WO2021090547A1 - 飛行時間型質量分析装置および分析方法 - Google Patents

飛行時間型質量分析装置および分析方法 Download PDF

Info

Publication number
WO2021090547A1
WO2021090547A1 PCT/JP2020/030983 JP2020030983W WO2021090547A1 WO 2021090547 A1 WO2021090547 A1 WO 2021090547A1 JP 2020030983 W JP2020030983 W JP 2020030983W WO 2021090547 A1 WO2021090547 A1 WO 2021090547A1
Authority
WO
WIPO (PCT)
Prior art keywords
high voltage
voltage
control circuit
stability
mode
Prior art date
Application number
PCT/JP2020/030983
Other languages
English (en)
French (fr)
Inventor
拓郎 岸田
寧 青木
俊昇 河合
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2021554822A priority Critical patent/JP7235135B2/ja
Priority to CN202080074796.9A priority patent/CN114616646A/zh
Priority to EP20883793.0A priority patent/EP4056995A4/en
Priority to US17/768,747 priority patent/US20240120190A1/en
Publication of WO2021090547A1 publication Critical patent/WO2021090547A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0095Particular arrangements for generating, introducing or analyzing both positive and negative analyte ions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • H02M7/103Containing passive elements (capacitively coupled) which are ordered in cascade on one source

