WO2021090517A1 - Light-emitting device, and method for manufacturing light-emitting device - Google Patents

Light-emitting device, and method for manufacturing light-emitting device Download PDF

Info

Publication number
WO2021090517A1
WO2021090517A1 PCT/JP2020/007985 JP2020007985W WO2021090517A1 WO 2021090517 A1 WO2021090517 A1 WO 2021090517A1 JP 2020007985 W JP2020007985 W JP 2020007985W WO 2021090517 A1 WO2021090517 A1 WO 2021090517A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
light emitting
phosphor
holding member
Prior art date
Application number
PCT/JP2020/007985
Other languages
French (fr)
Japanese (ja)
Inventor
祐幸 森戸
Original Assignee
株式会社球体研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020017854A external-priority patent/JP2021077842A/en
Application filed by 株式会社球体研究所 filed Critical 株式会社球体研究所
Publication of WO2021090517A1 publication Critical patent/WO2021090517A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • the present invention relates to a light emitting device and a method for manufacturing the light emitting device.
  • a light emitting device having a semiconductor laser diode and a phosphor capable of converting the wavelength of light emitted by the semiconductor laser diode is known (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 includes a laser diode that emits blue light and a wavelength conversion unit that absorbs a part of the light emitted by the laser diode to convert a wavelength, and the wavelength conversion unit is a single YAG system.
  • a light emitting device including a crystalline phosphor and having an irradiance of 80 W / mm 2 or more of light emitted from the laser diode and irradiating the wavelength conversion unit is disclosed. Further, it is disclosed that the wavelength conversion unit is held by a heat radiating member made of aluminum nitride, alumina, SiN, Cu, or Al.
  • Patent Document 2 discloses a wavelength conversion element including a wavelength conversion layer made of a sintered body of a particle group of a single crystal phosphor. It is disclosed that the phosphor contained in the wavelength conversion layer is a YAG-based single crystal phosphor. Further, it is disclosed that the wavelength conversion element is fixed to the heat sink by soldering. It is disclosed that the heat sink is made of a material having high thermal conductivity such as Cu, CuW, CuMo, SiC, AlN, and diamond.
  • the wavelength conversion unit is composed of one YAG-based single crystal phosphor or a plurality of particle-like single crystal phosphors bonded to each other by a binder.
  • the wavelength conversion unit processed into a flat plate can be obtained by cutting the ingot of the single crystal phosphor obtained by the liquid phase growth method.
  • the wavelength conversion unit processed into a flat plate is joined to a holding member (heat sink) made of a metal material having high thermal conductivity such as Cu by soldering, for example.
  • the above-mentioned conventional light emitting device has a problem that it is not easy to attach the wavelength conversion unit processed into a flat plate to the holding member. Further, there is a problem that it is not easy to process an ingot of a single crystal phosphor into a flat plate shape to manufacture a large amount of wavelength conversion units.
  • An object of the present invention is to provide a light emitting device and a method for manufacturing a light emitting device, which can easily attach a wavelength conversion unit made of a material containing a phosphor to a holding member and can be manufactured at a lower cost. And.
  • a light emitting device including a light source and a wavelength conversion unit that converts the wavelength of light emitted from the light source.
  • the wavelength conversion unit is composed of a spherical phosphor in which a material containing a phosphor is formed in a spherical shape.
  • a light emitting device in which a light incident surface on which light emitted from the light source is incident is formed on the spherical phosphor.
  • a holding member for holding the wavelength conversion unit is provided.
  • a method for manufacturing a light emitting device including a light source and a wavelength conversion unit that converts the wavelength of light emitted from the light source.
  • the process of forming a material containing a phosphor into a spherical shape to obtain a spherical phosphor A method for manufacturing a light emitting device, comprising a step of forming a light incident surface on which light emitted from the light source is incident on the spherical phosphor to obtain the wavelength conversion unit.
  • the method for manufacturing a light emitting device according to (8) which comprises a step of forming a light emitting surface on the spherical phosphor that emits light whose wavelength has been converted to the outside.
  • (10) The method for manufacturing a light emitting device according to (8) or (9), which comprises a joining step of joining the spherical phosphor to a holding member for holding the spherical phosphor by soldering.
  • (11) The method for manufacturing a light emitting device according to (10), wherein in the joining step, the spherical phosphor and the holding member are immersed in a solder tank in a state of being assembled by a jig.
  • (12) The method for manufacturing a light emitting device according to any one of (8) to (11), which comprises a step of forming a light reflecting film on the surface of the spherical phosphor by silver plating or silver vapor deposition.
  • (13) The method for manufacturing a light emitting device according to any one of (8) to (12), wherein the light source is a blue semiconductor laser diode.
  • the present invention it is possible to easily attach a wavelength conversion unit made of a material containing a phosphor to a holding member, and to provide a light emitting device and a method for manufacturing the light emitting device, which can be manufactured at a lower cost. Can be done.
  • FIG. 2 is a cross-sectional view taken along the line AA of the wavelength conversion unit and the holding member shown in FIG. It is a top view of the wavelength conversion part and the holding member of 2nd Embodiment.
  • FIG. 5 is a cross-sectional view taken along the line BB of the wavelength conversion unit and the holding member shown in FIG.
  • FIG. 10 is a cross-sectional view taken along the line CC of the holding member shown in FIG. It shows a holding member formed by laminating two plate-shaped members having a collar portion up and down. It is a top view which shows another Example of a holding member.
  • FIG. 13 is a sectional view taken along line DD of the holding member shown in FIG. It shows a holding member formed by sticking two plate-shaped members having a holding portion up and down.
  • FIG. 1 shows a schematic configuration of the light emitting device 10 of the present embodiment.
  • the light emitting device 10 includes a light source 12 and a wavelength conversion unit 14 that converts the wavelength of light emitted from the light source 12.
  • the light source 12 is composed of, for example, a semiconductor light emitting element.
  • the semiconductor light emitting element for example, a light emitting diode (LED) or a laser diode (LD) can be used.
  • the light emitted by the semiconductor light emitting device may be blue-purple light, blue light, or light of another wavelength. Further, the semiconductor light emitting device may emit light having a plurality of wavelengths.
  • An incident optical system 16 for guiding the light emitted from the light source 12 to the wavelength conversion unit 14 may be provided between the light source 12 and the wavelength conversion unit 14.
  • the incident optical system 16 may be composed of, for example, one or a plurality of optical elements.
  • the optical element for example, a lens, a mirror, or an optical fiber can be used.
  • the wavelength conversion unit 14 converts the wavelength of at least a part of the light emitted from the light source 12.
  • the wavelength conversion unit 14 can be formed of, for example, a material containing a phosphor that is excited by incident light and emits light having a wavelength longer than that of the incident light. For example, when the light emitting device 10 generates white light, a part of the blue light emitted from the light source 12 is converted into yellow light by the wavelength conversion unit 14. The mixture of blue and yellow light produces light that the human eye perceives as white.
  • the wavelength conversion unit 14 is formed of a material containing a phosphor.
  • the wavelength conversion unit 14 may be formed by one single crystal phosphor, or may be formed by particles of a plurality of single crystal phosphors bonded by a binder.
  • the binder for example, a transparent resin or glass can be used.
  • the wavelength conversion unit 14 may be formed of a sintered body obtained by sintering a plurality of phosphor particles.
  • the type of phosphor can be appropriately selected according to the wavelength of the incident light and the wavelength of the required emitted light.
  • the wavelength conversion unit 14 may be formed of a material containing a yellow phosphor.
  • the yellow fluorescent substance for example, a YAG fluorescent substance or a sialon fluorescent substance can be used.
  • the wavelength conversion unit 14 is composed of a spherical phosphor 18 in which a material containing a phosphor is formed in a spherical shape.
  • a light incident surface 20 on which light emitted from the light source 12 is incident is formed at one end of the spherical phosphor 18.
  • a light emitting surface 22 that emits light whose wavelength has been converted by the phosphor 18 to the outside is formed.
  • the light incident surface 20 and the light emitting surface 22 can be formed, for example, by polishing the end portion of the spherical phosphor 18 into a flat surface. Light reflection for inwardly reflecting the light incident on the spherical phosphor 18 or the light whose wavelength has been converted by the phosphor on the outer surface other than the light incident surface 20 and the light emitting surface 22 of the spherical phosphor 18.
  • a film may be formed.
  • the light reflective film can be formed, for example, by silver plating or silver vapor deposition.
  • the spherical phosphor 18 is fixed to a holding member 24 formed of a metal material such as copper having high conductivity.
  • the holding member 24 can hold the spherical phosphor 18 in a predetermined position. Further, the holding member 24 serves as a heat sink capable of releasing the heat generated in the spherical phosphor 18 to the outside.
  • the holding member 24 may be made of other metallic materials such as aluminum, iron and nickel.
  • FIG. 2 is a plan view of the wavelength conversion unit 14 and the holding member 24.
  • FIG. 3 is a sectional view taken along line AA of the wavelength conversion unit 14 and the holding member 24 shown in FIG.
  • the holding member 24 is formed in a substantially quadrangular plate shape, and a substantially circular through hole 26 is formed in the central portion thereof.
  • the wavelength conversion unit 14 is held inside the through hole 26 formed in the holding member 24.
  • the wavelength conversion unit 14 can be joined to the inner wall of the through hole 26 by, for example, soldering. In this case, the solder S used for joining is filled between the wavelength conversion unit 14 and the inner wall of the through hole 26.
  • the wavelength conversion unit 14 may be joined to the holding member 24 by means other than soldering.
  • the wavelength conversion unit 14 may be bonded to the holding member 24 with a conductive paste.
  • the holding member 24 is formed with four substantially circular holes 28a to 28d. These four holes 28a to 28d are used when the wavelength conversion unit 14 is attached to the holding member 24 by a jig described later.
  • the wavelength conversion unit 14 is composed of a spherical phosphor 18 in which a material containing a phosphor is formed in a spherical shape.
