WO2021090480A1 - 光通信装置 - Google Patents

光通信装置 Download PDF

Info

Publication number
WO2021090480A1
WO2021090480A1 PCT/JP2019/043896 JP2019043896W WO2021090480A1 WO 2021090480 A1 WO2021090480 A1 WO 2021090480A1 JP 2019043896 W JP2019043896 W JP 2019043896W WO 2021090480 A1 WO2021090480 A1 WO 2021090480A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
communication device
optical communication
receiving elements
Prior art date
Application number
PCT/JP2019/043896
Other languages
English (en)
French (fr)
Inventor
直喜 西村
隆雄 澤
Original Assignee
株式会社島津製作所
国立研究開発法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 国立研究開発法人海洋研究開発機構 filed Critical 株式会社島津製作所
Priority to PCT/JP2019/043896 priority Critical patent/WO2021090480A1/ja
Priority to JP2021554803A priority patent/JP7266255B2/ja
Priority to EP19951708.7A priority patent/EP4057527A4/en
Priority to US17/772,091 priority patent/US20220373760A1/en
Priority to PCT/JP2019/047640 priority patent/WO2021090514A1/ja
Priority to TW109136054A priority patent/TWI745126B/zh
Publication of WO2021090480A1 publication Critical patent/WO2021090480A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/506Underwater installation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy

Definitions

  • the present invention relates to an optical communication device.
  • an optical communication device that communicates by communication light.
  • Such an optical communication device is disclosed in, for example, Japanese Patent Application Laid-Open No. 2018-7069.
  • the first optical communication device (optical communication device) attached to a submersible navigating underwater and the first optical communication device (optical communication device) provided on a ship at sea or another submersible navigating underwater are provided. 2
  • An optical communication device (optical communication device) is disclosed.
  • an optical signal using communication light which is visible light is transmitted between the first optical communication device and the second optical communication device via water. It is disclosed.
  • Each of the first optical communication device and the second optical communication device includes one or more light receiving elements inside the housing.
  • the present invention has been made to solve the above-mentioned problems, and one object of the present invention is to maintain the directivity of light reception by a plurality of light receiving elements while maintaining all the sensitivities of the plurality of light receiving elements. It is to provide an optical communication device which can be set arbitrarily.
  • the optical communication device in one aspect of the present invention is provided so as to correspond to a plurality of channels, and corresponds to a plurality of light receiving elements for receiving communication light and a plurality of light receiving elements.
  • a plurality of optical fibers that guide communication light to a plurality of light receiving elements are provided in the above, and each of the plurality of optical fibers includes an incoming light end portion of the communication light and an outgoing light end portion of the communication light.
  • Each of the light emitting ends of the above is arranged in the vicinity of each of the plurality of light receiving elements, and each of the plurality of light receiving ends is configured to be able to be arranged at a predetermined position and orientation.
  • the vicinity of each of the plurality of light receiving elements is a broad concept including both the position itself of each of the plurality of light receiving elements and the vicinity of each position of the plurality of light receiving elements.
  • each of the plurality of optical fibers that guide communication light to a plurality of light receiving elements are provided. Then, each of the plurality of optical fibers is configured to include an incoming light end portion of the communication light and an outgoing light end portion of the communication light. Then, each of the plurality of light emitting ends is arranged in the vicinity of each of the plurality of light receiving elements. Then, each of the plurality of light incident ends can be arranged at a predetermined position and orientation. Thereby, by using the optical fiber, the installation location of each of the plurality of light receiving elements can be arbitrarily selected.
  • the directivity (light receiving direction, light receiving range, etc.) of each of the light receiving elements of the plurality of light receiving elements can be freely adjusted, so that a plurality of light receiving signals can be received.
  • the directivity of light reception as a whole of the element can be arbitrarily set.
  • the directivity of light reception by the plurality of light receiving elements can be arbitrarily set while maintaining all the sensitivities of the plurality of light receiving elements.
  • FIG. 1 is a schematic diagram showing the outline of the underwater optical communication system by one Embodiment. It is a schematic diagram which showed the outline of the light receiving part of the underwater communication apparatus by one Embodiment.
  • A is a schematic diagram showing the first example of holding the light entrance end portion of the optical fiber by the light entrance end portion holding portion of the underwater communication device according to the embodiment.
  • FIG. (B) is a schematic view showing a second example of holding the light input end portion of the optical fiber by the light input end portion holding portion of the underwater communication device according to the embodiment. It is a schematic diagram which showed the arrangement example of the optical fiber of the underwater communication apparatus by one Embodiment.
  • the underwater optical communication system 100 includes a first optical communication device 1 and a second optical communication device 2.
  • the first optical communication device 1 is an example of an "optical communication device" within the scope of the claims.
  • the first optical communication device 1 is arranged underwater such as in the sea. Specifically, the first optical communication device 1 is provided on a fixed body 80 fixed in water.
  • the fixed body 80 is fixed in water by being installed on the bottom 90 of the water via a holding member 81.
  • the second optical communication device 2 is arranged underwater such as in the sea. Specifically, the second optical communication device 2 is provided on the moving body 82 that moves underwater.
  • the mobile body 82 includes, for example, an AUV (Autonomous Underwater Vehicle).
  • the first optical communication device 1 and the second optical communication device 2 receive the communication light emitted from the first optical communication device 1 by the second optical communication device 2.
  • the first optical communication device 1 receives the communication light emitted from the second optical communication device 2 while performing optical communication with the second optical communication device 2 and the first optical communication device 1. It is configured so that optical communication can be performed between them.
  • FIG. 1 illustrates an example in which the second optical communication device 2 emits communication light.
  • the moving body 82 moves in the sea to inspect, for example, a structure laid on the seabed.
  • the second optical communication device 2 is configured to transmit the inspection result acquired by the detection unit (not shown) provided on the mobile body 82 to the first optical communication device 1 by communication light.
  • the first optical communication device 1 is configured to receive the inspection result transmitted from the second optical communication device 2 and transmit the received inspection result to a communication device provided on land or on a mother ship or the like. Has been done.
  • optical communication is performed between the first optical communication device 1 and the second optical communication device 2
  • the mobile body 82 is moved to a communicable area to perform optical communication.
  • the first optical communication device 1 includes a plurality of light receiving elements 11.
  • the plurality of light receiving elements 11 are configured to receive communication light.
  • the plurality of light receiving elements 11 are provided so as to correspond to a plurality of channels.
  • the number of channels is not particularly limited, but in the example shown in FIG. 2, the first optical communication device 1 includes 25 channels. Therefore, in the example shown in FIG. 2, the first optical communication device 1 includes 25 light receiving elements 11.
  • the plurality of light receiving elements 11 are composed of, for example, a photomultiplier tube.
  • each of the plurality of light receiving elements 11 includes a photoelectric conversion unit and an electron multiplier unit.
  • the photoelectric conversion unit is configured to convert communication light into electrons.
  • the photomultiplier tube is configured to multiply the converted electrons.
  • the plurality of light receiving elements 11 are arranged in an array.
  • the array shape is a broad concept including a row shape, a matrix shape, and the like. In the example shown in FIG. 2, the plurality of light receiving elements 11 are arranged in a 5 ⁇ 5 matrix.
  • the first optical communication device 1 includes a plurality of optical fibers 12.
  • the plurality of optical fibers 12 are configured to guide communication light to the plurality of light receiving elements 11.
  • the plurality of optical fibers 12 are provided so as to correspond to the plurality of light receiving elements 11. That is, in the example shown in FIG. 2, 25 plurality of optical fibers 12 are provided.
  • each of the plurality of optical fibers 12 includes an incoming light end portion 12a (condensing end portion) of the communication light and an outgoing light end portion 12b of the communication light.
  • each of the plurality of light emitting end portions 12b is arranged in the vicinity of each of the plurality of light receiving elements 11.
  • Each of the plurality of light emitting end portions 12b is arranged so as to face the light receiving surface of the plurality of light receiving elements 11.
  • each of the plurality of light incoming end portions 12a is configured to be dispositionable at a predetermined position and orientation.
  • Each of the plurality of light receiving end portions 12a is configured to be dispositionable at different positions and directions from each other. That is, at least a part of the plurality of incoming light end portions 12a can be arranged at different positions and directions from each other.
  • a small lens that collects communication light may be provided at each of the plurality of incoming light end portions 12a. In this case, since the communication light can be focused on the incoming light end portion 12a by the lens, optical communication can be performed more reliably.
  • the first optical communication device 1 includes a protective container 13 (indicated by a two-dot chain line).
  • the protective container 13 is arranged in water and is configured to accommodate a plurality of light receiving elements 11.
  • the protective container 13 is a closed pressure-resistant container.
  • the protective container 13 is configured to isolate the plurality of light receiving elements 11 from the external environment.
  • the protective container 13 has, for example, a cylindrical shape.
  • the plurality of optical fibers 12 are configured such that the light emitting end portion 12b is provided inside the protective container 13 and the light entering end portion 12a is provided outside the protective container 13 (that is, underwater).
  • Each of the plurality of light receiving end portions 12a is configured to be dispositionable at a predetermined position and orientation outside the protective container 13 (underwater).
  • the plurality of optical fibers 12 are arranged so as to straddle from the inside to the outside of the protective container 13 via the insertion portion 13a of the protective container 13.
  • the insertion portion 13a is configured so that a plurality of optical fibers 12 can be inserted while maintaining the internal space 13b of the protective container 13 in a closed state (watertight state).
