WO2021090654A1 - 電気炉による溶鉄の製造方法 - Google Patents

電気炉による溶鉄の製造方法 Download PDF

Info

Publication number
WO2021090654A1
WO2021090654A1 PCT/JP2020/038814 JP2020038814W WO2021090654A1 WO 2021090654 A1 WO2021090654 A1 WO 2021090654A1 JP 2020038814 W JP2020038814 W JP 2020038814W WO 2021090654 A1 WO2021090654 A1 WO 2021090654A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
molten iron
gas
carbonaceous material
blowing device
Prior art date
Application number
PCT/JP2020/038814
Other languages
English (en)
French (fr)
Inventor
善広 三輪
堤 康一
鷲見 郁宏
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP20885363.0A priority Critical patent/EP4056722A4/en
Priority to CN202080075739.2A priority patent/CN114616349B/zh
Priority to KR1020227014368A priority patent/KR102639551B1/ko
Priority to JP2021507715A priority patent/JP7040667B2/ja
Priority to US17/772,675 priority patent/US20220403478A1/en
Priority to MX2022004852A priority patent/MX2022004852A/es
Publication of WO2021090654A1 publication Critical patent/WO2021090654A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • F27B3/205Burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0003Heating elements or systems with particulate fuel, e.g. aspects relating to the feeding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/10Making pig-iron other than in blast furnaces in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • C21C2005/366Foam slags
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • C21C2005/5276Charging of the electric furnace with liquid or solid rest, e.g. pool, "sumpf"
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/02Foam creation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/168Introducing a fluid jet or current into the charge through a lance
    • F27D2003/169Construction of the lance, e.g. lances for injecting particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing molten iron by melting a cold iron source in an electric furnace.
  • molten iron (hot metal, molten steel) is produced by melting a cold iron source such as iron scrap with arc heat, and oxygen blowing and carbon material blowing are used to promote the melting of the cold iron source. It is commonly done.
  • the purpose of blowing carbonaceous material into molten iron and molten slag is to reduce iron oxide (FeO) generated by blowing oxygen and to promote the dissolution of cold iron sources by the heat of combustion of the carbonaceous material. It is done as.
  • CO gas is generated by the reduction of iron oxide by blowing in the carbonaceous material and the combustion of the carbonaceous material, and the CO gas promotes so-called "slag forming" in which molten slag foams. This slag forming reduces the radiant heat of the arc and improves the melting efficiency of the cold iron source.
  • Patent Document 1 and Patent Document 2 use a movable non-consumable water-cooled lance, the carbonaceous material can be efficiently blown into molten iron or molten slag.
  • a control system capable of accurately controlling the lance height is required.
  • the molten slag or the splash of molten iron may adhere to the nozzle tip of the water-cooled lance, causing nozzle clogging.
  • the nozzle tip and the lance body may be damaged by the splash, and steam explosion may occur due to water leakage of the lance cooling water. Furthermore, since it is necessary to provide an insertion hole for a water-cooled lance in the furnace body, the amount of air entering through the opening provided as the insertion hole increases, the temperature inside the electric furnace decreases, and the power consumption rate deteriorates. There is also a problem.
  • the carbonaceous material cannot be efficiently blown into the molten iron or the molten slag.
  • the carbonaceous material having a relatively small particle size tends to follow the transport gas flow, the coal material is not separated from the transport gas depending on the blowing conditions, and molten iron or molten slag is formed along the flow path of the transport gas. It floats on the bath surface and is eventually released to the outside of the furnace. As a result, there is a problem that the yield of the coal material blown into the molten iron or the molten slag is deteriorated.
  • the charcoal material and the conveyed gas are blown at a high discharge flow rate by simply reducing the flow path diameter of the charcoal material blowing nozzle (for example, using a rubberal structure). If the flow path diameter of the nozzle is reduced, the carbon material may be clogged in the nozzle. When such a nozzle clogging of the carbonaceous material occurs, the injection of the carbonaceous material has to be stopped, and the productivity deteriorates. In addition, depending on the situation, there is a risk of suspension of operations.
  • an object of the present invention is to solve the above-mentioned problems of the prior art and to produce molten iron by melting a cold iron source in an electric furnace equipped with a carbonaceous material blowing device without impairing safety. It is an object of the present invention to provide a method capable of efficiently blowing a carbonaceous material into a molten slag and molten iron.
  • the present inventors have repeated studies to solve the above problems. As a result, the following was found.
  • the charcoal material is injected from the central part of the coal material blowing device with the transport gas, and the fuel and the flammable gas are injected from the outer peripheral portion thereof, respectively, and the charcoal material injected from the central part is the fuel and the combustible material. It is blown through a tubular combustion flame formed by the combustion reaction with gas.
  • the flow velocity of the injected coal material and the transport gas is not attenuated, the coal material separates from the transport gas while maintaining a high inertial force, reaches the molten slag and the molten iron, and enters the molten slag and the molten iron. I found out what I could do.
  • the present invention has been made based on such findings, and the gist thereof is as follows.
  • a method for producing molten iron by melting a cold iron source in an electric furnace equipped with a coal material blowing device In the charcoal material blowing device, the charcoal material (a) is injected from the central portion with the transport gas, and the fuel (b) and the flammable gas (c) are injected from the outer peripheral portion thereof, respectively.
  • the carbonaceous material (a) injected from the central portion passes through the tubular combustion flame formed by the combustion reaction of the fuel (b) and the combustion-supporting gas (c), and is in the molten slag and in the molten iron.
  • a method of producing molten iron by an electric furnace which is blown into the gas.
  • the charcoal material blowing device has a structure in which a charcoal material injection pipe (1), a fuel injection pipe (2), and a flammable gas injection pipe (3) are arranged concentrically in order from the center side. , The method for producing molten iron by the electric furnace according to any one of the above [1] to [3].
  • the ratio of the combustion amount of the fuel (b) to the blowing speed of the coal material (a) in the coal material blowing device is 0.1 Mcal / kg or more.
  • the method for producing molten iron by the electric furnace according to any one of them.
  • the charcoal material in an electric furnace equipped with a charcoal material blowing device, when a cold iron source is melted to produce molten iron, the charcoal material can be efficiently blown into the molten slag and the molten iron.
  • the yield of the carbonaceous material blown into the molten slag and the molten iron is improved, so that the electric power intensity can be reduced by improving the melting efficiency of the cold iron source, and (2) the carbonaceous material. Since iron oxide is efficiently reduced, the effect of improving the yield of steel output can be obtained.
  • the combustion flame formed by the combustion reaction between the fuel and the flammable gas is heated by the molten iron and molten slag, which also improves the melting efficiency of the cold iron source and reduces the power intensity.
  • the charcoal material blowing device can be fixed to the furnace body of the electric furnace. This can improve operability because air does not enter from the mounting part of the coal material blowing device.
  • the discharge flow velocity of the fuel and the flammable gas larger than the discharge flow velocity of the transport gas of the carbonaceous material, the flow velocity of the carbonaceous material and the transport gas is accelerated in the process of passing through the tubular combustion flame. Therefore, the carbonaceous material can be more efficiently blown into the molten slag and the molten iron.
  • FIG. 1 shows the principle of carbonaceous material blowing by the carbonaceous material blowing device in the method of the present invention in comparison with the conventional method.
  • FIG. 1 (A) shows the method of the present invention
  • FIG. 1 (B) shows the conventional method. It is explanatory drawing which shows each method.
  • FIG. 2 is a vertical cross-sectional view schematically showing an example of an embodiment of the charcoal material blowing device used in the method of the present invention.
  • FIG. 3 is a sectional view taken along line III-III of FIG.
  • FIG. 4 is an explanatory view schematically showing an example (longitudinal cross section in the radial direction of the electric furnace) of the implementation status of the method of the present invention.
  • FIG. 1 shows the principle of carbonaceous material blowing by the carbonaceous material blowing device in the method of the present invention in comparison with the conventional method.
  • FIG. 1 (A) shows the method of the present invention
  • FIG. 1 (B) shows the conventional method.
  • FIG. 2 is a
  • FIG. 5 is an explanatory diagram showing an outline of an installation position of a charcoal material blowing device in the electric furnace used in the embodiment.
  • FIG. 6 is a graph showing an example of the relationship between the carbonaceous material blowing basic unit and the electric power basic unit in the embodiment.
  • the method for producing molten iron by an electric furnace is a method for producing molten iron by melting a cold iron source in an electric furnace equipped with a carbonaceous material blowing device, and in the carbonaceous material blowing device, from the center.
  • the carbonaceous material a (powdered and granular carbonaceous material) is injected with the transport gas, and the fuel b and the flammable gas c are injected from the outer peripheral portion thereof.
  • the carbonaceous material a injected from the central portion passes through the tubular combustion flame formed by the combustion reaction between the fuel b and the flammable gas c and is blown into the molten slag and the molten iron.
  • the molten iron is hot metal or molten steel, and the hot metal and molten steel may contain alloying elements such as chromium and nickel.
  • FIG. 1 shows the principle of carbon material blowing by the carbon material blowing device in the method of the present invention in comparison with the conventional method.
  • FIG. 1 (A) shows the method of the present invention
  • FIG. 1 (B) shows the conventional method. Each method is shown.
  • the charcoal material blowing device is a single pipe nozzle, and the charcoal material is sent by a transport gas and blown toward the molten slag and molten iron in the furnace.
  • the flow velocity of the carbonaceous material and the conveyed gas blown from the single tube nozzle is immediately attenuated by the influence of the surrounding gas flow, and the carbonaceous material and the conveyed gas are freely diffused. It gets shorter.
  • the carbonaceous material having a relatively fine particle size tends to follow the flow of the transport gas, it cannot be separated from the transport gas depending on the conditions, and the molten iron or molten slag follows the flow of the transport gas. It floats on the bath surface and is released to the outside of the furnace.
  • a tubular combustion flame is formed by a combustion reaction between the fuel b (gas fuel and / and liquid fuel) and the flammable gas c, and a carbonaceous material is formed therein.
  • a and the transport gas pass through and are blown toward the molten slag and molten iron.