  • the spherical phosphor 18 can be easily produced from, for example, one single crystal phosphor by cutting, polishing, or the like. In addition, it can be easily produced from an ingot obtained by binding a plurality of phosphor particles with a binder. Further, it can be easily produced from a sintered body obtained by sintering a plurality of phosphor particles. Therefore, according to the light emitting device 10 of the present embodiment, it is possible to manufacture a large number of wavelength conversion units at a lower cost than before.
  • the work of attaching the spherical phosphor 18 to the holding member 24 is easy, it is possible to manufacture a large number of light emitting devices at a lower cost than before.
  • the work of attaching the spherical phosphor 18 to the holding member 24 will be described in detail later.
  • FIG. 4 is a plan view of the wavelength conversion unit 14 and the holding member 24 of the second embodiment.
  • FIG. 5 is a sectional view taken along line BB of the wavelength conversion unit 14 and the holding member 24 shown in FIG.
  • the holding member 24 can be formed by laminating two substantially quadrangular plate-shaped members 30a and 30b.
  • the two plate-shaped members 30a and 30b can be formed of a metal material such as copper having high thermal conductivity.
  • the two plate-shaped members 30a and 30b can be joined to each other by using, for example, soldering or a conductive paste.
  • the two plate-shaped members 30a and 30b may be formed with recesses 32 and convex portions 34 that can be fitted to each other (the concave portions 32 and the convex portions 34 are shown in FIGS. 4 and 5, respectively). An example in which four are formed is shown).
  • the concave portion 32 is a substantially quadrangular bottomed hole
  • the convex portion 34 is a square columnar protrusion having substantially the same shape as the concave portion 32.
  • the two plate-shaped members 30a and 30b are fixed so as not to move to each other.
  • a substantially circular through hole 26 is formed at substantially the center of the two plate-shaped members 30a and 30b.
  • a tapered portion 36 is formed on the inner circumference of the through hole 26 so that its diameter gradually increases toward the center in the thickness direction.
  • the tapered portion 36 allows the wavelength conversion portion 14 to be held inside the through hole 26.
  • the wavelength conversion unit 14 can be joined to the inner wall of the through hole 26 by, for example, soldering. In this case, the solder S used for joining is filled between the wavelength conversion unit 14 and the inner wall of the through hole 26. Further, the wavelength conversion unit 14 can be joined to the inner wall of the through hole 26 by, for example, a conductive paste.
  • four substantially circular holes 28a to 28d are formed in the holding member 24. These four holes 28a to 28d are used when the wavelength conversion unit 14 is attached to the holding member 24 by a jig described later, and details will be described later.
  • the same operation and effect as the light emitting device 10 of the first embodiment described above can be obtained.
  • FIG. 6 is a schematic configuration diagram of the light emitting device 50 of the third embodiment.
  • the light emitting device 50 includes a light source 12 and a wavelength conversion unit 52 that converts the wavelength of light emitted from the light source 12.
  • the wavelength conversion unit 52 is composed of a spherical phosphor 54 in which a material containing a phosphor is formed in a spherical shape.
  • a light incident surface 56 on which light emitted from the light source 12 is incident is formed at one end of the spherical phosphor 54.
  • a light reflecting film 58 for reflecting the light incident on the spherical phosphor 54 or the light whose wavelength is changed by the phosphor is directed inward. It is formed.
  • the light reflecting film 58 can be formed by, for example, silver plating or silver vapor deposition. The light incident on the light incident surface 56 or the light whose wavelength is changed by the phosphor is reflected by the light reflecting film 58 and then emitted from the light incident surface 56.
  • the light emitting device 50 of the third embodiment since almost all the light incident on the light incident surface 56 is reflected by the light reflecting film 58, it is possible to efficiently generate white light.
  • a material containing a phosphor is processed into a spherical shape to obtain a spherical phosphor 18.
  • a spherical phosphor 18 may be obtained by processing the ingot obtained by binding a plurality of phosphor particles with a binder into a spherical shape.
  • a spherical phosphor 18 may be obtained by processing a sintered body obtained by sintering a plurality of phosphor particles into a spherical shape.
  • a known processing method such as cutting or polishing can be used.
  • the obtained spherical phosphor 18 is soldered to a holding member 24 formed of a metal material such as copper (bonding step).
  • the upper end of the spherical phosphor 18 is polished so as to be substantially flush with the upper surface of the holding member 24.
  • the light emitting surface 22 can be formed on the upper end of the spherical phosphor 18.
  • the lower end of the spherical phosphor 18 is polished so as to be substantially flush with the lower surface of the holding member 24.
  • the light incident surface 20 can be formed at the lower end of the spherical phosphor 18.
  • the order of (c) and (d) in FIG. 7 may be reversed. That is, the light emitting surface 22 may be formed after the light incident surface 20 is formed on the spherical phosphor 18. In the case of the light emitting device 50 shown in FIG. 6, the step of forming the light emitting surface 22 on the spherical phosphor 18 is unnecessary.
  • a light reflecting film may be formed on the surface of the spherical phosphor 18 by silver plating or silver vapor deposition.
  • the step of forming the light reflecting film may be before or after the step of joining the spherical phosphor 18 to the holding member 24.
  • FIG. 8 is a perspective view showing an example of a jig 60 that can be used in the joining process.
  • FIG. 9 is an enlarged perspective view of the tip end portion of the jig 60.
  • the jig 60 includes two arms 62a and 62b.
  • the two arms 62a and 62b are connected to each other by a hinge 64 so as to be openable and closable.
  • Four protrusions 66a to 66d are provided inside the tip of one arm 62a.
  • Four protrusions 66a to 66d are also provided inside the tip of the other arm 62b.
  • a cylindrical accommodating portion 68 is provided at substantially the center of the four protrusions 66a to 66d.
  • the two arms 62a and 62b can be formed of, for example, a metal material.
  • the four holes 28a to 28d provided in the holding member 24 are fitted into the four protrusions 66a to 66d provided at the tip of one arm 62a. Thereby, the holding member 24 can be attached to the tip of one arm 62a.
  • the spherical phosphor 18 is fitted into the through hole 26 provided in the center of the holding member 24.
  • the spherical phosphor 18 and the holding member 24 are sandwiched together by the two arms 62a and 62b. In the state of FIG. 9, the protrusions 66a to 66d are inserted into the four holes 28a to 28d provided in the holding member 24.
  • the spherical phosphor 18 is housed in a cylindrical housing portion 68 provided on each of the two arms 62a and 62b, respectively. In this way, by using the jig 60, the spherical phosphor 18 and the holding member 24 can be assembled to each other.
  • the spherical phosphor 18 and the holding member 24 are immersed in a solder bath in a state of being assembled with each other by a jig 60. Since a gap is secured between the through hole 26 and the spherical phosphor 18, solder flows between the through hole 26 and the spherical phosphor 18. As a result, the spherical phosphor 18 can be bonded to the holding member 24 by soldering.
  • the light emitting device of this embodiment can be used as a light source for various devices.
  • various devices such as lighting devices using optical fibers, lighting devices using liquid light guides, projectors, machine vision, microscope lighting, endoscopic lighting, lighting for inspection equipment, lighting for clinics, and lighting for dental clinics. It can be used as a light source.
  • FIG. 10 is a plan view showing another embodiment of the holding member 24.
  • FIG. 11 is a sectional view taken along line CC of the holding member 24 shown in FIG.
  • the holding member 24 is formed of a substantially quadrangular plate-shaped member.
  • the holding member 24 is made of, for example, a metal material such as copper having high thermal conductivity.
  • a substantially circular through hole 26 is formed at substantially the center of the holding member 24.
  • the inner peripheral surface of the collar 40 is a spherical surface. Therefore, it is possible to hold the spherical phosphor 18 inside the collar portion 40. Further, since the inner peripheral surface of the flange portion 40 is in close contact with the outer surface of the spherical phosphor 18, the spherical phosphor 18 can be firmly held. For example, even when the spherical phosphor 18 generates heat due to the light emitted from the light source 12 and the solder is melted, it is possible to prevent the spherical phosphor 18 from coming off from the holding member 24.
  • the holding member 24 having the flange portion 40 can be manufactured, for example, by press molding.
  • FIG. 12 shows a holding member 24 formed by vertically bonding two plate-shaped members 30a and 30b having a flange portion 40.
  • the spherical phosphor 18 can be more firmly held inside the collar portion 40. ..
  • the two plate-shaped members 30a and 30b can be joined to each other by using, for example, soldering or a conductive paste.
  • FIG. 13 is a plan view showing another embodiment of the holding member 24.
  • FIG. 14 is a sectional view taken along line DD of the holding member 24 shown in FIG.
  • the holding member 24 is formed of a substantially quadrangular plate-shaped member.
  • the holding member 24 is made of, for example, a metal material such as copper having high thermal conductivity.
  • a substantially circular through hole 26 is formed at substantially the center of the holding member 24.
  • a holding portion 42 formed so that its diameter gradually decreases downward is formed on the inner circumference of the through hole 26.
  • the inner peripheral surface of the holding portion 42 is a spherical surface. Therefore, it is possible to hold the spherical phosphor 18 inside the holding portion 42. Further, since the inner peripheral surface of the holding portion 42 is in close contact with the outer surface of the spherical phosphor 18, the spherical phosphor 18 can be firmly held. For example, even when the spherical phosphor 18 generates heat due to the light emitted from the light source 12 and the solder is melted, it is possible to prevent the spherical phosphor 18 from coming off from the holding member 24.
  • the holding portion 42 can be formed by using, for example, a ball end mill.
  • FIG. 15 shows a holding member 24 formed by vertically bonding two plate-shaped members 30a and 30b having a holding portion 42.
  • the spherical phosphor 18 can be more firmly held inside the holding portion 42 by vertically bonding the two plate-shaped members 30a and 30b having the holding portion 42. ..
  • the two plate-shaped members 30a and 30b can be joined to each other by using, for example, soldering or a conductive paste.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention provides a light-emitting device which makes it possible to easily attach a wavelength conversion part comprising a material including a phosphor to a holding member, and which can be manufactured at lower cost, and a method for manufacturing a light-emitting device. A light-emitting device 10 is provided with a light source 12, and a wavelength conversion part 14 for converting the wavelength of light emitted from the light source 12. The wavelength conversion part 14 comprises a spherical phosphor 18 obtained by forming a material including a phosphor into a spherical shape. In the spherical phosphor 18, a light incidence surface 20 on which the light emitted from the light source 12 is incident, and a light emission surface 22 for emitting the wavelength-converted light outward are formed.