Definitions

  • the present invention relates to a time-of-flight mass spectrometer provided with a high-voltage power supply and an analysis method.
  • the time-of-flight mass spectrometer has a flight tube.
  • a stable high voltage is applied to the flight tube or the like by a high voltage power supply device in order to fly the ionized component of the sample in the flight tube (for example, Patent Document 1). Further, the polarity of the applied voltage is switched according to the polarity of the ion to be analyzed.
  • the high-voltage power supply device described in Patent Document 1 includes a voltage generating unit, an auxiliary voltage generating unit, a capacitor, and the like. While the voltage generator applies a negative voltage to the flight tube, the auxiliary voltage generator charges the capacitor to a positive potential with a large current. When the polarity of the applied voltage is switched from negative to positive, the flight tube is cut off from the voltage generating part, and a large current is supplied from the capacitor to the flight tube. As a result, the capacitance of the flight tube is quickly charged to a positive potential. The flight tube is then cut off from the capacitor and connected to a voltage generator that generates a positive voltage. As a result, a stable positive voltage is applied to the flight tube. In this way, the rise time of the voltage applied to the flight tube can be shortened.
  • An object of the present invention is flight time with a high voltage power supply capable of generating a high voltage with improved convergence responsiveness or a high voltage with improved stability depending on the subject of analysis or the purpose of analysis. It is to provide a type mass analyzer and an analysis method.
  • the flight time type mass analyzer includes an electrode to which a high voltage of DC is applied to form a flight space of ions, and a high voltage power supply device to apply a high voltage to the electrode.
  • the voltage power supply device has a high voltage generating circuit that generates a high voltage, and a first mode and a high voltage that control the high voltage pressure generating circuit so that the high voltage has a first convergence response and a first stability.
  • a second mode in which the high voltage generator is controlled so that has a second convergent responsiveness lower than the first convergent responsiveness and a second stability higher than the first stability. Includes a set voltage control circuit.
  • An analysis method is an analysis method using a flight time type mass analyzer provided with a high voltage power supply device for applying a high voltage to an electrode in order to form an ion flight space.
  • a first mode in which the high voltage power supply is controlled so that the high voltage has a first convergence responsiveness and a first stability, and a second convergence in which the high voltage is lower than the first convergence responsiveness.
  • flight time with a high voltage power supply capable of generating a high voltage with improved convergence responsiveness or a high voltage with improved stability depending on the analysis target or purpose. It becomes possible to provide a type mass analyzer and an analysis method.
  • FIG. 1 is a diagram showing a configuration of a time-of-flight mass spectrometer according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration of a positive voltage generating portion of a high voltage power supply device.
  • FIG. 3 is a waveform diagram when the high voltage is switched from negative to positive.
  • FIG. 4 is a waveform diagram showing a temporal change of the high voltage when the high voltage is repeatedly switched between positive and negative in the convergence responsiveness priority mode.
  • FIG. 5 is a waveform diagram showing a temporal change of the high voltage when the high voltage is switched from negative to positive in the stability priority mode.
  • FIG. 6 is a block diagram showing a functional configuration of a switching control unit in a high voltage power supply device.
  • FIG. 7 is a flowchart showing an example of the mode setting operation of the switching control unit.
  • FIG. 8 is a circuit diagram showing another example of the configuration of the voltage control circuit.
  • FIG. 9 is a circuit diagram showing another example
  • FIG. 1 is a diagram showing a configuration of a time-of-flight mass spectrometer according to an embodiment of the present invention.
  • the time-of-flight mass spectrometer 1 includes a mass spectrometer 2, a high-voltage power supply 3, a display 4, and an operation unit 5.
  • the high-voltage power supply device 3 according to the present embodiment can selectively operate in the convergence responsiveness priority mode and the stability priority mode. Details of the convergence responsiveness priority mode and the stability priority mode will be described later.
  • the mass spectrometry unit 2 includes an ionization chamber 20, a first intermediate chamber 21, a second intermediate chamber 22, a third intermediate chamber 23, and an analysis chamber 24.
  • the ionization chamber 20 includes an ESI probe (probe for electrospray ionization) 201 and a capillary 202.
  • the ESI probe 201 ionizes the components in the liquid sample in the ionization chamber 20 by spraying the liquid sample while applying an electric charge.
  • the ions in the ionization chamber 20 are guided to the first intermediate chamber 21 through the capillary 202.
  • the first intermediate chamber 21 includes a first ion guide 211.
  • the first ion guide 211 guides the ions guided to the first intermediate chamber 21 to the second intermediate chamber 22 while converging them.
  • the second intermediate chamber 22 includes a second ion guide 221.
  • the second ion guide 221 guides the ions guided to the second intermediate chamber 22 to the third intermediate chamber 23 while further converging.
  • the third intermediate chamber 23 includes a quadrupole mass filter 231 and a collision cell 232 and an ion guide 234.
  • the collision cell 232 includes a multi-pole ion guide 233.
  • the quadrupole mass filter 231 separates the ions guided to the third intermediate chamber 23 according to the mass-to-charge ratio, and guides the separated ions to the collision cell 232.
  • Collision gas is supplied to the inside of the collision cell 232 as needed.
  • the ions released from the collision cell 232 by the multi-pole ion guide 233 are guided to the analysis chamber 24 by the ion guide 234.
  • the analysis chamber 24 includes an ion transport electrode 241, an orthogonal acceleration electrode 242, an acceleration electrode 243, a reflector electrode 244, a detector 245, a flight tube 246 and a back plate 247.
  • the orthogonal acceleration electrode 242 is composed of an electrode 242A and an electrode 242B.
  • the reflector electrode 244 includes an electrode 244A and an electrode 244B.
  • the ions guided to the analysis chamber 24 are guided by the ion transport electrode 241 between the electrodes 242A and 242B of the orthogonal acceleration electrode 242.
  • the orthogonal acceleration electrode 242 bends the traveling direction of the ions at a substantially right angle.
  • the accelerating electrode 243 accelerates the ions and guides them into the flight tube 246.
  • the ions in the flight tube 246 fly in the flight space in the flight tube 246 at a flight speed corresponding to the mass-to-charge ratio.
  • the detector 245 is, for example, a secondary electron multiplier tube.
  • the detector 245 detects the ions that have passed through the flight tube 246. Based on the output signal of the detector 245, the flight times of various ions are converted into a mass-to-charge ratio (m / z) by the following equation (1), and a mass spectrum is created.
  • t is the time of flight
  • L is the flight distance
  • N A is Avogadro's number
  • e is the elementary charge
  • V is a high-voltage power supply 3 at the voltage applied to the flight tube 246 Yes
  • m / z is the mass-to-charge ratio.
  • the flight time t of ions changes depending on the voltage applied to the flight tube 246. Therefore, when the stability of the voltage applied to the flight tube 246 is low, the flight time t fluctuates, and a mass spectrum having high resolution cannot be obtained. Therefore, when high resolution mass spectrometry is required, it is necessary to apply a highly stable voltage to the flight tube 246.
  • the high voltage power supply device 3 includes a switching control unit 30, a positive voltage generating unit 31, a negative voltage generating unit 32, a positive voltage selection switch 33, and a negative voltage selection switch 34.
  • the switching control unit 30 is realized by, for example, a CPU (central processing unit), a RAM (random access memory), a ROM (read-only memory), and a storage device.
  • a display unit 4 and an operation unit 5 are connected to the switching control unit 30.
  • the display unit 4 includes a liquid crystal display, an organic EL (electroluminescence) display, and the like.
  • the display unit 4 displays various information and images.
  • the operation unit 5 includes a keyboard, a pointing device, and the like. The operation unit 5 is used for operations such as selection and designation.
  • the display unit 4 and the operation unit 5 may be configured by a touch panel display.
  • the operation unit 5 is displayed as an image on the display unit 4.
  • the user can perform operations such as selection and designation by touching a predetermined portion of the image displayed on the display unit 4.
  • the positive voltage generation unit 31 generates a positive high voltage VP from the output node NP.
  • the negative voltage generation unit 32 generates a negative high voltage VN from the output node NN.
  • the output node NP of the positive voltage generation unit 31 is connected to the output node Nout through the positive voltage selection switch 33.
  • the output node NN of the negative voltage generating unit 32 is connected to the output node Nout through the negative voltage selection switch 34.
  • a switching element such as a bipolar transistor, a field effect transistor, or a mechanical switch is used.
  • the output node Out is connected to the flight tube 246.
  • the flight tube 246 serves as an electrode.
  • the switching control unit 30 gives the mode setting signal MS to the positive voltage generation unit 31 and the negative voltage generation unit 32 based on the operation of the operation unit 5. Further, the switching control unit 30 gives a positive voltage selection signal SP to the positive voltage selection switch 33, and gives a negative voltage selection signal SN to the negative voltage selection switch 34.
  • the mode setting signal MS When the mode setting signal MS is in the first state (for example, logical high level), the positive voltage generation unit 31 and the negative voltage generation unit 32 are set to the convergence responsiveness priority mode, and the mode setting signal MS is the second. In the state (for example, logical low level), the positive voltage generating unit 31 and the negative voltage generating unit 32 are set to the stability priority mode.
  • the positive voltage selection signal SP and the negative voltage selection signal SN change to opposite states.
  • the positive voltage selection signal SP is in the on state (for example, logical high level)
  • the negative voltage selection signal SN is in the off state (for example, logical low level).
  • the positive voltage selection signal SP is in the off state (for example, logic low level)
  • the negative voltage selection signal SN is in the on state (for example, logic high level).
  • the high voltage HV is, for example, +5 to +10 KV or -5 to -10 KV.
  • FIG. 2 is a circuit diagram showing the configuration of the positive voltage generation unit 31 of the high voltage power supply device 3 of FIG. As shown in FIG. 2, the positive voltage generation unit 31 includes a high voltage generation circuit 311 and a voltage control circuit 312.
  • the high voltage generation circuit 311 includes an inverter circuit 315, a step-up transformer 316, and a step-up circuit 317.
  • the booster circuit 317 is, for example, a Cockcroft-Walton booster circuit.
  • a positive DC voltage Vp is supplied from the power supply circuit to the inverter circuit 315.
  • the inverter circuit 315 converts the DC voltage Vp into an AC voltage.
  • the step-up transformer 316 boosts the AC voltage output from the inverter circuit 315.
  • the booster circuit 317 further boosts the AC voltage boosted by the step-up transformer 316 and converts it into a DC voltage, and outputs a positive DC high voltage VP to the output node NP.
  • the voltage control circuit 312 includes an operational amplifier OP, switches SW1 and SW2, capacitors C1 and C2, and resistors R1, R2, R11, R12, and R13.
  • switches SW1 and SW2 for example, a switching element such as a bipolar transistor, a field effect transistor, or a mechanical switch is used.
  • the resistor R11 is connected between the output node NP and the node N1.
  • a resistor R12 is connected between the node N1 and the node N2 that receives the ground potential GND.
  • a resistor R13 is connected between the node N1 and the node N3.
  • the high voltage VP is divided by the resistors R11 and R12, and a low voltage VI1 is generated at the node N1.
  • Node N3 is connected to the inverting input terminal of the operational amplifier OP.
  • the reference voltage generation circuit 318 generates a constant positive reference voltage VR.
  • the reference voltage VR generated by the reference voltage generation circuit 318 is given to the non-inverting input terminal. Further, the output terminal of the operational amplifier OP is connected to the node N4.
  • a switch SW1 and a negative feedback circuit 313 are connected in series between the node N3 and the node N4. Further, a switch SW2 and a negative feedback circuit 314 are connected in series between the node N3 and the node N4.
  • the negative feedback circuit 313 includes a resistor R1 and a capacitor C1 connected in series.
  • the negative feedback circuit 314 includes a resistor R2 and a capacitor C2 connected in series.
  • the capacitance value of the capacitor C1 of the negative feedback circuit 313 is set to be smaller than the capacitance value of the capacitor C2 of the negative feedback circuit 314.
  • the resistance value of the resistor R1 of the negative feedback circuit 313 is set to be larger than the resistance value of the resistor R2 of the negative feedback circuit 314.
  • the negative feedback circuit 313 and the negative feedback circuit 314 have different control circuit constants.
  • the negative feedback circuit 313 has a control circuit constant that prioritizes convergence responsiveness
  • the negative feedback circuit 314 has a control circuit constant that prioritizes stability.
  • the switching control unit 30 gives the mode setting signal MS to the switch SW1 as the mode setting signal MS11. Further, the switching control unit 30 gives the mode setting signal MS to the inverting circuit IV.
  • the inverting circuit IV inverts the mode setting signal MS and gives the inverted signal to the switch SW2 as the mode setting signal MS12.
  • the mode setting signal MS11 and the mode setting signal MS12 change to opposite states.
  • the mode setting signal MS11 is in the first state (for example, logical high level)
  • the mode setting signal MS12 is in the second state (for example, logical low level).
  • the mode setting signal MS12 is in the first state (for example, logic high level).