  • the first optical communication device 1 includes a light emitting end holding portion 14.
  • the light emitting end portion holding portion 14 is configured to hold a plurality of light emitting end portions 12b in the vicinity of each of the plurality of light receiving elements 11.
  • a plurality of light emitting end holding portions 14 are provided so as to correspond to each of the plurality of light receiving elements 11 and each of the plurality of light emitting end portions 12b. In the example shown in FIG. 2, 25 plurality of light emitting end holding portions 14 are provided.
  • Each of the plurality of light emitting end holding portions 14 is integrally provided on the light receiving surface of the plurality of light receiving elements 11.
  • Each of the plurality of light emitting end holding portions 14 has an insertion hole 14a.
  • the insertion hole 14a is configured so that the light emitting end portion 12b is inserted.
  • Each of the plurality of light emitting end portions 12b is configured to be held by the light emitting end portion holding portion 14 in a state of being inserted into the insertion hole 14a.
  • the first optical communication device 1 includes a light incoming end holding portion 15.
  • the light incoming end holding portion 15 is configured to hold at least a part of the plurality of light entering end portions 12a.
  • the number of the light entering end portions 12a held by the light entering end portion holding portion 15 is not particularly limited, but in the example shown in FIGS. An example of holding the end portion 12a is shown.
  • the light incoming end holding portion 15 is configured to hold the light entering end portion 12a so that the light entering end portion 12a is arranged in a predetermined direction.
  • the light input end portion 12a can be arranged as in the arrangement example shown in FIG. 3 (A).
  • the light input end portion 12a is arranged in different directions from each other.
  • the directivity of the light received by the light receiving element 11 is narrowed (when it is desired to receive the communication light from a specific direction), for example, as in the arrangement example shown in FIG. 3B, the light input end portion 12a is arranged. can do.
  • at least a part of the plurality of incoming light end portions 12a are arranged in the same direction with each other.
  • the mobile body 82 can perform optical communication at five positions different from each other.
  • the underwater structure 83 is not particularly limited, but may be, for example, a pillar, a rod, a wall, or the like.
  • a structure may be provided for the first optical communication device 1, or an existing structure may be used.
  • the light entrance end portion 12a is attached to the underwater structure 83 via a fixture.
  • the first optical communication device 1 is provided with a plurality of optical fibers 12 for guiding communication light to the plurality of light receiving elements 11.
  • each of the plurality of optical fibers 12 is configured to include an incoming light end portion 12a of the communication light and an outgoing light end portion 12b of the communication light.
  • each of the plurality of light emitting end portions 12b is arranged in the vicinity of each of the plurality of light receiving elements 11.
  • each of the plurality of light incoming end portions 12a is configured to be dispositionable at a predetermined position and orientation.
  • the directivity (light receiving direction, light receiving range, etc.) of each of the light receiving elements 11 of the plurality of light receiving elements 11 can be freely adjusted.
  • the directivity of the light reception of the light receiving element 11 as a whole can be arbitrarily set.
  • the directivity of the light received by the plurality of light receiving elements 11 can be arbitrarily set while maintaining all the sensitivities of the plurality of light receiving elements 11.
  • the first optical communication device 1 is arranged in water and includes a protective container 13 for accommodating a plurality of light receiving elements 11.
  • a protective container 13 for accommodating a plurality of light receiving elements 11.
  • the cable used for the plurality of light receiving elements 11 is different from the case where the plurality of light receiving elements 11 are distributed and arranged in the plurality of protective containers 13.
  • the types power cable, signal cable, etc.
  • the light entrance end 12a is small and lightweight, it can be installed in a place where it is difficult to install the protective container 13.
  • the light entrance end 12a is densely installed in one place to improve the sensitivity. You can also let it. These effects are particularly effective when optical communication is performed underwater.
  • the plurality of optical fibers 12 are configured so that the light emitting end portion 12b is provided inside the protective container 13 and the light entering end portion 12a is provided outside the protective container 13. As a result, even when a plurality of light receiving elements 11 are housed in the protective container 13, the plurality of light receiving end portions 12a of the optical fiber 12 can be arranged at arbitrary positions and directions outside the protective container 13. Therefore, it is possible to easily secure the degree of freedom in adjusting the directivity of the light received by the plurality of light receiving elements 11.
  • At least a part of the plurality of light receiving end portions 12a is arranged at different positions in the water.
  • communication light can be received at different positions in the water, so that only one first optical communication device 1 can perform optical communication at different positions in the water without providing a plurality of optical communication devices. be able to.
  • underwater optical communication can be easily performed as compared with the case where a plurality of optical communication devices are provided.
  • the light entry end portion 12a is configured so that the communication light from the moving body 82 moving in the water is received.
  • the mobile body 82 can perform optical communication at arbitrary positions among different positions in the water, it is possible to easily perform underwater optical communication with the mobile body 82.
  • the light entering end portion 12a can be fixed to the underwater structure 83, so that the position of the light entering end portion 12a can be fixed at a fixed position.
  • underwater optical communication can be easily performed as compared with the case where the position of the light incoming end portion 12a is not fixed at a fixed position.
  • a dedicated structure for fixing is not required.
  • a plurality of light receiving elements 11 are arranged in an array.
  • the light receiving elements 11 can be aligned inside the protective container 13, so that the light receiving elements 11 can be compactly housed inside the protective container 13.
  • the first optical communication device 1 is provided with the light emitting end portion holding portion 14 that holds the plurality of light emitting end portions 12b in the vicinity of each of the plurality of light receiving elements 11. Configure. As a result, the position of the light emitting end portion 12b can be held, so that the relative position between the light emitting end portion 12b and the light receiving element 11 can be held. As a result, the communication light from the light emitting end portion 12b can be accurately received by the light receiving element 11.
  • an optical communication device is used in the sea
  • an optical communication device may be used in water other than underwater (lake, dam, etc.).
  • the optical communication device may be used in an environment other than underwater (such as on land).
  • the light receiving element is composed of a photomultiplier tube
  • the present invention is not limited to this.
  • the light receiving element may be composed of an avalanche photodiode.
  • the optical communication device includes a light receiving end holding portion, but the present invention is not limited to this.
  • the optical communication device does not have to include the light input end holding portion.
  • the plurality of light receiving ends may be attached to an attachment target such as an underwater structure so as to be arranged in a predetermined direction.
  • At least a part of a plurality of light receiving ends is attached to an underwater structure other than a fixed body, but the present invention is not limited to this.
  • at least a part of a plurality of light receiving ends may be attached to a fixed body, a protective container, or the like.
  • communication light from a moving body moving in water is input to the light input end
  • the present invention is not limited to this.
  • communication light from another fixed body may be input to the light input end portion.
  • the optical communication device may be provided on a moving body that moves underwater.
  • at least a part of the plurality of light receiving ends may be arranged at different positions of the moving body, or all of the plurality of light receiving ends may be arranged at one position of the moving body. Good.
  • a plurality of light receiving elements are housed in a single protective container, but the present invention is not limited to this.
  • a plurality of light receiving elements may be dispersedly housed in a plurality of protective containers.
  • a plurality of light receiving elements are arranged in an array, but the present invention is not limited to this.
  • a plurality of light receiving elements may be arranged in a dispersed manner.
  • the light emitting end holding portion may be one member that holds a plurality of light emitting ends.
  • the moving body may be a manned submersible (HOV: Human Occupied Vehicle).
  • HOV Human Occupied Vehicle
  • the moving body may be a remotely operated vehicle (ROV) operated by a person via a cable.
  • ROV remotely operated vehicle
  • the moving body may be another ship.
  • a plurality of light receiving elements provided so as to correspond to a plurality of channels and receiving communication light
  • a plurality of optical fibers provided so as to correspond to the plurality of light receiving elements and for guiding the communication light to the plurality of light receiving elements are provided.
  • Each of the plurality of optical fibers includes an incoming light end portion of the communication light and an outgoing light end portion of the communication light.
  • Each of the plurality of light emitting ends is arranged in the vicinity of each of the plurality of light receiving elements.
  • An optical communication device in which each of the plurality of light entrance ends can be arranged at a predetermined position and orientation.
  • First optical communication device (optical communication device) 11
  • Light receiving element 12
  • Optical fiber 12a
  • Idemitsu end 12b
  • Protective container 14
  • Idemitsu end holding part 82
  • Mobile body 83 Underwater structure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