  • the carbonaceous material a and the conveyed gas flowing in the tubular combustion flame are not affected by the surrounding gas flow, the flow velocity is not attenuated and a high flow velocity can be maintained. That is, the potential core becomes longer.
  • the carbonaceous material a can be separated from the transport gas while maintaining a high inertial force, reach the molten slag and the molten iron, and enter the molten slag and the molten iron. As a result, the carbonaceous material a is efficiently blown into the molten slag and the molten iron.
  • the coal material a and the transport gas are passed in the process of passing through the tubular combustion flame. Flow velocity is accelerated. As a result, the above-mentioned effects can be further enhanced, and the carbonaceous material a can be more efficiently blown into the molten slag and the molten iron.
  • the charcoal material a is powdery and granular.
  • the coal material a include coke powder, coal (pulverized coal), and plastic (granular or powdery, including waste plastic), which are by-products of coke production, and one or more of these can be used. it can.
  • gaseous fuel and / and liquid fuel can be used.
  • gaseous fuel include LPG (liquefied petroleum gas), LNG (liquefied natural gas), hydrogen, ironworks by-product gas (C gas, B gas, etc.), and a mixed gas of two or more of these.
  • liquid fuel include heavy oil (heavy oil A, heavy oil B, heavy oil C), light oil, kerosene, waste oil, and the like, and one or more of these can be used. Further, the above-mentioned gaseous fuel and liquid fuel may be used in combination.
  • gaseous fuel is preferable as fuel b, and therefore, in the following description, it is referred to as fuel b.
  • fuel b gaseous fuel
  • any one of pure oxygen (industrial pure oxygen), oxygen-enriched air, and air can be used.
  • the transport gas of the carbonaceous material a for example, one or more kinds of inert gas such as nitrogen and argon and air can be used, but when air is used as the transport gas, a flashback prevention valve or the like is installed. Therefore, it is preferable to reduce the risk of ignition and explosion of the carbonaceous material. Further, by using an inert gas such as nitrogen or argon, the risk of preventing self-ignition of the carbonaceous material can be suppressed.
  • inert gas such as nitrogen and argon and air
  • the carbonaceous material blowing device used in the present invention has an injection pipe for injecting the carbonaceous material a, the fuel b, and the flammable gas c, respectively.
  • a carbonaceous material powder injection pipe is arranged in a central portion, and a fuel injection pipe and a flammable gas injection pipe are arranged in the outer peripheral portion thereof.
  • FIG. 2 and 3 show an example of the carbonaceous material blowing device used in the present invention
  • FIG. 2 is a vertical sectional view
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the main body portion for supplying the fuel b (gas fuel in this embodiment), the flammable gas c, and the coal material a has a triple pipe structure in which three pipe bodies are concentrically arranged. It has become. That is, this triple pipe structure is composed of a carbon material injection pipe 1 on the center side, a fuel injection pipe 2 arranged on the outside thereof, and a flammable gas injection pipe 3 arranged on the outside thereof. Normally, spacers are arranged in each injection pipe having a triple pipe structure to maintain the distance between the injection pipes.
  • the inside of the carbon material injection pipe 1 constitutes a carbon material flow path 10, and the fuel injection pipe 2 has a space between the fuel injection pipe 1 and the fuel material injection pipe 1 forming a fuel flow path 20 to inject flammable gas.
  • the space between the pipe 3 and the fuel injection pipe 2 constitutes a flammable gas flow path 30.
  • the tips of the charcoal material injection pipe 1, the fuel injection pipe 2, and the flammable gas injection pipe 3 are open, and the open ends are the charcoal material discharge port 11 (injection port) and the ring-shaped fuel discharge port 21 (injection port), respectively.
  • the injection port) and the ring-shaped combustion-supporting gas discharge port 31 (injection port) are configured.
  • the flammable gas injection pipe 3 is provided with a flammable gas supply port 32 for supplying the flammable gas to the flammable gas flow path 30.
  • the fuel injection pipe 2 is provided with a fuel supply port 22 for supplying fuel to the fuel flow path 20.
  • the charcoal material injection pipe 1 is provided with a charcoal material supply port 12 for supplying the charcoal material to the charcoal material flow path 10 via the conveying gas.
  • the inner tube and the outer tube are further arranged concentrically on the outside of the flammable gas injection tube 3, and between the outer tube and the inner tube and the inner tube.
  • a cooling fluid flow path (outward path and return path of the cooling fluid) that communicate with each other is formed between the fuel-supporting gas injection pipe 3 and the combustion-supporting gas injection pipe 3.
  • the fuel discharge port 21 and the flammable gas discharge port 31 are ring-shaped discharge ports.
  • a plurality of each discharge port are formed at predetermined intervals in the circumferential direction of the injection pipe end. It may be composed of the gas holes of.
  • the carbon material injection pipe 1 when the carbon material is injected, the carbon material a such as coke powder and the transport gas are supplied from the carbon material injection pipe 1, and the fuel b (gas fuel) such as LNG is supplied from the fuel injection pipe 2.
  • a fuel-supporting gas c such as oxygen is injected from the fuel-supporting gas injection pipe 3.
  • a tubular combustion flame is formed by the fuel b (gas fuel) and the flammable gas c, and the carbonaceous material a and the transport gas pass through the tubular combustion flame and are blown into the molten slag and the molten iron.
  • the carbonaceous material blowing device used in the present invention is a device whose purpose of use, function, and method of using the charcoal material are completely different.
  • the coal material a injected from the central portion of the carbon material blowing device passes through the tubular combustion flame formed by the combustion reaction between the fuel b and the flammable gas c, and is a molten slag. It is blown into the inside and the molten iron. That is, the main carbonaceous material a passes through the tubular combustion flame without burning, reaches the molten slag and the molten iron, and enters.
  • flammable substances There are three elements required for combustion: flammable substances, oxygen, and temperature (fire source).
  • the combustible substances are easily burned in the order of gas, liquid, and solid. This is because the combustible substance and oxygen are easily mixed in the gaseous state, and the continuation of combustion (chain reaction) is likely to occur.
  • chain reaction continuation of combustion
  • the most difficult-to-burn solid starts burning after the temperature has risen to the ignition temperature.
  • the factors that make the coal material a difficult to burn include (1) supplying the flammable gas c in a supply amount such that only the fuel b burns, and (2) the coal material a. Increase the flow velocity of the carbonaceous material a (conveyed gas) so that the temperature does not rise to the ignition temperature. (3) The smaller the particle size of the coal material a, the shorter the time to raise the temperature to the ignition temperature and the easier it is to burn. Therefore, it is conceivable that the particle size of the carbonaceous material a is not made too small.
  • the fuel b comes into contact with the flammable gas c immediately after being injected from the nozzle and immediately burns. Therefore, as for the flammable gas flow rate, only the fuel b burns. It is preferable to set the oxygen ratio as such or close to the oxygen ratio. Specifically, it is preferable that the supply amount of the flammable gas c is such that the oxygen ratio to the supply amount of the fuel b is 1.0 to 1.1.
  • the oxygen ratio is "(the amount of oxygen actually supplied by the flammable gas) / (the theoretical amount of oxygen required to completely burn the fuel)".
  • the ignition temperature of the coal material is several hundred degrees (1000 ° C or higher in the case of coke), so the carbon material a is raised to the ignition temperature. It is preferable to increase the flow velocity of the coal material a (conveyed gas) so as not to heat it.
  • the rate of temperature rise of the particles of the carbonaceous material in the combustion field is generally considered to be about 10 ° C./ms.
  • the distance from the injection port of the carbon material blowing device to the molten slag or molten iron is about 1 to 2 m, for example, when the flow velocity of the carbon material a (conveyed gas) is about 20 to 100 m / s, the material is injected from the injection port.
  • the time required for the carbonaceous material a to reach the molten slag and molten iron is only 10 to 100 ms. In such a short time, it is considered that the coal material a does not rise to the ignition temperature, that is, the coal material a reaches the molten slag and molten iron without burning. Therefore, the flow velocity of the carbonaceous material a (conveyed gas) is preferably about 20 to 100 m / s.
  • the median diameter (D50) of the carbonaceous material a is preferably 20 ⁇ m or more.
  • the median diameter (D50) can be obtained, for example, based on the particle size distribution of the carbonaceous material a measured by a laser diffraction / scattering type particle size distribution measuring device.
  • the discharge gas flow velocity of the fuel b and the flammable gas c is preferably as large as possible from the viewpoint of efficiently injecting the carbonaceous material a, but if the discharge gas flow velocity is too large, the flame misfires and the tubular combustion flame May not be able to be formed stably.
  • the discharge gas flow velocities of the fuel b and the flammable gas c are too small, the combustion flame length becomes relatively short, so that the potential core also becomes short, and the effect of the present invention decreases. Further, if the combustion flame length is short, the flame is blown off by the disturbance in the furnace, resulting in misfire, and in this case as well, there is a risk that the combustion flame cannot be formed stably.
  • the discharge gas flow velocity of the fuel b and the flammable gas c is preferably about 100 to 500 m / s.
  • the combustion amount of the fuel b may be 400 Mcal / h or more per unit of the coal material blowing device. preferable.
  • the ratio of the amount of the carbonaceous material blown to the transport gas flow rate is preferably about 0.5 to 15 kg / Nm 3. If the ratio of the amount of carbonaceous material blown to the flow rate of the conveyed gas exceeds 15 kg / Nm 3 , the transportability of the carbonaceous material a deteriorates, and operational troubles such as clogging of the carbonaceous material a in the flow path are likely to occur. On the other hand, if it is less than 0.5 kg / Nm 3 , the temperature inside the furnace may be cooled by the conveyed gas, and the operability may be lowered.
  • the flow rate of the flammable gas c is based on the flow rate of the fuel b (gas fuel), the theoretical fuel oxygen amount (the theoretical oxygen amount required to completely burn the fuel), and the oxygen ratio, according to the following equation (1). Can be sought.
  • the ratio (Mcal / kg) of the combustion amount of the fuel b and the injection speed of the coal material a in the coal material blowing device and the combustion amount of the fuel b and the injection speed of the coal material a
  • the ratio of is preferably 0.1 Mcal / kg or more. This is because if the amount of fuel b burned is small relative to the carbon material blowing speed, the flame at the tip of the burner is blown out by the blown coal material itself, and the combustion flame becomes unstable, resulting in the effect of the present invention. This is because it cannot be obtained sufficiently.
  • FIG. 4 schematically shows an example of the implementation status of the method of the present invention (longitudinal cross section in the radial direction of the electric furnace).
  • Reference numeral 7 is molten iron
  • reference numeral 7 is molten slag.