  • the switch SW1 when the mode setting signal MS is in the first state, the switch SW1 is turned on and the switch SW2 is turned off. As a result, the negative feedback circuit 313 is connected to the node N3, and the negative feedback circuit 314 is disconnected from the node N3.
  • the switch SW1 when the mode setting signal MS is in the second state, the switch SW1 is turned off and the switch SW2 is turned on. As a result, the negative feedback circuit 313 is disconnected from the node N3, and the negative feedback circuit 314 is connected to the node N3.
  • the operational amplifier OP inverts and amplifies the difference between the voltage VI2 of the node N3 and the reference voltage VR, and gives the amplified voltage to the inverter circuit 315 as a feedback signal FB.
  • the inverter circuit 315 raises or lowers the output voltage to the step-up transformer 316 so that the high voltage VP converges to a constant value based on the feedback signal FB.
  • the negative feedback circuit 313 is connected between the node N3 and the node N4
  • the negative feedback circuit 314 is connected between the node N3 and the node N4.
  • the change of high voltage VP is different.
  • the common operational amplifier OP and the negative feedback circuit 313 form the first feedback control circuit 321
  • the common operational amplifier OP and the negative feedback circuit 314 form the second feedback control circuit 322.
  • the mode setting signal MS output from the switching control unit 30 is switched to the first state or the second state based on the selection of the convergence responsiveness priority mode or the stability priority mode using the operation unit 5 of FIG. ..
  • the operation unit 5 turns on the switch SW1 when the convergence responsiveness priority mode is selected, and turns on the switch SW2 when the stability priority mode is selected.
  • the configuration of the negative voltage generating unit 32 in FIG. 1 is the same as the configuration of the positive voltage generating unit 31 in FIG. 2 except for the following points.
  • the booster circuit 317 outputs a negative direct current high voltage VN to the node NN of FIG.
  • the reference voltage generation circuit 318 generates a constant negative reference voltage VR.
  • FIG. 3 is a waveform diagram when the high voltage HV at the output node Nout is switched from negative to positive.
  • the horizontal axis of FIG. 3 represents time, and the vertical axis represents high voltage HV.
  • the waveform WR showing the change in the high voltage HV in the convergence responsiveness priority mode is shown by the dotted line.
  • the waveform WS showing the change in high voltage HV in the stability priority mode is shown by a solid line. Further, an enlarged view of the A part of the waveforms WR and WS is shown in the B part.
  • the rise of the waveform WR in the convergence responsiveness priority mode is faster than the rise of the waveform WS in the stability priority mode.
  • the waveform WR of the high voltage HV substantially converges to the target value Va at the time point t1. Therefore, according to the convergence responsiveness priority mode, the analysis can be started at the time point t1.
  • the waveform WS of the high voltage HV substantially converges to the target value Va at the time point t2 after the time point t1. Therefore, according to the stability priority mode, the analysis can be started at time point t2.
  • the high voltage HV substantially converges to the target value Va in a short time as compared with the stability priority mode. Therefore, according to the convergence responsiveness priority mode, the convergence responsiveness of the high voltage HV is higher than that of the stability priority mode.
  • the magnitude of the fluctuation (ringing) of the waveform WS after the time point t2 in the stability priority mode is smaller than the magnitude of the fluctuation of the waveform WR after the time point t1 in the convergence responsiveness priority mode. .. Therefore, according to the stability priority mode, the stability of the high voltage HV is higher than that of the convergence response priority mode.
  • FIG. 4 is a waveform diagram showing a temporal change of the high voltage HV when the high voltage HV is repeatedly switched between positive and negative in the convergence response priority mode.
  • the solid arrow indicates the analyzable period TA.
  • the high voltage HV in the convergence responsiveness priority mode, can be repeatedly switched between the positive target value + Va and the negative target value -Va in a short time.
  • FIG. 5 is a waveform diagram showing a temporal change of the high voltage HV when the high voltage HV is switched from negative to positive in the stability priority mode.
  • the solid arrow indicates the analyzable period TA.
  • the time until the high voltage HV substantially converges to the target value Va is longer than that in the convergence responsiveness priority mode, but after the high voltage HV converges to the target value Va.
  • FIG. 6 is a block diagram showing a functional configuration of the switching control unit 30 in the high voltage power supply device 3.
  • the switching control unit 30 includes a mode setting unit 301 and a voltage polarity switching unit 302.
  • the functions of the mode setting unit 301 and the voltage polarity switching unit 302 are realized, for example, by the CPU (not shown) executing a control program which is a computer program stored in the storage medium (recording medium) of the storage device.
  • a part or all the components of the switching control unit 30 may be realized by hardware such as an electronic circuit.
  • the mode setting unit 301 sets the state of the mode setting signal MS given to the positive voltage generation unit 31 and the negative voltage generation unit 32 based on the convergence response priority mode or the stability priority mode selected by the operation unit 5. Switch.
  • the mode setting signal MS When the convergence responsiveness priority mode is selected by the user, the mode setting signal MS is in the first state. As a result, the positive voltage generation unit 31 and the negative voltage generation unit 32 are set to the convergence responsiveness priority mode.
  • the mode setting signal MS When the stability priority mode is selected by the user, the mode setting signal MS is in the second state. As a result, the positive voltage generating unit 31 and the negative voltage generating unit 32 are set to the stability priority mode.
  • the user selects either positive, negative, or positive / negative switching as the polarity of the high voltage HV using the operation unit 5.
  • the voltage polarity switching unit 302 is given to the positive voltage selection switch 33 based on the polarity of the high voltage HV selected by the operation unit 5.
  • the state of the negative voltage selection signal SN given to the positive voltage selection signal SP and the negative voltage selection switch 34 is switched.
  • the positive voltage selection signal SP When positive is selected as the polarity of the high voltage HV, the positive voltage selection signal SP is turned on and the negative voltage selection signal SN is turned off. As a result, the high voltage HV becomes positive.
  • the positive voltage selection signal SP When negative is selected as the polarity of the high voltage HV, the positive voltage selection signal SP is turned off and the negative voltage selection signal SN is turned on. As a result, the high voltage HV becomes negative.
  • positive / negative switching is selected as the polarity of the high voltage HV, the operation in which the high voltage HV becomes positive and negative is repeated in a fixed cycle.
  • FIG. 7 is a flowchart showing an example of the mode setting operation of the switching control unit 30.
  • the mode setting operation of the switching control unit 30 is performed, for example, by the CPU executing a control program stored in the storage device on the RAM.
  • the polarity of the high voltage HV is switched between positive and negative in the convergence response priority mode.
  • the mode setting unit 301 determines whether or not the stability priority mode has been selected by the operation unit 5 (step S1). When the stability priority mode is selected, the mode setting unit 301 turns on the switch SW2 in the positive voltage generating unit 31 and the negative voltage generating unit 32 by setting the mode setting signal MS to the second state ( Step S2). As a result, the voltage control circuit 312 is set to the stability priority mode.
  • the voltage polarity switching unit 302 determines whether or not positive is selected as the polarity of the high voltage HV by the operation unit 5 (step S3).
  • the voltage polarity switching unit 302 turns on the positive voltage selection switch 33 by turning on the positive voltage selection signal SP (step S4).
  • the negative voltage selection signal SN is turned off, and the negative voltage selection switch 34 is turned off.
  • the polarity of the high voltage HV becomes positive.
  • the user performs mass spectrometry on the analysis target in the stability priority mode.
  • the voltage polarity switching unit 302 When negative is selected as the polarity of the high voltage HV in step S3, the voltage polarity switching unit 302 turns on the negative voltage selection switch 34 by turning on the negative voltage selection signal SN (step S5). At this time, the positive voltage selection signal SP is turned off, and the positive voltage selection switch 33 is turned off. As a result, the polarity of the high voltage HV becomes negative. The user performs mass spectrometry on the analysis target in the stability priority mode.
  • step S1 When the convergence responsiveness priority mode is selected in step S1, the mode setting unit 301 sets the mode setting signal MS to the first state, thereby switching the switch SW1 in the positive voltage generation unit 31 and the negative voltage generation unit 32. Turn on (step S6). As a result, the voltage control circuit 312 is set to the convergent response priority mode.
  • the voltage polarity switching unit 302 alternately turns on the positive voltage selection switch 33 and the negative voltage selection switch 34 by alternately turning on the positive voltage selection signal SP and the negative voltage selection signal SN. As a result, the polarity of the high voltage HV is alternately switched between positive and negative (step S7).
  • the user performs mass spectrometry on the analysis target in the convergence responsiveness priority mode.
  • the mode setting unit 301 determines whether or not a command to end the mass spectrometry operation has been received from the operation unit 5 (step S8). If the command to end the mass spectrometry operation is not received, the process returns to step S1. When the command to end the mass spectrometry operation is received, the mass spectrometry operation ends.
  • the high voltage HV may be set to positive or negative according to the user's choice.
  • the voltage control circuit 312 of the high voltage power supply device 3 is selectively set to the convergence responsiveness priority mode or the stability priority mode. Will be done.
  • the high voltage generation circuit 311 is controlled so that the high voltage HV has a high convergent responsiveness. In this case, the high voltage HV converges to the target value + Va or the target value-Va at high speed. As a result, even when the value of the high voltage HV applied to the flight tube 246 is repeatedly switched, analysis can be performed in a short time.
  • the high voltage generation circuit 311 is controlled so that the high voltage HV has high stability. In this case, the fluctuation of the high voltage HV converged to the target value Va is small. Thereby, it becomes possible to obtain an analysis result having high resolution.
  • the user has a high voltage HV having an improved convergence responsiveness or an improved stability depending on the analysis target or the analysis purpose. It is possible to generate a high voltage HV.
  • the high voltage HV is set to the target value + Va, -Va with high accuracy by the first feedback control circuit 321 including the negative feedback circuit 313 and the second feedback control circuit 322 including the negative feedback circuit 314. Can be controlled.
  • the convergence response in the convergence responsiveness priority mode can be easily configured. The characteristics and stability can be different from the convergence responsiveness and stability in the stability priority mode.
  • the common operational amplifier OP is used for controlling the high voltage HV in the convergence response priority mode and the stability priority mode, the number of parts and the cost of parts can be reduced.
  • the capacitance value of the capacitor C1 of the negative feedback circuit 313 and the capacitance value of the capacitor C2 of the negative feedback circuit 314 are set, respectively, and the resistance value of the resistor R1 of the negative feedback circuit 313 and the resistance of the resistor R2 of the negative feedback circuit 314 are set. Each value is set. Thereby, it is possible to easily and variously set the convergence responsiveness and stability of the high voltage HV in the convergence responsiveness priority mode and the stability priority mode.
  • the high voltage power supply device 3 is used to apply the high voltage HV to the flight tube 246 which is one of the electrodes, but the high voltage power supply device 3 May be used to apply a high voltage to other electrodes.
  • the high voltage power supply device 3 may be used, for example, to apply a high voltage to the ion transport electrode 241, the orthogonal acceleration electrode 242, the acceleration electrode 243, the reflector electrode 244, or the back plate 247.
  • the configuration of the voltage control circuit 312 is not limited to the configuration shown in FIG.
  • FIG. 8 is a circuit diagram showing another example of the configuration of the voltage control circuit 312.
  • the negative feedback circuit 314 further includes a capacitor C3 in addition to the resistor R2 and the capacitor C2.
  • the capacitor C3 is connected in parallel to the series connection circuit of the resistor R2 and the capacitor C2.
  • the configuration of other parts of the voltage control circuit 312 of FIG. 8 is the same as the configuration of the voltage control circuit 312 of FIG.
  • the high-frequency noise of the high voltage HV is removed by the capacitor C3. Therefore, the negative feedback circuit 314 can further improve the stability of the high voltage HV.
  • FIG. 9 is a circuit diagram showing still another example of the configuration of the voltage control circuit 312.
  • the same parts of the voltage control circuit 312 of FIG. 9 and the voltage control circuit 312 of FIG. 2 are designated by the same reference numerals.
  • the voltage control circuit 312 includes resistors R11 and R12, a switching control unit 30, a switch SW, a first feedback control circuit 321 and a second feedback control circuit 322, and a reference voltage generation circuit 318.
  • the switch SW has contacts a, b, and c.
  • a mode setting signal MS is given to the switch SW by the switching control unit 30.
  • the contact a of the switch SW is connected to the node N1.
  • the first feedback control circuit 321 includes an operational amplifier OP1, a resistor R3, and a negative feedback circuit 313.
  • the resistor R3 is connected between the contact b of the switch SW and the node N5.
  • the node N5 is connected to the inverting input terminal of the operational amplifier OP1.