この光通信装置(1)は、複数の受光素子(11)と、複数の光ファイバ(12)と、を備える。複数の光ファイバの各々は、通信光の入光端部(12a)と、通信光の出光端部(12b)とを含む。複数の出光端部の各々は、複数の受光素子の各々の近傍に配置されており。複数の入光端部の各々は、所定の位置および向きに配置可能に構成されている。

Description

光通信装置
 本発明は、光通信装置に関する。
 従来、通信光により通信を行う光通信装置が知られている。このような光通信装置は、たとえば、特開2018-7069号公報に開示されている。
 上記特開2018-7069号公報には、水中を航行する潜水艇に取り付けられた第1光通信機(光通信装置)と、海上の船舶や水中を航行する他の潜水艇に設けられた第2光通信機(光通信装置)とが開示されている。また、上記特開2018-7069号公報には、第1光通信機と第2光通信機との間で、可視光である通信光を用いた光信号が水中を介して伝送されることが開示されている。この第1光通信機および第2光通信機の各々は、1または複数の受光素子を筺体の内部に備えている。
特開2018-7069号公報
 しかしながら、上記特開2018-7069号公報に記載されたような、従来の光通信装置では、複数の受光素子の各々の設置場所を任意に選択することができないと考えられるため、複数の受光素子の各々の受光の指向性(受光方向、受光範囲など)を自由に調整することが困難であると考えられる。このため、複数の受光素子の全体としての受光の指向性を任意に設定することが困難であるという不都合があると考えられる。また、任意の受光の指向性を実現する方法として、たとえば黒い紙を受光素子の前に置くという古典的な方法や、デジタルミラーデバイスを使うという方法なども考えられる。しかしながら、これらの方法では、受光素子へ到達する光の一部を遮蔽するため、基本的に受光素子の性能(感度)を悪化させるという不都合があると考えられる。これらのため、複数の受光素子のすべての感度をそのままに、複数の受光素子による受光の指向性を任意に設定することが困難であるという問題点があると考えられる。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、複数の受光素子のすべての感度をそのままに、複数の受光素子による受光の指向性を任意に設定することが可能な光通信装置を提供することである。
 上記目的を達成するために、この発明の一の局面における光通信装置は、複数のチャンネルに対応するように設けられ、通信光を受光する複数の受光素子と、複数の受光素子に対応するように設けられ、複数の受光素子に通信光を導く複数の光ファイバと、を備え、複数の光ファイバの各々は、通信光の入光端部と、通信光の出光端部とを含み、複数の出光端部の各々は、複数の受光素子の各々の近傍に配置されており、複数の入光端部の各々は、所定の位置および向きに配置可能に構成されている。なお、本願明細書では、複数の受光素子の各々の近傍とは、複数の受光素子の各々の位置そのものと、複数の受光素子の各々の位置の付近との両方を含む広い概念である。
 本発明によれば、上記のように、複数の受光素子に通信光を導く複数の光ファイバを設ける。そして、複数の光ファイバの各々を、通信光の入光端部と、通信光の出光端部とを含むように構成する。そして、複数の出光端部の各々を、複数の受光素子の各々の近傍に配置する。そして、複数の入光端部の各々を、所定の位置および向きに配置可能に構成する。これにより、光ファイバを用いることにより、複数の受光素子の各々の設置場所を任意に選択することができる。また、複数の入光端部の位置および向きを調整することにより、複数の受光素子の各々の受光の指向性(受光方向、受光範囲など)を自由に調整することができるので、複数の受光素子の全体としての受光の指向性を任意に設定することができる。また、任意の受光の指向性を実現する方法として、黒い紙を受光素子の前に置くという方法や、デジタルミラーデバイスを使うという方法などを採用する場合と異なり、受光素子へ到達する光の一部を遮蔽することがないので、受光素子の感度を悪化させることもない。これらの結果、複数の受光素子のすべての感度をそのままに、複数の受光素子による受光の指向性を任意に設定することができる。
一実施形態による水中光通信システムの概略を示した模式図である。 一実施形態による水中通信装置の受光部の概略を示した模式図である。 (A)は、一実施形態による水中通信装置の入光端部保持部による光ファイバの入光端部の保持の第1の例を示した模式図である。(B)は、一実施形態による水中通信装置の入光端部保持部による光ファイバの入光端部の保持の第2の例を示した模式図である。 一実施形態による水中通信装置の光ファイバの配置例を示した模式図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
(水中光通信システム)
 図1を参照して、一実施形態による光通信装置を備える水中光通信システム100の構成について説明する。
 図1に示すように、水中光通信システム100は、第1光通信装置1と、第2光通信装置2とを備える。なお、第1光通信装置1は、特許請求の範囲の「光通信装置」の一例である。
 第1光通信装置1は、海中などの水中に配置されている。具体的には、第1光通信装置1は、水中に固定された固定体80に設けられている。固定体80は、保持部材81を介して水底90に設置されることにより、水中に固定されている。
 第2光通信装置2は、海中などの水中に配置されている。具体的には、第2光通信装置2は、水中を移動する移動体82に設けられている。移動体82は、たとえば、AUV(Autonomous Underwater Vehicle:自律型無人潜水機)を含む。
 本実施形態では、水中光通信システム100は、第1光通信装置1から発光された通信光を第2光通信装置2が受光することにより、第1光通信装置1と第2光通信装置2との間において光通信を行うとともに、第2光通信装置2から発光された通信光を第1光通信装置1が受光することにより、第2光通信装置2と第1光通信装置1との間において光通信を行うことが可能なように構成されている。なお、図1では、第2光通信装置2が通信光を発光している例を図示している。
 本実施形態では、移動体82が海中を移動することにより、たとえば、海底に敷設された構造物の検査を行う。第2光通信装置2は、移動体82に設けられた検知部(図示せず)によって取得された検査結果を、通信光によって第1光通信装置1に送信するように構成されている。また、第1光通信装置1は、第2光通信装置2から送信された検査結果を受信するとともに、受信した検査結果を、陸上、または母船などに設けられた通信装置に送信するように構成されている。なお、第1光通信装置1と第2光通信装置2との間において光通信を行う場合には、移動体82を通信可能領域まで移動させ、光通信を行う。
 図2に示すように、第1光通信装置1は、複数の受光素子11を備える。複数の受光素子11は、通信光を受光するように構成されている。複数の受光素子11は、複数のチャンネルに対応するように設けられている。チャンネルの数は、特に限られないが、図2に示す例では、第1光通信装置1は、25個のチャンネルを備える。このため、図2に示す例では、第1光通信装置1は、25個の受光素子11を備える。