Description

発光装置及び発光装置の製造方法Light emitting device and manufacturing method of light emitting device
 本発明は、発光装置及び発光装置の製造方法に関する。 The present invention relates to a light emitting device and a method for manufacturing the light emitting device.
 従来、半導体レーザダイオードと、半導体レーザダイオードの発する光の波長を変換可能な蛍光体とを有する発光装置が知られている(例えば、特許文献1、2参照)。 Conventionally, a light emitting device having a semiconductor laser diode and a phosphor capable of converting the wavelength of light emitted by the semiconductor laser diode is known (see, for example, Patent Documents 1 and 2).
 特許文献1には、青色光を発するレーザダイオードと、前記レーザダイオードの発する光の一部を吸収して波長を変換する波長変換部と、を有し、前記波長変換部は、YAG系の単結晶蛍光体を含み、前記レーザダイオードから発せられて前記波長変換部に照射される光の放射照度が80W/mm以上である発光装置が開示されている。また、波長変換部が、窒化アルミニウム、アルミナ、SiN、Cu、又はAlからなる放熱部材により保持されることが開示されている。 Patent Document 1 includes a laser diode that emits blue light and a wavelength conversion unit that absorbs a part of the light emitted by the laser diode to convert a wavelength, and the wavelength conversion unit is a single YAG system. A light emitting device including a crystalline phosphor and having an irradiance of 80 W / mm 2 or more of light emitted from the laser diode and irradiating the wavelength conversion unit is disclosed. Further, it is disclosed that the wavelength conversion unit is held by a heat radiating member made of aluminum nitride, alumina, SiN, Cu, or Al.
 特許文献2には、単結晶蛍光体の粒子群の焼結体からなる波長変換層を備えた波長変換素子が開示されている。波長変換層に含まれる蛍光体は、YAG系単結晶蛍光体であることが開示されている。また、波長変換素子は、半田付けによってヒートシンクに固定されることが開示されている。ヒートシンクは、Cu、CuW、CuMo、SiC、AlN、ダイヤモンドなどの熱伝導率が高い材料からなることが開示されている。 Patent Document 2 discloses a wavelength conversion element including a wavelength conversion layer made of a sintered body of a particle group of a single crystal phosphor. It is disclosed that the phosphor contained in the wavelength conversion layer is a YAG-based single crystal phosphor. Further, it is disclosed that the wavelength conversion element is fixed to the heat sink by soldering. It is disclosed that the heat sink is made of a material having high thermal conductivity such as Cu, CuW, CuMo, SiC, AlN, and diamond.
特開2017-120864号公報Japanese Unexamined Patent Publication No. 2017-12864 特開2019-164302号公報Japanese Unexamined Patent Publication No. 2019-164302
 特許文献1、2に開示された発光装置において、波長変換部は、1個のYAG系単結晶蛍光体、又は、バインダにより互いに接着された複数の粒子状の単結晶蛍光体からなる。波長変換部が1個の単結晶蛍光体からなる場合には、液相成長法によって得られた単結晶蛍光体のインゴットを切断することによって、平板状に加工された波長変換部が得られる。平板状に加工された波長変換部は、例えば半田付けによって、Cuなどの熱伝導率の高い金属材料からなる保持部材(ヒートシンク)に接合される。 In the light emitting device disclosed in Patent Documents 1 and 2, the wavelength conversion unit is composed of one YAG-based single crystal phosphor or a plurality of particle-like single crystal phosphors bonded to each other by a binder. When the wavelength conversion unit is composed of one single crystal phosphor, the wavelength conversion unit processed into a flat plate can be obtained by cutting the ingot of the single crystal phosphor obtained by the liquid phase growth method. The wavelength conversion unit processed into a flat plate is joined to a holding member (heat sink) made of a metal material having high thermal conductivity such as Cu by soldering, for example.
 しかし、上記した従来の発光装置は、平板状に加工された波長変換部を保持部材に取り付ける作業が容易ではないという問題があった。また、単結晶蛍光体のインゴットを平板状に加工して波長変換部を大量に製造するのが容易ではないという問題があった。 However, the above-mentioned conventional light emitting device has a problem that it is not easy to attach the wavelength conversion unit processed into a flat plate to the holding member. Further, there is a problem that it is not easy to process an ingot of a single crystal phosphor into a flat plate shape to manufacture a large amount of wavelength conversion units.
 本発明は、蛍光体を含む材料からなる波長変換部を保持部材に容易に取り付けることが可能であり、より低コストで製造することのできる発光装置及び発光装置の製造方法を提供することを目的とする。 An object of the present invention is to provide a light emitting device and a method for manufacturing a light emitting device, which can easily attach a wavelength conversion unit made of a material containing a phosphor to a holding member and can be manufactured at a lower cost. And.
 課題を解決するための手段は、以下の通りである。
(1)光源と、前記光源から発せられる光の波長を変換する波長変換部と、を備える発光装置であって、
 前記波長変換部は、蛍光体を含む材料を球状に形成した球状蛍光体からなり、
 前記球状蛍光体には、前記光源から発せられる光が入射する光入射面が形成されている、発光装置。
(2)前記球状蛍光体には、波長が変換された光を外部に向けて出射する光出射面が形成されている、(1)に記載の発光装置。
(3)前記球状蛍光体の表面には、光を内側に向けて反射するための光反射膜が形成されている、(1)または(2)に記載の発光装置。
(4)前記光反射膜が銀メッキまたは銀蒸着によって形成されている、(3)に記載の発光装置。
(5)前記波長変換部を保持する保持部材を備え、
 前記保持部材は銅によって形成されている、(1)から(4)のうちいずれかに記載の発光装置。
(6)前記波長変換部は、半田付けによって前記保持部材に接合されている、(5)に記載の発光装置。
(7)前記光源は、青色半導体レーザダイオードである、(1)から(6)のうちいずれかに記載の発光装置。
The means for solving the problem are as follows.
(1) A light emitting device including a light source and a wavelength conversion unit that converts the wavelength of light emitted from the light source.
The wavelength conversion unit is composed of a spherical phosphor in which a material containing a phosphor is formed in a spherical shape.
A light emitting device in which a light incident surface on which light emitted from the light source is incident is formed on the spherical phosphor.
(2) The light emitting device according to (1), wherein the spherical phosphor is formed with a light emitting surface that emits light whose wavelength has been converted to the outside.
(3) The light emitting device according to (1) or (2), wherein a light reflecting film for reflecting light inward is formed on the surface of the spherical phosphor.
(4) The light emitting device according to (3), wherein the light reflecting film is formed by silver plating or silver vapor deposition.
(5) A holding member for holding the wavelength conversion unit is provided.
The light emitting device according to any one of (1) to (4), wherein the holding member is made of copper.
(6) The light emitting device according to (5), wherein the wavelength conversion unit is joined to the holding member by soldering.
(7) The light emitting device according to any one of (1) to (6), wherein the light source is a blue semiconductor laser diode.
(8)光源と、前記光源から発せられる光の波長を変換する波長変換部と、を備える発光装置の製造方法であって、
 蛍光体を含む材料を球状に形成して球状蛍光体を得る工程と、
 前記球状蛍光体に、前記光源から発せられる光が入射する光入射面を形成して前記波長変換部を得る工程と、を含む、発光装置の製造方法。
(9)前記球状蛍光体に、波長が変換された光を外部に向けて出射する光出射面を形成する工程を含む、(8)に記載の発光装置の製造方法。
(10)前記球状蛍光体を、前記球状蛍光体を保持するための保持部材に半田付けによって接合する接合工程を含む、(8)又は(9)に記載の発光装置の製造方法。
(11)前記接合工程では、前記球状蛍光体と前記保持部材とを治具によって組み付けた状態で半田槽に浸漬させる、(10)に記載の発光装置の製造方法。
(12)前記球状蛍光体の表面に、銀メッキまたは銀蒸着によって光反射膜を形成する工程を含む、(8)から(11)のうちいずれかに記載の発光装置の製造方法。
(13)前記光源は、青色半導体レーザダイオードである、(8)から(12)のうちいずれかに記載の発光装置の製造方法。
(8) A method for manufacturing a light emitting device including a light source and a wavelength conversion unit that converts the wavelength of light emitted from the light source.
The process of forming a material containing a phosphor into a spherical shape to obtain a spherical phosphor,
A method for manufacturing a light emitting device, comprising a step of forming a light incident surface on which light emitted from the light source is incident on the spherical phosphor to obtain the wavelength conversion unit.
(9) The method for manufacturing a light emitting device according to (8), which comprises a step of forming a light emitting surface on the spherical phosphor that emits light whose wavelength has been converted to the outside.
(10) The method for manufacturing a light emitting device according to (8) or (9), which comprises a joining step of joining the spherical phosphor to a holding member for holding the spherical phosphor by soldering.
(11) The method for manufacturing a light emitting device according to (10), wherein in the joining step, the spherical phosphor and the holding member are immersed in a solder tank in a state of being assembled by a jig.
(12) The method for manufacturing a light emitting device according to any one of (8) to (11), which comprises a step of forming a light reflecting film on the surface of the spherical phosphor by silver plating or silver vapor deposition.
(13) The method for manufacturing a light emitting device according to any one of (8) to (12), wherein the light source is a blue semiconductor laser diode.
 本発明によれば、蛍光体を含む材料からなる波長変換部を保持部材に容易に取り付けることが可能であり、より低コストで製造することのできる発光装置及び発光装置の製造方法を提供することができる。 According to the present invention, it is possible to easily attach a wavelength conversion unit made of a material containing a phosphor to a holding member, and to provide a light emitting device and a method for manufacturing the light emitting device, which can be manufactured at a lower cost. Can be done.