  • the charcoal material blowing device 6 is installed in the furnace body 4 with an appropriate dip angle. Usually, one or two or more coal material blowing devices 6 are installed with respect to the furnace body 4.
  • the method for producing molten iron by the electric furnace according to the present invention when the cold iron source is melted in the electric furnace provided with the carbonaceous material blowing device 6 to produce the molten iron 7. , The carbonaceous material a can be efficiently blown into the molten slag and the molten iron. As a result, the following effects (1) and (2) can be obtained. (1) Since the yield of the coal material a blown into the molten slag and the molten iron is improved, the electric power intensity can be reduced by improving the melting efficiency of the cold iron source. (2) Since iron oxide is efficiently reduced by the carbonaceous material a, the yield of steel output is improved.
  • the following effects can be obtained. (3) Since the combustion flame formed by the combustion reaction between the fuel b and the flammable gas c is heated by the molten iron and the molten slag, the melting efficiency of the cold iron source is improved and the electric power intensity is reduced in this respect as well. can do. (4) Since it is not necessary to reduce the flow path diameter of the carbonaceous material blowing nozzle, there is no risk of nozzle clogging. (5) The charcoal material blowing device can be fixed to the furnace body of the electric furnace, whereby air does not enter from the mounting portion of the charcoal material blowing device, so that the operability is improved.
  • the coal material a and the transport gas are subjected to the process of passing through the tubular combustion flame. Since the flow velocity is accelerated, the above-mentioned effects are further enhanced. As a result, the carbonaceous material a can be more efficiently blown into the molten slag and the molten iron.
  • FIG. 5 schematically shows a horizontal cross section of the electric furnace tested. This electric furnace has a furnace diameter of about 6.3 m, a furnace height of about 4.1 m, a steel output of about 120 tons, a water-cooled oxygen lance, and a DC type with one electrode in the center. Is. In Invention Examples 1 to 9, as shown in FIG.
  • coal material blowing devices were installed at a total of three locations in the circumferential direction of the furnace body. Further, in the comparative example, a conventional single-tube nozzle type coal material blowing device was installed at three locations in the circumferential direction of the furnace body.
  • Table 1 shows the operating conditions of the electric furnace in this embodiment.
  • the type of iron scrap used is Heavy H2 (specified in the "Unified Standard for Iron Scrap Inspection” of the Japan Iron Source Association). Iron scrap was charged into the bucket, and a total of about 130 tons of iron scrap was charged into the electric furnace in two steps, before the start of operation and during the middle of operation. In addition, before the start of operation, coke lumps (1000 kg), which is an auxiliary fuel, and quicklime (500 kg), which is a slag-making agent, are introduced into the electric furnace as auxiliary raw materials via an auxiliary raw material input chute (not shown). I charged it. The carbonaceous material injection was carried out during the period from the middle to the end of the operation when molten iron and molten slag were produced to some extent.
  • Table 2 shows the usage conditions of the carbonaceous material blowing device in Invention Examples 1 to 9.
  • Air was used as the transport gas for the carbonaceous material
  • LNG was used as the gaseous fuel
  • pure oxygen industrial pure oxygen
  • the blowing speed of the carbonaceous material was 60 kg / min
  • the flow rate of air, which is the transport gas of the carbonaceous material was 360 Nm 3 / h.
  • the blowing speed of the carbonaceous material was set to 80 kg / min
  • the flow rate of air, which is the transport gas of the carbonaceous material was set to 360 Nm 3 / h.
  • the flow rate of LNG was changed in the range of 20 to 220 Nm 3 / h in Invention Examples 1 to 9, and the flow rate of pure oxygen, which is a flammable gas, was LNG so that the oxygen ratio was constant at 1.1. It was changed in the range of 48 to 532 Nm 3 / h according to the flow rate of. Further, in the comparative example, the blowing speed of the carbonaceous material was set to 60 kg / min, and air (air flow rate was 360 Nm 3 / h) was used as the transport gas of the carbonaceous material. As the charcoal material, any one of coke powder A, coke powder B and coke powder C shown in Table 3 was used.
  • the basic unit of carbonaceous material blown per charge is 1 kg / t, 2 kg / t, 3 kg / t, 4 kg / t, 5 kg / t, 6 kg / t,
  • a total of 10 charges were carried out while adjusting the carbonaceous material blowing time so that the values were 7 kg / t, 8 kg / t, 9 kg / t, and 10 kg / t. From each of the 10 charges of carbonaceous material injection basic unit and electric power basic unit, the 10 charge average carbon material injection basic unit in each invention example and the 10 charge average electric power basic unit in each invention example were calculated.
  • FIG. 6 shows the relationship between the coal material blowing basic unit and the electric power basic unit of Invention Example 2. The carbonaceous material efficiency at this time is 4.3 kWh / t / (kg / t).
  • carbonaceous material efficiency As an evaluation, a carbonaceous material efficiency of less than 1.0 is "x”, a carbonaceous material efficiency of 1.0 or more and less than 2.0 is “ ⁇ ”, and a coal material efficiency of 2.0 or more and less than 4.0 is “ ⁇ ". , The carbon material efficiency of 4.0 or more was regarded as " ⁇ ".
  • the lid of the electric furnace was opened during charging, and the state of combustion flame generation in the coal material blowing device was visually confirmed. At this time, if the combustion flame is stably generated, " ⁇ ”, if the combustion flame is found to be unstable such as swinging or pulsating, " ⁇ ", completely misfire. For example, "x" was used.
  • the carbonaceous material is efficiently blown into the molten slag and the molten iron through the tubular combustion flame formed by the combustion reaction of LNG and oxygen, and as a result, the electric power intensity and the carbonaceous material are blown into the molten iron.
  • the efficiency is improved and the carbon concentration in the molten iron is also high.
  • the electric power intensity is improved to 390.0 kWh / t
  • the carbonaceous material efficiency is improved to 2.2 kWh / t / (kg / t)
  • the evaluation is “ ⁇ ”.
  • the carbon concentration in the molten iron is 0.053 mass%
  • the evaluation is “ ⁇ ”.
  • the electric power intensity is improved to 377.7 kWh / t
  • the carbonaceous material efficiency is improved to 4.3 kWh / t / (kg / t)
  • the evaluation is “ ⁇ ”.
  • the carbon concentration in the molten iron is 0.059 mass%
  • the evaluation is “ ⁇ ”.
  • Example 3 of the present invention the power intensity is improved to 371.4 kWh / t, the carbonaceous material efficiency is improved to 4.8 kWh / t / (kg / t), and the evaluation is “ ⁇ ”. Moreover, since the carbon concentration in the molten iron is 0.061 mass%, the evaluation is “ ⁇ ”.
  • the evaluation is “ ⁇ ” because it was possible to visually confirm that a stable combustion flame was generated in the state of generation of the combustion flame.
  • the evaluation is “ ⁇ ” because the amount of dust and flame blown up from openings such as electrode holes when the charcoal material is blown is significantly reduced as compared with the comparative example.
  • the electric power intensity is 391.0 kWh / t
  • the carbonaceous material efficiency is 1.3 kWh / t / (kg / t)
  • the evaluation is “ ⁇ ”.
  • the carbon concentration in the molten iron is 0.053 mass%, and the evaluation is “ ⁇ ”.
  • the state of generation of the combustion flame was evaluated as " ⁇ ” because the combustion flame sometimes fluctuated and became unstable depending on the situation in the furnace.
  • the evaluation was “ ⁇ ” because there was no change in the blowing of dust and flame from the opening of the furnace body such as the electrode hole when the charcoal material was blown as compared with the comparative example. Based on the above, the comprehensive evaluation of Invention Example 4 is “ ⁇ ”.
  • Invention Example 5 was carried out under the same conditions as Invention Example 2 except that coke powder B was used as the carbonaceous material.
  • the electric power intensity is 385.5 kWh / t
  • the carbonaceous material efficiency is 2.4 kWh / t / (kg / t)
  • the evaluation is “ ⁇ ”.
  • the evaluation was “ ⁇ ” because it was visually confirmed that a stable combustion flame was formed in the generation status of the combustion flame.
  • the evaluation was “ ⁇ ” because there was no change in the amount of dust and flame blown up from the openings such as the electrode holes when the charcoal material was blown, as compared with the comparative example. Based on the above, the comprehensive evaluation of Invention Example 5 is “ ⁇ ”.
  • the efficiency of the carbonaceous material was lower than that in Invention Example 2, which is considered to be due to the difference in the particle size of the coke powder. That is, it is considered that the coke powder B used has a smaller particle size than the coke powder A used in Invention Example 2 and is difficult to separate from the transport gas, so that the efficiency of the carbonaceous material is lowered.
  • the carbon concentration in the molten iron is 0.052 mass%, and the evaluation is “ ⁇ ”.
  • the state of generation of the combustion flame was evaluated as " ⁇ ” because the combustion flame sometimes fluctuated and became unstable depending on the situation in the furnace.
  • the evaluation was “ ⁇ ” because there was no change in the amount of dust and flame blown up from the openings such as the electrode holes when the charcoal material was blown, as compared with the comparative example. Based on the above, the comprehensive evaluation of Invention Example 7 is “ ⁇ ”.
  • Invention Example 8 was carried out under the same conditions as Invention Example 2 and Invention Example 5 except that coke powder C was used as the carbonaceous material.
  • the power intensity is 381.0 kWh / t
  • the carbonaceous material efficiency is 3.1 kWh / t / (kg / t)
  • the evaluation is “ ⁇ ”.
  • the state of generation of the combustion flame was evaluated as " ⁇ ” because it was possible to visually confirm that a stable combustion flame was formed.
  • the evaluation was “ ⁇ ” because the amount of dust and flame blown up from openings such as electrode holes when the charcoal material was blown was significantly reduced as compared with the comparative example. Based on the above, the comprehensive evaluation of Invention Example 8 is “ ⁇ ”.
  • Invention Example 9 was carried out under the same test conditions as in Invention Example 1 except that the carbon material blowing speed was 80 kg / min. It is probable that the effect of the present invention was not sufficiently obtained because the ratio of the burning amount of LNG to the blowing speed of the carbonaceous material was 0.09 Mcal / kg and the burning amount was too small. Therefore, the electric power intensity is 391.8 kWh / t, the carbonaceous material efficiency is 1.7 kWh / t / (kg / t), and the evaluation is “ ⁇ ”. The carbon concentration in the molten iron is 0.053 mass%, and the evaluation is “ ⁇ ”.
  • the state of generation of the combustion flame was evaluated as “ ⁇ ” because the combustion flame sometimes fluctuated and became unstable depending on the time when the carbonaceous material was blown.
  • the evaluation was “ ⁇ ” because there was no change in the amount of dust and flame blown up from the openings such as the electrode holes when the charcoal material was blown, as compared with the comparative example. Based on the above, the comprehensive evaluation of Invention Example 9 is “ ⁇ ”.
  • Charcoal material injection pipe 2 Fuel injection pipe 3 Combustible gas injection pipe 4 Furnace body 5 Electrode 6 Charcoal material blowing device 7 Molten iron 8 Molten slag 10 Charcoal material flow path 11 Charcoal material discharge port 12 Charcoal material supply port 20 Fuel flow Road 21 Fuel discharge port 22 Fuel supply port 30 Burnable gas flow path 31 Burnable gas discharge port 32 Burnable gas supply port a Charcoal material b Fuel c Burnable gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