 複数の受光素子11は、たとえば、光電子増倍管により構成されている。この場合、複数の受光素子11の各々は、光電変換部と、電子増倍部とを含む。光電変換部は、通信光を電子に変換するように構成されている。電子増倍部は、変換された電子を増倍するように構成されている。また、複数の受光素子11は、アレイ状に配置されている。なお、アレイ状とは、列状、マトリクス状などを含む広い概念である。図2に示す例では、複数の受光素子11は、5×5のマトリクス状に配置されている。
 また、第1光通信装置1は、複数の光ファイバ12を備える。複数の光ファイバ12は、複数の受光素子11に通信光を導くように構成されている。複数の光ファイバ12は、複数の受光素子11に対応するように設けられている。すなわち、図2に示す例では、複数の光ファイバ12は、25個設けられている。また、複数の光ファイバ12の各々は、通信光の入光端部12a(集光端部)と、通信光の出光端部12bとを含む。
 ここで、本実施形態では、複数の出光端部12bの各々は、複数の受光素子11の各々の近傍に配置されている。複数の出光端部12bの各々は、複数の受光素子11の受光面に対向するように配置されている。また、複数の入光端部12aの各々は、所定の位置および向きに配置可能に構成されている。複数の入光端部12aの各々は、互いに異なる位置および向きに配置可能に構成されている。すなわち、複数の入光端部12aの少なくとも一部は、互いに異なる位置および向きに配置されることが可能である。なお、複数の入光端部12aの各々には、通信光を集光する小型のレンズが設けられていてもよい。この場合、レンズにより入光端部12aに通信光を集光することができるので、より確実に光通信を行うことができる。
 また、第1光通信装置1は、保護容器13(二点鎖線により示す)を備える。保護容器13は、水中に配置され、複数の受光素子11を収容するように構成されている。保護容器13は、密閉耐圧容器である。保護容器13は、複数の受光素子11を外部環境から隔離するように構成されている。保護容器13は、たとえば、円筒形状を有する。
 複数の光ファイバ12は、出光端部12bが保護容器13の内部に設けられるとともに、入光端部12aが保護容器13の外部(すなわち、水中)に設けられるように構成されている。複数の入光端部12aの各々は、保護容器13の外部(水中)において、所定の位置および向きに配置可能に構成されている。複数の光ファイバ12は、保護容器13の挿通部13aを介して、保護容器13の内部から外部に跨るように配置されている。挿通部13aは、保護容器13の内部空間13bを密閉状態(水密状態)に維持しつつ、複数の光ファイバ12を挿通可能に構成されている。
 また、第1光通信装置1は、出光端部保持部14を備える。出光端部保持部14は、複数の受光素子11の各々の近傍において、複数の出光端部12bを保持するように構成されている。出光端部保持部14は、複数の受光素子11の各々および複数の出光端部12bの各々に対応するように、複数設けられている。図2に示す例では、複数の出光端部保持部14は、25個設けられている。複数の出光端部保持部14の各々は、複数の受光素子11の受光面に一体的に設けられている。複数の出光端部保持部14の各々は、挿通孔14aを有する。挿通孔14aは、出光端部12bが挿入されるように構成されている。複数の出光端部12bの各々は、挿通孔14aに挿通された状態で、出光端部保持部14により保持されるように構成されている。
 また、図3(A)(B)に示すように、第1光通信装置1は、入光端部保持部15を備える。入光端部保持部15は、複数の入光端部12aの少なくとも一部を保持するように構成されている。入光端部保持部15が保持する入光端部12aの数は、特に限られないが、図3(A)(B)に示す例では、入光端部保持部15が5つの入光端部12aを保持する例を図示している。入光端部保持部15は、入光端部12aが所定の向きに配置されるように、入光端部12aを保持するように構成されている。
 受光素子11による受光の指向性を広くする場合(広範囲において通信光を受光したい場合)、たとえば、図3(A)に示す配置例のように、入光端部12aを配置することができる。図3(A)に示す例では、複数の入光端部12aの少なくとも一部が、互いに異なる向きに配置されている。また、受光素子11による受光の指向性を狭くする場合(特定の方向からの通信光を受光したい場合)、たとえば、図3(B)に示す配置例のように、入光端部12aを配置することができる。図3(B)に示す例では、複数の入光端部12aの少なくとも一部が、互いに同じ向きに配置されている。
(光通信装置の使用例)
 次に、図4を参照して、第1光通信装置1の水中の使用例について説明する。
 図4に示すように、複数の入光端部12aの少なくとも一部は、水中の互いに異なる位置に配置されている。入光端部12aの配置位置の数は、特に限られないが、図4に示す例では、複数の入光端部12aが、互いに異なる5つの位置に配置されている例を図示している。この場合、移動体82は、互いに異なる5つの位置において光通信を行うことができる。
 また、複数の入光端部12aの少なくとも一部は、水中構造物83に取り付けられている。水中構造物83は、特に限られないが、たとえば、柱、棒、壁などであり得る。水中構造物83としては、第1光通信装置1用に構造物を設けてもよいし、既設の構造物を利用してもよい。入光端部12aは、固定具を介して、水中構造物83に取り付けられている。
(本実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
 本実施形態では、上記のように、第1光通信装置1に、複数の受光素子11に通信光を導く複数の光ファイバ12を設ける。そして、複数の光ファイバ12の各々を、通信光の入光端部12aと、通信光の出光端部12bとを含むように構成する。そして、複数の出光端部12bの各々を、複数の受光素子11の各々の近傍に配置する。そして、複数の入光端部12aの各々を、所定の位置および向きに配置可能に構成する。これにより、光ファイバ12を用いることにより、複数の受光素子11の各々の設置場所を任意に選択することができる。また、複数の入光端部12aの位置および向きを調整することにより、複数の受光素子11の各々の受光の指向性(受光方向、受光範囲など)を自由に調整することができるので、複数の受光素子11の全体としての受光の指向性を任意に設定することができる。また、任意の受光の指向性を実現する方法として、黒い紙を受光素子11の前に置くという方法や、デジタルミラーデバイスを使うという方法などを採用する場合と異なり、受光素子11へ到達する光の一部を遮蔽することがないので、受光素子11の感度を悪化させることもない。これらの結果、複数の受光素子11のすべての感度をそのままに、複数の受光素子11による受光の指向性を任意に設定することができる。
 また、本実施形態では、上記のように、第1光通信装置1を、水中に配置され、複数の受光素子11を収容する保護容器13を備えるように構成する。これにより、複数の受光素子11が単一の保護容器13に収容されるので、複数の受光素子11を複数の保護容器13に分散して配置する場合と異なり、複数の受光素子11に用いるケーブル類(電力ケーブル、信号ケーブルなど)を1つにまとめることができるとともに、保護容器13の数を減らすことができる。また、合計重量も減らすことができる。また、入光端部12aは小型で軽量であることから、保護容器13の設置が難しい場所にも設置可能であるので、入光端部12aを密集して一箇所に設置して感度を向上させることもできる。これらの効果は、水中において光通信が行われる場合に、特に効果的である。また、複数の光ファイバ12を、出光端部12bが保護容器13の内部に設けられるとともに、入光端部12aが保護容器13の外部に設けられるように構成する。これにより、複数の受光素子11が保護容器13に収容されている場合にも、保護容器13の外部において光ファイバ12の複数の入光端部12aを、任意の位置および向きに配置することができるので、複数の受光素子11による受光の指向性の調整の自由度を容易に確保することができる。