発光装置の概略構成図である。It is a schematic block diagram of a light emitting device. 第1実施形態の波長変換部及び保持部材の平面図である。It is a top view of the wavelength conversion part and the holding member of 1st Embodiment. 図2に示す波長変換部及び保持部材のA-A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of the wavelength conversion unit and the holding member shown in FIG. 第2実施形態の波長変換部及び保持部材の平面図である。It is a top view of the wavelength conversion part and the holding member of 2nd Embodiment. 図4に示す波長変換部及び保持部材のB-B線断面図である。FIG. 5 is a cross-sectional view taken along the line BB of the wavelength conversion unit and the holding member shown in FIG. 第3実施形態の発光装置の概略構成図である。It is a schematic block diagram of the light emitting device of 3rd Embodiment. 発光装置の製造方法のフローシートである。It is a flow sheet of the manufacturing method of a light emitting device. 接合工程で用いることができる治具の一例を示す斜視図である。It is a perspective view which shows an example of the jig which can be used in a joining process. 治具の先端部の拡大斜視図である。It is an enlarged perspective view of the tip part of a jig. 保持部材の別の実施例を示す平面図である。It is a top view which shows another Example of a holding member. 図10に示す保持部材のC-C線断面図である。FIG. 10 is a cross-sectional view taken along the line CC of the holding member shown in FIG. 鍔部を有する2枚の板状部材を上下に貼り合わせることによって形成された保持部材を示している。It shows a holding member formed by laminating two plate-shaped members having a collar portion up and down. 保持部材の別の実施例を示す平面図である。It is a top view which shows another Example of a holding member. 図13に示す保持部材のD-D線断面図である。FIG. 13 is a sectional view taken along line DD of the holding member shown in FIG. 保持部を有する2枚の板状部材を上下に貼り合わせることによって形成された保持部材を示している。It shows a holding member formed by sticking two plate-shaped members having a holding portion up and down.
<第1実施形態>
 以下、本発明の第1実施形態について説明する。
 図1は、本実施形態の発光装置10の概略構成を示している。
 発光装置10は、光源12と、光源12から発せられる光の波長を変換する波長変換部14を備えている。光源12は、例えば、半導体発光素子によって構成されている。半導体発光素子としては、例えば、発光ダイオード(LED)又はレーザダイオード(LD)を用いることができる。半導体発光素子が射出する光は、青紫光であってもよく、青色光であってもよく、他の波長の光であってもよい。また、半導体発光素子は、複数波長の光を射出してもよい。
<First Embodiment>
Hereinafter, the first embodiment of the present invention will be described.
FIG. 1 shows a schematic configuration of the light emitting device 10 of the present embodiment.
The light emitting device 10 includes a light source 12 and a wavelength conversion unit 14 that converts the wavelength of light emitted from the light source 12. The light source 12 is composed of, for example, a semiconductor light emitting element. As the semiconductor light emitting element, for example, a light emitting diode (LED) or a laser diode (LD) can be used. The light emitted by the semiconductor light emitting device may be blue-purple light, blue light, or light of another wavelength. Further, the semiconductor light emitting device may emit light having a plurality of wavelengths.
 光源12と波長変換部14との間には、光源12から発せられた光を波長変換部14に導くための入射光学系16が設けられていてもよい。入射光学系16は、例えば、1つ又は複数の光学素子によって構成されてもよい。光学素子としては、例えば、レンズ、ミラー、あるいは光ファイバを用いることができる。 An incident optical system 16 for guiding the light emitted from the light source 12 to the wavelength conversion unit 14 may be provided between the light source 12 and the wavelength conversion unit 14. The incident optical system 16 may be composed of, for example, one or a plurality of optical elements. As the optical element, for example, a lens, a mirror, or an optical fiber can be used.
 波長変換部14は、光源12から発せられた光のうち少なくとも一部の光の波長を変換する。波長変換部14は、例えば、入射した光により励起され、入射光よりも長波長の光を射出する蛍光体を含む材料によって形成することができる。例えば、発光装置10によって白色光を生成する場合には、光源12から発せられた青色光の一部が波長変換部14によって黄色光に変換される。青色光と黄色光の混合によって、人間の目には白色と感じられる光が生成される。 The wavelength conversion unit 14 converts the wavelength of at least a part of the light emitted from the light source 12. The wavelength conversion unit 14 can be formed of, for example, a material containing a phosphor that is excited by incident light and emits light having a wavelength longer than that of the incident light. For example, when the light emitting device 10 generates white light, a part of the blue light emitted from the light source 12 is converted into yellow light by the wavelength conversion unit 14. The mixture of blue and yellow light produces light that the human eye perceives as white.
 波長変換部14は、蛍光体を含む材料によって形成されている。波長変換部14は、1つの単結晶蛍光体によって形成されてもよいし、バインダによって結合された複数の単結晶蛍光体の粒子によって形成されてもよい。バインダとしては、例えば、透明樹脂やガラスを用いることができる。また、波長変換部14は、複数の蛍光体粒子を焼結して得られた焼結体によって形成されてもよい。 The wavelength conversion unit 14 is formed of a material containing a phosphor. The wavelength conversion unit 14 may be formed by one single crystal phosphor, or may be formed by particles of a plurality of single crystal phosphors bonded by a binder. As the binder, for example, a transparent resin or glass can be used. Further, the wavelength conversion unit 14 may be formed of a sintered body obtained by sintering a plurality of phosphor particles.
 蛍光体の種類は、入射光の波長及び必要とする出射光の波長に応じて適宜選択することができる。例えば、光源12が青色光を射出するレーザダイオードである場合、波長変換部14は、黄色蛍光体を含む材料によって形成されてもよい。黄色蛍光体としては、例えば、YAG蛍光体あるいはサイアロン蛍光体を用いることができる。 The type of phosphor can be appropriately selected according to the wavelength of the incident light and the wavelength of the required emitted light. For example, when the light source 12 is a laser diode that emits blue light, the wavelength conversion unit 14 may be formed of a material containing a yellow phosphor. As the yellow fluorescent substance, for example, a YAG fluorescent substance or a sialon fluorescent substance can be used.
 図1に示すように、波長変換部14は、蛍光体を含む材料を球状に形成した球状蛍光体18からなる。球状蛍光体18の一方の端部には、光源12から発せられる光が入射する光入射面20が形成されている。球状蛍光体18の光入射面20が形成された側と反対側の端部には、蛍光体によって波長が変換された光を外部に向けて出射する光出射面22が形成されている。 As shown in FIG. 1, the wavelength conversion unit 14 is composed of a spherical phosphor 18 in which a material containing a phosphor is formed in a spherical shape. A light incident surface 20 on which light emitted from the light source 12 is incident is formed at one end of the spherical phosphor 18. At the end of the spherical phosphor 18 opposite to the side on which the light incident surface 20 is formed, a light emitting surface 22 that emits light whose wavelength has been converted by the phosphor 18 to the outside is formed.
 光入射面20及び光出射面22は、例えば、球状蛍光体18の端部を平面状に研磨することによって形成することができる。球状蛍光体18の光入射面20及び光出射面22以外の外表面には、球状蛍光体18に入射した光あるいは蛍光体によって波長が変換された光を内側に向けて反射するための光反射膜が形成されてもよい。光反射膜は、例えば、銀メッキあるいは銀蒸着によって形成することができる。 The light incident surface 20 and the light emitting surface 22 can be formed, for example, by polishing the end portion of the spherical phosphor 18 into a flat surface. Light reflection for inwardly reflecting the light incident on the spherical phosphor 18 or the light whose wavelength has been converted by the phosphor on the outer surface other than the light incident surface 20 and the light emitting surface 22 of the spherical phosphor 18. A film may be formed. The light reflective film can be formed, for example, by silver plating or silver vapor deposition.
 球状蛍光体18は、導電性の高い銅などの金属材料によって形成された保持部材24に固定されている。保持部材24は、球状蛍光体18を所定の位置に保持することができる。また、保持部材24は、球状蛍光体18において発生した熱を外部に逃がすことができるヒートシンクとしての役割を果たす。保持部材24は、アルミニウム、鉄、ニッケルなどの他の金属材料によって形成されてもよい。 The spherical phosphor 18 is fixed to a holding member 24 formed of a metal material such as copper having high conductivity. The holding member 24 can hold the spherical phosphor 18 in a predetermined position. Further, the holding member 24 serves as a heat sink capable of releasing the heat generated in the spherical phosphor 18 to the outside. The holding member 24 may be made of other metallic materials such as aluminum, iron and nickel.
 図2は、波長変換部14及び保持部材24の平面図である。図3は、図2に示す波長変換部14及び保持部材24のA-A線断面図である。図2、3に示すように、保持部材24は略四角形の板状に形成されており、その中央部には略円形の貫通孔26が形成されている。波長変換部14は、保持部材24に形成された貫通孔26の内部に保持されている。波長変換部14は、例えば、半田付けによって貫通孔26の内壁に接合することができる。この場合、波長変換部14と貫通孔26の内壁との間には、接合に用いた半田Sが充填される。波長変換部14は、半田付け以外の手段によって保持部材24に接合してもよい。例えば、波長変換部14は、導電性ペーストによって保持部材24に接合してもよい。 FIG. 2 is a plan view of the wavelength conversion unit 14 and the holding member 24. FIG. 3 is a sectional view taken along line AA of the wavelength conversion unit 14 and the holding member 24 shown in FIG. As shown in FIGS. 2 and 3, the holding member 24 is formed in a substantially quadrangular plate shape, and a substantially circular through hole 26 is formed in the central portion thereof. The wavelength conversion unit 14 is held inside the through hole 26 formed in the holding member 24. The wavelength conversion unit 14 can be joined to the inner wall of the through hole 26 by, for example, soldering. In this case, the solder S used for joining is filled between the wavelength conversion unit 14 and the inner wall of the through hole 26. The wavelength conversion unit 14 may be joined to the holding member 24 by means other than soldering. For example, the wavelength conversion unit 14 may be bonded to the holding member 24 with a conductive paste.
 図2に示すように、保持部材24には4つのほぼ円形の孔28a~28dが形成されている。この4つの孔28a~28dは、後述する治具によって波長変換部14を保持部材24に取り付ける際に使用される。 As shown in FIG. 2, the holding member 24 is formed with four substantially circular holes 28a to 28d. These four holes 28a to 28d are used when the wavelength conversion unit 14 is attached to the holding member 24 by a jig described later.
 本実施形態の発光装置10によれば、波長変換部14は、蛍光体を含む材料を球状に形成した球状蛍光体18からなる。球状蛍光体18は、例えば、1つの単結晶蛍光体から切削や研磨等によって容易に製造することが可能である。また、複数の蛍光体粒子をバインダにより結合して得られたインゴットから容易に製造することが可能である。さらに、複数の蛍光体粒子を焼結した焼結体からも容易に製造することが可能である。したがって、本実施形態の発光装置10によれば、従来よりも安価で大量に波長変換部を製造することが可能である。 According to the light emitting device 10 of the present embodiment, the wavelength conversion unit 14 is composed of a spherical phosphor 18 in which a material containing a phosphor is formed in a spherical shape. The spherical phosphor 18 can be easily produced from, for example, one single crystal phosphor by cutting, polishing, or the like. In addition, it can be easily produced from an ingot obtained by binding a plurality of phosphor particles with a binder. Further, it can be easily produced from a sintered body obtained by sintering a plurality of phosphor particles. Therefore, according to the light emitting device 10 of the present embodiment, it is possible to manufacture a large number of wavelength conversion units at a lower cost than before.
 また、本実施形態の発光装置10によれば、球状蛍光体18を保持部材24に取り付ける作業が容易であるため、従来よりも安価で大量に発光装置を製造することが可能である。球状蛍光体18を保持部材24に取り付ける作業については後で詳しく説明する。 Further, according to the light emitting device 10 of the present embodiment, since the work of attaching the spherical phosphor 18 to the holding member 24 is easy, it is possible to manufacture a large number of light emitting devices at a lower cost than before. The work of attaching the spherical phosphor 18 to the holding member 24 will be described in detail later.
<第2実施形態>
 以下、本発明の第2実施形態について説明する。以下の説明において、第1実施形態と同様の部分については同じ符号を付けて説明を省略することがある。
<Second Embodiment>
Hereinafter, the second embodiment of the present invention will be described. In the following description, the same parts as those in the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.
 図4は、第2実施形態の波長変換部14及び保持部材24の平面図である。図5は、図4に示す波長変換部14及び保持部材24のB-B線断面図である。 FIG. 4 is a plan view of the wavelength conversion unit 14 and the holding member 24 of the second embodiment. FIG. 5 is a sectional view taken along line BB of the wavelength conversion unit 14 and the holding member 24 shown in FIG.
 図4、5に示すように、保持部材24は、2枚の略四角形の板状部材30a、30bを貼り合わせることによって形成することができる。2枚の板状部材30a、30bは、熱伝導率の高い銅などの金属材料によって形成することができる。2枚の板状部材30a、30bは、例えば、半田付けや導電性ペーストを用いて互いに接合することができる。2枚の板状部材30a、30bには、互いに嵌合することが可能な凹部32及び凸部34がそれぞれ形成されてもよい(図4及び図5には、凹部32及び凸部34がそれぞれ4つ形成されている例を示している)。凹部32は、略四角形の有底孔であり、凸部34は、凹部32とほぼ同形状の四角柱状の突起である。凸部34が凹部32に嵌合することによって、2枚の板状部材30a、30bが互いに移動しないように固定される。また、2枚の板状部材30a、30bのほぼ中央には略円形の貫通孔26が形成されている。貫通孔26の内周には、厚み方向における中心に向かってその径が次第に大きくなるように形成されたテーパ部36が形成されている。このテーパ部36によって、貫通孔26の内側に波長変換部14を保持することができる。波長変換部14は、例えば、半田付けによって貫通孔26の内壁に接合することができる。この場合、波長変換部14と貫通孔26の内壁との間には、接合に用いた半田Sが充填される。また、波長変換部14は、例えば、導電性ペーストによって貫通孔26の内壁に接合することもできる。 As shown in FIGS. 4 and 5, the holding member 24 can be formed by laminating two substantially quadrangular plate-shaped members 30a and 30b. The two plate-shaped members 30a and 30b can be formed of a metal material such as copper having high thermal conductivity. The two plate-shaped members 30a and 30b can be joined to each other by using, for example, soldering or a conductive paste. The two plate-shaped members 30a and 30b may be formed with recesses 32 and convex portions 34 that can be fitted to each other (the concave portions 32 and the convex portions 34 are shown in FIGS. 4 and 5, respectively). An example in which four are formed is shown). The concave portion 32 is a substantially quadrangular bottomed hole, and the convex portion 34 is a square columnar protrusion having substantially the same shape as the concave portion 32. By fitting the convex portion 34 into the concave portion 32, the two plate-shaped members 30a and 30b are fixed so as not to move to each other. Further, a substantially circular through hole 26 is formed at substantially the center of the two plate-shaped members 30a and 30b. A tapered portion 36 is formed on the inner circumference of the through hole 26 so that its diameter gradually increases toward the center in the thickness direction. The tapered portion 36 allows the wavelength conversion portion 14 to be held inside the through hole 26. The wavelength conversion unit 14 can be joined to the inner wall of the through hole 26 by, for example, soldering. In this case, the solder S used for joining is filled between the wavelength conversion unit 14 and the inner wall of the through hole 26. Further, the wavelength conversion unit 14 can be joined to the inner wall of the through hole 26 by, for example, a conductive paste.
 図4に示すように、保持部材24には4つのほぼ円形の孔28a~28dが形成されている。この4つの孔28a~28dは、後述する治具によって波長変換部14を保持部材24に取り付ける際に使用するものであるが、詳細については後述する。 As shown in FIG. 4, four substantially circular holes 28a to 28d are formed in the holding member 24. These four holes 28a to 28d are used when the wavelength conversion unit 14 is attached to the holding member 24 by a jig described later, and details will be described later.
 図3、4に示す波長変換部14及び保持部材24を備えた発光装置によれば、上記した第1実施形態の発光装置10と同様の作用効果が得られる。 According to the light emitting device provided with the wavelength conversion unit 14 and the holding member 24 shown in FIGS. 3 and 4, the same operation and effect as the light emitting device 10 of the first embodiment described above can be obtained.
<第3実施形態>
 以下、本発明の第3実施形態について説明する。以下の説明において、第1実施形態と同様の部分については同じ符号を付けて説明を省略することがある。
<Third Embodiment>
Hereinafter, a third embodiment of the present invention will be described. In the following description, the same parts as those in the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.
 図6は、第3実施形態の発光装置50の概略構成図である。
 図5に示すように、発光装置50は、光源12と、光源12から発せられる光の波長を変換する波長変換部52を備えている。波長変換部52は、蛍光体を含む材料を球状に形成した球状蛍光体54からなる。球状蛍光体54の一方の端部には、光源12から発せられる光が入射する光入射面56が形成されている。また、球状蛍光体54の光入射面56以外の外表面には、球状蛍光体54に入射した光あるいは蛍光体によって波長が変換された光を内側に向けて反射するための光反射膜58が形成されている。光反射膜58は、例えば、銀メッキあるいは銀蒸着によって形成することができる。光入射面56に入射した光あるいは蛍光体によって波長が変換された光は、光反射膜58で反射した後、光入射面56から出射する。
FIG. 6 is a schematic configuration diagram of the light emitting device 50 of the third embodiment.
As shown in FIG. 5, the light emitting device 50 includes a light source 12 and a wavelength conversion unit 52 that converts the wavelength of light emitted from the light source 12. The wavelength conversion unit 52 is composed of a spherical phosphor 54 in which a material containing a phosphor is formed in a spherical shape. A light incident surface 56 on which light emitted from the light source 12 is incident is formed at one end of the spherical phosphor 54. Further, on the outer surface of the spherical phosphor 54 other than the light incident surface 56, a light reflecting film 58 for reflecting the light incident on the spherical phosphor 54 or the light whose wavelength is changed by the phosphor is directed inward. It is formed. The light reflecting film 58 can be formed by, for example, silver plating or silver vapor deposition. The light incident on the light incident surface 56 or the light whose wavelength is changed by the phosphor is reflected by the light reflecting film 58 and then emitted from the light incident surface 56.
 第3実施形態の発光装置50によれば、光入射面56に入射した光のほぼ全部が光反射膜58で反射するため、効率よく白色光を生成することが可能である。 According to the light emitting device 50 of the third embodiment, since almost all the light incident on the light incident surface 56 is reflected by the light reflecting film 58, it is possible to efficiently generate white light.
<発光装置の製造方法>
 以下、上述した発光装置10の製造方法の一例を、図7を参照しながら説明する。
 まず、図7(a)に示すように、蛍光体を含む材料を球状に加工して球状蛍光体18を得る。例えば、1つの単結晶蛍光体を球状に加工して、球状蛍光体18を得てもよい。あるいは、複数の蛍光体粒子をバインダにより結合して得られたインゴットを球状に加工して、球状蛍光体18を得てもよい。あるいは、複数の蛍光体粒子を焼結した焼結体を球状に加工して、球状蛍光体18を得てもよい。インゴットあるいは焼結体を球状に加工するためには、例えば、切削や研磨等の公知の加工方法を用いることができる。
<Manufacturing method of light emitting device>
Hereinafter, an example of the method for manufacturing the light emitting device 10 described above will be described with reference to FIG. 7.
First, as shown in FIG. 7A, a material containing a phosphor is processed into a spherical shape to obtain a spherical phosphor 18. For example, one single crystal phosphor may be processed into a spherical shape to obtain a spherical phosphor 18. Alternatively, the spherical phosphor 18 may be obtained by processing the ingot obtained by binding a plurality of phosphor particles with a binder into a spherical shape. Alternatively, a spherical phosphor 18 may be obtained by processing a sintered body obtained by sintering a plurality of phosphor particles into a spherical shape. In order to process the ingot or the sintered body into a spherical shape, for example, a known processing method such as cutting or polishing can be used.
 次に、図7(b)に示すように、得られた球状蛍光体18を、銅などの金属材料によって形成された保持部材24に半田付けによって接合する(接合工程)。 Next, as shown in FIG. 7B, the obtained spherical phosphor 18 is soldered to a holding member 24 formed of a metal material such as copper (bonding step).
 次に、図7(c)に示すように、球状蛍光体18の上端を、保持部材24の上面とほぼ面一となるように研磨する。これにより、球状蛍光体18の上端に光出射面22を形成することができる。 Next, as shown in FIG. 7C, the upper end of the spherical phosphor 18 is polished so as to be substantially flush with the upper surface of the holding member 24. As a result, the light emitting surface 22 can be formed on the upper end of the spherical phosphor 18.
 次に、図7(d)に示すように、球状蛍光体18の下端を、保持部材24の下面とほぼ面一となるように研磨する。これにより、球状蛍光体18の下端に光入射面20を形成することができる。 Next, as shown in FIG. 7D, the lower end of the spherical phosphor 18 is polished so as to be substantially flush with the lower surface of the holding member 24. As a result, the light incident surface 20 can be formed at the lower end of the spherical phosphor 18.
 なお、図7の(c)と(d)の順番は逆でもよい。すなわち、球状蛍光体18に光入射面20を形成した後に、光出射面22を形成してもよい。図6に示す発光装置50の場合には、球状蛍光体18に光出射面22を形成する工程は不要である。 Note that the order of (c) and (d) in FIG. 7 may be reversed. That is, the light emitting surface 22 may be formed after the light incident surface 20 is formed on the spherical phosphor 18. In the case of the light emitting device 50 shown in FIG. 6, the step of forming the light emitting surface 22 on the spherical phosphor 18 is unnecessary.