  • the reference voltage VR generated by the reference voltage generation circuit 318 is given to the non-inverting input terminal of the operational amplifier OP1.
  • the output terminal of the operational amplifier OP1 is connected to the node N4.
  • a negative feedback circuit 313 is connected between the node N5 and the node N4.
  • the second feedback control circuit 322 includes an operational amplifier OP2, a resistor R4, and a negative feedback circuit 314.
  • the resistor R4 is connected between the contact c of the switch SW and the node N6.
  • the node N6 is connected to the inverting input terminal of the operational amplifier OP2.
  • the reference voltage VR generated by the reference voltage generation circuit 318 is given to the non-inverting input terminal of the operational amplifier OP2.
  • the output terminal of the operational amplifier OP2 is connected to the node N4.
  • a negative feedback circuit 314 is connected between the node N6 and the node N4.
  • the capacitance value of the capacitor C1 of the negative feedback circuit 313 is set smaller than the capacitance value of the capacitor C2 of the negative feedback circuit 314.
  • the mode setting signal MS is in the first state
  • the contact a of the switch SW is connected to the contact b.
  • the voltage control circuit 312 is set to the convergence responsiveness priority mode.
  • the mode setting signal MS is in the second state
  • the contact a of the switch SW is connected to the contact c.
  • the voltage control circuit 312 is set to the stability priority mode.
  • the configuration and operation of other parts of the voltage control circuit 312 of FIG. 9 are similar to the configuration and operation of the voltage control circuit 312 of FIG.
  • the voltage control circuit 312 is selectively set to the convergence responsiveness priority mode and the stability priority mode, but the voltage control circuit 312 is the convergence responsiveness priority mode and the stability priority mode. It may be configured to be configurable to a different third mode.
  • the voltage control circuit 312 may be further provided with a third feedback control circuit.
  • the third feedback control circuit may include, for example, a capacitor having a capacitance value different from that of the capacitor C1 of the first feedback control circuit 321 and the capacitor C2 of the second feedback control circuit 322.
  • the capacitance value of the capacitor C1 of the negative feedback circuit 313 is set to be smaller than the capacitance value of the capacitor C2 of the negative feedback circuit 314, and the resistance value of the resistor R1 of the negative feedback circuit 313 is the negative feedback circuit. It is set to be larger than the resistance value of the resistor R2 of 314, but the present invention is not limited to this.
  • the capacitance value of the capacitor C1 of the negative feedback circuit 313 is set to be smaller than the capacitance value of the capacitor C2 of the negative feedback circuit 314, and the resistance value of the resistor R1 of the negative feedback circuit 313 is the resistance value of the resistor R2 of the negative feedback circuit 314. May be set equal to.
  • the capacitance value of the capacitor C1 of the negative feedback circuit 313 is set to be sufficiently smaller than the capacitance value of the capacitor C2 of the negative feedback circuit 314, and the resistance value of the resistor R1 of the negative feedback circuit 313 is the resistance of the resistor R2 of the negative feedback circuit 314. It may be set smaller than the value.
  • the resistance value of the resistor R1 of the negative feedback circuit 313 is set to be larger than the resistance value of the resistor R2 of the negative feedback circuit 314, and the capacitance value of the capacitor C1 of the negative feedback circuit 313 is the capacitance value of the capacitor C2 of the negative feedback circuit 314. May be set equal to.
  • the resistance value of the resistor R1 of the negative feedback circuit 313 is set sufficiently larger than the resistance value of the resistor R2 of the negative feedback circuit 314, and the capacitance value of the capacitor C1 of the negative feedback circuit 313 is the capacitance value of the capacitor C2 of the negative feedback circuit 314. It may be set larger than the value.
  • the flight tube 246 is an example of the electrode
  • the convergence response priority mode is an example of the first mode
  • the stability priority mode is an example of the second mode
  • the negative feedback circuit 313 is an example.
  • the first negative feedback control circuit is an example
  • the negative feedback circuit 314 is an example of a second negative feedback circuit
  • the positive voltage selection switch 33 and the negative voltage selection switch 34 are examples of a connection switching unit
  • the capacitor C1 is an example of a connection switching unit
  • the operational amplifier OP is an example of a common operational amplifier, the operational amplifier OP1 is an example of a first operational amplifier, and the operational amplifier OP2 is an example of a second operational amplifier.
  • the time-of-flight mass spectrometer is Electrodes to which a high DC voltage is applied to form the flight space of ions, A high-voltage power supply device for applying the high voltage to the electrodes is provided.
  • the high voltage power supply device The high voltage generation circuit that generates the high voltage and A first mode in which the high voltage generating circuit is controlled so that the high voltage has a first convergence responsiveness and a first stability, and a second mode in which the high voltage is lower than the first convergence responsiveness. It may include a voltage control circuit selectively set to a second mode for controlling the high voltage generating circuit so as to have convergence responsiveness and a second stability higher than the first stability. ..
  • the voltage control circuit is selectively set to the first mode or the second mode.
  • the first mode the high voltage generating circuit is controlled so that the high voltage has a high convergence response. In this case, the high voltage converges to the target value at high speed.
  • the second mode the high voltage generator is controlled so that the high voltage has high stability. In this case, the fluctuation of the high voltage converged to the target value is small. Thereby, it becomes possible to obtain an analysis result having high resolution.
  • the user selects the first mode or the second mode to obtain a high voltage having improved stability or a high voltage having improved convergence responsiveness depending on the analysis target or analysis purpose. It becomes possible to occur.
  • the voltage control circuit is A first feedback control circuit that feedback-controls the high-voltage generation circuit so that the high-voltage value converges to a target voltage value with the first convergence responsiveness and the first stability.
  • a second feedback control circuit that feedback-controls the high voltage generation circuit so that the high voltage value converges to the target voltage value with the second convergence responsiveness and the second stability. It may include a selection circuit that selectively operates the first feedback control circuit in the first mode and selectively operates the second feedback control circuit in the second mode.
  • the high voltage in the first mode and the second mode is caused by selectively operating the first feedback control circuit or the second feedback control circuit. Is controlled with high precision.
  • the first feedback control circuit includes a first capacitance component and a first resistance component.
  • the second feedback control circuit includes a second capacitance component and a second resistance component.
  • the first feedback control circuit has the first convergence responsiveness and the first stability, and the second feedback control circuit has the second convergence responsiveness and the second stability.
  • the magnitude relationship between the capacitance value of the first capacitance component and the capacitance value of the second capacitance component and the magnitude relationship between the resistance value of the first resistance component and the resistance value of the second resistance component May be set.
  • the magnitude relationship between the capacitance value of the first capacitance component and the capacitance value of the second capacitance component, and the resistance value of the first resistance component and the second is set.
  • the first and second feedback control circuits include a common operational amplifier.
  • the first feedback control circuit includes a first negative feedback circuit connected to the operational amplifier.
  • the second feedback control circuit includes a second negative feedback circuit connected to the operational amplifier.
  • the first negative feedback circuit includes a series connection of the first capacitance component and the first resistance component.
  • the second negative feedback circuit may include a series connection of the second capacitance component and the second resistance component.
  • the time-of-flight mass spectrometer by setting the capacitance value of the first capacitance component in the first negative feedback circuit and the capacitance value of the second capacitance component in the second negative feedback circuit.
  • the first convergence responsiveness and the first stability in the first mode and the second convergence responsiveness and the second stability in the second mode can be easily different. Further, since a common operational amplifier is used for controlling the high voltage in the first mode and the second mode, the number of parts and the cost of parts can be reduced.
  • the first feedback control circuit includes a first operational amplifier and a first negative feedback circuit connected to the first operational amplifier.
  • the second feedback control circuit includes a second operational amplifier and a second negative feedback circuit connected to the second operational amplifier.
  • the first negative feedback circuit includes a series connection of the first capacitance component and the first resistance component.
  • the second negative feedback circuit may include a series connection of the second capacitance component and the second resistance component.
  • the time-of-flight mass spectrometer by setting the capacitance value of the first capacitance component in the first negative feedback circuit and the capacitance value of the second capacitance component in the second negative feedback circuit. , The first convergence responsiveness and the first stability in the first mode and the second convergence responsiveness and the second stability in the second mode can be easily different.
  • the first feedback control circuit has the first convergence responsiveness and the first stability
  • the second feedback control circuit has the second convergence responsiveness and the second stability.
  • the capacity value of the first capacity component may be set smaller than the capacity value of the second capacity component.
  • the time-of-flight mass spectrometer according to the sixth item, by setting the capacitance value of the first capacitance component of the first feedback control circuit and the capacitance value of the second capacitance component of the second feedback control circuit. , It is possible to easily set the convergence responsiveness and stability of the high voltage in the first mode and the second mode.
  • the first feedback control circuit has the first convergence responsiveness and the first stability
  • the second feedback control circuit has the second convergence responsiveness and the second stability.
  • the resistance value of the first resistance component may be set larger than the resistance value of the second resistance component.
  • the flight time type mass analyzer According to the flight time type mass analyzer according to the seventh item, by setting the resistance value of the first resistance component of the first feedback control circuit and the resistance value of the second resistance component of the second feedback control circuit. , It is possible to easily set the convergence responsiveness and stability of the high voltage in the first mode and the second mode.
  • the high voltage power supply device Positive voltage generator and Negative voltage generator and It includes a connection switching unit that selectively electrically connects one of the positive voltage generating unit and the negative voltage generating unit to the electrode.
  • Each of the positive voltage generating section and the negative voltage generating section includes the high voltage generating circuit and the voltage control circuit.
  • the high voltage generation circuit of the positive voltage generation unit generates a positive high voltage as the high voltage.
  • the high voltage generation circuit of the negative voltage generation unit may generate a negative high voltage as the high voltage.
  • the high voltage power supply selectively selects positive and negative high voltages having the first convergence responsiveness and the first stability in the first mode.
  • a positive and negative high voltage that can be applied to the electrode and has a second convergence responsiveness and a second stability in the second mode can be selectively applied to the electrode.
  • the user selects the first mode or the second mode according to the analysis target or the analysis purpose when performing the analysis while switching the polarity of the high voltage applied to the electrodes between positive and negative. Can be done.
  • the user selects the first mode or the second mode depending on the analysis target or the analysis purpose. You can choose.
  • the time-of-flight mass spectrometer according to any one of paragraphs 1 to 8 is A switching control unit that selectively switches the voltage control circuit to either the first mode or the second mode may be further provided based on the operation of the user.
  • the voltage control circuit is set to the first mode or the second mode based on the operation of the user.
  • An analysis method using a time-of-flight mass analyzer equipped with a high-voltage power supply device that applies a high voltage to electrodes to form an ion flight space A first mode in which the high voltage power supply is controlled so that the high voltage has a first convergence responsiveness and a first stability, and a second mode in which the high voltage is lower than the first convergence responsiveness.
  • the high voltage power supply device is selectively set to the first mode or the second mode.
  • the high voltage power supply is controlled so that the high voltage has high convergence stability. In this case, the high voltage converges to the target value at high speed. As a result, even when the value of the high voltage applied to the electrode is repeatedly switched, analysis can be performed in a short time.
  • the high voltage power supply is controlled so that the high voltage has high stability.
  • the fluctuation of the high voltage converged to the target value is small. Thereby, it becomes possible to obtain an analysis result having high resolution.
  • the user selects the first mode or the second mode to obtain a high voltage having improved stability or a high voltage having improved convergence responsiveness depending on the analysis target or analysis purpose. It becomes possible to occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

飛行時間型質量分析装置は、イオンの飛行空間を形成するために直流の高電圧が印加される電極と、電極に高電圧を印加する高電圧電源装置とを備える。高電圧電源装置は、高電圧を発生する高電圧発生回路と、高電圧が第1の収束応答性および第1の安定性を有するように高電圧発生回路を制御する収束応答性優先モードと高電圧が第1の収束応答性よりも低い第2の収束応答性および第1の安定性よりも高い第2の安定性を有するように高電圧発生回路を制御する安定性優先モードとに選択的に設定される電圧制御回路とを含む。

Description

飛行時間型質量分析装置および分析方法
 本発明は、高電圧電源装置を備えた飛行時間型質量分析装置および分析方法に関する。
 飛行時間型質量分析装置(TOFMS)はフライトチューブを有する。試料のイオン化された成分をフライトチューブ内で飛行させるために高電圧電源装置によりフライトチューブ等に安定した高電圧が印加される(例えば特許文献1)。また、印加電圧の極性は、分析対象であるイオンの極性に応じて切り替えられる。
 特許文献1に記載された高電圧電源装置は、電圧発生部、補助電圧発生部およびコンデンサ等を備える。電圧発生部によりフライトチューブに負の電圧が印加されている期間に、補助電圧発生部によりコンデンサが正の電位に大電流で充電される。印加電圧の極性が負から正へ切り替えられる際に、フライトチューブが電圧発生部から遮断され、コンデンサからフライトチューブに大電流が供給される。それにより、フライトチューブの静電容量が正の電位に迅速に充電される。その後、フライトチューブは、コンデンサから遮断され、正の電圧を発生する電圧発生部に接続される。それにより、フライトチューブに安定した正の電圧が印加される。このようにして、フライトチューブへの印加電圧の立ち上がり時間を短縮することができる。
国際公開2018/066064号公報
 しかしながら、分析対象または分析目的によっては、より高い分解能を有する分析結果が求められる場合がある。このような場合、フライトチューブまたは他の電極に印加される電圧の安定性をさらに向上させることが望まれる。一方、分析対象または分析目的によっては、フライトチューブまたは他の電極に印加される電圧の値を高速に切り替えることが望まれる場合がある。以下、電圧の切り替え時に電圧が所望の値に短時間で収束する性能を収束応答性と呼ぶ。一方、電圧の変動が小さい性能を安定性と呼ぶ。
 高電圧電源装置における収束応答性と安定性とは、トレードオフの関係にあるため、収束応答性が高くなると安定性が低下し、安定性が高くなると収束応答性は低下する。
 本発明の目的は、分析対象または分析目的に応じて向上された収束応答性を有する高電圧または向上された安定性を有する高電圧を発生することが可能な高電圧電源装置を備えた飛行時間型質量分析装置および分析方法を提供することである。
 本発明の一局面に従う飛行時間型質量分析装置は、イオンの飛行空間を形成するために直流の高電圧が印加される電極と、電極に高電圧を印加する高電圧電源装置とを備え、高電圧電源装置は、高電圧を発生する高電圧発生回路と、高電圧が第1の収束応答性および第1の安定性を有するように高電圧圧発生回路を制御する第1のモードと高電圧が第1の収束応答性よりも低い第2の収束応答性および第1の安定性よりも高い第2の安定性を有するように高電圧発生回路を制御する第2のモードとに選択的に設定される電圧制御回路とを含む。
 本発明の他の局面に従う分析方法は、イオンの飛行空間を形成するために電極に高電圧を印加する高電圧電源装置を備えた飛行時間型質量分析装置を用いた分析方法であって、前記高電圧が第1の収束応答性および第1の安定性を有するように前記高電圧電源装置を制御する第1のモードと前記高電圧が前記第1の収束応答性よりも低い第2の収束応答性および前記第1の安定性よりも高い第2の安定性を有するように前記高電圧電源装置を制御する第2のモードとに前記高電圧電源装置を選択的に設定するステップと、前記設定された第1または第2のモードにおいて分析対象について前記飛行時間型質量分析装置を用いて質量分析を行うステップとを含む。
 本発明によれば、分析対象または分析目的に応じて向上された収束応答性を有する高電圧または向上された安定性を有する高電圧を発生することが可能な高電圧電源装置を備えた飛行時間型質量分析装置および分析方法を提供することが可能になる。
図1は本発明の一実施の形態に係る飛行時間型質量分析装置の構成を示す図である。 図2は高電圧電源装置の正電圧発生部の構成を示す回路図である。 図3は高電圧が負から正に切り替えられた場合の波形図である。 図4は収束応答性優先モードで高電圧が正および負に繰り返し切り替えられた場合の高電圧の時間的変化を示す波形図である。 図5は安定性優先モードで高電圧が負から正に切り替えられた場合の高電圧の時間的変化を示す波形図である。 図6は高電圧電源装置における切替制御部の機能的な構成を示すブロック図である。 図7は切替制御部のモード設定動作の一例を示すフローチャートである。 図8は電圧制御回路の構成の他の例を示す回路図である。 図9は電圧制御回路の構成の他の例を示す回路図である。
 以下、本発明の実施の形態に係る飛行時間型質量分析装置および分析方法について図面を参照しながら詳細に説明する。
 (1)飛行時間型質量分析装置の構成
 図1は、本発明の一実施の形態に係る飛行時間型質量分析装置の構成を示す図である。飛行時間型質量分析装置1は、質量分析部2、高電圧電源装置3、表示部4および操作部5を含む。本実施の形態に係る高電圧電源装置3は、収束応答性優先モードおよび安定性優先モードで選択的に動作可能である。収束応答性優先モードおよび安定性優先モードの詳細については後述する。
 質量分析部2は、イオン化室20、第1中間室21、第2中間室22、第3中間室23および分析室24を含む。
 イオン化室20は、ESIプローブ(エレクトロスプレイイオン化用プローブ)201およびキャピラリ202を含む。ESIプローブ201は、液体試料に電荷を付与しつつ噴霧することにより液体試料中の成分をイオン化室20内でイオン化する。イオン化室20内のイオンは、キャピラリ202を通して第1中間室21に導かれる。
 第1中間室21は、第1のイオンガイド211を含む。第1のイオンガイド211は、第1中間室21に導かれたイオンを収束させつつ第2中間室22に導く。第2中間室22は、第2のイオンガイド221を含む。第2のイオンガイド221は、第2中間室22に導かれたイオンをさらに収束させつつ第3中間室23に導く。
 第3中間室23は、四重極マスフィルタ231、コリジョンセル232およびイオンガイド234を含む。コリジョンセル232は、多重極イオンガイド233を含む。四重極マスフィルタ231は、第3中間室23に導かれたイオンを質量電荷比に応じて分離し、分離されたイオンをコリジョンセル232に導く。コリジョンセル232の内部には、必要に応じて衝突ガスが供給される。多重極イオンガイド233によりコリジョンセル232から放出されたイオンは、イオンガイド234により分析室24に導かれる。
 分析室24は、イオン輸送電極241、直交加速電極242、加速電極243、リフレクトロン電極244、検出器245、フライトチューブ246およびバックプレート247を含む。直交加速電極242は、電極242Aおよび電極242Bにより構成される。リフレクトロン電極244は、電極244Aおよび電極244Bを含む。
 分析室24に導かれたイオンは、イオン輸送電極241により直交加速電極242の電極242Aおよび電極242Bの間に導かれる。ここで、直交加速電極242によりイオンの進行方向が略直角に折り曲げられる。加速電極243は、イオンを加速してフライトチューブ246内に導く。フライトチューブ246内のイオンは、質量電荷比に応じた飛行速度でフライトチューブ246内の飛行空間を飛行する。
 飛行空間を飛行するイオンは、リフレクトロン電極244およびバックプレート247により徐々に減速されるとともに、放物線状に折り返される。これにより、イオンは、質量電荷比が小さい順に検出器245に到達する。検出器245は、例えば二次電子増倍管である。
 検出器245は、フライトチューブ246を通過したイオンを検出する。検出器245の出力信号に基づいて各種イオンの飛行時間が下記式(1)により質量電荷比(m/z)に換算され、マススペクトルが作成される。ここで、tは飛行時間であり、Lは飛行距離であり、Nはアボガドロ数であり、eは電気素量であり、Vは高電圧電源装置3によりフライトチューブ246に印加される電圧であり、m/zは質量電荷比である。
Figure JPOXMLDOC01-appb-M000001
 式(1)に示すように、イオンの飛行時間tはフライトチューブ246に印加される電圧により変化する。したがって、フライトチューブ246に印加される電圧の安定性が低い場合には、飛行時間tが変動することとなり、高分解能を有するマススペクトルを得ることができない。したがって、高分解能の質量分析が要求される場合には、高い安定性を有する電圧をフライトチューブ246に印加する必要がある。
 高電圧電源装置3は、切替制御部30、正電圧発生部31、負電圧発生部32、正電圧選択スイッチ33および負電圧選択スイッチ34を含む。切替制御部30は、例えばCPU(中央演算処理装置)、RAM(ランダムアクセスメモリ)、ROM(リードオンリメモリ)および記憶装置により実現される。切替制御部30には、表示部4および操作部5が接続される。
 表示部4は、液晶ディスプレイまたは有機EL(エレクトロルミネッセンス)ディスプレイ等を含む。表示部4は、種々の情報および画像を表示する。操作部5は、キーボードおよびポインティングデバイス等を含む。操作部5は、選択および指定等の操作のために用いられる。
 なお、表示部4および操作部5は、タッチパネルディスプレイにより構成されてもよい。この場合、操作部5は、表示部4に画像として表示される。使用者は、表示部4に表示される画像の所定部分をタッチすることにより、選択および指定等の操作を行うことができる。
 正電圧発生部31は、正の高電圧VPを出力ノードNPから発生する。負電圧発生部32は、負の高電圧VNを出力ノードNNから発生する。正電圧発生部31の出力ノードNPは、正電圧選択スイッチ33を通して出力ノードNoutに接続される。負電圧発生部32の出力ノードNNは、負電圧選択スイッチ34を通して出力ノードNoutに接続される。正電圧選択スイッチ33および負電圧選択スイッチ34としては、例えばバイポーラトランジスタ、電界効果トランジスタまたは機械的スイッチ等のスイッチング素子が用いられる。本実施の形態では、出力ノードNoutがフライトチューブ246に接続される。フライトチューブ246は、電極としての役割を果たす。
 切替制御部30は、操作部5の操作に基づいてモード設定信号MSを正電圧発生部31および負電圧発生部32に与える。また、切替制御部30は、正電圧選択信号SPを正電圧選択スイッチ33に与え、負電圧選択信号SNを負電圧選択スイッチ34に与える。
 モード設定信号MSが第1の状態(例えば論理ハイレベル)である場合には、正電圧発生部31および負電圧発生部32が収束応答性優先モードに設定され、モード設定信号MSが第2の状態(例えば論理ローレベル)である場合には、正電圧発生部31および負電圧発生部32が安定性優先モードに設定される。
 正電圧選択信号SPと負電圧選択信号SNとは互いに逆の状態に変化する。正電圧選択信号SPがオン状態(例えば論理ハイレベル)であるときには、負電圧選択信号SNはオフ状態(例えば論理ローレベル)である。逆に、正電圧選択信号SPがオフ状態(例えば論理ローレベル)であるときには、負電圧選択信号SNはオン状態(例えば論理ハイレベル)である。
 正電圧選択信号SPがオン状態になると、正電圧選択スイッチ33がオンする。このとき、負電圧選択信号SNはオフ状態になり、負電圧選択スイッチ34がオフする。それにより、正の高電圧VPが出力ノードNoutから高電圧HVとして出力される。高電圧HVは、例えば+5~+10KVまたは-5~-10KVである。
 負電圧選択信号SNがオン状態になると、負電圧選択スイッチ34がオンする。このとき、正電圧選択信号SPはオフ状態になり、正電圧選択スイッチ33がオフする。それにより、負の高電圧VNが出力ノードNoutから高電圧HVとして出力される。
 (2)正電圧発生部31の構成
 図2は、図1の高電圧電源装置3の正電圧発生部31の構成を示す回路図である。図2に示すように、正電圧発生部31は、高電圧発生回路311および電圧制御回路312を含む。
 高電圧発生回路311は、インバータ回路315、昇圧トランス316および昇圧回路317を含む。昇圧回路317は、例えばコッククロフトウォルトン昇圧回路である。電源回路からインバータ回路315に正の直流電圧Vpが供給される。インバータ回路315は、直流電圧Vpを交流電圧に変換する。昇圧トランス316は、インバータ回路315から出力される交流電圧を昇圧する。昇圧回路317は、昇圧トランス316により昇圧された交流電圧をさらに昇圧するとともに直流電圧に変換し、出力ノードNPに正の直流の高電圧VPを出力する。
 電圧制御回路312は、演算増幅器OP、スイッチSW1,SW2、キャパシタC1,C2および抵抗R1,R2,R11,R12,R13を含む。スイッチSW1,SW2としては、例えばバイポーラトランジスタ、電界効果トランジスタまたは機械的スイッチ等のスイッチング素子が用いられる。
 出力ノードNPとノードN1との間に抵抗R11が接続される。ノードN1と接地電位GNDを受けるノードN2との間に抵抗R12が接続される。ノードN1とノードN3との間には抵抗R13が接続される。抵抗R11,R12により高電圧VPが分圧され、ノードN1に低い電圧VI1が生成される。
 ノードN3は、演算増幅器OPの反転入力端子に接続される。基準電圧発生回路318は、一定の正の基準電圧VRを発生する。非反転入力端子には、基準電圧発生回路318により発生された基準電圧VRが与えられる。また、演算増幅器OPの出力端子は、ノードN4に接続される。
 ノードN3とノードN4との間には、スイッチSW1および負帰還回路313が直列に接続される。また、ノードN3とノードN4との間には、スイッチSW2および負帰還回路314が直列に接続される。負帰還回路313は、直列に接続された抵抗R1およびキャパシタC1を含む。負帰還回路314は、直列に接続された抵抗R2およびキャパシタC2を含む。