 また、本実施形態では、上記のように、複数の入光端部12aの少なくとも一部を、水中の互いに異なる位置に配置する。これにより、水中の互いに異なる位置において通信光を受光することができるので、複数の光通信装置を設けなくても、1つの第1光通信装置1だけで水中の互いに異なる位置において光通信を行うことができる。その結果、複数の光通信装置を設ける場合に比べて、水中の光通信を簡単に行うことができる。
 また、本実施形態では、上記のように、入光端部12aを、水中を移動する移動体82からの通信光が入光されるように構成する。これにより、移動体82は、水中の互いに異なる位置のうちの任意の位置において光通信を行うことができるので、移動体82との間の水中の光通信を簡単に行うことができる。
 また、本実施形態では、上記のように、複数の入光端部12aの少なくとも一部を、水中構造物83に取り付ける。これにより、入光端部12aを水中構造物83に固定することができるので、入光端部12aの位置を定位置に固定することができる。その結果、入光端部12aの位置が定位置に固定されていない場合に比べて、水中の光通信を簡単に行うことができる。また、既設の水中構造物83を用いれば、専用の固定のための構造物が不要である。
 また、本実施形態では、上記のように、複数の受光素子11を、アレイ状に配置する。これにより、保護容器13の内部において受光素子11を整列させることができるので、保護容器13の内部において受光素子11をコンパクトに収めることができる。
 また、本実施形態では、上記のように、第1光通信装置1を、複数の受光素子11の各々の近傍において、複数の出光端部12bを保持する出光端部保持部14を備えるように構成する。これにより、出光端部12bの位置を保持することができるので、出光端部12bと受光素子11との相対位置を保持することができる。その結果、出光端部12bからの通信光を受光素子11に正確に受光させることができる。
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく、特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記実施形態では、光通信装置が、海中において用いられる例を示したが、本発明はこれに限られない。たとえば、光通信装置が、海中以外の水中(湖、ダムなど)において用いられてもよい。また、光通信装置が、水中以外の環境(陸上など)において用いられてもよい。
 また、上記実施形態では、受光素子が、光電子増倍管により構成されている例を示したが、本発明はこれに限られない。たとえば、受光素子が、アバランシェフォトダイオードにより構成されていてもよい。
 また、上記実施形態では、光通信装置が、入光端部保持部を備える例を示したが、本発明はこれに限られない。本発明では、光通信装置が、入光端部保持部を備えなくてもよい。この場合、たとえば、複数の入光端部が、所定の向きに配置されるように、水中構造物などの取付対象に取り付けられてもよい。
 また、上記実施形態では、複数の入光端部の少なくとも一部が、水中の互いに異なる位置に配置されている例を示したが、本発明はこれに限られない。たとえば、複数の入光端部の全部が、水中の1つの位置に配置されてもよい。
 また、上記実施形態では、複数の入光端部の少なくとも一部が、固定体以外の水中構造物に取り付けられている例を示したが、本発明はこれに限られない。たとえば、複数の入光端部の少なくとも一部が、固定体、保護容器などに取り付けられてもよい。
 また、上記実施形態では、入光端部に、水中を移動する移動体からの通信光が入光される例を示したが、本発明はこれに限られない。たとえば、入光端部に、別の固定体からの通信光が入光されてもよい。
 また、上記実施形態では、光通信装置が水中に固定された固定体に設けられている例を示したが、本発明はこれに限られない。たとえば、光通信装置が水中を移動する移動体に設けられていてもよい。この場合、複数の入光端部の少なくとも一部が、移動体の互いに異なる位置に配置されてもよいし、複数の入光端部の全部が、移動体の1つの位置に配置されてもよい。
 また、上記実施形態では、複数の受光素子が、単一の保護容器に収容される例を示したが、本発明はこれに限られない。本発明では、複数の受光素子が、複数の保護容器に分散して収容されてもよい。ただし、光通信装置の構造を簡素化する観点からは、複数の受光素子が、単一の保護容器に収容されることが好ましい。
 また、上記実施形態では、複数の受光素子が、アレイ状に配置されている例を示したが、本発明はこれに限られない。たとえば、複数の受光素子が、分散して配置されてもよい。
 また、上記実施形態では、出光端部保持部が、複数設けられている例を示したが、本発明はこれに限られない。たとえば、出光端部保持部が、複数の出光端部を保持する1つの部材であってもよい。
 また、上記実施形態では、移動体がAUVである例を示したが、本発明はこれに限られない。たとえば、移動体は、有人潜水艇(HOV: Human Occupied Vehicle)であってもよい。また、移動体は、ケーブルを介して人が操縦する遠隔操縦ロボット(ROV: Remotely Operated Vehicle)であってもよい。また、移動体は、その他の船舶であってもよい。
[態様]
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(項目1)
 複数のチャンネルに対応するように設けられ、通信光を受光する複数の受光素子と、
 前記複数の受光素子に対応するように設けられ、前記複数の受光素子に前記通信光を導く複数の光ファイバと、を備え、
 前記複数の光ファイバの各々は、前記通信光の入光端部と、前記通信光の出光端部とを含み、
 複数の前記出光端部の各々は、前記複数の受光素子の各々の近傍に配置されており、
 複数の前記入光端部の各々は、所定の位置および向きに配置可能に構成されている、光通信装置。
(項目2)
 水中に配置され、前記複数の受光素子を収容する保護容器をさらに備え、
 前記複数の光ファイバは、前記出光端部が前記保護容器の内部に設けられるとともに、前記入光端部が前記保護容器の外部に設けられるように構成されている、項目1に記載の光通信装置。
(項目3)
 複数の前記入光端部の少なくとも一部は、水中の互いに異なる位置に配置されている、項目2に記載の光通信装置。
(項目4)
 前記入光端部は、水中を移動する移動体からの前記通信光が入光されるように構成されている、項目3に記載の光通信装置。
(項目5)
 複数の前記入光端部の少なくとも一部は、水中構造物に取り付けられている、項目2~4のいずれか1項に記載の光通信装置。
(項目6)
 前記複数の受光素子は、アレイ状に配置されている、項目2~5のいずれか1項に記載の光通信装置。
(項目7)
 前記複数の受光素子の各々の近傍において、複数の前記出光端部を保持する出光端部保持部をさらに備える、項目1~6のいずれか1項に記載の光通信装置。
 1 第1光通信装置(光通信装置)
 11 受光素子
 12 光ファイバ
 12a 入光端部
 12b 出光端部
 13 保護容器
 14 出光端部保持部
 82 移動体
 83 水中構造物

