나, 일반적인 통신 시스템에도 적용될 수 있다. 뿐만 아니라, 제안하는 방법이 NB-IoT와 MTC 사이에 동작상에 큰 차이가 없는 경우에, 본 발명은 편의상 NB-IoT를 위주로 작성하지만, NB-IoT에 한정하는 것은 아니고, 감소된 대역폭, 낮은 복잡도 또는 커버리지 개선이 필요한 단말 (ex. MTC(machine type communication) 단말, BL/CE 단말 등) 및 관련 시스템에도 적용될 수 있다.
앞서 살핀 내용들(3GPP system, frame structure, MTC/NB-IoT 시스템 등)은 후술할 본 발명에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 발명에서 제안하는 방법들의 기술적 특징을 명확하게 하는데 보충될 수 있다.
약어
ACK/NACK: Acknowledgement/Negative-Acknowledgement
AL: Aggregation Level
BER: Bit Error Rate
BLER: Block Error Rate
CE: Coverage Enhancement(or Coverage Extension)
BL/CE: Bandwidth reduced Low cost / Coverage Enhanced or Extended
CBRA: Contention Based Random Access
CCE: Control Channel Element
CE: Coverage Extension or Enhancement
CFRA: Contention Free Random Access
CQI: Channel Quality Information
CRS: Common or Cell-specific Reference Signal
CSI: Channel State Information
CSS: Common Search Space
DCI: Downlink Control Information
DMRS: DeModulation Reference Signal
DQI: Downlink (channel) Quality Information
DQI-RS: DQI-Reference reSource
ECCE: Enhanced Control Channel Element
EDT: Early Data Transmission
eMTC: enhanced Machine Type Communication
HARQ: Hybrid Automatic Repeat reQuest
MAC: Medium Access Control
MCS: Modulation and Coding Scheme
MTC: Machine Type Communication
NB: NarrowBand
NRS: Narrowband Reference Signal
PMI: Precoding Matrix Indicator
PRB: Physical Resource Block
QAM: Quadrature Amplitude Modulation
R: Repetition number
RAR: Random Access Response
PUR: Preconfigured Uplink Resource
RB: Resource Block
RE: Resource Element
RI: Rank Indicator
RLM: Radio Link Monitoring
RRC: Radio Resource Control
RSRP: Reference Signal Received Power
RSRQ: Reference Signal Received Quality
RSSI: Received Signal Strength Indicator
SIB: System Information Block
SNR: Signal-to-Noise Ratio
SPS: Semi-Persistent Scheduling
TA: Timing Advance
TBS: Transport Block Size
TM: Transmission Mode
UCI: Uplink Control Information
USS: UE-specific Search Space
랜덤 접속 과정
랜덤 접속 과정은 일반적으로 6 단계로 구성된다.
(RA-0) 기지국(예: eNB, gNB, network, etc.)은 랜덤 접속에 사용할 자원 등에 대한 정보를 방송(broadcast)(또는 전송(transmit))
초기 랜덤 접속(initial random access) 과정에서 단말기(예: user equipment, UE, terminal, etc)가 사용한 하향링크 자원(downlink resource)과 상향링크 자원(uplink resource) 등에 대한 설정(configuration)은 시스템 정보(system information)을 통해서 기지국으로부터 단말기에게 방송(broadcast)된다(예, 도 1의 S12 단계 또는 도 11의 S1904 단계 참조). 단말기는 하향링크 동기화(downlink synchronization)을 획득한 이후에, 해당 기지국의 방송 정보로부터 랜덤 접속 관련 설정을 확인하고, 단말기는 msg.1 전송으로 접속(access)를 시도한다(예, 도 1의 S13 단계 또는 도 11의 S1906 단계 참조). msg.1은 랜덤 접속 프리앰블(random access preamble) 또는 RACH 프리앰블 또는 PRACH 프리앰블로 지칭될 수 있다.
MTC와 NB-IoT 시스템에서는 단말기의 CE(Coverage Extension or Enhancement) 레벨에 따라서, 사용할 수 있는 Msg.1 시간/주파수/시퀀스가 달리 정의될 수 있다. 뿐만 아니라, CE 레벨(CE level) 별로 (RA-1), (RA-2), (RA-3), (RA-4) 에서 사용할 수 있는 자원을 달리 설정할 수 있다. CE 레벨은 기지국이 시스템 정보로 방송해준 RSRP(Reference Signal Received Power) 기준 값에 따라서 결정되며, 단말기는 자신이 하향링크에서 측정한 RSRP 값과 기지국이 방송해준 RSRP 값을 비교하여 CE 레벨을 선택한다. MTC에서는 CE 모드가 추가로 정의되어 있으며, CE 모드 A와 CE 모드 B가 있다(예, 표 6 및 관련 설명 참조). CE 모드는 단말기가 RRC 연결 상태(RRC connected state)로 진입하면, 기지국에 의해서 설정될 수 있지만, 초기 랜덤 접속 과정(initial random access procedure)에서는 CE 레벨 0과 1은 CE 모드 A로, CE 레벨 2와 3은 CE 모드 B로 가정하여 동작한다.
(RA-1) 단말기가 Msg.1을 기지국으로 전송
단말기는 자신의 CE 레벨을 우선적으로 결정하고, 해당 CE 레벨을 위해서 설정된 Msg.1 자원에 프리앰블(preamble)(Msg.1)(예, 랜덤 접속 프리앰블 또는 RACH 프리앰블 또는 PRACH 프리앰블)을 전송한다(예, 도 1의 S13 단계 또는 도 11의 S1906 단계 참조). Msg.1이 전송된 시간/주파수 자원에 따라서 RA-RNTI 값이 정의되며, 단말기가 선택한 Msg.1 프리앰블은 RAP-ID(Random Access Preamble IDentifier) 값으로 사용된다.
(RA-2) 기지국이 검출된 Msg.1에 대한 응답을 Msg.2로 단말기에게 전송
기지국이 전송하는 Msg.2는 RAR(Random Access Response)라 불리며, RAR은 (N)PDSCH에 포함되어 전송되며, 이는 (N)PDCCH 또는 MPDCCH에 의해서 스케줄링된다(예, 도 1의 S14 단계 또는 도 11의 S1908 단계 참조). 따라서, 단말기는 Msg.1 전송 이후에 (N)PDCCH 또는 MPDCCH를 모니터링(monitoring) 하며, 이를 검출 시도하는 시간/주파수(예, NB(Narrow Band), NB-IoT 캐리어) 자원 및 최대 반복 전송 횟수 및 주파수 호핑(frequency hopping) 정보 등은 (RA-0) 단계에서 방송 정보를 통해서 획득된다. 단말기가 검출 시도하는 (N)PDCCH 또는 MPDCCH는 (RA-1) 단계에서 RA-RNTI 값으로 스크램블링(scrambling) 되어 있기 때문에, 동일한 시간/주파수 자원에 Msg.1을 전송한 단말기는 동일한 (RA-RNTI로 스크램블링된) (N)PDCCH 또는 MPDCCH를 검출할 수 있다. 만약, 성공적으로 이를 검출한 경우에는 해당 DCI가 지시하는 (N)PDSCH를 검출해서 RAR 정보를 획득한다. RAR에는 기지국이 (RA-1) 단계에서 검출된 다수의 Msg.1에 대한 정보를 포함하고 있을 수 있으며, 이는 RA-RNTI로 구분된다. 즉, 단말기는 (N)PDSCH 내에서 자신이 (RA-1) 단계에서 사용한 Msg.1 프리앰블에 대응하는 RA-RNTI 값을 찾고, 해당 RA-RNTI에 대응하는 RAR 정보를 획득한다. RAR 정보는 단말기가 (RA-3) 단계에서 전송할 Msg.3에 대한 설정과 (RA-1) 단계에서 추정된 TA(Timing Advance) 값 등이 포함되어 있다. 여기서, (RA-3) 단계에서 전송한 Msg.3에 대한 설정은 UL 그랜트(grant)라고 할 수 있다. MTC의 경우에는 (RA-4) 단계에서 모니터링(monitoring) 할 MPDCCH의 주파수 자원(NB)에 대한 정보까지도 RAR에 포함되어 있다.
(RA-3) 단말기는 Msg.2에서 지시된 바에 따라서 Msg.3를 기지국에게 전송
단말기는 (RA-2) 단계에서 획득한 UL 그랜트의 지시에 따라서, Msg.3에 (N)PUSCH를 전송하며(예, 도 1의 S15 단계 또는 도 11의 S1910 단계 참조), (RA-4) 단계에서 경쟁 해결(contention resolution)을 위해 자신의 ID(예, S-TMSI) 값을 이에 포함할 수 있다.
(RA-4) 기지국은 Msg.3를 검출하고, 이에 대한 응답으로 Msg.4를 단말기에게 전송
단말기는 (RA-3) 과정에서 전송한 Msg.3에 대한 응답으로 Msg.4 검출을 시도한다(예, 도 1의 S16 단계 또는 도 11의 S1912 단계 참조). 이는 (RA-2) 과정과 마찬가지로 (N)PDCCH 또는 MPDCCH를 우선적으로 검출 시도하며, 이때 스크램블링에 사용된 RNTI는 (RA-2) 단계에서 RAR로 받은 TC-RNTI일 수 있다. 검출된 (N)PDCCH 또는 MPDCCH는 Msg.3 재전송을 지시하는 UL 그랜트를 포함하거나 또는 Msg.3에 대한 응답을 포함하는 (N)PDSCH를 스케줄링하는 DL 그랜트일 수 있다. 즉, 단말기는 UL 그랜트가 검출되면, UL 그랜트가 지시하는 바에 따라서 (RA-3) 과정을 다시 수행하며, DL 그랜트가 검출되면 지시하는 바에 따라서 (N)PDSCH를 검출해서 Msg.3에 대한 응답을 확인할 수 있다.
G.1 랜덤 접속 과정 동안 측정 보고(Measurement report during random access procedure)
단말기는 랜덤 접속 과정 (RA-1) 또는 (RA-3)에서 DQI에 대한 정보를 기지국에 보고 할 수 있으며, 보고 하는 단계에 따라서 방법이 상이할 수 있다. 즉, 단말은 DQI에 대한 정보를 포함하는 Msg.1(preamble) 및/또는 Msg.3를 기지국으로 전송(또는 보고)할 수 있다.
먼저, (RA-1)에서 보고 하는 경우에는, (RA-0) 단계에서 하향링크 채널 품질에 따라서 단말기가 사용할 수 있는 Msg.1 자원(resource)(시간 그리고/또는 주파수 그리고/또는 프리앰블)을 달리 설정할 수 있다. 즉, 단말기가 전송하는 Msg.1의 자원은 우선 CE 레벨에 따라서 먼저 선택되고, 해당 자원 내에서 DQI에 따라서 하나 이상의 레벨로 세분화된 자원을 사용하도록 설정될 수 있다. 다시 말해, 단말기가 전송하는 Msg.1의 자원은 2-단계(2-step)(제1 단계(first step): CE 레벨, 제2 단계(second step): 하향링크 채널 품질(downlink channel quality))에 따라 설정될 수 있다. 여기서 Msg.1에 포함되는 DQI는 아래에서 제안하는 DQI의 여러 레벨 중에 특정 값을 기준으로 높거나 낮음을 나타내며, 해당 값을 기준으로 DQI의 오프셋 레벨(offset level)은 Msg.3 또는 다른 시점에 다른 자원을 사용해서 기지국에 전달될 수 있다.
이는, 단말기가 선택하는 CE 레벨은 RSRP 기준으로만 설정되기 때문에, 신호 세기의 정보만 포함될 수 있기 때문이다. 예를 들어, 신호 세기는 높지만, 인접 셀(cell)간 간섭 및 기지국 다중 안테나의 공간상관이 높은 이유 등으로 신호/채널 품질(signal/channel quality)는 낮을 수도 있다. 이는 CE 레벨이 낮은 경우(RSRP가 상대적으로 높은 상황)에도 단말기가 (RA-2) 또는 (RA-4) 과정에서 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH 수신 성능이 좋지 않을 수도 있음을 의미한다. 즉, 단말기의 수신 성능은 신호 세기가 아닌 신호/채널 품질과 더욱 밀접하게 관계 있기 때문에, 이를 기지국에 미리 알리기 위한 용도로 Msg.1의 자원을 동일 CE 레벨 내에서도 하향링크 채널에 따라서 구분할 수 있다. 기지국은 검출된 Msg.1의 자원으로부터 채널 품질 정보를 획득하여 하향링크 스케줄링(downlink scheduling)를 효율적으로 할 수 있다.
다른 방법으로는, 단말기가 (RA-3) 과정에서 DQI를 제공하여, (RA-4)에서 기지국이 하향링크 스케줄링(downlink scheduling)에 이를 활용할 수 있도록 할 수도 있다. 이는 랜덤 접속 절차의 종류에 따라서 다른 방법이 고려될 수 있다.
이하, 해당 방법에 대해 보다 구체적으로 살펴본다.
G.1.1 경쟁 기반 랜덤 접속 과정 동안 측정 보고(Measurement report during contention based random access (CBRA) procedure)
상술한 바와 같이, 단말기는 (RA-3)에서 DQI를 보고할 수 있으며, 해당 정보는 (RA-4)의 (N)PDCCH/MPDCCH 수신 성능과 관계가 있거나 그리고/또는 (RA-4)의 (N)PDSCH 수신 성능과 관계 있는 정보일 수 있다.
즉, 보고 되는 DQI는 다음과 같은 정보를 포함할 수 있다. 이하, 정보는 설명의 편의를 위하여 구분된 것일 뿐, 이하 설명되는 정보 모두 또는 그 중 일부만 포함될 수도 있다.
(1) RSRQ
RSRQ는 실제 하향링크 참조 신호(downlink reference signal)의 채널 품질(channel quality)를 대표하는 값으로 기지국의 하향링크 스케줄링(downlink scheduling)에 직접 또는 간접적으로 활용될 수 있는 참고 메트릭(metric) 이다. RSRQ는 일반적인 CQI 정보와 달리 특정 기준 MCS 및 PMI, RI 등의 설정을 필요로 하지 않기 때문에, CQI 추정보다 낮은 복잡도로 구현될 수 있는 장점이 있으며, 기지국이 DQI를 수신한 이후에 단말기에게 하향링크 스케줄링에 사용할 전송 모드(transmission mode) 등과 관련된 제약을 요구하지 않는 장점이 있다. 이는 특히 랜덤 접속 과정에서 기준 MCS와 PMI 등이 설정되지 않은 상황에 더욱 적합한 DQI로 활용될 수 있다.
A. Msg.2를 수신한 (NB-IoT) 캐리어 또는 NB(NarrowBand)에서 RSRQ 값
보고하는 논리적인 값의 1 단계(또는 하나의 단계) 차이는 RSRQ 표현 범위를 등간격으로 나누지 않은 값일 수 있다.
i. Msg.2가 주파수(예, NB) 호핑한 경우에, 호핑한 주파수의 RSRQ 평균 값
ii. 또는 특정 주파수 자원(PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal)가 전송되는 중심(center) 6RB 또는 주파수 호핑 자원(frequency hopping resource) 중에서 최저(lowermost)/최고(highest) 인덱스에 해당하는 주파수 자원 또는 (RA-0)에서 지시된 값 등)에서만 측정한 RSRQ 값
상기 주파수 자원은 DQI가 RSRQ가 아닌 특정 채널(예를 들어, (N)PDCCH/MPDCCH 또는 (N)PDSCH)에 대한 수신 성능 정보(예를 들어, 특정 BLER을 만족하기 위한 조건(예를 들어, 반복 전송 횟수, AL(Aggregation Leve) 등))를 포함하는 경우에도 마찬가지로 적용될 수 있다.
iii. 또는 가장 높은 RSRQ를 갖는 주파수 자원 정보 또는 주파수 자원 별 RSRQ
iv. 또는 (RA-4) 단계에서 (N)PDCCH/MPDCCH 모니터링에 사용될 주파수 자원에 대한 RSRQ
v. 또는 (RA-4) 단계에서 (N)PDSCH 수신에 사용될 주파수 자원에 대한 RSRQ
vi. 또는 (RA-4) 단계에서 (N)PDCCH/MPDCCH 모니터링에 사용될 주파수 자원과 Msg.2 수신에 사용된 주파수 자원 사이에 중복된 주파수 자원에 대한 RSRQ
vii. 또는 (RA-4) 단계에서 (N)PDSCH 수신에 사용될 주파수 자원과 Msg.2 수신에 사용된 주파수 자원 사이에 중복된 주파수 자원에 대한 RSRQ
viii. 상기 주파수 자원(예를 들어, NB) 별 RSRQ는 RSRP와 RSSI로부터 유도되며, RSSI는 특정 주파수 자원 또는 획득된 주파수 자원 별 RSSI의 평균 값일 수 있으며, RSRP는 주파수 자원 별 RSRP일 수 있다. 또는 반대로 잡음(noise)와 간섭(interference)를 포함하는 RSSI 정보가 주파수 자원 별로 다를 수 있다고 가정해서, RSSI는 주파수 자원 별 RSSI일 수도 있다.
(2) Msg.2의 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH 수신 정보
A. (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH를 수신 성공 했을 때의 (N)PDCCH/MPDCCH 또는 (N)PDSCH의 R(repetition number) 그리고/또는 AL(aggregation level)
(N)PDCCH 또는 MPDCCH 또는 (N)PDSCH의 Rmax(최대 반복 전송 횟수)는 (RA-0) 단계에서 획득되며, 단말기는 설정된 Rmax보다 작은 값의 R에서 이를 성공적으로 검출할 수도 있다. 따라서, R은 단말기의 DQI를 표현하기 위해서 사용될 수 있다. 뿐만 아니라, ((N)PDCCH 또는 MPDCCH에) 병합(aggregation)이 적용되는 경우에 수신 검출 성공한 병합 레벨(AL) 정보도 마찬가지로 활용될 수 있다. Msg.3에서 품질 보고(quality report)(예를 들어, R 그리고/또는 AL)에 사용되는 비트 수에 따라서 보고 범위 그리고/또는 보고하는 R 그리고/또는 AL의 표현 단위는 달리 설정될 수 있다.
i. 표현 범위의 최소 값은 1이 아닌 특정 값(X)으로 설정될 수도 있다. 이는 X보다 낮은 값은 채널 품질이 이미 충분히 좋음을 의미하기 때문에, 더욱 세분화된 정보가 필요 없을 수 있기 때문이다. 즉, 실제 R 값이 X보다 작은 경우에 보고되는 값은 논리적으로 보고 값을 가장 작은 값(또는 레거시(legacy) 시스템과 역호환성(backward compatibility)으로 유지하기 위해서 예약된 값을 제외한 최소 값)으로 매핑 되어 보고될 수 있다.
ii. 표현 범위의 최대 값은 aR(기지국이 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH 전송에 사용한 실제 반복 전송 횟수로 Rmax 보다 같거나 작은 값일 수 있으며, 이는 DCI에서 지시되는 값)로 제한될 수 있다. 또는, 표현 범위의 최대 값은 Rmax로 제한되거나, 또는 Rmax보다 K배(예를 들어, 2배) 더 큰 값으로 제한될 수 있다. Rmax 보다 큰 값이 허용되는 이유는 Msg.4의 (N)PDCCH/MPDCCH 또는 (N)PDSCH 스케줄링에 사용될 수 있는 반복 횟수(예를 들어, 최대 값인 Rmax)가 Msg.2의 값과 다를 수 있기 때문이다.
iii. 표현 단위는 허용된 표현 범위 내에서 균등하게 설정되지 않고, 비균등하게 설정될 수도 있다. 즉, 보고 하는 논리 값의 낮은 범위에서의 1 단위(또는 하나의 단위)와 높은 범위에서의 1 단위(또는 하나의 단위)가 실제로 나타내는 R 그리고/또는 AL의 단위/간격은 상이할 수 있다. 이는, 낮은 R 그리고/또는 AL의 값에서 부정확한 값(양자화에 대한 오차)은 (RA-4) 스케줄링에 큰 영향이 없지만, 높은 R 그리고/또는 AL의 값에서 1 단계 차이는 (RA-4) 단계에서 실제 하향링크 스케줄링(downlink scheduling)에 적용되는 반복 전송 횟수가 아주 크게 다를 수 있기 때문이다.
상기 제안된 DQI의 표현 범위는 아래에서 제안하는 DQI에 R 또는 AL이 포함되는 경우에, 모두 적용될 수 있다. 또한, 상기 DQI 정보에 R 또는 AL이 선택적으로 포함되는 경우에는 각각 R과 AL을 구함에 있어서 기준 AL(reference AL)과 기준(reference R)이 정의될 필요가 있다. 즉, (N)PDCCH/MPDCCH를 특정 성능 요구 조건(performance requirement)을 만족하는 R을 유도함에 있어서, 단말기가 가정할 수 있는 기준 AL 값이 필요할 수 있다. 마찬가지로 AL을 유도하는 경우에는 단말기가 가정할 수 있는 기준 R 값이 필요할 수 있다. 각 기준 AL과 R 값은 Msg.2 MPDCCH의 Rmax에 의해서 유도 되거나, 또는 기지국으로부터 독립적으로 설정되거나, 또는 Msg.2 MPDCCH 전송에 실제 적용된 AL 및/그리고 R 값으로부터 유도될 수도 있다. 예를 들어, DQI 정보는 AL을 선택적으로 포함할 수 있다. 보다 구체적인 예로, R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우, DQI는 R과 함께 AL을 포함할 수 있다. 혹은 다른 예로, R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우, DQI 정보는 R을 포함하지만 AL을 포함하지 않고 AL은 기준 AL 값(예, 24)을 가정할 수 있다. 이 예에서, 단말은 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH를 수신 성공 했을 때의 (N)PDCCH/MPDCCH 또는 (N)PDSCH의 R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우 기준 AL 값이 R(예, 1)로부터 유도될 수 있다.
DQI를 단말기가 Msg.2의 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH를 수신 성공 했을 때의 (N)PDCCH/MPDCCH 또는 (N)PDSCH의 R(repetition number) 그리고/또는 AL(aggregation level) 값으로 보고하는 이유는 RSRQ 및 특정 포맷의 채널(예를 들어, (N)PDCCH, MPDCCH, PDSCH)을 가정한 CQI를 계산하기에는 R 값이 너무 작아서, RSRQ 또는 CQI를 측정하기 위해서 추가적인 시간 동안 참조 신호(reference signal)을 수신해야 하는 부담이 있을 수 있기 때문이다. 즉, 단말기는 특정 값(기지국에서 설정 받거나 또는 표준에 정의될 수 있음)보다 작은 시간 자원 내에서 Msg.2 수신 검출을 성공했다면, RSRQ 또는 CQI를 측정하기 보다는 하향링크 채널 품질이 충분히 좋다는 정보를 간접적으로 기지국에 보고하는 것이 전력 절감(power saving) 측면에서 이득일 수 있다. 이를 위해서 기지국은 보고 받을 DQI의 특정 값(들)을 이와 같은 보고를 위해서 유보(reserve)할 수 있다. 즉, 단말기는 R 그리고/또는 AL이 충분히 작은 경우에 R 그리고/또는 AL를 유보된 상태(reserved state) 중에서 선택해서 보고할 수 있다. 만약, 이를 위한 유보된 상태가 따로 정의되지 않는 경우에는 DQI의 특정 값(채널 품질이 좋음을 나타내는 값)으로 보고할 수도 있다.
(3) Msg.4의 (N)PDCCH/MPDCCH 수신 성능 정보
A. 단말기는 (RA-0) 단계에서 및/또는 (RA-4) 단계에서 사용될 수 있는 또는 사용될 가능성이 있는 주파수 자원(frequency resource)(예, (NB-IoT) 캐리어 또는 NB)를 획득할 수 있다. 결국, Msg.3에 전송된 DQI가 가장 먼저 활용될 수 있는 단계는 (RA-4)의 (N)PDCCH/MPDCCH 스케줄링(scheduling)이기 때문에, (RA-4) 단계에서 사용할 수 있는 주파수 자원 정보의 DQI를 보고(report)하는 것이 바람직할 수 있다. 다만, MTC와 같은 시스템에서는 (RA-4) 단계에서 MPDCCH 모니터링에 사용될 주파수 자원의 정확한 정보가 Msg.2 PDSCH의 RAR에서 지시 받을 수 있기 때문에, 해당 정보를 정확히 얻고 난 이후에 Msg.3를 전송하기까지 남은 시간 동안 해당 주파수 자원의 DQI를 계산하기에는 충분한 시간이 보장되지 않을 수 있다. 따라서, 다음과 같은 방법을 고려할 수 있다.
i. (RA-0) 단계에서 획득한 정보를 기반으로 (RA-4) 단계에서 사용할 가능성이 있는 주파수 자원 별로 DQI를 각각 계산하고, RAR에서 획득한 정보(예, (RA-4) 단계에서 모니터링할 주파수 자원)에 해당하는 DQI만 보고 할 수 있다.
ii. 만약, 주파수 호핑이 적용된 경우에, Msg.3를 전송하기 X 시간만큼 이전에 호핑에 사용되었던 주파수 자원은 DQI 측정 및 보고에서 배제될 수 있다. 또는, X가 특정 값보다 작은 경우에는 DQI 보고가 생략되거나 또는 X에 따라서 보고 가능한 DQI의 최대 값이 특정 값으로 제한될 수도 있다.
iii. Msg.2는 (N)PDCCH/MPDCCH와 (N)PDSCH로 구성되는데, DQI 측정을 위해서 사용되는 DQI 참조 자원(reference resource)는 (N)PDCCH/MPDCCH로만 제한될 수 있으며, 더 나아가서는 (N)PDCCH/MPDCCH 전송이 시작(또는 설정된 Msg.2 모니터링 구간이 시작)되는 초반 Y 시간 내의 자원로만 한정될 수도 있다. 이는 단말기의 처리 능력(processing power)를 최대한 낮추기 위함일 수 있다. 또는, 단말기의 처리 능력(processing power)가 충분한 경우에는, (N)PDCCH/MPDCCH를 Rmax 이전에 검출 성공했다고 하더라도, 그 이상의 구간/자원 (Rmax 보다는 작은)를 추가적으로 수신해서 DQI를 측정하도록 설정될 수도 있다. 뿐만 아니라, (N)PDSCH를 수신하는 시간/주파수(time/frequency)도 DQI 참조 자원(DQI 측정에 사용될 수 있거나 또는 DQI와 관련된 채널이 전송될 수 있는 가상의 자원)에 포함될 수도 있다. 특히, Msg.2 (N)PDCCH/MPDCCH 주파수 자원은 Msg.4의 (N)PDCCH/MPDCCH 주파수 자원에 완벽히 포함되지는 않지만, (N)PDSCH 주파수 자원은 Msg.4의 (N)PDCCH/MPDCCH 주파수 자원에 일부 겹칠 수 있는 상황에서 이와 같은 DQI 참조 자원 확장((N)PDSCH 자원까지 포함하도록 하는)이 더욱 필요할 수 있다.
B. 상기 제안처럼 다수의 주파수 자원에서 측정한 채널 품질 정보는
i. 주파수 자원 별로 모두 보고 되거나
ii. 또는 주파수 자원 별로 측정된 값의 평균 값 또는 대표 값으로 보고되거나 (여기서 RSSI는 평균 값으로 RSRP는 NB 별로 독립적으로 측정된 값일 수 있으며, RSRQ 또는 수신 성능과 관련된 정보를 보고하는 경우에는 잡음(noise) 정보는 평균 값을 기준으로 산출되고 품질(quality) 정보는 각 NB 별로 측정된 값을 기준으로 산출될 값일 수 있다.)
iii. 또는 주파수 자원 별로 측정된 값의 평균 값 또는 대표 값과 함께 DQI 차이 (예를 들어, 평균 값 또는 대표 값을 기준으로 델타(delta) 또는 오프셋(offset)으로 표현)가 나머지 또는 모든 주파수 자원에 대해서 보고 되거나
iv. 또는 주파수 자원 별로 측정된 값의 평균 값 또는 대표 값과 함께 DQI 참조 자원 중에서 특정 주파수 자원(예를 들어, NB 또는 NB-IoT 캐리어)의 DQI 차이 (예를 들어, 평균 값 또는 대표 값을 기준으로 델타(delta) 또는 오프셋으로 표현)가 나머지 또는 모든 주파수 자원에 대해서 보고 되거나
v. 또는 RAR에서 획득한 정보((RA-4) 단계에서 모니터링할 주파수 자원 또는 표준 또는 시스템 정보로 특정 자원(예, 앵커-캐리어 또는 PSS/SSS가 전송되는 중심(center) 6RB 또는 Msg.2가 사용하는 주파수 자원 또는 Msg.4에 사용될 주파수 자원 중에서 Msg.2가 사용하는 주파수 자원에 가장 가까운 주파수 자원)에 대해서만 보고하라고 설정된 주파수 자원)에 해당하는 DQI만 보고 되거나
vi. 또는 주파수 자원 별로 측정된 값의 평균 값 정보가 보고되거나
vii. 또는 주파수 자원 별로 측정된 값 중 가장 좋은 N개(예, 시스템 정보(system information)으로 설정될 수 있거나 또는 Msg.2에서 지시 받을 수 있음) 주파수 자원의 채널 품질과 해당 주파수 자원 인덱스 정보가 보고되거나
viii. 또는 주파수 자원 별로 측정된 값 중 가장 나쁜 N개(예, 시스템 정보로 설정될 수 있거나 또는 Msg.2에서 지시 받을 수 있음) 주파수 자원의 주파수 자원 인덱스 그리고/또는 해당 채널 품질 정보가 보고될 수 있다.
C. 상기 제안처럼 측정된 채널 품질 정보는 (RA-3) 과정 이전에 획득한 정보를 바탕으로,
i. 특정 참조 DCI 포맷(reference DCI format) (예를 들어, Msg.4에서 기대되는 (N)PDCCH/MPDCCCH 의 DCI 포맷)를 기준으로 BLER Z%(예를 들어, 1%)를 기대할 수 있는 R(단말이 선호하는)의 최소 값 그리고/또는 AL의 최소 값 그리고/또는 참조 신호(reference signal)(예를 들어, DMRS)의 포트 정보 그리고/또는 자원 할당 타입(예, distributed or localized) 그리고/또는 (N)CCE/ECCE 인덱스)를 포함할 수 있다. 여기서 참조 DCI 포맷은 특정 DMRS 포트를 가정하도록 허용될 수도 있다.
ii. 만약, (RA-4) 단계에서 Msg.4 (N)PDCCH/MPDCCH의 R (단말이 선호하는) 값이 보고되는 경우에는, (RA-3) 과정 이전에 획득한 (RA-4) 단계에서 사용될 Rmax 값의 비율에 대한 정보로 표현될 수 있다. 즉, 보고되는 DQI의 논리적 값의 범위는 (RA-3) 과정에서 획득한 (RA-4) 단계에서 사용될 Rmax에 따라서 실제 R이 달리 해석될 수 있다. 상기 제안에서 논리적 표현 값의 단위는 실제 R의 표현 범위 내에서 균일하게 분포되지 않을 수 있다.
한편, (2)에서 설명한 바와 유사하게, DQI 정보에 R 또는 AL이 선택적으로 포함되는 경우에는 각각 R과 AL을 구함에 있어서 기준 AL(reference AL)과 기준 R(reference R)이 정의될 필요가 있다. 즉, (N)PDCCH/MPDCCH를 특정 성능 요구 조건(performance requirement)을 만족하는 R을 유도함에 있어서, 단말기가 가정할 수 있는 기준 AL 값이 필요할 수 있다. 마찬가지로 AL을 유도하는 경우에는 단말기가 가정할 수 있는 기준 R 값이 필요할 수 있다. 각 기준 AL과 R 값은 Msg.2 MPDCCH의 Rmax에 의해서 유도 되거나, 또는 기지국으로부터 독립적으로 설정되거나, 또는 Msg.2 MPDCCH 전송에 실제 적용된 AL 및/그리고 R 값으로부터 유도될 수도 있다. 예를 들어, DQI 정보는 AL을 선택적으로 포함할 수 있다. 보다 구체적인 예로, R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우, DQI는 R과 함께 AL을 포함할 수 있다. 혹은 다른 예로, R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우, DQI 정보는 R을 포함하지만 AL을 포함하지 않고 AL은 기준 AL 값(예, 24)을 가정할 수 있다. 이 예에서, 단말은 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH를 수신 성공 했을 때의 (N)PDCCH/MPDCCH 또는 (N)PDSCH의 R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우 기준 AL 값이 R(예, 1)로부터 유도될 수 있다.
(4) Msg.4의 (N)PDSCH 수신 성능 정보
A. 단말기는 (RA-0) 단계에서 (RA-4) 단계에서 사용될 수 있는 또는 사용될 가능성이 있는 주파수 자원(예, (NB-IoT) 캐리어 또는 NB)를 획득할 수 있다. 그리고 MTC의 경우에는 Msg.4 PDSCH가 스케줄(schedule)될 수 있는 LTE 시스템 대역폭(system bandwidth) 내의 주파수 자원 NB가 Msg.4 MPDCCH에서 지시된다. NB-IoT와 MTC 모두 (N)PDSCH 스케줄링 정보(예를 들어, MCS, TBS, 자원 할당, 반복 횟수)는 DL 그랜트에서 지시되기 때문에, Msg.3에 전송된 DQI는 Msg.4 (N)PDSCH 스케줄링에도 활용될 수 있다. 따라서, Msg.3에 전송되는 DQI는 아래와 같은 정보를 포함할 수 있다.
i. (RA-0) 단계에서 획득한 정보를 기반으로 (RA-4) 단계에서 사용할 가능성이 있는 주파수 자원 별로 DQI를 각각 계산하고, RAR에서 추가적인 정보(예를 들어, (RA-4) 단계에서 모니터링할 주파수 자원)를 획득하는 경우에, 해당하는 DQI만 보고할 수 있다.
ii. 만약, 주파수 호핑(frequency hopping)이 적용된 경우에, Msg.3를 전송하기 X 시간만큼 이전에 호핑에 사용되었던 주파수 자원은 DQI 측정 및 보고에서 배제될 수 있다. 또는, X가 특정 값보다 작은 경우에는 DQI 보고가 생략되거나 또는 X에 따라서 보고 가능한 DQI의 최대 값이 특정 값으로 제한될 수도 있다.
iii. Msg.2는 (N)PDCCH/MPDCCH와 (N)PDSCH로 구성되는데, DQI 측정을 위해서 사용되는 DQI 참조 자원(reference resource)은 (N)PDCCH/MPDCCH로만 제한될 수 있으며, 더 나아가서는 (N)PDCCH/MPDCCH 전송이 시작(또는 설정된 Msg.2 모니터링 구간이 시작)되는 초반 Y 시간 내의 자원으로만 한정될 수도 있다. 이는 단말기의 처리 능력(processing power)를 최대한 낮추기 위함일 수 있다. 또는, 단말기의 처리 능력(processing power)가 충분한 경우에는, (N)PDCCH/MPDCCH를 Rmax 이전에 검출 성공했다고 하더라도, 그 이상의 구간/자원 (Rmax 보다는 작은)를 추가적으로 수신해서 DQI를 측정하도록 설정될 수도 있다. 뿐만 아니라, (N)PDSCH를 수신하는 시간/주파수도 DQI 참조 자원에 포함될 수도 있다. 특히, Msg.2 (N)PDCCH/MPDCCH 주파수 자원이 호핑하지 않거나 또는 LTE 시스템 대역폭(system bandwidth) 대비 특정 비율보다 작은 주파수 자원만 사용하는 경우에, 이와 같은 DQI 참조 자원 확장(예, (N)PDSCH 자원까지 포함하도록 하는)이 더욱 필요할 수 있다.
B. 상기 제안처럼 다수의 주파수 자원에서 측정한 채널 품질 정보는
i. 주파수 자원 별로 모두 보고되거나
ii. 또는 주파수 자원 별로 측정된 값의 평균 값 또는 대표 값으로 보고되거나 (여기서 RSSI는 평균 값으로 RSRP는 NB 별로 독립적으로 측정된 값일 수 있으며, RSRQ 또는 수신 성능과 관련된 정보를 보고하는 경우에는 잡음(noise) 정보는 평균 값을 기준으로 산출되고 품질(quality) 정보는 각 NB 별로 측정된 값을 기준으로 산출될 값일 수 있다.)
iii. 또는 주파수 자원 별로 측정된 값의 평균 값 또는 대표 값과 함께 채널 품질 차이 (예를 들어, 평균 값 또는 대표 값을 기준으로 델타(delta) 또는 오프셋으로 표현)가 나머지 또는 모든 주파수 자원에 대해서 보고 되거나
iv. 또는 RAR에서 획득한 정보(예, (RA-4) 단계에서 모니터링할 주파수 자원 또는 표준 또는 시스템 정보(system information)으로 특정 자원(예, 앵커-캐리어(anchor-carrier) 또는 PSS/SSS가 전송되는 중심(center) 6RB 또는 Msg.2가 사용하는 주파수 자원 또는 Msg.4에 사용될 주파수 자원 중에서 Msg.2가 사용하는 주파수 자원에 가장 가까운 주파수 자원)에 대해서만 보고하라고 설정된 주파수 자원)에 해당하는 DQI만 보고되거나
v. 또는 주파수 자원 별로 측정된 값의 평균 값 정보가 보고되거나
vi. 또는 주파수 자원 별로 측정된 값 중 가장 좋은 N개(예, 시스템 정보로 설정될 수 있거나 또는 Msg.2에서 지시 받을 수 있음) 주파수 자원의 채널 품질과 해당 주파수 자원 인덱스 정보가 보고되거나
vii. 또는 주파수 자원 별로 측정된 값 중 가장 나쁜 N개(예, 시스템 정보로 설정될 수 있거나 또는 Msg.2에서 지시 받을 수 있음) 주파수 자원의 주파수 자원 인덱스 그리고/또는 해당 채널 품질 정보가 보고될 수 있다.
C. 상기 제안처럼 측정된 채널 품질 정보는 (RA-3) 과정 이전에 획득한 정보를 바탕으로,
i. 특정 참조 포맷(reference format)(예를 들어, Msg.4에서 기대되는 (N)PDSCH의 TBS 그리고/또는 MCS 그리고/또는 반복 횟수(repetition number) 그리고/또는 DMRS 포트 등이며, 이는 표준에 미리 정의되거나 또는 시스템 정보 또는 Msg.2으로 설정될 수 있음)를 기준으로 BLER Z%(예를 들어, 1%)를 기대할 수 있는 R(단말이 선호하는)의 최소 값 그리고/또는 AL의 최소 값 그리고/또는 참조 신호(reference signal)(예를 들어, CRS 또는 DMRS)의 포트 정보 그리고/또는 자원 할당 타입(예, distributed or localized) 그리고/또는 PMI 그리고/또는 주파수 자원 정보(예를 들어, 가장 적은 자원 양을 필요로 하는 (즉, 낮은 R 그리고/또는 AL) NB 또는 RB 인덱스)를 포함할 수 있다. 만약, 특정 참조 포맷이 지정되지 않거나 또는 MCS 등과 같은 CQI에 해당하는 정보가 참조 포맷에 지정되지 않는 경우에는 CQI 그리고/또는 RI도 함께 DQI에 포함될 수 있다.
1. CRS로부터 추정된 채널 정보를 기반으로 CQI를 추정하는 경우에는 단말기가 가정할 프리코딩 정보(예를 들어, DMRS 포트 정보 또는 PMI와 같은 CRS와 DMRS의 상관관계)가 미리 주어질 수도 있다.
ii. 만약, (RA-4) 단계에서 Msg.4 (N)PDSCH의 R (단말이 선호하는) 값이 보고되는 경우에는, (RA-3) 과정 이전에 획득한 (RA-4) 단계에서 사용될 Rmax 값의 비율에 대한 정보로 표현될 수 있다. 즉, 보고되는 DQI 정보의 논리적 값의 범위는 (RA-3) 과정에서 획득한 (RA-4) 단계에서 사용될 Rmax에 따라서 실제 R이 달리 해석될 수 있다. 상기 제안에서 논리적 표현 값의 단위는 실제 R의 표현 범위 내에서 균일하게 분포되지 않을 수 있다.
D. 상기 제안에서, DQI가 (N)PDSCH 수신 성능과 관련된 정보를 포함하는 경우에, 단말기는 특정 TM(Transmission Mode)를 가정하고 DQI를 추정할 수 있다. 예를 들어, 랜덤 접속 과정에서 사용하는 TM은 폴백(fallback) TM(예를 들어, TM1 or TM2)로 항상 가정하거나, 또는 기지국의 송신 안테나 수(예, CRS 안테나 포트 수)에 따라서 폴백 TM 또는 참조 TM(reference TM)을 유도하고, 이를 기반으로 DQI를 측정할 수 있다. 뿐만 아니라, DQI를 측정하기 위해서 사용할 수 있는 참조 TM을 기지국이 직접 지시할 수도 있다.
상기 제안에서, Msg.3에 대한 응답(Msg.4)을 수신하지 못하거나 또는 Msg.3를 재전송하는 경우에 DQI는 다음과 같이 취급될 수 있다.
(1) Msg.3를 재전송 하는 경우
A. DQI가 Msg.3의 데이터(data)와 함께 물리 계층(physical layer)에서 채널 인코딩(channel encoding)되는 경우에는 이전 전송에서 사용한 DQI를 계속해서 전송한다.
B. DQI가 Msg.3의 데이터와 독립적으로 물리 계층에서 채널 인코딩되는 경우(예를 들어, UCI(Uplink Control Information)와 같은 형태)에는 이전 전송에 사용한 DQI를 유지하거나 또는 업데이트(update) 가능하다. 만약, 업데이트되는 경우라면, 이전에 보고한 DQI보다 같거나 낮은 값(예, 낮은 값의 DQI 값일수록 하향링크 채널 상태가 좋은 경우)은 보고에 허용되지 않을 수 있다.
(2) Msg.1부터 재전송 시작하는 경우
A. 만약, 재전송에서 사용하는 Msg.1과 연계된 Msg.2 그리고/또는 Msg.4의 시간 자원(예를 들어, Msg.2 또는 Msg.4의 최대 반복 전송 횟수 Rmax 등) 그리고/또는 주파수 자원(예를 들어, (NB-IoT) 캐리어 또는 NB 등)이 변경된 경우에는 DQI를 새롭게 측정할 수도 있다.
B. 그렇지 않은 경우에는, 이전 랜덤 접속 시도에서 보고했던 DQI보다 같거나 낮은 값은 보고에 허용되지 않을 수 있다. 또한, 새롭게 재측정을 하지 않고, 이전 보고했던 DQI보다 특정 값 만큼 높은 값(예, 높은 값의 DQI 값일수록 하향링크 채널(downlink channel) 상태가 나쁜 경우)으로 보고하도록 허용될 수도 있다.
상기 모든 제안에서 R(repetition number)와 AL(aggregation level)이 DQI를 대표하는 값으로 사용되는 경우에, DQI에 R과 AL은 각각 포함되거나 또는 R과 AL이 결합된 형태로 포함되거나 또는 R과 AL을 코드-레이트(code-rate)와 유사한 개념으로 변형되어 포함될 수 있다.
상기 제안에서 MTC의 경우에는 Msg.2와 Msg.4에 전송되는 MPDCCH가 CRS 포트(port)가 아닌 DMRS 포트를 통해서 전송된다. 이와 같은 경우에 단말기는 CRS를 이용해서 MPDCCH 성능을 미리 예측하기 어렵다. 즉, MPDCCH 디코딩(decoding) 실패 확률이 특정 값보다 나쁘지 않을 특정 조건을 CRS로부터 유도하기 쉽지 않을 수 있다. 이와 같은 경우에는 CRS를 기반으로 DQI를 측정할 수 있도록 허용하면서, 대신 성능 유추 대상이 되는 참조 채널(reference channel)을 MPDCCH가 아닌 다른 채널로 정의할 수 있다. 예를 들어, RLM에 사용되는 참조 채널(예, Out-of-sync 검사 기준이 되는 PDCCH 포맷 또는 In-sync 검사 기준이 되는 PDCCH 포맷) 또는 제 3의 PDCCH 포맷 또는 특정 TM을 가정한 PDSCH 포맷을 정의해서, CRS를 기반으로 해서 앞서 열거된 채널을 기준으로 수신 성능을 예측할 수 있는 정보를 DQI로 정의하도록 할 수 있다. 여기서 TM은 CRS 포트 수에 따라서 TM1 또는 TM2로 주어질 수도 있다.
G.1.2 비경쟁 기반 랜덤 접속 절차 동안 측정 보고(Measurement report during contention free based random access (CFRA) procedure)
CFRA 기반의 랜덤 접속 과정에서 DQI를 보고하는 방법은 G.1.1 절(‘경쟁 기반 랜덤 접속 과정 동안 측정 보고’)에서 제안된 방법이 모두 적용될 수 있다. 여기서 CFRA는 단말기가 사용할 Msg.1의 자원(예를 들어, 시간 및/또는 주파수 및/또는 프리앰블(preamble) 자원)이 UE 특정(UE specific)하게 기지국으로부터 주어진 경우이며, 가장 많이 사용되는 예로는 RRC 연결 상태(RRC connected state)에서 단말기의 TA(Timing Advance) 정보 업데이트(update)를 위한 경우가 있다. 즉, 기지국은 단말기로부터 특정 시간 이상 상향링크를 수신하지 못했거나 상향링크를 스케줄링(scheduling)하지 않은 상황에서 단말기에게 하향링크 스케줄링(downlink scheduling)이 필요한 경우에, 우선적으로 상향링크 TA를 업데이트해서 이후 스케줄링되는 하향링크에 대한 피드백(feedback)(예를 들어, ACK/NACK) 및/또는 CSI를 PUCCH 및/또는 (N)PUSCH로 수신할 때 타이밍 오정렬(timing misalignment)에 의한 성능 열화를 줄이기 위해서 사용될 수 있다. 이는 곧, CFRA 절차 이후에 기지국이 단말기에서 하향링크 스케줄링할 계획이 있음을 의미하며, CFRA 과정에서도 Msg.3에 DQI 정보를 수신하는 것이 이후 하향링크 스케줄링 성능 열화 최소화에 도움이 될 수 있다.
다만, 비경쟁 기반 랜덤 접속(CFRA) 과정은 단말기가 이미 셀(cell)에 등록된 상태이며, RRC 메시지(RRC message)를 통해서 UE 전용 정보(UE dedicated Information)을 추가적으로 획득한 상황이기 때문에, DQI 참조 자원(reference resource)가 추가되거나 재정의될 수 있는 차이가 있을 수 있다. 예를 들어, 단말기는 기지국으로부터 랜덤 접속 과정에서 보고할 DQI를 측정할 수 있는 참조 자원을 추가적(예, CBRA에서 사용하는 DQI 참조 자원과 다른)으로 설정 받을 수 있으며, 이는 RRC 또는 Msg.1을 트리거하는 DCI에서 설정 받거나 또는 DCI에서 RRC로 설정된 DQI 참조 자원 세트 내에서 특정 자원을 지시 받을 수도 있다. 이와 같은 경우에는 MAC 메시지가 아닌 UCI 형태로 Msg.3(또는 Msg.2 이후에 처음 전송하는 (N)PUSCH)에서 보고될 수 있다.
DQI가 (N)PDSCH 수신 성능과 관련된 정보를 포함하는 경우에, 단말기는 특정 TM(Transmission Mode)를 가정하고 DQI를 추정할 수 있다. 예를 들어, 랜덤 접속 과정에서 사용하는 TM은 폴백(fallback) TM(예를 들어, TM1 or TM2)로 항상 가정하거나, 또는 기지국의 송신 안테나 수(예, CRS 안테나 포트 수)에 따라서 폴백 TM 또는 참조 TM(reference TM)을 유도하고, 이를 기반으로 DQI를 측정할 수 있다. 뿐만 아니라, DQI를 측정하기 위해서 사용할 수 있는 참조 TM을 기지국이 직접 지시할 수도 있으며, 또는 RRC 연결 상태(RRC Connected state)의 단말기가 사용하고 있던 TM을 가정해서 DQI를 측정할 수도 있다.
상기 CBRA와 CFRA의 DQI 유도 과정에서 참고하는 참조 TM은 구체적으로 아래와 같이 기지국의 CRS 포트 수에 따라서 정의될 수도 있다.
■ CRS 포트 수가 1인 경우 TM1을 참조 TM으로 가정(If the number of CRS ports is one, TM1 is assumed as the reference TM)
■ 그렇지 않은 경우 TM2를 참조 TM으로 가정(Otherwise, TM2 is assumed as the reference TM)
G.2 UL SPS를 위한 측정 보고(Measurement report for UL SPS(Semi-Persistent Scheduling))
기지국은 단말기의 상향링크 스케줄링(uplink scheduling)을 위한 자원(resource)를 줄이기 위해서, UL SPS를 설정할 수 있다. UL SPS에서는 상향링크 스케줄링을 위한 UL 그랜트(grant)가 매번 전송되지 않기 때문에, 단말기의 하향링크 모니터링(downlink monitoring)에 의한 전력 절감(power saving)에 효과도 있을 수 있다. 여기서 UL SPS는 단말기가 사용할 다수의 시간 도메인 상향링크 자원(time domain uplink resource)를 미리 설정한 상태에서, 기지국의 동적 상향링크 스케줄링(dynamic uplink scheduling)이 없이도 단말기가 직접 판단해서 해당 UL SPS 자원에 데이터를 전송할 수 있는 기법이다. 이는 기존 LTE 또는 다른 시스템에서 이미 정의하고 있는 SPS와 유사한 방법일 수 있으며, RRC 상태(state)와 무관할 수도 있다. 즉, 본 제안에서 UL SPS는 단말기의 매 UL 전송에 앞서서 단말기가 기지국으로부터 UL 스케줄링을 매번 지시 받지 않고도 UL 전송이 허용되는 통신 절차 및 방법을 의미한다.
다만, UL SPS의 활성화(activation)/비활성화(deactivation)이 DCI로 지원되는 경우가 있거나, 또는 UL SPS에 대한 HARQ 피드백(HARQ-feedback)이 있을 수 있는 경우에는 여전히 하향링크 신호 또는 채널(예를 들어, (N)PDCCH, MPDCCH, (N)PDSCH, WUS(Wake-up Signal)등)을 수신할 필요가 있다. 이와 같이 UL SPS 상황에서도 기지국은 하향링크로 해당 단말기에게 특정 채널을 전송할 필요가 있을 수 있으며, 이때 링크 적응(link adaptation)을 위해서 G.1.1 절(‘경쟁 기반 랜덤 접속(CBRA) 과정 동안 측정 보고’)와 G.1.2 절(‘비경쟁 기반 랜덤 접속(CFRA) 절차 동안 측정 보고’)에서 제안된 방법이 모두 사용될 수 있다.
다만, UL SPS는 일반적인 랜덤 접속 과정의 Msg.2 그리고/또는 Msg.4가 사용할 시간/주파수 자원(time/frequency resource)가 다를 수 있기 때문에(예, UL SPS 수신에 대한 피드백(feedback)을 기지국이 DL로 전송하는 경우에 사용할 DL 자원은 (즉, 단말기가 모니터링 수행해야 하는 DL 자원) 랜덤 접속 과정의 Msg.2/Msg.4와 별개일 수 있음), UL SPS를 위한 DQI 참조 자원이 독립적으로 설정될 수 있다. 이는 표준에 직접 정의되거나, 또는 시스템 정보(system information)이나 RRC 메시지로 설정되거나, 또는 UL SPS를 활성화/비활성화하는 채널(예를 들어, DCI)에서 직접 지시되거나, 또는 HARQ 피드백(HARQ-feedback)을 위한 채널(예를 들어, (N)PDCCH 또는 MPDCCH)에서 직접 지시될 수 있다.
또한, UL SPS 과정에서 보고되는 DQI는 랜덤 접속 과정에서 보고되는 DQI와 다른 정의 또는 표현 범위일 수 있다. 예를 들어, UL SPS 활성화/비활성화 그리고/또는 HARQ 피드백(HARQ-feedback)을 위해서 사용되는 하향링크 채널(예를 들어, 특정 DCI)이 랜덤 접속 과정의 Msg.2 그리고/또는 Msg.4의 하향링크 채널(예를 들어, 타입-2 CSS의 DCI(DCI with type-2 CSS(common search space)))과 다를 수 있으며, 이때에는 UL SPS를 위해서 정의된 하향링크 채널을 참조(reference)(또는 참조 채널)로 하여, DQI를 측정하고 이를 보고할 수 있다.
G.3 단말기의 수신기 타입(receiver type)에 따른 측정 보고(measurement report)
단말기가 랜덤 접속 단계에서 DQI를 보고하는 경우에, 단말기의 수신기 타입에 따라서 채널 품질(channel quality)가 달리 정의될 수 있다. 여기서 단말기의 수신기 타입은 표준에서 요구하는 특정 성능 요구조건(performance requirement)를 만족시키기 위해서 정의된 수신기 타입 중에 하나일 수 있으며, LTE를 예로 들면 MRC(Maximal Ratio Combining), MMSE-IRC(Minimum Mean Square Error-Interference Rejection and Combining), eMMSE-IRC(enhanced MMSE-IRC), ML(Maximum Likelihood), SIC(Successive Interference Cancellation) 등과 같은 타입이 있을 수 있다. 이와 같은 수신기 타입을 기지국이 알아야 하는 이유는, 기지국의 하향링크 스케줄링(downlink scheduling) 시에 단말기의 수신 성능을 미리 예측해서 불필요한 자원 낭비를 피하기 위함일 수 있으며, 또한 수신기 타입에 따라서는 기지국의 추가적인 정보 제공이 필요한 경우가 있기 때문이다.
(1) 단말기가 다중 수신 안테나를 사용하는 경우에, DQI는 이를 고려한 값으로 보고될 수 있으며, 이때 단말기의 다중 수신 안테나 정보(예를 들어, 실제 수신 안테나 수 이거나 또는 단일 수신 안테나 수를 가정한 것인지 여부)를 DQI와 함께 측정 보고에 포함시킬 수도 있다.
(2) 단말기가 보고하는 DQI는 단일 수신 안테나를 가정해서 유도된 값이며, 단말기가 추가적으로 사용할 수 있는 수신 안테나가 있는 경우에(즉, 다중 수신 안테나), 이를 추가로 보고할 수 있다. 예를 들어, 해당 수신 안테나 정보는 다중 수신 안테나를 사용하는 경우(즉, Msg.2 그리고/또는 Msg.4 수신에 사용한 안테나 수)에 추가로 얻을 수 있는 이득(gain)(예를 들어, RSRQ 이득, SNR 이득, Msg.2 그리고/또는 Msg.4를 특정 검출 성능 조건(예를 들어, BLER)으로 수신하기 위해서 기대할 수 있는 반복 횟수의 감소 정보)을 표현하는 형태이거나 또는 단순히 다중 수신 안테나를 Msg.2 그리고/또는 Msg.4에서 사용할 수 있음을 나타내는 정보일 수 있다.
G.4 하향링크 채널 품질 측정(Downlink channel quality measurement)를 기대하지 않는 조건
상기 제안된 DQI 측정 정보는 기지국의 하향링크 스케줄링 및 자원 할당(코드-레이트(code-rate), 반복 횟수(repetition number) 등)에 활용될 수 있다. 이는 비록 저비용(low cost) 단말기의 DQI 측정을 위한 추가 동작을 필요로 하지만, 기지국의 잘못된 링크 적응(link adaptation)으로 단말기의 하향링크 수신신호 검출 실패(예를 들어, 너무 낮은 반복전송 횟수)로 전력 절감(power saving)에 손해를 보는 것을 미리 예방할 수 있는 장점이 있을 수 있다. 다만, Msg.4의 최대 반복 전송 횟수가 애초에 특정 값 보다 낮은 경우에는 링크 적응이 중요하지 않을 수 있기 때문에, 단말기의 전력 절감을 위해서 DQI 측정 수행을 생략할 수도 있다. 반대로, Msg.4의 최대 반복 전송 횟수가 특정 값보다 높게 설정되거나 또는 단말기의 RSRP 또는 SNR이 아주 낮은 경우(예를 들어, CE 레벨이 높은 경우 또는 셀(cell) 내에 설정된 가장 높은 CE 레벨인 경우)에는 단말기의 DQI 측정 정보의 정확도가 아주 낮을 수 있다. 따라서 특정 조건에서는 불필요하거나 무의미한 단말기의 전력 소모를 방지하기 위해서 DQI 측정을 수행하지 않는 또는 보고하지 않는 조건이 있을 수 있다.
(1) Msg.4의 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH의 최대 반복 전송 횟수가 특정 값보다 낮은 경우
(2) Msg.4의 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH의 최대 반복 전송 횟수가 특정 값보다 높은 경우
(3) 단말기가 Msg.2((N)PDCCH 또는 MPDCCH 또는 (N)PDSCH)를 특정 반복 횟수 이하에서 수신 성공한 경우
상기에서 각 특정 값은 표준에 정의되거나 또는 기지국에서 방송(broadcast)되는 정보일 수 있다.
또는, Msg.2에서 지시 받은 Msg.3 전송 시점이 DQI 측정에 충분하지 않은 시간으로 주어지는 경우에, 단말기는 DQI 측정과 보고를 생략하거나 또는 특정 값(예를 들어, 하향링크 채널 품질이 가장 나쁜 값)으로 보고하도록 허용될 수 있다. 여기서 ‘DQI 측정에 충분하지 않은 시간’은 Msg.2와 Msg.3의 상대적인 시간 간격에 해당할 수 있으며, 단말기의 능력(capability)로 정의될 수도 있다.
G.5 랜덤 접속(Random access)를 특수한 목적으로 사용하는 경우에 하향링크 채널 품질(downlink channel quality) 및 보고(report) 방법
단말기가 랜덤 접속 절차를 시도하는 이유가 MO-EDT(Mobile Oriented Early Data Transmission - 랜덤 접속 절차 중에 상향링크로 데이터를 전송하기 위한 경우)인 경우에는, Msg.3에 전송할 TBS를 선택함에 있어서 DQI 보고를 위해서 필요한 정보 사이즈(Information size)는 고려되지 않을 수 있다. 만약, 단말기가 Msg.3에서 사용할 수 있도록 허용된 TBS 중에서 최소 값(단말기가 Msg.3에 보내고자 하는 데이터/정보보다 큰 TBS 중에서)이 실제로 단말기가 Msg.3에서 전송하고자 하는 데이터/정보를 제외하고도 DQI를 보고할 수 있는 크기 만큼의 사이즈를 모두 포함할 수 있는 경우라면, 단말기는 Msg.3에 DQI를 추가로 포함해서 Msg.3를 전송할 수 있다.
단말기가 랜덤 접속 절차를 시작한 이후에 기지국이 MT-EDT(Mobile Terminated Early Data Transmission - 랜덤 접속 절차 중에 기지국이 하향링크로 데이터를 전송하기 위한 경우)인 경우에는, Msg.3 그리고/또는 Msg.4 이후에도 DQI를 상향링크로 보고하도록 요청 받을 수 있다. 이는 EDT인 경우에 단말기가 RRC 연결 상태(RRC connected state)로 진입하지 않고 RRC 유휴 상태(RRC idle state)에서 기지국과 데이터 송수신을 완료해버릴 수 있기 때문에, 하향링크 측정(downlink measurement)를 위한 구체적인 정보를 RRC 연결 상태에서처럼 자유롭게 획득하지 못할 수 있기 때문이다. 즉, 단말기는 DQI 측정 관점에서 랜덤 접속에서 허용하는 수준의 DQI만 측정해서 보고할 수 있다. 다만, Msg.4 이후에 보고하는 DQI 측정은 상기 제안한 일반적인 랜덤 접속 과정에서 Msg.3에 보고하는 DQI 참조 자원과는 다른 자원을 기반으로 측정 수행하도록 설정될 수도 있다.
G.6 하향링크 채널 품질 정보 참조 자원(Downlink Channel Quality Information Reference Resource)
랜덤 접속 절차에서 Msg.4를 수신하기까지 단말기가 송/수신하는 채널 및 신호의 시간 흐름은 도 15에 표현되어 있으며, 하기에서는 이를 주파수 측면에서 각 채널/신호의 자원 관계를 설명한다. 도 15는 eMTC를 기준으로 작성된 것이며, 도 1 또는 도 11의 예에 대응될 수 있다. 도 15에서 Msg.3 전송 이후에 단말기가 수신하는 UL 그랜트는 Msg.3 재전송을 위한 스케줄링 정보이며, 이는 Msg.3/4 MPDCCH와 동일한 포맷을 사용한다. NB-IoT의 경우에는 NPSS/NSSS/NPBCH가 앵커 캐리어에 전송되며, SIB 정보들은 FDD인 경우에 앵커 캐리어에서 TDD인 경우에는 NPBCH 정보에 따라서 앵커 캐리어 또는 비-앵커 캐리어에서 전송될 수 있다(예, “D. NB-IoT(Narrowband Internet of Things)” 설명 참조). Msg.2 NPDCCH와 NPDSCH, Msg.3/4 NPDSCH, Msg.4 NPDSCH는 모두 동일한 NB-IoT 캐리어에서 전송되며, 이는 앵커 캐리어 또는 비-앵커 캐리어일 수 있다. MTC의 경우는 주파수 영역의 DL 자원 관계가 더욱 복잡하며, 이를 아래와 같이 정리할 수 있다.
● PSS/SSS/PBCH
- LTE 시스템 대역폭(system bandwidth)의 중심 6 RB들(center 6RBs)
● SIB1-BR
- LTE 시스템 대역폭 내에서 분산된 RB들(distributed RBs)로 전송되며, 하향링크 대역폭 및 셀 ID(DL bandwidth and cell ID)에 따라서 사용되는 NB/RB 위치는 상이할 수 있음
● 다른 SIB들(Other SIBs)
- SIB1-BR의 SI를 위한 스케줄링 정보(scheduling information)에 따라서 NB/RB 위치가 결정
● Msg.2의 MPDCCH(MPDCCH of Msg.2)
- SIB에서 설정된 정보와 Msg.1 전송에 사용된 프리앰블 인덱스(preamble index)에 따라서 결정되며, rar-HoppingConfig에 따라서 주파수 호핑(frequency hopping)이 적용될 수 있음
● Msg.2의 PDSCH(PDSCH of Msg.2)
- Msg.2의 MPDCCH에 의해서 지시되며, rar-HoppingConfig에 따라서 주파수 호핑이 적용될 수 있음
● Msg.3/4의 MPDCCH(MPDCCH of Msg.3/4)
- Msg.2의 MPDCCH NB와 동일하거나 또는 특정 오프셋 값 만큼 시프트(shift)된 NB에 전송될 수 있으며, 해당 오프셋 값은 RAR의 UL 그랜트에서 지시됨
● Msg.4의 PDSCH(PDSCH of Msg.4)
- Msg.4의 MPDCCH에 의해서 지시되며, rar-HoppingConfig에 따라서 주파수 호핑이 적용될 수 있음
상술한 바와 같이, MTC 시스템에서는 Msg.4 수신 이전에 사용되는 DL 주파수 자원이 복잡한 관계로 정의되며, 경우에 따라서는 DQI 정보가 최초로 적용될 수 있는 Msg.4 DL 주파수 자원이 Msg.3 전송 이전에 단말기가 수신할 필요가 없는(기존의 랜덤 접속 절차에 따르면) 자원일 수 있다. 즉, DQI 참조 자원(reference resource)가 어떻게 정의되느냐에 따라서 해당 정보가 Msg.4 스케줄링에 효과적으로 사용될 수 있는지 여부가 결정될 수 있다. 본 절에서는 이를 고려해서 DQI-RS(DQI-Reference Resource)에 대한 제안을 한다. 제안하는 방법은 본 특허에서 기술된 다른 제안과 배치되지 않는 경우에 모두 적용될 수 있다.
DQI-RS는 Msg.3/4 MPDCCH 및/또는 (N)PDSCH 전송 예약된 자원의 채널 품질을 대표할 수 있으면서, Msg.3를 전송하기 전에 단말기가 수신할 수 있는 자원 내에서 선정될 필요가 있다. 만약, Msg.3/4 MPDCCH 자원이 Msg.2 수신 자원과 동일한 경우에는 DQI-RS가 Msg.2 MPDCCH/NPDCCH 중에서 일부 또는 전체로 정의될 수 있다. 아래는, Msg.2 MPDCCH/NPDCCH가 Msg.3/4 MPDCCH/NPDCCH 및/또는 (N)PDSCH와 상이한 자원이 기대되는 경우에, DQI-RS를 선정하기 위한 방법이다.
● MTC
- 중심(Center) 6RB 그리고/또는 시스템 정보(system information)이 전송되는 NB 그리고/또는 Msg.2 PDSCH가 전송되는 NB가 DQI 참조 자원에 추가로 포함될 수 있음
- 상기 추가적인 DQI 참조 자원(additional DQI reference resource)의 실제 적용 유무는 Msg.2 MPDCCH 호핑 그리고/또는 Msg.2 PDSCH 호핑 유무에 따라서 결정될 수 있음
상기 방법은 MTC 단말기가 Msg.3 전송 이전에 기본적으로 수신 기대할 수 있는 자원이며, 이와 같이 DQI-RS를 선정하는 경우에 단말기는 DQI 측정을 위해서 추가적인 수신 동작을 할 필요가 없을 수 있다.
● NB-IoT
- RRC 유휴 상태(RRC Idle state)
(1) 기지국이 N개의 (NB-IoT) 캐리어 세트를 설정해주고, 단말은 N개 세트 중에서 랜덤하게 캐리어를 선택해서 해당 캐리어의 CQI를 측정해서 보고하거나, 또는 N개 세트에 대한 평균(average) DQI 및/또는 가장 나쁜(worst) DQI 및/또는 가장 좋은(best) DQI를 보고할 수 있음
* CQI 정보는 선호하는 캐리어 및/또는 반복(preferred carrier and/or repetition)를 포함할 수 있음
* 기존 조기 CQI 보고(early CQI report)의 CQI 상태(CQI state)와 모호함(ambiguity)를 발생시키지 않도록, 상기 방법은 비-앵커 캐리어(non-anchor carrier) DL CQI인 경우에만 적용될 수 있음
* 가장 나쁜 DQI 및/또는 가장 좋은 DQI가 포함되는 경우에, 해당 DQI를 측정한 캐리어 정보를 추가로 보고할 수 있으며, 이는 DQI 값에 직접 포함될 수도 있음
(2) DQI 참조 캐리어(reference carrier)를 랜덤(random)하게 선택하는 방법
* UE ID 기반으로 선택하거나, 또는 시간상 먼저 수신 가능한 DQI-RS를 우선적으로 선택하거나, 또는 Msg.2 NPDCCH 최대 반복 횟수(maximum repetition number)가 적은/큰 캐리어를 우선적으로 선택
* 둘 이상의 DQI-RS에서 DQI-RS가 특정 시간 내에 존재하는 경우 DQI-RS의 캐리어는 UE ID 기반으로 선택
(3) 단말기가 둘 이상의 DQI-RS 캐리어에 대한 DQI 정보를 획득한 경우에, DQI로 보고하는 캐리어의 우선 순위
* 가장 좋은 DQI 또는 가장 오래 측정(measure)한 캐리어의 DQI(즉, DQI 측정의 정확도가 가장 높을 것으로 기대되는 캐리어) 또는 가장 최근에 업데이트(update)된 캐리어의 DQI
(4) 기지국이 지시한 DL 캐리어 또는 DL 캐리어 세트에서 선택적으로 CQI 측정한 경우에 해당 DL 캐리어에 관계(associate)된 UL 캐리어 중에서 NPRACH 캐리어를 선택해서 Msg.1 전송
* 일반적으로 랜덤 접속 과정에서 Msg.1 캐리어 선택은 UL 캐리어를 먼저 선택하고, 이에 대응하는 DL 캐리어에서 DQI를 측정하지만, 상기 방법은 여러 DL 캐리어 중에서 특정 캐리어의 DQI 보고를 결심한 경우(예를 들어, best DQI에 대응하는 DL 캐리어)에, 이와 관계된 UL 캐리어를 선택하는 방법이다.
(5) 기지국은 Msg.1을 위한 UL 캐리어 별로 DQI-RS 캐리어의 세트 구성을 달리 할 수 있음
- RRC 연결 상태(RRC connected state)
(1) 기지국은 NPDCCH 오더(NPDCCH order) 기반의 Msg.1 전송을 지시하는 경우에 DQI-RS 캐리어를 직접 지시할 수 있으며, 단말기는 해당 캐리어에서 DQI를 유도
(2) Msg.3 송신 이후에 기지국은 해당 캐리어로 단말기의 DL 캐리어를 변경할 수 있음
(3) RRC 연결 모드에서 단말기는 이후 RRC 유휴 상태(RRC idle state)에서 DQI 측정에 사용할 DQI-RS 캐리어를 기지국으로부터 지시 받을 수 있음
G.7 하향링크 채널 품질 정보 보고(Downlink Channel Quality Information Report)를 지시하는 방법
단말기의 DQI 추정을 위한 연산 시간 및 DQI를 Msg.3에 보고하기 위한 신호/채널 생성 시간을 고려하면, DQI 보고에 대한 지시를 단말기가 언제 획득할 수 있는지 여부가 중요한 요소일 수 있다. 특히, DQI 측정을 위해서 필요한 추가 정보가 필요한 경우에는, 해당 정보가 최대한 빨리 단말기에게 획득될 필요가 있다. 본 절에서는 DQI 보고를 지시하는 방법에 대해서 제안한다. 제안하는 방법은 본 특허에서 기술된 다른 제안과 배치되지 않는 경우에 모두 적용될 수 있다.
● RAR의 UL 그랜트(UL grant in RAR)의 비트(bit)/상태(state)를 활용하는 방법
- Msg.3/4 MPDCCH NB 인덱스가 특정 값인 경우에 간접적으로 DQI 보고 지시로 인식함. 특징적으로 RAR 모니터링 NB 중에서 Msg.3/4 MPDCCH NB가 특정 수 이상 포함된 경우, 또는 RAR 모니터링 NB와 Msg.3/4 MPDCCH NB 간격이 특정 값 이하인 경우가 포함될 수 있다.
● RAR의 유보 비트(reserved bit)를 활용하는 방법
- EDT 요청을 위해서 (N)PRACH 자원을 사용하는 경우에, Msg.2가 단말기의 EDT 요청이 기지국으로부터 수락되었음을 나타내는 경우라면 DQI 보고 지시로 인식함.
EDT는 연결 모드(connected mode)로 진입하지 않는 것이 일반적이기 때문에, 이와 같은 방식으로 최대한 빨리 DQI/CQI 정보를 받을 기회가 필요할 수 있다.
- 만약, EDT 요청을 위해서 사용되는 (N)PRACH 자원이 아닌 경우에 대한 Msg.2 수신이라면, RAR의 특정 유보 비트는 DQI 보고 지시로 해석될 수 있음.
● 단말기가 보고해야 할 DQI 정보의 구성을 지시하는 방법
- DQI 정보 중에서 CQI와 반복 횟수(repetition number)를 선택적으로 지시할 수 있음
(1) 특정 CE 모드에서는 CQI와 반복 횟수 중에서 고정될 수 있음. 구체적인 예로서 상대적으로 작은 반복 범위를 지원하는 혹은 반복을 지원하지 않는 CE 모드에서는 CQI만을 보고하거나 상대적으로 큰 반복 범위를 지원하는 CE 모드에서는 반복 횟수만을 보고할 수 있음
- DQI 보고 모드를 지시할 수 있음
(1) 광대역(Wideband) 및/또는 선호하는 NB(preferred NB) 및/또는 DQI-RS 중에서 Msg.3/4 MPDCCH NB로부터 가장 가까운 NB 및/또는 DQI-RS 중에서 특정 NB 및/또는 SIB 수신에 사용된 NB 및/또는 중심(center) 6RB에 대한 DQI 보고를 지시할 수 있음
상기 DQI 측정 및 보고를 지시하는 방법을 측정을 설정하는 단계와 보고를 지시하는 단계로 구분할 필요가 있는 경우, 이는 아래와 같은 방법으로 실현될 수 있다.
● RAR의 유보 비트(reserved bit)가 DQI 보고를 트리거(trigger)하기 위해서 사용될 수 있으며, 특징적으로는
■ 상위 계층(high-layer)(예를 들어, 시스템 정보 또는 RRC 메시지)에서 해당 기지국이 DQI 보고를 수신/지원할 수 있는지 여부 또는 관련 설정을 (반)-정적으로((semi-)static하게) 시그널링하고, RAR의 UL 그랜트에 CSI 보고 필드(report field)(eMTC의 CE 모드 A인 경우에) 또는 RAR의 유보 비트로 DQI 보고 여부를 동적으로(dynamic하게) 오프(off)(또는 온(on)) 지시할 수 있음
■ 만약, 해당 RAR이 EDT에 대한 응답인 경우에 유보 비트가 아닌 상위 계층(high-layer)로 지시된 DQI 보고 설정을 따를 수 있음(즉, high-layer로 단말기의 DQI 측정 및/또는 보고가 설정된 경우에, DQI 보고 여부는 동적 신호(dynamic signal)의 지시를 따르지 않을 수 있으며, 이는 eMTC CE 모드 B와 같이 RAR에 유보 비트가 없는 경우 또는 RAR의 UL 그랜트에 CSI 보고 필드(report field)가 없는 경우에 적용될 수 있다)
● RAR의 UL 그랜트에 CSI 보고 필드가 DQI 보고에 대한 트리거 정보로 사용되는 경우에, RAR의 유보 비트는 DQI 보고 설정과 관련된 추가 정보를 제공하기 위한 목적으로 사용될 수 있음 (이는 UL 그랜트의 CSI 보고 필드와 RAR의 유보 비트가 서로 교차하여 적용되는 경우도 마찬가지로 적용될 수 있음)
■ 이는 DQI 보고가 하나 이상의 설정을 갖는 경우에, 관련 설정을 동적으로(dynamic하게) 변경하기 위해서 사용될 수 있음
■ 여기서 DQI 보고 설정에는 DQI 보고 여부, DQI 값의 범위 및 DQI 비트 수, CSI 자원(예를 들어, 협대역 집합, 참조 TM(reference TM) 등, NB-IoT 하향링크 캐리어 집합), DQI 보고 모드(예를 들어, 광대역(wideband) 또는 (기지국 또는 UE에 의해) 선택되거나 또는 선호하는 서브밴드/협대역(selected (by eNB or UE) or preferred subband/narrowband)) 등이 있을 수 있음
■ 상기 DQI 보고 설정은 상기 RAR의 UL 그랜트에 CSI 보고 필드와 RAR의 유보 비트로 결정될 수도 있지만, RAR의 UL 그랜트에서 지시되는 Msg3의 TBS 및/또는 듀플렉스 모드(duplex mode)에 따라서도 달리 결정될 수 있음
■ Msg3의 TBS가 특정 값에 해당하는 경우(또는 보다 작은 경우) DQI 보고는 디스에이블(disable)될 수 있음
■ Msg3의 TBS 및/또는 Msg3의 내용(contents)(예를 들어, RRC Resume, RRC Reconfiguration 요청 등)에 따라서 DQI 보고 모드(예를 들어, 광대역(wideband) 또는 (기지국 또는 UE에 의해) 선택되거나 또는 선호하는 서브밴드/협대역(selected (by eNB or UE) or preferred subband/narrowband)) 또는 DQI 값의 범위 및 DQI 비트 수 등이 상이할 수 있음
G.8 하향링크 채널 정보 보고(Downlink Quality Information Report)를 지시 받은 경우에, Msg.3/4 MPDCCH NB 해석
상술한 바와 같이, DQI는 Msg.3/4 MPDCCH에 직접 사용될 수 있다. 만약, DQI-RS가 Msg.3/4 MPDCCH (주파수) 자원과 상이한 경우에는 DQI 정보를 더욱 적극 활용하기 위해서, Msg.3/4 MPDCCH 자원을 보고된 DQI-RS(reported DQI-RS)에 기반해서 유도할 수 있다. 즉, 기지국이 시스템 정보(system information)으로 Msg.3/4 MPDCCH 자원에 대한 세트를 설정한 경우에, 이를 변경하기 쉽지 않기 때문에, 기지국과 단말기 사이에 DQI-RS에 대한 오해가 없는 경우에는, 단말기가 보고한 DQI의 DQI-RS에 따라서 Msg.3/4 MPDCCH 및/또는 PDSCH (주파수) 자원을 시스템 정보에서 획득한 값과 다르게 해석할 수 있도록 허용될 수 있다. 제안하는 방법은 본 특허에서 기술된 다른 제안과 배치되지 않는 경우에 모두 적용될 수 있다.
● Msg.2 MPDCCH NB와 동일하거나 또는 일부를 포함하도록 해석(즉, RAR의 UL 그랜트(UL grant in RAR)의 Msg.3/4 MPDCCH NB 인덱스를 달리 해석함)
● DQI 보고를 한 경우에, Msg.3/4 MPDCCH의 DCI 정보 중에 주파수 호핑 필드(frequency hopping field)가 포함되거나 또는 주파수 호핑 필드를 Msg.3/4 수신 단계에서도 사용할 수 있도록 허용될 수 있음
● 선호하는 NB(Preferred NB) 정보가 DQI에 포함된 경우, 단말기는 Msg.3/4 MPDCCH 그리고/또는 Msg.4 PDSCH의 주파수 호핑이 오프(off)된다고 가정하거나 지시 받을 수 있음
- 특징적으로 CE 모드 B에서 Msg.4 DL 그랜트에 주파수 호핑 온/오프 필드(frequency hopping on/off field)가 추가되거나 또는 다른 필드 조합으로부터 간접적으로 유도될 수 있음
- 특징적으로 CE 모드 B에서 Msg.4 DL 그랜트에 주파수 호핑 필드가 해당 DCI로 스케줄링된 PDSCH의 주파수 호핑 여부 해석으로 사용될 수 있음
G.9 하향링크 품질 정보(Downlink Quality Information)의 정보 구성
MTC와 NB-IoT 단말기는 다양한 CE level 및 CE 모드를 지원한다. 이는 기지국으로부터의 거리(즉, SNR) 및 mobility에 대한 특성을 반영하며, 더 나아가서는 단말기의 처리 능력(processing power)에 대한 특성까지 반영된다. 따라서, 이와 같은 다양한 주변 정보를 고려해서, 단말기가 측정하거나 생성할 수 있는 DQI 정보가 제한될 필요가 있다. 본 절에서는 DQI에 포함되는 정보의 구성과 정보의 범위에 대해서 제안한다. 제안하는 방법은 본 특허에서 기술된 다른 제안과 배치되지 않는 경우에 모두 적용될 수 있다.
● DQI 보고 정보 구성
아래 DQI 구성 정보는 일부만 포함되어 기지국에 보고 될 수도 있다.
- CQI와 반복 횟수 중에 무엇을 기반으로 DQI를 구성했는지 지시(indication)하는 정보가 포함될 수 있다.
(1) DQI 테이블(table)은 CQI와 반복 횟수를 모두 포함하도록 구성될 수 있으며, 단말이 선택하는 DQI 테이블의 인덱스에 따라서 CQI이거나 또는 반복 횟수(repetition number)가 보고되는 형태일 수 있다. 특징적으로, DQI 테이블의 가장 낮은(lowest) CQI는 DQI 테이블의 가장 낮은(lowest) 반복 횟수가 나타내는 채널 상태와 유사하거나 더 좋은 상태(예를 들어, BLER 측면에서)를 의미하도록 구성될 수 있다.
- 보고 타입은 (a) 광대역 CQI 또는 반복(Wideband CQI or repetition), (b) 광대역 (CQI 또는 반복) 및 UE(또는 기지국) 선택한 NB 인덱스 및 해당 NB 상에서의 (CQI 또는 반복)(wideband (CQI or Repetition) and UE(or eNB) selected NB index and (CQI or Repetition) on corresponding NB), (c) PMI와 함께 광대역 (CQI 또는 반복)(wideband (CQI or Repetition) with PMI), (d) PMI 없이 광대역 (CQI 또는 반복)(wideband (CQI or Repetition) without PMI)가 있을 수 있다.
- 수신 안테나 포트(Rx. antenna port) 수(특징적으로, 수신 안테나 포트 포트 수가 1 보다 큰 경우에 CQI(또는 반복)는 가장 높은 값(highest value)(또는 가장 낮은 값(lowest value))으로 고정)
- 상기 DQI 정보 구성은, CE 레벨 그리고/또는 Msg.2 MPDCCH 반복(예, 실제 전송 횟수 또는 최대 반복 횟수) 및 호핑 여부 그리고/또는 PRACH 포맷 및 반복 및 호핑 여부에 따라서 상이할 수 있음
- EDT 요청(EDT request)를 위해서 Msg.1을 전송하였거나, EDT 과정의 일부로 랜덤 접속 절차가 진행 중이었다면, CQI를 선택해서 보고 하도록 설정될 수 있음
- 상기에서 CQI 측정에 가정한 반복 횟수는 DQI 단말기가 직접 선택하여 이를 DQI에 포함하여 CQI와 함께 기지국에 알려줄 수도 있지만, 기지국이 직접 설정해주거나, 또는 특정 파라메터에 의해서 유도될 수 있도록 정의될 수도 있다. 즉, 단말기가 CQI 측정에 가정한 반복 횟수는 단말기가 직접 선택할 수 있는 값이 아니라, 이미 설정된 특정 값일 수 있다. 해당 값은, 예를 들어 기지국으로부터 직접 방송(broadcast)될 수도 있으며, 또는 CE 레벨 및 단말기가 모니터링하거나 CQI 계산에 참조(reference)로 할 채널의 파라메터에 따라서 결정되는 관계로 정의될 수도 있다.
● DQI 범위(DQI range)
- SIB에서 N개의 CQI(또는 반복) 값의 범위에 대한 세트를 설정해주고, RAR에서 N개 세트 중에서 특정 세트를 지시
(1) 각 세트 별로 단말기가 DQI 유도 과정에서 가정할 수 있는 R_TM 및/또는 R_DQI 및/또는 R_CQI 및/또는 R_Rep가 상이하게 정의될 수 있다.
* 여기서 R_TM, R_DQI, R_CQI, R_Rep는 각각 참조 TM(reference TM), 참조 DQI-RS(reference DQI-RS), 참조 CQI(reference CQI), 참조 반복 횟수(reference repetition number)를 나타내며, 단말기는 상기 정보 중 일부가 있어야, DQI 구성 정보에 적합한 정보를 추정할 수 있다. 여기서, 참조(reference)라는 의미는 DQI가 나타내고자 하는 가상의(hypothetical) 하향링크 채널의 수신 성능을 유도함에 있어서, 가상의 하향링크 채널 전송에 사용될 것이라고 가정할 수 있는 파라메터이다.
- 수신 안테나 포트(Rx. antenna port) 수에 따라 사용할 수 있는 DQI 세트(set)가 상이할 수 있으며, 이런 경우에 수신 안테나 포트(Rx. antenna port) 수 또는 사용한 세트 정보를 단말기가 추가로 알려줄 필요 있음
- 상기 DQI 범위 구성 및 세트 수는, CE 레벨 그리고/또는 Msg.2 MPDCCH 반복(예, 실제 전송 횟수 또는 최대 반복 횟수) 및 호핑 여부 그리고/또는 PRACH 포맷 및 반복 및 호핑 여부에 따라서 상이할 수 있음
단말기가 Msg2의 MPDCCH(or NPDCCH) 및/또는 (N)PDSCH를 성공적으로 복조/검출할 때까지 수신한 MPDCCH(or NPDCCH) 및/또는 (N)PDSCH의 반복 수 또는 서브프레임 수가 특정 값보다 큰지 작은지에 따라서 DQI 보고의 구체적인 동작이 달라지는 경우(예를 들어, hypothetical MPDCCH(or NPDCCH) 및/또는 (N)PDSCH 반복 수를 보고 하거나 또는 단말기가 성공적인 MPDCCH(or NPDCCH) 및/또는 (N)PDSCH 검출하기까지 수신한 서브프레임 또는 반복 또는 병합 레벨(aggregation level)에 상응하는 값을 보고 하거나 등)에 해당 특정 값은 다음과 같이 설정될 수 있다.
● 특정 값은 기지국에 의해서 설정되는 값이거나, 또는 RAR과 관련된 채널(예를 들어, MPDCCH(또는 NPDCCH) 및/또는 (N)PDSCH)의 최대 반복 전송 값의 특정 비율로 미리 정해지는 값(예, 기지국에 의해서 설정 가능하거나 또는 표준에 고정되는 값일 수 있으며, 비율의 범위/값 또한 RAR과 관련된 채널(예를 들어, MPDCCH(or NPDCCH) 및/또는 (N)PDSCH)의 최대 반복 전송 값 및/또는 주파수 호핑 여부 등에 따라서 상이할 수 있음)
● 단말기가 성공적인 MPDCCH(또는 NPDCCH) 및/또는 (N)PDSCH 검출하기까지 수신한 서브프레임 또는 반복 또는 병합 레벨(aggregation level)에 상응하는 값을 DQI 정보로 보고하는 경우에, 해당 값의 구체적인 결정은 다음과 같음
■ DQI 정보가 다수의 반복 횟수로 미리 정의/주어진 경우에, DQI 값은 사전에 주어진 값들 중에서 실제 수신한 서브프레임 또는 반복 값보다 같거나 큰 값 중에서 가장 작은 값
G.10 하향링크 품질 정보 보고 모드(Downlink Quality Information Report Mode)
본 절에서는 DQI를 보고하는 다양한 모드에 대해서 제안한다. 상술한 바와 같이, MTC와 NB-IoT 시스템은 다양한 CE 레벨(CE level) 및 CE 모드(CE mode)를 지원하며, 특히 MTC의 경우에는 DL NB 자원이 주파수 호핑(frequency hopping)하는 특성까지 있기 때문에, 이를 고려해서 각 설정에 적합한 DQI 보고 모드를 지원할 필요가 있다. 제안하는 방법은 본 특허에서 기술된 다른 제안과 배치되지 않는 경우에 모두 적용될 수 있다.
● CE 모드 A는 CQI 기반의 DQI를 보고한다.
- 주파수 호핑이 인에이블된 경우(If frequency hopping is enabled) (rar-HoppingConfig is set)
(1) UE 선택 서브밴드 피드백(UE-selected subband feedback)(Aperiodic CSI report, Mode 2-0)
* 기존 CSI 보고 동작
Figure PCTKR2019010175-appb-img-000007
* 제안하는 방법
- 단말기는 기존 BL/CE UE를 위한 CSI 보고 모드 2-0와 유사한 방법을 따르며, 아래와 같은 변경 및 추가 사항이 요구된다
- R CSI : 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RAR MPDCCH 반복 횟수(실제 MPDCCH 반복 전송 횟수 또는 최대 반복 전송 횟수 mpdcch-NumRepetition-RA)에 의존적인 값으로 정의될 수 있음. 이 값은 SIB와 같은 RRC 시그널링(signaling) 혹은 Msg.2를 통해서 시그널링될 수 있음
- 선호하는 NB(Preferred NB) : RAR에 포함된 UL 그랜트에서 전달 받은 정보 중에서 Msg.3/4 MPDSCH NB 인덱스로부터 유도된 Msg.3/4 MPDCCH를 모니터링(monitoring)하기 위해서 사용되는 NB와 주파수 도메인의 CSI 참조 자원(CSI reference resource in the frequency domain) 중에서 가장 가까운 NB로 선택될 수 있다. 이때, 단말기는 Msg.2 수신을 위해서 MPDCCH 모니터링 과정에서 CRS 기반으로 DQI(CSI)를 특정 단계까지만 계산하고, 실제 DQI(CQI) 정보는 RAR을 해석한 이후에 광대역 CSI(wideband CSI)와 선호하는 NB(preferred NB)의 DQI(CQI)를 온전히 계산할 수 있다.
- CSI 참조 자원 : 본 특허의 DQI-RS로 대체될 수 있다.
(2) PMI 없이 광대역 CQI(Wideband CQI without PMI) (Periodic CSI report, Mode 1-0)
* 기존 CSI 보고 동작
- One wideband CQI conditioned on transmission rank 1
* 제안하는 방법
- 단말기는 기존 BL/CE UE를 위한 CSI 보고 모드 1-0과 유사한 방법을 따르며, 아래와 같은 변경 및 추가 사항이 요구된다
- R CSI : 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RAR MPDCCH 반복 횟수(예, 실제 MPDCCH 반복 전송 횟수 또는 최대 반복 전송 횟수 mpdcch-NumRepetition-RA)에 의존적인 값으로 정의될 수 있음. 이 값은 SIB와 같은 RRC 시그널링 혹은 Msg.2를 통해서 시그널링될 수 있음
(3) PMI와 함께 광대역 CQI(Wideband CQI with PMI) (Periodic CSI report, Mode 1-1)
* 기존 CSI 보고 동작
- One wideband CQI and PMI within restricted subset of PMI if configured
* 제안하는 방법
- 단말기는 기존 BL/CE UE를 위한 CSI 보고 모드 1-1 방법을 따르며, 아래와 같은 변경 및 추가 사항이 요구된다
- R CSI : 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RAR MPDCCH 반복 횟수(예, 실제 MPDCCH 반복 전송 횟수 또는 최대 반복 전송 횟수 mpdcch-NumRepetition-RA)에 의존적인 값으로 정의될 수 있음. 이 값은 SIB와 같은 RRC 시그널링 혹은 Msg.2를 통해서 시그널링될 수 있음
- R_TM : 참조 전송 모드(reference transmission mode)가 정의될 수 있으며, 이는 기지국으로부터 SIB와 같은 RRC 시그널링 혹은 Msg.2를 통해서 시그널링되거나 또는 기지국 CRS 포트 수에 따라서 결정될 수 있다. 뿐만 아니라, 기지국이 Msg.3 수신 이후에 사용할 PDSCH TM을 미리 고려해서 이를 단말기에게 알릴 수도 있다.
- PMI 서브세트(subset) : 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RTM에 따라서 정의될 수 있다.
- 주파수 호핑이 디스에이블된 경우(If frequency hopping is disabled)
(1) UE 선택 서브밴드 피드백(UE-selected subband feedback) (Aperiodic CSI report, Mode 2-0)
* 기존 CSI 보고 동작
- wideband CQI on all narrowband(s) in the CSI reference resource
- preferred narrowband index
- Differential CQI value = 0
* 제안하는 방법
- 단말기는 기존 BL/CE UE를 위한 CSI 보고 모드 2-0 방법을 따르며, 아래와 같은 변경 및 추가 사항이 요구된다
- R CSI : 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RAR MPDCCH 반복 횟수(예, 실제 MPDCCH 반복 전송 횟수 또는 최대 반복 전송 횟수 mpdcch-NumRepetition-RA)에 의존적인 값으로 정의될 수 있음. 이 값은 SIB와 같은 RRC 시그널링 혹은 Msg.2를 통해서 시그널링될 수 있음.
- CSI 참조 자원(CSI reference resource) : Msg.3/4 MPDCCH NB가 Msg.2 MPDCCH와 주파수 도메인 자원(frequency domain resource)가 다를 수 있기 때문에, 단말기는 CSI 참조 자원에 주파수 호핑이 적용된 채널을 추가로 사용하도록 정의될 수 있다. 예를 들어, SIB1-BR 및 다른 SIB가 있을 수 있다.
- 선호하는 NB(Preferred NB) : RAR에 포함된 UL 그랜트에서 전달 받은 정보 중에서 Msg.3/4 MPDSCH NB 인덱스로부터 유도된 Msg.3/4 MPDCCH를 모니터링하기 위해서 사용되는 NB와 주파수 도메인의 CSI 참조 자원(CSI reference resource in the frequency domain) 중에서 가장 가까운 NB로 선택될 수 있다. 이때, 단말기는 Msg.2를 위한 MPDCCH 모니터링 과정에서 CRS 기반으로 CSI를 특정 단계까지만 계산하고, 실제 CSI (CQI) 정보는 RAR을 해석한 이후에 광대역 CSI(wideband CSI)와 선호하는 NB(preferred NB)의 CSI를 온전히 계산할 수 있다.
● CE 모드 B는 필요한 반복 전송 횟수(repetition number) 기반의 DQI를 보고한다.
- 주파수 호핑이 인에이블된 경우(If frequency hopping is enabled) (rar-HoppingConfig is set)
(1) 상기 CE 모드 A와 동일하지만 CQI가 아닌 반복(repetition)(또는 반복 횟수(repetition number))을 DQI로 보고한다. 이 경우, DQI 보고는 CE 모드 A와 관련하여 설명된 방식에서 CQI 대신 DQI에 기반하여 측정/보고될 수 있다. 일 예로, DQI 보고는 광대역 DQI 만을 포함할 수도 있고, 또는 광대역 DQI 뿐만 아니라 선호하는 NB(preferred NB) 상에서 측정된 협대역 DQI 및 선호하는 NB의 위치에 관한 정보(예, preferred NB index)를 포함할 수 있다. 또한, 예를 들어, 광대역 DQI 및/또는 협대역 DQI는 G.1 절에서 설명한 방식에 기반하여 측정될 수 있고 G.1 절에서 설명한 (반복 횟수(R) 및/또는 병합 레벨(AL)과 관련된) 정보를 포함할 수 있다. 보다 구체적인 예로, 광대역 DQI 및/또는 협대역 DQI는 RSRP/RSRQ 값, 및/또는 Msg.2의 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH 수신 정보, 및/또는 Msg.4의 (N)PDCCH/MPDCCH 수신 성능 정보, 및/또는 Msg.4의 (N)PDSCH 수신 성능 정보를 포함할 수 있다.
(2) R CQI : 참조(reference)로 사용할 수 있는 CQI 값이 정의될 필요가 있으며 이 값은 이 MCS(코드 레이트(code rate), 레이어 개수(number of layers), 변조 차수(modulation order) 등)을 통해서 특정 타겟 수신 성능(예, BER 등)을 만족시키는 반복 횟수를 보고하기 위한 참조 MCS(reference MCS) 값으로 정의될 수 있다. 이는 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RAR MPDCCH 반복 횟수(예, 실제 MPDCCH 반복 전송 횟수 또는 최대 반복 전송 횟수 mpdcch-NumRepetition-RA)에 의존적인 값으로 정의될 수 있으며, 또한 Msg.2 MPDCCH로부터 간접적으로 유도된 값일 수 있다. 이 값은 SIB와 같은 RRC 시그널링 혹은 Msg.2를 통해서 시그널링될 수 있음. 또는, 예를 들어, Msg.2 MPDCCH의 변조 차수와 TBS(또는 고정된 해당 DCI 포맷으로부터 유도되는 비트 수)이 이를 위한 파라메터로 사용될 수 있으며, 참조 병합 레벨(reference aggregation level)은 독립적으로 단말기에게 주어질 수 있다.
● 상기 모든 방법에서 R_AL이 정의될 수 있다.
- 여기서 R_AL은 MPDCCH의 참조 병합 레벨(reference aggregation level of MPDCCH)를 의미하며, 이는 DQI 구성 정보에 적합한 정보를 추정할 수 있다. 여기서, 참조(reference)라는 의미는 DQI가 나타내고자 하는 가상의 하향링크 채널(예를 들어, MPDCCH)의 수신 성능을 유도함에 있어서, 가상의 하향링크 채널 전송에 사용될 것이라고 가정할 수 있는 파라메터를 의미한다.
DQI 보고 모드(DQI report mode)(예를 들어, 광대역(wideband) 또는 (기지국 또는 UE에 의해) 선택되거나 또는 선호하는 서브밴드/협대역(selected (by eNB or UE) or preferred subband/narrowband))가 다양한 경우에, 이를 결정 방법은 아래와 같을 수 있다.
● Msg2와 Msg3/Msg4의 협대역(또는 NB-IoT 캐리어) 관계에 의해서 DQI 보고 모드가 결정될 수 있음
■ 예를 들어, Msg2와 Msg3/Msg4의 협대역(또는 NB-IoT 캐리어)가 상이한 경우에는 광대역 DQI(wideband DQI)를 보고하며, 동일한 경우에는 협대역 DQI(narrow DQI(or narrowband DQI))를 포함해서 보고할 수 있음
■ Msg2와 Msg3/Msg4의 협대역(또는 NB-IoT 캐리어)가 상이한지 여부에 따라서 DQI는 CQI와 반복 횟수(repetition number)/병합 레벨(aggregation level) 중에서 달리 선택적으로 정의될 수 있으며, 값의 범위 또한 달리 정의될 수 있음
상기에서 광대역(wideband)는 기지국이 Msg.2 전송에 사용한 실제 NB만을 기준으로 할 수도 있다. 즉, 기지국이 DQI 측정의 기준이 되는 참조 자원(예를 들어, Type2 CSS)의 주파수 호핑을 인에이블(enable)한 경우에도, 경우에 따라서는 일부 주파수 자원(NB)만 전송에 사용될 수도 있다. 예를 들어, 반복 전송 횟수가 작은 경우에는 주파수 호핑에 사용할 수 있는 모든 NB를 기지국이 사용하지 않았을 수도 있다.
G.11 Non-BL UE를 위한 하향링크 품질 정보 보고(Downlink Quality Information Report)
CE 모드로 동작하고 있는 non-BL UE는 둘 이상의 수신 안테나를 사용할 수 있으며, 이를 기반으로 DQI를 측정하고 보고할 수 있다. 이때, 기지국은 단말기의 수신 안테나 수를 정확히 알지 못할 수 있으며, 또한 DQI 측정에 사용되는 수신 안테나 수에 따라서 적합한 DQI 값의 범위가 상이할 수 있다. 이를 고려해서, non-BL UE의 DQI 측정 및 보고는 아래와 같은 특징을 가질 수 있다.
● 기지국은 이와 같은 단말기가 DQI 측정을 위해서 사용할 수 있는 수신 안테나 수를 설정할 수 있음
● 이와 같은 단말기가 DQI를 측정할 때, 전력 소모를 줄이기 위해서 단일 안테나를 기반으로 DQI를 측정할 수 있지만, 만약 DQI 값이 특정 값 또는 그 보다 나쁜 품질을 나타내는 경우에는 둘 이상의 수신 안테나를 사용해서 DQI를 측정/보고하도록 강제되거나 또는 설정될 수 있음
G.12 하나 이상의 NB-IoT 하향링크 캐리어(NB-IoT downlink carrier)에서 하향링크 품질 정보(Downlink Quality Information)를 측정하고 보고하는 방법
단말기는 하나 이상의 NB-IoT 하향링크 캐리어에서 DQI 측정을 수행하고 이에 대한 결과를 보고하도록 지시 받을 수 있다. 이는 특히 하향링크 캐리어를 우회(redirection)시키기 위한 보조 정보로 활용하기 위해서 네트워크(network)가 지시/설정할 수 있다.
● 상기 캐리어 집합은 상위 계층 시그널링(high layer signaling or higher layer signaling)(예를 들어, 시스템 정보 또는 RRC 메시지)으로 설정되거나, 또는 상위 계층 시그널링으로 설정된 캐리어 집합 중에서 단말기가 실제 측정해서 보고해야 하는 캐리어(들)를 DCI(예를 들어, (N)PDCCH 오더(order) 기반의 (N)PRACH를 트리거(trigger) 하는)에서 지시될 수 있음
■ 상기 캐리어 집합(단말기가 측정을 수행해야 하는)은 앵커 캐리어(anchor carrier)와 하나의 비-앵커 캐리어(non-anchor carrier)의 조합으로 구성될 수 있음(이는 단말기의 측정에 따른 추가 전력 소모를 줄이기 위해서 CE 레벨 선택 과정에서 단말기가 이미 수신한 것으로 예상할 수 있는 앵커 캐리어를 측정 캐리어에 추가하는 것은 단말기의 수신 복잡도 및 전력 소모에 영향이 크지 않을 수 있기 때문이다)
◆ 앵커 캐리어의 측정 구간(measurement period)는 CE 레벨 선택을 위한 (N)PRSRP 구간으로 제한될 수 있음
◆ 비-앵커 캐리어의 측정 구간은 Msg2 수신 이후로 제한될 수 있음
● 상기 추가적인 측정을 수행하기 위해서 측정 갭(measurement gap) 또는 시간이 추가로 주어질 수 있음
■ 만약 (N)PDCCH 오더 기반의 (N)PRACH로 캐리어(들)가 주어지는 경우, 단말기가 해당 DCI 이후에 Msg3를 전송하기 위한 추가 시간(예를 들어, 스케줄링 지연(delay)를 확장 해석하거나 달리 해석할 수 있음)이 설정될 수 있음
■ 랜덤 접속 절차를 수행하기 이전에 특정 시간 동안 하향링크 스케줄링(downlink scheduling)을 기대하지 않도록 허용될 수 있으며, 이는 단말기가 추가로 측정 수행할 NB-IoT 하향링크 캐리어의 위치, 동작 모드(operation mode), 캐리어 타입(예, 앵커 캐리어 또는 비-앵커 캐리어) 등에 따라서 상이할 수 있음 (즉, 특정 검색 공간 전체 또는 일부를 단말기가 수신하지 않도록 허용될 수 있음)
● 단말기는 Msg1과 연관된 Msg2 수신 캐리어가 아닌 다른 캐리어(들)에서 측정한 결과를 보고할 수 있음
■ 단말기는 측정 결과를 기반으로 선호하는 NB-IoT 하향링크 캐리어(preferred NB-IoT downlink carrier)를 선택하고, 해당 정보만을 보고하도록 설정될 수 있음(이는 측정 보고를 위한 필드(field) 구성에 제약이 있을 수 있기 때문)
■ 만약 상기 정보와 함께, 해당 캐리어의 하향링크 채널 품질을 보고해야 하는 경우 그리고 하향링크 채널 품질 정보는 Msg2의 설정(예를 들어, Msg2 NPDCCH의 최대 반복 전송 횟수)에 따라 구체적인 해석이 달라지는 경우, Msg2 설정은 Msg1 전송에 연관된 하향링크 캐리어의 Msg2 설정에 기반하거나 또는 측정을 기반으로 선택된(또는 보고하는) 하향링크 캐리어의 Msg2 설정을 기반으로 하향링크 채널 품질 정보가 결정/해석 될 수 있음
◆ 이때, 선택된 캐리어에 Msg2 설정이 따로 없는 경우라면, 기존 Msg1 전송과 연관된 하향링크 캐리어의 Msg2 설정을 따르거나 또는 이때 참고할 Msg2 설정이 별개로 정의되거나 주어질 수 있음
■ 단말기는 측정 결과를 기반으로 선호하는 NB-IoT 하향링크 캐리어(preferred NB-IoT downlink carrier)를 선택하고, 해당 하향링크 캐리어에서 Msg2를 기대할 수 있는 UL 캐리어에 Msg1을 전송하도록 허용될 수 있음
■ 선호하는 NB-IoT 하향링크 캐리어를 보고한 경우에, 단말기는 해당 캐리어에서 Msg2 및/또는 Msg3/4와 관련된 NPDCCH 모니터링을 수행하도록 설정될 수 있음
■ 선호하는 NB-IoT 하향링크 캐리어를 선택할 수 있는 기준 값을 기지국이 제시할 수 있음. 예를 들어, 단말기가 추정한 반복 횟수(repetition number)(that the UE needs to decode hypothetical NPDCCH in Type2-CSS with BLER of 1% upon the NB-IoT downlink carrier)가 특정 값을 넘지 않는 것으로 제한할 수 있음
■ 만약 특정 하향링크 캐리어만 측정 수행하는 경우(그러나 Msg1에 연관된 Msg2 캐리어가 아닌 경우)에는 지시 받은 캐리어에 대해서 DQI를 측정/보고할 수 있음
◆ 이때, DQI 정보가 Msg2 설정을 기반으로 해석/결정되는 경우에, Msg2 설정 정보는 여전히 Msg1와 연관된 Msg2의 캐리어에 기반하거나 또는 지시 받은 (측정 수행하는) 캐리어의 Msg2 설정에 기반할 수 있음
■ 상기 선호하는 캐리어는 수신 성능 관점에서 단말기가 가장 선호하는 캐리어이거나 또는 가장 선호하지 않는 캐리어일 수 있음
◆ 상기 선호하는 캐리어는 하향링크 수신 성능 품질이 가장 좋은 것으로 예측되는 캐리어를 의미하며, 선호하지 않는 캐리어는 하향링크 수신 성능 품질이 가장 나쁠 것으로 예측되는 캐리어를 의미한다. 여기서 가장 선호하지 않는 캐리어 정보를 보고하는 경우에 DQI는 반복 횟수가 따로 보고되지 않거나 또는 다른 캐리어의 DQI 정보(예를 들어, 반복 횟수) 중에 보수적인 값(예를 들어, 가장 선호하지 않는 캐리어를 제외한 캐리어에서 반복 횟수가 가장 큰 값)을 포함해서 보고할 수 있다. 선호하지 않는 캐리어 정보를 보고하는 이유는 기지국이 단말기의 하향링크 캐리어를 우회(redirection)시키는 경우에, 단말기가 해당 캐리어는 하향링크 캐리어로 설정되는 것을 원하지 않는다는 정보로 활용할 수도 있기 때문이다.
■ 상기 DQI 보고는 둘 이상의 NB-IoT 하향링크 캐리어에서 측정한 DQI 정보를 포함할 수 있음
◆ 각 DQI 정보는 동일 시점에 전송될 수도 있지만, 서로 다른 시점 또는 자원으로 보고 될 수도 있음
◆ 동일 시점에 보고되는 경우에, DQI 값의 범위 및/또는 표현 간격은 하나의 NB-IoT 하향링크 캐리어에 대한 DQI 정보보다 작거나 좁을 수 있음
● Msg.1을 전송할 수 있는 캐리어에 대응하는 Msg.2 수신을 기대할 수 있는 캐리어가 다수인 경우에, 단말기는 해당 다수의 하향링크 캐리어 중에서 하향링크 채널의 품질이 가장 좋은(예를 들어, 특정 채널을 가장 적은 반복 수로 특정 수신 성능을 만족할 수 있는)을 우선 선택하고, 선택된 하향링크 캐리어에 대응하는 상향링크 캐리어에 Msg.1 전송을 시도할 수 있다.
■ 이때, 단말기는 CQI를 전송하면서(예를 들어, Msg.3에), 자신이 해당 상향링크 캐리어에 Msg.1을 전송한 이유가 하향링크 채널 품질이 가장 좋기 때문이라는 것을 알릴 수 있으며, 해당 정보는 선택된 하향링크 캐리어에서 필요한 CQI 정보(예를 들어, 특정 채널을 특정 수신 성능을 만족하면서, 수신을 기대할 수 있는 가장 적은 반복 수)를 함께 보고할 수 있다.
■ 이는 기지국에게 랜덤 접속 과정 이후에, 다른 하향링크 캐리어를 자신에게 할당하는 것을 피해달라는 간접적인 정보로 활용될 수 있다.
G.13 하향링크 품질 정보 보고를 위한 물리 상향링크 채널(Physical uplink channel for Downlink Quality Information Report)
CQI 정보가 Msg.3에 전송되는 경우에, 해당 정보가 (N)PUSCH에 전송되는 방법은 크게 레이트-매칭(rate-matching)과 펑처링(puncturing) 기법이 있을 수 있다. 레이트-매칭은 (N)PUSCH 내에서 CQI 정보가 전송되는 RE를 제외한 RE에 Msg.3에 전송되어야 할 데이터를 할당하는 것이며, 이와 같은 경우에는 단말기와 기지국 사이에 데이터 전송에 사용될 RE 수에 오해가 없도록 할 필요가 있다. 예를 들어, RE 수에 대한 오해가 발생하는 경우에, 기지국은 데이터 디코딩(data decoding)에 참고할 코드 레이트(code rate)를 잘못 이해할 수 있으며, 이와 같은 경우에는 디코딩을 성공적으로 수행할 수 없는 문제가 발생할 수 있다. 반면, 펑처링 기법은 Msg.3에 전송되어야 할 데이터가 사용할 수 있는 RE 수에 CQI 전송에 필요한 RE 수와 위치를 고려하지 않고, 데이터 매핑을 수행하는 방법이다. 이는 단말기가 CQI를 전송할지 여부를 기지국이 모르는 상황에서도 Msg.3의 데이터 디코딩 관점에서 코드 레이트에 대한 오해가 없는 장점이 있다. 상기 설명한 레이트-매칭과 펑처링은 단말기가 CQI를 전송할지 여부에 대한 정보를 기지국이 디코딩 시도 이전에 알 수 있는지 여부에 따라서 선택적으로 적용될 수 있다. 예를 들어, 초기 랜덤 접속 과정에서 Msg.3에 CQI를 전송하는 경우에는 CQI 정보가 펑처링 기법으로 전송될 수 있으며, RRC 연결 모드(RRC connected mode)에서 기지국의 요청에 의한 CQI 정보가 Msg.3에 전송되는 경우에는 레이트-매칭 기법이 사용될 수 있다. 또한, RRC 유휴 모드(RRC idle mode)에서 단말기가 기지국으로부터 사전에 설정된 상향링크 자원(PUR, Preconfigured Uplink Resource)에 CQI를 전송하는 경우에는, 레이트-매칭 기법이 적용될 수 있다. 만약, PUR 설정을 RRC 연결 모드가 아닌 RRC 유휴 모드에서 설정 받은 경우에는, 기지국이 단말기의 CQI 측정 및 보고를 지원할 수 있는 능력(capability)에 대한 정보가 없을 수 있기 때문에, 펑처링 기법이 적용될 수 있다.
G.14 RRC 연결 모드(RRC connected mode)에서 CQI 보고
기지국은 NB-IoT 단말기를 랜덤 접속 과정에서 비-앵커 캐리어(non-anchor carrier)로 우회(redirection)시킬 수 있다. 즉, 단말기가 Msg.2와 Msg.4를 수신한 하향링크 캐리어가 아닌(즉, 단말기가 Msg.3에 보고한 CQI가 유도된 하향링크 캐리어가 아닌) 비-앵커 캐리어를 단말기에게 할당하고, 이후 단말기는 설정 받은 비-앵커 캐리어에서 후속 동작을 수행하도록 요구될 수 있다. 이와 같은 경우에, 기지국은 해당 비-앵커 캐리어에서 단말기의 CQI 정보를 알 수 없기 때문에, 랜덤 접속 과정에서 단말기가 보고했던 CQI와 별개로, 설정 받은 해당 캐리어에서 CQI를 측정해서 보고할 것을 요청할 필요가 있을 수 있다. 이는 (N)PDCCH 오더(order) 기반의 랜덤 접속 과정에서 Msg.2로부터 지시 받은 (N)PUSCH(이후, Msg.3라고 칭함)에 CQI를 보고하는 절차를 따를 수 있으며, 이와 같은 경우에 Msg.3에 CQI를 보고할지 여부는 Msg.2의 MAC RAR에서 사용되지 않는 ‘R’ 비트(또는 유보 비트(reserved bit))를 사용해서 지시될 수 있다. 다만, 이와 같은 경우에 Msg.2를 성공적으로 검출한 이후에 CQI를 측정할 시간이 충분하지 않을 수 있기 때문에, Msg.1 전송을 트리거 하는 DCI(예, (N)PDCCH 오더(order) 기반의 Msg.1 전송을 요청하는 DCI)에서 사용되지 않거나 또는 항상 특정 값으로 설정된 특정 상태(state)나 비트(bit)를 활용해서 지시 받을 수도 있다.
이때, 단말기가 측정하는 CQI는 랜덤 접속 과정에서 CQI 보고가 사용되는 경우의 CQI 정의와 다를 수 있다. 예를 들어, 초기(initial) 랜덤 접속 과정에서는 USS에 대한 정보가 없기 때문에, Msg.2를 검출하기 위한 자원 설정과 관련된 파라메터(예를 들어, 타입-2 CSS의 최대 반복전송 횟수)를 기준으로 CQI가 정의될 수 있지만, 상기와 같이 RRC 연결 모드에서 CQI 측정 및 보고가 요청되는 경우에는 이미 설정 받은 USS 관련 파라메터(예를 들어, 최대 반복전송 횟수)를 기준으로 정의될 수 있다. 일 예로, CQI는 Msg.2와 관련된 PDCCH(예, MPDCCH 또는 (N)PDCCH)를 검출하는데 성공한 실제 반복 횟수 또는 (가상의) PDCCH(예, MPDCCH 또는 (N)PDCCH)를 디코딩하는데 필요한 반복 횟수로 정의될 수 있고, 이 경우 CQI는 최대 반복전송 횟수를 기준으로 정의될 수 있다. 보다 구체적인 예로, CQI는 최대 반복전송 횟수(Rmax)에 대한 비율로서 정의될 수 있으며, Msg.2와 관련된 PDCCH(예, MPDCCH 또는 (N)PDCCH)를 검출하는데 성공한 실제 반복 횟수 또는 (가상의) PDCCH(예, MPDCCH 또는 (N)PDCCH)를 디코딩하는데 필요한 반복 횟수가 {1, 2, 4, 8, …} 중 하나의 값으로 보고될 경우 CQI는 {Rmax, Rmax/2, Rmax/4, Rmax/8, …} 중 하나의 값으로 정의될 수 있다.
뿐만 아니라, 앞서 설명한 CSS와 USS 중에서 최대 반복 전송 횟수가 크거나 작은 값을 기준으로 CQI가 정의될 수도 있으며, 기지국의 특정 시그널링(signaling)으로부터 둘 중에서 선택될 수도 있다. 만약, CQI가 USS를 기준으로 정의되는 경우에도, CQI 측정을 위해서 단말기가 수신하는 NRS는 CSS 타입 2(CSS Type 2)에 포함되는 것을 특징으로 할 수도 있으며, 이는 비-앵커 캐리어에서 타입 2 CSS에는 NRS를 항상 기대할 수 있기 때문이다. 또한, NPDCCH 오더 기반의 Msg.1 전송을 기지국이 지시하는 경우에, 기지국은 Msg.1 자원의 CE 레벨을 단말기의 실제 CE 레벨과 상이한 값으로 설정할 수 있지만, 단말기는 기지국으로부터 지시 받은 Msg.1과 관계된 CE 레벨이 아닌 자신의 하향링크 CE 레벨을 기준으로 CQI를 유도할 수 있다.
G.15 RRC 유휴 모드(RRC Idle mode)에서 PUR 자원에 CQI를 보고하는 방법
기지국으로부터 사전에 설정된 상향링크 자원(PUR, Preconfigured Uplink Resource)에 단말기가 RRC 유휴 모드에서 (N)PUSCH를 전송하는 경우에, 그리고 PUR 전송에 대한 피드백(feedback) 정보 수신 등의 이유로 하향링크 채널을 모니터링 해야 하는 경우에, 기지국은 단말기의 CQI 정보를 필요로 할 수 있다. 즉, 기지국은 해당 단말기의 하향링크 CQI 정보를 활용하여 (N)PDCCH 또는 MPDCCH 그리고/또는 (N)PDSCH의 반복전송 횟수 그리고/또는 병합 레벨(aggregation level) 그리고/또는 코드 레이트(code rate)(자원 크기 및 MCS 등으로 결정될 수 있는) 설정을 할 수 있다. 이는 초기 랜덤 접속(initial random access) 과정에서 기지국이 단말기의 CQI 정보를 필요로 하는 이유와 유사할 수 있지만, 사용되는 상향링크 채널 구조가 초기 랜덤 접속과 PUR 전송이 상이하기 때문에, 아래와 같은 특징이 추가로 필요할 수 있다.
1) CQI 정의
A. PUR 타입에 따라서 하향링크 피드백 채널 구조가 다를 수 있기 때문에, CQI 정의가 PUR 타입과 관계 있을 수 있음
① PUR 타입은 PUR의 시간/주파수 자원이 UE 전용 자원(UE dedicated resource)이거나, 시간/주파수 자원은 다수의 단말이 공유할 수 있지만 공간(spatial) 그리고/또는 코드(code) 자원이 UE 전용으로(UE dedicated하게) 설정되거나(예를 들어, 충돌(collision)은 발생할 수 있지만, 경쟁(contention)은 발생하지 않는), 다수의 단말이 모든 자원을 공유할 수 있는(예를 들어, 경쟁이 발생할 수 있는) 타입이 있을 수 있다.
② 상기 PUR 타입에 따라서 단말기가 모니터링(monitoring)하는 하향링크 채널의 구조가 다를 수 있으며, 예를 들어 모니터링해야 하는 하향링크 채널이 다수의 사용자 간에 공유 되거나(예를 들어, Msg.2의 RAR과 유사한 구조), 또는 모니터링해야 하는 하향링크 채널이 각 사용자 별로 설정(예를 들어, USS의 (N)PDCCH/MPDCCH)될 수 있다. 만약, 각 사용자 별로 하향링크 채널이 독립적으로 정의되는 경우에는 각 사용자 별 CQI 정보를 보고하지만, 다수의 사용자가 하향링크 채널을 공유하고, 해당 채널을 디코딩(decoding)하면, 각 사용자의 정보가 개별적 또는 그룹 단위로 존재하는 경우에는, 특정 사용자만 CQI를 보고하도록 설정될 수 있다. 이는 해당 하향링크 채널을 공유하는 사용자 중에서 가장 하향링크 채널 품질이 나쁜 단말기의 수신 성능을 기준으로 해당 채널을 스케줄링 할 수 밖에 없기 때문일 수 있다. 또한, 기지국은 특정 조건을 만족하거나 만족하지 못하는 경우에만 CQI를 보고하도록 설정할 수도 있으며, 여기서 특정 조건은 예를 들어, 단말기가 측정한 CQI 정보가 특정 값보다 나쁜 경우를 의미하는 것일 수 있다. 여기서, CQI 정보는 초기 접속(initial access) 과정의 CQI 정보와 상이할 수 있으며, CQI를 유도하기 위해서 필요한 참조 채널은 PUR 타입 그리고/또는 하향링크 채널에 따라서 정의될 수 있다. 또한, PUR 설정을 RRC 연결 모드(RRC connected mode)에서 설정 받은 경우에는, 기지국이 이미 단말기의 하향링크 채널 품질 정보를 알고, 이를 기반으로 하향링크 채널 파라메터를 설정했을 수 있기 때문에, RRC 유휴 모드에서 PUR에 보고하는 CQI 정보는 기존 CQI 대비하여 설정 받은 하향링크 채널 파라메터의 일부 속성을 기준으로 차이 값(delta) 정보만을 보고하도록 정의될 수도 있다.
③ PUR에 CQI를 전송하는 경우에는 CE 모드에 관계없이 항상 PDSCH 기준의 CQI가 아닌 (N)PDCCH 또는 MPDCCH의 반복 전송 횟수 그리고/또는 병합 레벨(aggregation level)로 정의될 수 있다.
2) CQI 측정 시점
A. CQI 측정은 매 PUR 전송 단위가 아니라, PUR 전송을 계속 수행할 수 있는지 여부를 판별하기 위해서 하향링크 수신이 필요한 경우에 한해서 CQI 측정 및 보고가 수행될 수 있다. 즉, 단말기의 주변 환경 등의 변화로 설정 받은 PUR이 여전히 유효한지 판별하기 위한 동작이 수행되는 경우에만 제한적으로 이와 같은 동작이 요구될 수 있다.
G.16 RRC 연결 모드(RRC Connected mode)에서 제어 채널(control channel)의 CQI 정보를 보고 하는 방법
본 특허에서는 단말기의 하향링크 제어 채널(downlink control channel)(예, MPDCCH, NPDCCH, PDSCH)의 CQI 정보를 보고하는 방법을 제안하고 있으며, 이는 RRC 상태(state)에 무관하게 적용될 수 있다. 다만, RRC 연결 모드에서 단말기가 검출 시도하는 제어 채널은 RRC 유휴 모드(RRC idle mode)에서 검출 시도하는 제어 채널과 상이할 수 있으며, 이에 따라서 CQI를 측정하는 방법 및 보고 방식이 RRC 유휴 모드와 상이할 수 있다. 본 절에서는 RRC 연결 모드에서 하향링크 제어 채널의 CQI 정보를 보고하는 방법에 관련된 일련의 절차에 대해서 제안하며, 설명의 편의를 위해서 eMTC 시스템의 MPDCCH를 기준으로 설명한다. 제안하는 방법은 eMTC 시스템 뿐만 아니라 NB-IoT, LTE, NR 시스템과 같은 다른 통신 시스템에도 적용될 수 있으며, 제안하는 방법의 구체적인 예시 및 채널/신호 이름 등은 해당 시스템에서 동일/유사한 목적의 예시 및 채널/신호 이름으로 변경되어 해석될 수도 있다.
1) CQI를 측정하기 위한 기준 MPDCCH 포멧
A. RRC 연결 모드에서는 RRC 유휴 모드와 달리 단말기별로 설정된 USS(UE-specific Search Space)에서 MPDCCH를 모니터링(monitoring)할 수 있다. 이때, 단말기 별로 동일한 DCI 포맷(예, DCI 포맷 6-0A 와 6-1A 또는 6-0B와 6-1B)을 모니터링하더라도 USS의 DCI 사이크(size)는 단말기의 능력(capability)(예를 들어, sub-PRB, 64QAM, wideband 지원 여부) 등에 따라서 상이할 수 있기 때문에, CQI를 측정/계산하기 위한 참조 채널(reference channel)(예, hypothetical MPDCCH)이 다를 수 있다. 뿐만 아니라, CE 모드 A를 사용하는 단말기는 RRC 연결 모드에서 USS 뿐만 아니라 Type0-CSS도 모니터링할 수 있기 때문에, CQI를 측정하기 위한 기준 포맷(그리고/또는 검색 공간 타입 - CE 모드 A에 한하여)을 기지국이 설정하거나 또는 특정 약속에 의해서 정의될 필요가 있다. 즉, 동일한 단말기라 하더라도 기지국이 해당 단말기의 능력(capability)를 참고로 USS에 설정해준 파라미터(parameter) 정보에 따라서 참조 포맷(reference format)의 사이즈가 변경될 수 있다.
B. ECCE는 MPDCCH를 구성하는 단위이며, MPDCCH를 구성하기 위한 최소 ECCE 수는 MPDCCH가 전송되는 서브프레임 마다 상이할 수 있으며, 이에 따라서 CQI 정보의 기준이 달라질 수 있다. 즉, CQI가 MPDCCH의 반복 횟수 그리고/또는 AL을 대표하는 값(예, hypothetical MPDCCH 수신 검출 성능이 특정 기준을 만족할 수 있는 값)이라고 할 때, 이를 유도하기 위한 참조 MPDCCH 포맷(예, TS36.211 Table 6.8B.1-2)이 “기지국으로부터 지시”되거나 또는 “표준에 고정”되거나 또는 “해당 CQI 보고를 트리거하는 MPDCCH(예, 비주기적 CQI 트리거(aperiodic CQI trigger) 방식으로 MPDCCH로부터 해당 CQI 보고가 지시된 경우)가 수신된 시점 또는 해당 시점으로부터 상대적인 시점으로 고정 및 시그널링” 될 수 있다.
2) CQI 정보 구성
A. “MPDCCH 전송에 사용되는 호핑 NB(Narrow Band) 수 X 각 홉(hop) 내에서 MPDCCH 서브프레임이 반복 전송될 수 있는 수)”[이를 A라고 함] 보다 “참조MPDCCH 포맷(reference MPDCCH format)의 검색 공간(search space)에 설정된 Rmax(해당 검색 공간에서 MPDCCH가 반복 전송될 수 있는 최대 수) 또는 CQI로 보고 될 수 있는 최대 값(예, 단말기가 hypothetical MPDCCH를 특정 기준 성능 보다 같거나 높은 성능으로 검출하기 위해서 필요한 MPDCCH 반복 전송 수)”[이를 B라고 함]이 작은 경우에, A개 자원을 B 크기에 상응하는 구간으로 구분하고, 각 자원 구간 별로 CQI를 유도하고, 이 중에서 가장 나쁜(또는 좋은) CQI(예, 효율성(efficiency) 상으로 가장 낮은(또는 높은)) 값을 대표 CQI 값으로 선정할 수 있다. 이때, 해당 CQI의 기준이 된 자원 구간 정보도 함께 CQI 값에 포함될 수 있다.
B. USS는 단말기 별로 설정될 수 있기 때문에, 각 단말기는 설정 가능한 MPDCCH 또는 USS의 여러 구성 정보 중에서 자신이 선호하는 설정 정보(예, 최소한의 자원을 사용하여 MPDCCH 검출 성능이 특정 기준 성능을 만족할 수 있는 정보)를 CQI에 포함하여, 이를 기지국에 보고하고, 기지국은 이를 반영하여 해당 UE의 MPDCCH 설정 정보를 변경할 수 있다. 이때, 선호 정보에 포함될 수 있는 내용으로는 아래와 같은 정보가 있을 수 있다.
① MPDCCH의 자원 매핑 방식(예, 분산 매핑(distributed mapping) 또는 국부 매핑(localized mapping))
② MPDCCH의 호핑 인에이블(enable)/디스에이블(disable) 정보(특징적으로, 해당 정보는 MPDCCH CQI 보고를 트리거(trigger)하는 시점에서 MPDCCH의 호핑 설정이 인에이블되어 있는 경우에만 제한적으로 CQI에 포함될 수 있다)
③ MPDCCH PRB 세트(예, TS36.213 Table 9.1.5-1a, Table 9.1.5-1b, Table 9.1.5-2a, Table 9.1.5-2b 참조)이 2개 이상인 경우, CQI를 유도함에 있어서 가정한 PRB 세트 또는 단말기가 선호하는 MPDCCH PRB 세트 정보
3) CRS 포트(port)와 MPDCCH DMRS 포트의 관계를 활용하는 경우에 추가적인 특징
MPDCCH는 해당 MPDCCH를 구성하는 ECCE와 관계된 DMRS 포트와 동일한 프리코딩(precoding)이 적용되어 전송되며, CRS를 기준으로 해당 DMRS에 적용된 프리코딩 정보는 단말기에게 제공되지 않는 것이 일반적이다. 만약, MPDCCH 검출 성능 향상 등을 이유로 상기 모든 또는 일부 정보가 추가로 제공될 수 있는 경우에, 단말기는 이에 대한 정보(예를 들어, MPDCCH DMRS 포트와 CRS 포트의 관계)를 추가로 CQI와 함께 또는 별개로 기지국에 보고할 수 있다.
A. 상기 CRS와 DMRS 포트의 프리코더(precoder) 정보가 특정 값으로 고정될 수 있거나 또는 특정 시간/주파수 단위로 순환(cycling)할 수 있는 경우에, 단말기가 선호하는 프리코더 정보(예, 순환(cycling)을 선호한다는 정보를 포함할 수도 있으며, 또는 특정 프리코더를 사용해달라고 요청하거나, 또는 특정 방식으로 순환(cycling)을 요정하는 정보)를 보고할 수 있다. 또한, 기지국은 단말기가 MPDCCH CQI 정보를 유도할 때, 가정한 CRS와 DMRS 포트의 프리코더 관계를 지시할 수도 있다. 물론, 해당 정보는 특정 프리코더를 가정하도록 지시하기 위함이거나, 또는 특정 프리코더 조합은 가정하지 않아도 된다는 정보일 수도 있다.
B. 단말기가 MPDCCH CQI(예, hypothetical MPDCCH의 반복 전송 수 그리고/또는 AL)를 계산함에 있어서 가정할 프리코더 정보는 단말기가 가장 최근(또는 특정 시점 이전의 가정 최근)에 PDSCH에 대한 CSI를 보고했을 때 포함되었던 프리코더 정보(예, PMI)를 가정하도록 설정될 수도 있다.
G.17 본 발명의 제안에 따른 동작의 순서도
도 16은 단말이 Msg.1을 통해 DQI에 대한 정보를 기지국으로 전송(또는 보고)하는 방법의 순서도를 예시한다. 도 16의 예는 RRC 유휴 상태(RRC idle state) 또는 RRC 연결 상태(RRC connected state)의 단말에 의해 수행할 수 있다. 도 16에 대한 설명에서 (RA-0) 내지 (RA-4)는 G. 절에서 설명된 랜덤 접속 과정을 지칭한다. 앞서 설명한 바와 같이 단말은 사용자 기기(user equipment, UE), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal), 무선 디바이스 등과 같은 다른 용어로 지칭될 수 있다.
S102 단계에서, 단말은 시스템 정보(또는 SIB(system information block))를 통해 랜덤 접속 관련 설정(configuration) 정보를 기지국으로부터 수신할 수 있다. 예를 들어, S102 단계는 (RA-0)에 대응될 수 있다. 따라서, 단말은 (RA-0)와 관련하여 설명된 동작 및/또는 본 발명에서 제안되는 동작(예, G.1 절 내지 G.16 절 참조)에 따라 랜덤 접속 관련 설정 정보를 포함하는 시스템 정보(또는 SIB)를 수신할 수 있다.
S104 단계에서, 단말은 수신된 설정 정보에 기초하여 랜덤 접속 프리앰블(또는 Msg.1)을 상기 기지국으로 전송할 수 있다. 예를 들어, S104 단계는 (RA-1)에 대응될 수 있다. 또한, S104 단계에서, 단말은 본 발명에 따라 랜덤 접속 프리앰블을 통해 DQI에 대한 정보를 기지국으로 전송할 수 있다. 랜덤 접속 프리앰블을 통해 DQI에 대한 정보를 전송하기 위해 단말은 (RA-1)과 관련하여 설명한 동작, G.1 절에서 설명한 동작, 및/또는 본 발명에서 제안되는 동작(예, G.2 절 내지 G.16 절 참조)을 수행할 수 있다.
S104 단계 후에, 단말은 (RA-2), (RA-3), (RA-4)와 같은 과정을 수행할 수 있다.
도 17은 기지국이 Msg.1을 통해 DQI에 대한 정보를 단말로부터 수신하는(또는 보고받는) 방법의 순서도를 예시한다. 도 17의 예는 기지국이 RRC 유휴 상태(RRC idle state) 또는 RRC 연결 상태(RRC connected state)의 단말과 수행될 수 있다. 도 17에 대한 설명에서 (RA-0) 내지 (RA-4)는 G. 절에서 설명된 랜덤 접속 과정을 지칭한다. 앞서 설명한 바와 같이 기지국(BS)은 단말기와 통신하는 무선 장치로서 eNB(evolved Node-B), gNB(general Node-B), BTS(base transceiver system), AP(access point) 등과 같은 다른 용어로 지칭 될 수 있다.
S202 단계에서, 기지국은 시스템 정보(또는 SIB(system information block))를 통해 랜덤 접속 관련 설정(configuration) 정보를 단말로 전송할 수 있다. 예를 들어, S202 단계는 (RA-0)에 대응될 수 있다. 따라서, 기지국은 (RA-0)와 관련하여 설명된 동작 및/또는 본 발명에서 제안되는 동작(예, G.1 절 내지 G.16 절 참조)에 따라 랜덤 접속 관련 설정 정보를 포함하는 시스템 정보(또는 SIB)를 단말로 전송할 수 있다.
S204 단계에서, 기지국은 전송된 설정 정보에 기초하여 랜덤 접속 프리앰블(또는 Msg.1)을 단말로부터 수신할 수 있다. 예를 들어, S204 단계는 (RA-1)에 대응될 수 있다. 또한, S204 단계에서, 기지국은 본 발명에 따라 랜덤 접속 프리앰블을 통해 DQI에 대한 정보를 단말로부터 수신할 수 있다. 랜덤 접속 프리앰블을 통해 DQI에 대한 정보를 수신하기 위해 기지국은 (RA-1)과 관련하여 설명한 동작, G.1 절에서 설명한 동작, 및/또는 본 발명에서 제안되는 동작(예, G.2 절 내지 G.16 절 참조)을 수행할 수 있다.
S204 단계 후에, 기지국은 (RA-2), (RA-3), (RA-4)와 같은 과정을 수행할 수 있다.
앞서 설명한 바와 같이, 단말기가 (RA-3) 과정에서 DQI를 제공하여, (RA-4)에서 기지국이 하향링크 스케줄링(downlink scheduling)에 이를 활용할 수 있도록 할 수도 있다.
도 18은 단말이 Msg.3를 통해 DQI에 대한 정보를 기지국으로 전송(또는 보고)하는 방법의 순서도를 예시한다. 도 18의 예는 RRC 유휴 상태(RRC idle state) 또는 RRC 연결 상태(RRC connected state)의 단말에서 수행될 수 있다. 도 18에 대한 설명에서 (RA-0) 내지 (RA-4)는 G. 절에서 설명된 랜덤 접속 과정을 지칭한다. 앞서 설명한 바와 같이 단말은 사용자 기기(user equipment, UE), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal), 무선 디바이스 등과 같은 다른 용어로 지칭될 수 있다.
S302 단계에서, 단말은 랜덤 접속 프리앰블(또는 Msg.1)을 기지국으로 전송할 수 있다. 예를 들어, S302 단계는 (RA-1)에 대응될 수 있다. 따라서, 단말은 (RA-1)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작에 따라 랜덤 접속 프리앰블을 기지국으로 전송할 수 있다. 랜덤 접속 프리앰블 전송을 위한 설정은 (RA-0)에서 설명한 동작 및/또는 본 발명에서 제안한 동작(예, G.1 절 내지 G.16 절 참조)에 따라 미리 설정될 수 있다. 일 예로, S302 단계 전에 (RA-0)에 대응되는 동작이 수행될 수 있으며(미도시), 기지국으로부터 방송(broadcast)되는 시스템 정보에 기반하여 Msg.3를 통한 DQI에 대한 정보의 보고가 인에이블(enable)될 수 있다.
S304 단계에서, 단말은 전송된 랜덤 접속 프리앰블(또는 Msg.1)에 대한 응답으로 기지국으로부터 랜덤 접속 응답(또는 Msg.2)를 수신할 수 있다. 예를 들어, S304 단계는 (RA-2)에 대응될 수 있으며, 랜덤 접속 응답은 본 명세서에서 설명한 정보들 및/또는 본 발명에서 제안된 정보들을 포함할 수 있다. 단말은 (RA-2)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작(예, G.1 절 내지 G.16 절 참조)에 따라 랜덤 접속 응답을 기지국으로부터 수신할 수 있다. 일 예로, 랜덤 접속 응답은 단말에게 DQI에 대한 정보를 Msg.3를 통해 보고할 것을 지시(또는 지시하는 정보)를 포함할 수 있다.
S306 단계에서, 단말은 수신된 랜덤 접속 응답(또는 Msg.2)에 기초하여 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해 경쟁 해결을 위한 메시지(또는 Msg.3)를 기지국으로 전송할 수 있다. 예를 들어, S306 단계는 (RA-3)에 대응될 수 있다. 또한, S306 단계에서, 단말은 본 발명에 따라 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해(또는 경쟁 해결을 위한 메시지를 통해) DQI에 대한 정보를 기지국으로 전송할 수 있다. 이를 위해, 상기 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)(또는 경쟁 해결을 위한 메시지)는 본 명세서에서 설명한 정보들 및/또는 본 발명에서 제안된 정보들을 포함할 수 있다. 단말은 (RA-3)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작(예, G.1 절 내지 G.16 절 참조)에 따라 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해(또는 경쟁 해결을 위한 메시지를 통해) DQI에 대한 정보를 기지국으로 전송할 수 있다. 일 예로, DQI에 대한 정보는 상위 계층 신호(예, MAC 메시지 또는 RRC 메시지)를 통해 기지국으로 전송될 수 있다.
S306 단계 후에, 단말은 (RA-4)와 같은 과정을 수행할 수 있다.
도 19는 기지국이 Msg.3를 통해 DQI에 대한 정보를 단말로부터 수신하는(또는 보고받는) 방법의 순서도를 예시한다. 도 19의 예는 기지국이 RRC 유휴 상태(RRC idle state) 또는 RRC 연결 상태(RRC connected state)의 단말과 수행할 수 있다. 도 19에 대한 설명에서 (RA-0) 내지 (RA-4)는 G. 절에서 설명된 랜덤 접속 과정을 지칭한다. 앞서 설명한 바와 같이 기지국(BS)은 단말기와 통신하는 무선 장치로서 eNB(evolved Node-B), gNB(general Node-B), BTS(base transceiver system), AP(access point) 등과 같은 다른 용어로 지칭 될 수 있다.
S402 단계에서, 기지국은 랜덤 접속 프리앰블(또는 Msg.1)을 단말로부터 수신할 수 있다. 예를 들어, S402 단계는 (RA-1)에 대응될 수 있다. 따라서, 기지국은 (RA-1)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작에 따라 랜덤 접속 프리앰블을 단말로부터 수신할 수 있다. 랜덤 접속 프리앰블 전송을 위한 설정은 (RA-0)에서 설명한 동작 및/또는 본 발명에서 제안한 동작(예, G.1 절 내지 G.16 절 참조)에 따라 미리 설정될 수 있다.
S404 단계에서, 기지국은 수신된 랜덤 접속 프리앰블(또는 Msg.1)에 대한 응답으로 랜덤 접속 응답(또는 Msg.2)를 단말로 전송할 수 있다. 예를 들어, S404 단계는 (RA-2)에 대응될 수 있으며, 랜덤 접속 응답은 본 명세서에서 설명한 정보들 및/또는 본 발명에서 제안된 정보들을 포함할 수 있다. 기지국은 (RA-2)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작(예, G.1 절 내지 G.16 절 참조)에 따라 랜덤 접속 응답을 단말로 전송할 수 있다.
S406 단계에서, 기지국은 전송된 랜덤 접속 응답(또는 Msg.2)에 대한 응답으로 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해 경쟁 해결을 위한 메시지(또는 Msg.3)를 단말로부터 수신할 수 있다. 예를 들어, S406 단계는 (RA-3)에 대응될 수 있다. 또한, S406 단계에서, 기지국은 본 발명에 따라 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해(또는 경쟁 해결을 위한 메시지를 통해) DQI에 대한 정보를 단말로부터 수신할 수 있다. 이를 위해, 상기 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)(또는 경쟁 해결을 위한 메시지)는 본 명세서에서 설명한 정보들 및/또는 본 발명에서 제안된 정보들을 포함할 수 있다. 기지국은 (RA-3)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작(예, G.1 절 내지 G.16 절 참조)에 따라 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해(또는 경쟁 해결을 위한 메시지를 통해) DQI에 대한 정보를 단말로부터 수신할 수 있다.
S406 단계 후에, 기지국은 (RA-4)와 같은 과정을 수행할 수 있다.
도 16 내지 도 19의 예에서, 본 명세서에서 설명된 동작 및/또는 본 발명에서 제안되는 동작(예, G.1 절 내지 G.16 절 참조)이 단말 동작 또는 기지국 동작과 제한 없이 결합되어 수행될 수 있으며, “G. 본 발명에서 제안하는 방법”의 내용 전체를 도 16 내지 도 19에 대한 설명에 참조로서 포함한다.
제한적이지 않은 예로, 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)(예, PDCCH 또는 NPDCCH 또는 MPDCCH)을 위해 주파수 호핑이 설정된 경우(또는 물리 하향링크 제어 채널에 주파수 호핑이 적용되는 경우), 본 발명에 따른 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함할 수 있다(예, G.6, G.7, G.9, G.10, G.16 절 참조). 보다 구체적인 예로, 본 발명에 따른 하향링크 품질 정보는 광대역 하향링크 품질에 관한 정보만을 포함하거나, 또는 광대역 하향링크 품질에 더하여 선호 협대역(preferred narrowband) 상에서의 협대역 하향링크 품질에 관한 정보 및 상기 선호 협대역의 위치에 관한 정보(예, 선호 협대역의 인덱스 정보)를 포함할 수 있다(예, G.10 절 참조). 선호 협대역은 광대역 하향링크 품질이 측정되는 협대역들 내에서 선택될 수 있다.
제한적이지 않은 예로, 광대역 하향링크 품질은 CQI에 기반할 수도 있고, 반복 횟수(R)(및/또는 병합 레벨(AL))에 기반할 수도 있다. 보다 구체적인 예로, 광대역 하향링크 품질이 CQI에 기반하는 경우, 광대역 하향링크 품질은 G.10 절에서 설명한 바와 같이 보고될 수 있다. 혹은 광대역 하향링크 품질이 반복 횟수(R)(및/또는 병합 레벨(AL))에 기반하는 경우, 광대역 하향링크 품질은 G.1 절, G.6, G.7, G.9, G.10, G.16에서 설명한 바와 같이 구성되고 보고될 수 있다.
제한적이지 않은 예로, 광대역 하향링크 품질은 하향링크 품질 측정을 위한 참조 자원(reference resource)에서 (가상의) 물리 하향링크 제어 채널(예, PDCCH 또는 NPDCCH 또는 MPDCCH)을 디코딩하는데 필요한 반복 횟수(R)(및/또는 병합 레벨(AL))을 포함할 수 있다(예, G.1, G.10 절 참조). 일 예로, 하향링크 품질 측정을 위한 참조 자원은 반복 횟수(R)(및/또는 병합 레벨(AL))과 관련된 모든 협대역(narrowband)들(예, 반복 횟수(R)(및/또는 병합 레벨(AL))을 계산할 때 기반이 되는 모든 협대역들)(또는 이들 협대역들과 관련된 (하향링크) 물리 자원 블록(physical resource block)의 그룹)을 포함할 수 있고, 선호 협대역은 하향링크 품질 측정을 위한 참조 자원 내에서 선택될 수 있다.
혹은, 제한적이지 않은 예로, 광대역 하향링크 품질은 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(예, PDCCH 또는 NPDCCH 또는 MPDCCH)을 실제 디코딩하는데 필요한 반복 횟수(R)(및/또는 병합 레벨(AL))을 포함할 수 있다(예, G.1, G.10 절 참조). 일 예로, 선호 협대역은 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(예, PDCCH 또는 NPDCCH 또는 MPDCCH)을 모니터링하는데 사용된 협대역 중에서 선택될 수 있다.
이상에서, 본 발명은 랜덤 접속 절차와 관련하여 설명되었지만, 본 발명은 랜덤 접속 절차에 제한되어 적용되는 것은 아니며 RRC 연결 상태에서 하향링크 채널 품질 정보를 측정/보고하는 경우에도 동일/유사하게 적용될 수 있다.
H. 본 발명이 적용되는 통신 시스템 및 장치
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 20은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 20을 참조하면, 무선 통신 시스템은 기지국(10)과 기지국 영역 내에 위치한 다수의 단말(20)을 포함한다. 기지국은 송신 장치로, 단말은 수신 장치로 표현될 수 있으며, 그 반대도 가능하다. 기지국과 단말은 프로세서(processor, 11,21), 메모리(memory, 14,24), 하나 이상의 전송(Tx)/수신(Rx) RF 모듈(radio frequency module, 15,25)(또는 RF transceiver), Tx 프로세서(12,22), Rx 프로세서(13,23), 안테나(16,26)를 포함한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 보다 구체적으로, 하향링크(DL)(기지국에서 단말로의 통신)에서, 코어 네트워크로부터의 상위 계층 패킷은 프로세서(11)에 제공된다. 프로세서는 L2 계층의 기능을 구현한다. 하향링크(DL)에서, 프로세서는 논리 채널과 전송 채널 간의 다중화(multiplexing), 무선 자원 할당을 단말(20)에 제공하며, 단말로의 시그널링을 담당한다. 전송(TX) 프로세서(12)는 L1 계층 (즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 신호 처리 기능은 단말에서 FEC(forward error correction)을 용이하게 하고, 코딩 및 인터리빙(coding and interleaving)을 포함한다. 부호화 및 변조된 심볼은 병렬 스트림으로 분할되고, 각각의 스트림은 OFDM 부반송파에 매핑되고, 시간 및/또는 주파수 영역에서 기준 신호(Reference Signal, RS)와 멀티플렉싱되며, IFFT (Inverse Fast Fourier Transform)를 사용하여 함께 결합되어 시간 영역 OFDMA 심볼 스트림을 운반하는 물리적 채널을 생성한다. OFDM 스트림은 다중 공간 스트림을 생성하기 위해 공간적으로 프리코딩된다. 각각의 공간 스트림은 개별 Tx/Rx 모듈(또는 송수신기(transceiver), 15)를 통해 상이한 안테나(16)에 제공될 수 있다. 각각의 Tx/Rx 모듈은 전송을 위해 각각의 공간 스트림으로 RF 반송파를 변조할 수 있다. 단말에서, 각각의 Tx/Rx 모듈(또는 송수신기, 25)는 각 Tx/Rx 모듈의 각 안테나(26)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 캐리어로 변조된 정보를 복원하여, 수신(RX) 프로세서(23)에 제공한다. RX 프로세서는 layer 1의 다양한 신호 프로세싱 기능을 구현한다. RX 프로세서는 단말로 향하는 임의의 공간 스트림을 복구하기 위해 정보에 공간 프로세싱을 수행할 수 있다. 만약 다수의 공간 스트림들이 단말로 향하는 경우, 다수의 RX 프로세서들에 의해 단일 OFDMA 심볼 스트림으로 결합될 수 있다. RX 프로세서는 고속 푸리에 변환 (FFT)을 사용하여 OFDMA 심볼 스트림을 시간 영역에서 주파수 영역으로 변환한다. 주파수 영역 신호는 OFDM 신호의 각각의 서브 캐리어에 대한 개별적인 OFDMA 심볼 스트림을 포함한다. 각각의 서브캐리어 상의 심볼들 및 기준 신호는 기지국에 의해 전송된 가장 가능성 있는 신호 배치 포인트들을 결정함으로써 복원되고 복조된다. 이러한 연 판정(soft decision)들은 채널 추정 값들에 기초할 수 있다. 연판정들은 물리 채널 상에서 기지국에 의해 원래 전송된 데이터 및 제어 신호를 복원하기 위해 디코딩 및 디인터리빙(de-interleaving)된다. 해당 데이터 및 제어 신호는 프로세서(21)에 제공된다.
상향링크(UL)(단말에서 기지국으로의 통신)은 단말(20)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 기지국(10)에서 처리된다. 각각의 Tx/Rx 모듈(또는 송수신기(transceiver), 25)는 각각의 안테나(26)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(23)에 제공한다. 프로세서(21)는 프로그램 코드 및 데이터를 저장하는 메모리(24)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
위에서 설명한 본 발명은 상기 도 20에서 설명한 무선 통신 장치인 기지국(10) 및 단말(20)에 의해서 수행될 수 있다.
도 21은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 21을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(예, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(예, V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(예, relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 22는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 22를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 21의 {무선 기기(100a~100f), 기지국(200)} 및/또는 {무선 기기(100a~100f), 무선 기기(100a~100f)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어(instruction) 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 23은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 21 참조).
도 23을 참조하면, 무선 기기(100, 200)는 도 22의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 22의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 22의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 21, 100a), 차량(도 21, 100b-1, 100b-2), XR 기기(도 21, 100c), 휴대 기기(도 21, 100d), 가전(도 21, 100e), IoT 기기(도 21, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 21, 400), 기지국(도 21, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 23에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 23의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 24는 본 발명에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 24를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 23의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 25는 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 25를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 23의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(예, 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 3GPP LTE/LTE-A 시스템/5G 시스템(또는 NR(New RAT) 시스템) 뿐만 아니라 다양한 무선 통신 시스템에서 동작하는 단말, 기지국 등과 같은 무선 통신 장치에 적용될 수 있다.

Claims (13)

  1. 무선 통신 시스템에서 사용자 기기(user equipment, UE)가 하향링크 품질 정보(downlink quality information)를 기지국으로 전송하는 방법에 있어서,
    랜덤 접속 프리앰블(random access preamble)을 상기 기지국으로 전송하는 단계;
    상기 기지국으로부터 랜덤 접속 응답(random access response)을 수신하는 단계; 및
    상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 기지국으로 전송하는 단계를 포함하되,
    상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위해 주파수 호핑이 설정된 경우, 상기 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함하는, 방법.
  2. 청구항 1에 있어서,
    상기 광대역 하향링크 품질은 하향링크 품질 측정을 위한 참조 자원(reference resource)에서 물리 하향링크 제어 채널을 디코딩하는데 필요한 반복 횟수(repetition number)를 포함하는, 방법.
  3. 청구항 2에 있어서,
    상기 하향링크 품질 측정을 위한 참조 자원은 상기 반복 횟수와 관련된 모든 협대역(narrowband)들을 위한 하향링크 물리 자원 블록(physical resource block)의 그룹을 포함하는, 방법.
  4. 청구항 2에 있어서,
    상기 하향링크 품질 정보는 선호 협대역(preferred narrowband) 상에서의 협대역 하향링크 품질에 관한 정보와 상기 선호 협대역의 위치에 관한 정보를 더 포함하는, 방법.
  5. 청구항 4에 있어서,
    상기 선호 협대역은 상기 하향링크 품질 측정을 위한 참조 자원 내에서 선택되는, 방법.
  6. 청구항 2에 있어서,
    상기 광대역 하향링크 품질은 상기 물리 하향링크 제어 채널을 디코딩하는데 필요한 병합 레벨을 더 포함하는, 방법.
  7. 청구항 1에 있어서,
    상기 광대역 하향링크 품질은 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널을 실제 디코딩하는데 필요한 반복 횟수를 포함하는, 방법.
  8. 청구항 7에 있어서,
    상기 하향링크 품질 정보는 선호 협대역(preferred narrowband) 상에서의 협대역 하향링크 품질에 관한 정보와 상기 선호 협대역의 위치에 관한 정보를 더 포함하는, 방법.
  9. 청구항 8에 있어서,
    상기 선호 협대역은 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널을 모니터링하는데 사용된 협대역 중에서 선택되는, 방법.
  10. 청구항 7에 있어서,
    상기 광대역 하향링크 품질은 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널을 실제 디코딩하는데 필요한 병합 레벨을 더 포함하는, 방법.
  11. 청구항 1에 있어서,
    상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널은 MTC(Machine Type Communication) PDCCH(Physical Downlink Control Channel)인, 방법.
  12. 무선 통신 시스템에서 하향링크 품질 정보를 기지국으로 전송하도록 구성된 사용자 기기(user equipment, UE)에 있어서,
    RF(Radio Frequency) 송수신기(transceiver); 및
    상기 RF 송수신기와 동작시(operatively) 연결되는 프로세서를 포함하고, 상기 프로세서는 상기 RF 송수신기를 제어하여 랜덤 접속 프리앰블(random access preamble)을 상기 기지국으로 전송하고, 상기 기지국으로부터 랜덤 접속 응답(random access response)을 수신하고, 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 기지국으로 전송하도록 구성되며,
    상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위해 주파수 호핑이 설정된 경우, 상기 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함하는, 사용자 기기.
  13. 무선 통신 시스템에서 동작하도록 구성된 사용자 기기(user equipment, UE)를 위한 장치에 있어서,
    명령어(instruction)를 포함하는 메모리; 및
    상기 메모리에 동작시 연결되는 프로세서를 포함하되,
    상기 프로세서는 상기 명령어를 실행하여 특정 동작들을 수행하도록 구성되며, 상기 특정 동작들은,
    랜덤 접속 프리앰블(random access preamble)을 기지국으로 전송하는 것과,
    상기 기지국으로부터 랜덤 접속 응답(random access response)을 수신하는 것과,
    상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 하향링크 품질 정보를 상기 기지국으로 전송하는 것을 포함하되,
    상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위해 주파수 호핑이 설정된 경우, 상기 하향링크 품질 정보는 광대역 하향링크 품질(wideband downlink quality)에 관한 정보를 포함하는, 장치.
PCT/KR2019/010175 2018-08-09 2019-08-09 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 WO2020032756A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/255,216 US11503490B2 (en) 2018-08-09 2019-08-09 Method for transmitting and receiving signals in wireless communication system, and device therefor

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20180093418 2018-08-09
KR10-2018-0093418 2018-08-09
KR20180114491 2018-09-21
KR10-2018-0114491 2018-09-21
KR20180115384 2018-09-27
KR10-2018-0115384 2018-09-27
KR20180133999 2018-11-02
KR10-2018-0133999 2018-11-02
KR10-2019-0017888 2019-02-15
KR20190017888 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020032756A1 true WO2020032756A1 (ko) 2020-02-13

Family

ID=69413639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010175 WO2020032756A1 (ko) 2018-08-09 2019-08-09 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11503490B2 (ko)
WO (1) WO2020032756A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053573A1 (en) * 2018-09-27 2022-02-17 Lenovo (Beijing) Limited Method and apparatus for ue information transmission for network optimization
EP3918859A1 (en) * 2019-01-28 2021-12-08 Telefonaktiebolaget LM Ericsson (publ) Specifying content of quality report in msg3
WO2021034052A1 (en) * 2019-08-16 2021-02-25 Samsung Electronics Co., Ltd. Apparatus and method for transmission of uplink control information in network cooperative communication
US11582794B2 (en) * 2020-02-07 2023-02-14 Qualcomm Incorporated Flexible message repetition for random access procedures
US20230199853A1 (en) * 2021-12-22 2023-06-22 Qualcomm Incorporated Dynamic indication of a full duplex random access channel occasion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136666A1 (en) * 2016-02-05 2017-08-10 Qualcomm Incorporated Adaptive radio link monitoring
US20180103459A1 (en) * 2015-04-10 2018-04-12 Renmao Liu Physical downlink control channel resource allocation method, and base station and user equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168969A1 (ko) * 2012-05-07 2013-11-14 엘지전자 주식회사 무선통신 시스템에서 채널 상태 정보 전송 방법 및 장치
CN108111196B (zh) * 2012-06-04 2021-06-18 交互数字专利控股公司 传递多个传输点的信道状态信息(csi)
WO2016117938A1 (en) * 2015-01-22 2016-07-28 Lg Electronics Inc. Method for initiating a random access procedure in a carrier aggregation system and a device therefor
US20160218788A1 (en) * 2015-01-28 2016-07-28 Lg Electronics Inc. Method and apparatus for transmitting channel state information
US10111066B2 (en) * 2015-01-28 2018-10-23 Hfi Innovation Inc. Methods to support measurements for user equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180103459A1 (en) * 2015-04-10 2018-04-12 Renmao Liu Physical downlink control channel resource allocation method, and base station and user equipment
WO2017136666A1 (en) * 2016-02-05 2017-08-10 Qualcomm Incorporated Adaptive radio link monitoring

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MOTOROLA MOBILITY: "Introduction of even further enhanced MTC for LTE in 36.213, s06-s07", RL-1807937, 3GPP TSG RAN WG1 #93, 7 June 2018 (2018-06-07), Busan, Korea, XP051452968 *
NOKIA: "On the CSI reporting in NR", RL-1612871, 3GPP TSG RAN WG1 #87, 4 November 2016 (2016-11-04), Reno, U.S.A., XP051189522 *
SAMSUNG: "Updates on A-CSI Reporting", RL-160543, 3GPP TSG RAN WG1 #8 4, 5 February 2016 (2016-02-05), St Julians, Malta, XP051064022 *

Also Published As

Publication number Publication date
US11503490B2 (en) 2022-11-15
US20210282042A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
WO2020032750A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020032740A1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2020032691A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2020204322A1 (ko) 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국
WO2020130755A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2020032748A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020032726A1 (ko) 무선 통신 시스템에서 통신 장치가 wus 신호를 감지 또는 송신하는 방법 및 장치
WO2020184836A1 (ko) 무선 통신 시스템에서 단말의 빔 정보 전송 방법 및 이를 지원하는 단말 및 기지국
WO2020032756A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020032646A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020050682A1 (ko) 무선 통신 시스템에서 단말의 동작 방법 및 이를 지원하는 단말
WO2020167051A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020171405A1 (ko) 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국
WO2020032696A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 상향링크 신호 송수신 방법 및 이를 지원하는 장치
WO2020159172A1 (ko) 무선 통신 시스템에서 단말의 빔 실패 보고 방법 및 이를 지원하는 단말 및 기지국
WO2020167048A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020159189A1 (ko) 무선 통신 시스템에서 단말의 상태 정보 보고 방법 및 이를 지원하는 단말 및 기지국
WO2020032713A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2020032643A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020032739A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2022216041A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
WO2020204497A1 (ko) 다중 전송 블록 스케줄링을 위한 신호의 송수신 방법 및 이를 위한 장치
WO2022216040A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
WO2020166848A1 (ko) 무선 통신 시스템에서 단말의 빔 관련 상향링크 피드백 정보 전송 방법 및 이를 지원하는 단말 및 기지국
WO2021066602A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846707

Country of ref document: EP

Kind code of ref document: A1