 球状蛍光体18の表面に、銀メッキまたは銀蒸着によって光反射膜を形成してもよい。光反射膜を形成する工程は、球状蛍光体18を保持部材24に接合する工程の前でもよく、後でもよい。 A light reflecting film may be formed on the surface of the spherical phosphor 18 by silver plating or silver vapor deposition. The step of forming the light reflecting film may be before or after the step of joining the spherical phosphor 18 to the holding member 24.
 図8は、接合工程で用いることができる治具60の一例を示す斜視図である。図9は、治具60の先端部の拡大斜視図である。 FIG. 8 is a perspective view showing an example of a jig 60 that can be used in the joining process. FIG. 9 is an enlarged perspective view of the tip end portion of the jig 60.
 図8、9に示すように、治具60は、2本のアーム62a、62bを備えている。2本のアーム62a、62bは、ヒンジ64によって開閉可能に連結されている。一方のアーム62aの先端の内側には、4つの突起部66a~66dが設けられている。他方のアーム62bの先端の内側にも、4つの突起部66a~66dが設けられている。4つの突起部66a~66dのほぼ中心には、円筒状の収容部68が設けられている。2本のアーム62a、62bは、例えば、金属材料によって形成することができる。 As shown in FIGS. 8 and 9, the jig 60 includes two arms 62a and 62b. The two arms 62a and 62b are connected to each other by a hinge 64 so as to be openable and closable. Four protrusions 66a to 66d are provided inside the tip of one arm 62a. Four protrusions 66a to 66d are also provided inside the tip of the other arm 62b. A cylindrical accommodating portion 68 is provided at substantially the center of the four protrusions 66a to 66d. The two arms 62a and 62b can be formed of, for example, a metal material.
 まず、一方のアーム62aの先端に設けられた4つの突起部66a~66dに、保持部材24に設けられた4つの孔28a~28dを嵌め込む。これにより、保持部材24を、一方のアーム62aの先端に取り付けることができる。次に、保持部材24の中心に設けられた貫通孔26に、球状蛍光体18を嵌め込む。次に、図9に示すように、2本のアーム62a、62bによって、球状蛍光体18及び保持部材24を一緒に挟み込む。図9の状態において、突起部66a~66dは、保持部材24に設けられた4つの孔28a~28dに挿入されている。球状蛍光体18は、2本のアーム62a、62bにそれぞれ設けられた円筒状の収容部68に収容されている。このように、治具60を用いることによって、球状蛍光体18と保持部材24とを互いに組み付けることができる。 First, the four holes 28a to 28d provided in the holding member 24 are fitted into the four protrusions 66a to 66d provided at the tip of one arm 62a. Thereby, the holding member 24 can be attached to the tip of one arm 62a. Next, the spherical phosphor 18 is fitted into the through hole 26 provided in the center of the holding member 24. Next, as shown in FIG. 9, the spherical phosphor 18 and the holding member 24 are sandwiched together by the two arms 62a and 62b. In the state of FIG. 9, the protrusions 66a to 66d are inserted into the four holes 28a to 28d provided in the holding member 24. The spherical phosphor 18 is housed in a cylindrical housing portion 68 provided on each of the two arms 62a and 62b, respectively. In this way, by using the jig 60, the spherical phosphor 18 and the holding member 24 can be assembled to each other.
 球状蛍光体18を保持部材24に接合する接合工程では、球状蛍光体18と保持部材24を治具60によって互いに組み付けた状態で半田槽に浸漬させる。貫通孔26と球状蛍光体18の間には隙間が確保されているため、貫通孔26と球状蛍光体18の間に半田が流れ込む。これにより、球状蛍光体18を半田付けによって保持部材24に接合することができる。 In the joining step of joining the spherical phosphor 18 to the holding member 24, the spherical phosphor 18 and the holding member 24 are immersed in a solder bath in a state of being assembled with each other by a jig 60. Since a gap is secured between the through hole 26 and the spherical phosphor 18, solder flows between the through hole 26 and the spherical phosphor 18. As a result, the spherical phosphor 18 can be bonded to the holding member 24 by soldering.
 本実施形態の発光装置は、様々な装置の光源として使用することが可能である。例えば、光ファイバを用いた照明装置、液体ライトガイドを用いた照明装置、プロジェクター、マシンビジョン、顕微鏡照明、内視鏡照明、検査機器用照明、医院向け照明、歯科医院向け照明等の各種装置の光源として使用することが可能である。 The light emitting device of this embodiment can be used as a light source for various devices. For example, various devices such as lighting devices using optical fibers, lighting devices using liquid light guides, projectors, machine vision, microscope lighting, endoscopic lighting, lighting for inspection equipment, lighting for clinics, and lighting for dental clinics. It can be used as a light source.
<第4実施形態>
 図10は、保持部材24の別の実施例を示す平面図である。図11は、図10に示す保持部材24のC-C線断面図である。
 図10、11に示すように、保持部材24は、略四角形の板状部材によって形成されている。保持部材24は、例えば、熱伝導率の高い銅などの金属材料によって形成されている。保持部材24のほぼ中央には、略円形の貫通孔26が形成されている。貫通孔26の内周には、下方に向かってその径が次第に小さくなるように形成された鍔部40が形成されている。
<Fourth Embodiment>
FIG. 10 is a plan view showing another embodiment of the holding member 24. FIG. 11 is a sectional view taken along line CC of the holding member 24 shown in FIG.
As shown in FIGS. 10 and 11, the holding member 24 is formed of a substantially quadrangular plate-shaped member. The holding member 24 is made of, for example, a metal material such as copper having high thermal conductivity. A substantially circular through hole 26 is formed at substantially the center of the holding member 24. On the inner circumference of the through hole 26, a collar portion 40 formed so that its diameter gradually decreases downward is formed.
 鍔部40の内周面は、球面となっている。このため、鍔部40の内側に球状蛍光体18を保持することが可能である。また、鍔部40の内周面が球状蛍光体18の外面に沿って密着するため、球状蛍光体18を強固に保持することができる。例えば、光源12から照射された光によって球状蛍光体18が発熱し、半田が溶融した場合であっても、球状蛍光体18が保持部材24から外れてしまうことを防止することができる。鍔部40を有する保持部材24は、例えば、プレス成形によって製造することが可能である。 The inner peripheral surface of the collar 40 is a spherical surface. Therefore, it is possible to hold the spherical phosphor 18 inside the collar portion 40. Further, since the inner peripheral surface of the flange portion 40 is in close contact with the outer surface of the spherical phosphor 18, the spherical phosphor 18 can be firmly held. For example, even when the spherical phosphor 18 generates heat due to the light emitted from the light source 12 and the solder is melted, it is possible to prevent the spherical phosphor 18 from coming off from the holding member 24. The holding member 24 having the flange portion 40 can be manufactured, for example, by press molding.
 図12は、鍔部40を有する2枚の板状部材30a、30bを上下に貼り合わせることによって形成された保持部材24を示している。図11に示すように、鍔部40を有する2枚の板状部材30a、30bを上下に貼り合わせることによって、鍔部40の内側に球状蛍光体18をより強固に保持することが可能である。2枚の板状部材30a、30bは、例えば、半田付けや導電性ペーストを用いて互いに接合することができる。 FIG. 12 shows a holding member 24 formed by vertically bonding two plate-shaped members 30a and 30b having a flange portion 40. As shown in FIG. 11, by vertically bonding the two plate-shaped members 30a and 30b having the collar portion 40, the spherical phosphor 18 can be more firmly held inside the collar portion 40. .. The two plate-shaped members 30a and 30b can be joined to each other by using, for example, soldering or a conductive paste.
<第5実施形態>
 図13は、保持部材24の別の実施例を示す平面図である。図14は、図13に示す保持部材24のD-D線断面図である。
 図13、14に示すように、保持部材24は、略四角形の板状部材によって形成されている。保持部材24は、例えば、熱伝導率の高い銅などの金属材料によって形成されている。保持部材24のほぼ中央には、略円形の貫通孔26が形成されている。貫通孔26の内周には、下方に向かってその径が次第に小さくなるように形成された保持部42が形成されている。
<Fifth Embodiment>
FIG. 13 is a plan view showing another embodiment of the holding member 24. FIG. 14 is a sectional view taken along line DD of the holding member 24 shown in FIG.
As shown in FIGS. 13 and 14, the holding member 24 is formed of a substantially quadrangular plate-shaped member. The holding member 24 is made of, for example, a metal material such as copper having high thermal conductivity. A substantially circular through hole 26 is formed at substantially the center of the holding member 24. A holding portion 42 formed so that its diameter gradually decreases downward is formed on the inner circumference of the through hole 26.
 保持部42の内周面は、球面となっている。このため、保持部42の内側に球状蛍光体18を保持することが可能である。また、保持部42の内周面が球状蛍光体18の外面に沿って密着するため、球状蛍光体18を強固に保持することができる。例えば、光源12から照射された光によって球状蛍光体18が発熱し、半田が溶融した場合であっても、球状蛍光体18が保持部材24から外れてしまうことを防止することができる。保持部42は、例えば、ボールエンドミルを用いて形成することができる。 The inner peripheral surface of the holding portion 42 is a spherical surface. Therefore, it is possible to hold the spherical phosphor 18 inside the holding portion 42. Further, since the inner peripheral surface of the holding portion 42 is in close contact with the outer surface of the spherical phosphor 18, the spherical phosphor 18 can be firmly held. For example, even when the spherical phosphor 18 generates heat due to the light emitted from the light source 12 and the solder is melted, it is possible to prevent the spherical phosphor 18 from coming off from the holding member 24. The holding portion 42 can be formed by using, for example, a ball end mill.
 図15は、保持部42を有する2枚の板状部材30a、30bを上下に貼り合わせることによって形成された保持部材24を示している。図15に示すように、保持部42を有する2枚の板状部材30a、30bを上下に貼り合わせることによって、保持部42の内側に球状蛍光体18をより強固に保持することが可能である。2枚の板状部材30a、30bは、例えば、半田付けや導電性ペーストを用いて互いに接合することができる。 FIG. 15 shows a holding member 24 formed by vertically bonding two plate-shaped members 30a and 30b having a holding portion 42. As shown in FIG. 15, the spherical phosphor 18 can be more firmly held inside the holding portion 42 by vertically bonding the two plate-shaped members 30a and 30b having the holding portion 42. .. The two plate-shaped members 30a and 30b can be joined to each other by using, for example, soldering or a conductive paste.
10、50  発光装置
12  光源
14、52  波長変換部
16   入射光学系
18、54  球状蛍光体
20、56  光入射面
22  光出射面
24  保持部材
26  貫通孔
40  鍔部
42  保持部
58  光反射膜
60  治具
S   半田
10, 50 Light emitting device 12 Light source 14, 52 Wavelength converter 16 Incident optical system 18, 54 Spherical phosphor 20, 56 Light incident surface 22 Light emitting surface 24 Holding member 26 Through hole 40 Flange 42 Holding part 58 Light reflecting film 60 Jig S solder