炭材吹込み装置を備えた電気炉において冷鉄源を溶解して溶鉄を製造する方法において、安全性を損なうことなく、炭材を効率良く溶鉄中に吹き込むことができる方法を提供する。 炭材吹込み装置では、中心部から搬送ガスで炭材aを噴射するとともに、その外周部から燃料bと支燃性ガスcとをそれぞれ噴射し、中心部から噴射された炭材aが、燃料bと支燃性ガスcとの燃焼反応で形成される筒状の燃焼火炎の中を通過して溶融スラグ中及び溶鉄中に吹き込まれるようにする。筒状の燃焼火炎の中を流れる炭材aは、周囲のガス流れの影響を受けないため流速が減衰せず、高い流速を維持することができるため、炭材aが高い慣性力を保ったまま搬送ガスから分離し、溶融スラグ及び溶鉄に到達・進入することができる。

Description

電気炉による溶鉄の製造方法
 本発明は、電気炉において冷鉄源を溶解して溶鉄を製造する方法に関する。
 電気炉では、鉄スクラップなどの冷鉄源をアーク熱で溶解して溶鉄(溶銑、溶鋼)が製造されており、冷鉄源の溶解促進のために、酸素吹込みと炭材吹込みとが一般的に行われている。溶鉄中及び溶融スラグ中への炭材吹込みは、酸素吹込みにより生成された酸化鉄(FeO)を還元すること、及び、炭材の燃焼熱により冷鉄源の溶解を促進することを目的として行われる。また、炭材吹込みよる酸化鉄の還元及び炭材の燃焼によってCOガスが発生し、このCOガスによって溶融スラグが泡立つ、いわゆる「スラグフォーミング」が促進される。このスラグフォーミングにより、アークの輻射熱が軽減し、冷鉄源の溶解効率が向上する。
 従来、炭材吹込み方法としては、消耗式のパイプ(鋼管)を作業者が保持し、このパイプを通じて炭材を炉内に吹込む作業が行われていたが、近年では、例えば、特許文献1及び特許文献2に示されるような可動式の非消耗型水冷ランスを用いる方法が採られている。この方法では、作業者によるパイプの交換作業(パイプの消耗に伴う新しいパイプの接続作業)が不要となるので、作業者の負担を軽減することができる
 また、その他の炭材吹込み方法としては、例えば、特許文献3に示されるような、炉体に固定されたカーボンインジェクタによって炭材を炉内に噴射する方法がある。
特開平7-145422号公報 特開平11-304372号公報 特表2016-509624号公報
 特許文献1及び特許文献2に記載された方法は、可動式の非消耗型水冷ランスを用いているので、炭材を溶鉄中や溶融スラグ中に効率良く吹込むことができる。しかしながら、水冷ランスを溶鉄や溶融スラグに近接させる必要があるため、ランス高さを精度良く制御できる制御系が必要である。また、水冷ランスを溶鉄や溶融スラグに近接させるため、水冷ランスのノズル先端に溶融スラグや溶鉄のスプラッシュが付着し、ノズル詰まりが生じるおそれがある。更に、スプラッシュによってノズル先端やランス本体が損傷を受け、ランス冷却水の水漏れによる水蒸気爆発の懸念もある。また更に、炉体に水冷ランスの挿入孔を設ける必要があるため、挿入孔として設けた開口部からの侵入空気量が増え、電気炉内の温度が低下し、電力原単位の悪化につながるという問題もある。
 一方、特許文献3に示されるような炉体に固定された炭材吹込み装置を使用した場合、スプラッシュによるノズル詰まりや開口部からの侵入空気量の増加などの問題はない。しかしながら、(i)ノズル先端から溶鉄浴面まで比較的大きな距離があること、(ii)吹込まれた炭材と搬送ガスとが、周囲のガス流れ(酸素ランスからの吹込み酸素ガス、溶融スラグ及び溶鉄から発生するガス、炉外からの侵入空気などによるガス流れ)に影響されることで流速が減衰されること、などの問題がある。これにより、炭材を溶鉄中や溶融スラグ中に効率良く吹込むことができない。また、比較的粒径が小さい炭材は、搬送ガス流れに追従する傾向があるため、吹込み条件によっては炭材が搬送ガスから分離されず、搬送ガスの流跡に沿って溶鉄や溶融スラグの浴面上を浮遊し、最終的には炉外に放散されてしまう。これらの結果、溶鉄中や溶融スラグ中に吹込まれる炭材の歩留りが悪くなる問題がある。
 また、単純に炭材吹込みノズルの流路径を小さくする(例えば、ラバール構造などにする)ことにより、炭材及び搬送ガスを高い吐出流速で吹込むことが考えられるが、炭材吹込みノズルの流路径を小さくすると、ノズル内で炭材の詰まりが生じるおそれがある。このような炭材のノズル詰まりが生じると、炭材吹込みを停止せざるを得ず、生産性が悪化する。また、状況によっては、操業停止を招くおそれがある。
 したがって本発明の目的は、以上のような従来技術の課題を解決し、炭材吹込み装置を備えた電気炉で冷鉄源を溶解して溶鉄を製造する方法において、安全性を損なうことなく、炭材を溶融スラグ中及び溶鉄中に効率良く吹込むことができる方法を提供することにある。
 本発明者らは、上記課題を解決するために検討を重ねた。その結果、以下のことが判った。
 炭材吹込み装置の中心部から搬送ガスで炭材を噴射するとともに、その外周部から燃料と支燃性ガスとをそれぞれ噴射し、中心部から噴射された炭材が、燃料と支燃性ガスとの燃焼反応で形成される筒状の燃焼火炎の中を通過して吹込まれるようにする。これにより、噴射された炭材及び搬送ガスの流速が減衰せず、炭材が高い慣性力を保ったまま搬送ガスから分離し、溶融スラグ及び溶鉄に到達し、溶融スラグ中及び溶鉄中に進入できることを見出した。
 また、燃料及び支燃性ガスの吐出流速を、炭材の搬送ガスの吐出流速よりも大きくすることにより、筒状の燃焼火炎の中を通過する過程で炭材及び搬送ガスの流速が加速されるため、上記のような効果がより高められることも判った。
 本発明は、このような知見に基づきなされたものであり、その要旨は以下のとおりである。
 [1]炭材吹込み装置を備えた電気炉において、冷鉄源を溶解して溶鉄を製造する方法であって、
 前記炭材吹込み装置では、中心部から搬送ガスで炭材(a)を噴射するとともに、その外周部から燃料(b)と支燃性ガス(c)とをそれぞれ噴射し、
 中心部から噴射された炭材(a)が、燃料(b)と支燃性ガス(c)との燃焼反応で形成される筒状の燃焼火炎の中を通過して溶融スラグ中及び溶鉄中に吹き込まれる、電気炉による溶鉄の製造方法。
 [2]前記炭材吹込み装置における燃料(b)及び支燃性ガス(c)の吐出流速を、前記炭材吹込み装置における炭材(a)の搬送ガスの吐出流速よりも大きくする、上記[1]に記載の電気炉による溶鉄の製造方法。
 [3]前記炭材吹込み装置における燃料(b)の供給量に対する酸素比が1.0~1.1となるように、支燃性ガス(c)を供給する、上記[1]または上記[2]に記載の電気炉による溶鉄の製造方法。
 [4]前記炭材吹込み装置は、中心側から順に、炭材噴射管(1)、燃料噴射管(2)、支燃性ガス噴射管(3)が同心状に配された構造を有する、上記[1]から上記[3]のいずれかに記載の電気炉による溶鉄の製造方法。
 [5]前記炭材吹込み装置における燃料(b)及び支燃性ガス(c)の吐出流速が100~500m/sである、上記[1]から上記[4]のいずれかに記載の電気炉による溶鉄の製造方法。
 [6]前記炭材吹込み装置における燃料(b)の燃焼量が、前記炭材吹込み装置1基当たり400Mcal/h以上である、上記[1]から上記[5]のいずれかに記載の電気炉による溶鉄の製造方法。
 [7]前記炭材吹込み装置における燃料(b)の燃焼量と炭材(a)の吹込み速度との比が0.1Mcal/kg以上である、上記[1]から上記[6]のいずれかに記載の電気炉による溶鉄の製造方法。
 本発明によれば、炭材吹込み装置を備えた電気炉において、冷鉄源を溶解して溶鉄を製造する際に、炭材を効率良く溶融スラグ中及び溶鉄中に吹込むことができる。これにより、(1)溶融スラグ中及び溶鉄中に吹込まれる炭材の歩留りが向上するため、冷鉄源の溶解効率の向上により電力原単位を削減することができる、(2)炭材により酸化鉄が効率良く還元されるため、出鋼歩留りが向上する、という効果が得られる。
 更に、(3)燃料と支燃性ガスとの燃焼反応で形成される燃焼火炎が溶鉄及び溶融スラグに着熱されるため、この面でも冷鉄源の溶解効率が向上し、電力原単位を削減することができる、(4)炭材吹込みノズルの流路径を小さくする必要がないため、ノズル詰まりのおそれがない、(5)炭材吹込み装置を電気炉の炉体に固定することができ、これにより炭材吹込み装置の取り付け部から空気が浸入することがないので操業性が向上する、(6)ノズル先端を溶融スラグや溶鉄に近接させる必要がなく、溶鉄や溶融スラグのスプラッシュによる影響も少ないため、安全性に優れる、(7)炉外へ放散される炭材量が少ないので、電気炉周辺の浮遊ダストが減少し、作業環境も改善される、などの効果も得られる。
 また、燃料及び支燃性ガスの吐出流速を、炭材の搬送ガスの吐出流速よりも大きくすることにより、筒状の燃焼火炎の中を通過する過程で炭材及び搬送ガスの流速が加速されるため、炭材をより効率良く溶融スラグ中及び溶鉄中に吹込むことができる。
図1は、本発明法における炭材吹込み装置による炭材吹込み原理を、従来法と比較して示したものであり、図1(A)は本発明法、図1(B)は従来法をそれぞれ示す説明図である。 図2は、本発明法で使用する炭材吹込み装置の実施形態の一例を模式的に示す縦断面図である。 図3は、図2のIII-III断面図である。 図4は、本発明法の実施状況の一例(電気炉半径方向での縦断面)を模式的に示す説明図である。 図5は、実施例で使用した電気炉における炭材吹込み装置の設置位置の概略を示す説明図である。 図6は、実施例における炭材吹込み原単位と電力原単位との関係の一例を示すグラフである。
 本発明に係る電気炉による溶鉄の製造方法は、炭材吹込み装置を備えた電気炉において、冷鉄源を溶解して溶鉄を製造する方法であり、炭材吹込み装置では、中心部から搬送ガスで炭材a(粉粒状の炭材)を噴射するとともに、その外周部から燃料bと支燃性ガスcとをそれぞれ噴射する。これにより、中心部から噴射された炭材aが、燃料bと支燃性ガスcとの燃焼反応で形成される筒状の燃焼火炎の中を通過して溶融スラグ中及び溶鉄中に吹込まれるようにするものである。ここで、溶鉄とは溶銑または溶鋼であり、溶銑及び溶鋼は、クロムやニッケルなどの合金元素を含む場合もある。
 図1は、本発明法における炭材吹込み装置による炭材吹込み原理を、従来法と比較して示したものであり、図1(A)は本発明法、図1(B)は従来法をそれぞれ示している。
 図1(B)に示す従来法では、炭材吹込み装置は単管ノズルであり、炭材は搬送ガスによって送られ、炉内の溶融スラグ及び溶鉄に向けて吹込まれる。このとき、単管ノズルから吹込まれた炭材及び搬送ガスの流速は周囲のガス流れの影響で直ちに減衰し、炭材及び搬送ガスは自由拡散するので、ポテンシャルコア(初速を維持するエリア)は短くなる。また、比較的粒径が細かい炭材は、搬送ガスの流れに追従する傾向があるため、条件によっては搬送ガスから分離することができず、搬送ガスの流跡に沿って溶鉄や溶融スラグの浴面上を浮遊し、炉外へ放散されてしまう。
 一方、図1(A)に示す本発明法では、燃料b(気体燃料または/及び液体燃料)と支燃性ガスcとの燃焼反応によって筒状の燃焼火炎が形成され、その中を炭材a及び搬送ガスが通過し、溶融スラグ及び溶鉄に向けて吹込まれる。このとき、筒状の燃焼火炎の中を流れる炭材a及び搬送ガスは、周囲のガス流れの影響を受けないために流速が減衰せず、高い流速を維持することができる。すなわち、ポテンシャルコアが長くなる。このため、炭材aが高い慣性力を保ったまま搬送ガスから分離し、溶融スラグ及び溶鉄に到達し、溶融スラグ中及び溶鉄中に進入することができる。これにより、炭材aが効率良く溶融スラグ中及び溶鉄中に吹込まれることになる。
 また、燃料b及び支燃性ガスcの吐出流速を、炭材aの搬送ガスの吐出流速よりも大きくすることにより、筒状の燃焼火炎の中を通過する過程で、炭材a及び搬送ガスの流速が加速される。これにより、上記のような作用効果がより高められ、炭材aをより効率良く溶融スラグ中及び溶鉄中に吹込むことができる。
 炭材aは粉粒状のものである。炭材aとしては、コークス製造時の副産物であるコークス粉、石炭(微粉炭)、プラスチック(粒状または粉状のもの。廃プラスチックを含む)などが挙げられ、これらの1種以上を用いることができる。
 燃料bとしては、気体燃料または/及び液体燃料を使用できる。気体燃料としては、例えば、LPG(液化石油ガス)、LNG(液化天然ガス)、水素、製鉄所副生ガス(Cガス、Bガスなど)、これらの2種類以上の混合ガスなどが挙げられ、これらの1種類以上を用いることができる。液体燃料としては、例えば、重油(A重油、B重油、C重油)、軽油、灯油、廃油などが挙げられ、これらの1種類以上を用いることができる。また、上記のような気体燃料と液体燃料とを併用してもよい。ただし、燃焼の容易さ(燃料着火温度は一般的には固体燃料>液体燃料>気体燃料である)などの理由から、燃料bとしては気体燃料が好ましく、このため以下の説明では、燃料bとして気体燃料を用いる場合について述べる。
 支燃性ガスcとしては、純酸素(工業用純酸素)、酸素富化空気、空気のいずれかを用いることができる。
 炭材aの搬送ガスとしては、例えば、窒素、アルゴンなどの不活性ガスや空気などの1種以上用いることができるが、搬送ガスとして空気を用いる場合には、逆火防止弁などを設置して、炭材の発火・爆発などのリスクを抑えることが好ましい。また、窒素、アルゴンなどの不活性ガスを用いることで炭材の自己発火防止リスクを抑えられる。
 本発明で使用する炭材吹込み装置は、炭材a、燃料b、支燃性ガスcをそれぞれ噴射するための噴射管を有する。この炭材吹込み装置では、炭材粉噴射管が中心部に配され、その外周部に燃料噴射管及び支燃性ガス噴射管が配される。
 図2及び図3は本発明で使用する炭材吹込み装置の一例を示すもので、図2は縦断面図、図3は図2中のIII-IIIに沿う断面図である。この炭材吹込み装置において、燃料b(本実施形態では気体燃料)、支燃性ガスc、炭材aの供給用の本体部分は、3つの管体が同心状に配された三重管構造となっている。すなわち、この三重管構造は、中心側の炭材噴射管1と、その外側に配された燃料噴射管2と、更にその外側に配された支燃性ガス噴射管3で構成されている。なお、通常、三重管構造の各噴射管にはスペーサが配置され、各噴射管間の間隔が保持される。
 炭材噴射管1は、その内部が炭材流路10を構成し、燃料噴射管2は、炭材噴射管1との間の空間部が燃料流路20を構成し、支燃性ガス噴射管3は、燃料噴射管2との間の空間部が支燃性ガス流路30を構成している。炭材噴射管1、燃料噴射管2及び支燃性ガス噴射管3は、それぞれ先端が開放され、それらの開放端がそれぞれ炭材吐出口11(噴射口)、リング状の燃料吐出口21(噴射口)、リング状の支燃性ガス吐出口31(噴射口)を構成している。
 また、炭材吹込み装置の後端側において、支燃性ガス噴射管3には、支燃性ガス流路30に支燃性ガスを供給するための支燃性ガス供給口32が設けられている。同じく燃料噴射管2には燃料流路20に燃料を供給するための燃料供給口22が設けられている。同じく炭材噴射管1には炭材流路10に搬送ガスを介して炭材を供給するための炭材供給口12が設けられている。
 また、図示はしないが、支燃性ガス噴射管3の外側には、更に内側管体と外側管体が同心状に配され、それら外側管体と内側管体との間と、内側管体と支燃性ガス噴射管3との間に、相互に連通した冷却流体用流路(冷却流体の往路及び復路)を形成している。
 本実施形態では、燃料吐出口21と支燃性ガス吐出口31はリング状吐出口であるが、例えば、それぞれの吐出口を、噴射管端部の周方向で所定の間隔で形成された複数のガス孔で構成してもよい。
 このような炭材吹込み装置では、炭材吹込み時には炭材噴射管1からコークス粉などの炭材a及び搬送ガスが、燃料噴射管2からはLNGなどの燃料b(気体燃料)が、支燃性ガス噴射管3からは酸素などの支燃性ガスcがそれぞれ噴射される。燃料b(気体燃料)と支燃性ガスcとによって筒状の燃焼火炎が形成され、その中を炭材a及び搬送ガスが通過し、溶融スラグ中及び溶鉄中に吹込まれる。
 なお、本実施形態の炭材吹込み装置と類似した構造を有するものとして電気炉用助燃バーナーがあるが、この助燃バーナーでは、炭材を固体燃料として使用する。すなわち、炭材(固体燃料)をLNGのような気体燃料とともに燃焼(完全燃焼)させ、その燃焼火炎による冷鉄源への着熱やコールドスポット(電極から離れた不均一溶解が生じる箇所)の解消を図るものである。したがって、本発明で使用する炭材吹込み装置とは、使用目的、機能、炭材の使用方法が全く異なる装置である。
 本発明では、炭材吹込み装置の中心部から噴射された炭材aが、燃料bと支燃性ガスcとの燃焼反応で形成される筒状の燃焼火炎の中を通過して溶融スラグ中及び溶鉄中に吹込まれる。すなわち、主たる炭材aは燃焼することなく、筒状の燃焼火炎の中を通過して溶融スラグ及び溶鉄に到達して進入する。
 燃焼に必要な要素として、可燃性物質、酸素、温度(火源)の3要素が挙げられる。また、可燃性物質の燃焼しやすい状態は、気体、液体、固体の順である。これは、気体状態であれば可燃性物質と酸素との混合が容易であり、燃焼の継続(連鎖反応)が生じやすいからである。また、最も燃焼しにくい固体は、着火温度まで昇温した後に燃焼が始まる。
 以上の点からして、炭材aを燃焼しにくくする要素としては、(1)支燃性ガスcを燃料bのみが燃焼するような供給量で供給すること、(2)炭材aを着火温度まで昇温させないようにするために炭材a(搬送ガス)の流速を大きくすること、(3)炭材aは粒径が小さいほど着火温度まで昇温する時間が短く、燃焼しやすいので、炭材aの粒径を余り小さくしないこと、などが考えられる。
 上記(1)の点に関しては、本発明では、燃料bはノズルから噴射された直後に支燃性ガスcと接触して即座に燃焼するので、支燃性ガス流量は、燃料bのみが燃焼するような酸素比または、それに近い酸素比にすることが好ましい。具体的には、燃料bの供給量に対する酸素比が1.0~1.1となるような支燃性ガスcの供給量とすることが好ましい。ここで酸素比とは、「(支燃性ガスにより実際に供給される酸素量)/(燃料を完全燃焼させるのに必要な理論酸素量)」である。