 本実施の形態では、負帰還回路313のキャパシタC1の容量値は、負帰還回路314のキャパシタC2の容量値よりも小さく設定される。負帰還回路313の抵抗R1の抵抗値は、負帰還回路314の抵抗R2の抵抗値よりも大きく設定される。このように、負帰還回路313と負帰還回路314とは、互いに異なる制御回路定数を有する。本実施の形態では、負帰還回路313は、収束応答性を優先した制御回路定数を有し、負帰還回路314は、安定性を優先した制御回路定数を有する。
 切替制御部30は、モード設定信号MSをモード設定信号MS11としてスイッチSW1に与える。また、切替制御部30は、モード設定信号MSを反転回路IVに与える。反転回路IVは、モード設定信号MSを反転し、反転された信号をモード設定信号MS12としてスイッチSW2に与える。これにより、モード設定信号MS11とモード設定信号MS12とは互いに逆の状態に変化する。モード設定信号MS11が第1の状態(例えば論理ハイレベル)であるときには、モード設定信号MS12は第2の状態(例えば論理ローレベル)である。逆に、モード設定信号MS11が第2の状態(例えば論理ローレベル)であるときは、モード設定信号MS12は第1の状態(例えば論理ハイレベル)である。
 これにより、モード設定信号MSが第1の状態になると、スイッチSW1がオンし、スイッチSW2がオフする。その結果、負帰還回路313がノードN3に接続され、負帰還回路314がノードN3から切り離される。逆に、モード設定信号MSが第2の状態になると、スイッチSW1がオフし、スイッチSW2がオンする。その結果、負帰還回路313がノードN3から切り離され、負帰還回路314がノードN3に接続される。
 演算増幅器OPは、ノードN3の電圧VI2と基準電圧VRとの差を反転増幅し、増幅された電圧をフィードバック信号FBとしてインバータ回路315に与える。インバータ回路315は、フィードバック信号FBに基づいて、高電圧VPが一定の値に収束するように昇圧トランス316への出力電圧を上昇または下降させる。この場合、後述するように、ノードN3とノードN4との間に負帰還回路313が接続されている場合と、ノードN3とノードN4との間に負帰還回路314が接続されている場合とで高電圧VPの変化が異なる。
 本実施の形態では、共通の演算増幅器OPおよび負帰還回路313が第1の帰還制御回路321を構成し、共通の演算増幅器OPおよび負帰還回路314が第2の帰還制御回路322を構成する。図1の操作部5を用いた収束応答性優先モードまたは安定性優先モードの選択に基づいて、切替制御部30から出力されるモード設定信号MSが第1の状態または第2の状態に切り替えられる。それにより、操作部5により、収束応答性優先モードが選択されるとスイッチSW1がオンされ、安定性優先モードが選択されるとスイッチSW2がオンされる。
 図1の負電圧発生部32の構成は、次の点を除いて図2の正電圧発生部31の構成と同様である。負電圧発生部32において、昇圧回路317が図1のノードNNに負の直流の高電圧VNを出力する。また、負電圧発生部32において、基準電圧発生回路318が一定の負の基準電圧VRを発生する。
 (3)収束応答性優先モードおよび安定性優先モード
 図3は、出力ノードNoutにおける高電圧HVが負から正に切り替えられた場合の波形図である。図3の横軸は時間を表し、縦軸は高電圧HVを表す。収束応答性優先モードでの高電圧HVの変化を示す波形WRが点線で示される。安定性優先モードでの高電圧HVの変化を示す波形WSが実線で示される。また、波形WR,WSのA部の拡大図がB部に示される。
 収束応答性優先モードでの波形WRの立ち上がりは、安定性優先モードでの波形WSの立ち上がりよりも速い。それにより、収束応答性優先モードでは、高電圧HVの波形WRが時点t1で目標値Vaに略収束する。したがって、収束応答性優先モードによれば、時点t1で分析を開始することができる。
 一方、安定性優先モードでは、高電圧HVの波形WSは、時点t1よりも後の時点t2で目標値Vaに略収束する。したがって、安定性優先モードによれば、時点t2で分析を開始することができる。
 このように、収束応答性優先モードでは、安定性優先モードと比べて高電圧HVが短時間で目標値Vaに略収束する。したがって、収束応答性優先モードによると、安定性優先モードに比べて高電圧HVの収束応答性が高い。
 B部に示されるように、安定性優先モードにおける時点t2以降の波形WSの変動(リンギング)の大きさは、収束応答性優先モードにおける時点t1以降の波形WRの変動の大きさに比べて小さい。したがって、安定性優先モードによると、収束応答性優先モードに比べて高電圧HVの安定性が高い。
 図4は、収束応答性優先モードで高電圧HVが正および負に繰り返し切り替えられた場合の高電圧HVの時間的変化を示す波形図である。図4において、実線の矢印は、分析可能期間TAを示す。図4に示すように、収束応答性優先モードでは、高電圧HVを短時間で正の目標値+Vaと負の目標値-Vaとに繰り返し切り替えることができる。
 使用者が正のイオンおよび負のイオンの両方を分析する場合には、高電圧HVの極性が繰り返し切り替えられる。この場合、収束応答性優先モードによれば、短時間で正および負のイオンを分析することができる。
 図5は、安定性優先モードで高電圧HVが負から正に切り替えられた場合の高電圧HVの時間的変化を示す波形図である。図5において、実線の矢印は、分析可能期間TAを示す。図5に示すように安定性優先モードでは、高電圧HVが目標値Vaに略収束するまでの時間は、収束応答性優先モードに比べて長いが、高電圧HVが目標値Vaに収束した後には、高電圧HVの安定性が高い。
 使用者が正のイオンおよび負のイオンの一方を分析する場合には、高電圧HVの極性が繰り返し切り替えられない。この場合、安定性優先モードによれば、高い分解能を有する分析結果を得ることができる。
 (4)切替制御部30の機能的な構成
 図6は、高電圧電源装置3における切替制御部30の機能的な構成を示すブロック図である。切替制御部30は、モード設定部301および電圧極性切替部302を含む。モード設定部301および電圧極性切替部302の機能は、例えば、図示しないCPUが記憶装置の記憶媒体(記録媒体)に記憶されたコンピュータープログラムである制御プログラムを実行することにより実現される。切替制御部30の一部または全ての構成要素が電子回路等のハードウェアにより実現されてもよい。
 使用者は、操作部5を用いて収束応答性優先モードおよび安定性優先モードのいずれか一方を選択する。モード設定部301は、操作部5を用いて選択された収束応答性優先モードまたは安定性優先モードに基づいて、正電圧発生部31および負電圧発生部32に与えられるモード設定信号MSの状態を切り替える。
 使用者により、収束応答性優先モードが選択された場合には、モード設定信号MSが第1の状態になる。それにより、正電圧発生部31および負電圧発生部32が収束応答性優先モードに設定される。使用者により、安定性優先モードが選択された場合には、モード設定信号MSが第2の状態になる。それにより、正電圧発生部31および負電圧発生部32が安定性優先モードに設定される。
 使用者は、操作部5を用いて高電圧HVの極性として正、負または正負切り替えのいずれかを選択する。電圧極性切替部302は、操作部5を用いて選択された高電圧HVの極性に基づいて、正電圧選択スイッチ33に与えられる。正電圧選択信号SPおよび負電圧選択スイッチ34に与えられる負電圧選択信号SNの状態を切り替える。
 高電圧HVの極性として正が選択された場合には、正電圧選択信号SPがオン状態となり、負電圧選択信号SNがオフ状態となる。それにより、高電圧HVが正となる。高電圧HVの極性として負が選択された場合には、正電圧選択信号SPがオフ状態となり、負電圧選択信号SNがオン状態となる。それにより、高電圧HVが負となる。高電圧HVの極性として正負切り替えが選択された場合には、高電圧HVが正および負となる動作が一定周期において繰り返し行われる。
 操作部5を用いて選択された収束応答優先モードまたは安定性優先モードおよび高電圧HVの極性に関する情報は、表示部4に表示される。
 (5)モード設定動作
 図7は、切替制御部30のモード設定動作の一例を示すフローチャートである。切替制御部30のモード設定動作は、例えば、CPUが記憶装置に記憶される制御プログラムをRAM上で実行することにより行われる。なお、本例では、収束応答性優先モードにおいて高電圧HVの極性が正負に切り替えられる。
 モード設定部301は、操作部5により安定性優先モードが選択されたか否かを判定する(ステップS1)。安定性優先モードが選択されている場合、モード設定部301は、モード設定信号MSを第2の状態にすることにより、正電圧発生部31および負電圧発生部32内のスイッチSW2をオンする(ステップS2)。それにより、電圧制御回路312が安定性優先モードに設定される。
 次に、電圧極性切替部302は、操作部5により高電圧HVの極性として正が選択されたか否かを判定する(ステップS3)。高電圧HVの極性として正が選択された場合、電圧極性切替部302は、正電圧選択信号SPをオン状態にすることにより、正電圧選択スイッチ33をオンする(ステップS4)。このとき、負電圧選択信号SNはオフ状態になり、負電圧選択スイッチ34はオフされる。それにより、高電圧HVの極性が正となる。使用者は、安定性優先モードにおいて分析対象について質量分析を行う。
 ステップS3において、高電圧HVの極性として負が選択された場合、電圧極性切替部302は、負電圧選択信号SNをオン状態にすることにより、負電圧選択スイッチ34をオンする(ステップS5)。このとき、正電圧選択信号SPはオフ状態になり、正電圧選択スイッチ33はオフされる。それにより、高電圧HVの極性が負となる。使用者は、安定性優先モードにおいて分析対象について質量分析を行う。
 ステップS1において収束応答性優先モードが選択された場合、モード設定部301は、モード設定信号MSを第1の状態にすることにより、正電圧発生部31および負電圧発生部32内のスイッチSW1をオンする(ステップS6)。それにより電圧制御回路312が収束応答性優先モードに設定される。
 電圧極性切替部302は、正電圧選択信号SPおよび負電圧選択信号SNを交互にオン状態にすることにより、正電圧選択スイッチ33および負電圧選択スイッチ34を交互にオンする。それにより、高電圧HVの極性が交互に正および負に切り替えられる(ステップS7)。使用者は、収束応答性優先モードにおいて分析対象について質量分析を行う。
 次に、モード設定部301は、操作部5より質量分析動作終了の指令を受けたか否かを判定する(ステップS8)。質量分析動作終了の指令を受けなかった場合、ステップS1に戻る。質量分析動作終了の指令を受けた場合、質量分析動作は、終了する。なお、収束応答性優先モードにおいて、使用者の選択により高電圧HVが正または負に設定されてもよい。
 (6)実施の形態の効果
 本実施の形態に係る飛行時間型質量分析装置1においては、高電圧電源装置3の電圧制御回路312が収束応答性優先モードまたは安定性優先モードに選択的に設定される。収束応答性優先モードでは、高電圧HVが高い収束応答性を有するように高電圧発生回路311が制御される。この場合、高電圧HVが高速に目標値+Vaまたは目標値-Vaに収束する。それにより、フライトチューブ246に印加される高電圧HVの値が繰り返し切り替えられる場合でも、短時間での分析が可能となる。安定性優先モードでは、高電圧HVが高い安定性を有するように高電圧発生回路311が制御される。この場合、目標値Vaに収束した高電圧HVの変動が小さい。それにより、高分解能を有する分析結果を得ることが可能となる。
 このように、使用者が収束応答性優先モードまたは安定性優先モードを選択することにより、分析対象または分析目的に応じて向上された収束応答性を有する高電圧HVまたは向上された安定性を有する高電圧HVを発生することが可能となる。
 また、高電圧電源装置3において負帰還回路313を含む第1の帰還制御回路321および負帰還回路314を含む第2の帰還制御回路322により高電圧HVを目標値+Va,-Vaに高精度で制御することができる。この場合、キャパシタC1の容量値とキャパシタC2の容量値との大小関係および抵抗R1の抵抗値と抵抗R2の抵抗値との大小関係の設定により、簡単な構成で収束応答性優先モードにおける収束応答性および安定性と安定性優先モードにおける収束応答性および安定性とを異ならせることができる。また、収束応答性優先モードおよび安定性優先モードでの高電圧HVの制御に共通の演算増幅器OPが用いられるので、部品点数および部品コストの削減が可能となる。
 さらに、負帰還回路313のキャパシタC1の容量値および負帰還回路314のキャパシタC2の容量値がそれぞれ設定されるとともに、負帰還回路313の抵抗R1の抵抗値および負帰還回路314の抵抗R2の抵抗値がそれぞれ設定される。それにより、収束応答性優先モードおよび安定性優先モードにおける高電圧HVの収束応答性および安定性を容易かつ多様に設定することが可能である。
 (7)他の実施の形態
 (a)上記実施の形態において、高電圧電源装置3は電極の1種であるフライトチューブ246に高電圧HVを印加するために用いられるが、高電圧電源装置3が他の電極に高電圧を印加するために用いられてもよい。高電圧電源装置3は、例えば、イオン輸送電極241、直交加速電極242、加速電極243、リフレクトロン電極244またはバックプレート247に高電圧を印加するために用いられてもよい。
 (b)電圧制御回路312の構成は、図2の構成に限定されない。図8は、電圧制御回路312の構成の他の例を示す回路図である。図8の電圧制御回路312では、負帰還回路314は、抵抗R2およびキャパシタC2に加えてキャパシタC3をさらに含む。キャパシタC3は、抵抗R2およびキャパシタC2の直列接続回路に並列に接続されている。図8の電圧制御回路312の他の部分の構成は、図2の電圧制御回路312の構成と同様である。図8の電圧制御回路312では、キャパシタC3により、高電圧HVの高周波ノイズが除去される。したがって、負帰還回路314は、高電圧HVの安定性をさらに高くすることができる。
 (c)図9は、電圧制御回路312の構成のさらに他の例を示す回路図である。図9の電圧制御回路312と図2の電圧制御回路312との同一部分には同一符号が付されている。電圧制御回路312は、抵抗R11,R12、切替制御部30、スイッチSW、第1の帰還制御回路321、第2の帰還制御回路322および基準電圧発生回路318を含む。スイッチSWは、接点a,b,cを有する。スイッチSWには切替制御部30によりモード設定信号MSが与えられる。スイッチSWの接点aはノードN1に接続される。
 第1の帰還制御回路321は、演算増幅器OP1、抵抗R3および負帰還回路313を含む。抵抗R3は、スイッチSWの接点bとノードN5との間に接続される。ノードN5は、演算増幅器OP1の反転入力端子に接続される。演算増幅器OP1の非反転入力端子には、基準電圧発生回路318により発生された基準電圧VRが与えられる。また、演算増幅器OP1の出力端子は、ノードN4に接続される。ノードN5とノードN4との間には、負帰還回路313が接続される。
 第2の帰還制御回路322は、演算増幅器OP2、抵抗R4および負帰還回路314を含む。抵抗R4は、スイッチSWの接点cとノードN6との間に接続される。ノードN6は、演算増幅器OP2の反転入力端子に接続される。演算増幅器OP2の非反転入力端子には、基準電圧発生回路318により発生された基準電圧VRが与えられる。また、演算増幅器OP2の出力端子は、ノードN4に接続される。ノードN6とノードN4との間には、負帰還回路314が接続される。
 本例においても、負帰還回路313のキャパシタC1の容量値は、負帰還回路314のキャパシタC2の容量値よりも小さく設定される。モード設定信号MSが第1の状態になると、スイッチSWの接点aが接点bに接続される。それにより、電圧制御回路312が収束応答性優先モードに設定される。一方、モード設定信号MSが第2の状態になると、スイッチSWの接点aが接点cに接続される。それにより、電圧制御回路312が安定性優先モードに設定される。図9の電圧制御回路312の他の部分の構成および動作は、図2の電圧制御回路312の構成および動作と同様である。
 (d)上記実施の形態では、電圧制御回路312が収束応答性優先モードおよび安定性優先モードに選択的に設定されるが、電圧制御回路312が収束応答性優先モードおよび安定性優先モードとは異なる第3のモードに設定可能に構成されてもよい。例えば、電圧制御回路312に第3の帰還制御回路がさらに設けられてもよい。第3の帰還制御回路は、例えば、第1の帰還制御回路321のキャパシタC1および第2の帰還制御回路322のキャパシタC2とは異なる容量値を有するキャパシタを含んでもよい。
 (e)上記実施の形態では、負帰還回路313のキャパシタC1の容量値が負帰還回路314のキャパシタC2の容量値よりも小さく設定され、負帰還回路313の抵抗R1の抵抗値が負帰還回路314の抵抗R2の抵抗値よりも大きく設定されるが、本発明は、これに限定されない。
 例えば、負帰還回路313のキャパシタC1の容量値が負帰還回路314のキャパシタC2の容量値よりも小さく設定され、負帰還回路313の抵抗R1の抵抗値が負帰還回路314の抵抗R2の抵抗値と等しく設定されてもよい。
 また、負帰還回路313のキャパシタC1の容量値が負帰還回路314のキャパシタC2の容量値よりも十分小さく設定され、負帰還回路313の抵抗R1の抵抗値が負帰還回路314の抵抗R2の抵抗値よりも小さく設定されてもよい。
 さらに、負帰還回路313の抵抗R1の抵抗値が負帰還回路314の抵抗R2の抵抗値よりも大きく設定され、負帰還回路313のキャパシタC1の容量値が負帰還回路314のキャパシタC2の容量値と等しく設定されてもよい。
 また、負帰還回路313の抵抗R1の抵抗値が負帰還回路314の抵抗R2の抵抗値よりも十分大きく設定され、負帰還回路313のキャパシタC1の容量値が負帰還回路314のキャパシタC2の容量値よりも大きく設定されてもよい。
 (8)請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明する。上記実施の形態では、フライトチューブ246が電極の例であり、収束応答性優先モードが第1のモードの例であり、安定性優先モードが第2のモードの例であり、負帰還回路313が第1の負帰還制御回路の例であり、負帰還回路314が第2の負帰還回路の例であり、正電圧選択スイッチ33および負電圧選択スイッチ34が接続切替部の例であり、キャパシタC1が第1の容量成分の例であり、キャパシタC2が第2の容量成分の例であり、抵抗R1が第1の抵抗成分の例であり、抵抗R2が第2の抵抗成分の例である。演算増幅器OPが共通の演算増幅器の例であり、演算増幅器OP1が第1の演算増幅器の例であり、演算増幅器OP2が第2の演算増幅器の例である。
 (9)態様
 上述した複数の例示的な実施の形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)一態様に係る飛行時間型質量分析装置は、
 イオンの飛行空間を形成するために直流の高電圧が印加される電極と、
 前記電極に前記高電圧を印加する高電圧電源装置とを備え、
 前記高電圧電源装置は、
 前記高電圧を発生する高電圧発生回路と、
 前記高電圧が第1の収束応答性および第1の安定性を有するように前記高電圧発生回路を制御する第1のモードと前記高電圧が前記第1の収束応答性よりも低い第2の収束応答性および前記第1の安定性よりも高い第2の安定性を有するように前記高電圧発生回路を制御する第2のモードとに選択的に設定される電圧制御回路とを含んでもよい。
 第1項に記載の飛行時間型質量分析装置によれば、電圧制御回路が第1のモードまたは第2のモードに選択的に設定される。第1のモードでは、高電圧が高い収束応答性を有するように高電圧発生回路が制御される。この場合、高電圧が高速に目標値に収束する。それにより、電極に印加される高電圧の値が繰り返し切り替えられる場合でも、短時間での分析が可能となる。第2のモードでは、高電圧が高い安定性を有するように高電圧発生回路が制御される。この場合、目標値に収束した高電圧の変動が小さい。それにより、高分解能を有する分析結果を得ることが可能となる。
 その結果、使用者が第1のモードまたは第2のモードを選択することにより、分析対象または分析目的に応じて向上された安定性を有する高電圧または向上された収束応答性を有する高電圧を発生することが可能となる。
 (第2項)第1項に記載の飛行時間型質量分析装置において、前記電圧制御回路は、
 前記高電圧の値が前記第1の収束応答性および前記第1の安定性で目標電圧値に収束するように前記高電圧発生回路を帰還制御する第1の帰還制御回路と、
 前記高電圧の値が前記第2の収束応答性および前記第2の安定性で前記目標電圧値に収束するように前記高電圧発生回路を帰還制御する第2の帰還制御回路と、
 前記第1のモード時に前記第1の帰還制御回路を選択的に作動させ、前記第2のモード時に前記第2の帰還制御回路を選択的に作動させる選択回路とを含んでもよい。
 第2項に記載の飛行時間型質量分析装置によれば、第1の帰還制御回路または第2の帰還制御回路が選択的に作動することにより、第1のモードおよび第2のモードにおいて高電圧が高い精度で制御される。
 (第3項)第2項に記載の飛行時間型質量分析装置において、
 前記第1の帰還制御回路は、第1の容量成分および第1の抵抗成分を含み、
 前記第2の帰還制御回路は、第2の容量成分および第2の抵抗成分を含み、
 前記第1の帰還制御回路が前記第1の収束応答性および前記第1の安定性を有しかつ前記第2の帰還制御回路が前記第2の収束応答性および前記第2の安定性を有するように、前記第1の容量成分の容量値と前記第2の容量成分の容量値との大小関係および前記第1の抵抗成分の抵抗値と前記第2の抵抗成分の抵抗値との大小関係が設定されてもよい。
 第3項に記載の飛行時間型質量分析装置によれば、第1の容量成分の容量値と第2の容量成分の容量値との大小関係および第1の抵抗成分の抵抗値と第2の抵抗成分の抵抗値との大小関係の設定により、簡単な構成で第1のモードにおける第1の収束応答性および第1の安定性と第2のモードにおける第2の収束応答性および第2の安定性とを異ならせることができる。
 (第4項)第3項に記載の飛行時間型質量分析装置において、
 前記第1および第2の帰還制御回路は、共通の演算増幅器を含み、
 前記第1の帰還制御回路は、前記演算増幅器に接続される第1の負帰還回路を含み、
 前記第2の帰還制御回路は、前記演算増幅器に接続される第2の負帰還回路を含み、
 前記第1の負帰還回路は、前記第1の容量成分および第1の抵抗成分の直列接続を含み、
 前記第2の負帰還回路は、前記第2の容量成分および第2の抵抗成分の直列接続を含んでもよい。
 第4項に記載の飛行時間型質量分析装置によれば、第1の負帰還回路における第1の容量成分の容量値および第2の負帰還回路における第2の容量成分の容量値の設定により、第1のモードにおける第1の収束応答性および第1の安定性と第2のモードにおける第2の収束応答性および第2の安定性とを容易に異ならせることができる。また、第1のモードおよび第2のモードでの高電圧の制御に共通の演算増幅器が用いられるので、部品点数および部品コストの削減が可能となる。
 (第5項)第3項に記載の飛行時間型質量分析装置において、
 前記第1の帰還制御回路は、第1の演算増幅器と、前記第1の演算増幅器に接続される第1の負帰還回路とを含み、
 前記第2の帰還制御回路は、第2の演算増幅器と、前記第2の演算増幅器に接続される第2の負帰還回路とを含み、
 前記第1の負帰還回路は、前記第1の容量成分および第1の抵抗成分の直列接続を含み、
 前記第2の負帰還回路は、前記第2の容量成分および第2の抵抗成分の直列接続を含んでもよい。
 第5項に記載の飛行時間型質量分析装置によれば、第1の負帰還回路における第1の容量成分の容量値および第2の負帰還回路における第2の容量成分の容量値の設定により、第1のモードにおける第1の収束応答性と第1の安定性をおよび第2のモードにおける第2の収束応答性および第2の安定性とを容易に異ならせることができる。
 (第6項)第4項または第5項に記載の飛行時間型質量分析装置において、
 前記第1の帰還制御回路が前記第1の収束応答性および前記第1の安定性を有しかつ前記第2の帰還制御回路が前記第2の収束応答性および前記第2の安定性を有するように、前記第1の容量成分の容量値が前記第2の容量成分の容量値よりも小さく設定されてもよい。
 第6項に記載の飛行時間型質量分析装置によれば、第1の帰還制御回路の第1の容量成分の容量値および第2の帰還制御回路の第2の容量成分の容量値の設定により、第1のモードおよび第2のモードにおける高電圧の収束応答性および安定性を容易に設定することが可能である。
 (第7項)第4項~第6項のいずれか一項に記載の飛行時間型質量分析装置において、
 前記第1の帰還制御回路が前記第1の収束応答性および前記第1の安定性を有しかつ前記第2の帰還制御回路が前記第2の収束応答性および前記第2の安定性を有するように前記第1の抵抗成分の抵抗値が前記第2の抵抗成分の抵抗値よりも大きく設定されてもよい。
 第7項に記載の飛行時間型質量分析装置によれば、第1の帰還制御回路の第1の抵抗成分の抵抗値および第2の帰還制御回路の第2の抵抗成分の抵抗値の設定により、第1のモードおよび第2のモードにおける高電圧の収束応答性および安定性を容易に設定することが可能である。
 (第8項)第1項~第7項のいずれか一項に記載の飛行時間型質量分析装置において、
 前記高電圧電源装置は、
 正電圧発生部と、
 負電圧発生部と、
 前記正電圧発生部および負電圧発生部のうち一方を選択的に前記電極に電気的に接続する接続切替部とを含み、
 前記正電圧発生部および負電圧発生部の各々は、前記高電圧発生回路および前記電圧制御回路を含み、
 前記正電圧発生部の前記高電圧発生回路は、前記高電圧として正の高電圧を発生し、
 前記負電圧発生部の前記高電圧発生回路は、前記高電圧として負の高電圧を発生させてもよい。
 第8項に記載の飛行時間型質量分析装置によれば、高電圧電源装置が第1のモードにおいて第1の収束応答性および第1の安定性を有する正および負の高電圧を選択的に電極に印加することができ、第2のモードにおいて第2の収束応答性および第2の安定性を有する正および負の高電圧を選択的に電極に印加することができる。
 この場合、使用者は、電極に印加される高電圧の極性を正および負に切り替えながら分析を行う際に、分析対象または分析目的に応じて第1のモードまたは第2のモードを選択することができる。また、使用者は、電極に印加される高電圧の極性を正または負の高電圧を保持しながら分析を行う際に、分析対象または分析目的に応じて第1のモードまたは第2のモードを選択することができる。
 (第9項)第1項~第8項のいずれか一項に記載の飛行時間型質量分析装置は、
 使用者の操作に基づいて、前記電圧制御回路を前記第1のモードおよび前記第2のモードのいずれか一方に選択的に切り替える切替制御部をさらに備えてもよい。
 第9項に記載の飛行時間型質量分析装置によれば、使用者の操作に基づいて、電圧制御回路が第1のモードまたは第2のモードに設定される。
 (第10項)イオンの飛行空間を形成するために電極に高電圧を印加する高電圧電源装置を備えた飛行時間型質量分析装置を用いた分析方法であって、
 前記高電圧が第1の収束応答性および第1の安定性を有するように前記高電圧電源装置を制御する第1のモードと前記高電圧が前記第1の収束応答性よりも低い第2の収束応答性および前記第1の安定性よりも高い第2の安定性を有するように前記高電圧電源装置を制御する第2のモードとに前記高電圧電源装置を選択的に設定するステップと、
 前記設定された第1または第2のモードにおいて分析対象について前記飛行時間型質量分析装置を用いて質量分析を行うステップとを含んでもよい。
 第10項に記載の分析方法によれば、高電圧電源装置が第1のモードまたは第2のモードに選択的に設定される。第1のモードでは、高電圧が高い収束安定性を有するように高電圧電源装置が制御される。この場合、高電圧が高速に目標値に収束する。それにより、電極に印加される高電圧の値が繰り返し切り替えられる場合でも、短時間での分析が可能となる。
 第2のモードでは、高電圧が高い安定性を有するように高電圧電源装置が制御される。この場合、目標値に収束した高電圧の変動が小さい。それにより、高分解能を有する分析結果を得ることが可能となる。
 その結果、使用者が第1のモードまたは第2のモードを選択することにより、分析対象または分析目的に応じて向上された安定性を有する高電圧または向上された収束応答性を有する高電圧を発生することが可能となる。

Claims (10)

  1. イオンの飛行空間を形成するために直流の高電圧が印加される電極と、
     前記電極に前記高電圧を印加する高電圧電源装置とを備え、
     前記高電圧電源装置は、
     前記高電圧を発生する高電圧発生回路と、
     前記高電圧が第1の収束応答性および第1の安定性を有するように前記高電圧発生回路を制御する第1のモードと、前記高電圧が前記第1の収束応答性よりも低い第2の収束応答性および前記第1の安定性よりも高い第2の安定性を有するように前記高電圧発生回路を制御する第2のモードとに選択的に設定される電圧制御回路とを含む、飛行時間型質量分析装置。
  2. 前記電圧制御回路は、
     前記高電圧の値が前記第1の収束応答性および前記第1の安定性で目標電圧値に収束するように前記高電圧発生回路を帰還制御する第1の帰還制御回路と、
     前記高電圧の値が前記第2の収束応答性および前記第2の安定性で前記目標電圧値に収束するように前記高電圧発生回路を帰還制御する第2の帰還制御回路と、
     前記第1のモード時に前記第1の帰還制御回路を選択的に作動させ、前記第2のモード時に前記第2の帰還制御回路を選択的に作動させる選択回路とを含む、請求項1記載の飛行時間型質量分析装置。
  3. 前記第1の帰還制御回路は、第1の容量成分および第1の抵抗成分を含み、
     前記第2の帰還制御回路は、第2の容量成分および第2の抵抗成分を含み、
     前記第1の帰還制御回路が前記第1の収束応答性および前記第1の安定性を有しかつ前記第2の帰還制御回路が前記第2の収束応答性および前記第2の安定性を有するように、前記第1の容量成分の容量値と前記第2の容量成分の容量値との大小関係および前記第1の抵抗成分の抵抗値と前記第2の抵抗成分の抵抗値との大小関係が設定される、請求項2記載の飛行時間型質量分析装置。
  4. 前記第1および第2の帰還制御回路は、共通の演算増幅器を含み、
     前記第1の帰還制御回路は、前記演算増幅器に接続される第1の負帰還回路を含み、
     前記第2の帰還制御回路は、前記演算増幅器に接続される第2の負帰還回路を含み、
     前記第1の負帰還回路は、前記第1の容量成分および第1の抵抗成分の直列接続を含み、
     前記第2の負帰還回路は、前記第2の容量成分および第2の抵抗成分の直列接続を含む、請求項3記載の飛行時間型質量分析装置。
  5. 前記第1の帰還制御回路は、第1の演算増幅器と、前記第1の演算増幅器に接続される第1の負帰還回路とを含み、
     前記第2の帰還制御回路は、第2の演算増幅器と、前記第2の演算増幅器に接続される第2の負帰還回路とを含み、
     前記第1の負帰還回路は、前記第1の容量成分および第1の抵抗成分の直列接続を含み、
     前記第2の負帰還回路は、前記第2の容量成分および第2の抵抗成分の直列接続を含む、請求項3記載の飛行時間型質量分析装置。
  6. 前記第1の帰還制御回路が前記第1の収束応答性および前記第1の安定性を有しかつ前記第2の帰還制御回路が前記第2の収束応答性および前記第2の安定性を有するように、前記第1の容量成分の容量値が前記第2の容量成分の容量値よりも小さく設定される、請求項4または5記載の飛行時間型質量分析装置。
  7. 前記第1の帰還制御回路が前記第1の収束応答性および前記第1の安定性を有しかつ前記第2の帰還制御回路が前記第2の収束応答性および前記第2の安定性を有するように前記第1の抵抗成分の抵抗値が前記第2の抵抗成分の抵抗値よりも大きく設定される、請求項4または5記載の飛行時間型質量分析装置。
  8. 前記高電圧電源装置は、
     正電圧発生部と、
     負電圧発生部と、
     前記正電圧発生部および負電圧発生部のうち一方を選択的に前記電極に電気的に接続する接続切替部とを含み、
     前記正電圧発生部および負電圧発生部の各々は、前記高電圧発生回路および前記電圧制御回路を含み、
     前記正電圧発生部の前記高電圧発生回路は、前記高電圧として正の高電圧を発生し、
     前記負電圧発生部の前記高電圧発生回路は、前記高電圧として負の高電圧を発生する、請求項1~5のいずれか一項に記載の飛行時間型質量分析装置。
  9. 使用者の操作に基づいて、前記電圧制御回路を前記第1のモードおよび前記第2のモードのいずれか一方に選択的に切り替える切替制御部をさらに備える、請求項1~5のいずれか一項に記載の飛行時間型質量分析装置。
  10. イオンの飛行空間を形成するために電極に高電圧を印加する高電圧電源装置を備えた飛行時間型質量分析装置を用いた分析方法であって、
     前記高電圧が第1の収束応答性および第1の安定性を有するように前記高電圧電源装置を制御する第1のモードと前記高電圧が前記第1の収束応答性よりも低い第2の収束応答性および前記第1の安定性よりも高い第2の安定性を有するように前記高電圧電源装置を制御する第2のモードとに前記高電圧電源装置を選択的に設定するステップと、
     前記設定された第1または第2のモードにおいて分析対象について前記飛行時間型質量分析装置を用いて質量分析を行うステップとを含む、分析方法。
PCT/JP2020/030983 2019-11-06 2020-08-17 飛行時間型質量分析装置および分析方法 WO2021090547A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021554822A JP7235135B2 (ja) 2019-11-06 2020-08-17 飛行時間型質量分析装置および分析方法
CN202080074796.9A CN114616646A (zh) 2019-11-06 2020-08-17 飞行时间型质量分析装置以及分析方法
EP20883793.0A EP4056995A4 (en) 2019-11-06 2020-08-17 TIME OF FLIGHT MASS SPECTROMETER AND ANALYSIS METHODS
US17/768,747 US20240120190A1 (en) 2019-11-06 2020-08-17 Time-of-flight mass spectrometry device and analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019201748 2019-11-06
JP2019-201748 2019-11-06

Publications (1)

Publication Number Publication Date
WO2021090547A1 true WO2021090547A1 (ja) 2021-05-14

Family

ID=75848343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030983 WO2021090547A1 (ja) 2019-11-06 2020-08-17 飛行時間型質量分析装置および分析方法

Country Status (5)

Country Link
US (1) US20240120190A1 (ja)
EP (1) EP4056995A4 (ja)
JP (1) JP7235135B2 (ja)
CN (1) CN114616646A (ja)
WO (1) WO2021090547A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280655A (ja) * 2006-04-04 2007-10-25 Shimadzu Corp 質量分析装置
WO2018066064A1 (ja) 2016-10-04 2018-04-12 株式会社島津製作所 高電圧電源装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491931B2 (en) * 2006-05-05 2009-02-17 Applera Corporation Power supply regulation using a feedback circuit comprising an AC and DC component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280655A (ja) * 2006-04-04 2007-10-25 Shimadzu Corp 質量分析装置
WO2018066064A1 (ja) 2016-10-04 2018-04-12 株式会社島津製作所 高電圧電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4056995A4

Also Published As

Publication number Publication date
US20240120190A1 (en) 2024-04-11
JPWO2021090547A1 (ja) 2021-05-14
EP4056995A4 (en) 2023-12-20
CN114616646A (zh) 2022-06-10
EP4056995A1 (en) 2022-09-14
JP7235135B2 (ja) 2023-03-08

Similar Documents

Publication Publication Date Title
US9431226B2 (en) High-voltage power unit and mass spectrometer using the power unit
US7491931B2 (en) Power supply regulation using a feedback circuit comprising an AC and DC component
JP6337970B2 (ja) 質量分析装置
WO2016063329A1 (ja) 質量分析装置
JP6090448B2 (ja) 高電圧電源装置及び該装置を用いた質量分析装置
JP6658904B2 (ja) 質量分析装置
WO2021090547A1 (ja) 飛行時間型質量分析装置および分析方法
JP2015159051A (ja) 高電圧電源装置及び該装置を用いた質量分析装置
US20220262615A1 (en) Analytical device
JP2019139964A (ja) 電子顕微鏡および電子顕微鏡の制御方法
JP6725080B2 (ja) 質量分析装置
JP4496014B2 (ja) 電圧源回路
US11195707B2 (en) Time-of-flight mass spectrometry device
US11430649B2 (en) Analytical device
WO2023053296A1 (ja) 質量分析装置および質量分析方法
JP3093249U (ja) 空気イオン発生装置
JP2002157972A (ja) 質量分析装置及び質量分析方法
JPH10270194A (ja) 荷電粒子加速装置
JPH047534B2 (ja)
JPH03129656A (ja) 2次イオン質量分析計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17768747

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021554822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020883793

Country of ref document: EP

Effective date: 20220607