Claims (13)

  1.  光源と、前記光源から発せられる光の波長を変換する波長変換部と、を備える発光装置であって、
     前記波長変換部は、蛍光体を含む材料を球状に形成した球状蛍光体からなり、
     前記球状蛍光体には、前記光源から発せられる光が入射する光入射面が形成されている、発光装置。
    A light emitting device including a light source and a wavelength conversion unit that converts the wavelength of light emitted from the light source.
    The wavelength conversion unit is composed of a spherical phosphor in which a material containing a phosphor is formed in a spherical shape.
    A light emitting device in which a light incident surface on which light emitted from the light source is incident is formed on the spherical phosphor.
  2.  前記球状蛍光体には、波長が変換された光を外部に向けて出射する光出射面が形成されている、請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the spherical phosphor is formed with a light emitting surface that emits light whose wavelength has been converted to the outside.
  3.  前記球状蛍光体の表面には、光を内側に向けて反射するための光反射膜が形成されている、請求項1または2に記載の発光装置。 The light emitting device according to claim 1 or 2, wherein a light reflecting film for reflecting light inward is formed on the surface of the spherical phosphor.
  4.  前記光反射膜が銀メッキまたは銀蒸着によって形成されている、請求項3に記載の発光装置。 The light emitting device according to claim 3, wherein the light reflecting film is formed by silver plating or silver vapor deposition.
  5.  前記波長変換部を保持する保持部材を備え、
     前記保持部材は銅によって形成されている、請求項1から4のうちいずれか1項に記載の発光装置。
    A holding member for holding the wavelength conversion unit is provided.
    The light emitting device according to any one of claims 1 to 4, wherein the holding member is made of copper.
  6.  前記波長変換部は、半田付けによって前記保持部材に接合されている、請求項5に記載の発光装置。 The light emitting device according to claim 5, wherein the wavelength conversion unit is joined to the holding member by soldering.
  7.  前記光源は、青色半導体レーザダイオードである、請求項1から6のうちいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein the light source is a blue semiconductor laser diode.
  8.  光源と、前記光源から発せられる光の波長を変換する波長変換部と、を備える発光装置の製造方法であって、
     蛍光体を含む材料を球状に形成して球状蛍光体を得る工程と、
     前記球状蛍光体に、前記光源から発せられる光が入射する光入射面を形成して前記波長変換部を得る工程と、を含む、発光装置の製造方法。
    A method for manufacturing a light emitting device including a light source and a wavelength conversion unit that converts the wavelength of light emitted from the light source.
    The process of forming a material containing a phosphor into a spherical shape to obtain a spherical phosphor,
    A method for manufacturing a light emitting device, comprising a step of forming a light incident surface on which light emitted from the light source is incident on the spherical phosphor to obtain the wavelength conversion unit.
  9.  前記球状蛍光体に、波長が変換された光を外部に向けて出射する光出射面を形成する工程を含む、請求項8に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 8, further comprising a step of forming a light emitting surface on the spherical phosphor that emits light whose wavelength has been converted to the outside.
  10.  前記球状蛍光体を、前記球状蛍光体を保持するための保持部材に半田付けによって接合する接合工程を含む、請求項8又は9に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 8 or 9, further comprising a joining step of joining the spherical phosphor to a holding member for holding the spherical phosphor by soldering.
  11.  前記接合工程では、前記球状蛍光体と前記保持部材とを治具によって組み付けた状態で半田槽に浸漬させる、請求項10に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 10, wherein in the joining step, the spherical phosphor and the holding member are immersed in a solder tank in a state of being assembled by a jig.
  12.  前記球状蛍光体の表面に、銀メッキまたは銀蒸着によって光反射膜を形成する工程を含む、請求項8から11のうちいずれか1項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 8 to 11, further comprising a step of forming a light reflecting film on the surface of the spherical phosphor by silver plating or silver vapor deposition.
  13.  前記光源は、青色半導体レーザダイオードである、請求項8から12のうちいずれか1項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 8 to 12, wherein the light source is a blue semiconductor laser diode.
PCT/JP2020/007985 2019-11-06 2020-02-27 Light-emitting device, and method for manufacturing light-emitting device WO2021090517A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019201397 2019-11-06
JP2019-201397 2019-11-06
JP2020017854A JP2021077842A (en) 2019-11-06 2020-02-05 Light-emitting device and manufacturing method of the same
JP2020-017854 2020-02-05

Publications (1)

Publication Number Publication Date
WO2021090517A1 true WO2021090517A1 (en) 2021-05-14

Family

ID=75849830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007985 WO2021090517A1 (en) 2019-11-06 2020-02-27 Light-emitting device, and method for manufacturing light-emitting device

Country Status (1)

Country Link
WO (1) WO2021090517A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080054280A1 (en) * 2006-09-06 2008-03-06 Gelcore Llc Light emitting packages and methods of making same
JP2008305936A (en) * 2007-06-07 2008-12-18 Nichia Corp Semiconductor light emitting device
WO2015020205A1 (en) * 2013-08-09 2015-02-12 株式会社光波 Light emitting device
JP2017120864A (en) * 2015-12-28 2017-07-06 株式会社タムラ製作所 Light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080054280A1 (en) * 2006-09-06 2008-03-06 Gelcore Llc Light emitting packages and methods of making same
JP2008305936A (en) * 2007-06-07 2008-12-18 Nichia Corp Semiconductor light emitting device
WO2015020205A1 (en) * 2013-08-09 2015-02-12 株式会社光波 Light emitting device
JP2017120864A (en) * 2015-12-28 2017-07-06 株式会社タムラ製作所 Light emitting device

Similar Documents

Publication Publication Date Title
US9595806B2 (en) Laser light-emitting apparatus
JP6460162B2 (en) Method for manufacturing wavelength converter
US9991672B2 (en) Method for manufacturing semiconductor laser device including wavelength converting member and light transmissive member
EP2933884B1 (en) Light emitting device
US11480316B2 (en) Light conversion package
JP5287275B2 (en) Light emitting device
JP6854242B2 (en) Light source device and floodlight device
AU2016219732A1 (en) Semiconductor laser device
US11287107B2 (en) Optical wavelength conversion device
JP2014137973A (en) Light source device
JP6457099B2 (en) Wavelength conversion member and light emitting device
US20150372198A1 (en) Light emitting module
JP7018442B2 (en) Optical conversion device with clamped optical converter
JP2016092364A (en) Light emission device and lamp equipment
JP6019758B2 (en) Light source device
JP2018117088A (en) Substrate with reflecting member and manufacturing method thereof
US11223182B2 (en) Method of manufacturing optical module
WO2021090517A1 (en) Light-emitting device, and method for manufacturing light-emitting device
JP7288173B2 (en) Method for manufacturing light-emitting device, method for manufacturing light-emitting module, and light-emitting device
JP2021077842A (en) Light-emitting device and manufacturing method of the same
JP2020004497A (en) Light wavelength conversion device
JP2020136672A (en) Light-emitting device
CN114096782A (en) Wavelength conversion member for soldering, wavelength conversion device, and light source device
US20200271299A1 (en) Light emitting device
JP3240859U (en) Integrated laser phosphor light source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886033

Country of ref document: EP

Kind code of ref document: A1