Claims (7)

  1.  複数のチャンネルに対応するように設けられ、通信光を受光する複数の受光素子と、
     前記複数の受光素子に対応するように設けられ、前記複数の受光素子に前記通信光を導く複数の光ファイバと、を備え、
     前記複数の光ファイバの各々は、前記通信光の入光端部と、前記通信光の出光端部とを含み、
     複数の前記出光端部の各々は、前記複数の受光素子の各々の近傍に配置されており、
     複数の前記入光端部の各々は、所定の位置および向きに配置可能に構成されている、光通信装置。
  2.  水中に配置され、前記複数の受光素子を収容する保護容器をさらに備え、
     前記複数の光ファイバは、前記出光端部が前記保護容器の内部に設けられるとともに、前記入光端部が前記保護容器の外部に設けられるように構成されている、請求項1に記載の光通信装置。
  3.  複数の前記入光端部の少なくとも一部は、水中の互いに異なる位置に配置されている、請求項2に記載の光通信装置。
  4.  前記入光端部は、水中を移動する移動体からの前記通信光が入光されるように構成されている、請求項3に記載の光通信装置。
  5.  複数の前記入光端部の少なくとも一部は、水中構造物に取り付けられている、請求項2に記載の光通信装置。
  6.  前記複数の受光素子は、アレイ状に配置されている、請求項2に記載の光通信装置。
  7.  前記複数の受光素子の各々の近傍において、複数の前記出光端部を保持する出光端部保持部をさらに備える、請求項1に記載の光通信装置。
PCT/JP2019/043896 2019-11-08 2019-11-08 光通信装置 WO2021090480A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/043896 WO2021090480A1 (ja) 2019-11-08 2019-11-08 光通信装置
JP2021554803A JP7266255B2 (ja) 2019-11-08 2019-12-05 光通信装置
EP19951708.7A EP4057527A4 (en) 2019-11-08 2019-12-05 OPTICAL COMMUNICATION DEVICE
US17/772,091 US20220373760A1 (en) 2019-11-08 2019-12-05 Optical communication device
PCT/JP2019/047640 WO2021090514A1 (ja) 2019-11-08 2019-12-05 光通信装置
TW109136054A TWI745126B (zh) 2019-11-08 2020-10-19 光通訊裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043896 WO2021090480A1 (ja) 2019-11-08 2019-11-08 光通信装置

Publications (1)

Publication Number Publication Date
WO2021090480A1 true WO2021090480A1 (ja) 2021-05-14

Family

ID=75848342

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/043896 WO2021090480A1 (ja) 2019-11-08 2019-11-08 光通信装置
PCT/JP2019/047640 WO2021090514A1 (ja) 2019-11-08 2019-12-05 光通信装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047640 WO2021090514A1 (ja) 2019-11-08 2019-12-05 光通信装置

Country Status (5)

