WO2020032748A1 - 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2020032748A1
WO2020032748A1 PCT/KR2019/010167 KR2019010167W WO2020032748A1 WO 2020032748 A1 WO2020032748 A1 WO 2020032748A1 KR 2019010167 W KR2019010167 W KR 2019010167W WO 2020032748 A1 WO2020032748 A1 WO 2020032748A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
base station
dqi
terminal
msg
Prior art date
Application number
PCT/KR2019/010167
Other languages
English (en)
French (fr)
Inventor
박창환
양석철
안준기
김선욱
황승계
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201980050439.6A priority Critical patent/CN112534860A/zh
Priority to DE112019003172.4T priority patent/DE112019003172T5/de
Priority to US17/254,113 priority patent/US20210274556A1/en
Publication of WO2020032748A1 publication Critical patent/WO2020032748A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving downlink channel quality information.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, shortage of resources and users demand faster services, a more advanced mobile communication system is required. .
  • An object of the present invention is to provide a method and an apparatus therefor for efficiently transmitting and receiving downlink channel quality information.
  • Another object of the present invention is to provide a method and an apparatus therefor for efficiently transmitting and receiving downlink channel quality information through a random access procedure.
  • Another object of the present invention is to provide a method and apparatus for efficiently transmitting and receiving downlink channel quality information in an RRC connection state.
  • Another object of the present invention is to provide a method and apparatus for efficiently transmitting and receiving downlink channel quality information for a physical downlink control channel and / or a physical downlink shared channel.
  • a method for transmitting downlink quality information to a base station by a user equipment (UE) in a wireless communication system comprising a random access preamble (random access preamble) Transmitting) to the base station; Receiving a random access response from the base station; And transmitting the downlink quality information to the base station through a physical uplink shared channel based on the random access response.
  • UE user equipment
  • a user equipment configured to transmit downlink quality information to a base station in a wireless communication system
  • the user equipment comprising: a radio frequency (RF) transceiver; And a processor operatively connected with the RF transceiver, wherein the processor controls the RF transceiver to transmit a random access preamble to the base station, receives a random access response from the base station, and receives the random access response.
  • the downlink quality information may be configured to be transmitted to the base station through a physical uplink shared channel.
  • an apparatus for a user equipment (UE) in a wireless communication system comprising: a memory including instructions; And a processor coupled during operation to the memory, wherein the processor is configured to execute the instructions to perform specific operations, the specific operations comprising sending a random access preamble to the base station and random access from the base station. Receiving the response and transmitting the downlink quality information to the base station through a physical uplink shared channel based on the random access response.
  • UE user equipment
  • a method for a base station to receive downlink quality information from a user equipment in a wireless communication system comprising a random access preamble from the user equipment.
  • a base station configured to receive downlink quality information from a user equipment in a wireless communication system, the base station comprising: a radio frequency (RF) transceiver; And a processor operatively connected to the RF transceiver, wherein the processor controls the RF transceiver to receive a random access preamble from the user device, transmit a random access response to the user device, and transmit the random access response to the user device.
  • the downlink quality information may be received from the user device through a physical uplink shared channel based on an access response.
  • an apparatus for a base station in a wireless communication system comprising: a memory including instructions; And a processor coupled during operation to the memory, the processor configured to execute the instructions to perform specific operations, the specific operations comprising: receiving a random access preamble from a user device; Transmitting a random access response to the user device and receiving downlink quality information from the user device through a physical uplink shared channel based on the random access response. can do.
  • the downlink quality information includes information indicating a repetition number of the physical downlink control channel when a physical downlink control channel associated with the random access response is detected. can do.
  • the downlink quality information may further include information indicating an aggregation level of the physical downlink control channel when the physical downlink control channel associated with the random access response is detected.
  • the downlink quality information is an aggregation level of the physical downlink control channel associated with the random access response May be transmitted assuming a reference aggregation level.
  • the specific performance requirement may include that the number of repetitions of the physical downlink control channel is one.
  • the downlink quality information may include information indicating a repetition number required to detect a hypothetical physical downlink control channel at a specific block error rate (BLER). .
  • BLER block error rate
  • the specific BLER may be 1%.
  • the downlink quality information may further include information indicating an aggregation level required to detect the virtual physical downlink control channel as the specific BLER.
  • the downlink quality information refers to the aggregation level as a reference aggregation level. can be transmitted assuming aggregation level).
  • said specific performance requirement may comprise that the number of iterations required to detect said virtual physical downlink control channel is one.
  • the random access response may include information for instructing the user equipment to report the downlink quality information.
  • the downlink quality information may be transmitted in a radio resource control (RRC) idle state of the user equipment.
  • RRC radio resource control
  • the downlink quality information may be measured with respect to a common search space (CSS) for a physical downlink control channel associated with the random access response.
  • SCS common search space
  • FIG. 1 illustrates a structure of a radio frame used in an LTE (-A) system.
  • FIG. 2 is a diagram illustrating an example of a frame structure in NR.
  • 3 shows a resource grid for one downlink slot in an LTE system.
  • FIG. 4 shows an example of a resource grid in NR.
  • 5 is a diagram illustrating an example of a physical resource block in an NR.
  • FIG. 6 illustrates physical channels that can be used for MTC and a general signal transmission method using the same.
  • FIG. 7 shows an example of physical channels that can be used for NB-IoT and a general signal transmission method using the same.
  • FIG. 8 illustrates a time flow of channels and signals transmitted / received by a terminal in a random access procedure.
  • 9 to 12 illustrate a flowchart of a method performed in a terminal and a base station according to the proposal of the present invention.
  • 13 to 18 illustrate a system and a communication device to which the methods proposed in the present invention can be applied.
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of a base station.
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) / LTE-A pro is an evolution of 3GPP LTE.
  • 3GPP NR New Radio or New Radio Access Technology
  • 5G is an evolution of 3GPP LTE / LTE-A / LTE-A pro.
  • LTE refers to technology after 3GPP TS (Technical Specification) 36.xxx Release 8.
  • LTE-A the LTE technology after 3GPP TS 36.xxx Release 10
  • 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro.
  • 3GPP 5G means technology after TS 36.xxx Release 15, and 3GPP NR means technology after TS 38.xxx Release 15.
  • LTE / NR may be referred to as a 3GPP system.
  • "xxx" means standard document detail number.
  • LTE / NR may be collectively referred to as 3GPP system.
  • Background, terminology, abbreviations, and the like used in the description of the present invention may refer to the matters described in the standard documents published prior to the present invention. For example, see the following document:
  • RRC Radio Resource Control
  • E-UTRAN evolved-UMTS terrestrial radio access network
  • LTE long term evolution
  • LTE-A / LTE-A Pro / 5G system may be collectively referred to as LTE system.
  • NG-RAN may be referred to as an NR system.
  • a user equipment (UE) may be fixed or mobile and may be referred to by other terms such as a terminal, mobile station (MS), user terminal (UT), subscriber station (SS), mobile terminal (MT), wireless device, and the like. Can be.
  • a base station (BS) is generally a fixed station that communicates with a UE.
  • Other terms such as evolved Node-B (eNB), general Node-B (gNB), base transceiver system (BTS), access point (AP), etc. It may be referred to as.
  • the LTE (-A) system supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • Figure 1 (a) illustrates the structure of a type 1 radio frame.
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • an OFDM symbol may also be referred to as an SC-FDMA symbol and may also be referred to as a symbol period.
  • the resource block RB as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • Figure 1 (b) illustrates the structure of a type 2 radio frame.
  • Type 2 radio frame is composed of two half frames, each half frame is composed of five subframes, downlink period (eg, Downlink Pilot Time Slot (DwPTS), guard period, GP) ), And an uplink period (eg, UpPTS (Uplink Pilot Time Slot)).
  • DwPTS Downlink Pilot Time Slot
  • GP Guard period
  • UpPTS Uplink Pilot Time Slot
  • One subframe consists of two slots.
  • the downlink period eg, DwPTS
  • an uplink period eg, UpPTS
  • a SRS Sounding Reference Signal
  • a PRACH for carrying a random access preamble for synchronization of uplink transmission
  • Physical Random Access Channel may be transmitted.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the above-described radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating an example of a frame structure in NR.
  • the numerology may be defined by subcarrier spacing and cyclic prefix overhead.
  • the plurality of subcarrier intervals may be represented by an integer N (or, May be derived by scaling.
  • the used numerology may be selected independently of the frequency band.
  • various frame structures according to a number of numerologies may be supported.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the size of the various fields in the time domain Is expressed as a multiple of the time unit. From here, ego, to be.
  • Downlink and uplink transmissions It consists of a radio frame having a section of (radio frame).
  • each radio frame is It consists of 10 subframes having a section of.
  • the transmission of the uplink frame number i from the user equipment (UE) is greater than the start of the corresponding downlink frame at the terminal. You must start before. Numerology For slots, slots within a subframe Numbered in increasing order of within a radio frame Numbered in increasing order of.
  • Table 2 shows the number of OFDM symbols per slot in the general CP. ), The number of slots per radio frame ( ), The number of slots per subframe ( Table 3 shows the number of OFDM symbols per slot, the number of slots for each radio frame, and the number of slots for each subframe in the extended CP.
  • mini-slot may consist of two, four or seven symbols, and may consist of more or fewer symbols.
  • 3 shows a resource grid for one downlink slot of an LTE system.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • One downlink slot includes 7 OFDM symbols, and one resource block (RB) is an example and includes 12 subcarriers in the frequency domain.
  • Each element of the resource grid is called a resource element (RE).
  • One RB contains 12 ⁇ 7 REs.
  • the number of RBs included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as that of the downlink slot.
  • Up to three OFDM symbols located in front of the first slot in the subframe correspond to the control region to which the control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which a Physical Downlink Shared Chancel (PDSCH) is allocated.
  • Examples of downlink control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH carries information about the number of OFDM symbols used for transmission of the control channel of the first OFDM subframe.
  • the PHICH is a response of uplink transmission and carries an HARQ acknowledgment (ACK) / negative-acknowledgement or not-acknowledgement (ACK) signal.
  • DCI downlink control information
  • Tx uplink transmission
  • the PDCCH includes resource allocation of a downlink shared channel (DL-SCH), resource allocation information of an uplink shared channel, paging information of a paging channel (PCH), a random access response transmitted through a PDSCH, and a random UE group.
  • DL-SCH Voice over IP (VoIP) which is a resource allocation of a higher layer control message such as a set of transmit power control commands, transmit power control commands, activation of transmit power control commands for individual UEs in the network.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the UE can monitor multiple PDCCHs.
  • the PDCCH is transmitted in one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of bits of the available PDCCH are determined according to a correlation between the number of CCEs and a coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a CRC (Cyclic Redundancy Check) to the control information.
  • CRC Cyclic Redundancy Check
  • the CRC is masked with a unique identifier (RNTI: Radio Network Temporary Identifier) according to the owner of the PDCCH or the use of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the UE's unique identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-RNTI paging-RNTI
  • the system information identifier and system information RNTI may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access -RNTI
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a physical uplink control channel (PUCCH) for carrying uplink control information.
  • the data area is allocated a physical uplink shared channel (PUSCH) for carrying user data.
  • PUCCH for one UE is allocated to an RB pair in a subframe. RBs belonging to an RB pair occupy different subcarriers in each of two slots. This is called that the RB pair assigned to the PUCCH is frequency-hopped at the slot boundary.
  • FIG. 4 shows an example of a resource grid in an NR system.
  • the resource grid is in the frequency domain Consisting of subcarriers, one subframe
  • the transmitted signal is One or more resource grids composed of subcarriers, and It is described by the OFDM symbols of. From here, to be. remind Denotes the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies.
  • numerology And one resource grid for each antenna port p is referred to as a resource element and is an index pair Uniquely identified by From here, Is the index on the frequency domain, Refers to the position of a symbol within a subframe.
  • 5 is a diagram illustrating an example of a physical resource block in an NR.
  • MTC Machine Type Communication
  • Machine Type Communication is an application that does not require much throughput that can be applied to machine-to-machine (M2M) or Internet-of-Things (IoT), and is the 3rd Generation Partnership Project (3GPP). ) Is the communication technology adopted to meet the requirements of IoT services.
  • MTC Machine Type Communication
  • M2M machine-to-machine
  • IoT Internet-of-Things
  • 3GPP 3rd Generation Partnership Project
  • MTC can be implemented to meet the criteria of (i) low cost & low complexity, (ii) enhanced coverage, and (iii) low power consumption.
  • MTC Mobility Management Entity
  • MTC to be described later is eMTC (enhanced MTC), LTE-M1 / M2, BL (Bandwidth reduced low complexity) / CE (coverage enhanced), non-BL UE (in enhanced coverage), NR MTC, enhanced BL / CE and the like May be referred to as other terms. That is, the term MTC may be replaced with a term to be defined in a future 3GPP standard.
  • MTC operates only on a specific system bandwidth (or channel bandwidth).
  • the specific system bandwidth may use 6RB of legacy LTE and may be defined in consideration of the frequency range of the NR and subcarrier spacing (SCS) defined in Tables 4 to 6.
  • the specific system bandwidth may be represented by a narrowband (NB).
  • legacy LTE refers to a part described in the 3GPP standard other than MTC.
  • the MTC in NR may operate using the RBs corresponding to the lowest system bandwidths of Tables 5 and 6 below, as in legacy LTE.
  • the MTC may operate in at least one bandwidth part (BWP) or in a specific band of BWP.
  • Table 4 shows a frequency range (FR) defined in NR.
  • Table 5 shows an example of the maximum transmission bandwidth configuration (NRB) for channel bandwidth and SCS at FR 1 of NR.
  • Table 6 shows an example of the maximum transmission bandwidth configuration (NRB) for channel bandwidth and SCS in FR 2 of NR.
  • the MTC narrowband (NB) will be described in more detail.
  • MTC follows a narrowband operation to transmit and receive physical channels and signals, and the maximum channel bandwidth is reduced to 1.08 MHz or 6 (LTE) RBs.
  • the narrowband may be used as a reference unit for resource allocation units of some channels of downlink and uplink, and the physical location of each narrowband in the frequency domain varies according to system bandwidth. Can be defined.
  • the bandwidth of 1.08 MHz defined in the MTC is defined so that the MTC terminal follows the same cell search and random access procedure as the legacy terminal.
  • MTC can be supported by a cell with a bandwidth much larger than 1.08 MHz (eg, 10 MHz), but the physical channels and signals transmitted and received by the MTC are always limited to 1.08 MHz.
  • the much larger bandwidth system may be a legacy LTE, NR system, 5G system, or the like.
  • Narrowband is defined as six non-overlapping contiguous physical resource blocks in the frequency domain. if If is wideband, it is defined as four non-overlapping narrowbands in the frequency domain. if If is And single wideband It consists of non-overlapping narrowband (s). For example, in the case of 10 MHz channels (50 RBs), eight non-overlapping narrowbands are defined.
  • the MTC operates in half duplex mode and uses a limited (or reduced) maximum transmit power.
  • MTC does not use channels that must be distributed (defined in legacy LTE or NR) over the entire system bandwidth of legacy LTE or NR.
  • legacy LTE channels not used in MTC are PCFICH, PHICH, PDCCH. Therefore, the MTC cannot monitor the above channels and defines a new control channel, MPDCCH (MTC PDCCH).
  • MPDCCH MTC PDCCH
  • the MPDCCH spans up to 6RBs in the frequency domain and one subframe in the time domain.
  • MPDCCH is similar to EPDCCH and additionally supports a common search space for paging and random access.
  • the MTC uses a newly defined DCI format, and may be, for example, DCI formats 6-0A, 6-0B, 6-1A, 6-1B, 6-2, and the like.
  • MTC includes a physical broadcast channel (PBCH), a physical random access channel (PRACH), an MTC physical downlink control channel (M-PDCCH), a physical downlink shared channel (PDSCH), a physical uplink control channel (PUCCH), and a PUSCH (physical) uplink shared channel) may be repeatedly transmitted.
  • PBCH physical broadcast channel
  • PRACH physical random access channel
  • M-PDCCH MTC physical downlink control channel
  • PDSCH physical downlink shared channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink control channel
  • PUSCH physical uplink control channel
  • PUSCH physical uplink control channel
  • HARQ retransmission of MTC is adaptive, asynchronous, and is based on a new scheduling assignment received on the MPDCCH.
  • PDSCH scheduling (DCI) and PDSCH transmission in MTC occur in different subframes (cross subframe scheduling).
  • All resource allocation information (subframe, transport block size (TBS), subband index) for SIB1 decoding is determined by parameters of MIB, and no control channel is used for SIB1 decoding of MTC. Do not.
  • All resource allocation information (subframe, TBS, subband index) for SIB2 decoding is determined by various SIB1 parameters, and no control channel for SIB2 decoding of MTC is used.
  • MTC supports extended paging (DRX) cycle.
  • the MTC may use the same PSS (primary synchronization signal) / SSS (secondary synchronization signal) / CRS (common reference signal) used in the legacy (Legacy) LTE or NR.
  • PSS / SSS is transmitted in units of SS blocks (or SS / PBCH block or SSB), TRS (tracking RS) can be used for the same purpose as CRS. That is, the TRS is a cell-specific RS and may be used for frequency / time tracking.
  • the MTC operation mode and level will be described.
  • the MTC is classified into two operation modes (first mode and second mode) and four different levels to improve coverage, and may be as shown in Table 7 below.
  • the MTC operation mode may be referred to as a CE mode.
  • the first mode may be referred to as a CE mode A
  • the second mode may be referred to as a CE mode B.
  • the first mode is defined for small coverage enhancement with full mobility and channel state information (CSI) feedback, and is a mode with no or few repetitions.
  • the operation of the first mode may be the same as the operation range of the UE category 1.
  • the second mode is defined for UEs in extremely poor coverage conditions that support CSI feedback and limited mobility, and a large number of repetitive transmissions are defined.
  • the second mode provides up to 15dB of coverage enhancement based on the range of UE category 1.
  • Each level of MTC is defined differently in RACH and paging procedure.
  • the MTC operation mode is determined by the base station, and each level is determined by the MTC terminal. Specifically, the base station transmits RRC signaling including information on the MTC operation mode to the terminal.
  • the RRC signaling may be an RRC connection setup message, an RRC connection reconfiguration message, or an RRC connection reestablishment message.
  • the term of the message may be expressed as an information element (IE).
  • the MTC terminal determines a level in each operation mode and transmits the determined level to the base station. Specifically, the MTC terminal determines a level in an operation mode based on measured channel quality (eg, RSRP, RSRQ, or SINR), and PRACH resources (frequency, time, preamble) corresponding to the determined level. By using to inform the base station (level) determined.
  • measured channel quality eg, RSRP, RSRQ, or SINR
  • PRACH resources frequency, time, preamble
  • FIG. 6 illustrates physical channels that can be used for MTC and a general signal transmission method using the same.
  • the MTC terminal that is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S01.
  • the MTC terminal receives a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS) from the base station, synchronizes with the base station, and acquires information such as a cell ID.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the PSS / SSS used for the initial cell search operation of the MTC may be a PSS / SSS of legacy LTE, a resynchronization signal (RSS), and the like.
  • the MTC terminal may receive a physical broadcast channel (PBCH) signal from a base station to obtain broadcast information in a cell. Meanwhile, the MTC terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
  • the broadcast information transmitted through the PBCH is a MIB (Master Information Block).
  • the MIB is a subframe different from the first slot of subframe # 0 of the radio frame (subframe # 9 for FDD and subframe # 5 for TDD). Is repeated.
  • PBCH repetition is performed by repeating exactly the same constellation points in different OFDM symbols so that they can be used for initial frequency error estimation even before attempting PBCH decoding.
  • the MTC terminal may receive PDSCH according to the MPDCCH and the MPDCCH information in step S02 to obtain more specific system information.
  • MPDCCH is (1) very similar to EPDCCH, carries common and UE specific signaling, and (2) can be transmitted only once or repeatedly (the number of repetitions is higher layer signaling (3) Multiple MPDCCHs are supported and the UE monitors a set of MPDCCHs, and (4) is formed by a combination of enhanced control channel elements (eCCEs), each eCCE being a resource element.
  • RA-RNTI Radio Network Temporary Identifier
  • SI-RNTI SI-RNTI
  • P-RNTI P-RNTI
  • C-RNTI Temporary C-RNTI
  • SPS semi-persistent scheduling
  • the MTC terminal may perform a random access procedure such as steps S03 to S06 to complete the access to the base station.
  • the basic configuration related to the RACH procedure is transmitted by SIB2.
  • the MTC terminal may transmit a preamble through a physical random access channel (PRACH) (S03), and may receive a response message (RAR) for the preamble through the MPDCCH and the PDSCH corresponding thereto (S04).
  • PRACH physical random access channel
  • RAR response message
  • the MTC terminal may perform a contention resolution procedure such as transmitting an additional PRACH signal (S05) and receiving an MPDCCH signal and a corresponding PDSCH signal (S06).
  • Signals and / or messages (Msg 1, Msg 2, Msg 3, Msg 4) transmitted in the RACH procedure in the MTC may be repeatedly transmitted, and this repetition pattern is set differently according to the coverage enhancement (CE) level.
  • Msg 1 means PRACH preamble
  • Msg 2 means random access response (RAR)
  • Msg 3 means UL transmission of the MTC terminal for the RAR
  • Msg 4 means DL transmission of the base station for Msg 3 can do.
  • the MTC terminal estimates RSRP using downlink RS (eg, CRS, CSI-RS, TRS, etc.) and selects one of resources for random access based on the measurement result.
  • RS downlink RS
  • Each of the resources for the four random accesses is related to the number of repetitions for the PRACH and the number of repetitions for the random access response (RAR). Therefore, a bad coverage MTC terminal needs a large number of repetitions to be successfully detected by the base station, and needs to receive an RAR having a corresponding repetition number to satisfy their coverage level.
  • Search spaces for RAR and contention resolution messages are also defined in system information and are independent for each coverage level.
  • the MTC terminal After performing the above-described procedure, the MTC terminal subsequently receives the MPDCCH signal and / or the PDSCH signal (S07) and the physical uplink shared channel (PUSCH) signal and / or physical uplink control as a general uplink / downlink signal transmission procedure.
  • the transmission of the channel PUCCH signal may be performed (S08).
  • the control information transmitted from the MTC terminal to the base station is collectively referred to as uplink control information (UCI).
  • the UCI includes HARQ-ACK / NACK, scheduling request (SR), channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI) information, and the like.
  • the MTC terminal blindly decodes the MPDCCH in a search space configured for obtaining uplink and downlink data allocation.
  • the MTC uses all of the OFDM symbols available in the subframe to transmit the DCI.
  • time domain multiplexing between the control channel and the data channel in the same subframe is not possible. That is, as previously described, cross-subframe scheduling between the control channel and the data channel is possible.
  • the MPDCCH having the last repetition in subframe #N schedules PDSCH allocation in subframe # N + 2.
  • the DCI transmitted by the MPDCCH provides information on how repeated the MPDCCH is so that the MTC UE knows when the PDSCH transmission starts. PDSCH allocation may be performed in different narrowbands.
  • scheduling follows the same timing as legacy LTE.
  • the last MPDCCH in subframe #N schedules PUSCH transmission starting at subframe # N + 4.
  • Legacy LTE allocation is scheduled using the PDCCH, which uses the first OFDM symbols in each subframe, and the PDSCH is scheduled in the same subframe as the subframe in which the PDCCH is received.
  • the MTC PDSCH is cross-subframe scheduled, and one subframe is defined between the MPDCCH and the PDSCH to allow MPDCCH decoding and RF retune.
  • the MTC control channel and data channels may be repeated through a large number of subframes having up to 256 subframes for the MPDCCH and up to 2048 subframes for the PDSCH to be decoded under extreme coverage conditions.
  • NB-IoT provides low complexity and low power consumption through system bandwidth (system BW) corresponding to 1 physical resource block (PRB) of a wireless communication system (e.g., LTE system, NR system, etc.). It can mean a system to support.
  • system BW system bandwidth
  • PRB physical resource block
  • NB-IoT may be referred to by other terms, such as NB-LTE, NB-IoT enhancement, enhanced NB-IoT, further enhanced NB-IoT, NB-NR, and the like. That is, NB-IoT may be replaced with a term to be defined or defined in the 3GPP standard. Hereinafter, for convenience of description, the NB-IoT will be collectively referred to as 'NB-IoT'.
  • the NB-IoT may be used as a communication method for implementing an IoT (ie, the Internet of Things) by mainly supporting a device (or terminal) such as machine-type communication (MTC) in a cellular system.
  • MTC machine-type communication
  • MTC machine-type communication
  • each terminal recognizes a single PRB as a single carrier, and thus, the PRB and the carrier referred to herein may be interpreted to have the same meaning.
  • a frame structure, a physical channel, a multi-carrier operation, an operation mode, and a general signal transmission / reception related to the NB-IoT herein will be described in consideration of the case of the existing LTE system.
  • the next generation system eg, NR system, etc.
  • the contents related to the NB-IoT herein may be extended to Machine Type Communication (MTC) for a similar technical purpose (eg, low-power, low-cost, coverage improvement, etc.).
  • MTC Machine Type Communication
  • the NB-IoT frame structure may be set differently according to subcarrier spacing. For example, in a NB-IoT system, 15 kHz subcarrier spacing and 3.75 kHz subcarrier spacing may be supported.
  • the NB-IoT frame structure is not limited thereto, and NB-IoT for another subcarrier interval (eg, 30 kHz, etc.) may also be considered by different time / frequency units.
  • the NB-IoT frame structure based on the LTE system frame structure has been described as an example, but this is only for convenience of description and the present invention is not limited thereto.
  • the method described herein may be a next-generation system (eg, an NR system). Of course, it can also be extended to NB-IoT based on the frame structure of the).
  • the NB-IoT frame structure for the 15 kHz subcarrier interval may be set to be the same as the frame structure of the legacy system (ie, LTE system) described above. That is, the 10 ms NB-IoT frame may include 10 1 ms NB-IoT subframes, and the 1 ms NB-IoT subframe may include two 0.5 ms NB-IoT slots. In addition, each 0.5 ms NB-IoT may include seven OFDM symbols.
  • a 10 ms NB-IoT frame contains five 2 ms NB-IoT subframes, and the 2 ms NB-IoT subframe contains seven OFDM symbols and one guard period (GP). It may include.
  • the 2ms NB-IoT subframe may be represented by an NB-IoT slot or an NB-IoT resource unit (RU).
  • NB-IoT downlink physical resources are physical resources of other wireless communication systems (e.g., LTE system, NR system, etc.), except that the system bandwidth is a certain number of RBs (e.g., one RB, i.e., 180 kHz). It can be set by reference. For example, as described above, when the NB-IoT downlink supports only 15 kHz subcarrier interval, the physical resource of the NB-IoT downlink is 1 RB (that is, a frequency grid) of the LTE system shown in FIG. , 1 PRB). In the case of NB-IoT uplink physical resources, as in the case of downlink, the system bandwidth may be limited to one RB.
  • the base station and / or the terminal supporting the NB-IoT may be configured to transmit and receive a physical channel and / or a physical signal set separately from the existing system.
  • Orthogonal Frequency Division Multiple Access (OFDMA) can be applied to the NB-IoT downlink based on a subcarrier spacing of 15 kHz. Through this, co-existence with existing systems (eg, LTE system, NR system) can be efficiently supported by providing orthogonality between subcarriers.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the physical channel of the NB-IoT system may be expressed in the form of 'N (Narrowband)' added to distinguish it from the existing system.
  • the downlink physical channel is defined as a narrowband physical broadcast channel (NPBCH), a narrowband physical downlink control channel (NPDCCH), a narrowband physical downlink shared channel (NPDSCH), and the downlink physical signal is a narrowband primary synchronization signal (NPSS).
  • NNBCH narrowband physical broadcast channel
  • NPDCCH narrowband physical downlink control channel
  • NPDSCH narrowband physical downlink shared channel
  • NPSS narrowband primary synchronization signal
  • NSSS narrowband secondary synchronization signal
  • NSS narrowband reference signal
  • NPRS narrowband positioning reference signal
  • NWUS narrowband wake up signal
  • the uplink physical channel may be defined as a narrowband physical random access channel (NPRACH) and a narrowband physical uplink shared channel (NPUSCH), and the uplink physical signal may be defined as a narrowband demodulation reference signal (NDMRS).
  • NPRACH narrowband physical random access channel
  • NPUSCH narrowband physical uplink shared channel
  • NMRS narrowband demodulation reference signal
  • DCI format DCI format
  • DCI format N0 DCI format N1
  • DCI format N2 DCI format N2
  • Single carrier frequency division multiple access may be applied to the NB-IoT uplink based on a subcarrier interval of 15 kHz or 3.75 kHz.
  • uplink of NB-IoT multi-tone transmission and single-tone transmission may be supported.
  • multi-tone transmissions are only supported at subcarrier intervals of 15 kHz, and single-tone transmissions may be supported for subcarrier intervals of 15 kHz and 3.75 kHz.
  • the NPUSCH may be configured of NPUSCH format 1, NPUSCH format 2, and the like.
  • NPUSCH format 1 may be used for UL-SCH transmission (or transport)
  • NPUSCH format 2 may be used for uplink control information transmission such as HARQ ACK signaling.
  • repetition transmission may be performed for coverage enhancement.
  • repetitive transmission may be performed by applying frequency hopping.
  • the NB-IoT may operate in a multi-carrier mode as described above.
  • the carriers in the NB-IoT are anchor type carriers (ie, anchor carriers, anchor PRBs) and non-anchor type carriers (ie, non-anchor type carriers).
  • Anchor carrier non-anchor carrier, non-anchor PRB
  • Anchor carrier may be defined.
  • the anchor carrier may refer to a carrier for transmitting NPSS, NSSS, NPBCH, and NPDSCH for system information block (N-SIB) for initial access from a base station perspective.
  • the carrier for initial connection in the NB-IoT may be referred to as an anchor carrier, and the other one (s) may be referred to as a non-anchor carrier.
  • only one anchor carrier may exist on the system, or a plurality of anchor carriers may exist.
  • an NB-IoT terminal may receive information from a base station through downlink (DL), and the NB-IoT terminal may transmit information to the base station through uplink (UL).
  • DL downlink
  • UL uplink
  • the base station may transmit information to the NB-IoT terminal through downlink
  • the base station may receive information through the uplink from the NB-IoT terminal.
  • the information transmitted and received between the base station and the NB-IoT terminal includes data and various control information, and various physical channels may exist according to the type / use of the information transmitted and received.
  • the signal transmission / reception method of the NB-IoT described by FIG. 7 may be performed by the above-described wireless communication device.
  • the NB-IoT terminal that is powered on again or enters a new cell while the power is turned off may perform an initial cell search operation such as synchronizing with the base station (S11).
  • the NB-IoT terminal may receive NPSS and NSSS from the base station, perform synchronization with the base station, and obtain information such as a cell identity.
  • the NB-IoT terminal may receive the NPBCH from the base station to obtain intra-cell broadcast information.
  • the NB-IoT terminal may check the downlink channel state by receiving a DL RS (Downlink Reference Signal) in the initial cell search step.
  • DL RS Downlink Reference Signal
  • the base station may perform an initial cell search operation such as synchronizing with the terminal.
  • the base station transmits NPSS and NSSS to the NB-IoT terminal to perform synchronization with the corresponding terminal, and may transmit information such as cell identity.
  • the base station may transmit (or broadcast) the NPBCH to the NB-IoT terminal to transmit broadcast information in a cell.
  • the base station may check the downlink channel state by transmitting a DL RS in the initial cell search step to the NB-IoT terminal.
  • the NB-IoT terminal may receive NPDCCH and NPDSCH corresponding thereto to obtain more specific system information (S12).
  • the base station may transmit more specific system information by transmitting the NPDCCH and the corresponding NPDSCH to the NB-IoT terminal that has completed the initial cell search.
  • the NB-IoT terminal may perform a random access procedure to complete the access to the base station (S13 to S16).
  • the NB-IoT terminal may transmit a preamble to the base station through the NPRACH (S13).
  • the NPRACH may be configured to be repeatedly transmitted based on frequency hopping to improve coverage.
  • the base station may (repetitively) receive the preamble from the NB-IoT terminal through the NPRACH. Thereafter, the NB-IoT terminal may receive a random access response (RAR) for the preamble from the base station through the NPDCCH and the corresponding NPDSCH (S14). In other words, the base station may transmit a random access response (RAR) for the preamble to the NB-IoT terminal through the NPDCCH and the corresponding NPDSCH. Thereafter, the NB-IoT terminal may transmit the NPUSCH to the base station using scheduling information in the RAR (S15), and may perform a contention resolution procedure such as an NPDCCH and an NPDSCH corresponding thereto (S16). In other words, the base station may receive the NPUSCH from the terminal using scheduling information in the NB-IoT RAR and perform the collision resolution procedure.
  • RAR random access response
  • RAR random access response
  • the NB-IoT terminal may perform NPDCCH / NPDSCH reception (S17) and NPUSCH transmission (S18) as a general uplink / downlink signal transmission procedure.
  • the base station may perform NPDCCH / NPDSCH transmission and NPUSCH reception as a general signal transmission / reception procedure to the NB-IoT terminal.
  • NPBCH, NPDCCH, NPDSCH, etc. may be repeatedly transmitted for coverage enhancement.
  • UL-SCH ie, general uplink data
  • uplink control information may be transmitted through the NPUSCH.
  • the UL-SCH and the uplink control information may be configured to be transmitted through different NPUSCH formats (eg, NPUSCH format 1, NPUSCH format 2, etc.).
  • a proposal related to a procedure for reporting downlink signal / channel quality in a random access procedure is provided.
  • the terminal since the terminal does not measure the channel quality during the random access process (or, in the RRC (Radio Resource Control) connected state, triggers a contention free random access (Downlink Control Information) in the DCI (Downlink Control Information)) In case of triggering, it may be instructed to report channel quality indicator (CQI) information to Msg. 3), and the base station performs conservative downlink scheduling until an RRC connection is established.
  • CQI channel quality indicator
  • the LTE terminal is characterized by repetitive transmission, so even conservative downlink scheduling in a random access process may waste too much resources.
  • the present patent proposes an early DQI report method for efficiently helping downlink scheduling of a base station in a random access process.
  • the present invention relates to a method and procedure in which the network informs the system information and the Msg.2 information necessary for reporting a CQI to Msg. 3 in order to minimize the change of the existing random access procedure.
  • the most effective system includes NB-IoT, MTC (or Bandwidth reduced and Low cost) / Coverage Enhancement (CE), and CE in UE mode.
  • NB-IoT Bandwidth reduced and Low cost
  • CE Coverage Enhancement
  • the present invention mainly focuses on the NB-IoT, but is not limited to the NB-IoT.
  • the present invention may be applied to a terminal (eg, a machine type communication (MTC) terminal, a BL / CE terminal, etc.) and a related system requiring coverage improvement.
  • MTC machine type communication
  • CE Bandwidth reduced and Low cost
  • CE Coverage Enhancement
  • CRS Common or Cell-specific Reference Signal
  • DCI Downlink Control Information
  • DMRS DeModulation Reference Signal
  • DQI Downlink (channel) Quality Information
  • DQI-RS DQI-Reference reSource
  • NRS Narrowband Reference Signal
  • PRB Physical Resource Block
  • RSRP Reference Signal Received Power
  • SIB System Information Block
  • TBS Transport Block Size
  • the random access procedure generally consists of six steps.
  • a base station e.g., eNB, gNB, network, etc.
  • the configuration of downlink resources and uplink resources used by a terminal (eg, user equipment, UE, terminal, etc.) in an initial random access process may include system information ( It is broadcasted from the base station to the terminal through system information (for example, see step S02 of FIG. 6 or step S12 of FIG. 7).
  • the terminal After acquiring downlink synchronization, the terminal checks the random access related setting from the broadcast information of the base station, and the terminal attempts to access by transmitting msg.1 (eg, S03 of FIG. 6). Step or step S13 of FIG. 7).
  • msg.1 may be referred to as a random access preamble or a RACH preamble or a PRACH preamble.
  • the available Msg.1 time / frequency / sequence may be defined differently according to the coverage extension or enhancement level of the terminal.
  • the resources available in (RA-1), (RA-2), (RA-3), and (RA-4) can be set differently for each CE level.
  • the CE level is determined according to the RSRP (Reference Signal Received Power) reference value broadcast by the base station as a system information, and the terminal selects the CE level by comparing the RSRP value measured in downlink with the RSRP value broadcast by the base station. .
  • CE mode is further defined, with CE mode A and CE mode B (see eg Table 7 and related descriptions).
  • the CE mode may be set by the base station when the terminal enters an RRC connected state, but in the initial random access procedure, CE levels 0 and 1 are set to CE mode A, and CE level 2 And 3 operate under the assumption that CE mode B.
  • the terminal preferentially determines its CE level and transmits a preamble (Msg. 1) (e.g., a random access preamble or a RACH preamble or a PRACH preamble) to an Msg. 1 resource set for the corresponding CE level. , Step S03 of FIG. 6 or step S13 of FIG. 7).
  • the RA-RNTI value is defined according to the time / frequency resource on which Msg.1 is transmitted, and the Msg.1 preamble selected by the terminal is used as a RAP-ID (Random Access Preamble IDentifier) value.
  • the base station transmits a response to the detected Msg. 1 to the terminal as Msg. 2
  • Msg. 2 transmitted by the base station is called a RAR (Random Access Response), and the RAR is transmitted by being included in the (N) PDSCH, which is scheduled by (N) PDCCH or MPDCCH (eg, step S04 or FIG. 6 of FIG. 6). See step S14 in 7).
  • the UE monitors (N) PDCCH or MPDCCH after Msg.1 transmission, and time / frequency (eg NB (Narrow Band), NB-IoT carrier) resource and maximum number of repetitive transmission attempts to detect this).
  • time / frequency eg NB (Narrow Band), NB-IoT carrier
  • the terminal transmitting Msg.1 to the same time / frequency resource is the same (RA- (N) PDCCH or MPDCCH scrambled with RNTI may be detected. If it is successfully detected, the RAR information is obtained by detecting the (N) PDSCH indicated by the corresponding DCI.
  • the RAR may include information on a plurality of Msg. 1s detected by the base station in step (RA-1), which is divided into RA-RNTIs.
  • the terminal finds the RA-RNTI value corresponding to the Msg.1 preamble used in the (RA-1) step in the (N) PDSCH and acquires the RAR information corresponding to the corresponding RA-RNTI.
  • the RAR information includes a setting for Msg. 3 to be transmitted by the terminal in step (RA-3) and a timing advertisement (TA) value estimated in step (RA-1).
  • the setting for Msg. 3 transmitted in the (RA-3) step may be referred to as a UL grant.
  • even information on the frequency resource (NB) of the MPDCCH to be monitored in the (RA-4) step is included in the RAR.
  • RA-3 The terminal sends Msg.3 to the base station as instructed in Msg.2.
  • the terminal transmits the (N) PUSCH to Msg. 3 according to the indication of the UL grant obtained in step (RA-2) (for example, see step S05 of FIG. 6 or step S15 of FIG. 7), and (RA-4 In step), it may include its ID (eg, S-TMSI) value for contention resolution.
  • ID eg, S-TMSI
  • the base station detects Msg. 3 and transmits Msg. 4 to the terminal in response.
  • the terminal attempts to detect Msg.4 in response to Msg. 3 transmitted in step (RA-3) (see, for example, step S06 of FIG. 6 or step S16 of FIG. 7).
  • the (RA-2) process it attempts to detect (N) PDCCH or MPDCCH preferentially, wherein the RNTI used for scrambling may be a TC-RNTI received by the RAR in the (RA-2) step.
  • the detected (N) PDCCH or MPDCCH may be a DL grant that schedules an (N) PDSCH that includes a UL grant indicating Msg. 3 retransmission or includes a response to Msg. 3.
  • the terminal when the UL grant is detected, the terminal performs the (RA-3) process again according to the indication of the UL grant, and when the DL grant is detected, the terminal detects the (N) PDSCH according to the indication and responds to Msg.3. can confirm.
  • the terminal may report the information on the DQI to the base station in the random access procedure RA-1 or RA-3, and the method may be different according to the reporting step. That is, the terminal may transmit (or report) Msg. 1 (preamble) and / or Msg. 3 including information on the DQI to the base station.
  • Msg.1 resources time and / or frequency and / or preamble available to the terminal according to downlink channel quality in step (RA-0) can be set differently. That is, the resource of Msg.1 transmitted by the terminal is first selected according to the CE level, and may be configured to use resources subdivided into one or more levels according to DQI in the corresponding resource. In other words, the resource of Msg.
  • the DQI included in Msg.1 indicates a high or low level based on a specific value among the various levels of DQI proposed below, and the offset level of the DQI based on the value is determined in Msg.3 or another time point. It can be delivered to the base station using other resources.
  • the CE level selected by the terminal is set only on the basis of RSRP, so that only the information of the signal strength can be included. For example, although signal strength is high, signal / channel quality may be low due to interference between adjacent cells and spatial correlation of base station multiple antennas. This means that even when the CE level is low (a situation where RSRP is relatively high), the UE may not perform poorly in (N) PDCCH or MPDCCH or (N) PDSCH in the (RA-2) or (RA-4) process. do. That is, since the reception performance of the terminal is more closely related to the signal / channel quality rather than the signal strength, the resource of Msg.1 can be classified according to the downlink channel even within the same CE level for the purpose of informing the base station. The base station can efficiently perform downlink scheduling by obtaining channel quality information from the detected resources of Msg.1.
  • the terminal may provide the DQI in the RA-3 process, so that the base station may utilize the downlink scheduling in the RA-4. This may be considered another method according to the type of random access procedure.
  • the terminal may report the DQI at (RA-3), and the information is related to the (N) PDCCH / MPDCCH reception performance of (RA-4) and / or at (RA-4).
  • (N) may be information related to PDSCH reception performance.
  • the reported DQI may include the following information.
  • the information is only divided for convenience of description, and may include all or some of the information described below.
  • the RSRQ is a value representing channel quality of an actual downlink reference signal and is a reference metric that can be directly or indirectly used for downlink scheduling of a base station. Unlike general CQI information, RSRQ does not require the setting of a specific reference MCS, PMI, RI, etc., and thus has an advantage that it can be implemented with a lower complexity than the CQI estimation. There is an advantage that does not require a constraint related to the transmission mode (transmission mode) to be used for scheduling. This may be used as a DQI that is more suitable for a situation in which the reference MCS and the PMI are not set in the random access process.
  • the difference of one level (or one level) of the reported logical values may be a value that does not divide the RSRQ expression range by equal intervals.
  • the frequency resource may include a reception performance information (eg, a condition for satisfying a specific BLER) for a specific channel (eg, (N) PDCCH / MPDCCH or (N) PDSCH) whose DQI is not RSRQ.
  • a reception performance information eg, a condition for satisfying a specific BLER
  • a specific channel eg, (N) PDCCH / MPDCCH or (N) PDSCH
  • frequency resource information having the highest RSRQ or RSRQ for each frequency resource
  • the RSRQ for each frequency resource is derived from RSRP and RSSI
  • RSSI may be a specific frequency resource or an average value of RSSI for each acquired frequency resource
  • RSRP may be RSRP for each frequency resource.
  • the RSSI may be an RSSI for each frequency resource.
  • Rmax maximum number of repetitive transmissions of (N) PDCCH or MPDCCH or (N) PDSCH is obtained in step (RA-0), and the terminal may successfully detect this at a value R smaller than the set Rmax.
  • R can be used to represent the DQI of the terminal.
  • aggregation level (AL) information that has been successfully detected may be utilized.
  • the reporting units of the reporting range and / or the reporting R and / or AL may be set differently.
  • the minimum value of the expression range may be set to a specific value (X) other than 1. This is because a value lower than X means that the channel quality is already good enough, so that more granular information may not be needed. In other words, if the actual R value is less than X, the reported value is logically the smallest value (or the minimum value except the reserved value to maintain backward compatibility with legacy systems). Mapped and reported.
  • the maximum value of the expression range may be limited to aR (the actual number of repetitive transmissions used by the base station for (N) PDCCH or MPDCCH or (N) PDSCH transmission), which may be less than or equal to Rmax, which is indicated by DCI. .
  • the maximum value of the expression range may be limited to Rmax, or to a value that is K times greater than (eg, twice) Rmax.
  • the reason that a value larger than Rmax is allowed is that the number of repetitions (for example, the maximum value Rmax) that can be used for (N) PDCCH / MPDCCH or (N) PDSCH scheduling of Msg.4 may differ from that of Msg.2. Because.
  • the representation unit is not set evenly within the allowed representation range, but may be set evenly. That is, the units / spacings of R and / or AL actually represented by one unit (or one unit) in the low range and one unit (or one unit) in the high range may be different. This means that inaccurate values (errors in quantization) at low R and / or AL values have no significant effect on (RA-4) scheduling, but one step difference at high R and / or AL values is (RA-4 This is because the number of repetitive transmissions applied to actual downlink scheduling at step) may vary significantly.
  • the expression range of the proposed DQI may be applied to the case where R or AL is included in the DQI proposed below.
  • reference AL and reference R need to be defined in obtaining R and AL, respectively. That is, in deriving R that satisfies a specific performance requirement from (N) PDCCH / MPDCCH, a reference AL value that the terminal can assume may be needed. Similarly, when deriving AL, a reference R value that the terminal can assume may be needed.
  • Each reference AL and R value may be derived by the Rmax of the Msg.2 MPDCCH, set independently from the base station, or derived from the AL and / or R values actually applied to the Msg.2 MPDCCH transmission.
  • the DQI information may optionally include an AL.
  • the DQI when R has a value (eg, 1) satisfying a specific performance requirement, the DQI may include AL together with R.
  • the DQI information may include R but not AL and the AL may assume a reference AL value (eg, 24).
  • the UE is a value (eg, 1) where R of (N) PDCCH / MPDCCH or (N) PDSCH when a successful reception of (N) PDCCH or MPDCCH or (N) PDSCH satisfies a specific performance requirement. If the reference AL value can be derived from R (eg, 1).
  • the DQI is the R (repetition number) and / or AL (aggregation level) of (N) PDCCH / MPDCCH or (N) PDSCH when the UE successfully receives (N) PDCCH or MPDCCH or (N) PDSCH of Msg.2.
  • the reason for reporting the value is that the R value is too small to calculate the CQI assuming the RSRQ and the channel of a particular format (e.g., (N) PDCCH, MPDCCH, PDSCH), so that the RSRQ or CQI is referenced for an additional time to measure the RSRQ or CQI. This is because there may be a burden of receiving a reference signal.
  • the terminal may receive information indicating that the downlink channel quality is sufficiently good rather than measuring the RSRQ or CQI. Indirectly reporting to the base station may be a benefit in terms of power savings.
  • the base station may reserve certain value (s) of the DQI to be reported for such a report. That is, the terminal may select and report R and / or AL from the reserved state when R and / or AL is small enough. If the reserved state for this is not defined separately, it may be reported as a specific value of DQI (a value indicating good channel quality).
  • the terminal may acquire a frequency resource (eg, (NB-IoT) carrier or NB) that may or may be used in the (RA-0) step and / or in the (RA-4) step. Can be.
  • a frequency resource eg, (NB-IoT) carrier or NB
  • the first step in which the DQI transmitted to Msg.3 can be utilized is (N) PDCCH / MPDCCH scheduling of (RA-4), so that frequency resource information available in (RA-4) step can be used. It may be desirable to report the DQI of.
  • Msg.3 is transmitted after the information is correctly obtained. Enough time may not be guaranteed to calculate the DQI of the frequency resource for the remaining time until. Therefore, the following method can be considered.
  • the DQI is calculated for each frequency resource that may be used in the (RA-4) step, and the information obtained in the RAR (e.g., the Only DQI corresponding to frequency resource) can be reported.
  • the frequency resource that was used for hopping by X time before transmitting Msg. 3 may be excluded from DQI measurement and reporting.
  • DQI reporting may be omitted or a maximum value of the reportable DQI may be limited to a specific value according to X.
  • iii. Msg.2 is composed of (N) PDCCH / MPDCCH and (N) PDSCH.
  • the DQI reference resource used for DQI measurement may be limited to (N) PDCCH / MPDCCH. It may be limited to resources within the initial Y time at which PDCCH / MPDCCH transmission is started (or the set Msg.2 monitoring interval starts). This may be to lower the processing power of the terminal as much as possible. Alternatively, if the processing power of the terminal is sufficient, even if (N) PDCCH / MPDCCH is detected before Rmax, it may be configured to additionally receive more intervals / resources (less than Rmax) to measure DQI. It may be.
  • a time / frequency for receiving the (N) PDSCH may also be included in a DQI reference resource (a virtual resource that may be used for DQI measurement or a channel related to the DQI).
  • a DQI reference resource a virtual resource that may be used for DQI measurement or a channel related to the DQI.
  • the Msg.2 (N) PDCCH / MPDCCH frequency resource is not completely included in the (N) PDCCH / MPDCCH frequency resource of Msg.4, but the (N) PDSCH frequency resource is the (N) PDCCH / MPDCCH of Msg.4.
  • DQI reference resource extension to include (N) PDSCH resources may be further needed.
  • RSSI is an average value and RSRP is an independently measured value by NB, and noise is reported when reporting information related to RSRQ or reception performance.
  • the information may be calculated based on the average value and the quality information may be calculated based on the value measured for each NB.
  • the DQI difference (eg, expressed as a delta or offset based on the mean or representative value) along with the average or representative value of the value measured for each frequency resource for the remaining or all frequency resources.
  • a DQI difference (eg, based on an average value or a representative value) of a specific frequency resource (for example, NB or NB-IoT carrier) among DQI reference resources together with an average value or a representative value of the value measured for each frequency resource. Delta or offset) is reported for the remaining or all frequency resources, or
  • a frequency resource or standard or system information to be monitored in the information obtained from the RAR (RA-4) step used by a center 6RB or Msg.2 where a specific resource (eg anchor-carrier or PSS / SSS is transmitted). Only the DQI corresponding to the frequency resource set to report only on the frequency resource that is closest to the frequency resource used by Msg.2 among the frequency resources to be used for Msg.4
  • N of the best measured values for each frequency resource (for example, can be set to system information or can be indicated in Msg.2).
  • the worst N of the measured values for each frequency resource (eg, may be set as system information or indicated by Msg.2) may be reported as a frequency resource index of frequency resource and / or corresponding channel quality information. .
  • the channel quality information measured as proposed above is based on the information obtained before the (RA-3) process.
  • a specific reference DCI format e.g., the DCI format of (N) PDCCH / MPDCCCH expected in Msg.4
  • the minimum value of the UE's preference and / or the minimum value of the AL and / or the port information of the reference signal for example, DMRS
  • the resource allocation type for example, distributed or localized
  • the reference DCI format may be allowed to assume a specific DMRS port.
  • step (RA-4) If the R (terminal preferred) value of Msg.4 (N) PDCCH / MPDCCH is reported in step (RA-4), in step (RA-4) acquired before step (RA-3), It can be expressed as information on the ratio of Rmax values to be used. That is, the range of logical values of the reported DQI may be interpreted differently depending on Rmax to be used in the (RA-4) step obtained in the (RA-3) process. In the above proposal, the units of logical representation values may not be uniformly distributed within the actual representation range of R.
  • a reference AL value that the terminal can assume may be needed in deriving R that satisfies a specific performance requirement from (N) PDCCH / MPDCCH.
  • a reference R value that the terminal can assume may be needed in deriving AL.
  • Each reference AL and R value may be derived by the Rmax of the Msg.2 MPDCCH, set independently from the base station, or derived from the AL and / or R values actually applied to the Msg.2 MPDCCH transmission.
  • the DQI information may optionally include an AL.
  • the DQI when R has a value (eg, 1) satisfying a specific performance requirement, the DQI may include AL together with R. Or as another example, if R has a value (eg, 1) that satisfies a particular performance requirement, the DQI information may include R but not AL and the AL may assume a reference AL value (eg, 24). .
  • the UE is a value (eg, 1) where R of (N) PDCCH / MPDCCH or (N) PDSCH when a successful reception of (N) PDCCH or MPDCCH or (N) PDSCH satisfies a specific performance requirement. If the reference AL value can be derived from R (eg, 1).
  • the terminal may acquire a frequency resource (eg, (NB-IoT) carrier or NB) that may or may be used in the (RA-4) step in the (RA-0) step.
  • a frequency resource eg, (NB-IoT) carrier or NB
  • the frequency resource NB within the LTE system bandwidth in which the Msg.4 PDSCH can be scheduled is indicated in the Msg.4 MPDCCH.
  • N PDSCH scheduling information e.g., MCS, TBS, resource allocation, number of repetitions
  • the DQI transmitted to Msg.3 is Msg.4 (N) PDSCH It can also be used for scheduling. Therefore, the DQI transmitted to Msg. 3 may include the following information.
  • step (RA-0) Based on the information obtained in step (RA-0), the DQI is calculated for each frequency resource that may be used in step (RA-4), and additional information (for example, monitoring in step (RA-4) is performed in the RAR). In case of acquiring a frequency resource), only a corresponding DQI may be reported.
  • the frequency resource used for hopping by X time before transmitting Msg. 3 may be excluded from DQI measurement and reporting.
  • DQI reporting may be omitted or a maximum value of the reportable DQI may be limited to a specific value according to X.
  • iii. Msg.2 is composed of (N) PDCCH / MPDCCH and (N) PDSCH.
  • the DQI reference resource used for DQI measurement may be limited to (N) PDCCH / MPDCCH. It may be limited to resources within the initial Y time at which PDCCH / MPDCCH transmission is started (or the set Msg.2 monitoring interval starts). This may be to lower the processing power of the terminal as much as possible. Alternatively, if the processing power of the terminal is sufficient, even if (N) PDCCH / MPDCCH is detected before Rmax, it may be configured to additionally receive more intervals / resources (less than Rmax) to measure DQI. It may be.
  • the time / frequency for receiving the (N) PDSCH may also be included in the DQI reference resource.
  • DQI reference resource extension e.g., (N) To include PDSCH resources.
  • RSSI is an average value and RSRP is an independently measured value by NB, and noise is reported when reporting information related to RSRQ or reception performance.
  • the information may be calculated based on the average value and the quality information may be calculated based on the value measured for each NB.
  • channel quality differences e.g., expressed in deltas or offsets based on average or representative values
  • average or representative values of the values measured for each frequency resource are reported for the remaining or all frequency resources
  • specific resources eg, anchor-carrier or PSS / SSS are transmitted as frequency resources or standard or system information to be monitored in the information obtained from RAR (eg, (RA-4) step).
  • RAR eg, (RA-4) step.
  • the best N of the values measured for each frequency resource (e.g., can be set as system information or can be indicated in Msg.2).
  • the worst N of the measured values for each frequency resource (eg, may be set as system information or indicated by Msg.2) may be reported as a frequency resource index of frequency resource and / or corresponding channel quality information. .
  • the channel quality information measured as proposed above is based on the information obtained before the (RA-3) process.
  • a specific reference format (e.g., TBS and / or MCS of the (N) PDSCH expected in Msg.4 and / or repetition number and / or DMRS port, etc., which are predefined in the standard) Minimum value of R (terminal preferred) and / or minimum value of AL which can expect BLER Z% (e.g. 1%) based on system information or Msg.2) and Port information and / or resource allocation type (e.g. distributed or localized) and / or PMI and / or frequency resource information (e.g., the least amount of reference signal (e.g. CRS or DMRS) NB or RB indexes that require resource amounts (ie, low R and / or AL).
  • the CQI and / or RI may also be included in the DQI.
  • precoding information eg, DMRS port information or correlation between CRS and DMRS such as PMI
  • precoding information eg, DMRS port information or correlation between CRS and DMRS such as PMI
  • R (terminal preferred) value of Msg.4 (N) PDSCH is reported in step (RA-4), Rmax to be used in step (RA-4) obtained before step (RA-3). It can be expressed as information about a ratio of values. That is, the range of logical values of the reported DQI information may be interpreted differently depending on Rmax to be used in the (RA-4) step obtained in the (RA-3) process. In the above proposal, the units of logical representation values may not be uniformly distributed within the actual representation range of R.
  • the terminal may assume a specific transmission mode (TM) and estimate the DQI.
  • TM transmission mode
  • the TM used in the random access procedure is always assumed to be a fallback TM (for example, TM1 or TM2), or depending on the number of transmit antennas (for example, the number of CRS antenna ports) of the base station.
  • a reference TM may be derived and the DQI may be measured based on the reference TM.
  • the base station may directly indicate a reference TM that can be used to measure the DQI.
  • the DQI in case of not receiving a response (Msg. 4) to Msg. 3 or retransmitting Msg. 3, the DQI may be treated as follows.
  • the DQI is channel encoded in the physical layer together with the data of Msg.3, the DQI used in the previous transmission is continuously transmitted.
  • the DQI used for the previous transmission can be maintained or updated. If it is updated, a value equal to or lower than a previously reported DQI (eg, when a lower DQI value is better as a downlink channel state is good) may not be allowed for reporting.
  • UCI Uplink Control Information
  • Time resources of Msg.2 and / or Msg.4 associated with Msg.1 used in retransmission e.g., the maximum number of repetitive transmissions of Msg.2 or Msg.4, etc.
  • the resource eg, (NB-IoT) carrier or NB
  • the DQI may be newly measured.
  • a value less than or equal to the DQI reported in the previous random access attempt may not be allowed for reporting.
  • it may be allowed to report to a value higher than a previously reported DQI by a specific value (for example, when a higher value of the DQI is worse in downlink channel status) without newly remeasurement.
  • R repetition number
  • AL aggregation level
  • the MPDCCH transmitted to Msg.2 and Msg.4 is transmitted through the DMRS port, not the CRS port.
  • the terminal it is difficult for the terminal to predict the MPDCCH performance in advance using the CRS. That is, it may not be easy to derive a specific condition from the CRS in which the probability of MPDCCH decoding failure is not worse than a specific value.
  • a reference channel which is a performance inference object, may be defined as a channel other than the MPDCCH.
  • a reference channel eg, a PDCCH format for out-of-sync test or PDCCH format for in-sync test
  • a third PDCCH format or PDSCH format assuming a specific TM is used.
  • the DQI may define information for predicting reception performance based on the previously listed channels based on the CRS.
  • TM may be given as TM1 or TM2 depending on the number of CRS ports.
  • the CFRA is a case in which Msg.1 resources (eg, time and / or frequency and / or preamble resources) to be used by the terminal are given UE-specifically by the base station.
  • Msg.1 resources eg, time and / or frequency and / or preamble resources
  • TA timing
  • first uplink TA after updating Used to reduce performance degradation due to timing misalignment when receiving feedback (e.g., ACK / NACK) and / or CSI on the PUCCH and / or (N) PUSCH for the scheduled downlink. Can be.
  • feedback e.g., ACK / NACK
  • CSI CSI on the PUCCH and / or (N) PUSCH for the scheduled downlink.
  • the base station plans to perform downlink scheduling in the terminal after the CFRA procedure.
  • Receiving DQI information in Msg. 3 may also help minimize downlink scheduling performance deterioration in the CFRA process.
  • the terminal since the terminal is already registered in a cell and UE additional information is additionally acquired through the RRC message, refer to the DQI.
  • the terminal may be additionally configured with reference resources (for example, different from the DQI reference resources used in the CBRA) to measure the DQI to be reported in the random access procedure from the base station, which is an RRC or Msg.1.
  • a specific resource may be indicated in the triggering DCI or in the DQI reference resource set set to RRC in DCI. In this case, it may be reported in Msg. 3 (or (N) PUSCH first transmitted after Msg. 2) in the form of UCI rather than the MAC message.
  • the terminal may assume a specific transmission mode (TM) and estimate the DQI.
  • TM transmission mode
  • the TM used in the random access procedure is always assumed to be a fallback TM (for example, TM1 or TM2), or depending on the number of transmit antennas (for example, the number of CRS antenna ports) of the base station.
  • a reference TM may be derived and the DQI may be measured based on the reference TM.
  • the base station may directly indicate a reference TM that can be used to measure the DQI, or may measure the DQI assuming a TM used by a terminal in an RRC connected state.
  • the reference TM referenced in the DQI derivation process of the CBRA and the CFRA may be specifically defined according to the number of CRS ports of the base station as follows.
  • TM1 is assumed as the reference TM
  • the base station may configure the UL SPS to reduce resources for uplink scheduling of the terminal.
  • the UL SPS since a UL grant for uplink scheduling is not transmitted every time, it may also be effective in power saving by downlink monitoring of the terminal.
  • the UL SPS is configured by the terminal to directly determine the UL SPS resource without the dynamic uplink scheduling of the base station in a state of presetting a plurality of time domain uplink resources to be used by the terminal. It is a technique that can transmit data. This may be similar to the SPS already defined in the existing LTE or another system, and may be independent of the RRC state. That is, in the present proposal, the UL SPS refers to a communication procedure and method in which UL transmission is allowed without the UE being instructed to perform UL scheduling every time prior to every UL transmission of the terminal.
  • the downlink signal or channel eg, For example, it is necessary to receive (N) PDCCH, MPDCCH, (N) PDSCH, WUS (Wake-up Signal, etc.).
  • the base station may need to transmit a specific channel to the corresponding terminal in downlink, and in this case, measurement measurement is reported during the E.1.1 ('Competition Based Random Access (CBRA)) process for link adaptation.
  • CBRA Controlled Random Access
  • CFRA Non-Competitive Random Access
  • the UL SPS may have a different time / frequency resource to be used by Msg. 2 and / or Msg. 4 in the general random access procedure (e.g., a feedback for receiving the UL SPS is received from the base station).
  • the DL resource to be used when transmitting to this DL (that is, the DL resource to be monitored by the terminal) may be separate from Msg.2 / Msg.4 of the random access procedure, and the DQI reference resource for the UL SPS is independently Can be set. This can be defined directly in the standard, or set by system information or RRC message, or indicated directly in the channel (e.g. DCI) that activates / deactivates the UL SPS, or HARQ-feedback. May be directly indicated in a channel (eg, (N) PDCCH or MPDCCH).
  • a channel eg, (N) PDCCH or MPDCCH.
  • the DQI reported in the UL SPS process may have a definition or expression range different from that reported in the random access procedure.
  • a downlink channel e.g., a specific DCI
  • UL SPS activation / deactivation and / or HARQ-feedback is downlink of Msg. 2 and / or Msg. 4 of the random access procedure. It may be different from the link channel (e.g., DCI of type-2 CSS (DCI with type-2 CSS)), in which case a reference (or reference) to a downlink channel defined for UL SPS Reference channel), DQI can be measured and reported.
  • DCI of type-2 CSS DCI with type-2 CSS
  • channel quality may be defined differently according to the receiver type of the terminal.
  • the receiver type of the terminal may be one of the receiver types defined in order to satisfy specific performance requirements required by the standard.
  • LTE for example, maximum ratio combining (MRC) and minimum mean square (MMSE-IRC). Error-Interference Rejection and Combining), Enhanced MMSE-IRC (eMMSE-IRC), Maximum Likelihood (ML), Successive Interference Cancellation (SIC), and the like.
  • MRC maximum ratio combining
  • MMSE-IRC minimum mean square
  • Error-Interference Rejection and Combining Error-Interference Rejection and Combining
  • eMMSE-IRC Enhanced MMSE-IRC
  • ML Maximum Likelihood
  • SIC Successive Interference Cancellation
  • the reason why the base station needs to know such a receiver type may be to avoid unnecessary resource waste by predicting the reception performance of the terminal in advance during downlink scheduling of the base station. This is because there is a need to provide information.
  • the DQI may be reported as a value considering this, in which case the multiple reception antenna information of the terminal (eg, the actual number of reception antennas or the number of single reception antennas is assumed). Can be included in the measurement report along with the DQI.
  • the DQI reported by the terminal is a value derived assuming a single receiving antenna, and if there is a receiving antenna that can be additionally used by the terminal (ie, multiple receiving antennas), it may be reported further.
  • the corresponding receive antenna information can provide additional gain (e.g., RSRQ) when using multiple receive antennas (i.e., the number of antennas used to receive Msg.2 and / or Msg.4).
  • Gain, SNR gain, Msg.2 and / or Msg.4 in the form of expressing a reduction in the number of repetitions that can be expected to receive in a particular detection performance condition (e.g., BLER) or simply a multiple receive antenna.
  • the proposed DQI measurement information may be utilized for downlink scheduling and resource allocation (code-rate, repetition number, etc.) of the base station. Although this requires an additional operation for measuring the DQI of a low cost terminal, it may cause a failure in detecting the downlink received signal of the terminal due to an incorrect link adaptation of the base station (for example, too low repetitive transmission times). There may be an advantage to prevent the loss of power saving in advance. However, if the maximum number of repetitive transmissions of Msg.4 is initially lower than a specific value, since link adaptation may not be important, DQI measurement may be omitted to save power of the terminal.
  • the maximum number of repetitive transmissions of Msg.4 is set higher than a certain value, or if the RSRP or SNR of the terminal is very low (for example, the CE level is high or the highest CE level set in the cell). ), The accuracy of the DQI measurement information of the terminal may be very low. Therefore, in certain conditions, there may be a condition in which DQI measurement is not performed or reported in order to prevent unnecessary or meaningless power consumption of the terminal.
  • each specific value may be information defined in a standard or broadcasted by a base station.
  • the terminal may omit DQI measurement and reporting or a specific value (eg, the downlink channel quality is the worst). Value).
  • the term 'insufficient time for measuring DQI' may correspond to a relative time interval between Msg. 2 and Msg. 3 and may be defined as a capability of the terminal.
  • DQI reporting in selecting a TBS to be transmitted to Msg.3 Information size necessary for the above may not be considered. If, among the TBSs allowed for the terminal to use in Msg.3, among the TBSs that are larger than the data / information that the terminal wants to send to Msg.3, the actual data / information that the terminal wants to transmit in Msg.3 In addition, if it is possible to include all the sizes as large as the size that can report the DQI, the terminal may transmit Msg. 3 including the DQI in addition to the Msg.3.
  • MO-EDT Mobile Oriented Early Data Transmission-when transmitting data in the uplink during the random access procedure
  • the base station is MT-EDT (Mobile Terminated Early Data Transmission-when the base station transmits data in downlink during the random access procedure) after the terminal starts the random access procedure, Msg. 3 and / or Msg. 4 Thereafter, it may be requested to report the DQI to the uplink.
  • Msg. 3 and / or Msg. 4 Mobile Terminated Early Data Transmission-when the base station transmits data in downlink during the random access procedure
  • Msg. 3 and / or Msg. 4 Thereafter, it may be requested to report the DQI to the uplink.
  • the UE may complete data transmission and reception with the base station in the RRC idle state without entering the RRC connected state in the case of an EDT. This is because information may not be obtained freely as in the RRC connection state. That is, the UE may measure and report only the DQI of the level allowed by the random access in terms of the DQI measurement.
  • the DQI measurement reported after Msg.4 may be set to perform measurement based on
  • FIG. 8 The time flow of channels and signals transmitted and received by the terminal until Msg. 4 is received in the random access procedure is represented in FIG. 8, and the resource relationship of each channel / signal in terms of frequency will be described below.
  • FIG. 8 is written based on eMTC and may correspond to the example of FIG. 6.
  • the UL grant received by the terminal after Msg. 3 transmission is scheduling information for Msg. 3 retransmission, which uses the same format as Msg. 3/4 MPDCCH.
  • NPSS / NSSS / NPBCH is transmitted to an anchor carrier, and SIB information may be transmitted in anchor carrier or non-anchor carrier according to NPBCH information in case of TDD in anchor carrier in case of FDD (eg , FIG. 7 and related description).
  • Msg.2 NPDCCH and NPDSCH, Msg.3 / 4 NPDSCH, Msg.4 NPDSCH are all transmitted on the same NB-IoT carrier, which can be either an anchor carrier or a non-anchor carrier.
  • MTC the DL resource relationship in the frequency domain is more complicated and can be summarized as follows.
  • -NB / RB location transmitted in distributed RBs within LTE system bandwidth and used according to downlink bandwidth and cell ID may be different.
  • -NB / RB location is determined according to scheduling information for SI of SIB1-BR
  • PDSCH of Msg. 2 (PDSCH of Msg. 2)
  • frequency hopping can be applied according to rar-HoppingConfig
  • PDSCH of Msg. 4 (PDSCH of Msg. 4)
  • DL frequency resources used before Msg.4 reception are defined in a complex relationship, and in some cases, Msg.4 DL frequency resources to which DQI information is applied for the first time are transmitted before Msg.3 transmission. It may be a resource that the terminal does not need to receive (according to the existing random access procedure). That is, depending on how the DQI reference resource is defined, it may be determined whether the corresponding information can be effectively used for Msg.4 scheduling.
  • DQI-RS DQI-Reference Resource
  • the DQI-RS can represent the channel quality of the resource reserved for Msg.3 / 4 MPDCCH and / or (N) PDSCH transmission and needs to be selected within the resources that the terminal can receive before transmitting Msg.3. have. If the Msg.3 / 4 MPDCCH resource is the same as the Msg.2 receiving resource, the DQI-RS may be defined as part or all of the Msg.2 MPDCCH / NPDCCH. The following is a method for selecting DQI-RS when Msg.2 MPDCCH / NPDCCH is expected to have a different resource from Msg.3 / 4 MPDCCH / NPDCCH and / or (N) PDSCH.
  • the NB in which the center 6RB and / or system information is transmitted and / or the NB in which the Msg.2 PDSCH is transmitted may be additionally included in the DQI reference resource.
  • the actual application of the additional DQI reference resource may be determined according to Msg.2 MPDCCH hopping and / or Msg.2 PDSCH hopping
  • the method is a resource that the MTC terminal can expect to receive basically before Msg.3 transmission.
  • the terminal may not need to perform an additional reception operation for measuring the DQI.
  • a base station sets N (NB-IoT) carrier sets, and a terminal randomly selects a carrier from among N sets, measures and reports a CQI of the corresponding carrier, or averages the N sets Report DQI and / or Worst DQI and / or Best DQI
  • CQI information may include preferred carrier and / or repetition
  • the method can be applied only in case of non-anchor carrier DL CQI so as not to cause ambiguity and CQI state of the existing early CQI report.
  • the carrier of the DQI-RS is selected based on the UE ID
  • Msg.1 transmission is performed by selecting the NPRACH carrier among UL carriers associated with the DL carrier.
  • Msg. 1 carrier selection generally selects a UL carrier first and measures a DQI in a corresponding DL carrier, but the method determines a DQI report of a specific carrier among several DL carriers (for example, For example, a DL carrier corresponding to a best DQI) may be selected.
  • the base station may vary the configuration of the DQI-RS carrier set for each UL carrier for Msg.1
  • the base station may directly indicate the DQI-RS carrier when instructing NPDCCH order-based Msg.1 transmission, and the terminal induces DQI in the carrier.
  • the base station After Msg.3 transmission, the base station can change the DL carrier of the terminal to the corresponding carrier.
  • the terminal may receive an indication from the base station of the DQI-RS carrier to be used for DQI measurement in the RRC idle state.
  • the RAR monitoring NB may include a case in which a specific number of Msg. 3/4 MPDCCH NBs is included or more, or a case in which the interval between the RAR monitoring NBs and the Msg. 3/4 MPDCCH NBs is less than or equal to a specific value.
  • Msg.2 indicates that the EDT request of the terminal has been accepted from the base station, it is recognized as a DQI report indication.
  • the specific reserved bit of the RAR may be interpreted as a DQI report indication.
  • CQI and repetition number can be selectively indicated among DQI information.
  • CE modes can be fixed between CQI and the number of iterations.
  • the reserved bits of the RAR can be used to trigger DQI reporting, which is characterized by
  • ⁇ (semi-) static whether or not the base station can receive / support DQI reports at a high-layer (for example, system information or RRC messages). Signaling and dynamically turning off (or on) whether the DSI is reported in the CSI report field (if CE mode A of eMTC) or in the reserved bits of the RAR in the UL grant of the RAR. ) Can be directed to a high-layer (for example, system information or RRC messages). Signaling and dynamically turning off (or on) whether the DSI is reported in the CSI report field (if CE mode A of eMTC) or in the reserved bits of the RAR in the UL grant of the RAR. ) Can be directed
  • the RAR may follow the DQI reporting configuration indicated by the high-layer rather than the reserved bit (that is, DQI measurement and / or reporting of the terminal at high-layer If set, whether to report the DQI may not follow the indication of the dynamic signal, which means that there is no reserved bit in the RAR, such as eMTC CE mode B, or the CSI report field in the UL grant of the RAR. Can be applied if there is no)
  • the reserved bits of the RAR may be used for the purpose of providing additional information related to the DQI reporting setup (this is the CSI reporting of the UL grant). The same applies if the reserved bits of the field and the RAR are applied across each other)
  • the DQI reporting setting includes whether to report DQI, the range of DQI values and the number of DQI bits, CSI resources (for example, NB-IoT downlink carrier set such as narrowband set, reference TM), and DQI report mode. (Eg, wideband or selected (by eNB or UE) or preferred (by eNB or UE) or preferred subband / narrowband)), etc.
  • the DQI reporting configuration may be determined by the CSI report field and the reserved bits of the RAR in the UL grant of the RAR, but may be determined differently according to the TBS and / or duplex mode of Msg3 indicated in the UL grant of the RAR.
  • ⁇ DQI reporting can be disabled if the TBS of Msg3 corresponds to (or is less than) a specific value
  • the DQI reporting mode (eg, wideband or (by base station or UE)) is selected or Alternatively, the preferred subband / narrowband (selected (by eNB or UE) or preferred subband / narrowband)) or the range of DQI values and the number of DQI bits may be different.
  • DQI can be used directly for Msg. 3/4 MPDCCH. If the DQI-RS is different from the Msg.3 / 4 MPDCCH (frequency) resource, the DQI-RS is based on the reported DQI-RS (DQI-RS) in order to use the DQI information more actively. Can be induced.
  • DQI-RS reported DQI-RS
  • the base station sets the set for the Msg.3 / 4 MPDCCH resource as system information, since it is not easy to change, if there is no misunderstanding of the DQI-RS between the base station and the terminal, According to the DQI-RS of the DQI reported by the UE, it may be allowed to interpret Msg.3 / 4 MPDCCH and / or PDSCH (frequency) resources differently from values obtained from system information.
  • the proposed method can be applied to any case that is not in conflict with other proposals described in this patent.
  • Msg.2 MPDCCH NB interpret Msg.3 / 4 MPDCCH NB index of UL grant in RAR differently
  • the frequency hopping field may be included in the DCI information of Msg.3 / 4 MPDCCH or the frequency hopping field may be allowed to be used in the Msg.3 / 4 reception step.
  • the terminal may assume or be instructed that frequency hopping of the Msg. 3/4 MPDCCH and / or the Msg. 4 PDSCH is turned off.
  • a frequency hopping on / off field may be added to the Msg.4 DL grant or indirectly derived from other field combinations.
  • the frequency hopping field in the Msg.4 DL grant can be used for frequency hopping of the PDSCH scheduled by the corresponding DCI.
  • MTC and NB-IoT terminals support various CE levels and CE modes. This reflects the characteristics of the distance from the base station (ie, SNR) and mobility, and further, the characteristics of the processing power of the terminal. Therefore, in consideration of such various surrounding information, it is necessary to limit the DQI information that the terminal can measure or generate.
  • This section proposes a structure and range of information included in the DQI. The proposed method can be applied to any case that is not in conflict with other proposals described in this patent.
  • the following DQI configuration information may be included in part and reported to the base station.
  • the DQI table may be configured to include both the CQI and the number of repetitions, and may be a CQI or a form in which a repetition number is reported according to the index of the DQI table selected by the UE.
  • the lowest CQI of the DQI table may be configured to mean a similar or better state (eg, in terms of BLER) to the channel state indicated by the lowest number of iterations of the DQI table.
  • the reporting type is (a) wideband CQI or repetition, (b) wideband (CQI or repetition) and UE (or base station) selected NB index and (CQI or repetition) on the corresponding NB (wideband (CQI) or Repetition) and UE (or eNB) selected NB index and (CQI or Repetition) on corresponding NB), (c) wideband (CQI or Repetition) with PMI, (d) PMI There may be wideband (CQI or Repetition) without PMI.
  • the number of Rx.antenna ports (specifically, if the number of receive antenna port ports is greater than 1, the CQI (or repetition) is fixed at the highest value (or the lowest value) )
  • the DQI information configuration may be different depending on CE level and / or Msg.2 MPDCCH repetition (eg, actual number of transmissions or maximum number of repetitions) and hopping and / or PRACH format and repetition and hopping.
  • Msg.1 is transmitted for an EDT request or if a random access procedure is in progress as part of the EDT process, it may be set to select and report a CQI.
  • the number of repetitions assumed for the CQI measurement may be directly selected by the DQI terminal and included in the DQI to inform the base station together with the CQI, but may be defined so that the base station can be directly set or derived by a specific parameter. . That is, the number of repetitions that the terminal assumes for the CQI measurement may be a specific value that is already set, not a value that the terminal can directly select.
  • the value may be broadcast, for example, directly from the base station, or may be defined as a relationship determined according to the CE level and the parameters of the channel to be monitored or referenced by the terminal in the CQI calculation.
  • R_TM and / or R_DQI and / or R_CQI and / or R_Rep that the terminal can assume in the DQI derivation process may be defined differently.
  • R_TM, R_DQI, R_CQI, and R_Rep represent reference TM, reference DQI-RS, reference CQI and reference repetition number, respectively, and the terminal Only some of the information can be used to estimate the information suitable for the DQI configuration information.
  • the reference refers to a parameter that can be assumed to be used for virtual downlink channel transmission in deriving reception performance of a hypothetical downlink channel that the DQI intends to indicate.
  • the set of available DQIs may be different according to the number of Rx antenna ports.
  • the terminal may additionally inform the number of Rx antenna ports or set information used. Need
  • the DQI range configuration and number of sets may differ depending on CE level and / or Msg.2 MPDCCH repetition (e.g., actual number of transmissions or maximum number of repetitions) and hopping and / or PRACH format and repetition and hopping
  • the specific value may be set as follows for a subframe or a value corresponding to a repetition or aggregation level received until detection.
  • a specific value is a value set by a base station or a value predetermined by a specific ratio of the maximum repetitive transmission value of a channel (eg, MPDCCH (or NPDCCH) and / or (N) PDSCH) associated with the RAR (eg May be a value configurable by the base station or fixed to a standard, and the range / value of the ratio may also be the maximum repetitive transmission value of the channel (eg, MPDCCH (or NPDCCH) and / or (N) PDSCH) associated with the RAR and And / or frequency hopping)
  • a channel eg, MPDCCH (or NPDCCH) and / or (N) PDSCH
  • the DQI value is the smallest value among the given values equal to or greater than the actual received subframe or repetition value.
  • This section proposes various modes for reporting DQI.
  • the MTC and NB-IoT systems support various CE levels and CE modes, and in particular, in case of MTC, DL NB resources have frequency hopping characteristics. In consideration of this, it is necessary to support the DQI reporting mode suitable for each setting.
  • the proposed method can be applied to any case that is not in conflict with other proposals described in this patent.
  • CE mode A reports CQI based DQI.
  • the terminal follows a similar method to the CSI reporting mode 2-0 for the existing BL / CE UE, and the following changes and additions are required.
  • R CSI may be defined as a cell common or defined by CE level, or may be defined as a value dependent on the number of RAR MPDCCH repetitions (actual MPDCCH repetition number or maximum repetition number mpdcch-NumRepetition-RA). has exist. This value may be signaled via RRC signaling such as SIB or Msg.2.
  • Preferred NB NB and frequency domain used for monitoring Msg.3 / 4 MPDCCH derived from Msg.3 / 4 MPDSCH NB index among information transmitted from UL grant included in RAR. It may be selected as the nearest NB from the CSI reference resource in the frequency domain.
  • the terminal calculates the DQI (CSI) only up to a specific step based on CRS in the MPDCCH monitoring process for receiving Msg.2, and the actual DQI (CQI) information is preferred to the wideband CSI after wideband CSI.
  • the DQI (CQI) of the preferred NB can be calculated in its entirety.
  • CSI reference resource can be replaced by the DQI-RS of this patent.
  • the terminal follows a similar method to the CSI reporting mode 1-0 for the existing BL / CE UE, the following changes and additions are required
  • R CSI defined as cell common or defined by CE level, or defined as a value dependent on the number of RAR MPDCCH repetitions (eg, actual MPDCCH repetition number or maximum repetition number mpdcch-NumRepetition-RA). Can be. This value may be signaled via RRC signaling such as SIB or Msg.2.
  • the terminal follows the CSI reporting mode 1-1 method for the existing BL / CE UE, and the following changes and additions are required.
  • R CSI defined as cell common or defined by CE level, or defined as a value dependent on the number of RAR MPDCCH repetitions (eg, actual MPDCCH repetition number or maximum repetition number mpdcch-NumRepetition-RA). Can be. This value may be signaled via RRC signaling such as SIB or Msg.2.
  • R_TM A reference transmission mode may be defined, which may be signaled from the base station through RRC signaling such as SIB or Msg. 2 or determined according to the number of base station CRS ports.
  • the base station may consider the PDSCH TM to be used after the reception of Msg. 3 in advance and inform the terminal.
  • PMI subset may be defined in cell common or per CE level or in accordance with RTM.
  • the terminal follows the CSI reporting mode 2-0 method for the existing BL / CE UE, and the following changes and additions are required.
  • R CSI defined as cell common or defined by CE level, or defined as a value dependent on the number of RAR MPDCCH repetitions (eg, actual MPDCCH repetition number or maximum repetition number mpdcch-NumRepetition-RA). Can be. This value may be signaled via RRC signaling such as SIB or Msg.2.
  • the terminal adds a channel to which the frequency hopping is applied to the CSI reference resource.
  • Preferred NB Preferred NB: CSI reference of NB and frequency domain used to monitor Msg.3 / 4 MPDCCH derived from Msg.3 / 4 MPDSCH NB index among information received from UL grant included in RAR. It may be selected as the nearest NB among the resources (CSI reference resource in the frequency domain).
  • the terminal calculates the CSI up to a specific stage based on the CRS in the MPDCCH monitoring process for Msg.2, and the actual CSI (CQI) information is analyzed by the wideband CSI and the preferred NB after interpreting the RAR. ) Can be calculated completely.
  • CE mode B reports the required repetition number based DQI.
  • the DQI report may be measured / reported based on the DQI instead of the CQI in the manner described with respect to CE mode A.
  • the DQI report may include only the wideband DQI, or may include information about the location of the narrowband DQI and the preferred NB as measured on the preferred NB as well as the wideband DQI (eg, the preferred NB index). can do.
  • wideband DQI and / or narrowband DQI may be measured based on the scheme described in section E.1 and described in the section E.1 (number of repetitions (R) and / or merge levels (AL)). Related information).
  • the wideband DQI and / or narrowband DQI may have an RSRP / RSRQ value, and / or (N) PDCCH or MPDCCH or (N) PDSCH reception information of Msg.2, and / or (N) PDCCH of Msg.4. / MPDCCH reception capability information, and / or (N) PDSCH reception capability information of Msg.4.
  • R CQI A CQI value that can be used as a reference needs to be defined, which is the MCS (code rate, number of layers, modulation order, etc.). ) May be defined as a reference MCS (report MCS) value for reporting the number of repetitions satisfying a specific target reception performance (eg, BER). This can be defined as cell common or by CE level, or as a value dependent on the number of RAR MPDCCH repetitions (e.g., actual MPDCCH repetition transmissions or maximum repetition transmissions mpdcch-NumRepetition-RA). May also be a value derived indirectly from Msg.2 MPDCCH. This value may be signaled via RRC signaling such as SIB or Msg.2.
  • the modulation order of the Msg.2 MPDCCH and the TBS may be used as parameters for this, and the reference aggregation level is independently determined by the terminal. Can be given.
  • R_AL can be defined in all the above methods.
  • R_AL means a reference aggregation level of MPDCCH of the MPDCCH, which may estimate information suitable for DQI configuration information.
  • the reference refers to a parameter that can be assumed to be used for virtual downlink channel transmission in deriving reception performance of a virtual downlink channel (eg, MPDCCH) that the DQI intends to indicate. do.
  • DQI report mode e.g., wideband or selected (by eNB or UE) or preferred subband / narrowband
  • the determination method may be as follows.
  • the DQI reporting mode may be determined by the narrowband (or NB-IoT carrier) relationship between Msg2 and Msg3 / Msg4.
  • DQI wideband DQI
  • DQI narrowband or narrowband DQI
  • DQI can be selectively defined differently between CQI and repetition number / aggregation level, Ranges can also be defined differently
  • the wideband may be based only on the actual NB used by the base station for Msg. 2 transmission. That is, even when the base station enables frequency hopping of a reference resource (for example, Type2 CSS) that is a reference for DQI measurement, in some cases, only some frequency resources (NB) may be used for transmission. For example, when the number of repetitive transmissions is small, the base station may not have used all NBs that can be used for frequency hopping.
  • a reference resource for example, Type2 CSS
  • NB frequency resources
  • a non-BL UE operating in CE mode may use two or more receiving antennas, and may measure and report a DQI based thereon.
  • the base station may not know exactly the number of receiving antennas of the terminal, and also the range of suitable DQI value may vary depending on the number of receiving antennas used for DQI measurement.
  • DQI measurement and reporting of the non-BL UE may have the following characteristics.
  • the base station can set the number of receiving antennas that such a terminal can use for DQI measurement.
  • the DQI may be measured based on a single antenna to reduce power consumption. However, if the DQI value indicates a specific value or worse quality, two or more receiving antennas may be used. Can be forced or set to measure / report DQI
  • the terminal may be instructed to perform DQI measurement on one or more NB-IoT downlink carriers and report the result thereof. In particular, this may be indicated / configured by a network in order to use the auxiliary information for redirection downlink carriers.
  • the carrier set is set to high layer signaling (high layer signaling or higher layer signaling) (for example, system information or RRC message), or a carrier to be actually measured and reported by the terminal from among a set of carriers set to higher layer signaling.
  • S may be indicated in DCI (e.g., triggering (N) PRACH based on (N) PDCCH order)
  • the carrier set (which the terminal must perform the measurement) may be composed of a combination of an anchor carrier and one non-anchor carrier (which is an additional power consumption according to the measurement of the terminal). Adding an anchor carrier to the measurement carrier, which the terminal may have already received during the CE level selection process, may reduce the reception complexity and power consumption of the terminal.
  • the measurement period of the anchor carrier may be limited to the (N) PRSRP interval for CE level selection.
  • Measurement intervals for non-anchor carriers may be limited after Msg2 reception
  • Additional measurement gaps or time may be given to perform the additional measurements
  • the additional time for the terminal to transmit Msg3 after the corresponding DCI can be set
  • the terminal may report the measurement results on a carrier (s) other than the Msg2 receiving carrier associated with Msg1
  • the terminal selects a preferred NB-IoT downlink carrier based on the measurement result and may be configured to report only the corresponding information (this is limited to the field configuration for the measurement report). Because there may be)
  • the Msg2 configuration may be determined / interpreted based on the Msg2 configuration of the downlink carrier associated with Msg1 transmission or based on the Msg2 configuration of the downlink carrier selected (or reported) based on the measurement.
  • the Msg2 configuration of the downlink carrier associated with the existing Msg1 transmission may be followed or the Msg2 configuration to be referred to at this time may be separately defined or given.
  • the terminal may be allowed to select a preferred NB-IoT downlink carrier based on the measurement result and transmit Msg1 to a UL carrier that can expect Msg2 in the downlink carrier.
  • the terminal may be configured to perform NPDCCH monitoring related to Msg2 and / or Msg3 / 4 on the carrier.
  • the base station may present a reference value for selecting a preferred NB-IoT downlink carrier.
  • the repetition number estimated by the terminal that the UE needs to decode hypothetical NPDCCH in Type2-CSS with BLER of 1% upon the NB-IoT downlink carrier
  • DQI can be measured / reported on the indicated carrier.
  • the Msg2 configuration information may still be based on the carrier of the Msg2 associated with Msg1 or based on the Msg2 configuration of the indicated carrier (performing measurement).
  • the preferred carrier may be the most preferred carrier or the least preferred carrier in terms of reception performance.
  • the preferred carrier refers to a carrier predicted to have the best downlink reception performance quality
  • the unfavorable carrier refers to a carrier predicted to have the worst downlink reception performance quality.
  • the DQI may not be reported separately, or a conservative value (eg, the least preferred carrier) among other carriers' DQI information (for example, the number of repetitions) may be used. The number of repetitions in the excluded carriers) may be reported.
  • the reason for reporting unfavorable carrier information is that when the base station redirects the downlink carrier of the terminal, the terminal may utilize the information that the carrier does not want to be set as the downlink carrier.
  • the DQI report may include DQI information measured by two or more NB-IoT downlink carriers.
  • Each DQI information may be transmitted at the same time, but may be reported at different times or resources.
  • the range and / or representation interval of the DQI value may be smaller or narrower than the DQI information for one NB-IoT downlink carrier
  • the terminal When there are a plurality of carriers that can expect to receive Msg.2 corresponding to a carrier capable of transmitting Msg.1, the terminal has the best downlink channel quality among the plurality of downlink carriers.
  • the channel may satisfy the specific reception performance with the smallest number of repetitions), and may attempt to transmit Msg.1 to the uplink carrier corresponding to the selected downlink carrier.
  • the UE may inform that the reason for transmitting Msg.1 to the corresponding uplink carrier is that downlink channel quality is the best.
  • the information may report together the CQI information required for the selected downlink carrier (eg, the smallest number of repetitions that can expect to receive a specific channel while satisfying a specific reception performance).
  • This may be used as indirect information for the base station to avoid allocating another downlink carrier to itself after the random access procedure.
  • Rate-matching is to allocate data to be transmitted in Msg.3 to REs except for REs to which CQI information is transmitted in (N) PUSCH.
  • the number of REs to be used for data transmission between the terminal and the base station is misunderstood. It is necessary to ensure that there is no. For example, if a misunderstanding of the number of REs occurs, the base station may misunderstand the code rate to refer to data decoding, in which case the decoding cannot be successfully performed. May occur.
  • the puncturing technique is a method of performing data mapping without considering the number of REs required for CQI transmission and the number of REs available for data to be transmitted to Msg.3. This is advantageous in that there is no misunderstanding of the code rate in terms of data decoding of Msg. 3 even when the base station does not know whether the terminal transmits the CQI.
  • the rate-matching and puncturing described above may be selectively applied depending on whether the base station knows before the decoding attempt whether information on whether the terminal transmits the CQI. For example, when transmitting the CQI to Msg.3 during the initial random access process, the CQI information may be transmitted by a puncturing technique, and the CQI information by the request of the base station is transmitted in the MRC.
  • a rate-matching technique may be used.
  • the terminal transmits a CQI from a base station to a preconfigured uplink resource (PUR) previously set in an RRC idle mode
  • PUR preconfigured uplink resource
  • a rate-matching scheme may be applied. If the PUR is configured in the RRC idle mode instead of the RRC connected mode, the puncturing technique may be applied since the base station may not have information about the capability of supporting the CQI measurement and reporting of the terminal. have.
  • the base station may redirect the NB-IoT terminal to a non-anchor carrier in a random access procedure. That is, the terminal allocates a non-anchor carrier to the terminal that is not a downlink carrier receiving Msg.2 and Msg.4 (that is, not a downlink carrier derived from the CQI reported by Msg.3). The terminal may then be required to perform subsequent operations on the established non-anchor carrier. In such a case, since the base station cannot know the CQI information of the terminal in the corresponding non-anchor carrier, it is necessary to request to measure and report the CQI in the configured carrier separately from the CQI reported by the terminal in the random access procedure. There can be.
  • Msg. 3 This may be followed by a procedure of reporting a CQI to an (N) PUSCH (hereinafter referred to as Msg. 3) indicated by Msg.2 in a (N) PDCCH order-based random access procedure, in which case Msg Whether to report CQI in .3 may be indicated using the 'R' bit (or reserved bit) not used in Msg.2's MAC RAR. However, in such a case, since there may not be enough time to measure CQI after successfully detecting Msg.2, a DCI (eg, (N) PDCCH order) based on Msg.1 transmission is triggered. It may be indicated by using a specific state or bit that is not used in the DCI requesting Msg.1 transmission or is always set to a specific value.
  • the CQI measured by the terminal may be different from the definition of CQI when CQI reporting is used in the random access procedure. For example, since there is no information about USS in the initial random access process, it is based on a parameter related to resource setting for detecting Msg.2 (for example, the maximum number of repetitive transmissions of type-2 CSS). Although CQI may be defined, when CQI measurement and reporting is requested in the RRC connected mode, the CQI may be defined based on a USS-related parameter (eg, the maximum number of repeated transmissions) that has already been set.
  • a USS-related parameter eg, the maximum number of repeated transmissions
  • the CQI may be the actual number of repetitions that have been successful in detecting a PDCCH (e.g., MPDCCH or (N) PDCCH) associated with Msg.2 or the number of repetitions required to decode a (virtual) PDCCH (e.g.
  • the CQI may be defined based on the maximum number of repeated transmissions.
  • CQI may be defined as the ratio of the maximum number of repetitions (Rmax), and the actual number of repetitions or (virtual) successful in detecting the PDCCH (e.g., MPDCCH or (N) PDCCH) associated with Msg.2.
  • the number of repetitions required to decode a PDCCH (eg MPDCCH or (N) PDCCH) is equal to ⁇ 1, 2, 4, 8,... ⁇
  • CQI is ⁇ Rmax, Rmax / 2, Rmax / 4, Rmax / 8,... ⁇ Can be defined as a value.
  • the CQI may be defined based on a value having a larger or smaller maximum number of repetitive transmissions among the above-described CSS and USS, and may be selected from two among specific signaling of the base station. If the CQI is defined based on USS, the NRS received by the terminal for CQI measurement may be included in CSS Type 2, which is a type 2 CSS in a non-anchor carrier. This is because there is always an expectation of NRS.
  • the base station may set the CE level of the Msg.1 resource to a value different from the actual CE level of the terminal, the terminal is Msg.1 received from the base station
  • the CQI may be derived based on its downlink CE level rather than the CE level associated with the related information.
  • the base station may need the CQI information of the terminal. That is, the base station uses the downlink CQI information of the corresponding terminal to repeat the number of times of transmission and / or aggregation level and / or code rate of (N) PDCCH or MPDCCH and / or (N) PDSCH. Can be determined by resource size and MCS). This may be similar to the reason why the base station needs the CQI information of the terminal in the initial random access process, but since the uplink channel structure used is different from the initial random access and PUR transmission, It may be necessary in addition.
  • CQI definition may be related to PUR type because downlink feedback channel structure may be different according to PUR type.
  • a time / frequency resource of a PUR may be a UE dedicated resource, or a time / frequency resource may be shared by a plurality of terminals, but a spatial and / or code resource may be dedicated to a UE. (UE dedicated) is set (e.g., collision may occur, but contention does not occur), or multiple terminals may share all resources (e.g., contention may occur) There may be a type).
  • the structure of a downlink channel monitored by a terminal may be different.
  • a downlink channel to be monitored may be shared among a plurality of users (for example, RAR of Msg.2 and Similar structure) or downlink channel to be monitored may be set for each user (eg, (N) PDCCH / MPDCCH of USS).
  • RAR for example, RAR of Msg.2 and Similar structure
  • downlink channel to be monitored may be set for each user (eg, (N) PDCCH / MPDCCH of USS).
  • N PDCCH / MPDCCH of USS
  • the base station may be configured to report the CQI only when the specific condition is satisfied or not satisfied, where the specific condition may mean, for example, that the CQI information measured by the terminal is worse than the specific value.
  • the CQI information may be different from the CQI information of the initial access process, and the reference channel required for deriving the CQI may be defined according to a PUR type and / or a downlink channel.
  • the CQI information reported to the PUR may be defined to report only the difference information (delta) information based on some attributes of the downlink channel parameter set in comparison to the existing CQI.
  • the CQI measurement may be performed not in every PUR transmission unit, but only when downlink reception is needed to determine whether PUR transmission can be continuously performed. That is, such an operation may be limited only when an operation for determining whether a PUR set due to a change in the surrounding environment of the terminal is still valid is performed.
  • the present patent proposes a method of reporting CQI information of a downlink control channel (eg, MPDCCH, NPDCCH, PDSCH) of a terminal, which may be applied regardless of an RRC state.
  • the control channel that the terminal attempts to detect in the RRC connected mode may be different from the control channel that attempts to detect in the RRC idle mode, and thus the method and reporting method of measuring the CQI differs from the RRC idle mode. can do.
  • This section proposes a series of procedures related to the method of reporting CQI information of a downlink control channel in the RRC connected mode, and is described based on the MPDCCH of the eMTC system for convenience of description.
  • the proposed method can be applied not only to eMTC system but also to other communication systems such as NB-IoT, LTE, and NR system.
  • Specific examples of the proposed method and channel / signal names are examples and channels of the same / similar purpose in the system. It can also be interpreted as a / signal name.
  • the MPDCCH may be monitored in a UE-specific search space (USS) configured for each terminal.
  • USS UE-specific search space
  • the terminal monitors the same DCI format (for example, DCI formats 6-0A and 6-1A or 6-0B and 6-1B)
  • the DCI size of the USS is the capability of the terminal (for example, Since it may be different depending on sub-PRB, 64QAM, wideband support, etc., a reference channel (eg, hypothetical MPDCCH) for measuring / calculating CQI may be different.
  • the terminal using CE mode A can monitor not only USS but also Type0-CSS in RRC connected mode, so that the reference format for measuring CQI (and / or search space type-CE mode A only) can be monitored.
  • the base station needs to be set up or defined by a specific appointment. That is, even in the same terminal, the size of the reference format may be changed according to parameter information set by the base station in the USS with reference to the capability of the terminal.
  • the ECCE is a unit configuring the MPDCCH, and the minimum number of ECCEs for configuring the MPDCCH may be different for each subframe in which the MPDCCH is transmitted. Accordingly, the standard of CQI information may vary. That is, when CQI is a value representing the number of repetitions of MPDCCH and / or AL (eg, a value in which hypothetical MPDCCH reception detection performance can satisfy a certain criterion), a reference MPDCCH format (eg, TS36.211) for deriving it Table 6.8B.1-2) reports the corresponding CQI from the MPDCCH in an MPDCCH (e.g., aperiodic CQI trigger) method that is “directed from the base station” or “fixed to the standard” or “triggers that CQI report”. May be fixed and signaled to a point in time at which the signal is received or relative to the point in time.
  • a reference MPDCCH format e.g., TS36.211
  • A “Number of hopping narrow bands (NBs) used for MPDCCH transmission X number of times the MPDCCH subframe can be repeatedly transmitted within each hop)” (this is called A) rather than “reference MPDCCH format.
  • Rmax the maximum number of MPDCCHs that can be repeatedly transmitted in that search space
  • CQI the terminal has a hypothetical MPDCCH equal to or higher than a certain reference performance
  • each terminal can set its own preferred configuration information (e.g., use minimum resources to satisfy the MPDCCH detection performance among various configurable MPDCCH or USS configuration information).
  • Information which is included in the CQI, is reported to the base station, and the base station may change the MPDCCH configuration information of the corresponding UE by reflecting it.
  • the contents that may be included in the preference information may include the following information.
  • hopping enable / disable information of MPDCCH (specifically, the information is limited to be included in CQI only when hopping setting of MPDCCH is enabled at the time of triggering MPDCCH CQI reporting).
  • the MPDCCH is transmitted by applying the same precoding as the DMRS port related to the ECCE constituting the MPDCCH, and the precoding information applied to the DMRS based on the CRS is generally not provided to the terminal. If all or some of the above information can be additionally provided due to the improvement of MPDCCH detection performance, etc., the terminal additionally provides the information (for example, the relationship between the MPDCCH DMRS port and the CRS port) together with the CQI or You can report to the base station separately.
  • the precoder information preferred by the terminal e.g., cyclic may include information indicating preference for cycling, or request to use a specific precoder, or report cycling in a particular manner.
  • the base station may indicate the precoder relationship between the assumed CRS and the DMRS port when the terminal derives the MPDCCH CQI information.
  • the information may be for instructing to assume a specific precoder, or may be information that a specific precoder combination does not need to be assumed.
  • Precoder information to be assumed when the terminal calculates the MPDCCH CQI (eg, the number of repeated transmissions of the hypothetical MPDCCH and / or AL) reports the CSI for the PDSCH at the most recent (or presumption recent) point in time. It may be set to assume the precoder information (eg, PMI) that was included when.
  • the MPDCCH CQI eg, the number of repeated transmissions of the hypothetical MPDCCH and / or AL
  • PMI precoder information
  • FIG. 9 illustrates a flowchart of a method in which a terminal transmits (or reports) information on a DQI to a base station through Msg.1.
  • 9 may be performed by a UE in an RRC idle state.
  • RA-0 mobile station
  • RA-4 in the description of FIG. 9 refer to the random access procedure described in section E.
  • the terminal may be referred to by other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device, and the like.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • MT mobile terminal
  • wireless device and the like.
  • step S102 the terminal may receive random access related configuration information from the base station through system information (or system information block (SIB)).
  • system information or system information block (SIB)
  • step S102 may correspond to (RA-0).
  • the terminal may include system information including random access related configuration information according to the operation described in relation to (RA-0) and / or the operation proposed in the present invention (for example, see E.1 to E.16). (Or SIB) may be received.
  • SIB system information block
  • step S104 the terminal may transmit a random access preamble (or Msg. 1) to the base station based on the received configuration information.
  • step S104 may correspond to (RA-1).
  • the terminal may transmit the information on the DQI to the base station through the random access preamble according to the present invention.
  • the UE may perform operations described with reference to (RA-1), operations described in Section E.1, and / or operations proposed in the present invention (eg, Section E.2). To Section E.16).
  • the terminal may perform the same process as (RA-2), (RA-3), (RA-4).
  • a base station is a wireless device that communicates with a terminal and is referred to by other terms such as an evolved Node-B (eNB), a General Node-B (gNB), a base transceiver system (BTS), an access point (AP), and the like. Can be.
  • eNB evolved Node-B
  • gNB General Node-B
  • BTS base transceiver system
  • AP access point
  • the base station may transmit random access related configuration information to the terminal through system information (or system information block (SIB)).
  • system information or system information block (SIB)
  • step S202 may correspond to (RA-0).
  • the base station may include system information including random access related configuration information according to the operation described in relation to (RA-0) and / or the operation proposed in the present invention (eg, see Sections E.1 to E.16). (Or SIB) may be transmitted to the terminal.
  • SIB system information block
  • the base station may receive a random access preamble (or Msg. 1) from the terminal based on the transmitted configuration information.
  • step S204 may correspond to (RA-1).
  • the base station may receive information on the DQI from the terminal through the random access preamble according to the present invention.
  • the base station may perform operations described in connection with (RA-1), operations described in section E.1, and / or proposed operations in the present invention (eg, Section E.2). To Section E.16).
  • the base station may perform the same process as (RA-2), (RA-3), (RA-4).
  • the terminal may provide a DQI in the process (RA-3), so that the base station can utilize it for downlink scheduling in (RA-4).
  • FIG. 11 illustrates a flowchart of a method in which a terminal transmits (or reports) information on a DQI to a base station through Msg.3.
  • the example of FIG. 11 may be performed in a terminal in an RRC idle state.
  • (RA-0) to (RA-4) in the description of FIG. 11 refer to the random access procedure described in section E.
  • the terminal may be referred to by other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device, and the like. .
  • step S302 the terminal may transmit a random access preamble (or Msg. 1) to the base station.
  • step S302 may correspond to (RA-1).
  • the terminal may transmit the random access preamble to the base station according to the operation described in (RA-1) and / or the operation proposed in the present invention.
  • the configuration for random access preamble transmission may be preset according to the operation described in (RA-0) and / or the operation proposed in the present invention (for example, see E.1 to E.16).
  • an operation corresponding to (RA-0) may be performed before step S302 (not shown), and reporting of information on DQI through Msg. 3 is based on system information broadcasted from a base station. It may be enabled.
  • step S304 the terminal may receive a random access response (or Msg. 2) from the base station in response to the transmitted random access preamble (or Msg. 1).
  • step S304 may correspond to (RA-2), and the random access response may include the information described herein and / or the information proposed in the present invention.
  • the terminal may receive a random access response from the base station according to the operation described in (RA-2) and / or the operation proposed in the present invention (for example, sections E.1 to E.16).
  • the random access response may include an instruction (or information indicating) to report information on the DQI to Msg. 3 to the UE.
  • step S306 the terminal may transmit a message for solving contention (or Msg. 3) to the base station through a physical uplink channel (eg, PUSCH or NPUSCH) based on the received random access response (or Msg. 2). .
  • step S306 may correspond to (RA-3).
  • the terminal may transmit information on the DQI to the base station through a physical uplink channel (eg, PUSCH or NPUSCH) (or via a message for contention resolution) according to the present invention.
  • the physical uplink channel eg, PUSCH or NPUSCH
  • the physical uplink channel (eg, PUSCH or NPUSCH) (or message for contention resolution) may include the information described herein and / or the information proposed in the present invention.
  • the UE may be connected to (or PUSCH or NPUSCH) through a physical uplink channel according to the operation described in (RA-3) and / or the operation proposed in the present invention (e.g., E.1 to E.16) (or Information on the DQI may be transmitted to the base station through a message for contention resolution.
  • the information on the DQI may be transmitted to the base station through an upper layer signal (eg, a MAC message or an RRC message).
  • the terminal may perform the same process as (RA-4).
  • FIG. 12 illustrates a flowchart of a method for a base station to receive (or receive a report on) information on a DQI from a terminal through Msg.3.
  • the example of FIG. 12 may be performed by a base station with a terminal in an RRC idle state.
  • (RA-0) to (RA-4) in the description of FIG. 12 refer to the random access procedure described in section E.
  • a base station (BS) is a wireless device that communicates with a terminal and is referred to by other terms such as an evolved Node-B (eNB), a General Node-B (gNB), a base transceiver system (BTS), an access point (AP), and the like. Can be.
  • eNB evolved Node-B
  • gNB General Node-B
  • BTS base transceiver system
  • AP access point
  • step S402 the base station may receive a random access preamble (or Msg. 1) from the terminal.
  • step S402 may correspond to (RA-1).
  • the base station may receive a random access preamble from the terminal according to the operation described in (RA-1) and / or the operation proposed in the present invention.
  • the configuration for random access preamble transmission may be preset according to the operation described in (RA-0) and / or the operation proposed in the present invention (for example, see E.1 to E.16).
  • step S404 the base station may transmit a random access response (or Msg. 2) to the terminal in response to the received random access preamble (or Msg. 1).
  • step S404 may correspond to (RA-2), and the random access response may include the information described herein and / or the information proposed in the present invention.
  • the base station may transmit a random access response to the terminal according to the operation described in (RA-2) and / or the operation proposed in the present invention (see, for example, E.1 to E.16).
  • the base station may receive a message for solving contention (or Msg. 3) from the terminal through a physical uplink channel (eg, PUSCH or NPUSCH) in response to the transmitted random access response (or Msg. 2). Can be.
  • step S406 may correspond to (RA-3).
  • the base station may receive information on the DQI from the terminal through a physical uplink channel (eg, PUSCH or NPUSCH) (or via a message for contention resolution) according to the present invention.
  • the physical uplink channel eg, PUSCH or NPUSCH
  • the physical uplink channel (eg, PUSCH or NPUSCH) (or message for contention resolution) may include the information described herein and / or the information proposed in the present invention.
  • the base station may be connected to a physical uplink channel (e.g., PUSCH or NPUSCH) according to the operation described in (RA-3) and / or the proposed operation (e.g., E.1 to E.16).
  • a physical uplink channel e.g., PUSCH or NPUSCH
  • the proposed operation e.g., E.1 to E.16.
  • Information about the DQI may be received from the terminal through a message for contention resolution.
  • the base station may perform a process such as (RA-4).
  • the information on the DQI may include RSRP and / or RSRQ information, or the number of repetitions (R) and / or merge levels (AL) associated with decoding the actual PDCCH (or MPDCCH or NPDCCH).
  • the information on the DQI is a physical downlink when a physical downlink control channel (eg, PDCCH or MPDCCH or NPDCCH) associated with a random access response is detected.
  • Information indicating the repetition number of the control channel may be included.
  • the information on the DQI further includes information indicating an aggregation level of the physical downlink control channel when the physical downlink control channel (eg, PDCCH or MPDCCH or NPDCCH) associated with the random access response is detected. It may include.
  • the information on the DQI is used to determine the repetition number required to detect a hypothetical physical downlink control channel at a specific block error rate (BLER). Indicating information, and the specific BLER may be, for example, 1%.
  • the information on the DQI may further include information indicating an aggregation level required to detect the virtual physical downlink control channel with a specific BLER.
  • the information on the DQI may be referred to as a reference aggregation level (eg, an aggregation level).
  • reference AL 24
  • the specific performance requirement may include that the number of repetitions required to detect the virtual physical downlink control channel is one.
  • FIG. 13 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • a wireless communication system includes a base station 10 and a plurality of terminals 20 located in a base station area.
  • the base station may be represented by a transmitting device
  • the terminal may be represented by a receiving device, and vice versa.
  • the base station and the terminal are a processor (processor, 11, 21), memory (memory, 14, 24), one or more transmit (Tx) / receive (Rx) radio frequency module (15, 25) (or RF transceiver), Tx processors 12 and 22, Rx processors 13 and 23, and antennas 16 and 26.
  • the processor implements the salping functions, processes and / or methods above. More specifically, in downlink DL (communication from the base station to the terminal), upper layer packets from the core network are provided to the processor 11.
  • the processor implements the functionality of the L2 layer.
  • the processor provides the terminal 20 with multiplexing and radio resource allocation between logical channels and transport channels, and is responsible for signaling to the terminal.
  • the transmit (TX) processor 12 implements various signal processing functions for the L1 layer (ie, the physical layer).
  • the signal processing function facilitates forward error correction (FEC) in the terminal and includes coding and interleaving.
  • FEC forward error correction
  • the encoded and modulated symbols are divided into parallel streams, each stream mapped to an OFDM subcarrier, multiplexed with a reference signal (RS) in the time and / or frequency domain, and using an Inverse Fast Fourier Transform (IFFT). To be combined together to create a physical channel carrying a time-domain OFDMA symbol stream.
  • RS reference signal
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Each spatial stream may be provided to a different antenna 16 via a separate Tx / Rx module (or transceiver) 15.
  • Each Tx / Rx module can modulate an RF carrier with each spatial stream for transmission.
  • each Tx / Rx module (or transceiver) 25 receives a signal through each antenna 26 of each Tx / Rx module.
  • Each Tx / Rx module recovers information modulated onto an RF carrier and provides it to a receive (RX) processor 23.
  • the RX processor implements the various signal processing functions of layer 1.
  • the RX processor may perform spatial processing on the information to recover any spatial stream destined for the terminal.
  • the RX processor uses fast Fourier transform (FFT) to convert the OFDMA symbol stream from the time domain to the frequency domain.
  • the frequency domain signal includes a separate OFDMA symbol stream for each subcarrier of the OFDM signal.
  • the symbols and reference signal on each subcarrier are recovered and demodulated by determining the most likely signal placement points sent by the base station. Such soft decisions may be based on channel estimate values. Soft decisions are decoded and deinterleaved to recover the data and control signals originally transmitted by the base station on the physical channel. The corresponding data and control signals are provided to the processor 21.
  • Each Tx / Rx module (or transceiver) 25 receives a signal via each antenna 26.
  • Each Tx / Rx module provides an RF carrier and information to the RX processor 23.
  • the processor 21 may be associated with a memory 24 that stores program code and data.
  • the memory may be referred to as a computer readable medium.
  • the present invention described above may be performed by the base station 10 and the terminal 20 which are the wireless communication device described with reference to FIG.
  • a communication system 1 applied to the present invention includes a wireless device, a base station and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G New RAT (Long Term), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device.
  • the wireless device may be a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, a home appliance 100e. ), IoT (Internet of Thing) device (100f), AI device / server 400 may be included.
  • the vehicle may include a vehicle having a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an unmanned aerial vehicle (UAV) (eg, a drone).
  • UAV unmanned aerial vehicle
  • XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, Head-Mounted Device (HMD), Head-Up Display (HUD), television, smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smartphone, a smart pad, a wearable device (eg, smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • the home appliance may include a TV, a refrigerator, a washing machine, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg LTE) network or a 5G (eg NR) network.
  • the wireless devices 100a-100f may communicate with each other via the base station 200 / network 300, but may also communicate directly (eg, sidelink communication) without passing through the base station / network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (eg, vehicle to vehicle (V2V) / vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with another IoT device (eg, sensor) or another wireless device 100a to 100f.
  • Wireless communication / connection 150a, 150b, 150c may be performed between the wireless devices 100a-100f / base station 200 and base station 200 / base station 200.
  • the wireless communication / connection is a variety of radios such as uplink / downlink communication (150a) and sidelink communication (150b) (or D2D communication), inter-base station communication (150c) (e.g. relay, Integrated Access Backhaul (IAB)) Connection technology (eg, 5G NR) via wireless communication / connections 150a, 150b, 150c, the wireless device and the base station / wireless device, the base station and the base station may transmit / receive radio signals to each other.
  • uplink / downlink communication 150a
  • sidelink communication 150b
  • IAB Integrated Access Backhaul
  • Connection technology eg, 5G NR
  • wireless communications / connections 150a, 150b, 150c may transmit / receive signals over various physical channels.
  • the transmission / reception of wireless signals may be performed.
  • At least some of various configuration information setting processes, various signal processing processes (eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.), resource allocation processes, and the like may be performed.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • the ⁇ first wireless device 100 and the second wireless device 200 ⁇ may refer to the ⁇ wireless devices 100a to 100f, the base station 200 ⁇ and / or ⁇ the wireless devices 100a to 100f, wireless of FIG. Devices 100a to 100f ⁇ .
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108.
  • the processor 102 controls the memory 104 and / or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 102 may process the information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106.
  • the processor 102 may receive the radio signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104.
  • the memory 104 may be coupled to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform instructions to perform some or all of the processes controlled by the processor 102 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them.
  • processor 102 and memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled to the processor 102 and may transmit and / or receive wireless signals via one or more antennas 108.
  • the transceiver 106 may include a transmitter and / or a receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • a wireless device may mean a communication modem / circuit / chip.
  • the second wireless device 200 may include one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208.
  • the processor 202 controls the memory 204 and / or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information / signal, and then transmit the wireless signal including the third information / signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information / signal through the transceiver 206 and then store information obtained from the signal processing of the fourth information / signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and store various information related to the operation of the processor 202. For example, the memory 204 may perform instructions to perform some or all of the processes controlled by the processor 202 or to perform descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can store software code that includes them.
  • processor 202 and memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be coupled with the processor 202 and may transmit and / or receive wireless signals via one or more antennas 208.
  • the transceiver 206 may include a transmitter and / or a receiver.
  • the transceiver 206 may be mixed with an RF unit.
  • a wireless device may mean a communication modem / circuit / chip.
  • One or more protocol layers may be implemented by one or more processors 102, 202, although not limited thereto.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may employ one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information in accordance with the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • One or more processors 102, 202 may generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information in accordance with the functions, procedures, suggestions and / or methods disclosed herein.
  • signals eg, baseband signals
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and include descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein.
  • a PDU, an SDU, a message, control information, data, or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be included in one or more processors (102, 202) or stored in one or more memories (104, 204) of It may be driven by the above-described processor (102, 202).
  • the descriptions, functions, procedures, suggestions, methods, and / or operational flowcharts disclosed herein may be implemented using firmware or software in the form of code, instructions, and / or a set of instructions.
  • One or more memories 104, 204 may be coupled to one or more processors 102, 202 and may store various forms of data, signals, messages, information, programs, codes, instructions, and / or instructions.
  • One or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage medium, and / or combinations thereof.
  • One or more memories 104, 204 may be located inside and / or outside one or more processors 102, 202.
  • one or more memories 104, 204 may be coupled with one or more processors 102, 202 through various techniques, such as a wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, wireless signals / channels, etc., as mentioned in the methods and / or operational flowcharts of this document, to one or more other devices.
  • One or more transceivers 106 and 206 may receive, from one or more other devices, user data, control information, wireless signals / channels, etc., as mentioned in the description, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. have.
  • one or more transceivers 106 and 206 may be coupled with one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102 and 202 may control one or more transceivers 106 and 206 to transmit user data, control information or wireless signals to one or more other devices.
  • one or more processors 102 and 202 may control one or more transceivers 106 and 206 to receive user data, control information or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled with one or more antennas 108, 208, and one or more transceivers 106, 206 may be connected to one or more antennas 108, 208 through the description, functions, and features disclosed herein.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers 106, 206 may process the received wireless signal / channel or the like in an RF band signal to process received user data, control information, wireless signals / channels, etc. using one or more processors 102,202.
  • the baseband signal can be converted.
  • One or more transceivers 106 and 206 may use the one or more processors 102 and 202 to convert processed user data, control information, wireless signals / channels, etc. from baseband signals to RF band signals.
  • one or more transceivers 106 and 206 may include (analog) oscillators and / or filters.
  • FIG. 16 shows another example of a wireless device to which the present invention is applied.
  • the wireless device may be implemented in various forms depending on the use-example / service (see FIG. 14).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 15 and may include various elements, components, units / units, and / or modules. It can be composed of).
  • the wireless device 100, 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include communication circuitry 112 and transceiver (s) 114.
  • communication circuitry 112 may include one or more processors 102, 202 and / or one or more memories 104, 204 of FIG. 15.
  • the transceiver (s) 114 may include one or more transceivers 106, 206 and / or one or more antennas 108, 208 of FIG. 15.
  • the controller 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device. For example, the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, other communication devices) through the communication unit 110 through a wireless / wired interface, or externally (eg, through the communication unit 110). Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130.
  • the outside eg, other communication devices
  • Information received through a wireless / wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit / battery, an I / O unit, a driver, and a computing unit.
  • the wireless device may be a robot (FIGS. 14, 100a), a vehicle (FIGS. 14, 100b-1, 100b-2), an XR device (FIGS. 14, 100c), a portable device (FIGS. 14, 100d), a home appliance. (FIG. 14, 100E), IoT device (FIG.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate / environment device
  • It may be implemented in the form of an AI server / device (FIG. 14, 400), a base station (FIG. 14, 200), a network node.
  • the wireless device may be used in a mobile or fixed location depending on the usage-example / service.
  • various elements, components, units / units, and / or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a part of them may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire in the wireless device 100 or 200, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit / unit, and / or module in wireless device 100, 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • the controller 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, a memory control processor, and the like.
  • the memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and / or combinations thereof.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, smart watch, smart glasses), a portable computer (eg, a notebook, etc.).
  • the mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input / output unit 140c. ) May be included.
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • Blocks 110 to 130 / 140a to 140c correspond to blocks 110 to 130/140 of FIG. 16, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may control various components of the mobile device 100 to perform various operations.
  • the control unit 120 may include an application processor (AP).
  • the memory unit 130 may store data / parameters / programs / codes / commands necessary for driving the portable device 100. In addition, the memory unit 130 may store input / output data / information and the like.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired / wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support the connection of the mobile device 100 to another external device.
  • the interface unit 140b may include various ports (eg, audio input / output port and video input / output port) for connecting to an external device.
  • the input / output unit 140c may receive or output image information / signal, audio information / signal, data, and / or information input from a user.
  • the input / output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and / or a haptic module.
  • the input / output unit 140c obtains information / signals (eg, touch, text, voice, image, and video) input from the user, and the obtained information / signal is stored in the memory unit 130. Can be stored.
  • the communication unit 110 may convert the information / signal stored in the memory into a wireless signal, and directly transmit the converted wireless signal to another wireless device or to the base station.
  • the communication unit 110 may receive a radio signal from another wireless device or a base station, and then restore the received radio signal to original information / signal.
  • the restored information / signal may be stored in the memory unit 130 and then output in various forms (eg, text, voice, image, video, heptic) through the input / output unit 140c.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • the vehicle or the autonomous vehicle 100 may include an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a portion 140d.
  • the antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130 / 140a through 140d correspond to blocks 110/130/140 of FIG. 16, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other devices such as another vehicle, a base station (eg, a base station, a road side unit), a server, and the like.
  • the controller 120 may control various elements of the vehicle or the autonomous vehicle 100 to perform various operations.
  • the control unit 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driver 140a may include an engine, a motor, a power train, wheels, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired / wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, a vehicle forward / Reverse sensors, battery sensors, fuel sensors, tire sensors, steering sensors, temperature sensors, humidity sensors, ultrasonic sensors, illuminance sensors, pedal position sensors, and the like.
  • the autonomous driving unit 140d is a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and automatically setting a route when a destination is set. Technology and the like.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the obtained data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous vehicle 100 along the autonomous driving path according to the driving plan (eg, speed / direction adjustment).
  • the communication unit 110 may acquire the latest traffic information data aperiodically from an external server and may obtain the surrounding traffic information data from the surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly obtained data / information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • the present invention can be applied not only to 3GPP LTE / LTE-A system / 5G system (or NR (New RAT) system) but also to wireless communication devices such as terminals, base stations, etc. that operate in various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서 하향링크 품질 정보(downlink quality information)를 송수신하는 방법 및 이를 위한 장치에 관한 것으로서, 보다 구체적으로 랜덤 접속 프리앰블(random access preamble)을 송수신하는 단계; 상기 랜덤 접속 프리앰블에 기반하여 랜덤 접속 응답(random access response)을 송수신하는 단계; 및 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 송수신하는 단계를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 하향링크 채널 품질 정보를 송수신하는 방법 및 이를 위한 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은 하향링크 채널 품질 정보를 효율적으로 송수신하기 위한 방법 및 이를 위한 장치를 제공하는 데 있다.
또한, 본 발명의 목적은 랜덤 접속 과정을 통해 하향링크 채널 품질 정보를 효율적으로 송수신하기 위한 방법 및 이를 위한 장치를 제공하는 데 있다.
또한, 본 발명의 목적은 RRC 연결 상태에서 하향링크 채널 품질 정보를 효율적으로 송수신하기 위한 방법 및 이를 위한 장치를 제공하는 데 있다.
또한, 본 발명의 목적은 물리 하향링크 제어 채널 및/또는 물리 하향링크 공유 채널에 대한 하향링크 채널 품질 정보를 효율적으로 송수신하기 위한 방법 및 이를 위한 장치를 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 양상으로, 무선 통신 시스템에서 사용자 기기(user equipment, UE)가 하향링크 품질 정보(downlink quality information)를 기지국으로 전송하는 방법이 제공되며, 상기 방법은 랜덤 접속 프리앰블(random access preamble)을 상기 기지국으로 전송하는 단계; 상기 기지국으로부터 랜덤 접속 응답(random access response)을 수신하는 단계; 및 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 기지국으로 전송하는 단계를 포함할 수 있다.
본 발명의 제2 양상으로, 무선 통신 시스템에서 하향링크 품질 정보를 기지국으로 전송하도록 구성된 사용자 기기(user equipment, UE)가 제공되며, 상기 사용자 기기는 RF(Radio Frequency) 송수신기(transceiver); 및 상기 RF 송수신기와 동작시(operatively) 연결되는 프로세서를 포함하고, 상기 프로세서는 상기 RF 송수신기를 제어하여 랜덤 접속 프리앰블을 상기 기지국으로 전송하고, 상기 기지국으로부터 랜덤 접속 응답을 수신하고, 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 기지국으로 전송하도록 구성될 수 있다.
본 발명의 제3 양상으로, 무선 통신 시스템에서 사용자 기기(user equipment, UE)를 위한 장치가 제공되며, 상기 장치는 명령어(instruction)를 포함하는 메모리; 및 상기 메모리에 동작시 연결되는 프로세서를 포함하되, 상기 프로세서는 상기 명령어를 실행하여 특정 동작들을 수행하도록 구성되며, 상기 특정 동작들은, 랜덤 접속 프리앰블을 상기 기지국으로 전송하는 것과, 상기 기지국으로부터 랜덤 접속 응답을 수신하는 것과, 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 기지국으로 전송하는 것을 포함할 수 있다.
본 발명의 제4 양상으로, 무선 통신 시스템에서 기지국이 하향링크 품질 정보(downlink quality information)를 사용자 기기로부터 수신하는 방법이 제공되며, 상기 방법은 랜덤 접속 프리앰블(random access preamble)을 상기 사용자 기기로부터 수신하는 단계; 상기 사용자 기기로 랜덤 접속 응답(random access response)을 전송하는 단계; 및 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 사용자 기기로부터 수신하는 단계를 포함할 수 있다.
본 발명의 제5 양상으로, 무선 통신 시스템에서 하향링크 품질 정보를 사용자 기기로부터 수신하도록 구성된 기지국이 제공되며, 상기 기지국은 RF(Radio Frequency) 송수신기(transceiver); 및 상기 RF 송수신기와 동작시(operatively) 연결되는 프로세서를 포함하고, 상기 프로세서는 상기 RF 송수신기를 제어하여 랜덤 접속 프리앰블을 상기 사용자 기기로부터 수신하고, 상기 사용자 기기로 랜덤 접속 응답을 전송하고, 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 사용자 기기로부터 수신하도록 구성될 수 있다.
본 발명의 제6 양상으로, 무선 통신 시스템에서 기지국을 위한 장치가 제공되며, 상기 장치는 명령어(instruction)를 포함하는 메모리; 및 상기 메모리에 동작시 연결되는 프로세서를 포함하되, 상기 프로세서는 상기 명령어를 실행하여 특정 동작들을 수행하도록 구성되며, 상기 특정 동작들은, 랜덤 접속 프리앰블(random access preamble)을 사용자 기기로부터 수신하는 것과, 상기 사용자 기기로 랜덤 접속 응답(random access response)을 전송하는 것과, 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 하향링크 품질 정보를 상기 사용자 기기로부터 수신하는 것을 포함할 수 있다.
바람직하게는, 상기 하향링크 품질 정보는 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 검출했을 때의 상기 물리 하향링크 제어 채널의 반복 횟수(repetition number)를 나타내는 정보를 포함할 수 있다.
바람직하게는, 상기 하향링크 품질 정보는 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널을 검출했을 때의 상기 물리 하향링크 제어 채널의 병합 레벨(aggregation level)을 나타내는 정보를 더 포함할 수 있다.
바람직하게는, 상기 물리 하향링크 제어 채널의 반복 횟수가 특정 성능 요구 조건을 만족하는 값을 가지는 경우, 상기 하향링크 품질 정보는 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널의 병합 레벨(aggregation level)을 기준 병합 레벨(reference aggregation level)로 가정하여 전송될 수 있다.
바람직하게는, 상기 특정 성능 요구 조건은 상기 물리 하향링크 제어 채널의 반복 횟수가 1인 것을 포함할 수 있다.
바람직하게는, 상기 하향링크 품질 정보는 가상의 물리 하향링크 제어 채널(hypothetical physical downlink control channel)을 특정 BLER(Block Error Rate)로 검출하는데 필요한 반복 횟수(repetition number)를 나타내는 정보를 포함할 수 있다.
바람직하게는, 상기 특정 BLER은 1%일 수 있다.
바람직하게는, 상기 하향링크 품질 정보는 상기 가상의 물리 하향링크 제어 채널을 상기 특정 BLER로 검출하는데 필요한 병합 레벨(aggregation level)을 나타내는 정보를 더 포함할 수 있다.
바람직하게는, 상기 가상의 물리 하향링크 제어 채널을 검출하는데 필요한 반복 횟수가 특정 성능 요구 조건을 만족하는 값을 가지는 경우, 상기 하향링크 품질 정보는 상기 병합 레벨(aggregation level)을 기준 병합 레벨(reference aggregation level)로 가정하여 전송될 수 있다.
바람직하게는, 상기 특정 성능 요구 조건은 상기 가상의 물리 하향링크 제어 채널을 검출하는데 필요한 반복 횟수가 1인 것을 포함할 수 있다.
바람직하게는, 상기 랜덤 접속 응답은 상기 사용자 기기에게 상기 하향링크 품질 정보의 보고를 지시하는 정보를 포함할 수 있다.
바람직하게는, 상기 하향링크 품질 정보는 상기 사용자 기기가 RRC(Radio Resource Control) 유휴 상태에서 전송될 수 있다.
바람직하게는, 상기 하향링크 품질 정보는 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위한 공통 검색 공간(common search space, CSS)에 대해 측정될 수 있다.
본 발명에 따르면, 하향링크 채널 품질 정보를 효율적으로 송수신할 수 있다.
또한, 본 발명에 따르면, 랜덤 접속 과정을 통해 하향링크 채널 품질 정보를 효율적으로 송수신할 수 있다.
또한, 본 발명에 따르면, RRC 연결 상태에서 하향링크 채널 품질 정보를 효율적으로 송수신할 수 있다.
또한, 본 발명에 따르면, 물리 하향링크 제어 채널 및/또는 물리 하향링크 공유 채널에 대한 하향링크 채널 품질 정보를 효율적으로 송수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 LTE(-A) 시스템에서 이용되는 무선 프레임(radio frame)의 구조를 예시한다.
도 2는 NR에서의 프레임 구조의 일례를 나타낸 도이다.
도 3은 LTE 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드를 도시한다.
도 4는 NR에서의 자원 그리드(resource grid)의 일 예를 나타낸다.
도 5는 NR에서의 물리 자원 블록의 일례를 나타낸 도이다.
도 6은 MTC에 이용될 수 있는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 나타낸 도이다.
도 7은 NB-IoT에 이용될 수 있는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법의 일 예를 나타낸다.
도 8은 랜덤 접속 절차에서 단말기가 송/수신하는 채널 및 신호의 시간 흐름을 예시한다.
도 9 내지 도 12는 본 발명의 제안에 따라 단말 및 기지국에서 수행되는 방법의 순서도를 예시한다.
도 13 내지 도 18은 본 발명에서 제안하는 방법들이 적용될 수 있는 시스템 및 통신 장치를 예시한다.
본 명세서에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
본 명세서에서 설명된 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology) 또는 5G는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS (Technical Specification) 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP 5G는 TS 36.xxx Release 15 이후의 기술을 의미하고, 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 발명의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE
- 36.211: Physical channels and modulation
- 36.212: Multiplexing and channel coding
- 36.213: Physical layer procedures
- 36.300: Overall description
- 36.304: User Equipment (UE) procedures in idle mode
- 36.331: Radio Resource Control (RRC)
3GPP NR
- 38.211: Physical channels and modulation
- 38.212: Multiplexing and channel coding
- 38.213: Physical layer procedures for control
- 38.214: Physical layer procedures for data
- 38.300: NR and NG-RAN Overall Description
- 38.304: User Equipment (UE) procedures in Idle mode and RRC Inactive state
- 36.331: Radio Resource Control (RRC) protocol specification
E-UTRAN (evolved-UMTS terrestrial radio access network) 또는 LTE (long term evolution) / LTE-A / LTE-A Pro / 5G 시스템은 LTE 시스템으로 통칭될 수 있다. NG-RAN은 NR 시스템으로 지칭될 수 있다. 사용자 기기(User Equipment, UE)는 고정식 또는 이동식 일 수 있고, 단말, MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal), 무선 디바이스 등과 같은 다른 용어로 지칭될 수 있다. 기지국(Base Station, BS)는 일반적으로 UE와 통신하는 고정된 station으로 eNB(evolved Node-B), gNB(general Node-B), BTS(base transceiver system), AP(access point) 등과 같은 다른 용어로 지칭 될 수 있다.
A. 프레임 구조(frame structure)
도 1은 LTE(-A) 시스템에서 이용되는 무선 프레임(radio frame)의 구조를 예시한다. LTE(-A) 시스템에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임은 10개의 서브프레임으로 구성되고, 하나의 서브프레임은 시간 도메인(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(Transmission Time Interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1 ms이고, 하나의 슬롯의 길이는 0.5 ms 일 수 있다. 하나의 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함하고, 주파수 도메인(frequency domain)에서 다수의 자원 블록(resource block, RB)을 포함한다. LTE(-A) 시스템에서는 하향링크에서 OFDM을 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. LTE(-A) 시스템에서는 상향링크에서 SC-FDMA을 사용하므로, OFDM 심볼은 또한 SC-FDMA 심볼로 지칭될 수 있으며, 또한 심볼 구간으로 통칭될 수 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수의 연속적인 서브캐리어(subcarrier)를 포함할 수 있다.
도 1(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임으로 구성되며 하향링크 구간(예, DwPTS(Downlink Pilot Time Slot)), 보호 구간(Guard Period, GP), 상향링크 구간(예, UpPTS(Uplink Pilot Time Slot))을 포함한다. 1개의 서브프레임은 2개의 슬롯으로 구성된다. 예를 들어, 하향링크 구간(예, DwPTS)은 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. 예를 들어, 상향링크 구간(예, UpPTS)은 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 예를 들어, 상향링크 구간(예, UpPTS)은 기지국에서 채널 추정을 위한 SRS(Sounding Reference Signal)이 전송될 수 있고, 상향링크 전송 동기를 맞추기 위한 랜덤 액세스 프리앰블(random access preamble)을 나르는 PRACH(Physical Random Access Channel)이 전송될 수 있다. 보호 구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
상기 설명된 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 2는 NR에서의 프레임 구조의 일례를 나타낸 도이다.
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure PCTKR2019010167-appb-img-000001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure PCTKR2019010167-appb-img-000002
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2019010167-appb-img-000003
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2019010167-appb-img-000004
이고,
Figure PCTKR2019010167-appb-img-000005
이다. 하향링크(downlink) 및 상향링크(uplink) 전송은
Figure PCTKR2019010167-appb-img-000006
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2019010167-appb-img-000007
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 또한, 단말(User Equipment, UE)로부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2019010167-appb-img-000008
이전에 시작해야 한다. 뉴머롤로지
Figure PCTKR2019010167-appb-img-000009
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2019010167-appb-img-000010
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2019010167-appb-img-000011
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2019010167-appb-img-000012
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2019010167-appb-img-000013
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2019010167-appb-img-000014
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2019010167-appb-img-000015
의 시작과 시간적으로 정렬된다. 모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다. 표 2는 일반 CP에서 슬롯 별 OFDM 심볼의 개수(
Figure PCTKR2019010167-appb-img-000016
), 무선 프레임 별 슬롯의 개수(
Figure PCTKR2019010167-appb-img-000017
), 서브프레임 별 슬롯의 개수(
Figure PCTKR2019010167-appb-img-000018
)를 나타내며, 표 3은 확장 CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.
Figure PCTKR2019010167-appb-img-000019
Figure PCTKR2019010167-appb-img-000020
도 2의 경우,
Figure PCTKR2019010167-appb-img-000021
=2인 경우, 즉 SCS(subcarrier spacing)가 60kHz인 경우의 일례로서, 표 2를 참고하면 1 서브프레임(subframe)은 4개의 슬롯(slot)들을 포함할 수 있으며, 도 2에 도시된 1 서브프레임(subframe)={1,2,4} 슬롯(slot)들은 일례로서, 1 서브프레임(subframe)에 포함될 수 있는 슬롯(slot)(들)의 개수는 표 2와 같이 정의된다.
또한, 미니 슬롯(mini-slot)은 2, 4 또는 7 심볼(symbol)들로 구성될 수도 있고, 더 많거나 또는 더 적은 심볼들로 구성될 수 있다.
B. 물리 자원
도 3은 LTE 시스템의 하나의 하향링크 슬롯에 대한 자원 그리드를 도시한다.
도 3에서, 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 하나의 하향링크 슬롯은 7 개의 OFDM 심볼을 포함하고, 하나의 자원 블록(resource block, RB)은 일례로서, 주파수 영역에서 12 개의 서브 캐리어들을 포함한다. 그러나, 본 발명은 이에 한정되지 않는다. 자원 그리드의 각 요소는 자원 요소(resource element, RE)라고 한다. 하나의 RB에는 12 × 7 RE가 포함된다. 하향링크 슬롯에 포함되는 RB의 수는 하향링크 전송 대역폭에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
서브프레임 내의 첫 번째 슬롯의 앞부분에 위치한 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 PDSCH (Physical Downlink Shared Chancel)이 할당되는 데이터 영역에 해당한다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(physical control format indicator channel), PDCCH(physical downlink control channel), PHICH(physical hybrid ARQ indicator channel) 등을 포함한다. PCFICH는 첫 번째 OFDM 서브프레임의 제어 채널의 전송에 사용되는 OFDM 심볼의 수에 관한 정보를 운반한다. PHICH는 상향링크 전송의 응답이며, HARQ ACK (acknowledgement) / NACK (negative-acknowledgement or not-acknowledgement) 신호를 운반한다. 상기 PDCCH를 통해 전송되는 제어 정보를 DCI (Downlink Control Information)라 칭한다. DCI는 상향링크 또는 하향링크 스케줄링 정보를 포함하거나, 임의의 UE 그룹에 대한 상향링크 송신 (Tx) 전력 제어 명령을 포함한다. 상기 PDCCH는 하향링크 공유 채널 (DL-SCH)의 자원 할당, 상향링크 공유 채널의 자원 할당 정보, 페이징 채널 (Paging Channel, PCH)의 페이징 정보, PDSCH를 통해 전송되는 랜덤 액세스 응답, 임의의 UE 그룹 내의 개별 UE들에 대한 송신 전력 제어 명령들의 세트, 송신 전력 제어 명령, 송신 전력 제어 명령의 활성화와 같은 상위 계층 제어 메시지의 자원 할당인 DL-SCH VoIP (Voice over IP) 등이 있다. 제어 영역 내에서 복수의 PDCCH들이 전송될 수 있다. UE는 다수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 다수 개의 연속적인 제어 채널 요소 (CCE)들의 집합으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트를 PDCCH에 제공하기 위해 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹 (REG)에 대응한다. 상기 PDCCH의 포맷과 상기 이용가능한 PDCCH의 비트 수는 상기 CCE의 개수와 상기 CCE가 제공하는 coding rate 간의 상관 관계에 따라 결정된다. 기지국은 단말로 전송할 DCI에 따라 PDCCH 포맷을 결정하고, CRC (Cyclic Redundancy Check)를 제어 정보에 부가한다. CRC는 PDCCH의 소유자 또는 PDCCH의 사용에 따라 unique 식별자 (RNTI: Radio Network Temporary Identifier)로 마스킹된다. PDCCH가 특정 UE에 대한 것인 경우, UE의 고유 식별자 (예를 들어, cell-RNTI (C-RNTI))가 CRC로 마스킹될 수 있다. 대안적으로, PDCCH가 페이징 메시지에 대한 것이라면, 페이징 표시 자 식별자 (예를 들어, paging-RNTI (P-RNTI))가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보 (보다 상세하게는, 후술될 시스템 정보 블록 (SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI (SI-RNTI)는 CRC에 마스킹될 수 있다. UE의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 나타내기 위해, random access -RNTI (RA-RNTI)가 CRC에 마스킹될 수 있다.
상향링크 서브프레임은 주파수 영역에서 제어 영역 및 데이터 영역으로 분할될 수 있다. 제어 영역은 상향링크 제어 정보를 운반하기 위한 물리 상향링크 제어채널(PUCCH)이 할당된다. 데이터 영역은 사용자 데이터를 운반하기 위한 물리 상향링크 공유 채널 (PUSCH: Physical Uplink Shared Channel)이 할당된다. 단일 캐리어 특성을 유지하기 위해, 하나의 UE는 동시에 PUCCH 및 PUSCH를 전송하지 않는다. 하나의 UE에 대한 PUCCH는 서브프레임 내의 RB 쌍에 할당된다. RB 쌍에 속하는 RB는 각각 2 개의 슬롯에서 상이한 서브캐리어를 점유한다. 이는 PUCCH에 할당된 RB 쌍이 슬롯 경계에서 주파수 호핑(frequency-hopped)된다고 불린다.
도 4는 NR 시스템에서의 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4를 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2019010167-appb-img-000022
서브캐리어들로 구성되고, 하나의 서브프레임이
Figure PCTKR2019010167-appb-img-000023
OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다. NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2019010167-appb-img-000024
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2019010167-appb-img-000025
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2019010167-appb-img-000026
이다. 상기
Figure PCTKR2019010167-appb-img-000027
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다. 이 경우, 도 4와 같이, 뉴머롤로지
Figure PCTKR2019010167-appb-img-000028
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다. 뉴머롤로지
Figure PCTKR2019010167-appb-img-000029
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2019010167-appb-img-000030
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2019010167-appb-img-000031
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2019010167-appb-img-000032
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2019010167-appb-img-000033
이 이용된다. 여기에서,
Figure PCTKR2019010167-appb-img-000034
이다. 뉴머롤로지
Figure PCTKR2019010167-appb-img-000035
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2019010167-appb-img-000036
는 복소 값(complex value)
Figure PCTKR2019010167-appb-img-000037
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2019010167-appb-img-000038
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2019010167-appb-img-000039
또는
Figure PCTKR2019010167-appb-img-000040
이 될 수 있다. 또한, 자원 블록(resource block, RB)는 주파수 영역 상의
Figure PCTKR2019010167-appb-img-000041
연속적인 서브캐리어들로 정의된다.
도 5는 NR에서의 물리 자원 블록의 일례를 나타낸 도이다.
C. MTC (Machine Type Communication)
MTC(Machine Type Communication)은 M2M (Machine-to-Machine) 또는 IoT (Internet-of-Things) 등에 적용될 수 있는 많은 처리량(throughput)을 요구하지 않는 응용분야(application)으로서, 3GPP(3rd Generation Partnership Project)에서 IoT 서비스의 요구 사항을 충족시키기 위해 채택된 통신 기술을 말한다.
MTC는 (i) 낮은 비용 & 낮은 복잡도(low cost & low complexity), (ii) 향상된 커버리지(enhanced coverage), (iii) 낮은 파워 소비(low power consumption)의 기준을 만족하도록 구현될 수 있다.
이하에서 기술되는 내용은 주로 eMTC와 관련된 특징들이나, 특별한 언급이 없는 한 MTC, eMTC, 5G(또는 NR)에 적용될 MTC에도 동일하게 적용될 수 있다. 이하에서는 설명의 편의를 위해 MTC로 통칭하여 설명하기로 한다.
따라서, 후술하는 MTC는 eMTC (enhanced MTC), LTE-M1/M2, BL (Bandwidth reduced low complexity) / CE(coverage enhanced), non-BL UE(in enhanced coverage), NR MTC, enhanced BL / CE 등과 같이 다른 용어로 지칭될 수 있다. 즉, MTC라는 용어는 향후 3GPP 표준에서 정의될 용어로 대체할 수 있다.
1) MTC 일반적 특징
(1) MTC는 특정 시스템 대역폭(또는 채널 대역폭)에서만 동작한다.
특정 시스템 대역폭은 레거시(legacy) LTE의 6RB를 사용할 수 있으며, 표 4 내지 표 6에서 정의된 NR의 주파수 범위(frequency range) 및 SCS(subcarrier spacing)을 고려하여 정의될 수 있다. 상기 특정 시스템 대역폭은 협대역(narrowband)(NB)로 표현될 수 있다. 참고로, 레거시(Legacy) LTE는 MTC 이외 3GPP 표준에서 기술되고 있는 부분을 의미한다. 바람직하게는, NR에서 MTC는 레거시(legacy) LTE에서와 같이 아래 표 5 및 표 6의 가장 낮은 시스템 대역폭에 대응하는 RB들을 사용하여 동작할 수 있다. 또는, NR에서 MTC는 적어도 하나의 대역폭 파트(bandwidth part, BWP)에서 동작하거나 또는 BWP의 특정 대역에서 동작할 수도 있다.
표 4는 NR에서 정의되는 주파수 범위(frequency range, FR)를 나타낸 표이다.
Figure PCTKR2019010167-appb-img-000042
표 5는 NR의 FR 1에서 채널 대역폭 및 SCS에 대한 최대 전송 대역폭 구성 (NRB)의 일례를 나타낸 표이다.
Figure PCTKR2019010167-appb-img-000043
표 6은 NR의 FR 2에서 채널 대역폭 및 SCS에 대한 최대 전송 대역폭 구성 (NRB)의 일례를 나타낸 표이다.
Figure PCTKR2019010167-appb-img-000044
MTC 협대역(narrowband, NB)에 대해 보다 구체적으로 살펴본다.
MTC는 물리 채널 및 신호들을 송신 및 수신하기 위해 협대역 동작(narrowband operation)을 따르고, 최대 채널 대역폭은 1.08MHz 또는 6 (LTE) RB들로 감소된다. 상기 협대역(narrowband)는 하향링크와 상향링크의 일부 채널의 자원 할당 단위에 참고 단위로 사용될 수 있으며, 주파수 영역에서 각 협대역(narrowband)의 물리적인 위치는 시스템 대역폭(system bandwidth)에 따라서 다르게 정의될 수 있다. MTC에서 정의된 1.08MHz의 대역폭은 MTC 단말이 레거시(legacy) 단말과 동일한 셀 탐색(cell search) 및 랜덤 액세스(random access) 절차를 따르도록 하기 위해서 정의된다. MTC는 1.08MHz보다 훨씬 더 큰 대역폭(예: 10MHz)을 가진 셀에 의해 지원될 수 있으나, MTC에 의해 송/수신되는 물리 채널 및 신호는 항상 1.08MHz로 제한된다. 상기 훨씬 더 큰 대역폭을 가지는 시스템은 레거시(legacy) LTE, NR 시스템, 5G 시스템 등일 수 있다.
협대역(narrowband)는 주파수 영역에서 6개의 비-중첩하는(non-overlapping) 연속적인(consecutive) 물리 자원 블록으로 정의된다. 만약
Figure PCTKR2019010167-appb-img-000045
인 경우, 광대역(wideband)는 주파수 영역에서 4개의 비-중첩하는(non-overlapping) 협대역(narrowband)들로 정의된다. 만약
Figure PCTKR2019010167-appb-img-000046
인 경우,
Figure PCTKR2019010167-appb-img-000047
및 단일의(single) 광대역(wideband)는
Figure PCTKR2019010167-appb-img-000048
비-중첩하는(non-overlapping) 협대역(narrowband)(들)로 구성된다. 예를 들어, 10MHz 채널(50 RBs)의 경우에 8개의 비-중첩하는 협대역(non-overlapping narrowband)들이 정의된다.
(2) MTC는 반-이중 모드(half duplex mode)로 동작하며, 제한된(또는 감소된) 최대 전송 전력을 사용한다.
(3) MTC는 레거시(legacy) LTE 또는 NR의 전체 시스템 대역폭에 걸쳐서 분산되어야 하는(legacy LTE 또는 NR에서 정의되는) 채널을 사용하지 않는다.
일례로, MTC에 사용되지 않는 레거시(legacy) LTE 채널은 PCFICH, PHICH, PDCCH이다. 따라서, MTC는 위의 채널들을 모니터링할 수 없어 새로운 제어 채널인 MPDCCH(MTC PDCCH)를 정의한다. MPDCCH는 주파수 영역에서 최대 6RB들 및 시간 영역에서 하나의 서브프레임(subframe)에 걸쳐 있다. MPDCCH는 EPDCCH와 유사하며, 페이징 및 랜덤 액세스를 위한 공통 검색 공간(common search space)를 추가 지원한다.
(4) MTC는 새롭게 정의된 DCI 포맷(format)을 사용하며, 일례로 DCI 포맷(format) 6-0A, 6-0B, 6-1A, 6-1B, 6-2 등일 수 있다.
(5) MTC는 PBCH(physical broadcast channel), PRACH(physical random access channel), M-PDCCH(MTC physical downlink control channel), PDSCH(physical downlink shared channel), PUCCH(physical uplink control channel), PUSCH(physical uplink shared channel)를 반복적으로 전송할 수 있다. 이와 같은 MTC 반복 전송은 지하실과 같은 열악한 환경에서와 같이 신호 품질 또는 전력이 매우 열악한 경우에도 MTC 채널을 디코딩할 수 있어 셀 반경 증가 및 신호 침투 효과를 가져올 수 있다. MTC는 단일 레이어(single layer)(또는 single antenna)에서 동작할 수 있는 제한된 수의 전송 모드(transmission mode, TM)만 지원하거나 또는 단일 레이어(single layer)에서 동작할 수 있는 채널 또는 참조 신호(reference signal, RS)를 지원할 수 있다. 일례로, MTC가 동작할 수 있는 전송 모드는 TM 1, 2, 6 또는 9일 수 있다.
(6) MTC의 HARQ 재전송은 적응적(adaptive), 비동기(asynchronous) 방식이고, MPDCCH에서 수신된 새로운 스케줄링 할당(scheduling assignment)에 기초한다.
(7) MTC에서 PDSCH 스케줄링 (DCI)과 PDSCH 전송은 서로 다른 서브프레임에서 발생한다(크로스 서브프레임 스케줄링).
(8) SIB1 디코딩을 위한 모든 자원 할당 정보 (서브 프레임, TBS(Transport Block Size), 서브 밴드 인덱스)는 MIB의 파라미터(parameter)에 의해 결정되며, MTC의 SIB1 디코딩을 위해 어떤 제어 채널도 사용되지 않는다.
(9) SIB2 디코딩을 위한 모든 자원 할당 정보 (서브 프레임, TBS, 서브 밴드 인덱스)는 여러(several) SIB1 파라미터(parameters)에 의해 결정되며, MTC의 SIB2 디코딩을 위한 어떤 제어 채널도 사용되지 않는다.
(10) MTC는 확장(extended) 페이징 (DRX) 주기(cycle)을 지원한다.
(11) MTC는 레거시(legacy) LTE 또는 NR에서 사용되는 PSS(primary synchronization signal) / SSS(secondary synchronization signal) / CRS(common reference signal)를 동일하게 사용할 수 있다. NR의 경우, PSS / SSS는 SS 블록(block)(또는 SS / PBCH block 또는 SSB) 단위로 전송되며, TRS(tracking RS)는 CRS와 동일한 용도로 사용될 수 있다. 즉, TRS는 셀 특정(cell-specific) RS로서, 주파수 시간 추적(frequency / time tracking)을 위해 사용될 수 있다.
2) MTC 동작 모드 및 레벨
다음, MTC 동작 모드(operation mode)와 레벨(level)에 대해 살펴본다. MTC는 커버리지 향상을 위해 2개의 동작 모드(제 1 모드, 제 2 모드)와 4개의 서로 다른 레벨(level)들로 분류되며, 아래 표 7과 같을 수 있다.
상기 MTC 동작 모드는 CE 모드(Mode)로 지칭되며, 이 경우 제 1 모드는 CE 모드(Mode) A, 제 2 모드는 CE 모드(Mode) B로 지칭될 수 있다.
Figure PCTKR2019010167-appb-img-000049
제 1 모드는 완전한 이동성 및 CSI (channel state information) 피드백이 지원되는 작은 커버리지(coverage) 향상을 위해 정의되어, 반복이 없거나 또는 반복 횟수가 적은 모드이다. 제 1 모드의 동작은 UE 카테고리(category) 1의 동작 범위와 동일할 수 있다. 제 2 모드는 CSI 피드백(feedback) 및 제한된 이동성을 지원하는 극히 열악한 커버리지 조건의 UE에 대해 정의되며, 많은 수의 반복 전송이 정의된다. 제 2 모드는 UE 카테고리(category) 1의 범위를 기준으로 최대 15dB의 커버리지 향상을 제공한다. MTC의 각 레벨(level)은 RACH와 페이징 과정(paging procedure)에서 다르게 정의된다.
MTC 동작 모드와 각 레벨(level)이 결정되는 방법에 대해 살펴본다.
MTC 동작 모드는 기지국에 의해 결정되며, 각 레벨(level)은 MTC 단말에 의해 결정된다. 구체적으로, 기지국은 MTC 동작 모드에 대한 정보를 포함하는 RRC 시그널링(signaling)을 단말로 전송한다. 여기서, RRC 시그널링(signaling)은 RRC 연결 설정(connection setup) 메시지, RRC 연결 재설정(connection reconfiguration) 메시지 또는 RRC 연결 재확립(connection reestablishment) 메시지 등일 수 있다. 여기서, 메시지의 용어는 정보 요소(Information Element, IE)로 표현될 수 있다.
이후, MTC 단말은 각 동작 모드 내 레벨(level)을 결정하고, 결정된 레벨(level)을 기지국으로 전송한다. 구체적으로, MTC 단말은 측정(measure)한 채널 품질(예: RSRP, RSRQ 또는 SINR)에 기초하여 동작 모드 내 레벨을 결정하고, 결정된 레벨(level)에 대응하는 PRACH 자원(frequency, time, preamble)을 이용하여 기지국으로 결정된 레벨(level)을 알린다.
도 6은 MTC에 이용될 수 있는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 나타낸 도이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 MTC 단말은 S01 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 동작을 수행한다. 이를 위해 MTC 단말은 기지국으로부터 PSS(Primary Synchronization Signal) 및 SSS(Secondary Synchronization Signal)을 수신하여 기지국과 동기를 맞추고, 셀 ID(identifier) 등의 정보를 획득한다. 상기 MTC의 초기 셀 탐색 동작에 이용되는 PSS / SSS는 레거시(legacy) LTE의 PSS / SSS, RSS(Resynchronization signal) 등일 수 있다.
그 후, MTC 단말은 기지국으로부터 물리 방송 채널(PBCH: physical broadcast channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, MTC 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(DL RS: downlink reference signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다. PBCH를 통해 전송되는 방송 정보는 MIB(Master Information Block)이며, MTC에서 MIB는 무선 프레임의 서브프레임 #0의 첫 번째 슬롯과 다른 서브프레임(FDD의 경우 subframe #9, TDD의 경우 subframe #5)에서 반복된다. PBCH 반복은 PBCH 디코딩을 시도하기 전에 조차 초기 주파수 에러 추정을 위해 사용될 수 있도록 서로 다른 OFDM 심볼에서 정확히 동일한 성상도(constellation point)를 반복함으로써 수행된다.
초기 셀 탐색을 마친 MTC 단말은 S02 단계에서 MPDCCH 및 MPDCCH 정보에 따른 PDSCH 을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다. MPDCCH는 (1) EPDCCH와 매우 비슷하며, 공통(common) 및 UE 특정(specific) 시그널링(signaling)을 운반하고, (2) 한 번만 전송되거나 반복하여 전송될 수 있고 (반복의 수는 higher layer signaling에 의해 설정된다), (3) 다수의 MPDCCH들이 지원되며 UE가 MPDCCH들의 세트를 모니터링하며, (4) eCCE(enhanced control channel element)의 결합에 의해 형성되며, 각 eCCE는 자원 요소(resource element)들의 집합(set)를 포함하며, (5) RA-RNTI(Radio Network Temporary Identifier), SI-RNTI, P-RNTI, C-RNTI, 임시(temporary) C-RNTI 및 SPS(semi-persistent scheduling) C-RNTI를 지원한다.
이후, MTC 단말은 기지국에 접속을 완료하기 위해 이후 단계 S03 내지 단계 S06과 같은 랜덤 액세스 절차(random access procedure)을 수행할 수 있다. RACH 절차와 관련된 기본적인 구성(configuration)은 SIB2에 의해 전송된다. MTC 단말은 물리 랜덤 액세스 채널(PRACH: physical random access channel)을 통해 프리앰블을 전송하고(S03), MPDCCH 및 이에 대응하는 PDSCH을 통해 프리앰블에 대한 응답 메시지(RAR)를 수신할 수 있다(S04). 경쟁 기반 랜덤 액세스의 경우, MTC 단말은 추가적인 PRACH 신호의 전송(S05) 및 MPDCCH 신호 및 이에 대응하는 PDSCH 신호의 수신(S06)과 같은 충돌 해결 절차(contention resolution procedure)를 수행할 수 있다. MTC에서 RACH 절차에서 전송되는 신호 및/또는 메시지들 (Msg 1, Msg 2, Msg 3, Msg 4)는 반복적으로 전송될 수 있으며, 이러한 반복 패턴은 CE(coverage enhancement) 레벨에 따라 다르게 설정된다. Msg 1은 PRACH 프리앰블을 의미하며, Msg 2는 RAR(random access response)를 의미하며, Msg 3은 RAR에 대한 MTC 단말의 UL 전송을 의미하며, Msg 4는 Msg 3에 대한 기지국의 DL 전송을 의미할 수 있다.
MTC 단말은 하향링크 RS(예: CRS, CSI-RS, TRS 등)을 이용하여 RSRP를 추정하고, 측정 결과에 기초하여 랜덤 액세스에 대한 자원들 중 하나를 선택한다. 4개의 랜덤 액세스에 대한 자원들 각각은 PRACH에 대한 반복 개수 및 RAR(random access response)에 대한 반복의 개수와 관련성을 가진다. 따라서, 나쁜 커버리지의 MTC 단말은 기지국에 의해 성공적으로 검출되도록 많은 수의 반복이 필요하고, 그것들의 커버리지 레벨을 만족하도록 해당하는 반복 개수를 가지는 RAR을 수신할 필요가 있다.
RAR 및 경쟁 해결 메시지(contention resolution message)들에 대한 검색 공간(search space)들은 또한 시스템 정보에서 정의되며, 각 커버리지 레벨에 대해서는 독립적이다.
상술한 바와 같은 절차를 수행한 MTC 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 MPDCCH 신호 및/또는 PDSCH 신호의 수신(S07) 및 물리 상향링크 공유 채널(PUSCH) 신호 및/또는 물리 상향링크 제어 채널(PUCCH) 신호의 전송(S08)을 수행할 수 있다. MTC 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어정보(UCI: uplink control information)라고 지칭한다. UCI는 HARQ-ACK/NACK, 스케줄링 요청(SR: scheduling request), 채널 품질 지시자(CQI), 프리코딩 행렬 지시자(PMI: precoding matrix indicator), 랭크 지시자(RI: rank indication) 정보 등을 포함한다.
MTC 단말에 대한 RRC 연결이 확립되면, MTC 단말은 상향링크 및 하향링크 데이터 할당을 획득하기 위해 설정된 검색 공간(search space)에서 MPDCCH를 블라인드 디코딩한다. MTC는 DCI를 전송하기 위해 서브프레임에서 이용 가능한 OFDM 심볼들을 모두 사용한다. 그래서 동일한 서브프레임에서 제어 채널 및 데이터 채널 사이의 시간 영역 다중화는 불가능하다. 즉, 앞서 살핀 것처럼, 제어 채널 및 데이터 채널 간의 크로스-서브프레임 스케쥴링이 가능하다. 서브프레임 #N에서 마지막 반복을 가지는 MPDCCH는 서브프레임 #N+2에서 PDSCH 할당을 스케쥴한다. MPDCCH에 의해 전송되는 DCI는 PDSCH 전송이 시작될 때 MTC 단말이 알도록 MPDCCH가 얼마나 반복되는지에 대한 정보를 제공한다. PDSCH 할당은 서로 다른 협대역(narrowband)에서 수행될 수 있다. 상향링크 데이터 전송에 대해, 스케쥴링은 레거시(legacy) LTE와 동일한 타이밍을 따른다. 여기서, 서브프레임 #N에서 마지막 MPDCCH는 서브프레임(subframe) #N+4에서 시작하는 PUSCH 전송을 스케쥴한다.
레거시(legacy) LTE 할당은 PDCCH를 사용하여 스케쥴되며, 이는 각 서브프레임에서 처음의 OFDM 심볼들을 사용하며, PDSCH는 PDCCH가 수신되는 서브프레임과 동일한 서브프레임에서 스케쥴된다. 이에 반해, MTC PDSCH는 크로스-서브프레임 스케쥴되며, 하나의 서브프레임은 MPDCCH 디코딩 및 RF 재튜닝(retune)을 허용하도록 MPDCCH와 PDSCH 사이에서 정의된다. MTC 제어 채널 및 데이터 채널들은 극단적인 커버리지 조건에서 디코딩되도록 MPDCCH에 대해 최대 256개의 서브프레임들과 PDSCH에 대해 최대 2048개의 서브프레임들을 가지는 많은 수의 서브프레임들을 통해 반복될 수 있다.
D. NB-IoT (Narrowband-Internet of Things)
NB-IoT는 무선 통신 시스템(예: LTE 시스템, NR 시스템 등)의 1 PRB(Physical Resource Block)에 해당하는 시스템 대역폭(system BW)을 통해 낮은 복잡도(complexity), 낮은 전력 소비(power consumption)을 지원하기 위한 시스템을 의미할 수 있다.
여기에서, NB-IoT는 NB-LTE, NB-IoT 향상(enhancement), 향상된(enhanced) NB-IoT, 더욱 향상된(further enhanced) NB-IoT, NB-NR 등과 같이 다른 용어로 지칭될 수 있다. 즉, NB-IoT는 3GPP 표준에서 정의되거나 정의될 용어로 대체될 수 있으며, 이하에서는 설명의 편의를 위하여 ‘NB-IoT’로 통칭하여 표현하기로 한다.
NB-IoT는 주로 MTC(machine-type communication)와 같은 장치(device)(또는 단말)를 셀룰러 시스템(cellular system)에서 지원하여 IoT(즉, 사물 인터넷)를 구현하기 위한 통신 방식으로 이용될 수도 있다. 이 때, 기존의 시스템 대역의 1 PRB를 NB-IoT 용으로 할당함으로써, 주파수를 효율적으로 사용할 수 있는 장점이 있다. 또한, NB-IoT의 경우, 각 단말은 단일 PRB(single PRB)를 각각의 캐리어(carrier)로 인식하므로, 본 명세서에서 언급되는 PRB 및 캐리어는 동일한 의미로 해석될 수도 있다.
이하, 본 명세서에서의 NB-IoT와 관련된 프레임 구조, 물리 채널, 다중 캐리어 동작(multi carrier operation), 동작 모드(operation mode), 일반적인 신호 송수신 등은 기존의 LTE 시스템의 경우를 고려하여 설명되지만, 차세대 시스템(예: NR 시스템 등)의 경우에도 확장하여 적용될 수 있음은 물론이다. 또한, 본 명세서에서의 NB-IoT와 관련된 내용은 유사한 기술적 목적(예: 저-전력, 저-비용, 커버리지 향상 등)을 지향하는 MTC(Machine Type Communication)에 확장하여 적용될 수도 있다.
1) NB-IoT의 프레임 구조 및 물리 자원
먼저, NB-IoT 프레임 구조는 서브캐리어 간격(subcarrier spacing)에 따라 다르게 설정될 수 있다. 예를 들어, NB-IoT 시스템에서는 15kHz 서브캐리어 간격과 3.75kHz 서브캐리어 간격이 지원될 수 있다. NB-IoT 프레임 구조는 이에 한정되는 것은 아니며, 다른 서브캐리어 간격(예: 30kHz 등)에 대한 NB-IoT도 시간/주파수 단위를 달리하여 고려될 수 있음은 물론이다. 또한, 본 명세서에서는 LTE 시스템 프레임 구조에 기반한 NB-IoT 프레임 구조를 예시로 설명하였지만, 이는 설명의 편의를 위한 것일 뿐 이에 한정되는 것은 아니며, 본 명세서에서 설명하는 방식이 차세대 시스템(예: NR 시스템)의 프레임 구조에 기반한 NB-IoT에도 확장하여 적용될 수 있음은 물론이다.
15kHz 서브캐리어 간격에 대한 NB-IoT 프레임 구조는 상술한 레거시(legacy) 시스템(즉, LTE 시스템)의 프레임 구조와 동일하게 설정될 수 있다. 즉, 10ms NB-IoT 프레임은 1ms NB-IoT 서브프레임 10개를 포함하며, 1ms NB-IoT 서브프레임은 0.5ms NB-IoT 슬롯 2개를 포함할 수 있다. 또한, 각각의 0.5ms NB-IoT은 7개의 OFDM 심볼들을 포함할 수 있다.
3.75kHz 서브캐리어 간격의 경우, 10ms NB-IoT 프레임은 2ms NB-IoT 서브프레임 5개를 포함하며, 2ms NB-IoT 서브프레임은 7개의 OFDM 심볼들과 하나의 보호 구간(Guard Period, GP)을 포함할 수 있다. 또한, 상기 2ms NB-IoT 서브프레임은 NB-IoT 슬롯 또는 NB-IoT RU(resource unit) 등으로 표현될 수도 있다.
NB-IoT 하향링크의 물리 자원은 시스템 대역폭이 특정 수의 RB(예: 1개의 RB 즉, 180kHz)되는 것을 제외하고는, 다른 무선 통신 시스템(예: LTE 시스템, NR 시스템 등)의 물리 자원을 참고하여 설정될 수 있다. 일례로, 상술한 바와 같이 NB-IoT 하향링크가 15kHz 서브캐리어 간격만을 지원하는 경우, NB-IoT 하향링크의 물리 자원은 상술한 도 3에 나타난 LTE 시스템의 자원 그리드를 주파수 영역 상의 1 RB(즉, 1 PRB)로 제한한 자원 영역으로 설정될 수 있다. NB-IoT 상향링크의 물리 자원의 경우에도 하향링크의 경우와 같이 시스템 대역폭은 1개의 RB로 제한되어 구성될 수 있다.
2) NB-IoT의 물리 채널
NB-IoT를 지원하는 기지국 및/또는 단말은 기존의 시스템과 별도로 설정된 물리 채널 및/또는 물리 신호를 송수신하도록 설정될 수 있다. NB-IoT 하향링크에는 15kHz의 서브캐리어 간격에 기반하여 OFDMA(Orthogonal Frequency Division Multiple Access) 방식이 적용될 수 있다. 이를 통해, 서브캐리어 간 직교성을 제공하여 기존의 시스템(예: LTE 시스템, NR 시스템)과의 공존(co-existence)이 효율적으로 지원될 수 있다.
NB-IoT 시스템의 물리 채널은 기존의 시스템과의 구분을 위하여 ‘N(Narrowband)’이 추가된 형태로 표현될 수 있다. 예를 들어, 하향링크 물리 채널은 NPBCH(Narrowband Physical Broadcast Channel), NPDCCH(Narrowband Physical Downlink Control Channel), NPDSCH(Narrowband Physical Downlink Shared Channel) 등으로 정의되며, 하향링크 물리 신호는 NPSS(Narrowband Primary Synchronization Signal), NSSS(Narrowband Secondary Synchronization Signal), NRS(Narrowband Reference Signal), NPRS(Narrowband Positioning Reference Signal), NWUS(Narrowband Wake Up Signal) 등으로 정의될 수 있다. 예를 들어, 상향링크 물리 채널은 NPRACH(Narrowband Physical Random Access Channel) 및 NPUSCH(Narrowband Physical Uplink Shared Channel) 등으로 정의되고, 상향링크 물리 신호는 NDMRS(Narrowband Demodulation Reference Signal) 등으로 정의될 수 있다.
NB-IoT 시스템의 하향링크 채널인 NPBCH, NPDCCH, NPDSCH 등의 경우, 커버리지 향상(coverage enhancement)을 위하여 반복 전송(repetition transmission)이 수행될 수 있다. 또한, NB-IoT는 새롭게 정의된 DCI 포맷(DCI format)을 사용하며, 일례로 NB-IoT를 위한 DCI 포맷은 DCI 포맷(format) N0, DCI 포맷(format) N1, DCI 포맷(format) N2 등으로 정의될 수 있다.
NB-IoT 상향링크에는 15kHz 또는 3.75kHz의 서브캐리어 간격에 기반하여 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식이 적용될 수 있다. NB-IoT의 상향링크에서는 다중-톤(multi-tone) 전송 및 단일-톤(single-tone) 전송이 지원될 수 있다. 일례로, 다중-톤 전송은 15kHz의 서브캐리어 간격에서만 지원되며, 단일-톤 전송은 15kHz 및 3.75kHz의 서브캐리어 간격에 대해 지원될 수도 있다. NPUSCH는 NPUSCH 포맷 1과 NPUSCH 포맷 2 등으로 구성될 수 있다. 일례로, NPUSCH 포맷 1은 UL-SCH 전송(또는 운반)을 위해 이용되며, NPUSCH 포맷 2는 HARQ ACK 시그널링 등과 같은 상향링크 제어 정보 전송을 위해 이용될 수 있다.
NB-IoT 시스템의 상향링크 채널인 NPRACH 등의 경우, 커버리지 향상(coverage enhancement)을 위하여 반복 전송(repetition transmission)이 수행될 수 있다. 이 경우, 반복 전송은 주파수 호핑(frequency hopping)이 적용되어 수행될 수도 있다.
3) NB-IoT의 다중 캐리어 동작
NB-IoT는 상술한 바와 같은 다중 캐리어 모드로 동작할 수 있다. 이 때, NB-IoT에서 캐리어는 앵커 유형의 캐리어(anchor type carrier)(즉, 앵커 캐리어(anchor carrier), 앵커 PRB) 및 비-앵커 유형의 캐리어(non-anchor type carrier)(즉, 비-앵커 캐리어(non-anchor carrier), 비-앵커 PRB)로 정의될 수 있다.
앵커 캐리어는 기지국 관점에서 초기 접속(initial access)을 위해 NPSS, NSSS, NPBCH, 및 시스템 정보 블록(N-SIB)를 위한 NPDSCH 등을 전송하는 캐리어를 의미할 수 있다. 즉, NB-IoT에서 초기 접속을 위한 캐리어는 앵커 캐리어로 지칭되고, 그 외의 것(들)은 비-앵커 캐리어로 지칭될 수 있다. 이 때, 앵커 캐리어는 시스템 상에서 하나만 존재하거나, 다수의 앵커 캐리어들이 존재할 수도 있다.
4) NB-IoT의 일반적인 신호 송수신 절차
도 7은 NB-IoT에 이용될 수 있는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법의 일 예를 나타낸다. 무선 통신 시스템에서 NB-IoT 단말은 기지국으로부터 하향링크(DL)를 통해 정보를 수신하고, NB-IoT 단말은 기지국으로 상향링크(UL)를 통해 정보를 전송할 수 있다. 다시 말해, 무선 통신 시스템에서 기지국은 NB-IoT 단말로 하향링크를 통해 정보를 전송하고, 기지국은 NB-IoT 단말로부터 상향링크를 통해 정보를 수신할 수 있다.
기지국과 NB-IoT 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재할 수 있다. 또한, 도 7에 의해 설명되는 NB-IoT의 신호 송수신 방법은 상술한 무선 통신 장치에 의해 수행될 수 있다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 NB-IoT 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행할 수 있다(S11). 이를 위해 NB-IoT 단말은 기지국으로부터 NPSS 및 NSSS를 수신하여 기지국과의 동기화(synchronization)를 수행하고, 셀 ID(cell identity) 등의 정보를 획득할 수 있다. 또한, NB-IoT 단말은 기지국으로부터 NPBCH를 수신하여 셀 내 방송 정보를 획득할 수 있다. 또한, NB-IoT 단말은 초기 셀 탐색 단계에서 DL RS(Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수도 있다.
다시 말해, 기지국은 새로이 셀에 진입한 NB-IoT 단말이 존재하는 경우, 해당 단말과 동기를 맞추는 등의 초기 셀 탐색 작업을 수행할 수 있다. 기지국은 NB-IoT 단말로 NPSS 및 NSSS를 전송하여 해당 단말과의 동기화를 수행하고, 셀 ID(cell identity) 등의 정보를 전달할 수 있다. 또한, 기지국은 NB-IoT 단말로 NPBCH를 전송(또는 브로드캐스트)하여 셀 내 방송 정보를 전달할 수 있다. 또한, 기지국은 NB-IoT 단말로 초기 셀 탐색 단계에서 DL RS를 전송하여 하향링크 채널 상태를 확인할 수도 있다.
초기 셀 탐색을 마친 NB-IoT 단말은 NPDCCH 및 이에 대응되는 NPDSCH를 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다(S12). 다시 말해, 기지국은 초기 셀 탐색을 마친 NB-IoT 단말에게 NPDCCH 및 이에 대응되는 NPDSCH를 전송하여 좀더 구체적인 시스템 정보를 전달할 수 있다. 이후, NB-IoT 단말은 기지국에 접속을 완료하기 위해 임의 접속 과정(Random Access Procedure)을 수행할 수 있다(S13 내지 S16). 구체적으로, NB-IoT 단말은 NPRACH를 통해 프리앰블(preamble)을 기지국으로 전송할 수 있으며(S13), 상술한 바와 같이 NPRACH는 커버리지 향상 등을 위하여 주파수 호핑 등에 기반하여 반복 전송되도록 설정될 수 있다. 다시 말해, 기지국은 NB-IoT 단말로부터 NPRACH를 통해 프리앰블을 (반복적으로) 수신할 수 있다. 이후, NB-IoT 단말은 NPDCCH 및 이에 대응하는 NPDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)을 기지국으로부터 수신할 수 있다(S14). 다시 말해, 기지국은 NPDCCH 및 이에 대응하는 NPDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)를 NB-IoT 단말로 전송할 수 있다. 이후, NB-IoT 단말은 RAR 내의 스케줄링 정보를 이용하여 NPUSCH를 기지국으로 전송하고(S15), NPDCCH 및 이에 대응하는 NPDSCH과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S16). 다시 말해, 기지국은 NB-IoT RAR 내의 스케줄링 정보를 이용하여 NPUSCH를 단말로부터 수신하고, 상기 충돌 해결 절차를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 NB-IoT 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 NPDCCH/NPDSCH 수신(S17) 및 NPUSCH 전송(S18)을 수행할 수 있다. 다시 말해, 상술한 절차들을 수행한 후, 기지국은 NB-IoT 단말로 일반적인 신호 송수신 절차로서 NPDCCH/NPDSCH 전송 및 NPUSCH 수신을 수행할 수 있다. NB-IoT의 경우, 앞서 언급한 바와 같이 NPBCH, NPDCCH, NPDSCH 등은 커버리지 향상 등을 위하여 반복 전송될 수 있다. 또한, NB-IoT의 경우, NPUSCH를 통해 UL-SCH(즉, 일반적인 상향링크 데이터) 및 상향링크 제어 정보가 전달될 수 있다. 이 때, UL-SCH 및 상향링크 제어 정보는 각각 다른 NPUSCH 포맷(예: NPUSCH 포맷 1, NPUSCH 포맷 2 등)을 통해 전송되도록 설정될 수도 있다.
E. 본 발명에서 제안하는 방법
본 발명에서는 랜덤 접속 과정(Random Access Procedure)에서 하향링크(downlink) 신호/채널 품질(channel quality)에 대한 보고(report)를 하는 절차와 관련된 제안을 한다.
일반적으로 단말기는 랜덤 접속 과정에서 채널 품질에 대한 측정을 수행하지 않기 때문에(혹은 RRC(Radio Resource Control) 연결(connected) 상태에서 DCI(Downlink Control Information)에서 비경쟁 랜덤 접속(contention free random access)를 트리거(trigger)하는 경우에는 Msg.3에 CQI(Channel Quality Indicator) 정보를 보고 하도록 지시할 수도 있다), 기지국은 RRC 연결(RRC connection)을 맺기 전까지는 보수적으로 하향링크 스케줄링(downlink scheduling)을 한다. 커버리지 확장을 특징으로 하는 시스템(예를 들어, MTC, NB-IoT) 또는 커버리지 확장 모드(Coverage Enhancement(or Extension) mode, CE mode)를 지원하는 non-BL(Bandwidth reduced and Low complexity) UE(또는 일반적인 LTE 단말기)는 반복 전송을 특징으로 하기 때문에, 랜덤 접속 과정에서도 보수적으로 하향링크 스케줄링을 하면 너무 많은 자원이 낭비될 수 있다.
특히 MTC와 NB-IoT 같은 시스템의 특성(주로 metering and reporting의 서비스) RRC 연결 모드(RRC connected mode)(또는 RRC_CONNECTED 상태로 지칭될 수 있음)에서 장시간 동작하지 않을 것으로 예상되기 때문에, RRC 연결 모드 이전에 최대한 빨리 DQI(Downlink channel Quality Information)를 보고 받는 것이 자원 사용 효율 및 전력 절감(power saving) 측면에서 네트워크(network)과 단말에게 유리할 수 있다. 따라서, 본 특허에서는 랜덤 접속 과정에서 기지국의 하향링크 스케줄링을 효율적으로 돕기 위한 조기 DQI 보고(early DQI report) 방법을 제안한다. 본 발명은 기존 랜덤 접속 절차의 변경을 최소화 하기 위하여, Msg.3에 CQI를 보고하기 위해서 필요한 정보를 네트워크가 시스템 정보(system information) 및 Msg.2 단계에서 알려주는 방법과 절차에 관한 것이다.
본 발명이 적용되는 경우에 가장 큰 효과를 볼 수 있는 시스템은 NB-IoT와 MTC(또는 BL(Bandwidth reduced and Low cost)/CE(Coverage Enhancement) UE), CE 모드 UE(UE in CE mode)와 같이 반복 전송을 특징으로 하는 시스템인 점을 고려하여, 편의를 위해서 NB-IoT와 MTC를 예로 하여 설명된다. 즉, 본 특허에서 제안하는 기법은 반복 전송이 적용되지 않거나, 일반적인 통신 시스템에도 적용될 수 있다. 뿐만 아니라, 제안하는 방법이 NB-IoT와 MTC 사이에 동작상에 큰 차이가 없는 경우에, 본 발명은 편의상 NB-IoT를 위주로 작성하지만, NB-IoT에 한정하는 것은 아니고, 감소된 대역폭, 낮은 복잡도 또는 커버리지 개선이 필요한 단말 (ex. MTC(machine type communication) 단말, BL/CE 단말 등) 및 관련 시스템에도 적용될 수 있다.
앞서 살핀 내용들(3GPP system, frame structure, MTC/NB-IoT 시스템 등)은 후술할 본 발명에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 발명에서 제안하는 방법들의 기술적 특징을 명확하게 하는데 보충될 수 있다.
약어
ACK/NACK: Acknowledgement/Negative-Acknowledgement
AL: Aggregation Level
BER: Bit Error Rate
BLER: Block Error Rate
CE: Coverage Enhancement(or Coverage Extension)
BL/CE: Bandwidth reduced Low cost / Coverage Enhanced or Extended
CBRA: Contention Based Random Access
CCE: Control Channel Element
CE: Coverage Extension or Enhancement
CFRA: Contention Free Random Access
CQI: Channel Quality Information
CRS: Common or Cell-specific Reference Signal
CSI: Channel State Information
CSS: Common Search Space
DCI: Downlink Control Information
DMRS: DeModulation Reference Signal
DQI: Downlink (channel) Quality Information
DQI-RS: DQI-Reference reSource
ECCE: Enhanced Control Channel Element
EDT: Early Data Transmission
eMTC: enhanced Machine Type Communication
HARQ: Hybrid Automatic Repeat reQuest
MAC: Medium Access Control
MCS: Modulation and Coding Scheme
MTC: Machine Type Communication
NB: NarrowBand
NRS: Narrowband Reference Signal
PMI: Precoding Matrix Indicator
PRB: Physical Resource Block
QAM: Quadrature Amplitude Modulation
R: Repetition number
RAR: Random Access Response
PUR: Preconfigured Uplink Resource
RB: Resource Block
RE: Resource Element
RI: Rank Indicator
RLM: Radio Link Monitoring
RRC: Radio Resource Control
RSRP: Reference Signal Received Power
RSRQ: Reference Signal Received Quality
RSSI: Received Signal Strength Indicator
SIB: System Information Block
SNR: Signal-to-Noise Ratio
SPS: Semi-Persistent Scheduling
TA: Timing Advance
TBS: Transport Block Size
TM: Transmission Mode
UCI: Uplink Control Information
USS: UE-specific Search Space
랜덤 접속 과정
랜덤 접속 과정은 일반적으로 6 단계로 구성된다.
(RA-0) 기지국(예: eNB, gNB, network, etc.)은 랜덤 접속에 사용할 자원 등에 대한 정보를 방송(broadcast)(또는 전송(transmit))
초기 랜덤 접속(initial random access) 과정에서 단말기(예: user equipment, UE, terminal, etc)가 사용한 하향링크 자원(downlink resource)과 상향링크 자원(uplink resource) 등에 대한 설정(configuration)은 시스템 정보(system information)을 통해서 기지국으로부터 단말기에게 방송(broadcast)된다(예, 도 6의 S02 단계 또는 도 7의 S12 단계 참조). 단말기는 하향링크 동기화(downlink synchronization)을 획득한 이후에, 해당 기지국의 방송 정보로부터 랜덤 접속 관련 설정을 확인하고, 단말기는 msg.1 전송으로 접속(access)를 시도한다(예, 도 6의 S03 단계 또는 도 7의 S13 단계 참조). msg.1은 랜덤 접속 프리앰블(random access preamble) 또는 RACH 프리앰블 또는 PRACH 프리앰블로 지칭될 수 있다.
MTC와 NB-IoT 시스템에서는 단말기의 CE(Coverage Extension or Enhancement) 레벨에 따라서, 사용할 수 있는 Msg.1 시간/주파수/시퀀스가 달리 정의될 수 있다. 뿐만 아니라, CE 레벨(CE level) 별로 (RA-1), (RA-2), (RA-3), (RA-4) 에서 사용할 수 있는 자원을 달리 설정할 수 있다. CE 레벨은 기지국이 시스템 정보로 방송해준 RSRP(Reference Signal Received Power) 기준 값에 따라서 결정되며, 단말기는 자신이 하향링크에서 측정한 RSRP 값과 기지국이 방송해준 RSRP 값을 비교하여 CE 레벨을 선택한다. MTC에서는 CE 모드가 추가로 정의되어 있으며, CE 모드 A와 CE 모드 B가 있다(예, 표 7 및 관련 설명 참조). CE 모드는 단말기가 RRC 연결 상태(RRC connected state)로 진입하면, 기지국에 의해서 설정될 수 있지만, 초기 랜덤 접속 과정(initial random access procedure)에서는 CE 레벨 0과 1은 CE 모드 A로, CE 레벨 2와 3은 CE 모드 B로 가정하여 동작한다.
(RA-1) 단말기가 Msg.1을 기지국으로 전송
단말기는 자신의 CE 레벨을 우선적으로 결정하고, 해당 CE 레벨을 위해서 설정된 Msg.1 자원에 프리앰블(preamble)(Msg.1)(예, 랜덤 접속 프리앰블 또는 RACH 프리앰블 또는 PRACH 프리앰블)을 전송한다(예, 도 6의 S03 단계 또는 도 7의 S13 단계 참조). Msg.1이 전송된 시간/주파수 자원에 따라서 RA-RNTI 값이 정의되며, 단말기가 선택한 Msg.1 프리앰블은 RAP-ID(Random Access Preamble IDentifier) 값으로 사용된다.
(RA-2) 기지국이 검출된 Msg.1에 대한 응답을 Msg.2로 단말기에게 전송
기지국이 전송하는 Msg.2는 RAR(Random Access Response)라 불리며, RAR은 (N)PDSCH에 포함되어 전송되며, 이는 (N)PDCCH 또는 MPDCCH에 의해서 스케줄링된다(예, 도 6의 S04 단계 또는 도 7의 S14 단계 참조). 따라서, 단말기는 Msg.1 전송 이후에 (N)PDCCH 또는 MPDCCH를 모니터링(monitoring) 하며, 이를 검출 시도하는 시간/주파수(예, NB(Narrow Band), NB-IoT 캐리어) 자원 및 최대 반복 전송 횟수 및 주파수 호핑(frequency hopping) 정보 등은 (RA-0) 단계에서 방송 정보를 통해서 획득된다. 단말기가 검출 시도하는 (N)PDCCH 또는 MPDCCH는 (RA-1) 단계에서 RA-RNTI 값으로 스크램블링(scrambling) 되어 있기 때문에, 동일한 시간/주파수 자원에 Msg.1을 전송한 단말기는 동일한 (RA-RNTI로 스크램블링된) (N)PDCCH 또는 MPDCCH를 검출할 수 있다. 만약, 성공적으로 이를 검출한 경우에는 해당 DCI가 지시하는 (N)PDSCH를 검출해서 RAR 정보를 획득한다. RAR에는 기지국이 (RA-1) 단계에서 검출된 다수의 Msg.1에 대한 정보를 포함하고 있을 수 있으며, 이는 RA-RNTI로 구분된다. 즉, 단말기는 (N)PDSCH 내에서 자신이 (RA-1) 단계에서 사용한 Msg.1 프리앰블에 대응하는 RA-RNTI 값을 찾고, 해당 RA-RNTI에 대응하는 RAR 정보를 획득한다. RAR 정보는 단말기가 (RA-3) 단계에서 전송할 Msg.3에 대한 설정과 (RA-1) 단계에서 추정된 TA(Timing Advance) 값 등이 포함되어 있다. 여기서, (RA-3) 단계에서 전송한 Msg.3에 대한 설정은 UL 그랜트(grant)라고 할 수 있다. MTC의 경우에는 (RA-4) 단계에서 모니터링(monitoring) 할 MPDCCH의 주파수 자원(NB)에 대한 정보까지도 RAR에 포함되어 있다.
(RA-3) 단말기는 Msg.2에서 지시된 바에 따라서 Msg.3를 기지국에게 전송
단말기는 (RA-2) 단계에서 획득한 UL 그랜트의 지시에 따라서, Msg.3에 (N)PUSCH를 전송하며(예, 도 6의 S05 단계 또는 도 7의 S15 단계 참조), (RA-4) 단계에서 경쟁 해결(contention resolution)을 위해 자신의 ID(예, S-TMSI) 값을 이에 포함할 수 있다.
(RA-4) 기지국은 Msg.3를 검출하고, 이에 대한 응답으로 Msg.4를 단말기에게 전송
단말기는 (RA-3) 과정에서 전송한 Msg.3에 대한 응답으로 Msg.4 검출을 시도한다(예, 도 6의 S06 단계 또는 도 7의 S16 단계 참조). 이는 (RA-2) 과정과 마찬가지로 (N)PDCCH 또는 MPDCCH를 우선적으로 검출 시도하며, 이때 스크램블링에 사용된 RNTI는 (RA-2) 단계에서 RAR로 받은 TC-RNTI일 수 있다. 검출된 (N)PDCCH 또는 MPDCCH는 Msg.3 재전송을 지시하는 UL 그랜트를 포함하거나 또는 Msg.3에 대한 응답을 포함하는 (N)PDSCH를 스케줄링하는 DL 그랜트일 수 있다. 즉, 단말기는 UL 그랜트가 검출되면, UL 그랜트가 지시하는 바에 따라서 (RA-3) 과정을 다시 수행하며, DL 그랜트가 검출되면 지시하는 바에 따라서 (N)PDSCH를 검출해서 Msg.3에 대한 응답을 확인할 수 있다.
E.1 랜덤 접속 과정 동안 측정 보고(Measurement report during random access procedure)
단말기는 랜덤 접속 과정 (RA-1) 또는 (RA-3)에서 DQI에 대한 정보를 기지국에 보고 할 수 있으며, 보고 하는 단계에 따라서 방법이 상이할 수 있다. 즉, 단말은 DQI에 대한 정보를 포함하는 Msg.1(preamble) 및/또는 Msg.3를 기지국으로 전송(또는 보고)할 수 있다.
먼저, (RA-1)에서 보고 하는 경우에는, (RA-0) 단계에서 하향링크 채널 품질에 따라서 단말기가 사용할 수 있는 Msg.1 자원(resource)(시간 그리고/또는 주파수 그리고/또는 프리앰블)을 달리 설정할 수 있다. 즉, 단말기가 전송하는 Msg.1의 자원은 우선 CE 레벨에 따라서 먼저 선택되고, 해당 자원 내에서 DQI에 따라서 하나 이상의 레벨로 세분화된 자원을 사용하도록 설정될 수 있다. 다시 말해, 단말기가 전송하는 Msg.1의 자원은 2-단계(2-step)(제1 단계(first step): CE 레벨, 제2 단계(second step): 하향링크 채널 품질(downlink channel quality))에 따라 설정될 수 있다. 여기서 Msg.1에 포함되는 DQI는 아래에서 제안하는 DQI의 여러 레벨 중에 특정 값을 기준으로 높거나 낮음을 나타내며, 해당 값을 기준으로 DQI의 오프셋 레벨(offset level)은 Msg.3 또는 다른 시점에 다른 자원을 사용해서 기지국에 전달될 수 있다.
이는, 단말기가 선택하는 CE 레벨은 RSRP 기준으로만 설정되기 때문에, 신호 세기의 정보만 포함될 수 있기 때문이다. 예를 들어, 신호 세기는 높지만, 인접 셀(cell)간 간섭 및 기지국 다중 안테나의 공간상관이 높은 이유 등으로 신호/채널 품질(signal/channel quality)는 낮을 수도 있다. 이는 CE 레벨이 낮은 경우(RSRP가 상대적으로 높은 상황)에도 단말기가 (RA-2) 또는 (RA-4) 과정에서 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH 수신 성능이 좋지 않을 수도 있음을 의미한다. 즉, 단말기의 수신 성능은 신호 세기가 아닌 신호/채널 품질과 더욱 밀접하게 관계 있기 때문에, 이를 기지국에 미리 알리기 위한 용도로 Msg.1의 자원을 동일 CE 레벨 내에서도 하향링크 채널에 따라서 구분할 수 있다. 기지국은 검출된 Msg.1의 자원으로부터 채널 품질 정보를 획득하여 하향링크 스케줄링(downlink scheduling)를 효율적으로 할 수 있다.
다른 방법으로는, 단말기가 (RA-3) 과정에서 DQI를 제공하여, (RA-4)에서 기지국이 하향링크 스케줄링(downlink scheduling)에 이를 활용할 수 있도록 할 수도 있다. 이는 랜덤 접속 절차의 종류에 따라서 다른 방법이 고려될 수 있다.
이하, 해당 방법에 대해 보다 구체적으로 살펴본다.
E.1.1 경쟁 기반 랜덤 접속 과정 동안 측정 보고(Measurement report during contention based random access (CBRA) procedure)
상술한 바와 같이, 단말기는 (RA-3)에서 DQI를 보고할 수 있으며, 해당 정보는 (RA-4)의 (N)PDCCH/MPDCCH 수신 성능과 관계가 있거나 그리고/또는 (RA-4)의 (N)PDSCH 수신 성능과 관계 있는 정보일 수 있다.
즉, 보고 되는 DQI는 다음과 같은 정보를 포함할 수 있다. 이하, 정보는 설명의 편의를 위하여 구분된 것일 뿐, 이하 설명되는 정보 모두 또는 그 중 일부만 포함될 수도 있다.
(1) RSRQ
RSRQ는 실제 하향링크 참조 신호(downlink reference signal)의 채널 품질(channel quality)를 대표하는 값으로 기지국의 하향링크 스케줄링(downlink scheduling)에 직접 또는 간접적으로 활용될 수 있는 참고 메트릭(metric) 이다. RSRQ는 일반적인 CQI 정보와 달리 특정 기준 MCS 및 PMI, RI 등의 설정을 필요로 하지 않기 때문에, CQI 추정보다 낮은 복잡도로 구현될 수 있는 장점이 있으며, 기지국이 DQI를 수신한 이후에 단말기에게 하향링크 스케줄링에 사용할 전송 모드(transmission mode) 등과 관련된 제약을 요구하지 않는 장점이 있다. 이는 특히 랜덤 접속 과정에서 기준 MCS와 PMI 등이 설정되지 않은 상황에 더욱 적합한 DQI로 활용될 수 있다.
A. Msg.2를 수신한 (NB-IoT) 캐리어 또는 NB(NarrowBand)에서 RSRQ 값
보고하는 논리적인 값의 1 단계(또는 하나의 단계) 차이는 RSRQ 표현 범위를 등간격으로 나누지 않은 값일 수 있다.
i. Msg.2가 주파수(예, NB) 호핑한 경우에, 호핑한 주파수의 RSRQ 평균 값
ii. 또는 특정 주파수 자원(PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal)가 전송되는 중심(center) 6RB 또는 주파수 호핑 자원(frequency hopping resource) 중에서 최저(lowermost)/최고(highest) 인덱스에 해당하는 주파수 자원 또는 (RA-0)에서 지시된 값 등)에서만 측정한 RSRQ 값
상기 주파수 자원은 DQI가 RSRQ가 아닌 특정 채널(예를 들어, (N)PDCCH/MPDCCH 또는 (N)PDSCH)에 대한 수신 성능 정보(예를 들어, 특정 BLER을 만족하기 위한 조건(예를 들어, 반복 전송 횟수, AL(Aggregation Leve) 등))를 포함하는 경우에도 마찬가지로 적용될 수 있다.
iii. 또는 가장 높은 RSRQ를 갖는 주파수 자원 정보 또는 주파수 자원 별 RSRQ
iv. 또는 (RA-4) 단계에서 (N)PDCCH/MPDCCH 모니터링에 사용될 주파수 자원에 대한 RSRQ
v. 또는 (RA-4) 단계에서 (N)PDSCH 수신에 사용될 주파수 자원에 대한 RSRQ
vi. 또는 (RA-4) 단계에서 (N)PDCCH/MPDCCH 모니터링에 사용될 주파수 자원과 Msg.2 수신에 사용된 주파수 자원 사이에 중복된 주파수 자원에 대한 RSRQ
vii. 또는 (RA-4) 단계에서 (N)PDSCH 수신에 사용될 주파수 자원과 Msg.2 수신에 사용된 주파수 자원 사이에 중복된 주파수 자원에 대한 RSRQ
viii. 상기 주파수 자원(예를 들어, NB) 별 RSRQ는 RSRP와 RSSI로부터 유도되며, RSSI는 특정 주파수 자원 또는 획득된 주파수 자원 별 RSSI의 평균 값일 수 있으며, RSRP는 주파수 자원 별 RSRP일 수 있다. 또는 반대로 잡음(noise)와 간섭(interference)를 포함하는 RSSI 정보가 주파수 자원 별로 다를 수 있다고 가정해서, RSSI는 주파수 자원 별 RSSI일 수도 있다.
(2) Msg.2의 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH 수신 정보
A. (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH를 수신 성공 했을 때의 (N)PDCCH/MPDCCH 또는 (N)PDSCH의 R(repetition number) 그리고/또는 AL(aggregation level)
(N)PDCCH 또는 MPDCCH 또는 (N)PDSCH의 Rmax(최대 반복 전송 횟수)는 (RA-0) 단계에서 획득되며, 단말기는 설정된 Rmax보다 작은 값의 R에서 이를 성공적으로 검출할 수도 있다. 따라서, R은 단말기의 DQI를 표현하기 위해서 사용될 수 있다. 뿐만 아니라, ((N)PDCCH 또는 MPDCCH에) 병합(aggregation)이 적용되는 경우에 수신 검출 성공한 병합 레벨(AL) 정보도 마찬가지로 활용될 수 있다. Msg.3에서 품질 보고(quality report)(예를 들어, R 그리고/또는 AL)에 사용되는 비트 수에 따라서 보고 범위 그리고/또는 보고하는 R 그리고/또는 AL의 표현 단위는 달리 설정될 수 있다.
i. 표현 범위의 최소 값은 1이 아닌 특정 값(X)으로 설정될 수도 있다. 이는 X보다 낮은 값은 채널 품질이 이미 충분히 좋음을 의미하기 때문에, 더욱 세분화된 정보가 필요 없을 수 있기 때문이다. 즉, 실제 R 값이 X보다 작은 경우에 보고되는 값은 논리적으로 보고 값을 가장 작은 값(또는 레거시(legacy) 시스템과 역호환성(backward compatibility)으로 유지하기 위해서 예약된 값을 제외한 최소 값)으로 매핑 되어 보고될 수 있다.
ii. 표현 범위의 최대 값은 aR(기지국이 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH 전송에 사용한 실제 반복 전송 횟수로 Rmax 보다 같거나 작은 값일 수 있으며, 이는 DCI에서 지시되는 값)로 제한될 수 있다. 또는, 표현 범위의 최대 값은 Rmax로 제한되거나, 또는 Rmax보다 K배(예를 들어, 2배) 더 큰 값으로 제한될 수 있다. Rmax 보다 큰 값이 허용되는 이유는 Msg.4의 (N)PDCCH/MPDCCH 또는 (N)PDSCH 스케줄링에 사용될 수 있는 반복 횟수(예를 들어, 최대 값인 Rmax)가 Msg.2의 값과 다를 수 있기 때문이다.
iii. 표현 단위는 허용된 표현 범위 내에서 균등하게 설정되지 않고, 비균등하게 설정될 수도 있다. 즉, 보고 하는 논리 값의 낮은 범위에서의 1 단위(또는 하나의 단위)와 높은 범위에서의 1 단위(또는 하나의 단위)가 실제로 나타내는 R 그리고/또는 AL의 단위/간격은 상이할 수 있다. 이는, 낮은 R 그리고/또는 AL의 값에서 부정확한 값(양자화에 대한 오차)은 (RA-4) 스케줄링에 큰 영향이 없지만, 높은 R 그리고/또는 AL의 값에서 1 단계 차이는 (RA-4) 단계에서 실제 하향링크 스케줄링(downlink scheduling)에 적용되는 반복 전송 횟수가 아주 크게 다를 수 있기 때문이다.
상기 제안된 DQI의 표현 범위는 아래에서 제안하는 DQI에 R 또는 AL이 포함되는 경우에, 모두 적용될 수 있다. 또한, 상기 DQI 정보에 R 또는 AL이 선택적으로 포함되는 경우에는 각각 R과 AL을 구함에 있어서 기준 AL(reference AL)과 기준(reference R)이 정의될 필요가 있다. 즉, (N)PDCCH/MPDCCH를 특정 성능 요구 조건(performance requirement)을 만족하는 R을 유도함에 있어서, 단말기가 가정할 수 있는 기준 AL 값이 필요할 수 있다. 마찬가지로 AL을 유도하는 경우에는 단말기가 가정할 수 있는 기준 R 값이 필요할 수 있다. 각 기준 AL과 R 값은 Msg.2 MPDCCH의 Rmax에 의해서 유도 되거나, 또는 기지국으로부터 독립적으로 설정되거나, 또는 Msg.2 MPDCCH 전송에 실제 적용된 AL 및/그리고 R 값으로부터 유도될 수도 있다. 예를 들어, DQI 정보는 AL을 선택적으로 포함할 수 있다. 보다 구체적인 예로, R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우, DQI는 R과 함께 AL을 포함할 수 있다. 혹은 다른 예로, R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우, DQI 정보는 R을 포함하지만 AL을 포함하지 않고 AL은 기준 AL 값(예, 24)을 가정할 수 있다. 이 예에서, 단말은 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH를 수신 성공 했을 때의 (N)PDCCH/MPDCCH 또는 (N)PDSCH의 R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우 기준 AL 값이 R(예, 1)로부터 유도될 수 있다.
DQI를 단말기가 Msg.2의 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH를 수신 성공 했을 때의 (N)PDCCH/MPDCCH 또는 (N)PDSCH의 R(repetition number) 그리고/또는 AL(aggregation level) 값으로 보고하는 이유는 RSRQ 및 특정 포맷의 채널(예를 들어, (N)PDCCH, MPDCCH, PDSCH)을 가정한 CQI를 계산하기에는 R 값이 너무 작아서, RSRQ 또는 CQI를 측정하기 위해서 추가적인 시간 동안 참조 신호(reference signal)을 수신해야 하는 부담이 있을 수 있기 때문이다. 즉, 단말기는 특정 값(기지국에서 설정 받거나 또는 표준에 정의될 수 있음)보다 작은 시간 자원 내에서 Msg.2 수신 검출을 성공했다면, RSRQ 또는 CQI를 측정하기 보다는 하향링크 채널 품질이 충분히 좋다는 정보를 간접적으로 기지국에 보고하는 것이 전력 절감(power saving) 측면에서 이득일 수 있다. 이를 위해서 기지국은 보고 받을 DQI의 특정 값(들)을 이와 같은 보고를 위해서 유보(reserve)할 수 있다. 즉, 단말기는 R 그리고/또는 AL이 충분히 작은 경우에 R 그리고/또는 AL를 유보된 상태(reserved state) 중에서 선택해서 보고할 수 있다. 만약, 이를 위한 유보된 상태가 따로 정의되지 않는 경우에는 DQI의 특정 값(채널 품질이 좋음을 나타내는 값)으로 보고할 수도 있다.
(3) Msg.4의 (N)PDCCH/MPDCCH 수신 성능 정보
A. 단말기는 (RA-0) 단계에서 및/또는 (RA-4) 단계에서 사용될 수 있는 또는 사용될 가능성이 있는 주파수 자원(frequency resource)(예, (NB-IoT) 캐리어 또는 NB)를 획득할 수 있다. 결국, Msg.3에 전송된 DQI가 가장 먼저 활용될 수 있는 단계는 (RA-4)의 (N)PDCCH/MPDCCH 스케줄링(scheduling)이기 때문에, (RA-4) 단계에서 사용할 수 있는 주파수 자원 정보의 DQI를 보고(report)하는 것이 바람직할 수 있다. 다만, MTC와 같은 시스템에서는 (RA-4) 단계에서 MPDCCH 모니터링에 사용될 주파수 자원의 정확한 정보가 Msg.2 PDSCH의 RAR에서 지시 받을 수 있기 때문에, 해당 정보를 정확히 얻고 난 이후에 Msg.3를 전송하기까지 남은 시간 동안 해당 주파수 자원의 DQI를 계산하기에는 충분한 시간이 보장되지 않을 수 있다. 따라서, 다음과 같은 방법을 고려할 수 있다.
i. (RA-0) 단계에서 획득한 정보를 기반으로 (RA-4) 단계에서 사용할 가능성이 있는 주파수 자원 별로 DQI를 각각 계산하고, RAR에서 획득한 정보(예, (RA-4) 단계에서 모니터링할 주파수 자원)에 해당하는 DQI만 보고 할 수 있다.
ii. 만약, 주파수 호핑이 적용된 경우에, Msg.3를 전송하기 X 시간만큼 이전에 호핑에 사용되었던 주파수 자원은 DQI 측정 및 보고에서 배제될 수 있다. 또는, X가 특정 값보다 작은 경우에는 DQI 보고가 생략되거나 또는 X에 따라서 보고 가능한 DQI의 최대 값이 특정 값으로 제한될 수도 있다.
iii. Msg.2는 (N)PDCCH/MPDCCH와 (N)PDSCH로 구성되는데, DQI 측정을 위해서 사용되는 DQI 참조 자원(reference resource)는 (N)PDCCH/MPDCCH로만 제한될 수 있으며, 더 나아가서는 (N)PDCCH/MPDCCH 전송이 시작(또는 설정된 Msg.2 모니터링 구간이 시작)되는 초반 Y 시간 내의 자원로만 한정될 수도 있다. 이는 단말기의 처리 능력(processing power)를 최대한 낮추기 위함일 수 있다. 또는, 단말기의 처리 능력(processing power)가 충분한 경우에는, (N)PDCCH/MPDCCH를 Rmax 이전에 검출 성공했다고 하더라도, 그 이상의 구간/자원 (Rmax 보다는 작은)를 추가적으로 수신해서 DQI를 측정하도록 설정될 수도 있다. 뿐만 아니라, (N)PDSCH를 수신하는 시간/주파수(time/frequency)도 DQI 참조 자원(DQI 측정에 사용될 수 있거나 또는 DQI와 관련된 채널이 전송될 수 있는 가상의 자원)에 포함될 수도 있다. 특히, Msg.2 (N)PDCCH/MPDCCH 주파수 자원은 Msg.4의 (N)PDCCH/MPDCCH 주파수 자원에 완벽히 포함되지는 않지만, (N)PDSCH 주파수 자원은 Msg.4의 (N)PDCCH/MPDCCH 주파수 자원에 일부 겹칠 수 있는 상황에서 이와 같은 DQI 참조 자원 확장((N)PDSCH 자원까지 포함하도록 하는)이 더욱 필요할 수 있다.
B. 상기 제안처럼 다수의 주파수 자원에서 측정한 채널 품질 정보는
i. 주파수 자원 별로 모두 보고 되거나
ii. 또는 주파수 자원 별로 측정된 값의 평균 값 또는 대표 값으로 보고되거나 (여기서 RSSI는 평균 값으로 RSRP는 NB 별로 독립적으로 측정된 값일 수 있으며, RSRQ 또는 수신 성능과 관련된 정보를 보고하는 경우에는 잡음(noise) 정보는 평균 값을 기준으로 산출되고 품질(quality) 정보는 각 NB 별로 측정된 값을 기준으로 산출될 값일 수 있다.)
iii. 또는 주파수 자원 별로 측정된 값의 평균 값 또는 대표 값과 함께 DQI 차이 (예를 들어, 평균 값 또는 대표 값을 기준으로 델타(delta) 또는 오프셋(offset)으로 표현)가 나머지 또는 모든 주파수 자원에 대해서 보고 되거나
iv. 또는 주파수 자원 별로 측정된 값의 평균 값 또는 대표 값과 함께 DQI 참조 자원 중에서 특정 주파수 자원(예를 들어, NB 또는 NB-IoT 캐리어)의 DQI 차이 (예를 들어, 평균 값 또는 대표 값을 기준으로 델타(delta) 또는 오프셋으로 표현)가 나머지 또는 모든 주파수 자원에 대해서 보고 되거나
v. 또는 RAR에서 획득한 정보((RA-4) 단계에서 모니터링할 주파수 자원 또는 표준 또는 시스템 정보로 특정 자원(예, 앵커-캐리어 또는 PSS/SSS가 전송되는 중심(center) 6RB 또는 Msg.2가 사용하는 주파수 자원 또는 Msg.4에 사용될 주파수 자원 중에서 Msg.2가 사용하는 주파수 자원에 가장 가까운 주파수 자원)에 대해서만 보고하라고 설정된 주파수 자원)에 해당하는 DQI만 보고 되거나
vi. 또는 주파수 자원 별로 측정된 값의 평균 값 정보가 보고되거나
vii. 또는 주파수 자원 별로 측정된 값 중 가장 좋은 N개(예, 시스템 정보(system information)으로 설정될 수 있거나 또는 Msg.2에서 지시 받을 수 있음) 주파수 자원의 채널 품질과 해당 주파수 자원 인덱스 정보가 보고되거나
viii. 또는 주파수 자원 별로 측정된 값 중 가장 나쁜 N개(예, 시스템 정보로 설정될 수 있거나 또는 Msg.2에서 지시 받을 수 있음) 주파수 자원의 주파수 자원 인덱스 그리고/또는 해당 채널 품질 정보가 보고될 수 있다.
C. 상기 제안처럼 측정된 채널 품질 정보는 (RA-3) 과정 이전에 획득한 정보를 바탕으로,
i. 특정 참조 DCI 포맷(reference DCI format) (예를 들어, Msg.4에서 기대되는 (N)PDCCH/MPDCCCH 의 DCI 포맷)를 기준으로 BLER Z%(예를 들어, 1%)를 기대할 수 있는 R(단말이 선호하는)의 최소 값 그리고/또는 AL의 최소 값 그리고/또는 참조 신호(reference signal)(예를 들어, DMRS)의 포트 정보 그리고/또는 자원 할당 타입(예, distributed or localized) 그리고/또는 (N)CCE/ECCE 인덱스)를 포함할 수 있다. 여기서 참조 DCI 포맷은 특정 DMRS 포트를 가정하도록 허용될 수도 있다.
ii. 만약, (RA-4) 단계에서 Msg.4 (N)PDCCH/MPDCCH의 R (단말이 선호하는) 값이 보고되는 경우에는, (RA-3) 과정 이전에 획득한 (RA-4) 단계에서 사용될 Rmax 값의 비율에 대한 정보로 표현될 수 있다. 즉, 보고되는 DQI의 논리적 값의 범위는 (RA-3) 과정에서 획득한 (RA-4) 단계에서 사용될 Rmax에 따라서 실제 R이 달리 해석될 수 있다. 상기 제안에서 논리적 표현 값의 단위는 실제 R의 표현 범위 내에서 균일하게 분포되지 않을 수 있다.
한편, (2)에서 설명한 바와 유사하게, DQI 정보에 R 또는 AL이 선택적으로 포함되는 경우에는 각각 R과 AL을 구함에 있어서 기준 AL(reference AL)과 기준 R(reference R)이 정의될 필요가 있다. 즉, (N)PDCCH/MPDCCH를 특정 성능 요구 조건(performance requirement)을 만족하는 R을 유도함에 있어서, 단말기가 가정할 수 있는 기준 AL 값이 필요할 수 있다. 마찬가지로 AL을 유도하는 경우에는 단말기가 가정할 수 있는 기준 R 값이 필요할 수 있다. 각 기준 AL과 R 값은 Msg.2 MPDCCH의 Rmax에 의해서 유도 되거나, 또는 기지국으로부터 독립적으로 설정되거나, 또는 Msg.2 MPDCCH 전송에 실제 적용된 AL 및/그리고 R 값으로부터 유도될 수도 있다. 예를 들어, DQI 정보는 AL을 선택적으로 포함할 수 있다. 보다 구체적인 예로, R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우, DQI는 R과 함께 AL을 포함할 수 있다. 혹은 다른 예로, R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우, DQI 정보는 R을 포함하지만 AL을 포함하지 않고 AL은 기준 AL 값(예, 24)을 가정할 수 있다. 이 예에서, 단말은 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH를 수신 성공 했을 때의 (N)PDCCH/MPDCCH 또는 (N)PDSCH의 R이 특정 성능 요구 조건을 만족하는 값(예, 1)을 가지는 경우 기준 AL 값이 R(예, 1)로부터 유도될 수 있다.
(4) Msg.4의 (N)PDSCH 수신 성능 정보
A. 단말기는 (RA-0) 단계에서 (RA-4) 단계에서 사용될 수 있는 또는 사용될 가능성이 있는 주파수 자원(예, (NB-IoT) 캐리어 또는 NB)를 획득할 수 있다. 그리고 MTC의 경우에는 Msg.4 PDSCH가 스케줄(schedule)될 수 있는 LTE 시스템 대역폭(system bandwidth) 내의 주파수 자원 NB가 Msg.4 MPDCCH에서 지시된다. NB-IoT와 MTC 모두 (N)PDSCH 스케줄링 정보(예를 들어, MCS, TBS, 자원 할당, 반복 횟수)는 DL 그랜트에서 지시되기 때문에, Msg.3에 전송된 DQI는 Msg.4 (N)PDSCH 스케줄링에도 활용될 수 있다. 따라서, Msg.3에 전송되는 DQI는 아래와 같은 정보를 포함할 수 있다.
i. (RA-0) 단계에서 획득한 정보를 기반으로 (RA-4) 단계에서 사용할 가능성이 있는 주파수 자원 별로 DQI를 각각 계산하고, RAR에서 추가적인 정보(예를 들어, (RA-4) 단계에서 모니터링할 주파수 자원)를 획득하는 경우에, 해당하는 DQI만 보고할 수 있다.
ii. 만약, 주파수 호핑(frequency hopping)이 적용된 경우에, Msg.3를 전송하기 X 시간만큼 이전에 호핑에 사용되었던 주파수 자원은 DQI 측정 및 보고에서 배제될 수 있다. 또는, X가 특정 값보다 작은 경우에는 DQI 보고가 생략되거나 또는 X에 따라서 보고 가능한 DQI의 최대 값이 특정 값으로 제한될 수도 있다.
iii. Msg.2는 (N)PDCCH/MPDCCH와 (N)PDSCH로 구성되는데, DQI 측정을 위해서 사용되는 DQI 참조 자원(reference resource)은 (N)PDCCH/MPDCCH로만 제한될 수 있으며, 더 나아가서는 (N)PDCCH/MPDCCH 전송이 시작(또는 설정된 Msg.2 모니터링 구간이 시작)되는 초반 Y 시간 내의 자원으로만 한정될 수도 있다. 이는 단말기의 처리 능력(processing power)를 최대한 낮추기 위함일 수 있다. 또는, 단말기의 처리 능력(processing power)가 충분한 경우에는, (N)PDCCH/MPDCCH를 Rmax 이전에 검출 성공했다고 하더라도, 그 이상의 구간/자원 (Rmax 보다는 작은)를 추가적으로 수신해서 DQI를 측정하도록 설정될 수도 있다. 뿐만 아니라, (N)PDSCH를 수신하는 시간/주파수도 DQI 참조 자원에 포함될 수도 있다. 특히, Msg.2 (N)PDCCH/MPDCCH 주파수 자원이 호핑하지 않거나 또는 LTE 시스템 대역폭(system bandwidth) 대비 특정 비율보다 작은 주파수 자원만 사용하는 경우에, 이와 같은 DQI 참조 자원 확장(예, (N)PDSCH 자원까지 포함하도록 하는)이 더욱 필요할 수 있다.
B. 상기 제안처럼 다수의 주파수 자원에서 측정한 채널 품질 정보는
i. 주파수 자원 별로 모두 보고되거나
ii. 또는 주파수 자원 별로 측정된 값의 평균 값 또는 대표 값으로 보고되거나 (여기서 RSSI는 평균 값으로 RSRP는 NB 별로 독립적으로 측정된 값일 수 있으며, RSRQ 또는 수신 성능과 관련된 정보를 보고하는 경우에는 잡음(noise) 정보는 평균 값을 기준으로 산출되고 품질(quality) 정보는 각 NB 별로 측정된 값을 기준으로 산출될 값일 수 있다.)
iii. 또는 주파수 자원 별로 측정된 값의 평균 값 또는 대표 값과 함께 채널 품질 차이 (예를 들어, 평균 값 또는 대표 값을 기준으로 델타(delta) 또는 오프셋으로 표현)가 나머지 또는 모든 주파수 자원에 대해서 보고 되거나
iv. 또는 RAR에서 획득한 정보(예, (RA-4) 단계에서 모니터링할 주파수 자원 또는 표준 또는 시스템 정보(system information)으로 특정 자원(예, 앵커-캐리어(anchor-carrier) 또는 PSS/SSS가 전송되는 중심(center) 6RB 또는 Msg.2가 사용하는 주파수 자원 또는 Msg.4에 사용될 주파수 자원 중에서 Msg.2가 사용하는 주파수 자원에 가장 가까운 주파수 자원)에 대해서만 보고하라고 설정된 주파수 자원)에 해당하는 DQI만 보고되거나
v. 또는 주파수 자원 별로 측정된 값의 평균 값 정보가 보고되거나
vi. 또는 주파수 자원 별로 측정된 값 중 가장 좋은 N개(예, 시스템 정보로 설정될 수 있거나 또는 Msg.2에서 지시 받을 수 있음) 주파수 자원의 채널 품질과 해당 주파수 자원 인덱스 정보가 보고되거나
vii. 또는 주파수 자원 별로 측정된 값 중 가장 나쁜 N개(예, 시스템 정보로 설정될 수 있거나 또는 Msg.2에서 지시 받을 수 있음) 주파수 자원의 주파수 자원 인덱스 그리고/또는 해당 채널 품질 정보가 보고될 수 있다.
C. 상기 제안처럼 측정된 채널 품질 정보는 (RA-3) 과정 이전에 획득한 정보를 바탕으로,
i. 특정 참조 포맷(reference format)(예를 들어, Msg.4에서 기대되는 (N)PDSCH의 TBS 그리고/또는 MCS 그리고/또는 반복 횟수(repetition number) 그리고/또는 DMRS 포트 등이며, 이는 표준에 미리 정의되거나 또는 시스템 정보 또는 Msg.2으로 설정될 수 있음)를 기준으로 BLER Z%(예를 들어, 1%)를 기대할 수 있는 R(단말이 선호하는)의 최소 값 그리고/또는 AL의 최소 값 그리고/또는 참조 신호(reference signal)(예를 들어, CRS 또는 DMRS)의 포트 정보 그리고/또는 자원 할당 타입(예, distributed or localized) 그리고/또는 PMI 그리고/또는 주파수 자원 정보(예를 들어, 가장 적은 자원 양을 필요로 하는 (즉, 낮은 R 그리고/또는 AL) NB 또는 RB 인덱스)를 포함할 수 있다. 만약, 특정 참조 포맷이 지정되지 않거나 또는 MCS 등과 같은 CQI에 해당하는 정보가 참조 포맷에 지정되지 않는 경우에는 CQI 그리고/또는 RI도 함께 DQI에 포함될 수 있다.
1. CRS로부터 추정된 채널 정보를 기반으로 CQI를 추정하는 경우에는 단말기가 가정할 프리코딩 정보(예를 들어, DMRS 포트 정보 또는 PMI와 같은 CRS와 DMRS의 상관관계)가 미리 주어질 수도 있다.
ii. 만약, (RA-4) 단계에서 Msg.4 (N)PDSCH의 R (단말이 선호하는) 값이 보고되는 경우에는, (RA-3) 과정 이전에 획득한 (RA-4) 단계에서 사용될 Rmax 값의 비율에 대한 정보로 표현될 수 있다. 즉, 보고되는 DQI 정보의 논리적 값의 범위는 (RA-3) 과정에서 획득한 (RA-4) 단계에서 사용될 Rmax에 따라서 실제 R이 달리 해석될 수 있다. 상기 제안에서 논리적 표현 값의 단위는 실제 R의 표현 범위 내에서 균일하게 분포되지 않을 수 있다.
D. 상기 제안에서, DQI가 (N)PDSCH 수신 성능과 관련된 정보를 포함하는 경우에, 단말기는 특정 TM(Transmission Mode)를 가정하고 DQI를 추정할 수 있다. 예를 들어, 랜덤 접속 과정에서 사용하는 TM은 폴백(fallback) TM(예를 들어, TM1 or TM2)로 항상 가정하거나, 또는 기지국의 송신 안테나 수(예, CRS 안테나 포트 수)에 따라서 폴백 TM 또는 참조 TM(reference TM)을 유도하고, 이를 기반으로 DQI를 측정할 수 있다. 뿐만 아니라, DQI를 측정하기 위해서 사용할 수 있는 참조 TM을 기지국이 직접 지시할 수도 있다.
상기 제안에서, Msg.3에 대한 응답(Msg.4)을 수신하지 못하거나 또는 Msg.3를 재전송하는 경우에 DQI는 다음과 같이 취급될 수 있다.
(1) Msg.3를 재전송 하는 경우
A. DQI가 Msg.3의 데이터(data)와 함께 물리 계층(physical layer)에서 채널 인코딩(channel encoding)되는 경우에는 이전 전송에서 사용한 DQI를 계속해서 전송한다.
B. DQI가 Msg.3의 데이터와 독립적으로 물리 계층에서 채널 인코딩되는 경우(예를 들어, UCI(Uplink Control Information)와 같은 형태)에는 이전 전송에 사용한 DQI를 유지하거나 또는 업데이트(update) 가능하다. 만약, 업데이트되는 경우라면, 이전에 보고한 DQI보다 같거나 낮은 값(예, 낮은 값의 DQI 값일수록 하향링크 채널 상태가 좋은 경우)은 보고에 허용되지 않을 수 있다.
(2) Msg.1부터 재전송 시작하는 경우
A. 만약, 재전송에서 사용하는 Msg.1과 연계된 Msg.2 그리고/또는 Msg.4의 시간 자원(예를 들어, Msg.2 또는 Msg.4의 최대 반복 전송 횟수 Rmax 등) 그리고/또는 주파수 자원(예를 들어, (NB-IoT) 캐리어 또는 NB 등)이 변경된 경우에는 DQI를 새롭게 측정할 수도 있다.
B. 그렇지 않은 경우에는, 이전 랜덤 접속 시도에서 보고했던 DQI보다 같거나 낮은 값은 보고에 허용되지 않을 수 있다. 또한, 새롭게 재측정을 하지 않고, 이전 보고했던 DQI보다 특정 값 만큼 높은 값(예, 높은 값의 DQI 값일수록 하향링크 채널(downlink channel) 상태가 나쁜 경우)으로 보고하도록 허용될 수도 있다.
상기 모든 제안에서 R(repetition number)와 AL(aggregation level)이 DQI를 대표하는 값으로 사용되는 경우에, DQI에 R과 AL은 각각 포함되거나 또는 R과 AL이 결합된 형태로 포함되거나 또는 R과 AL을 코드-레이트(code-rate)와 유사한 개념으로 변형되어 포함될 수 있다.
상기 제안에서 MTC의 경우에는 Msg.2와 Msg.4에 전송되는 MPDCCH가 CRS 포트(port)가 아닌 DMRS 포트를 통해서 전송된다. 이와 같은 경우에 단말기는 CRS를 이용해서 MPDCCH 성능을 미리 예측하기 어렵다. 즉, MPDCCH 디코딩(decoding) 실패 확률이 특정 값보다 나쁘지 않을 특정 조건을 CRS로부터 유도하기 쉽지 않을 수 있다. 이와 같은 경우에는 CRS를 기반으로 DQI를 측정할 수 있도록 허용하면서, 대신 성능 유추 대상이 되는 참조 채널(reference channel)을 MPDCCH가 아닌 다른 채널로 정의할 수 있다. 예를 들어, RLM에 사용되는 참조 채널(예, Out-of-sync 검사 기준이 되는 PDCCH 포맷 또는 In-sync 검사 기준이 되는 PDCCH 포맷) 또는 제 3의 PDCCH 포맷 또는 특정 TM을 가정한 PDSCH 포맷을 정의해서, CRS를 기반으로 해서 앞서 열거된 채널을 기준으로 수신 성능을 예측할 수 있는 정보를 DQI로 정의하도록 할 수 있다. 여기서 TM은 CRS 포트 수에 따라서 TM1 또는 TM2로 주어질 수도 있다.
E.1.2 비경쟁 기반 랜덤 접속 절차 동안 측정 보고(Measurement report during contention free based random access (CFRA) procedure)
CFRA 기반의 랜덤 접속 과정에서 DQI를 보고하는 방법은 E.1.1 절(‘경쟁 기반 랜덤 접속 과정 동안 측정 보고’)에서 제안된 방법이 모두 적용될 수 있다. 여기서 CFRA는 단말기가 사용할 Msg.1의 자원(예를 들어, 시간 및/또는 주파수 및/또는 프리앰블(preamble) 자원)이 UE 특정(UE specific)하게 기지국으로부터 주어진 경우이며, 가장 많이 사용되는 예로는 RRC 연결 상태(RRC connected state)에서 단말기의 TA(Timing Advance) 정보 업데이트(update)를 위한 경우가 있다. 즉, 기지국은 단말기로부터 특정 시간 이상 상향링크를 수신하지 못했거나 상향링크를 스케줄링(scheduling)하지 않은 상황에서 단말기에게 하향링크 스케줄링(downlink scheduling)이 필요한 경우에, 우선적으로 상향링크 TA를 업데이트해서 이후 스케줄링되는 하향링크에 대한 피드백(feedback)(예를 들어, ACK/NACK) 및/또는 CSI를 PUCCH 및/또는 (N)PUSCH로 수신할 때 타이밍 오정렬(timing misalignment)에 의한 성능 열화를 줄이기 위해서 사용될 수 있다. 이는 곧, CFRA 절차 이후에 기지국이 단말기에서 하향링크 스케줄링할 계획이 있음을 의미하며, CFRA 과정에서도 Msg.3에 DQI 정보를 수신하는 것이 이후 하향링크 스케줄링 성능 열화 최소화에 도움이 될 수 있다.
다만, 비경쟁 기반 랜덤 접속(CFRA) 과정은 단말기가 이미 셀(cell)에 등록된 상태이며, RRC 메시지(RRC message)를 통해서 UE 전용 정보(UE dedicated Information)을 추가적으로 획득한 상황이기 때문에, DQI 참조 자원(reference resource)가 추가되거나 재정의될 수 있는 차이가 있을 수 있다. 예를 들어, 단말기는 기지국으로부터 랜덤 접속 과정에서 보고할 DQI를 측정할 수 있는 참조 자원을 추가적(예, CBRA에서 사용하는 DQI 참조 자원과 다른)으로 설정 받을 수 있으며, 이는 RRC 또는 Msg.1을 트리거하는 DCI에서 설정 받거나 또는 DCI에서 RRC로 설정된 DQI 참조 자원 세트 내에서 특정 자원을 지시 받을 수도 있다. 이와 같은 경우에는 MAC 메시지가 아닌 UCI 형태로 Msg.3(또는 Msg.2 이후에 처음 전송하는 (N)PUSCH)에서 보고될 수 있다.
DQI가 (N)PDSCH 수신 성능과 관련된 정보를 포함하는 경우에, 단말기는 특정 TM(Transmission Mode)를 가정하고 DQI를 추정할 수 있다. 예를 들어, 랜덤 접속 과정에서 사용하는 TM은 폴백(fallback) TM(예를 들어, TM1 or TM2)로 항상 가정하거나, 또는 기지국의 송신 안테나 수(예, CRS 안테나 포트 수)에 따라서 폴백 TM 또는 참조 TM(reference TM)을 유도하고, 이를 기반으로 DQI를 측정할 수 있다. 뿐만 아니라, DQI를 측정하기 위해서 사용할 수 있는 참조 TM을 기지국이 직접 지시할 수도 있으며, 또는 RRC 연결 상태(RRC Connected state)의 단말기가 사용하고 있던 TM을 가정해서 DQI를 측정할 수도 있다.
상기 CBRA와 CFRA의 DQI 유도 과정에서 참고하는 참조 TM은 구체적으로 아래와 같이 기지국의 CRS 포트 수에 따라서 정의될 수도 있다.
■ CRS 포트 수가 1인 경우 TM1을 참조 TM으로 가정(If the number of CRS ports is one, TM1 is assumed as the reference TM)
■ 그렇지 않은 경우 TM2를 참조 TM으로 가정(Otherwise, TM2 is assumed as the reference TM)
E.2 UL SPS를 위한 측정 보고(Measurement report for UL SPS(Semi-Persistent Scheduling))
기지국은 단말기의 상향링크 스케줄링(uplink scheduling)을 위한 자원(resource)를 줄이기 위해서, UL SPS를 설정할 수 있다. UL SPS에서는 상향링크 스케줄링을 위한 UL 그랜트(grant)가 매번 전송되지 않기 때문에, 단말기의 하향링크 모니터링(downlink monitoring)에 의한 전력 절감(power saving)에 효과도 있을 수 있다. 여기서 UL SPS는 단말기가 사용할 다수의 시간 도메인 상향링크 자원(time domain uplink resource)를 미리 설정한 상태에서, 기지국의 동적 상향링크 스케줄링(dynamic uplink scheduling)이 없이도 단말기가 직접 판단해서 해당 UL SPS 자원에 데이터를 전송할 수 있는 기법이다. 이는 기존 LTE 또는 다른 시스템에서 이미 정의하고 있는 SPS와 유사한 방법일 수 있으며, RRC 상태(state)와 무관할 수도 있다. 즉, 본 제안에서 UL SPS는 단말기의 매 UL 전송에 앞서서 단말기가 기지국으로부터 UL 스케줄링을 매번 지시 받지 않고도 UL 전송이 허용되는 통신 절차 및 방법을 의미한다.
다만, UL SPS의 활성화(activation)/비활성화(deactivation)이 DCI로 지원되는 경우가 있거나, 또는 UL SPS에 대한 HARQ 피드백(HARQ-feedback)이 있을 수 있는 경우에는 여전히 하향링크 신호 또는 채널(예를 들어, (N)PDCCH, MPDCCH, (N)PDSCH, WUS(Wake-up Signal)등)을 수신할 필요가 있다. 이와 같이 UL SPS 상황에서도 기지국은 하향링크로 해당 단말기에게 특정 채널을 전송할 필요가 있을 수 있으며, 이때 링크 적응(link adaptation)을 위해서 E.1.1 절(‘경쟁 기반 랜덤 접속(CBRA) 과정 동안 측정 보고’)와 E.1.2 절(‘비경쟁 기반 랜덤 접속(CFRA) 절차 동안 측정 보고’)에서 제안된 방법이 모두 사용될 수 있다.
다만, UL SPS는 일반적인 랜덤 접속 과정의 Msg.2 그리고/또는 Msg.4가 사용할 시간/주파수 자원(time/frequency resource)가 다를 수 있기 때문에(예, UL SPS 수신에 대한 피드백(feedback)을 기지국이 DL로 전송하는 경우에 사용할 DL 자원은 (즉, 단말기가 모니터링 수행해야하는 DL 자원) 랜덤 접속 과정의 Msg.2/Msg.4와 별개일 수 있음), UL SPS를 위한 DQI 참조 자원이 독립적으로 설정될 수 있다. 이는 표준에 직접 정의되거나, 또는 시스템 정보(system information)이나 RRC 메시지로 설정되거나, 또는 UL SPS를 활성화/비활성화하는 채널(예를 들어, DCI)에서 직접 지시되거나, 또는 HARQ 피드백(HARQ-feedback)을 위한 채널(예를 들어, (N)PDCCH 또는 MPDCCH)에서 직접 지시될 수 있다.
또한, UL SPS 과정에서 보고되는 DQI는 랜덤 접속 과정에서 보고되는 DQI와 다른 정의 또는 표현 범위일 수 있다. 예를 들어, UL SPS 활성화/비활성화 그리고/또는 HARQ 피드백(HARQ-feedback)을 위해서 사용되는 하향링크 채널(예를 들어, 특정 DCI)이 랜덤 접속 과정의 Msg.2 그리고/또는 Msg.4의 하향링크 채널(예를 들어, 타입-2 CSS의 DCI(DCI with type-2 CSS(common search space)))과 다를 수 있으며, 이때에는 UL SPS를 위해서 정의된 하향링크 채널을 참조(reference)(또는 참조 채널)로 하여, DQI를 측정하고 이를 보고할 수 있다.
E.3 단말기의 수신기 타입(receiver type)에 따른 측정 보고(measurement report)
단말기가 랜덤 접속 단계에서 DQI를 보고하는 경우에, 단말기의 수신기 타입에 따라서 채널 품질(channel quality)가 달리 정의될 수 있다. 여기서 단말기의 수신기 타입은 표준에서 요구하는 특정 성능 요구조건(performance requirement)를 만족시키기 위해서 정의된 수신기 타입 중에 하나일 수 있으며, LTE를 예로 들면 MRC(Maximal Ratio Combining), MMSE-IRC(Minimum Mean Square Error-Interference Rejection and Combining), eMMSE-IRC(enhanced MMSE-IRC), ML(Maximum Likelihood) , SIC(Successive Interference Cancellation) 등과 같은 타입이 있을 수 있다. 이와 같은 수신기 타입을 기지국이 알아야 하는 이유는, 기지국의 하향링크 스케줄링(downlink scheduling) 시에 단말기의 수신 성능을 미리 예측해서 불필요한 자원 낭비를 피하기 위함일 수 있으며, 또한 수신기 타입에 따라서는 기지국의 추가적인 정보 제공이 필요한 경우가 있기 때문이다.
(1) 단말기가 다중 수신 안테나를 사용하는 경우에, DQI는 이를 고려한 값으로 보고될 수 있으며, 이때 단말기의 다중 수신 안테나 정보(예를 들어, 실제 수신 안테나 수 이거나 또는 단일 수신 안테나수를 가정한 것인지 여부)를 DQI와 함께 측정 보고에 포함시킬 수도 있다.
(2) 단말기가 보고하는 DQI는 단일 수신 안테나를 가정해서 유도된 값이며, 단말기가 추가적으로 사용할 수 있는 수신 안테나가 있는 경우에(즉, 다중 수신 안테나), 이를 추가로 보고할 수 있다. 예를 들어, 해당 수신 안테나 정보는 다중 수신 안테나를 사용하는 경우(즉, Msg.2 그리고/또는 Msg.4 수신에 사용한 안테나 수)에 추가로 얻을 수 있는 이득(gain)(예를 들어, RSRQ 이득, SNR 이득, Msg.2 그리고/또는 Msg.4를 특정 검출 성능 조건(예를 들어, BLER)으로 수신하기 위해서 기대할 수 있는 반복 횟수의 감소 정보)을 표현하는 형태이거나 또는 단순히 다중 수신 안테나를 Msg.2 그리고/또는 Msg.4에서 사용할 수 있음을 나타내는 정보일 수 있다.
E.4 하향링크 채널 품질 측정(Downlink channel quality measurement)를 기대하지 않는 조건
상기 제안된 DQI 측정 정보는 기지국의 하향링크 스케줄링 및 자원 할당(코드-레이트(code-rate), 반복 횟수(repetition number) 등)에 활용될 수 있다. 이는 비록 저비용(low cost) 단말기의 DQI 측정을 위한 추가 동작을 필요로 하지만, 기지국의 잘못된 링크 적응(link adaptation)으로 단말기의 하향링크 수신신호 검출 실패(예를 들어, 너무 낮은 반복전송 횟수)로 전력 절감(power saving)에 손해를 보는 것을 미리 예방할 수 있는 장점이 있을 수 있다. 다만, Msg.4의 최대 반복 전송 횟수가 애초에 특정 값 보다 낮은 경우에는 링크 적응이 중요하지 않을 수 있기 때문에, 단말기의 전력 절감을 위해서 DQI 측정 수행을 생략할 수도 있다. 반대로, Msg.4의 최대 반복 전송 횟수가 특정 값보다 높게 설정되거나 또는 단말기의 RSRP 또는 SNR이 아주 낮은 경우(예를 들어, CE 레벨이 높은 경우 또는 셀(cell) 내에 설정된 가장 높은 CE 레벨인 경우)에는 단말기의 DQI 측정 정보의 정확도가 아주 낮을 수 있다. 따라서 특정 조건에서는 불필요하거나 무의미한 단말기의 전력 소모를 방지하기 위해서 DQI 측정을 수행하지 않는 또는 보고하지 않는 조건이 있을 수 있다.
(1) Msg.4의 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH의 최대 반복 전송 횟수가 특정 값보다 낮은 경우
(2) Msg.4의 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH의 최대 반복 전송 횟수가 특정 값보다 높은 경우
(3) 단말기가 Msg.2((N)PDCCH 또는 MPDCCH 또는 (N)PDSCH)를 특정 반복 횟수 이하에서 수신 성공한 경우
상기에서 각 특정 값은 표준에 정의되거나 또는 기지국에서 방송(broadcast)되는 정보일 수 있다.
또는, Msg.2에서 지시 받은 Msg.3 전송 시점이 DQI 측정에 충분하지 않은 시간으로 주어지는 경우에, 단말기는 DQI 측정과 보고를 생략하거나 또는 특정 값(예를 들어, 하향링크 채널 품질이 가장 나쁜 값)으로 보고하도록 허용될 수 있다. 여기서 ‘DQI 측정에 충분하지 않은 시간’은 Msg.2와 Msg.3의 상대적인 시간 간격에 해당할 수 있으며, 단말기의 능력(capability)로 정의될 수도 있다.
E.5 랜덤 접속(Random access)를 특수한 목적으로 사용하는 경우에 하향링크 채널 품질(downlink channel quality) 및 보고(report) 방법
단말기가 랜덤 접속 절차를 시도하는 이유가 MO-EDT(Mobile Oriented Early Data Transmission - 랜덤 접속 절차 중에 상향링크로 데이터를 전송하기 위한 경우)인 경우에는, Msg.3에 전송할 TBS를 선택함에 있어서 DQI 보고를 위해서 필요한 정보 사이즈(Information size)는 고려되지 않을 수 있다. 만약, 단말기가 Msg.3에서 사용할 수 있도록 허용된 TBS 중에서 최소 값(단말기가 Msg.3에 보내고자 하는 데이터/정보보다 큰 TBS 중에서)이 실제로 단말기가 Msg.3에서 전송하고자 하는 데이터/정보를 제외하고도 DQI를 보고할 수 있는 크기 만큼의 사이즈를 모두 포함할 수 있는 경우라면, 단말기는 Msg.3에 DQI를 추가로 포함해서 Msg.3를 전송할 수 있다.
단말기가 랜덤 접속 절차를 시작한 이후에 기지국이 MT-EDT(Mobile Terminated Early Data Transmission - 랜덤 접속 절차 중에 기지국이 하향링크로 데이터를 전송하기 위한 경우)인 경우에는, Msg.3 그리고/또는 Msg.4 이후에도 DQI를 상향링크로 보고하도록 요청 받을 수 있다. 이는 EDT인 경우에 단말기가 RRC 연결 상태(RRC connected state)로 진입하지 않고 RRC 유휴 상태(RRC idle state)에서 기지국과 데이터 송수신을 완료해버릴 수 있기 때문에, 하향링크 측정(downlink measurement)를 위한 구체적인 정보를 RRC 연결 상태에서처럼 자유롭게 획득하지 못할 수 있기 때문이다. 즉, 단말기는 DQI 측정 관점에서 랜덤 접속에서 허용하는 수준의 DQI만 측정해서 보고할 수 있다. 다만, Msg.4 이후에 보고하는 DQI 측정은 상기 제안한 일반적인 랜덤 접속 과정에서 Msg.3에 보고하는 DQI 참조 자원과는 다른 자원을 기반으로 측정 수행하도록 설정될 수도 있다.
E.6 하향링크 채널 품질 정보 참조 자원(Downlink Channel Quality Information Reference Resource)
랜덤 접속 절차에서 Msg.4를 수신하기까지 단말기가 송/수신하는 채널 및 신호의 시간 흐름은 도 8에 표현되어 있으며, 하기에서는 이를 주파수 측면에서 각 채널/신호의 자원 관계를 설명한다. 도 8은 eMTC를 기준으로 작성된 것이며, 도 6의 예에 대응될 수 있다. 도 8에서 Msg.3 전송 이후에 단말기가 수신하는 UL 그랜트는 Msg.3 재전송을 위한 스케줄링 정보이며, 이는 Msg.3/4 MPDCCH와 동일한 포맷을 사용한다. NB-IoT의 경우에는 NPSS/NSSS/NPBCH가 앵커 캐리어에 전송되며, SIB 정보들은 FDD인 경우에 앵커 캐리어에서 TDD인 경우에는 NPBCH 정보에 따라서 앵커 캐리어 또는 비-앵커 캐리어에서 전송될 수 있다(예, 도 7 및 관련 설명 참조). Msg.2 NPDCCH와 NPDSCH, Msg.3/4 NPDSCH, Msg.4 NPDSCH는 모두 동일한 NB-IoT 캐리어에서 전송되며, 이는 앵커 캐리어 또는 비-앵커 캐리어일 수 있다. MTC의 경우는 주파수 영역의 DL 자원 관계가 더욱 복잡하며, 이를 아래와 같이 정리할 수 있다.
● PSS/SSS/PBCH
- LTE 시스템 대역폭(system bandwidth)의 중심 6 RB들(center 6RBs)
● SIB1-BR
- LTE 시스템 대역폭 내에서 분산된 RB들(distributed RBs)로 전송되며, 하향링크 대역폭 및 셀 ID(DL bandwidth and cell ID)에 따라서 사용되는 NB/RB 위치는 상이할 수 있음
● 다른 SIB들(Other SIBs)
- SIB1-BR의 SI를 위한 스케줄링 정보(scheduling information)에 따라서 NB/RB 위치가 결정
● Msg.2의 MPDCCH(MPDCCH of Msg.2)
- SIB에서 설정된 정보와 Msg.1 전송에 사용된 프리앰블 인덱스(preamble index)에 따라서 결정되며, rar-HoppingConfig에 따라서 주파수 호핑(frequency hopping)이 적용될 수 있음
● Msg.2의 PDSCH(PDSCH of Msg.2)
- Msg.2의 MPDCCH에 의해서 지시되며, rar-HoppingConfig에 따라서 주파수 호핑이 적용될 수 있음
● Msg.3/4의 MPDCCH(MPDCCH of Msg.3/4)
- Msg.2의 MPDCCH NB와 동일하거나 또는 특정 오프셋 값 만큼 시프트(shift)된 NB에 전송될 수 있으며, 해당 오프셋 값은 RAR의 UL 그랜트에서 지시됨
● Msg.4의 PDSCH(PDSCH of Msg.4)
- Msg.4의 MPDCCH에 의해서 지시되며, rar-HoppingConfig에 따라서 주파수 호핑이 적용될 수 있음
상술한 바와 같이, MTC 시스템에서는 Msg.4 수신 이전에 사용되는 DL 주파수 자원이 복잡한 관계로 정의되며, 경우에 따라서는 DQI 정보가 최초로 적용될 수 있는 Msg.4 DL 주파수 자원이 Msg.3 전송 이전에 단말기가 수신할 필요가 없는(기존의 랜덤 접속 절차에 따르면) 자원일 수 있다. 즉, DQI 참조 자원(reference resource)가 어떻게 정의되느냐에 따라서 해당 정보가 Msg.4 스케줄링에 효과적으로 사용될 수 있는지 여부가 결정될 수 있다. 본 절에서는 이를 고려해서 DQI-RS(DQI-Reference Resource)에 대한 제안을 한다. 제안하는 방법은 본 특허에서 기술된 다른 제안과 배치되지 않는 경우에 모두 적용될 수 있다.
DQI-RS는 Msg.3/4 MPDCCH 및/또는 (N)PDSCH 전송 예약된 자원의 채널 품질을 대표할 수 있으면서, Msg.3를 전송하기 전에 단말기가 수신할 수 있는 자원 내에서 선정될 필요가 있다. 만약, Msg.3/4 MPDCCH 자원이 Msg.2 수신 자원과 동일한 경우에는 DQI-RS가 Msg.2 MPDCCH/NPDCCH 중에서 일부 또는 전체로 정의될 수 있다. 아래는, Msg.2 MPDCCH/NPDCCH가 Msg.3/4 MPDCCH/NPDCCH 및/또는 (N)PDSCH와 상이한 자원이 기대되는 경우에, DQI-RS를 선정하기 위한 방법이다.
● MTC
- 중심(Center) 6RB 그리고/또는 시스템 정보(system information)이 전송되는 NB 그리고/또는 Msg.2 PDSCH가 전송되는 NB가 DQI 참조 자원에 추가로 포함될 수 있음
- 상기 추가적인 DQI 참조 자원(additional DQI reference resource)의 실제 적용 유무는 Msg.2 MPDCCH 호핑 그리고/또는 Msg.2 PDSCH 호핑 유무에 따라서 결정될 수 있음
상기 방법은 MTC 단말기가 Msg.3 전송 이전에 기본적으로 수신 기대할 수 있는 자원이며, 이와 같이 DQI-RS를 선정하는 경우에 단말기는 DQI 측정을 위해서 추가적인 수신 동작을 할 필요가 없을 수 있다.
● NB-IoT
- RRC 유휴 상태(RRC Idle state)
(1) 기지국이 N개의 (NB-IoT) 캐리어 세트를 설정해주고, 단말은 N개 세트 중에서 랜덤하게 캐리어를 선택해서 해당 캐리어의 CQI를 측정해서 보고하거나, 또는 N개 세트에 대한 평균(average) DQI 및/또는 가장 나쁜(worst) DQI 및/또는 가장 좋은(best) DQI를 보고할 수 있음
* CQI 정보는 선호하는 캐리어 및/또는 반복(preferred carrier and/or repetition)를 포함할 수 있음
* 기존 조기 CQI 보고(early CQI report)의 CQI 상태(CQI state)와 모호함(ambiguity)를 발생시키지 않도록, 상기 방법은 비-앵커 캐리어(non-anchor carrier) DL CQI인 경우에만 적용될 수 있음
* 가장 나쁜 DQI 및/또는 가장 좋은 DQI가 포함되는 경우에, 해당 DQI를 측정한 캐리어 정보를 추가로 보고할 수 있으며, 이는 DQI 값에 직접 포함될 수도 있음
(2) DQI 참조 캐리어(reference carrier)를 랜덤(random)하게 선택하는 방법
* UE ID 기반으로 선택하거나, 또는 시간상 먼저 수신 가능한 DQI-RS를 우선적으로 선택하거나, 또는 Msg.2 NPDCCH 최대 반복 횟수(maximum repetition number)가 적은/큰 캐리어를 우선적으로 선택
* 둘 이상의 DQI-RS에서 DQI-RS가 특정 시간 내에 존재하는 경우 DQI-RS의 캐리어는 UE ID 기반으로 선택
(3) 단말기가 둘 이상의 DQI-RS 캐리어에 대한 DQI 정보를 획득한 경우에, DQI로 보고하는 캐리어의 우선 순위
* 가장 좋은 DQI 또는 가장 오래 측정(measure)한 캐리어의 DQI(즉, DQI 측정의 정확도가 가장 높을 것으로 기대되는 캐리어) 또는 가장 최근에 업데이트(update)된 캐리어의 DQI
(4) 기지국이 지시한 DL 캐리어 또는 DL 캐리어 세트에서 선택적으로 CQI 측정한 경우에 해당 DL 캐리어에 관계(associate)된 UL 캐리어 중에서 NPRACH 캐리어를 선택해서 Msg.1 전송
* 일반적으로 랜덤 접속 과정에서 Msg.1 캐리어 선택은 UL 캐리어를 먼저 선택하고, 이에 대응하는 DL 캐리어에서 DQI를 측정하지만, 상기 방법은 여러 DL 캐리어 중에서 특정 캐리어의 DQI 보고를 결심한 경우(예를 들어, best DQI에 대응하는 DL 캐리어)에, 이와 관계된 UL 캐리어를 선택하는 방법이다.
(5) 기지국은 Msg.1을 위한 UL 캐리어 별로 DQI-RS 캐리어의 세트 구성을 달리 할 수 있음
- RRC 연결 상태(RRC connected state)
(1) 기지국은 NPDCCH 오더(NPDCCH order) 기반의 Msg.1 전송을 지시하는 경우에 DQI-RS 캐리어를 직접 지시할 수 있으며, 단말기는 해당 캐리어에서 DQI를 유도
(2) Msg.3 송신 이후에 기지국은 해당 캐리어로 단말기의 DL 캐리어를 변경할 수 있음
(3) RRC 연결 모드에서 단말기는 이후 RRC 유휴 상태(RRC idle state)에서 DQI 측정에 사용할 DQI-RS 캐리어를 기지국으로부터 지시 받을 수 있음
E.7 하향링크 채널 품질 정보 보고(Downlink Channel Quality Information Report)를 지시하는 방법
단말기의 DQI 추정을 위한 연산 시간 및 DQI를 Msg.3에 보고하기 위한 신호/채널 생성 시간을 고려하면, DQI 보고에 대한 지시를 단말기가 언제 획득할 수 있는지 여부가 중요한 요소일 수 있다. 특히, DQI 측정을 위해서 필요한 추가 정보가 필요한 경우에는, 해당 정보가 최대한 빨리 단말기에게 획득될 필요가 있다. 본 절에서는 DQI 보고를 지시하는 방법에 대해서 제안한다. 제안하는 방법은 본 특허에서 기술된 다른 제안과 배치되지 않는 경우에 모두 적용될 수 있다.
● RAR의 UL 그랜트(UL grant in RAR)의 비트(bit)/상태(state)를 활용하는 방법
- Msg.3/4 MPDCCH NB 인덱스가 특정 값인 경우에 간접적으로 DQI 보고 지시로 인식함. 특징적으로 RAR 모니터링 NB 중에서 Msg.3/4 MPDCCH NB가 특정 수 이상 포함된 경우, 또는 RAR 모니터링 NB와 Msg.3/4 MPDCCH NB 간격이 특정 값 이하인 경우가 포함될 수 있다.
● RAR의 유보 비트(reserved bit)를 활용하는 방법
- EDT 요청을 위해서 (N)PRACH 자원을 사용하는 경우에, Msg.2가 단말기의 EDT 요청이 기지국으로부터 수락되었음을 나타내는 경우라면 DQI 보고 지시로 인식함.
EDT는 연결 모드(connected mode)로 진입하지 않는 것이 일반적이기 때문에, 이와 같은 방식으로 최대한 빨리 DQI/CQI 정보를 받을 기회가 필요할 수 있다.
- 만약, EDT 요청을 위해서 사용되는 (N)PRACH 자원이 아닌 경우에 대한 Msg.2 수신이라면, RAR의 특정 유보 비트는 DQI 보고 지시로 해석될 수 있음.
● 단말기가 보고해야 할 DQI 정보의 구성을 지시하는 방법
- DQI 정보 중에서 CQI와 반복 횟수(repetition number)를 선택적으로 지시할 수 있음
(1) 특정 CE 모드에서는 CQI와 반복 횟수 중에서 고정될 수 있음. 구체적인 예로서 상대적으로 작은 반복 범위를 지원하는 혹은 반복을 지원하지 않는 CE 모드에서는 CQI만을 보고하거나 상대적으로 큰 반복 범위를 지원하는 CE 모드에서는 반복 횟수만을 보고할 수 있음
- DQI 보고 모드를 지시할 수 있음
(1) 광대역(Wideband) 및/또는 선호하는 NB(preferred NB) 및/또는 DQI-RS 중에서 Msg.3/4 MPDCCH NB로부터 가장 가까운 NB 및/또는 DQI-RS 중에서 특정 NB 및/또는 SIB 수신에 사용된 NB 및/또는 중심(center) 6RB에 대한 DQI 보고를 지시할 수 있음
상기 DQI 측정 및 보고를 지시하는 방법을 측정을 설정하는 단계와 보고를 지시하는 단계로 구분할 필요가 있는 경우, 이는 아래와 같은 방법으로 실현될 수 있다.
● RAR의 유보 비트(reserved bit)가 DQI 보고를 트리거(trigger)하기 위해서 사용될 수 있으며, 특징적으로는
■ 상위 계층(high-layer)(예를 들어, 시스템 정보 또는 RRC 메시지)에서 해당 기지국이 DQI 보고를 수신/지원할 수 있는지 여부 또는 관련 설정을 (반)-정적으로((semi-)static하게) 시그널링하고, RAR의 UL 그랜트에 CSI 보고 필드(report field)(eMTC의 CE 모드 A인 경우에) 또는 RAR의 유보 비트로 DQI 보고 여부를 동적으로(dynamic하게) 오프(off)(또는 온(on)) 지시할 수 있음
■ 만약, 해당 RAR이 EDT에 대한 응답인 경우에 유보 비트가 아닌 상위 계층(high-layer)로 지시된 DQI 보고 설정을 따를 수 있음(즉, high-layer로 단말기의 DQI 측정 및/또는 보고가 설정된 경우에, DQI 보고 여부는 동적 신호(dynamic signal)의 지시를 따르지 않을 수 있으며, 이는 eMTC CE 모드 B와 같이 RAR에 유보 비트가 없는 경우 또는 RAR의 UL 그랜트에 CSI 보고 필드(report field)가 없는 경우에 적용될 수 있다)
● RAR의 UL 그랜트에 CSI 보고 필드가 DQI 보고에 대한 트리거 정보로 사용되는 경우에, RAR의 유보 비트는 DQI 보고 설정과 관련된 추가 정보를 제공하기 위한 목적으로 사용될 수 있음 (이는 UL 그랜트의 CSI 보고 필드와 RAR의 유보 비트가 서로 교차하여 적용되는 경우도 마찬가지로 적용될 수 있음)
■ 이는 DQI 보고가 하나 이상의 설정을 갖는 경우에, 관련 설정을 동적으로(dynamic하게) 변경하기 위해서 사용될 수 있음
■ 여기서 DQI 보고 설정에는 DQI 보고 여부, DQI 값의 범위 및 DQI 비트 수, CSI 자원(예를 들어, 협대역 집합, 참조 TM(reference TM) 등, NB-IoT 하향링크 캐리어 집합), DQI 보고 모드(예를 들어, 광대역(wideband) 또는 (기지국 또는 UE에 의해) 선택되거나 또는 선호하는 서브밴드/협대역(selected (by eNB or UE) or preferred subband/narrowband)) 등이 있을 수 있음
■ 상기 DQI 보고 설정은 상기 RAR의 UL 그랜트에 CSI 보고 필드와 RAR의 유보 비트로 결정될 수도 있지만, RAR의 UL 그랜트에서 지시되는 Msg3의 TBS 및/또는 듀플렉스 모드(duplex mode)에 따라서도 달리 결정될 수 있음
■ Msg3의 TBS가 특정 값에 해당하는 경우(또는 보다 작은 경우) DQI 보고는 디스에이블(disable)될 수 있음
■ Msg3의 TBS 및/또는 Msg3의 내용(contents)(예를 들어, RRC Resume, RRC Reconfiguration 요청 등)에 따라서 DQI 보고 모드(예를 들어, 광대역(wideband) 또는 (기지국 또는 UE에 의해) 선택되거나 또는 선호하는 서브밴드/협대역(selected (by eNB or UE) or preferred subband/narrowband)) 또는 DQI 값의 범위 및 DQI 비트 수 등이 상이할 수 있음
E.8 하향링크 채널 정보 보고(Downlink Quality Information Report)를 지시 받은 경우에, Msg.3/4 MPDCCH NB 해석
상술한 바와 같이, DQI는 Msg.3/4 MPDCCH에 직접 사용될 수 있다. 만약, DQI-RS가 Msg.3/4 MPDCCH (주파수) 자원과 상이한 경우에는 DQI 정보를 더욱 적극 활용하기 위해서, Msg.3/4 MPDCCH 자원을 보고된 DQI-RS(reported DQI-RS)에 기반해서 유도할 수 있다. 즉, 기지국이 시스템 정보(system information)으로 Msg.3/4 MPDCCH 자원에 대한 세트를 설정한 경우에, 이를 변경하기 쉽지 않기 때문에, 기지국과 단말기 사이에 DQI-RS에 대한 오해가 없는 경우에는, 단말기가 보고한 DQI의 DQI-RS에 따라서 Msg.3/4 MPDCCH 및/또는 PDSCH (주파수) 자원을 시스템 정보에서 획득한 값과 다르게 해석할 수 있도록 허용될 수 있다. 제안하는 방법은 본 특허에서 기술된 다른 제안과 배치되지 않는 경우에 모두 적용될 수 있다.
● Msg.2 MPDCCH NB와 동일하거나 또는 일부를 포함하도록 해석(즉, RAR의 UL 그랜트(UL grant in RAR)의 Msg.3/4 MPDCCH NB 인덱스를 달리 해석함)
● DQI 보고를 한 경우에, Msg.3/4 MPDCCH의 DCI 정보 중에 주파수 호핑 필드(frequency hopping field)가 포함되거나 또는 주파수 호핑 필드를 Msg.3/4 수신 단계에서도 사용할 수 있도록 허용될 수 있음
● 선호하는 NB(Preferred NB) 정보가 DQI에 포함된 경우, 단말기는 Msg.3/4 MPDCCH 그리고/또는 Msg.4 PDSCH의 주파수 호핑이 오프(off)된다고 가정하거나 지시 받을 수 있음
- 특징적으로 CE 모드 B에서 Msg.4 DL 그랜트에 주파수 호핑 온/오프 필드(frequency hopping on/off field)가 추가되거나 또는 다른 필드 조합으로부터 간접적으로 유도될 수 있음
- 특징적으로 CE 모드 B에서 Msg.4 DL 그랜트에 주파수 호핑 필드가 해당 DCI로 스케줄링된 PDSCH의 주파수 호핑 여부 해석으로 사용될 수 있음
E.9 하향링크 품질 정보(Downlink Quality Information)의 정보 구성
MTC와 NB-IoT 단말기는 다양한 CE level 및 CE 모드를 지원한다. 이는 기지국으로부터의 거리(즉, SNR) 및 mobility에 대한 특성을 반영하며, 더 나아가서는 단말기의 처리 능력(processing power)에 대한 특성까지 반영된다. 따라서, 이와 같은 다양한 주변 정보를 고려해서, 단말기가 측정하거나 생성할 수 있는 DQI 정보가 제한될 필요가 있다. 본 절에서는 DQI에 포함되는 정보의 구성과 정보의 범위에 대해서 제안한다. 제안하는 방법은 본 특허에서 기술된 다른 제안과 배치되지 않는 경우에 모두 적용될 수 있다.
● DQI 보고 정보 구성
아래 DQI 구성 정보는 일부만 포함되어 기지국에 보고 될 수도 있다.
- CQI와 반복 횟수 중에 무엇을 기반으로 DQI를 구성했는지 지시(indication)하는 정보가 포함될 수 있다.
(1) DQI 테이블(table)은 CQI와 반복 횟수를 모두 포함하도록 구성될 수 있으며, 단말이 선택하는 DQI 테이블의 인덱스에 따라서 CQI이거나 또는 반복 횟수(repetition number)가 보고되는 형태일 수 있다. 특징적으로, DQI 테이블의 가장 낮은(lowest) CQI는 DQI 테이블의 가장 낮은(lowest) 반복 횟수가 나타내는 채널 상태와 유사하거나 더 좋은 상태(예를 들어, BLER 측면에서)를 의미하도록 구성될 수 있다.
- 보고 타입은 (a) 광대역 CQI 또는 반복(Wideband CQI or repetition), (b) 광대역 (CQI 또는 반복) 및 UE(또는 기지국) 선택한 NB 인덱스 및 해당 NB 상에서의 (CQI 또는 반복)(wideband (CQI or Repetition) and UE(or eNB) selected NB index and (CQI or Repetition) on corresponding NB), (c) PMI와 함께 광대역 (CQI 또는 반복)(wideband (CQI or Repetition) with PMI), (d) PMI 없이 광대역 (CQI 또는 반복)(wideband (CQI or Repetition) without PMI)가 있을 수 있다.
- 수신 안테나 포트(Rx. antenna port) 수(특징적으로, 수신 안테나 포트 포트 수가 1 보다 큰 경우에 CQI(또는 반복)는 가장 높은 값(highest value)(또는 가장 낮은 값(lowest value))으로 고정)
- 상기 DQI 정보 구성은, CE 레벨 그리고/또는 Msg.2 MPDCCH 반복(예, 실제 전송 횟수 또는 최대 반복 횟수) 및 호핑 여부 그리고/또는 PRACH 포맷 및 반복 및 호핑 여부에 따라서 상이할 수 있음
- EDT 요청(EDT request)를 위해서 Msg.1을 전송하였거나, EDT 과정의 일부로 랜덤 접속 절차가 진행 중이었다면, CQI를 선택해서 보고 하도록 설정될 수 있음
- 상기에서 CQI 측정에 가정한 반복 횟수는 DQI 단말기가 직접 선택하여 이를 DQI에 포함하여 CQI와 함께 기지국에 알려줄 수도 있지만, 기지국이 직접 설정해주거나, 또는 특정 파라메터에 의해서 유도될 수 있도록 정의될 수도 있다. 즉, 단말기가 CQI 측정에 가정한 반복 횟수는 단말기가 직접 선택할 수 있는 값이 아니라, 이미 설정된 특정 값일 수 있다. 해당 값은, 예를 들어 기지국으로부터 직접 방송(broadcast)될 수도 있으며, 또는 CE 레벨 및 단말기가 모니터링하거나 CQI 계산에 참조(reference)로 할 채널의 파라메터에 따라서 결정되는 관계로 정의될 수도 있다.
● DQI 범위(DQI range)
- SIB에서 N개의 CQI(또는 반복) 값의 범위에 대한 세트를 설정해주고, RAR에서 N개 세트 중에서 특정 세트를 지시
(1) 각 세트 별로 단말기가 DQI 유도 과정에서 가정할 수 있는 R_TM 및/또는 R_DQI 및/또는 R_CQI 및/또는 R_Rep가 상이하게 정의될 수 있다.
* 여기서 R_TM, R_DQI, R_CQI, R_Rep는 각각 참조 TM(reference TM), 참조 DQI-RS(reference DQI-RS), 참조 CQI(reference CQI), 참조 반복 횟수(reference repetition number)를 나타내며, 단말기는 상기 정보 중 일부가 있어야, DQI 구성 정보에 적합한 정보를 추정할 수 있다. 여기서, 참조(reference)라는 의미는 DQI가 나타내고자 하는 가상의(hypothetical) 하향링크 채널의 수신 성능을 유도함에 있어서, 가상의 하향링크 채널 전송에 사용될 것이라고 가정할 수 있는 파라메터이다.
- 수신 안테나 포트(Rx. antenna port) 수에 따라 사용할 수 있는 DQI 세트(set)가 상이할 수 있으며, 이런 경우에 수신 안테나 포트(Rx. antenna port) 수 또는 사용한 세트 정보를 단말기가 추가로 알려줄 필요 있음
- 상기 DQI 범위 구성 및 세트 수는, CE 레벨 그리고/또는 Msg.2 MPDCCH 반복(예, 실제 전송 횟수 또는 최대 반복 횟수) 및 호핑 여부 그리고/또는 PRACH 포맷 및 반복 및 호핑 여부에 따라서 상이할 수 있음
단말기가 Msg2의 MPDCCH(or NPDCCH) 및/또는 (N)PDSCH를 성공적으로 복조/검출할 때까지 수신한 MPDCCH(or NPDCCH) 및/또는 (N)PDSCH의 반복 수 또는 서브프레임 수가 특정 값보다 큰지 작은지에 따라서 DQI 보고의 구체적인 동작이 달라지는 경우(예를 들어, hypothetical MPDCCH(or NPDCCH) 및/또는 (N)PDSCH 반복수를 보고 하거나 또는 단말기가 성공적인 MPDCCH(or NPDCCH) 및/또는 (N)PDSCH 검출하기까지 수신한 서브프레임 또는 반복 또는 병합 레벨(aggregation level)에 상응하는 값을 보고 하거나 등)에 해당 특정 값은 다음과 같이 설정될 수 있다.
● 특정 값은 기지국에 의해서 설정되는 값이거나, 또는 RAR과 관련된 채널(예를 들어, MPDCCH(또는 NPDCCH) 및/또는 (N)PDSCH)의 최대 반복 전송 값의 특정 비율로 미리 정해지는 값(예, 기지국에 의해서 설정 가능하거나 또는 표준에 고정되는 값일 수 있으며, 비율의 범위/값 또한 RAR과 관련된 채널(예를 들어, MPDCCH(or NPDCCH) 및/또는 (N)PDSCH)의 최대 반복 전송 값 및/또는 주파수 호핑 여부 등에 따라서 상이할 수 있음)
● 단말기가 성공적인 MPDCCH(또는 NPDCCH) 및/또는 (N)PDSCH 검출하기까지 수신한 서브프레임 또는 반복 또는 병합 레벨(aggregation level)에 상응하는 값을 DQI 정보로 보고하는 경우에, 해당 값의 구체적인 결정은 다음과 같음
■ DQI 정보가 다수의 반복 횟수로 미리 정의/주어진 경우에, DQI 값은 사전에 주어진 값들 중에서 실제 수신한 서브프레임 또는 반복 값보다 같거나 큰 값 중에서 가장 작은 값
E.10 하향링크 품질 정보 보고 모드(Downlink Quality Information Report Mode)
본 절에서는 DQI를 보고하는 다양한 모드에 대해서 제안한다. 상술한 바와 같이, MTC와 NB-IoT 시스템은 다양한 CE 레벨(CE level) 및 CE 모드(CE mode)를 지원하며, 특히 MTC의 경우에는 DL NB 자원이 주파수 호핑(frequency hopping)하는 특성까지 있기 때문에, 이를 고려해서 각 설정에 적합한 DQI 보고 모드를 지원할 필요가 있다. 제안하는 방법은 본 특허에서 기술된 다른 제안과 배치되지 않는 경우에 모두 적용될 수 있다.
● CE 모드 A는 CQI 기반의 DQI를 보고한다.
- 주파수 호핑이 인에이블된 경우(If frequency hopping is enabled) (rar-HoppingConfig is set)
(1) UE 선택 서브밴드 피드백(UE-selected subband feedback)(Aperiodic CSI report, Mode 2-0)
* 기존 CSI 보고 동작
Figure PCTKR2019010167-appb-img-000050
* 제안하는 방법
- 단말기는 기존 BL/CE UE를 위한 CSI 보고 모드 2-0와 유사한 방법을 따르며, 아래와 같은 변경 및 추가 사항이 요구된다
- R CSI : 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RAR MPDCCH 반복 횟수(실제 MPDCCH 반복 전송 횟수 또는 최대 반복 전송 횟수 mpdcch-NumRepetition-RA)에 의존적인 값으로 정의될 수 있음. 이 값은 SIB와 같은 RRC 시그널링(signaling) 혹은 Msg.2를 통해서 시그널링될 수 있음
- 선호하는 NB(Preferred NB) : RAR에 포함된 UL 그랜트에서 전달 받은 정보 중에서 Msg.3/4 MPDSCH NB 인덱스로부터 유도된 Msg.3/4 MPDCCH를 모니터링(monitoring)하기 위해서 사용되는 NB와 주파수 도메인의 CSI 참조 자원(CSI reference resource in the frequency domain) 중에서 가장 가까운 NB로 선택될 수 있다. 이때, 단말기는 Msg.2 수신을 위해서 MPDCCH 모니터링 과정에서 CRS 기반으로 DQI(CSI)를 특정 단계까지만 계산하고, 실제 DQI(CQI) 정보는 RAR을 해석한 이후에 광대역 CSI(wideband CSI)와 선호하는 NB(preferred NB)의 DQI(CQI)를 온전히 계산할 수 있다.
- CSI 참조 자원 : 본 특허의 DQI-RS로 대체될 수 있다.
(2) PMI 없이 광대역 CQI(Wideband CQI without PMI) (Periodic CSI report, Mode 1-0)
* 기존 CSI 보고 동작
- One wideband CQI conditioned on transmission rank 1
* 제안하는 방법
- 단말기는 기존 BL/CE UE를 위한 CSI 보고 모드 1-0과 유사한 방법을 따르며, 아래와 같은 변경 및 추가 사항이 요구된다
- R CSI : 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RAR MPDCCH 반복 횟수(예, 실제 MPDCCH 반복 전송 횟수 또는 최대 반복 전송 횟수 mpdcch-NumRepetition-RA)에 의존적인 값으로 정의될 수 있음. 이 값은 SIB와 같은 RRC 시그널링 혹은 Msg.2를 통해서 시그널링될 수 있음
(3) PMI와 함께 광대역 CQI(Wideband CQI with PMI) (Periodic CSI report, Mode 1-1)
* 기존 CSI 보고 동작
- One wideband CQI and PMI within restricted subset of PMI if configured
* 제안하는 방법
- 단말기는 기존 BL/CE UE를 위한 CSI 보고 모드 1-1 방법을 따르며, 아래와 같은 변경 및 추가 사항이 요구된다
- R CSI : 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RAR MPDCCH 반복 횟수(예, 실제 MPDCCH 반복 전송 횟수 또는 최대 반복 전송 횟수 mpdcch-NumRepetition-RA)에 의존적인 값으로 정의될 수 있음. 이 값은 SIB와 같은 RRC 시그널링 혹은 Msg.2를 통해서 시그널링될 수 있음
- R_TM : 참조 전송 모드(reference transmission mode)가 정의될 수 있으며, 이는 기지국으로부터 SIB와 같은 RRC 시그널링 혹은 Msg.2를 통해서 시그널링되거나 또는 기지국 CRS 포트 수에 따라서 결정될 수 있다. 뿐만 아니라, 기지국이 Msg.3 수신 이후에 사용할 PDSCH TM을 미리 고려해서 이를 단말기에게 알릴 수도 있다.
- PMI 서브세트(subset) : 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RTM에 따라서 정의될 수 있다.
- 주파수 호핑이 디스에이블된 경우(If frequency hopping is disabled)
(1) UE 선택 서브밴드 피드백(UE-selected subband feedback) (Aperiodic CSI report, Mode 2-0)
* 기존 CSI 보고 동작
- wideband CQI on all narrowband(s) in the CSI reference resource
- preferred narrowband index
- Differential CQI value = 0
* 제안하는 방법
- 단말기는 기존 BL/CE UE를 위한 CSI 보고 모드 2-0 방법을 따르며, 아래와 같은 변경 및 추가 사항이 요구된다
- R CSI : 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RAR MPDCCH 반복 횟수(예, 실제 MPDCCH 반복 전송 횟수 또는 최대 반복 전송 횟수 mpdcch-NumRepetition-RA)에 의존적인 값으로 정의될 수 있음. 이 값은 SIB와 같은 RRC 시그널링 혹은 Msg.2를 통해서 시그널링될 수 있음.
- CSI 참조 자원(CSI reference resource) : Msg.3/4 MPDCCH NB가 Msg.2 MPDCCH와 주파수 도메인 자원(frequency domain resource)가 다를 수 있기 때문에, 단말기는 CSI 참조 자원에 주파수 호핑이 적용된 채널을 추가로 사용하도록 정의될 수 있다. 예를 들어, SIB1-BR 및 다른 SIB가 있을 수 있다.
- 선호하는 NB(Preferred NB) : RAR에 포함된 UL 그랜트에서 전달 받은 정보 중에서 Msg.3/4 MPDSCH NB 인덱스로부터 유도된 Msg.3/4 MPDCCH를 모니터링하기 위해서 사용되는 NB와 주파수 도메인의 CSI 참조 자원(CSI reference resource in the frequency domain) 중에서 가장 가까운 NB로 선택될 수 있다. 이때, 단말기는 Msg.2를 위한 MPDCCH 모니터링 과정에서 CRS 기반으로 CSI를 특정 단계까지만 계산하고, 실제 CSI (CQI) 정보는 RAR을 해석한 이후에 광대역 CSI(wideband CSI)와 선호하는 NB(preferred NB)의 CSI를 온전히 계산할 수 있다.
● CE 모드 B는 필요한 반복 전송 횟수(repetition number) 기반의 DQI를 보고한다.
- 주파수 호핑이 인에이블된 경우(If frequency hopping is enabled) (rar-HoppingConfig is set)
(1) 상기 CE 모드 A와 동일하지만 CQI가 아닌 반복(repetition)(또는 반복 횟수(repetition number))을 DQI로 보고한다. 이 경우, DQI 보고는 CE 모드 A와 관련하여 설명된 방식에서 CQI 대신 DQI에 기반하여 측정/보고될 수 있다. 일 예로, DQI 보고는 광대역 DQI 만을 포함할 수도 있고, 또는 광대역 DQI 뿐만 아니라 선호하는 NB(preferred NB) 상에서 측정된 협대역 DQI 및 선호하는 NB의 위치에 관한 정보(예, preferred NB index)를 포함할 수 있다. 또한, 예를 들어, 광대역 DQI 및/또는 협대역 DQI는 E.1 절에서 설명한 방식에 기반하여 측정될 수 있고 E.1 절에서 설명한 (반복 횟수(R) 및/또는 병합 레벨(AL)과 관련된) 정보를 포함할 수 있다. 보다 구체적인 예로, 광대역 DQI 및/또는 협대역 DQI는 RSRP/RSRQ 값, 및/또는 Msg.2의 (N)PDCCH 또는 MPDCCH 또는 (N)PDSCH 수신 정보, 및/또는 Msg.4의 (N)PDCCH/MPDCCH 수신 성능 정보, 및/또는 Msg.4의 (N)PDSCH 수신 성능 정보를 포함할 수 있다.
(2) R CQI : 참조(reference)로 사용할 수 있는 CQI 값이 정의될 필요가 있으며 이 값은 이 MCS(코드 레이트(code rate), 레이어 개수(number of layers), 변조 차수(modulation order) 등)을 통해서 특정 타겟 수신 성능(예, BER 등)을 만족시키는 반복 횟수를 보고하기 위한 참조 MCS(reference MCS) 값으로 정의될 수 있다. 이는 셀 공통으로(cell common하게) 정의되거나 또는 CE 레벨 별로 정의되거나 또는 RAR MPDCCH 반복 횟수(예, 실제 MPDCCH 반복 전송 횟수 또는 최대 반복 전송 횟수 mpdcch-NumRepetition-RA)에 의존적인 값으로 정의될 수 있으며, 또한 Msg.2 MPDCCH로부터 간접적으로 유도된 값일 수 있다. 이 값은 SIB와 같은 RRC 시그널링 혹은 Msg.2를 통해서 시그널링될 수 있음. 또는, 예를 들어, Msg.2 MPDCCH의 변조 차수와 TBS(또는 고정된 해당 DCI 포맷으로부터 유도되는 비트 수)이 이를 위한 파라메터로 사용될 수 있으며, 참조 병합 레벨(reference aggregation level)은 독립적으로 단말기에게 주어질 수 있다.
● 상기 모든 방법에서 R_AL이 정의될 수 있다.
- 여기서 R_AL은 MPDCCH의 참조 병합 레벨(reference aggregation level of MPDCCH)를 의미하며, 이는 DQI 구성 정보에 적합한 정보를 추정할 수 있다. 여기서, 참조(reference)라는 의미는 DQI가 나타내고자 하는 가상의 하향링크 채널(예를 들어, MPDCCH)의 수신 성능을 유도함에 있어서, 가상의 하향링크 채널 전송에 사용될 것이라고 가정할 수 있는 파라메터를 의미한다.
DQI 보고 모드(DQI report mode)(예를 들어, 광대역(wideband) 또는 (기지국 또는 UE에 의해) 선택되거나 또는 선호하는 서브밴드/협대역(selected (by eNB or UE) or preferred subband/narrowband))가 다양한 경우에, 이를 결정 방법은 아래와 같을 수 있다.
● Msg2와 Msg3/Msg4의 협대역(또는 NB-IoT 캐리어) 관계에 의해서 DQI 보고 모드가 결정될 수 있음
■ 예를 들어, Msg2와 Msg3/Msg4의 협대역(또는 NB-IoT 캐리어)가 상이한 경우에는 광대역 DQI(wideband DQI)를 보고하며, 동일한 경우에는 협대역 DQI(narrow DQI(or narrowband DQI))를 포함해서 보고할 수 있음
■ Msg2와 Msg3/Msg4의 협대역(또는 NB-IoT 캐리어)가 상이한지 여부에 따라서 DQI는 CQI와 반복 횟수(repetition number)/병합 레벨(aggregation level) 중에서 달리 선택적으로 정의될 수 있으며, 값의 범위 또한 달리 정의될 수 있음
상기에서 광대역(wideband)는 기지국이 Msg.2 전송에 사용한 실제 NB만을 기준으로 할 수도 있다. 즉, 기지국이 DQI 측정의 기준이 되는 참조 자원(예를 들어, Type2 CSS)의 주파수 호핑을 인에이블(enable)한 경우에도, 경우에 따라서는 일부 주파수 자원(NB)만 전송에 사용될 수도 있다. 예를 들어, 반복 전송 횟수가 작은 경우에는 주파수 호핑에 사용할 수 있는 모든 NB를 기지국이 사용하지 않았을 수도 있다.
E.11 Non-BL UE를 위한 하향링크 품질 정보 보고(Downlink Quality Information Report)
CE 모드로 동작하고 있는 non-BL UE는 둘 이상의 수신 안테나를 사용할 수 있으며, 이를 기반으로 DQI를 측정하고 보고할 수 있다. 이때, 기지국은 단말기의 수신 안테나 수를 정확히 알지 못할 수 있으며, 또한 DQI 측정에 사용되는 수신 안테나 수에 따라서 적합한 DQI 값의 범위가 상이할 수 있다. 이를 고려해서, non-BL UE의 DQI 측정 및 보고는 아래와 같은 특징을 가질 수 있다.
● 기지국은 이와 같은 단말기가 DQI 측정을 위해서 사용할 수 있는 수신 안테나 수를 설정할 수 있음
● 이와 같은 단말기가 DQI를 측정할 때, 전력 소모를 줄이기 위해서 단일 안테나를 기반으로 DQI를 측정할 수 있지만, 만약 DQI 값이 특정 값 또는 그 보다 나쁜 품질을 나타내는 경우에는 둘 이상의 수신 안테나를 사용해서 DQI를 측정/보고하도록 강제되거나 또는 설정될 수 있음
E.12 하나 이상의 NB-IoT 하향링크 캐리어(NB-IoT downlink carrier)에서 하향링크 품질 정보(Downlink Quality Information)를 측정하고 보고하는 방법
단말기는 하나 이상의 NB-IoT 하향링크 캐리어에서 DQI 측정을 수행하고 이에 대한 결과를 보고하도록 지시 받을 수 있다. 이는 특히 하향링크 캐리어를 우회(redirection)시키기 위한 보조 정보로 활용하기 위해서 네트워크(network)가 지시/설정할 수 있다.
● 상기 캐리어 집합은 상위 계층 시그널링(high layer signaling or higher layer signaling)(예를 들어, 시스템 정보 또는 RRC 메시지)으로 설정되거나, 또는 상위 계층 시그널링으로 설정된 캐리어 집합 중에서 단말기가 실제 측정해서 보고해야 하는 캐리어(들)를 DCI(예를 들어, (N)PDCCH 오더(order) 기반의 (N)PRACH를 트리거(trigger) 하는)에서 지시될 수 있음
■ 상기 캐리어 집합(단말기가 측정을 수행해야 하는)은 앵커 캐리어(anchor carrier)와 하나의 비-앵커 캐리어(non-anchor carrier)의 조합으로 구성될 수 있음(이는 단말기의 측정에 따른 추가 전력 소모를 줄이기 위해서 CE 레벨 선택 과정에서 단말기가 이미 수신한 것으로 예상할 수 있는 앵커 캐리어를 측정 캐리어에 추가하는 것은 단말기의 수신 복잡도 및 전력 소모에 영향이 크지 않을 수 있기 때문이다)
◆ 앵커 캐리어의 측정 구간(measurement period)는 CE 레벨 선택을 위한 (N)PRSRP 구간으로 제한될 수 있음
◆ 비-앵커 캐리어의 측정 구간은 Msg2 수신 이후로 제한될 수 있음
● 상기 추가적인 측정을 수행하기 위해서 측정 갭(measurement gap) 또는 시간이 추가로 주어질 수 있음
■ 만약 (N)PDCCH 오더 기반의 (N)PRACH로 캐리어(들)가 주어지는 경우, 단말기가 해당 DCI 이후에 Msg3를 전송하기 위한 추가 시간(예를 들어, 스케줄링 지연(delay)를 확장 해석하거나 달리 해석할 수 있음)이 설정될 수 있음
■ 랜덤 접속 절차를 수행하기 이전에 특정 시간 동안 하향링크 스케줄링(downlink scheduling)을 기대하지 않도록 허용될 수 있으며, 이는 단말기가 추가로 측정 수행할 NB-IoT 하향링크 캐리어의 위치, 동작 모드(operation mode), 캐리어 타입(예, 앵커 캐리어 또는 비-앵커 캐리어) 등에 따라서 상이할 수 있음 (즉, 특정 검색 공간 전체 또는 일부를 단말기가 수신하지 않도록 허용될 수 있음)
● 단말기는 Msg1과 연관된 Msg2 수신 캐리어가 아닌 다른 캐리어(들)에서 측정한 결과를 보고할 수 있음
■ 단말기는 측정 결과를 기반으로 선호하는 NB-IoT 하향링크 캐리어(preferred NB-IoT downlink carrier)를 선택하고, 해당 정보만을 보고하도록 설정될 수 있음(이는 측정 보고를 위한 필드(field) 구성에 제약이 있을 수 있기 때문)
■ 만약 상기 정보와 함께, 해당 캐리어의 하향링크 채널 품질을 보고해야 하는 경우 그리고 하향링크 채널 품질 정보는 Msg2의 설정(예를 들어, Msg2 NPDCCH의 최대 반복 전송 횟수)에 따라 구체적인 해석이 달라지는 경우, Msg2 설정은 Msg1 전송에 연관된 하향링크 캐리어의 Msg2 설정에 기반하거나 또는 측정을 기반으로 선택된(또는 보고하는) 하향링크 캐리어의 Msg2 설정을 기반으로 하향링크 채널 품질 정보가 결정/해석 될 수 있음
◆ 이때, 선택된 캐리어에 Msg2 설정이 따로 없는 경우라면, 기존 Msg1 전송과 연관된 하향링크 캐리어의 Msg2 설정을 따르거나 또는 이때 참고할 Msg2 설정이 별개로 정의되거나 주어질 수 있음
■ 단말기는 측정 결과를 기반으로 선호하는 NB-IoT 하향링크 캐리어(preferred NB-IoT downlink carrier)를 선택하고, 해당 하향링크 캐리어에서 Msg2를 기대할 수 있는 UL 캐리어에 Msg1을 전송하도록 허용될 수 있음
■ 선호하는 NB-IoT 하향링크 캐리어를 보고한 경우에, 단말기는 해당 캐리어에서 Msg2 및/또는 Msg3/4와 관련된 NPDCCH 모니터링을 수행하도록 설정될 수 있음
■ 선호하는 NB-IoT 하향링크 캐리어를 선택할 수 있는 기준 값을 기지국이 제시할 수 있음. 예를 들어, 단말기가 추정한 반복 횟수(repetition number)(that the UE needs to decode hypothetical NPDCCH in Type2-CSS with BLER of 1% upon the NB-IoT downlink carrier)가 특정 값을 넘지 않는 것으로 제한할 수 있음
■ 만약 특정 하향링크 캐리어만 측정 수행하는 경우(그러나 Msg1에 연관된 Msg2 캐리어가 아닌 경우)에는 지시 받은 캐리어에 대해서 DQI를 측정/보고할 수 있음
◆ 이때, DQI 정보가 Msg2 설정을 기반으로 해석/결정되는 경우에, Msg2 설정 정보는 여전히 Msg1와 연관된 Msg2의 캐리어에 기반하거나 또는 지시 받은 (측정 수행하는) 캐리어의 Msg2 설정에 기반할 수 있음
■ 상기 선호하는 캐리어는 수신 성능 관점에서 단말기가 가장 선호하는 캐리어이거나 또는 가장 선호하지 않는 캐리어일 수 있음
◆ 상기 선호하는 캐리어는 하향링크 수신 성능 품질이 가장 좋은 것으로 예측되는 캐리어를 의미하며, 선호하지 않는 캐리어는 하향링크 수신 성능 품질이 가장 나쁠 것으로 예측되는 캐리어를 의미한다. 여기서 가장 선호하지 않는 캐리어 정보를 보고하는 경우에 DQI는 반복 횟수가 따로 보고되지 않거나 또는 다른 캐리어의 DQI 정보(예를 들어, 반복 횟수) 중에 보수적인 값(예를 들어, 가장 선호하지 않는 캐리어를 제외한 캐리어에서 반복 횟수가 가장 큰 값)을 포함해서 보고할 수 있다. 선호하지 않는 캐리어 정보를 보고하는 이유는 기지국이 단말기의 하향링크 캐리어를 우회(redirection)시키는 경우에, 단말기가 해당 캐리어는 하향링크 캐리어로 설정되는 것을 원하지 않는다는 정보로 활용할 수도 있기 때문이다.
■ 상기 DQI 보고는 둘 이상의 NB-IoT 하향링크 캐리어에서 측정한 DQI 정보를 포함할 수 있음
◆ 각 DQI 정보는 동일 시점에 전송될 수도 있지만, 서로 다른 시점 또는 자원으로 보고 될 수도 있음
◆ 동일 시점에 보고되는 경우에, DQI 값의 범위 및/또는 표현 간격은 하나의 NB-IoT 하향링크 캐리어에 대한 DQI 정보보다 작거나 좁을 수 있음
● Msg.1을 전송할 수 있는 캐리어에 대응하는 Msg.2 수신을 기대할 수 있는 캐리어가 다수인 경우에, 단말기는 해당 다수의 하향링크 캐리어 중에서 하향링크 채널의 품질이 가장 좋은(예를 들어, 특정 채널을 가장 적은 반복 수로 특정 수신 성능을 만족할 수 있는)을 우선 선택하고, 선택된 하향링크 캐리어에 대응하는 상향링크 캐리어에 Msg.1 전송을 시도할 수 있다.
■ 이때, 단말기는 CQI를 전송하면서(예를 들어, Msg.3에), 자신이 해당 상향링크 캐리어에 Msg.1을 전송한 이유가 하향링크 채널 품질이 가장 좋기 때문이라는 것을 알릴 수 있으며, 해당 정보는 선택된 하향링크 캐리어에서 필요한 CQI 정보(예를 들어, 특정 채널을 특정 수신 성능을 만족하면서, 수신을 기대할 수 있는 가장 적은 반복 수)를 함께 보고할 수 있다.
■ 이는 기지국에게 랜덤 접속 과정 이후에, 다른 하향링크 캐리어를 자신에게 할당하는 것을 피해달라는 간접적인 정보로 활용될 수 있다.
E.13 하향링크 품질 정보 보고를 위한 물리 상향링크 채널(Physical uplink channel for Downlink Quality Information Report)
CQI 정보가 Msg.3에 전송되는 경우에, 해당 정보가 (N)PUSCH에 전송되는 방법은 크게 레이트-매칭(rate-matching)과 펑처링(puncturing) 기법이 있을 수 있다. 레이트-매칭은 (N)PUSCH 내에서 CQI 정보가 전송되는 RE를 제외한 RE에 Msg.3에 전송되어야 할 데이터를 할당하는 것이며, 이와 같은 경우에는 단말기와 기지국 사이에 데이터 전송에 사용될 RE 수에 오해가 없도록 할 필요가 있다. 예를 들어, RE 수에 대한 오해가 발생하는 경우에, 기지국은 데이터 디코딩(data decoding)에 참고할 코드 레이트(code rate)를 잘못 이해할 수 있으며, 이와 같은 경우에는 디코딩을 성공적으로 수행할 수 없는 문제가 발생할 수 있다. 반면, 펑처링 기법은 Msg.3에 전송되어야 할 데이터가 사용할 수 있는 RE 수에 CQI 전송에 필요한 RE 수와 위치를 고려하지 않고, 데이터 매핑을 수행하는 방법이다. 이는 단말기가 CQI를 전송할지 여부를 기지국이 모르는 상황에서도 Msg.3의 데이터 디코딩 관점에서 코드 레이트에 대한 오해가 없는 장점이 있다. 상기 설명한 레이트-매칭과 펑처링은 단말기가 CQI를 전송할지 여부에 대한 정보를 기지국이 디코딩 시도 이전에 알 수 있는지 여부에 따라서 선택적으로 적용될 수 있다. 예를 들어, 초기 랜덤 접속 과정에서 Msg.3에 CQI를 전송하는 경우에는 CQI 정보가 펑처링 기법으로 전송될 수 있으며, RRC 연결 모드(RRC connected mode)에서 기지국의 요청에 의한 CQI 정보가 Msg.3에 전송되는 경우에는 레이트-매칭 기법이 사용될 수 있다. 또한, RRC 유휴 모드(RRC idle mode)에서 단말기가 기지국으로부터 사전에 설정된 상향링크 자원(PUR, Preconfigured Uplink Resource)에 CQI를 전송하는 경우에는, 레이트-매칭 기법이 적용될 수 있다. 만약, PUR 설정을 RRC 연결 모드가 아닌 RRC 유휴 모드에서 설정 받은 경우에는, 기지국이 단말기의 CQI 측정 및 보고를 지원할 수 있는 능력(capability)에 대한 정보가 없을 수 있기 때문에, 펑처링 기법이 적용될 수 있다.
E.14 RRC 연결 모드(RRC connected mode)에서 CQI 보고
기지국은 NB-IoT 단말기를 랜덤 접속 과정에서 비-앵커 캐리어(non-anchor carrier)로 우회(redirection)시킬 수 있다. 즉, 단말기가 Msg.2와 Msg.4를 수신한 하향링크 캐리어가 아닌(즉, 단말기가 Msg.3에 보고한 CQI가 유도된 하향링크 캐리어가 아닌) 비-앵커 캐리어를 단말기에게 할당하고, 이후 단말기는 설정 받은 비-앵커 캐리어에서 후속 동작을 수행하도록 요구될 수 있다. 이와 같은 경우에, 기지국은 해당 비-앵커 캐리어에서 단말기의 CQI 정보를 알 수 없기 때문에, 랜덤 접속 과정에서 단말기가 보고했던 CQI와 별개로, 설정 받은 해당 캐리어에서 CQI를 측정해서 보고할 것을 요청할 필요가 있을 수 있다. 이는 (N)PDCCH 오더(order) 기반의 랜덤 접속 과정에서 Msg.2로부터 지시 받은 (N)PUSCH(이후, Msg.3라고 칭함)에 CQI를 보고하는 절차를 따를 수 있으며, 이와 같은 경우에 Msg.3에 CQI를 보고할지 여부는 Msg.2의 MAC RAR에서 사용되지 않는 ‘R’ 비트(또는 유보 비트(reserved bit))를 사용해서 지시될 수 있다. 다만, 이와 같은 경우에 Msg.2를 성공적으로 검출한 이후에 CQI를 측정할 시간이 충분하지 않을 수 있기 때문에, Msg.1 전송을 트리거 하는 DCI(예, (N)PDCCH 오더(order) 기반의 Msg.1 전송을 요청하는 DCI)에서 사용되지 않거나 또는 항상 특정 값으로 설정된 특정 상태(state)나 비트(bit)를 활용해서 지시 받을 수도 있다.
이때, 단말기가 측정하는 CQI는 랜덤 접속 과정에서 CQI 보고가 사용되는 경우의 CQI 정의와 다를 수 있다. 예를 들어, 초기(initial) 랜덤 접속 과정에서는 USS에 대한 정보가 없기 때문에, Msg.2를 검출하기 위한 자원 설정과 관련된 파라메터(예를 들어, 타입-2 CSS의 최대 반복전송 횟수)를 기준으로 CQI가 정의될 수 있지만, 상기와 같이 RRC 연결 모드에서 CQI 측정 및 보고가 요청되는 경우에는 이미 설정 받은 USS 관련 파라메터(예를 들어, 최대 반복전송 횟수)를 기준으로 정의될 수 있다. 일 예로, CQI는 Msg.2와 관련된 PDCCH(예, MPDCCH 또는 (N)PDCCH)를 검출하는데 성공한 실제 반복 횟수 또는 (가상의) PDCCH(예, MPDCCH 또는 (N)PDCCH)를 디코딩하는데 필요한 반복 횟수로 정의될 수 있고, 이 경우 CQI는 최대 반복전송 횟수를 기준으로 정의될 수 있다. 보다 구체적인 예로, CQI는 최대 반복전송 횟수(Rmax)에 대한 비율로서 정의될 수 있으며, Msg.2와 관련된 PDCCH(예, MPDCCH 또는 (N)PDCCH)를 검출하는데 성공한 실제 반복 횟수 또는 (가상의) PDCCH(예, MPDCCH 또는 (N)PDCCH)를 디코딩하는데 필요한 반복 횟수가 {1, 2, 4, 8, …} 중 하나의 값으로 보고될 경우 CQI는 {Rmax, Rmax/2, Rmax/4, Rmax/8, …} 중 하나의 값으로 정의될 수 있다.
뿐만 아니라, 앞서 설명한 CSS와 USS 중에서 최대 반복 전송 횟수가 크거나 작은 값을 기준으로 CQI가 정의될 수도 있으며, 기지국의 특정 시그널링(signaling)으로부터 둘 중에서 선택될 수도 있다. 만약, CQI가 USS를 기준으로 정의되는 경우에도, CQI 측정을 위해서 단말기가 수신하는 NRS는 CSS 타입 2(CSS Type 2)에 포함되는 것을 특징으로 할 수도 있으며, 이는 비-앵커 캐리어에서 타입 2 CSS에는 NRS를 항상 기대할 수 있기 때문이다. 또한, NPDCCH 오더 기반의 Msg.1 전송을 기지국이 지시하는 경우에, 기지국은 Msg.1 자원의 CE 레벨을 단말기의 실제 CE 레벨과 상이한 값으로 설정할 수 있지만, 단말기는 기지국으로부터 지시 받은 Msg.1과 관계된 CE 레벨이 아닌 자신의 하향링크 CE 레벨을 기준으로 CQI를 유도할 수 있다.
E.15 RRC 유휴 모드(RRC Idle mode)에서 PUR 자원에 CQI를 보고하는 방법
기지국으로부터 사전에 설정된 상향링크 자원(PUR, Preconfigured Uplink Resource)에 단말기가 RRC 유휴 모드에서 (N)PUSCH를 전송하는 경우에, 그리고 PUR 전송에 대한 피드백(feedback) 정보 수신 등의 이유로 하향링크 채널을 모니터링 해야 하는 경우에, 기지국은 단말기의 CQI 정보를 필요로 할 수 있다. 즉, 기지국은 해당 단말기의 하향링크 CQI 정보를 활용하여 (N)PDCCH 또는 MPDCCH 그리고/또는 (N)PDSCH의 반복전송 횟수 그리고/또는 병합 레벨(aggregation level) 그리고/또는 코드 레이트(code rate)(자원 크기 및 MCS 등으로 결정될 수 있는) 설정을 할 수 있다. 이는 초기 랜덤 접속(initial random access) 과정에서 기지국이 단말기의 CQI 정보를 필요로 하는 이유와 유사할 수 있지만, 사용되는 상향링크 채널 구조가 초기 랜덤 접속과 PUR 전송이 상이하기 때문에, 아래와 같은 특징이 추가로 필요할 수 있다.
1) CQI 정의
A. PUR 타입에 따라서 하향링크 피드백 채널 구조가 다를 수 있기 때문에, CQI 정의가 PUR 타입과 관계 있을 수 있음
① PUR 타입은 PUR의 시간/주파수 자원이 UE 전용 자원(UE dedicated resource)이거나, 시간/주파수 자원은 다수의 단말이 공유할 수 있지만 공간(spatial) 그리고/또는 코드(code) 자원이 UE 전용으로(UE dedicated하게) 설정되거나(예를 들어, 충돌(collision)은 발생할 수 있지만, 경쟁(contention)은 발생하지 않는), 다수의 단말이 모든 자원을 공유할 수 있는(예를 들어, 경쟁이 발생할 수 있는) 타입이 있을 수 있다.
② 상기 PUR 타입에 따라서 단말기가 모니터링(monitoring)하는 하향링크 채널의 구조가 다를 수 있으며, 예를 들어 모니터링해야 하는 하향링크 채널이 다수의 사용자 간에 공유 되거나(예를 들어, Msg.2의 RAR과 유사한 구조), 또는 모니터링해야 하는 하향링크 채널이 각 사용자 별로 설정(예를 들어, USS의 (N)PDCCH/MPDCCH)될 수 있다. 만약, 각 사용자 별로 하향링크 채널이 독립적으로 정의되는 경우에는 각 사용자별 CQI 정보를 보고하지만, 다수의 사용자가 하향링크 채널을 공유하고, 해당 채널을 디코딩(decoding)하면, 각 사용자의 정보가 개별적 또는 그룹 단위로 존재하는 경우에는, 특정 사용자만 CQI를 보고하도록 설정될 수 있다. 이는 해당 하향링크 채널을 공유하는 사용자 중에서 가장 하향링크 채널 품질이 나쁜 단말기의 수신 성능을 기준으로 해당 채널을 스케줄링 할 수 밖에 없기 때문일 수 있다. 또한, 기지국은 특정 조건을 만족하거나 만족하지 못하는 경우에만 CQI를 보고하도록 설정할 수도 있으며, 여기서 특정 조건은 예를 들어, 단말기가 측정한 CQI 정보가 특정 값보다 나쁜 경우를 의미하는 것일 수 있다. 여기서, CQI 정보는 초기 접속(initial access) 과정의 CQI 정보와 상이할 수 있으며, CQI를 유도하기 위해서 필요한 참조 채널은 PUR 타입 그리고/또는 하향링크 채널에 따라서 정의될 수 있다. 또한, PUR 설정을 RRC 연결 모드(RRC connected mode)에서 설정 받은 경우에는, 기지국이 이미 단말기의 하향링크 채널 품질 정보를 알고, 이를 기반으로 하향링크 채널 파라메터를 설정했을 수 있기 때문에, RRC 유휴 모드에서 PUR에 보고하는 CQI 정보는 기존 CQI 대비하여 설정 받은 하향링크 채널 파라메터의 일부 속성을 기준으로 차이 값(delta) 정보만을 보고하도록 정의될 수도 있다.
③ PUR에 CQI를 전송하는 경우에는 CE 모드에 관계없이 항상 PDSCH 기준의 CQI가 아닌 (N)PDCCH 또는 MPDCCH의 반복 전송 횟수 그리고/또는 병합 레벨(aggregation level)로 정의될 수 있다.
2) CQI 측정 시점
A. CQI 측정은 매 PUR 전송 단위가 아니라, PUR 전송을 계속 수행할 수 있는지 여부를 판별하기 위해서 하향링크 수신이 필요한 경우에 한해서 CQI 측정 및 보고가 수행될 수 있다. 즉, 단말기의 주변 환경 등의 변화로 설정 받은 PUR이 여전히 유효한지 판별하기 위한 동작이 수행되는 경우에만 제한적으로 이와 같은 동작이 요구될 수 있다.
E.16 RRC 연결 모드(RRC Connected mode)에서 제어 채널(control channel)의 CQI 정보를 보고 하는 방법
본 특허에서는 단말기의 하향링크 제어 채널(downlink control channel)(예, MPDCCH, NPDCCH, PDSCH)의 CQI 정보를 보고하는 방법을 제안하고 있으며, 이는 RRC 상태(state)에 무관하게 적용될 수 있다. 다만, RRC 연결 모드에서 단말기가 검출 시도하는 제어 채널은 RRC 유휴 모드(RRC idle mode)에서 검출 시도하는 제어 채널과 상이할 수 있으며, 이에 따라서 CQI를 측정하는 방법 및 보고 방식이 RRC 유휴 모드와 상이할 수 있다. 본 절에서는 RRC 연결 모드에서 하향링크 제어 채널의 CQI 정보를 보고하는 방법에 관련된 일련의 절차에 대해서 제안하며, 설명의 편의를 위해서 eMTC 시스템의 MPDCCH를 기준으로 설명한다. 제안하는 방법은 eMTC 시스템 뿐만 아니라 NB-IoT, LTE, NR 시스템과 같은 다른 통신 시스템에도 적용될 수 있으며, 제안하는 방법의 구체적인 예시 및 채널/신호 이름 등은 해당 시스템에서 동일/유사한 목적의 예시 및 채널/신호 이름으로 변경되어 해석될 수도 있다.
1) CQI를 측정하기 위한 기준 MPDCCH 포멧
A. RRC 연결 모드에서는 RRC 유휴 모드와 달리 단말기별로 설정된 USS(UE-specific Search Space)에서 MPDCCH를 모니터링(monitoring)할 수 있다. 이때, 단말기 별로 동일한 DCI 포맷(예, DCI 포맷 6-0A 와 6-1A 또는 6-0B와 6-1B)을 모니터링하더라도 USS의 DCI 사이크(size)는 단말기의 능력(capability)(예를 들어, sub-PRB, 64QAM, wideband 지원 여부) 등에 따라서 상이할 수 있기 때문에, CQI를 측정/계산하기 위한 참조 채널(reference channel)(예, hypothetical MPDCCH)이 다를 수 있다. 뿐만 아니라, CE 모드 A를 사용하는 단말기는 RRC 연결 모드에서 USS 뿐만 아니라 Type0-CSS도 모니터링할 수 있기 때문에, CQI를 측정하기 위한 기준 포맷(그리고/또는 검색 공간 타입 - CE 모드 A에 한하여)을 기지국이 설정하거나 또는 특정 약속에 의해서 정의될 필요가 있다. 즉, 동일한 단말기라 하더라도 기지국이 해당 단말기의 능력(capability)를 참고로 USS에 설정해준 파라미터(parameter) 정보에 따라서 참조 포맷(reference format)의 사이즈가 변경될 수 있다.
B. ECCE는 MPDCCH를 구성하는 단위이며, MPDCCH를 구성하기 위한 최소 ECCE 수는 MPDCCH가 전송되는 서브프레임 마다 상이할 수 있으며, 이에 따라서 CQI 정보의 기준이 달라질 수 있다. 즉, CQI가 MPDCCH의 반복 횟수 그리고/또는 AL을 대표하는 값(예, hypothetical MPDCCH 수신 검출 성능이 특정 기준을 만족할 수 있는 값)이라고 할 때, 이를 유도하기 위한 참조 MPDCCH 포맷(예, TS36.211 Table 6.8B.1-2)이 “기지국으로부터 지시”되거나 또는 “표준에 고정”되거나 또는 “해당 CQI 보고를 트리거하는 MPDCCH(예, 비주기적 CQI 트리거(aperiodic CQI trigger) 방식으로 MPDCCH로부터 해당 CQI 보고가 지시된 경우)가 수신된 시점 또는 해당 시점으로부터 상대적인 시점으로 고정 및 시그널링” 될 수 있다.
2) CQI 정보 구성
A. “MPDCCH 전송에 사용되는 호핑 NB(Narrow Band) 수 X 각 홉(hop) 내에서 MPDCCH 서브프레임이 반복 전송될 수 있는 수)”[이를 A라고 함] 보다 “참조MPDCCH 포맷(reference MPDCCH format)의 검색 공간(search space)에 설정된 Rmax(해당 검색 공간에서 MPDCCH가 반복 전송될 수 있는 최대 수) 또는 CQI로 보고 될 수 있는 최대 값(예, 단말기가 hypothetical MPDCCH를 특정 기준 성능 보다 같거나 높은 성능으로 검출하기 위해서 필요한 MPDCCH 반복 전송 수)”[이를 B라고 함]이 작은 경우에, A개 자원을 B 크기에 상응하는 구간으로 구분하고, 각 자원 구간 별로 CQI를 유도하고, 이 중에서 가장 나쁜(또는 좋은) CQI(예, 효율성(efficiency) 상으로 가장 낮은(또는 높은)) 값을 대표 CQI 값으로 선정할 수 있다. 이때, 해당 CQI의 기준이 된 자원 구간 정보도 함께 CQI 값에 포함될 수 있다.
B. USS는 단말기 별로 설정될 수 있기 때문에, 각 단말기는 설정 가능한 MPDCCH 또는 USS의 여러 구성 정보 중에서 자신이 선호하는 설정 정보(예, 최소한의 자원을 사용하여 MPDCCH 검출 성능이 특정 기준 성능을 만족할 수 있는 정보)를 CQI에 포함하여, 이를 기지국에 보고하고, 기지국은 이를 반영하여 해당 UE의 MPDCCH 설정 정보를 변경할 수 있다. 이때, 선호 정보에 포함될 수 있는 내용으로는 아래와 같은 정보가 있을 수 있다.
① MPDCCH의 자원 매핑 방식(예, 분산 매핑(distributed mapping) 또는 국부 매핑(localized mapping))
② MPDCCH의 호핑 인에이블(enable)/디스에이블(disable) 정보(특징적으로, 해당 정보는 MPDCCH CQI 보고를 트리거(trigger)하는 시점에서 MPDCCH의 호핑 설정이 인에이블되어 있는 경우에만 제한적으로 CQI에 포함될 수 있다)
③ MPDCCH PRB 세트(예, TS36.213 Table 9.1.5-1a, Table 9.1.5-1b, Table 9.1.5-2a, Table 9.1.5-2b 참조)이 2개 이상인 경우, CQI를 유도함에 있어서 가정한 PRB 세트 또는 단말기가 선호하는 MPDCCH PRB 세트 정보
3) CRS 포트(port)와 MPDCCH DMRS 포트의 관계를 활용하는 경우에 추가적인 특징
MPDCCH는 해당 MPDCCH를 구성하는 ECCE와 관계된 DMRS 포트와 동일한 프리코딩(precoding)이 적용되어 전송되며, CRS를 기준으로 해당 DMRS에 적용된 프리코딩 정보는 단말기에게 제공되지 않는 것이 일반적이다. 만약, MPDCCH 검출 성능 향상 등을 이유로 상기 모든 또는 일부 정보가 추가로 제공될 수 있는 경우에, 단말기는 이에 대한 정보(예를 들어, MPDCCH DMRS 포트와 CRS 포트의 관계)를 추가로 CQI와 함께 또는 별개로 기지국에 보고할 수 있다.
A. 상기 CRS와 DMRS 포트의 프리코더(precoder) 정보가 특정 값으로 고정될 수 있거나 또는 특정 시간/주파수 단위로 순환(cycling)할 수 있는 경우에, 단말기가 선호하는 프리코더 정보(예, 순환(cycling)을 선호한다는 정보를 포함할 수도 있으며, 또는 특정 프리코더를 사용해달라고 요청하거나, 또는 특정 방식으로 순환(cycling)을 요정하는 정보)를 보고할 수 있다. 또한, 기지국은 단말기가 MPDCCH CQI 정보를 유도할 때, 가정한 CRS와 DMRS 포트의 프리코더 관계를 지시할 수도 있다. 물론, 해당 정보는 특정 프리코더를 가정하도록 지시하기 위함이거나, 또는 특정 프리코더 조합은 가정하지 않아도 된다는 정보일 수도 있다.
B. 단말기가 MPDCCH CQI(예, hypothetical MPDCCH의 반복 전송 수 그리고/또는 AL)를 계산함에 있어서 가정할 프리코더 정보는 단말기가 가장 최근(또는 특정 시점 이전의 가정 최근)에 PDSCH에 대한 CSI를 보고했을 때 포함되었던 프리코더 정보(예, PMI)를 가정하도록 설정될 수도 있다.
E.17 본 발명의 제안에 따른 동작의 순서도
도 9는 단말이 Msg.1을 통해 DQI에 대한 정보를 기지국으로 전송(또는 보고)하는 방법의 순서도를 예시한다. 도 9의 예는 RRC 유휴 상태(RRC idle state)의 단말에 의해 수행할 수 있다. 도 9에 대한 설명에서 (RA-0) 내지 (RA-4)는 E. 절에서 설명된 랜덤 접속 과정을 지칭한다. 앞서 설명한 바와 같이 단말은 사용자 기기(user equipment, UE), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal), 무선 디바이스 등과 같은 다른 용어로 지칭될 수 있다.
S102 단계에서, 단말은 시스템 정보(또는 SIB(system information block))를 통해 랜덤 접속 관련 설정(configuration) 정보를 기지국으로부터 수신할 수 있다. 예를 들어, S102 단계는 (RA-0)에 대응될 수 있다. 따라서, 단말은 (RA-0)와 관련하여 설명된 동작 및/또는 본 발명에서 제안되는 동작(예, E.1 절 내지 E.16 절 참조)에 따라 랜덤 접속 관련 설정 정보를 포함하는 시스템 정보(또는 SIB)를 수신할 수 있다.
S104 단계에서, 단말은 수신된 설정 정보에 기초하여 랜덤 접속 프리앰블(또는 Msg.1)을 상기 기지국으로 전송할 수 있다. 예를 들어, S104 단계는 (RA-1)에 대응될 수 있다. 또한, S104 단계에서, 단말은 본 발명에 따라 랜덤 접속 프리앰블을 통해 DQI에 대한 정보를 기지국으로 전송할 수 있다. 랜덤 접속 프리앰블을 통해 DQI에 대한 정보를 전송하기 위해 단말은 (RA-1)과 관련하여 설명한 동작, E.1절에서 설명한 동작, 및/또는 본 발명에서 제안되는 동작(예, E.2 절 내지 E.16 절 참조)을 수행할 수 있다.
S104 단계 후에, 단말은 (RA-2), (RA-3), (RA-4)와 같은 과정을 수행할 수 있다.
도 10은 기지국이 Msg.1을 통해 DQI에 대한 정보를 단말로부터 수신하는(또는 보고받는) 방법의 순서도를 예시한다. 도 10의 예는 기지국이 RRC 유휴 상태(RRC idle state)의 단말과 수행될 수 있다. 도 10에 대한 설명에서 (RA-0) 내지 (RA-4)는 E. 절에서 설명된 랜덤 접속 과정을 지칭한다. 앞서 설명한 바와 같이 기지국(BS)은 단말기와 통신하는 무선 장치로서 eNB(evolved Node-B), gNB(general Node-B), BTS(base transceiver system), AP(access point) 등과 같은 다른 용어로 지칭 될 수 있다.
S202 단계에서, 기지국은 시스템 정보(또는 SIB(system information block))를 통해 랜덤 접속 관련 설정(configuration) 정보를 단말로 전송할 수 있다. 예를 들어, S202 단계는 (RA-0)에 대응될 수 있다. 따라서, 기지국은 (RA-0)와 관련하여 설명된 동작 및/또는 본 발명에서 제안되는 동작(예, E.1 절 내지 E.16 절 참조)에 따라 랜덤 접속 관련 설정 정보를 포함하는 시스템 정보(또는 SIB)를 단말로 전송할 수 있다.
S204 단계에서, 기지국은 전송된 설정 정보에 기초하여 랜덤 접속 프리앰블(또는 Msg.1)을 단말로부터 수신할 수 있다. 예를 들어, S204 단계는 (RA-1)에 대응될 수 있다. 또한, S204 단계에서, 기지국은 본 발명에 따라 랜덤 접속 프리앰블을 통해 DQI에 대한 정보를 단말로부터 수신할 수 있다. 랜덤 접속 프리앰블을 통해 DQI에 대한 정보를 수신하기 위해 기지국은 (RA-1)과 관련하여 설명한 동작, E.1절에서 설명한 동작, 및/또는 본 발명에서 제안되는 동작(예, E.2 절 내지 E.16 절 참조)을 수행할 수 있다.
S204 단계 후에, 기지국은 (RA-2), (RA-3), (RA-4)와 같은 과정을 수행할 수 있다.
앞서 설명한 바와 같이, 단말기가 (RA-3) 과정에서 DQI를 제공하여, (RA-4)에서 기지국이 하향링크 스케줄링(downlink scheduling)에 이를 활용할 수 있도록 할 수도 있다.
도 11은 단말이 Msg.3를 통해 DQI에 대한 정보를 기지국으로 전송(또는 보고)하는 방법의 순서도를 예시한다. 도 11의 예는 RRC 유휴 상태(RRC idle state)의 단말에서 수행될 수 있다. 도 11에 대한 설명에서 (RA-0) 내지 (RA-4)는 E. 절에서 설명된 랜덤 접속 과정을 지칭한다. 앞서 설명한 바와 같이 단말은 사용자 기기(user equipment, UE), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal), 무선 디바이스 등과 같은 다른 용어로 지칭될 수 있다.
S302 단계에서, 단말은 랜덤 접속 프리앰블(또는 Msg.1)을 기지국으로 전송할 수 있다. 예를 들어, S302 단계는 (RA-1)에 대응될 수 있다. 따라서, 단말은 (RA-1)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작에 따라 랜덤 접속 프리앰블을 기지국으로 전송할 수 있다. 랜덤 접속 프리앰블 전송을 위한 설정은 (RA-0)에서 설명한 동작 및/또는 본 발명에서 제안한 동작(예, E.1 절 내지 E.16 절 참조)에 따라 미리 설정될 수 있다. 일 예로, S302 단계 전에 (RA-0)에 대응되는 동작이 수행될 수 있으며(미도시), 기지국으로부터 방송(broadcast)되는 시스템 정보에 기반하여 Msg.3를 통한 DQI에 대한 정보의 보고가 인에이블(enable)될 수 있다.
S304 단계에서, 단말은 전송된 랜덤 접속 프리앰블(또는 Msg.1)에 대한 응답으로 기지국으로부터 랜덤 접속 응답(또는 Msg.2)를 수신할 수 있다. 예를 들어, S304 단계는 (RA-2)에 대응될 수 있으며, 랜덤 접속 응답은 본 명세서에서 설명한 정보들 및/또는 본 발명에서 제안된 정보들을 포함할 수 있다. 단말은 (RA-2)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작(예, E.1 절 내지 E.16 절 참조)에 따라 랜덤 접속 응답를 기지국으로부터 수신할 수 있다. 일 예로, 랜덤 접속 응답은 단말에게 DQI에 대한 정보를 Msg.3를 통해 보고할 것을 지시(또는 지시하는 정보)를 포함할 수 있다.
S306 단계에서, 단말은 수신된 랜덤 접속 응답(또는 Msg.2)에 기초하여 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해 경쟁 해결을 위한 메시지(또는 Msg.3)를 기지국으로 전송할 수 있다. 예를 들어, S306 단계는 (RA-3)에 대응될 수 있다. 또한, S306 단계에서, 단말은 본 발명에 따라 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해(또는 경쟁 해결을 위한 메시지를 통해) DQI에 대한 정보를 기지국으로 전송할 수 있다. 이를 위해, 상기 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)(또는 경쟁 해결을 위한 메시지)는 본 명세서에서 설명한 정보들 및/또는 본 발명에서 제안된 정보들을 포함할 수 있다. 단말은 (RA-3)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작(예, E.1 절 내지 E.16 절 참조)에 따라 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해(또는 경쟁 해결을 위한 메시지를 통해) DQI에 대한 정보를 기지국으로 전송할 수 있다. 일 예로, DQI에 대한 정보는 상위 계층 신호(예, MAC 메시지 또는 RRC 메시지)를 통해 기지국으로 전송될 수 있다.
S306 단계 후에, 단말은 (RA-4)와 같은 과정을 수행할 수 있다.
도 12는 기지국이 Msg.3를 통해 DQI에 대한 정보를 단말로부터 수신하는(또는 보고받는) 방법의 순서도를 예시한다. 도 12의 예는 기지국이 RRC 유휴 상태(RRC idle state)의 단말과 수행할 수 있다. 도 12에 대한 설명에서 (RA-0) 내지 (RA-4)는 E. 절에서 설명된 랜덤 접속 과정을 지칭한다. 앞서 설명한 바와 같이 기지국(BS)은 단말기와 통신하는 무선 장치로서 eNB(evolved Node-B), gNB(general Node-B), BTS(base transceiver system), AP(access point) 등과 같은 다른 용어로 지칭 될 수 있다.
S402 단계에서, 기지국은 랜덤 접속 프리앰블(또는 Msg.1)을 단말로부터 수신할 수 있다. 예를 들어, S402 단계는 (RA-1)에 대응될 수 있다. 따라서, 기지국은 (RA-1)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작에 따라 랜덤 접속 프리앰블을 단말로부터 수신할 수 있다. 랜덤 접속 프리앰블 전송을 위한 설정은 (RA-0)에서 설명한 동작 및/또는 본 발명에서 제안한 동작(예, E.1 절 내지 E.16 절 참조)에 따라 미리 설정될 수 있다.
S404 단계에서, 기지국은 수신된 랜덤 접속 프리앰블(또는 Msg.1)에 대한 응답으로 랜덤 접속 응답(또는 Msg.2)를 단말로 전송할 수 있다. 예를 들어, S404 단계는 (RA-2)에 대응될 수 있으며, 랜덤 접속 응답는 본 명세서에서 설명한 정보들 및/또는 본 발명에서 제안된 정보들을 포함할 수 있다. 기지국은 (RA-2)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작(예, E.1 절 내지 E.16 절 참조)에 따라 랜덤 접속 응답를 단말로 전송할 수 있다.
S406 단계에서, 기지국은 전송된 랜덤 접속 응답(또는 Msg.2)에 대한 응답으로 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해 경쟁 해결을 위한 메시지(또는 Msg.3)를 단말로부터 수신할 수 있다. 예를 들어, S406 단계는 (RA-3)에 대응될 수 있다. 또한, S406 단계에서, 기지국은 본 발명에 따라 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해(또는 경쟁 해결을 위한 메시지를 통해) DQI에 대한 정보를 단말로부터 수신할 수 있다. 이를 위해, 상기 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)(또는 경쟁 해결을 위한 메시지)는 본 명세서에서 설명한 정보들 및/또는 본 발명에서 제안된 정보들을 포함할 수 있다. 기지국은 (RA-3)에서 설명한 동작 및/또는 본 발명에서 제안되는 동작(예, E.1 절 내지 E.16 절 참조)에 따라 물리 상향링크 채널(예, PUSCH 또는 NPUSCH)를 통해(또는 경쟁 해결을 위한 메시지를 통해) DQI에 대한 정보를 단말로부터 수신할 수 있다.
S406 단계 후에, 기지국은 (RA-4)와 같은 과정을 수행할 수 있다.
도 9 내지 도 12의 예에서, 본 명세서에서 설명된 동작 및/또는 본 발명에서 제안되는 동작(예, E.1 절 내지 E.16 절 참조)이 단말 동작 또는 기지국 동작과 제한없이 결합되어 수행될 수 있으며, “E. 본 발명에서 제안하는 방법”의 내용 전체를 도 9 내지 도 12에 대한 설명에 참조로서 포함한다.
제한적이지 않은 예로, 본 발명에서 제안된 바와 같이, DQI에 대한 정보는 RSRP 및/또는 RSRQ 정보, 또는 실제 PDCCH(또는 MPDCCH 또는 NPDCCH)의 디코딩과 관련된 반복 횟수(R) 및/또는 병합 레벨(AL), 또는 가상의(hypothetical) PDCCH(또는 MPDCCH 또는 NPDCCH)의 디코딩과 관련된 반복 횟수(R) 및/또는 병합 레벨(AL), 또는 실제 PDSCH(또는 NPDSCH)의 디코딩과 관련된 반복 횟수(R), 또는 가상의 PDSCH(또는 NPDSCH)의 디코딩과 관련된 반복 횟수(R), 또는 CQI(Channel Quality Indicator) 정보, 또는 이들 중 적어도 둘 이상의 조합을 포함할 수 있다(예, E.1.1 절, E.6절, E.9 절, E.10 절 참조).
보다 구체적인 예로, 본 발명에서 제안된 바와 같이, DQI에 대한 정보는 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)(예, PDCCH 또는 MPDCCH 또는 NPDCCH)을 검출했을 때의 물리 하향링크 제어 채널의 반복 횟수(repetition number)를 나타내는 정보를 포함할 수 있다. 이 예에서, DQI에 대한 정보는 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(예, PDCCH 또는 MPDCCH 또는 NPDCCH)를 검출했을 때의 물리 하향링크 제어 채널의 병합 레벨(aggregation level)을 나타내는 정보를 더 포함할 수 있다. 혹은, 물리 하향링크 제어 채널의 반복 횟수가 특정 성능 요구 조건을 만족하는 값을 가지는 경우, 상기 하향링크 품질 정보는 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널의 병합 레벨(aggregation level)을 기준 병합 레벨(reference aggregation level)(예, 기준 AL=24)로 가정하여 전송될 수 있으며, 특정 성능 요구 조건은 물리 하향링크 제어 채널의 반복 횟수가 1인 것을 포함할 수 있다.
다른 구체적인 예로, 본 발명에서 제안된 바와 같이, DQI에 대한 정보는 가상의 물리 하향링크 제어 채널(hypothetical physical downlink control channel)을 특정 BLER(Block Error Rate)로 검출하는데 필요한 반복 횟수(repetition number)를 나타내는 정보를 포함할 수 있으며, 특정 BLER은 예를 들어 1%일 수 있다. 이 예에서, DQI에 대한 정보는 가상의 물리 하향링크 제어 채널을 특정 BLER로 검출하는데 필요한 병합 레벨(aggregation level)을 나타내는 정보를 더 포함할 수 있다. 혹은, 가상의 물리 하향링크 제어 채널을 검출하는데 필요한 반복 횟수가 특정 성능 요구 조건을 만족하는 값을 가지는 경우, DQI에 대한 정보는 병합 레벨(aggregation level)을 기준 병합 레벨(reference aggregation level)(예, 기준 AL=24)로 가정하여 전송될 수 있으며, 특정 성능 요구 조건은 가상의 물리 하향링크 제어 채널을 검출하는데 필요한 반복 횟수가 1인 것을 포함할 수 있다.
H. 본 발명이 적용되는 통신 시스템 및 장치
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 13은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 13을 참조하면, 무선 통신 시스템은 기지국(10)과 기지국 영역 내에 위치한 다수의 단말(20)을 포함한다. 기지국은 송신 장치로, 단말은 수신 장치로 표현될 수 있으며, 그 반대도 가능하다. 기지국과 단말은 프로세서(processor, 11,21), 메모리(memory, 14,24), 하나 이상의 전송(Tx)/수신(Rx) RF 모듈(radio frequency module, 15,25)(또는 RF transceiver), Tx 프로세서(12,22), Rx 프로세서(13,23), 안테나(16,26)를 포함한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 보다 구체적으로, 하향링크(DL)(기지국에서 단말로의 통신)에서, 코어 네트워크로부터의 상위 계층 패킷은 프로세서(11)에 제공된다. 프로세서는 L2 계층의 기능을 구현한다. 하향링크(DL)에서, 프로세서는 논리 채널과 전송 채널 간의 다중화(multiplexing), 무선 자원 할당을 단말(20)에 제공하며, 단말로의 시그널링을 담당한다. 전송(TX) 프로세서(12)는 L1 계층 (즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 신호 처리 기능은 단말에서 FEC(forward error correction)을 용이하게 하고, 코딩 및 인터리빙(coding and interleaving)을 포함한다. 부호화 및 변조된 심볼은 병렬 스트림으로 분할되고, 각각의 스트림은 OFDM 부반송파에 매핑되고, 시간 및/또는 주파수 영역에서 기준 신호(Reference Signal, RS)와 멀티플렉싱되며, IFFT (Inverse Fast Fourier Transform)를 사용하여 함께 결합되어 시간 영역 OFDMA 심볼 스트림을 운반하는 물리적 채널을 생성한다. OFDM 스트림은 다중 공간 스트림을 생성하기 위해 공간적으로 프리코딩된다. 각각의 공간 스트림은 개별 Tx/Rx 모듈(또는 송수신기(transceiver), 15)를 통해 상이한 안테나(16)에 제공될 수 있다. 각각의 Tx/Rx 모듈은 전송을 위해 각각의 공간 스트림으로 RF 반송파를 변조할 수 있다. 단말에서, 각각의 Tx/Rx 모듈(또는 송수신기, 25)는 각 Tx/Rx 모듈의 각 안테나(26)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 캐리어로 변조된 정보를 복원하여, 수신(RX) 프로세서(23)에 제공한다. RX 프로세서는 layer 1의 다양한 신호 프로세싱 기능을 구현한다. RX 프로세서는 단말로 향하는 임의의 공간 스트림을 복구하기 위해 정보에 공간 프로세싱을 수행할 수 있다. 만약 다수의 공간 스트림들이 단말로 향하는 경우, 다수의 RX 프로세서들에 의해 단일 OFDMA 심볼 스트림으로 결합될 수 있다. RX 프로세서는 고속 푸리에 변환 (FFT)을 사용하여 OFDMA 심볼 스트림을 시간 영역에서 주파수 영역으로 변환한다. 주파수 영역 신호는 OFDM 신호의 각각의 서브 캐리어에 대한 개별적인 OFDMA 심볼 스트림을 포함한다. 각각의 서브캐리어 상의 심볼들 및 기준 신호는 기지국에 의해 전송된 가장 가능성 있는 신호 배치 포인트들을 결정함으로써 복원되고 복조된다. 이러한 연 판정(soft decision)들은 채널 추정 값들에 기초할 수 있다. 연판정들은 물리 채널 상에서 기지국에 의해 원래 전송된 데이터 및 제어 신호를 복원하기 위해 디코딩 및 디인터리빙되다. 해당 데이터 및 제어 신호는 프로세서(21)에 제공된다.
상향링크(UL)(단말에서 기지국으로의 통신)은 단말(20)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 기지국(10)에서 처리된다. 각각의 Tx/Rx 모듈(또는 송수신기(transceiver), 25)는 각각의 안테나(26)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(23)에 제공한다. 프로세서(21)는 프로그램 코드 및 데이터를 저장하는 메모리(24)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
위에서 설명한 본 발명은 상기 도 13에서 설명한 무선 통신 장치인 기지국(10) 및 단말(20)에 의해서 수행될 수 있다.
도 14는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 14를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(예, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(예, V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(예, relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 15는본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 15를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 14의 {무선 기기(100a~100f), 기지국(200)} 및/또는 {무선 기기(100a~100f), 무선 기기(100a~100f)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어(instruction) 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 16은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 14 참조).
도 16을 참조하면, 무선 기기(100, 200)는 도 15의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 15의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 15의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 14, 100a), 차량(도 14, 100b-1, 100b-2), XR 기기(도 14, 100c), 휴대 기기(도 14, 100d), 가전(도 14, 100e), IoT 기기(도 14, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 14, 400), 기지국(도 14, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 16에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 16의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 17은 본 발명에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 17을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 16의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 18은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 18을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 16의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(예, 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 3GPP LTE/LTE-A 시스템/5G 시스템(또는 NR(New RAT) 시스템) 뿐만 아니라 다양한 무선 통신 시스템에서 동작하는 단말, 기지국 등과 같은 무선 통신 장치에 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 사용자 기기(user equipment, UE)가 하향링크 품질 정보(downlink quality information)를 기지국으로 전송하는 방법에 있어서,
    랜덤 접속 프리앰블(random access preamble)을 상기 기지국으로 전송하는 단계;
    상기 기지국으로부터 랜덤 접속 응답(random access response)을 수신하는 단계; 및
    상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 기지국으로 전송하는 단계를 포함하는, 방법.
  2. 청구항 1에 있어서,
    상기 하향링크 품질 정보는 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 검출했을 때의 상기 물리 하향링크 제어 채널의 반복 횟수(repetition number)를 나타내는 정보를 포함하는, 방법.
  3. 청구항 2에 있어서,
    상기 하향링크 품질 정보는 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널을 검출했을 때의 상기 물리 하향링크 제어 채널의 병합 레벨(aggregation level)을 나타내는 정보를 더 포함하는, 방법.
  4. 청구항 2에 있어서,
    상기 물리 하향링크 제어 채널의 반복 횟수가 특정 성능 요구 조건을 만족하는 값을 가지는 경우, 상기 하향링크 품질 정보는 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널의 병합 레벨(aggregation level)을 기준 병합 레벨(reference aggregation level)로 가정하여 전송되는, 방법.
  5. 청구항 4에 있어서,
    상기 특정 성능 요구 조건은 상기 물리 하향링크 제어 채널의 반복 횟수가 1인 것을 포함하는, 방법.
  6. 청구항 1에 있어서,
    상기 하향링크 품질 정보는 가상의 물리 하향링크 제어 채널(hypothetical physical downlink control channel)을 특정 BLER(Block Error Rate)로 검출하는데 필요한 반복 횟수(repetition number)를 나타내는 정보를 포함하는, 방법.
  7. 청구항 6에 있어서,
    상기 특정 BLER은 1%인, 방법.
  8. 청구항 6에 있어서,
    상기 하향링크 품질 정보는 상기 가상의 물리 하향링크 제어 채널을 상기 특정 BLER로 검출하는데 필요한 병합 레벨(aggregation level)을 나타내는 정보를 더 포함하는, 방법.
  9. 청구항 6에 있어서,
    상기 가상의 물리 하향링크 제어 채널을 검출하는데 필요한 반복 횟수가 특정 성능 요구 조건을 만족하는 값을 가지는 경우, 상기 하향링크 품질 정보는 상기 병합 레벨(aggregation level)을 기준 병합 레벨(reference aggregation level)로 가정하여 전송되는, 방법.
  10. 청구항 9에 있어서,
    상기 특정 성능 요구 조건은 상기 가상의 물리 하향링크 제어 채널을 검출하는데 필요한 반복 횟수가 1인 것을 포함하는, 방법.
  11. 청구항 1에 있어서,
    상기 랜덤 접속 응답은 상기 사용자 기기에게 상기 하향링크 품질 정보의 보고를 지시하는 정보를 포함하는, 방법.
  12. 청구항 1에 있어서,
    상기 하향링크 품질 정보는 상기 사용자 기기가 RRC(Radio Resource Control) 유휴 상태에서 전송되는, 방법.
  13. 청구항 1에 있어서,
    상기 하향링크 품질 정보는 상기 랜덤 접속 응답과 관련된 물리 하향링크 제어 채널(physical downlink control channel)을 위한 공통 검색 공간(common search space, CSS)에 대해 측정되는, 방법.
  14. 무선 통신 시스템에서 하향링크 품질 정보를 기지국으로 전송하도록 구성된 사용자 기기(user equipment, UE)에 있어서,
    RF(Radio Frequency) 송수신기(transceiver); 및
    상기 RF 송수신기와 동작시(operatively) 연결되는 프로세서를 포함하고, 상기 프로세서는 상기 RF 송수신기를 제어하여 랜덤 접속 프리앰블을 상기 기지국으로 전송하고, 상기 기지국으로부터 랜덤 접속 응답을 수신하고, 상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 상기 하향링크 품질 정보를 상기 기지국으로 전송하도록 구성된, 사용자 기기.
  15. 무선 통신 시스템에서 사용자 기기(user equipment, UE)를 위한 장치에 있어서,
    명령어(instruction)를 포함하는 메모리; 및
    상기 메모리에 동작시 연결되는 프로세서를 포함하되,
    상기 프로세서는 상기 명령어를 실행하여 특정 동작들을 수행하도록 구성되며, 상기 특정 동작들은,
    랜덤 접속 프리앰블을 기지국으로 전송하는 것과,
    상기 기지국으로부터 랜덤 접속 응답을 수신하는 것과,
    상기 랜덤 접속 응답에 기반하여 물리 상향링크 공유 채널(physical uplink shared channel)을 통해 하향링크 품질 정보를 상기 기지국으로 전송하는 것을 포함하는, 장치.
PCT/KR2019/010167 2018-08-09 2019-08-09 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 WO2020032748A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980050439.6A CN112534860A (zh) 2018-08-09 2019-08-09 无线通信系统中发送/接收信号的方法及其设备
DE112019003172.4T DE112019003172T5 (de) 2018-08-09 2019-08-09 Verfahren zum übertragen/empfangen eines signals in einemdrahtloskommunikationssystem und vorrichtung dafür
US17/254,113 US20210274556A1 (en) 2018-08-09 2019-08-09 Method for transmitting/receiving signal in wireless communication system, and device therefor

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20180093412 2018-08-09
KR10-2018-0093412 2018-08-09
KR10-2018-0114488 2018-09-21
KR20180114488 2018-09-21
KR10-2018-0115382 2018-09-27
KR20180115382 2018-09-27
KR10-2018-0134006 2018-11-02
KR20180134006 2018-11-02
KR10-2019-0017911 2019-02-15
KR20190017911 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020032748A1 true WO2020032748A1 (ko) 2020-02-13

Family

ID=69415040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010167 WO2020032748A1 (ko) 2018-08-09 2019-08-09 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US20210274556A1 (ko)
CN (1) CN112534860A (ko)
DE (1) DE112019003172T5 (ko)
WO (1) WO2020032748A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021228249A1 (en) * 2020-05-15 2021-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Content of CSI report in RACH process
WO2021195648A3 (en) * 2020-08-21 2022-01-06 Futurewei Technologies, Inc. Methods and apparatus for coverage enhancement in wireless communication networks
CN115002847A (zh) * 2021-03-01 2022-09-02 华为技术有限公司 一种小区重选方法及设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027262A1 (en) * 2017-08-02 2019-02-07 Samsung Electronics Co., Ltd. METHOD, PLANNING INFORMATION RECEIVING EQUIPMENT, TERMINAL, BASE STATION, AND INFORMATION TRANSMITTING METHOD
WO2020167979A1 (en) * 2019-02-13 2020-08-20 Apple Inc. Design of quality report in message 3 (msg3) for release 16(rel-16) enhanced machine type communication (emtc) and narrowband internet of things (nb-iot)
US11903034B2 (en) * 2020-02-19 2024-02-13 Intel Corporation Aggregation indication for uplink transmission during random access channel procedures
US20210360660A1 (en) * 2020-05-15 2021-11-18 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement of msg3
US11533688B2 (en) * 2021-03-17 2022-12-20 T-Mobile Usa, Inc. Dynamic switching of user equipment power class
CN118160398A (zh) * 2021-10-28 2024-06-07 苹果公司 新无线电中的物理随机接入信道增强

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140126516A1 (en) * 2011-07-05 2014-05-08 Sharp Kabushiki Kaisha Wireless communication system, base station apparatus, mobile station apparatus, wireless communication method, and integrated circuit
US20150117353A1 (en) * 2012-05-11 2015-04-30 Ntt Docomo, Inc. Blind decoding method, radio base station, user terminal and radio communication system
KR20160082925A (ko) * 2014-12-29 2016-07-11 한국전자통신연구원 통신 시스템에서의 랜덤 접속 방법 및 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030139A (ja) * 2009-07-29 2011-02-10 Kyocera Corp 無線基地局及び通信制御方法
CN102595481A (zh) * 2012-02-15 2012-07-18 新邮通信设备有限公司 载波聚合下定时参考小区的确定方法
EP2999141A4 (en) * 2013-05-12 2017-01-25 LG Electronics Inc. Method for performing measurement and terminal
CN104662944B (zh) * 2013-05-12 2018-08-21 Lg 电子株式会社 用于执行测量的方法和终端
CN107046722B (zh) * 2016-02-05 2020-04-14 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
US10200895B2 (en) * 2016-08-10 2019-02-05 Nokia Solutions And Networks Oy Radio link monitoring methods for wireless systems with multiple coverage levels
CN109997400B (zh) * 2016-09-30 2022-07-19 瑞典爱立信有限公司 无线装置、网络节点和在其中执行的方法
CN110113818B (zh) * 2018-02-01 2023-12-15 北京三星通信技术研究有限公司 信道状态信息上报方法、用户设备、基站和计算机可读介质
US10924226B2 (en) * 2018-04-03 2021-02-16 Qualcomm Incorporated System, apparatus and method for establishing connections for narrow-band IoT devices
CN111989959B (zh) * 2018-04-04 2021-11-30 华为技术有限公司 一种信息发送、接收方法及装置
US20210219166A1 (en) * 2018-08-02 2021-07-15 Apple Inc. Channel quality measurement reporting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140126516A1 (en) * 2011-07-05 2014-05-08 Sharp Kabushiki Kaisha Wireless communication system, base station apparatus, mobile station apparatus, wireless communication method, and integrated circuit
US20150117353A1 (en) * 2012-05-11 2015-04-30 Ntt Docomo, Inc. Blind decoding method, radio base station, user terminal and radio communication system
KR20160082925A (ko) * 2014-12-29 2016-07-11 한국전자통신연구원 통신 시스템에서의 랜덤 접속 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Downlink Channel Quality reporting in MSG3 in NB-IoT", R2-1807749, 3GPP TSG-RAN2 MEETING #102, 11 May 2018 (2018-05-11), Busan, South Korea, XP051464886 *
HUAWEI: "Introduction of DL channel quality reporting in MSG3", R2-1807869, 3GPP TSG-RAN WG2 MEETING #102, 11 May 2018 (2018-05-11), Busan, South Korea, XP051464979 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021228249A1 (en) * 2020-05-15 2021-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Content of CSI report in RACH process
WO2021195648A3 (en) * 2020-08-21 2022-01-06 Futurewei Technologies, Inc. Methods and apparatus for coverage enhancement in wireless communication networks
CN115002847A (zh) * 2021-03-01 2022-09-02 华为技术有限公司 一种小区重选方法及设备
WO2022183934A1 (zh) * 2021-03-01 2022-09-09 华为技术有限公司 一种小区重选方法及设备

Also Published As

Publication number Publication date
US20210274556A1 (en) 2021-09-02
DE112019003172T5 (de) 2021-03-18
CN112534860A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2020032750A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020032740A1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2020032691A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2020032748A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020032753A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020204322A1 (ko) 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국
WO2020130755A1 (ko) 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치
WO2020032726A1 (ko) 무선 통신 시스템에서 통신 장치가 wus 신호를 감지 또는 송신하는 방법 및 장치
WO2020184836A1 (ko) 무선 통신 시스템에서 단말의 빔 정보 전송 방법 및 이를 지원하는 단말 및 기지국
WO2020032746A1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2020166844A1 (ko) 무선 통신 시스템에서 단말의 데이터 신호 수신 방법 및 이를 지원하는 단말 및 기지국
WO2020032646A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020032696A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 상향링크 신호 송수신 방법 및 이를 지원하는 장치
WO2020171405A1 (ko) 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국
WO2020032739A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2020032756A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020032713A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2020167051A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020032643A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2020204497A1 (ko) 다중 전송 블록 스케줄링을 위한 신호의 송수신 방법 및 이를 위한 장치
WO2020159172A1 (ko) 무선 통신 시스템에서 단말의 빔 실패 보고 방법 및 이를 지원하는 단말 및 기지국
WO2020159189A1 (ko) 무선 통신 시스템에서 단말의 상태 정보 보고 방법 및 이를 지원하는 단말 및 기지국
WO2022216041A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
WO2020032747A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2020166848A1 (ko) 무선 통신 시스템에서 단말의 빔 관련 상향링크 피드백 정보 전송 방법 및 이를 지원하는 단말 및 기지국

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846701

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19846701

Country of ref document: EP

Kind code of ref document: A1