 上記(2)の点に関しては、例えば、炭材aとして石炭を用いる場合、炭材が着火する温度は数百度(コークスの場合は1000℃以上)であるので、炭材aを着火温度まで昇温させないようにするために、炭材a(搬送ガス)の流速を大きくすることが好ましい。燃焼場における炭材の粒子昇温速度は一般的に10℃/ms程度であると考えられる。炭材吹込み装置の噴射口から溶融スラグや溶鉄までの距離が1~2m程度とすると、例えば、炭材a(搬送ガス)の流速を20~100m/s程度にした場合、噴射口から噴射された炭材aが溶融スラグや溶鉄に到達するまでの時間はわずか10~100msである。このような短い時間では、炭材aは着火温度まで昇温されることはなく、つまり、炭材aは燃焼することなく、溶融スラグ及び溶鉄に到達すると考えられる。したがって、炭材a(搬送ガス)の流速は20~100m/s程度とするのが好ましい。
 炭材aの粒径が小さすぎると、上記(3)の点に加えて、炭材aが搬送ガスの流れに追従し、搬送ガスから分離しにくくなるおそれがある。このため、炭材aのメジアン径(D50)は20μm以上とすることが好ましい。ここで、メジアン径(D50)は、例えば、レーザー回折散乱式粒度分布測定器で測定される炭材aの粒度分布に基づき求めることができる。
 上記の(1)~(3)などの点を考慮して、炭材吹込み装置から、炭材a、燃料b及び支燃性ガスcの供給を行うことが好ましい。
 燃料b及び支燃性ガスcの吐出ガス流速は、炭材aを効率良く吹込むという観点からはできるだけ大きい方が好ましいが、吐出ガス流速が大きすぎると火炎が失火し、筒状の燃焼火炎を安定的に形成できなくなるおそれがある。一方、燃料b及び支燃性ガスcの吐出ガス流速が小さすぎると、燃焼火炎長が比較的短くなるため、ポテンシャルコアも短くなり、本発明の効果が低下する。また、燃焼火炎長が短いと、炉内の外乱によって火炎が吹き飛ぶことで失火し、この場合も燃焼火炎を安定的に形成できなくなるおそれがある。以上の観点から、燃料b及び支燃性ガスcの吐出ガス流速は100~500m/s程度が好ましい。
 また、燃料bの燃焼量が少なすぎると、燃焼火炎が炉内の外乱によって不安定になりやすいので、燃料bの燃焼量は、炭材吹込み装置1基当たり400Mcal/h以上であることが好ましい。
 炭材aの搬送ガスのガス流量にも好ましい条件があり、炭材吹込み量と搬送ガス流量との比は0.5~15kg/Nm程度が好ましい。炭材吹込み量と搬送ガス流量との比が15kg/Nmを超えると、炭材aの搬送性が低下し、炭材aが流路内で詰まるなどの操業トラブルが生じやすくなる。一方、0.5kg/Nm未満では、搬送ガスによって炉内温度が冷却され、操業性が低下するおそれがある。
 支燃性ガスcの流量は、燃料b(気体燃料)の流量、燃料理論酸素量(燃料を完全燃焼させるのに必要な理論酸素量)、及び、酸素比に基づき、下記(1)式によって求めることができる。
 支燃性ガス流量=支燃性ガス酸素濃度比×酸素比(係数)×[燃料流量×燃料理論酸素量]  ……(1)
 したがって、例えば、支燃性ガスcを純酸素(酸素濃度100%)とし、燃料bをLNGとし、LNGの流量を100Nm/hとした場合、支燃性ガス流量は以下のようになる。燃料理論酸素量は燃料中の炭素分や水素分などから算出され、LNGの理論酸素量は2.2Nm-酸素/Nm-LNG程度とされており、酸素比を1.1とした場合、上記(1)式により、支燃性ガス流量は242Nm/h(=1×1.1×[100×2.2])と計算される。
 また、炭材吹込み装置における燃料bの燃焼量と炭材aの吹込み速度との比(Mcal/kg)にも好ましい条件があり、燃料bの燃焼量と炭材aの吹込み速度との比は0.1Mcal/kg以上が望ましい。これは、炭材吹込み速度に対して燃料bの燃焼量が少ないと、吹込まれた炭材自身によってバーナー先端の火炎が吹き消されてしまい、燃焼火炎が不安定となり、本発明の効果が十分に得られなくなるためである。
 図4は本発明法の実施状況の一例(電気炉の半径方向での縦断面)を模式的に示すものであり、符号4は炉体、符号5は電極、符号6は炭材吹込み装置、符号7は溶鉄、符号はは溶融スラグである。この炭材吹込み装置6は、適当な伏角をもって炉体4に設置される。炭材吹込み装置6は、通常、炉体4に対して1基または2基以上設置される。
 以上の説明から明らかなように、本発明に係る電気炉による溶鉄の製造方法によれば、炭材吹込み装置6を備えた電気炉において冷鉄源を溶解して溶鉄7を製造する際に、炭材aを溶融スラグ中及び溶鉄中に効率良く吹込むことができる。これにより、下記(1)、(2)の効果が得られる。
(1)溶融スラグ中及び溶鉄中に吹込まれる炭材aの歩留りが向上するため、冷鉄源の溶解効率の向上により電力原単位を削減することができる。
(2)炭材aにより酸化鉄が効率良く還元されるため、出鋼歩留りが向上する。
 更に、本発明に係る電気炉による溶鉄の製造方法によれば、以下のような効果も得られる。
(3)燃料bと支燃性ガスcとの燃焼反応で形成される燃焼火炎が溶鉄及び溶融スラグに着熱されるため、この面でも冷鉄源の溶解効率が向上し、電力原単位を削減することができる。
(4)炭材吹込みノズルの流路径を小さくする必要がないためノズル詰まりのおそれがない。
(5)炭材吹込み装置を電気炉の炉体に固定することができ、これにより炭材吹込み装置の取り付け部から空気が浸入することがないので操業性が向上する。
(6)ノズル先端を溶融スラグや溶鉄に近接させる必要がなく、溶鉄や溶融スラグのスプラッシュによる影響も少ないため安全性に優れる。
(7)炉外へ放散される炭材量が少ないので、電気炉周辺の浮遊ダストが減少し、作業環境も改善される。
 また、燃料b及び支燃性ガスcの吐出流速を、炭材aの搬送ガスの吐出流速よりも大きくすることにより、筒状の燃焼火炎の中を通過する過程で炭材a及び搬送ガスの流速が加速されるため、上記のような作用効果がより高められる。その結果、炭材aをより効率良く溶融スラグ中及び溶鉄中に吹込むことができる。
 図2及び図3に示す構造の炭材吹込み装置を設置した電気炉で試験(発明例1~9)を行った。また、比較のために、従来型の単管ノズル式の炭材吹込み装置(図1(B)を参照)を設置した電気炉で試験(比較例)を行った。図5に、試験を行った電気炉の水平断面を模式的に示す。この電気炉は炉径が約6.3m、炉高が約4.1m、出鋼量が約120トンであり、また水冷式の酸素ランスが設置され、中心に1本の電極を有する直流タイプである。発明例1~9では、炭材吹込み装置を、図5に示すように、炉体周方向において、計3箇所に設置した。また、比較例では、炉体周方向の3箇所に従来型の単管ノズル式の炭材吹込み装置を設置した。
 表1に、本実施例における電気炉の操業条件を示す。
Figure JPOXMLDOC01-appb-T000001
 使用した鉄スクラップの種類はヘビーH2(日本鉄源協会の「鉄系スクラップ検収統一規格」に規定されているもの)である。鉄スクラップをバケットに装入し、操業開始前と操業中期の2回に分けて、合計約130トンの鉄スクラップを電気炉内に装入した。また、操業開始前に、副原料として、補助燃料であるコークス塊(1000kg)、及び、造滓剤である生石灰(500kg)を、副原料投入シュート(図示せず)を介して電気炉内へ装入した。炭材吹込みは、溶鉄及び溶融スラグが或る程度生成されている操業中期から操業末期の期間に実施した。
 発明例1~9における炭材吹込み装置の使用条件を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 炭材の搬送ガスには空気を用い、気体燃料にはLNGを用い、支燃性ガスには純酸素(工業用純酸素)を用いた。発明例1~8においては、炭材の吹込み速度は60kg/minとし、且つ、炭材の搬送ガスである空気の流量は360Nm/hとした。また、発明例9においては、炭材の吹込み速度は80kg/minとし、炭材の搬送ガスである空気の流量は360Nm/hとした。LNGの流量は、発明例1~9で、20~220Nm/hの範囲で変更し、支燃性ガスである純酸素の流量は、酸素比が1.1の一定になるように、LNGの流量に応じて48~532Nm/hの範囲で変更した。また、比較例では、炭材の吹込み速度を60kg/minとし、炭材の搬送ガスには空気(空気の流量は360Nm/h)を用いた。炭材は、表3に示すコークス粉A、コークス粉B及びコークス粉Cのいずれかを用いた。
Figure JPOXMLDOC01-appb-T000003
 本実施例では、発明例1~9の各々で、1チャージ当たりの炭材吹込み原単位が、1kg/t、2kg/t、3kg/t、4kg/t、5kg/t、6kg/t、7kg/t、8kg/t、9kg/t、10kg/tとなるように、炭材吹込み時間を調整しながら計10チャージ実施した。10チャージのそれぞれの炭材吹込み原単位及び電力原単位から、各発明例における10チャージ平均の炭材吹込み原単位及び各発明例における10チャージ平均の電力原単位を算出した。
 また、各発明例における10チャージの炭材吹込み原単位と電力原単位とを用いて単回帰式を作成し、そのときの傾きa(単回帰式:y=-ax+b)を炭材効率(kWh/t/(kg/t))として評価した。例えば、発明例2の炭材吹込み原単位と電力原単位との関係を図6に示す。このときの炭材効率は4.3kWh/t/(kg/t)である。
 炭材効率は値が高いほど効率が良いことを示す。評価としては、炭材効率が1.0未満を“×”、炭材効率が1.0以上2.0未満を“△”、炭材効率が2.0以上4.0未満を“〇”、炭材効率が4.0以上を“◎”とした。
 また、溶鉄への炭材の歩留まりを評価するために、鉄スクラップの溶解終了後に炉内の溶鉄から分析用試料を採取し、溶鉄中の炭素濃度を分析した。溶鉄中の炭素濃度が高いほど効率が良いことを示す。評価としては、溶鉄中の炭素濃度が0.050%未満を“×”、0.050%以上0.055%未満を“△”、0.055%以上0.060%未満を“〇”、0.060%以上を“◎”とした。
 また、チャージ間にて電気炉の炉蓋を開け、炭材吹込み装置における燃焼火炎の生成状況を目視で確認した。このとき、燃焼火炎が安定して生成していれば“〇”、燃焼火炎が揺動・脈動しているなど燃焼火炎が不安定であると認められれば“△”、完全に失火していれば“×”とした。
 また、電気炉の炉体開口部からの火炎・ダスト(炭材を含む)の吹き上げ状況を目視で確認した。このとき、比較例に対して炉体開口部からのダストや火炎の吹き上げが低減されていると認められれば“〇”、変化なしと認められれば“△”、悪化していると認められれば“×”とした。
 更に、総合評価として、上記の炭材効率、溶鉄中の炭素濃度、燃焼火炎の生成状況、炉体開口部からの火炎・ダストの吹き上げ状況のうちの評価が一つでも“×”があれば“×”、一つでも“△”があれば“△”、それ以外は“〇”とした。
 以上の結果を、炭材吹込み装置の吹込み条件とともに表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4において、比較例は、単管ノズル式の炭材吹込み装置から炭材を搬送ガスで吹込んだだけであるため、吹込まれた炭材及び搬送ガスの流速が減衰し、炭材の多くが溶融スラグや溶鉄まで到達せず、炉外に放散された可能性がある。炭材吹込み時には、電極孔などの開口部から火炎が吹き上げており、これが炭材吹込みのロス分と考えられる。電力原単位は395.8kWh/t、炭材効率は0.9kWh/t/(kg/t)と非常に低く、炭材効率の評価は“×”である。また、溶鉄中の炭素濃度は0.049mass%であり、その評価も“×”である。このため比較例の総合評価は“×”である。
 これに対して、発明例では、LNGと酸素との燃焼反応により形成された筒状の燃焼火炎を通して炭材が効率良く溶融スラグ中及び溶鉄中に吹込まれ、その結果、電力原単位及び炭材効率が改善し、溶鉄中の炭素濃度も高くなっている。
 発明例1では、電力原単位は390.0kWh/t、炭材効率は2.2kWh/t/(kg/t)まで改善されており、評価は“〇”である。また、溶鉄中の炭素濃度は0.053mass%であるため、評価は“△”である。また、発明例2では電力原単位は377.7kWh/t、炭材効率は4.3kWh/t/(kg/t)まで改善されており、評価は“◎”である。また、溶鉄中の炭素濃度は0.059mass%であるため、評価は“〇”である。更に、本発明例3では電力原単位は371.4kWh/t、炭材効率は4.8kWh/t/(kg/t)まで改善されており、評価は“◎”である。また、溶鉄中の炭素濃度は0.061mass%であるため、評価は“◎”である。
 また、発明例1~3では、燃焼火炎の生成状況は、安定した燃焼火炎が生成されていることを目視で確認できたため、評価は“〇”である。同じく、炭材吹込み時の電極孔などの開口部からのダストや火炎の吹き上げは比較例よりも大幅に低減されたため、評価は“〇”である。
 以上により、発明例1の総合評価は“△”、発明例2、3の総合評価は“〇”である。
 発明例4は、LNGの流量が30Nm/hであるため、発明例1~3に比べてLNG吐出流速が72m/sと低く、燃焼火炎の安定性が低下した。また、炭材及び搬送ガスの加速も発明例1~3に比べて低くなったものと考えられる。更に、LNGの燃焼量と炭材の吹込み速度との比は0.08Mcal/kgであり、燃焼量が過少であったことから、本発明の効果が十分に得られなかったものと考えられる。このため、電力原単位は391.0kWh/t、炭材効率は1.3kWh/t/(kg/t)であり、評価は“△”である。また、溶鉄中の炭素濃度は0.053mass%であり、評価は“△”である。また、燃焼火炎の生成状況は、炉内の状況によっては燃焼火炎が揺動して不安定な時があったため、評価は“△”である。また、炭材吹込み時の電極孔などの炉体開口部からのダストや火炎の吹き上げは比較例と較べて変化がなかったため、評価は“△”である。以上により、発明例4の総合評価は“△”である。
 発明例5は、炭材としてコークス粉Bを用いた以外は発明例2と同じ条件で実施したものである。この発明例5では、電力原単位は385.5kWh/t、炭材効率は2.4kWh/t/(kg/t)であり、評価は“○”である。また、溶鉄中の炭素濃度は0.055mass%であるため、評価は“〇”である。また、燃焼火炎の生成状況は、安定した燃焼火炎が形成されていることが目視で確認できたため、評価は“〇”である。また、炭材吹込み時の電極孔などの開口部からのダストや火炎の吹き上げは、比較例と較べて変化がなかったため、評価は“△”である。以上により、発明例5の総合評価は“△”である。
 この発明例5は、発明例2と比較すると炭材効率が低下したが、これはコークス粉の粒径差によるものと考えられる。すなわち、使用したコークス粉Bは、発明例2で使用したコークス粉Aに比べて粒径が小さく、搬送ガスから分離しにくいために、炭材効率が低下したものと考えられる。
 発明例6は、LNGの流量が220Nm/hであるため、発明例1~3に比べてLNG吐出流速が527m/sと高く、燃焼火炎の安定性が低下したため、炭材の歩留まり向上効果が低下した。このため、電力原単位は381.0kWh/t、炭材効率は3.2kWh/t/(kg/t)であり、評価は“〇”である。また、溶鉄中の炭素濃度は0.057mass%であるため、評価は“〇”である。また、燃焼火炎の生成状況は、火炎が脈動している時があったため、評価は“△”である。また、炭材吹込み時の電極孔などの開口部からのダストや火炎の吹き上げは比較例よりも大幅に低減されたため、評価は“〇”である。以上により、発明例6の総合評価は“△”である。
 発明例7は、LNGの流量が20Nm/hであるため、LNG吐出流速が48m/sと低く、且つ搬送ガス吐出流速よりも低いため、燃焼火炎の安定性が低下するとともに、燃焼火炎による炭材及び搬送ガスの加速作用が得られなかったものと考えられる。また、LNGの燃焼量と炭材の吹込み速度との比は0.05Mcal/kgであり、燃焼量が過少であったことから、本発明の効果が十分に得られなかったものと考えられる。このため、電力原単位は392.5kWh/t、炭材効率は1.1kWh/t/(kg/t)であり、評価は“△”である。また、溶鉄中の炭素濃度は0.052mass%であり、評価は“△”である。また、燃焼火炎の生成状況は、炉内の状況によっては燃焼火炎が揺動して不安定な時があったため、評価は“△”である。また、炭材吹込み時の電極孔などの開口部からのダストや火炎の吹き上げは比較例と較べて変化がなかったため、評価は“△”である。以上により、発明例7の総合評価は“△”である。
 発明例8は、炭材としてコークス粉Cを用いた以外は発明例2及び発明例5と同じ条件で実施したものである。この発明例8では電力原単位は381.0kWh/t、炭材効率は3.1kWh/t/(kg/t)であり、評価は“○”である。また、溶鉄中の炭素濃度は0.056mass%であるため、評価は“〇”である。また、燃焼火炎の生成状況は、安定した燃焼火炎が形成されていることを目視で確認できたため、評価は“〇”である。また、炭材吹込み時の電極孔などの開口部からのダストや火炎の吹き上げは比較例よりも大幅に低減されたため、評価は“〇”である。以上により、発明例8の総合評価は“〇”である。
 この発明例8の結果が発明例5よりも良好であるのは、使用したコークス粉の粒径が発明例8の方が大きく、搬送ガスからの分離性が高くなったためであると考えられる。
 発明例9は、炭材吹込み速度を80kg/minとし、それ以外は発明例1と同様な試験条件で実施したものである。LNGの燃焼量と炭材の吹込み速度との比は0.09Mcal/kgであり、燃焼量が過少であったことから、本発明の効果が十分に得られなかったものと考えられる。このため、電力原単位は391.8kWh/t、炭材効率は1.7kWh/t/(kg/t)であり、評価は“△”である。また、溶鉄中の炭素濃度は0.053mass%であり、評価は“△”である。また、燃焼火炎の生成状況は、炭材吹込み時によっては燃焼火炎が揺動して不安定な時があったため、評価は“△”である。また、炭材吹込み時の電極孔などの開口部からのダストや火炎の吹き上げは比較例と較べて変化がなかったため、評価は“△”である。以上により、発明例9の総合評価は“△”である。
 1 炭材噴射管
 2 燃料噴射管
 3 支燃性ガス噴射管
 4 炉体
 5 電極
 6 炭材吹込み装置
 7 溶鉄
 8 溶融スラグ
 10 炭材流路
 11 炭材吐出口
 12 炭材供給口
 20 燃料流路
 21 燃料吐出口
 22 燃料供給口
 30 支燃性ガス流路
 31 支燃性ガス吐出口
 32 支燃性ガス供給口
 a 炭材
 b 燃料
 c 支燃性ガス

Claims (7)

  1.  炭材吹込み装置を備えた電気炉において、冷鉄源を溶解して溶鉄を製造する方法であって、
     前記炭材吹込み装置では、中心部から搬送ガスで炭材(a)を噴射するとともに、その外周部から燃料(b)と支燃性ガス(c)とをそれぞれ噴射し、
     中心部から噴射された炭材(a)が、燃料(b)と支燃性ガス(c)との燃焼反応で形成される筒状の燃焼火炎の中を通過して溶融スラグ中及び溶鉄中に吹き込まれる、電気炉による溶鉄の製造方法。
  2.  前記炭材吹込み装置における燃料(b)及び支燃性ガス(c)の吐出流速を、前記炭材吹込み装置における炭材(a)の搬送ガスの吐出流速よりも大きくする、請求項1に記載の電気炉による溶鉄の製造方法。
  3.  前記炭材吹込み装置における燃料(b)の供給量に対する酸素比が1.0~1.1となるように、支燃性ガス(c)を供給する、請求項1または請求項2に記載の電気炉による溶鉄の製造方法。
  4.  前記炭材吹込み装置は、中心側から順に、炭材噴射管(1)、燃料噴射管(2)、支燃性ガス噴射管(3)が同心状に配された構造を有する、請求項1から請求項3のいずれか1項に記載の電気炉による溶鉄の製造方法。
  5.  前記炭材吹込み装置における燃料(b)及び支燃性ガス(c)の吐出流速が100~500m/sである、請求項1から請求項4のいずれか1項に記載の電気炉による溶鉄の製造方法。
  6.  前記炭材吹込み装置における燃料(b)の燃焼量が、前記炭材吹込み装置1基当たり400Mcal/h以上である、請求項1から請求項5のいずれか1項に記載の電気炉による溶鉄の製造方法。
  7.  前記炭材吹込み装置における燃料(b)の燃焼量と炭材(a)の吹込み速度との比が0.1Mcal/kg以上である、請求項1から請求項6のいずれか1項に記載の電気炉による溶鉄の製造方法。
PCT/JP2020/038814 2019-11-06 2020-10-14 電気炉による溶鉄の製造方法 WO2021090654A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20885363.0A EP4056722A4 (en) 2019-11-06 2020-10-14 PROCESS FOR PRODUCTION OF MOLTEN IRON BY MEANS OF AN ELECTRIC FURNACE
CN202080075739.2A CN114616349B (zh) 2019-11-06 2020-10-14 基于电炉的铁水的制造方法
KR1020227014368A KR102639551B1 (ko) 2019-11-06 2020-10-14 전기로에 의한 용철의 제조 방법
JP2021507715A JP7040667B2 (ja) 2019-11-06 2020-10-14 電気炉による溶鉄の製造方法
US17/772,675 US20220403478A1 (en) 2019-11-06 2020-10-14 Method for manufacturing molten iron with electric arc furnace
MX2022004852A MX2022004852A (es) 2019-11-06 2020-10-14 Metodo para fabricar hierro fundido con horno de arco electrico.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-201136 2019-11-06
JP2019201136 2019-11-06

Publications (1)

Publication Number Publication Date
WO2021090654A1 true WO2021090654A1 (ja) 2021-05-14

Family

ID=75849944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038814 WO2021090654A1 (ja) 2019-11-06 2020-10-14 電気炉による溶鉄の製造方法

Country Status (7)

Country Link
US (1) US20220403478A1 (ja)
EP (1) EP4056722A4 (ja)
JP (1) JP7040667B2 (ja)
KR (1) KR102639551B1 (ja)
CN (1) CN114616349B (ja)
MX (1) MX2022004852A (ja)
WO (1) WO2021090654A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145422A (ja) 1993-11-24 1995-06-06 Nippon Steel Corp 電気炉の酸素及び粉体の吹込み装置
JPH11304372A (ja) 1998-04-23 1999-11-05 Ito Seitetsusho:Kk 非消耗型水冷ランス
JP2003172584A (ja) * 2001-09-28 2003-06-20 Nippon Sanso Corp 粉体吹込み装置および精錬方法
JP2008039362A (ja) * 2006-08-10 2008-02-21 Taiyo Nippon Sanso Corp バーナ及び粉体可燃物の燃焼方法並びに冷鉄源の溶解・精錬方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125133A (en) * 1997-03-18 2000-09-26 Praxair, Inc. Lance/burner for molten metal furnace
DE59905864D1 (de) * 1998-08-28 2003-07-10 Voest Alpine Ind Anlagen Multifunktionslanze und deren verwendung
JP2000234114A (ja) * 1999-02-10 2000-08-29 Nippon Steel Corp スクラップの溶解方法
JP2002363632A (ja) * 2001-06-04 2002-12-18 Daido Steel Co Ltd 低n鋼の製造方法
US20050252430A1 (en) 2002-12-30 2005-11-17 Satchell Donald P Jr Burner-lance and combustion method for heating surfaces susceptible to oxidation or reduction
JP5552754B2 (ja) * 2009-05-12 2014-07-16 Jfeスチール株式会社 アーク炉の操業方法
JP5834980B2 (ja) * 2012-02-09 2015-12-24 Jfeスチール株式会社 溶鋼の製造方法
KR101406503B1 (ko) 2012-12-21 2014-06-13 주식회사 포스코 고정형 전기로 및 용강 제조 방법
JP5988014B1 (ja) * 2015-01-27 2016-09-07 Jfeスチール株式会社 電気炉による溶鉄の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145422A (ja) 1993-11-24 1995-06-06 Nippon Steel Corp 電気炉の酸素及び粉体の吹込み装置
JPH11304372A (ja) 1998-04-23 1999-11-05 Ito Seitetsusho:Kk 非消耗型水冷ランス
JP2003172584A (ja) * 2001-09-28 2003-06-20 Nippon Sanso Corp 粉体吹込み装置および精錬方法
JP2008039362A (ja) * 2006-08-10 2008-02-21 Taiyo Nippon Sanso Corp バーナ及び粉体可燃物の燃焼方法並びに冷鉄源の溶解・精錬方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4056722A4

Also Published As

Publication number Publication date
JP7040667B2 (ja) 2022-03-23
KR20220074919A (ko) 2022-06-03
MX2022004852A (es) 2022-05-19
KR102639551B1 (ko) 2024-02-21
CN114616349A (zh) 2022-06-10
JPWO2021090654A1 (ja) 2021-11-25
EP4056722A4 (en) 2023-01-11
CN114616349B (zh) 2024-04-02
US20220403478A1 (en) 2022-12-22
EP4056722A1 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
US9410218B2 (en) Method for operating a blast furnace
ITUD980194A1 (it) Dispositivo integrato per l'iniezione di ossigeno e gas tecnologici e per l'insufflaggio di materiale solido in polvere e procedimento di utilizzo di detto dispositivo integrato per il trattamento metallurgico di bagni di fusione metallica
JP5988014B1 (ja) 電気炉による溶鉄の製造方法
JP5923968B2 (ja) 高炉操業方法
JP5087955B2 (ja) 溶融還元方法
KR20130109237A (ko) 고로 조업 방법
US9650689B2 (en) Method for operating a blast furnace
WO2018074166A1 (ja) 電気炉用助燃バーナー
EP2873741B1 (en) Blast furnace operating method and tube bundle-type lance
KR102211258B1 (ko) 전기로용 조연 버너
WO2021090654A1 (ja) 電気炉による溶鉄の製造方法
JP6504370B2 (ja) 電気炉による溶鉄の製造方法
JP6624140B2 (ja) 助燃バーナーを備えた電気炉の操業方法
RU2796917C1 (ru) Способ производства расплавленного чугуна в электродуговой печи
US10935234B2 (en) Auxiliary burner for electric furnace
WO2022172768A1 (ja) 撮像装置付きバーナー、該バーナーを備える電気炉、及び、該電気炉を用いた溶鉄の製造方法
RU2817361C2 (ru) Горелка с устройством отображения, электропечь, снабженная упомянутой горелкой, и способ производства расплавленного чугуна с использованием упомянутой электропечи
WO2013094229A1 (ja) 高炉操業方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021507715

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227014368

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020885363

Country of ref document: EP

Effective date: 20220607