Country Link
US (1) US20220373760A1 (ja)
EP (1) EP4057527A4 (ja)
JP (1) JP7266255B2 (ja)
TW (1) TWI745126B (ja)
WO (2) WO2021090480A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879184A (ja) * 1994-09-05 1996-03-22 Natl Space Dev Agency Japan<Nasda> 光通信装置
JP2007271882A (ja) * 2006-03-31 2007-10-18 Fujinon Corp 光モジュールおよびその製造方法
US20100212573A1 (en) * 2009-02-26 2010-08-26 Hawkes Ocean Technologies Remotely operated underwater vehicle
US20110058814A1 (en) * 2009-07-08 2011-03-10 Woods Hole Oceanographic Institution Fiber optic observatory link for medium bandwidth data communication
JP2016119375A (ja) * 2014-12-19 2016-06-30 ホシデン株式会社 光電変換モジュール及びアクティブ光ケーブル
US20170113768A1 (en) * 2014-02-24 2017-04-27 Subsea 7 Limited Subsea Hosting of Unmanned Underwater Vehicles
JP2018007069A (ja) * 2016-07-04 2018-01-11 ダイトロンテクノロジー株式会社 水中光通信装置
WO2018079091A1 (ja) * 2016-10-24 2018-05-03 ソニーセミコンダクタソリューションズ株式会社 光結合素子及び光通信システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038406A (en) * 1989-09-19 1991-08-06 Gte Goverment Systems Corporation Secure two-way submarine communication system
US5142400A (en) * 1989-12-26 1992-08-25 Cubic Corporation Method and apparatus for automatic acquisition and alignment of an optical beam communication link
EP0910790A1 (en) * 1996-07-10 1999-04-28 Cambridge Imaging Limited Improvements in and relating to imaging
DE19635499A1 (de) * 1996-09-03 1998-03-05 Vitaly Dr Lissotschenko Lichtübertragungsvorrichtung
JP3956109B2 (ja) * 2002-04-30 2007-08-08 住友電気工業株式会社 バンドルファイバを用いた光源装置の製造方法
JP2007065280A (ja) * 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd バンドルファイバおよび光加工装置
WO2007082202A2 (en) * 2006-01-09 2007-07-19 Chemimage Corporation Birefringent spectral filter with wide field of view and associated communications method and apparatus
US7953326B2 (en) * 2006-02-06 2011-05-31 Woods Hole Oceanographic Institution Systems and methods for underwater optical communication
US8953944B2 (en) * 2011-01-05 2015-02-10 Woods Hole Oceanographic Institution Systems and methods for establishing an underwater optical communication network
US9294201B2 (en) * 2006-02-06 2016-03-22 Woods Hole Oceanographic Institution Optical communication systems and methods
US9231708B2 (en) * 2006-02-06 2016-01-05 Woods Hole Oceanographic Institution Optical communication systems and methods
US8045859B2 (en) * 2008-05-02 2011-10-25 The United States Of America As Represented By The Secretary Of The Navy High-speed underwater data transmission system and method
US20150086206A1 (en) * 2012-05-04 2015-03-26 US Seismic Systems, Inc. Fiber optic sensing systems and methods of operating the same
US9031413B2 (en) * 2012-07-12 2015-05-12 Massachusetts Institute Of Technology Underwater optical communication system
US9490910B2 (en) * 2013-03-15 2016-11-08 Fairfield Industries Incorporated High-bandwidth underwater data communication system
US9490911B2 (en) * 2013-03-15 2016-11-08 Fairfield Industries Incorporated High-bandwidth underwater data communication system
US9154234B2 (en) * 2013-10-09 2015-10-06 Northrop Grumman Systems Corporation Extended range undersea communication system
US9515729B2 (en) * 2014-04-29 2016-12-06 Florida Institute of Technology, Inc. Omnidirectional free space optical communications receiver
WO2016154742A1 (en) * 2015-03-27 2016-10-06 Penguin Automated Systems Inc. Omnidirectional optical wireless communications receiver & system
US20170346557A1 (en) * 2016-05-25 2017-11-30 Korea Maritime and Ocean University Research and Development Business Foundation Underwater visible light transceiving terminal
US10707966B2 (en) * 2018-05-14 2020-07-07 California Institute Of Technology Ultrafast omnidirectional wireless data transfer apparatus and system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879184A (ja) * 1994-09-05 1996-03-22 Natl Space Dev Agency Japan<Nasda> 光通信装置
JP2007271882A (ja) * 2006-03-31 2007-10-18 Fujinon Corp 光モジュールおよびその製造方法
US20100212573A1 (en) * 2009-02-26 2010-08-26 Hawkes Ocean Technologies Remotely operated underwater vehicle
US20110058814A1 (en) * 2009-07-08 2011-03-10 Woods Hole Oceanographic Institution Fiber optic observatory link for medium bandwidth data communication
US20170113768A1 (en) * 2014-02-24 2017-04-27 Subsea 7 Limited Subsea Hosting of Unmanned Underwater Vehicles
JP2016119375A (ja) * 2014-12-19 2016-06-30 ホシデン株式会社 光電変換モジュール及びアクティブ光ケーブル
JP2018007069A (ja) * 2016-07-04 2018-01-11 ダイトロンテクノロジー株式会社 水中光通信装置
WO2018079091A1 (ja) * 2016-10-24 2018-05-03 ソニーセミコンダクタソリューションズ株式会社 光結合素子及び光通信システム

Also Published As

Publication number Publication date
EP4057527A4 (en) 2023-12-13
US20220373760A1 (en) 2022-11-24
WO2021090514A1 (ja) 2021-05-14
JP7266255B2 (ja) 2023-04-28
JPWO2021090514A1 (ja) 2021-05-14
EP4057527A1 (en) 2022-09-14
TW202123630A (zh) 2021-06-16
TWI745126B (zh) 2021-11-01

Similar Documents

Publication Publication Date Title
US9231708B2 (en) Optical communication systems and methods
Farr et al. Optical modem technology for seafloor observatories
EP3198753B1 (en) Wireless data transfer for autonomous seismic nodes
US8045859B2 (en) High-speed underwater data transmission system and method
AU2005205617B2 (en) Underwater optical communications system and method
ES2487621T3 (es) Dispositivo híbrido de comunicación para una transmisión de datos de alta velocidad entre plataformas móviles y/o plataformas estacionarias
WO2021090480A1 (ja) 光通信装置
EP3995869A1 (en) Underwater optical communication system
Ghazy et al. Angular MIMO for underwater wireless optical communications: Channel modelling and capacity
US10187160B2 (en) Optical receiver
JP7383268B2 (ja) 光通信装置
CA2677585A1 (en) Optical communication device, system and method
CN214173552U (zh) 光纤光栅水听器拖曳阵列监测系统
WO2021152679A1 (ja) 空間光通信用ファイバ分岐構造およびそれを備えた光通信システム
KR102097279B1 (ko) 수중 광통신 장치 간의 통신 거리를 늘리는 장치
CN112577589A (zh) 一种光纤光栅水听器拖曳阵列监测系统
Riccobene The Italian Site for KM3NeT ARCA
CN115876302A (zh) 一种兼顾垂直接收和水平接收的辐射噪声测量系统及方法
Giorgio Riccobene for the KM3NeT Collaboration The Italian Site for KM3NeT ARCA
ES2736958A9 (es) Sistema para la deteccion de una embarcacion con propulsion nuclear y vehiculo autonomo que lo comprende
Kouchner et al. Looking at the sky from the depths
Cesarsky et al. Resolving the Cosmic Infrared Background with ISOCAM
Álvarez A new analog trigger system for the Cherenkov Telescope array
Löhner Deep-sea research infrastructure for high-energy neutrino astronomy
Janiesch Ocean Laboratory at undersea ranges concept

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP