WO2021090383A1 - 優先度制御装置、優先度制御方法及びプログラム - Google Patents

優先度制御装置、優先度制御方法及びプログラム Download PDF

Info

Publication number
WO2021090383A1
WO2021090383A1 PCT/JP2019/043407 JP2019043407W WO2021090383A1 WO 2021090383 A1 WO2021090383 A1 WO 2021090383A1 JP 2019043407 W JP2019043407 W JP 2019043407W WO 2021090383 A1 WO2021090383 A1 WO 2021090383A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
priority
controlled
quality
communication quality
Prior art date
Application number
PCT/JP2019/043407
Other languages
English (en)
French (fr)
Inventor
航生 小林
亜南 沢辺
孝法 岩井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/770,735 priority Critical patent/US20220408304A1/en
Priority to JP2021554452A priority patent/JP7318726B2/ja
Priority to PCT/JP2019/043407 priority patent/WO2021090383A1/ja
Publication of WO2021090383A1 publication Critical patent/WO2021090383A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/805QOS or priority aware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/822Collecting or measuring resource availability data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth

Definitions

  • the present invention relates to a priority control device, a priority control method, and a program.
  • priority control is known as a method for effectively utilizing limited network resources.
  • Non-Patent Document 1 discloses a method of determining the priority of each communication based on the "remaining time until the allowable delay for each application" and the "remaining data size”. Further, Patent Document 1 discloses a communication method capable of flexibly allocating a channel according to a situation or the like at the time of transmitting a packet without necessarily being bound by a priority once determined. Specifically, based on the transmission speed at which the packet is transmitted to the mobile station, the time that the base station has not transmitted the packet since it was acquired, the elapsed time since the terminal device transmitted the packet, and the like. , It is disclosed that the priority is weighted.
  • Patent Document 2 discloses a method of setting a priority in a network that provides both a best-effort packet transfer service and a packet transfer service that guarantees a transfer bandwidth and a transfer delay. More specifically, the terminal device described in the same document initially transmits packets with low priority for high priority communication. Then, when it is predicted that quality deterioration (packet loss) will not occur even if the priority is changed to high priority, the terminal device described in the same document sets the priority to high priority. As a method for predicting quality deterioration, it is disclosed that the total traffic of high-priority communication is obtained and the quality deterioration is predicted depending on whether or not the total amount exceeds the wired link band.
  • Patent Document 3 discloses a method of improving the overall throughput by monitoring the amount of packet communication and the quality of packet communication, controlling the transmission of packets based on the monitoring result, and preventing the increase in traffic. More specifically, the terminal device described in the same document performs an operation of protecting the communication quality of other communication flows by lowering the priority of a specific communication flow when deterioration of communication quality is estimated. The document also describes that the communication quality of a specific communication flow is protected by raising the priority of the specific communication flow.
  • Non-Patent Document 1 and Patent Document 1 have a problem that the application fields are limited because the existence of a base station is premised and the scheduler needs to be modified. Further, in the methods of Patent Documents 2 and 3, the priority is increased or decreased on the terminal side, but it is difficult to accurately predict the quality deterioration, and the quality deterioration occurs due to the inappropriate setting of the priority. There is a problem that there is a high possibility of doing so.
  • the present invention provides a priority control device, a priority control method, and a program that do not require modification of a base station scheduler or the like and can contribute to the optimization of the priority set for the communication to be controlled.
  • the purpose is a priority control device, a priority control method, and a program that do not require modification of a base station scheduler or the like and can contribute to the optimization of the priority set for the communication to be controlled. The purpose.
  • a load for acquiring communication load information for each priority in a relay device that controls communication resource allocation for each communication according to a priority set for each communication between two or more communication devices The information acquisition unit, the communication quality acquisition unit that acquires the communication quality of the communication to be controlled, and the communication load information before setting the priority of the communication to the first priority for the communication to be controlled.
  • the communication quality satisfies a predetermined condition for the communication to be controlled by using a mathematical model showing the relationship with the communication quality when the priority of the communication is set to the first priority.
  • a priority control device including a priority control unit that obtains a possible first priority and sets it as a priority of communication to be controlled.
  • the communication load information for each priority in the relay device that controls the allocation of communication resources for each communication is acquired according to the priority set for each communication between two or more communication devices.
  • the communication load information before the communication quality is acquired and the priority of the communication is set to the first priority
  • the priority of the communication is set to the first priority.
  • a priority control method for setting the priority of communication to be controlled is provided. This method is linked to a specific machine called a priority setting device that sets the priority of communication to be controlled.
  • a computer program for realizing the function of the priority setting device described above is provided.
  • This program is input to a computer device via an input device or an external communication interface, stored in a storage device, drives a processor according to a predetermined step or process, and steps the processing result including an intermediate state as necessary.
  • Each can be displayed via a display device, or can communicate with the outside via a communication interface.
  • Computer devices for that purpose typically include, for example, a processor, a storage device, an input device, a communication interface, and, if necessary, a display device that can be connected to each other by a bus.
  • the program can also be recorded on a computer-readable (non-transitional) storage medium.
  • a priority control device a priority control method, and a program that can contribute to the optimization of the priority set for the communication to be controlled are provided with a simple configuration.
  • the drawing reference reference numerals added to this outline are added to each element for convenience as an example for assisting understanding, and the present invention is not intended to be limited to the illustrated embodiment.
  • the connecting line between blocks such as drawings referred to in the following description includes both bidirectional and unidirectional.
  • the one-way arrow schematically shows the flow of the main signal (data), and does not exclude interactivity.
  • the program is executed via a computer device, which includes, for example, a processor, a storage device, an input device, a communication interface, and, if necessary, a display device.
  • this computer device is configured to be able to communicate with devices (including a computer) inside or outside the device via a communication interface regardless of whether it is wired or wireless.
  • devices including a computer
  • this computer device is configured to be able to communicate with devices (including a computer) inside or outside the device via a communication interface regardless of whether it is wired or wireless.
  • the present invention can be realized by a priority control device 10 including a load information acquisition unit 11, a communication quality acquisition unit 12, and a priority control unit 13.
  • the load information acquisition unit 11 is a relay device (for example, a base station of a mobile network) that controls communication resource allocation for each communication according to a priority set for each communication between two or more communication devices. ) Acquires communication load information for each priority.
  • the communication quality acquisition unit 12 acquires the communication quality of the communication to be controlled.
  • a network QoS Quality of Service
  • QoE Quality of Experience
  • the communication quality QoE (Quality of Experience) or the like, which indicates the quality of the user's experience, can also be used.
  • the priority control unit 13 obtains a priority for which the communication quality satisfies a predetermined condition for the communication of the control target, and sets it as the priority of the communication of the control target.
  • the mathematical model 14 includes the communication load information before the priority of the communication is set to the predetermined value and the communication quality when the priority of the communication is set to the predetermined value for the communication to be controlled. This is a model showing the relationship between.
  • the priority control unit 13 uses the mathematical model 14 to obtain the priority to be set for the communication to be controlled. This makes it possible to optimize the priority set for the communication to be controlled.
  • FIG. 2 is a diagram showing a configuration of a communication system including a priority control device according to the first embodiment of the present invention.
  • LTE is an abbreviation for Long Term Evolution.
  • the priority control device 100 is added to the PS-LTE system configured including the LTE core network 300, the base station 400, and the O & M device 200 is shown.
  • the O & M device 200 is a device that is also called an operation and maintenance device.
  • the load information for each priority in the base station 400 which is a relay device, is provided to the priority control device 100.
  • a device responsible for monitoring or managing the base station 400 for example, an OAM (Operation, Management and Management) device, an NMS (Network Management System) device, or an EMS (Element Management System) device may be used. ..
  • OAM Operaation, Management and Management
  • NMS Network Management System
  • EMS lement Management System
  • the LTE core network 300 includes PCRF301, MME302, HSS303, S-GW304 and P-GW305, and is also referred to as EPC (Evolved Packet Core).
  • PCRF301 is an abbreviation for Policy and Charging Rules Function, and is a node that has a function of controlling QoS and billing of user data.
  • MME 302 is an abbreviation for Mobility Management Entry, and is a node that performs mobility management such as location registration of the terminal 500, calling, and handover between base stations.
  • HSS 303 is an abbreviation for Home Subsystem Server, which manages user information and provides user information in response to a request from MME 302.
  • S-GW304 is an abbreviation for Serving Gateway, and is a gateway that handles user data.
  • P-GW305 is an abbreviation for Packet data network Gateway, and is a gateway for connecting to an external network such as the Internet.
  • the PCRF301 is arranged inside the LTE core network 300, but the PCRF301 may be arranged outside the LTE core network 300.
  • the base station 400 constitutes a wireless network called E-UTRAN (Evolved Universal Terrestrial Radio Access Network).
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the base station 400 functions as a relay device that controls communication resource allocation for each communication.
  • the terminal 500 is a terminal used by staff such as police and fire departments who use PS-LTE.
  • the terminal 500 may have an application for distributing video to the video distribution server 600 or receiving video distributed from the video distribution server 600.
  • a network QoS Quality of Service
  • indicating the packet transmission quality of video distribution communication for example, a function of transmitting information such as packet loss rate, packet delay, jitter, throughput, and reorder rate according to a predetermined protocol. May have.
  • the video distribution server 600 is a server that transmits streaming video or accepts uploading of streaming video from terminal 500 in response to a request from terminal 500.
  • the video distribution server 600 may be configured as a device different from the terminal 500 or the priority control device 100, or may be configured as a part of the terminal 500 or the priority control device 100.
  • the priority control device 100 includes a load information acquisition unit 101, a communication quality acquisition unit 102, a priority control unit 103, and a mathematical model storage unit 104.
  • the connection form between the priority control device 100 and the other device is not limited to the form shown in FIG. 2, and may be another form.
  • the priority control device 100 may be arranged as a proxy server that relays communication between the LTE core network 300 and the video distribution server 600.
  • the load information acquisition unit 101 acquires the load state for each priority in the base station 400 as the communication load information indicating the communication load state.
  • the load information acquisition unit 101 determines in advance the number of active users and the Resource Block (RB) usage rate for each QCI (QoS Class Agent) from the O & M device 200 as the load state for each priority. Will be described as being obtained.
  • RB usage rate and the number of active users the values defined in 3GPP TS 36.314 as "PRB use per traffic class" and "Number of Active UEs in the DL / UL per QCI" can be used.
  • the load information acquisition unit 101 may acquire the following information specified in 3GPP TS 36.314 as the load state.
  • Communication load information is not limited to the above, but is limited to the usage rate of processing devices such as CPUs, usage rates of queues and memories, amount of data in queues and memories, inflow communication amount (inflow data amount), communication line bandwidth. Information that directly or indirectly indicates the communication load, including the usage rate of the data, can be used.
  • FIG. 3 is a diagram for explaining load information acquired by the priority control device according to the first embodiment of the present invention.
  • Numerical values 1 to 4 in the figure indicate QCI.
  • the reference numeral P in the figure represents a packet.
  • the communication quality acquisition unit 102 acquires the communication quality of the communication to be controlled.
  • a network QoS Quality of Service
  • the communication quality acquisition unit 102 acquires the network QoS related to the communication to be controlled from the terminal 500 by using, for example, RTCP (Real-time Transport Control Protocol).
  • RTCP Real-time Transport Control Protocol
  • QoE Quality of Experience
  • the QoE evaluation method of the video only the evaluation method based on the direct comparison with the reference video (Full Reference method), the evaluation method using the feature amount extracted from the reference video (Reduced Reference method), and the evaluation video were used.
  • An evaluation method (No Reference method) or the like can be used.
  • a QoE evaluation method a method of estimating QoE from the above-mentioned network QoS can be adopted.
  • QoE may be evaluated with the packet loss rate as L, the jitter as G, the reorder rate as R, ⁇ L + ⁇ G + ⁇ R, and the like.
  • ⁇ , ⁇ , and ⁇ are predetermined constants.
  • the mathematical model storage unit 104 describes the "load state for each QCI in the relay device (base station 400)" and the "load state of the communication to be controlled when the QCI of the communication to be controlled is changed from X to Y under the load state”.
  • a mathematical model (learner) is created by using machine learning using supervised training data.
  • FIG. 4 is a diagram for explaining a method (learning phase) of generating a mathematical model used in the first embodiment of the present invention.
  • the learner 700 uses the feature data including L1, L2, L3, L4, bit rate and the training data composed of the teacher label (T) to form a mathematical model.
  • the "bit rate" is a bit rate of video distribution communication of interest (which can be a control target), and is used as a feature amount of the communication to be controlled.
  • examples of the learning device 700 include a learning device using Gaussian Naive Bayes, a random forest, an SVM (Support vector machine), and a neural network.
  • FIG. 5 is a diagram showing an example of training data for generating a mathematical model used in the first embodiment of the present invention.
  • the communication quality when the QCI of a certain communication is changed from X to Y (for example, the QCI of the communication represented by the white circle in FIG. 5 is changed from 2 to 3) is predetermined.
  • 1 (changeable) is set as the teacher label (T).
  • the communication quality when the QCI of a certain communication is changed from X to Y for example, the QCI of the communication represented by the white circle in FIG.
  • the teacher Set 0 (cannot be changed) as the label (T).
  • the teacher label may be divided depending on whether or not the communication quality is improved.
  • the training data can be created by actually changing the priority on the actual communication system and collecting the communication quality and the communication load information for each priority. Further, instead of using the actual communication system, the training data may be created by changing the priority in the simulator by using a simulator simulating the communication system.
  • a learning device (mathematical model) will be prepared. Therefore, for the priority control of the communication in which the priority N is set, a learner (mathematical model) in the priority increasing direction and a learning device (mathematical model) in the priority decreasing direction are prepared.
  • the priority N is the upper limit value, it is not necessary to prepare a learner (mathematical model) in the direction of increasing the priority. Further, when the priority N is the lower limit value, it is not necessary to prepare a learner (mathematical model) in the priority decreasing direction.
  • the priority control unit 103 determines the required communication quality even if the priority is lowered. Whether or not a satisfactory state can be maintained is determined using the above-mentioned mathematical model. When the result of the determination is that the state in which the required communication quality is satisfied can be maintained, the priority control unit 103 performs an operation of lowering the priority of the communication to be controlled. Further, when the priority control unit 103 does not satisfy the required communication quality under the current load condition of the relay device for the communication to be controlled (for example, video distribution communication), the priority control unit 103 raises the priority for the required communication. It may be determined whether the quality can be satisfied. When the result of the determination is that the required communication quality can be satisfied, the priority control unit 103 performs an operation of raising the priority of the communication to be controlled.
  • the priority control unit 103 uses the mathematical model to perform the required communication.
  • the lowest priority can be obtained from the second priority that can satisfy the quality.
  • the priority control unit 103 instructs the priority change via Rx-Interface, which is the standard interface of PCRF301, as an example. Therefore, in the present embodiment, it is not necessary to modify the base station 400 to the scheduler.
  • the priority instructed to PCRF301 via Rx-Interface may be information that can be converted into priority in addition to the priority. For example, it may be the above-mentioned QCI or media information (media type).
  • FIG. 6 is a flowchart showing an example of the operation of the priority control device 100 according to the first embodiment of the present invention.
  • the priority control device 100 selects the communication to be controlled (step S001).
  • the priority control device 100 selects the video distribution communication transmitted from the video distribution server 600 to the terminal 500 as the communication to be controlled.
  • the communication to be controlled may be communication other than video distribution communication.
  • the priority control device 100 refers to the communication quality acquired by the communication quality acquisition unit 102 for the communication, and determines whether or not the required communication quality is satisfied (steps S002 and S003).
  • the priority control device 100 determines whether or not the priority can be reduced by using the mathematical model (steps S004 and S005). Specifically, the priority control device 100 inputs feature data including load information for each priority obtained from the load information acquisition unit 101 and the bit rate of the video distribution communication to be controlled into the mathematical model for control. Obtains a judgment result as to whether or not the state in which the required communication quality is satisfied can be maintained even if the priority of the target communication is reduced.
  • the mathematical model used here a mathematical model for determining whether or not the priority of communication to be controlled can be reduced is used.
  • the priority control device. 100 reduces the priority of the communication to be controlled (step S006).
  • the priority control device 100 does not change the priority of the communication to be controlled (step S005). No).
  • the priority control device 100 determines whether or not the priority can be increased by using the mathematical model (steps S007, S008). .. Specifically, the priority control device 100 inputs feature data including load information for each priority obtained from the load information acquisition unit 101 and the bit rate of the video distribution communication to be controlled into the mathematical model for control. By increasing the priority of the target communication, the judgment result of whether or not the required communication quality can be satisfied is obtained.
  • the mathematical model used here a mathematical model for determining whether or not the priority of communication to be controlled can be increased is used. The mathematical model used here may determine whether or not the communication quality can be improved by increasing the priority of the communication to be controlled.
  • the priority control device 100 determines the communication to be controlled. (Step S009). On the other hand, if a determination result is obtained that the required communication quality cannot be satisfied for the communication to be controlled even if the priority is increased, the priority control device 100 does not change the priority of the communication to be controlled (step S008). No).
  • the communication quality after the priority change is accurately predicted, and the communication to be controlled can be performed without modifying the relay device (base station) side. It is possible to set an appropriate priority. Further, such a priority control device 100 can be suitably applied to PS-LTE in which the available frequency band is narrower than that of general commercial LTE for the private sector. More specifically, among various communications exchanged by PS-LTE, video distribution from the disaster or accident site to the command headquarters, distribution of aerial images of drones (UAV: United Aerial Vehicle) to members, etc. It is also possible to set the optimum priority for communication that needs to ensure the required communication quality.
  • UAV United Aerial Vehicle
  • FIG. 7 is a diagram showing a configuration of a communication system including a priority control device according to a second embodiment of the present invention. Since the basic configuration of the priority control device 100a is the same as that of the first embodiment, the differences will be mainly described below.
  • a configuration in which the terminal 500 and the video distribution server 600 are connected via a network 800 composed of a layer 2 switch (L2SW) and / or a layer 3 switch (L3SW) 810 is shown. ..
  • the priority control device 100a is connected to the L2SW / L3SW810.
  • the L2SW / L3SW810 to which the priority control device 100a is connected is a relay device having a priority control function.
  • the priority control function here may be realized in the data link layer, or may be realized in the network layer or the transport layer.
  • priority control may be performed using a PCP (Priority Code Point) in the VLAN tag field defined by IEEE802.11p.
  • PCP Principal Code Point
  • priority control may be performed using DCSP (Differentiated Services Code Point) or IP Precedence set in the TOS (Type of Service) field in the IP header.
  • DCSP Differentiated Services Code Point
  • IP Precedence set in the TOS (Type of Service) field in the IP header.
  • classification, queuing, scheduling, etc. according to the priority can be used.
  • L2SW / L3SW810 prepares queues for each priority. Then, the received packet is classified into an appropriate queue according to the priority set for the packet. Further, the packets stored in each queue are taken out according to a predetermined scheduling method (for example, weighted round robin) and transmitted to the next device.
  • a predetermined scheduling method for example, weighted round robin
  • the L2SW / L3SW810 is preferably a node arranged on the terminal side of the network 800 (when the network 800 is composed of an access network and a core network, the access network). Further, as in the first embodiment, the priority control device 100a may be arranged as a proxy server that relays communication between the network 800 and the video distribution server 600.
  • the priority control device 100a includes a load information acquisition unit 101a, a communication quality acquisition unit 102a, a priority control unit 103a, and a mathematical model storage unit 104a.
  • the load information acquisition unit 101a acquires the load state for each priority in the L2SW / L3SW810.
  • the load information acquisition unit 101a has at least one of the queue usage rate, packet delay, packet loss rate, inflow communication amount (Incoming communication amount), and outflow communication amount (Outgoing communication amount) of each queue of L2SW / L3SW810. Described as acquiring one or more.
  • the communication quality acquisition unit 102a acquires the communication quality of the communication to be controlled as the communication load information. Similar to the first embodiment, in this embodiment as the communication quality, network QoS indicating the packet transmission quality and QoE indicating the user's perceived quality can be used.
  • the mathematical model storage unit 104a is used when the priority of the communication to be controlled is changed from X to Y under the "load state for each priority in the relay device (L2SW / L3SW810)" and the "load state”.
  • a mathematical model (learner) is created by using machine learning using supervised training data.
  • the priority control unit 103a lowers the priority of the communication to be controlled (for example, video distribution communication) when the required communication quality is satisfied under the load condition of the current relay device (L2SW / L3SW810). It is determined by using the above-mentioned mathematical model whether or not the required communication quality can be maintained. When the result of the determination is that the state in which the required communication quality is satisfied can be maintained, the priority control unit 103a performs an operation of lowering the priority of the communication to be controlled. Further, the priority control unit 103a sets the priority of the controlled communication (for example, video distribution communication) when the required communication quality is not satisfied under the current load condition of the relay device (L2SW / L3SW810).
  • the priority control unit 103a sets the priority of the controlled communication (for example, video distribution communication) when the required communication quality is not satisfied under the current load condition of the relay device (L2SW / L3SW810).
  • the priority control unit 103a performs an operation of raising the priority of the communication to be controlled. If the communication to be controlled (for example, video distribution communication) does not satisfy the required communication quality under the current load condition of the relay device (L2SW / L3SW810), the communication quality is improved by raising the priority. It may be determined whether it is possible or not. In this case, when it is determined that the communication quality can be improved, the operation of raising the priority of the communication to be controlled may be performed.
  • PCP in the above-mentioned VLAN tag field, DCSP or IP Precedence set in the TOS field in the IP header, or the like can be used.
  • the present invention can be suitably applied to the setting of the priority in the relay device of the wired communication system.
  • FIG. 8 is a diagram showing a configuration of a communication system including a priority control device according to a third embodiment of the present invention. Since the basic configuration of the priority control device 100b is the same as that of the first embodiment, the differences will be mainly described below.
  • the priority control device 100b includes a load information acquisition unit 101, a communication quality acquisition unit 102, a priority control unit 103b, a mathematical model storage unit 104, and a communication quality analysis unit 105.
  • the communication quality analysis unit 105 analyzes the communication quality of the priority-based queue provided in the relay device based on the queuing theory.
  • the communication quality to be analyzed is, for example, the average packet delay in each queue, the average packet loss rate, the average number of waiting packets, and the like.
  • the priority control unit 103b determines the priority of the communication to be controlled based on both the communication quality analyzed by the communication quality analysis unit 105 and the prediction result of the communication quality by the mathematical model stored in the mathematical model storage unit 104. decide.
  • FIG. 9 is a flowchart showing an example of the operation of the third embodiment of the present invention.
  • the communication quality analysis unit 105 acquires the communication volume of the communication arriving at each queue (Incoming communication) and the communication transmitted from the queue (Outgoing communication) for each priority queue of the relay device (base station 400) ( Step S101).
  • the Incoming communication amount and the Outgoing communication amount may be acquired from the relay device (base station 400) or from the O & M device 200.
  • the priority control device 100b is arranged as a proxy server that relays the communication between the LTE core network 300 and the video distribution server 600, the Income communication for each priority queue in the relay device (base station 400).
  • the amount and the amount of Outgoing communication may be measured by the priority control device 100b.
  • the priority control device 100b has a correspondence relationship between the communication packet relayed by the priority control device 100b, the relay device (base station 400) through which the communication packet passes, and the priority set in the communication packet. (Relationship) may be managed.
  • the priority control device 100b manages the correspondence (relationship) between the destination information and / or the source information of the communication packet, the relay device (base station 400) through which the communication packet passes, and the priority. May be good.
  • the communication quality analysis unit 105 assumes that the priority of specific communication is changed based on the acquisition result of the Income communication amount and the Outgoing communication amount for each priority queue, and the Income communication amount for each priority queue. And Outgoing traffic is predicted (step S102).
  • the Incoming traffic of queue 1 (priority 1) is V1
  • the Incoming traffic of queue 2 (priority 2) is V2
  • queue 3 is V3
  • the Incoming traffic of Queue 4 (Priority 4) is V4.
  • the Incoming communication amount of the communication to be controlled is Vt
  • the Income communication amount when the priority of the communication is changed from the priority 2 to the priority 3 is V1 for the queue 1 and V2-Vt for the queue 2.
  • Queue 3 can be predicted as V3 + Vt
  • Queue 4 can be predicted as V4.
  • the communication quality analysis unit 105 calculates the packet arrival distribution and the packet transmission distribution for each priority queue when it is assumed that the priority change is performed (step S103).
  • a predetermined probability distribution may be assumed for each of the Incoming communication and the Outgoing communication.
  • a Poisson distribution is assumed for both Incoming communication and Outgoing communication, and the parameters of the probability distribution are calculated based on the prediction results of Incoming communication amount and Outgoing communication amount.
  • the average arrival rate and average service time are calculated as parameters of the probability distribution.
  • the communication quality analysis unit 105 calculates the communication quality of each queue on the assumption that the priority change is performed using the probability distribution (step S104).
  • the communication quality here is, for example, an average packet delay, an average packet loss rate, an average number of waiting packets, and the like in each queue.
  • the communication quality may be calculated theoretically based on the above probability distribution, or may be calculated by a simulation method represented by the Monte Carlo method or the like based on the above probability distribution. Further, the communication quality analysis unit 105 may calculate the QoE based on the communication quality such as the average packet delay, the average packet loss rate, and the average number of waiting packets.
  • the communication quality analysis unit 105 determines whether or not the calculated communication quality of each queue can satisfy the required communication quality on the assumption that the priority change is performed (step S105).
  • the priority control unit 103b determines the priority of the communication to be controlled based on both the communication quality determination result based on the mathematical model and the communication quality determination result by the communication quality analysis unit 105 (step S106; Comprehensive judgment). For example, for the communication to be controlled (for example, video distribution communication), when the required communication quality is satisfied under the current load condition of the relay device, the required communication quality is satisfied even if the priority is lowered. Is determined by each of the mathematical model and the communication quality analysis unit. When the result that the required communication quality can be maintained is obtained in any of the determinations (“changeable” in step S106), the priority control unit 103b sets the priority for the communication to be controlled. The lowering operation is performed (step S107).
  • the priority control unit 103b raises the priority of the communication to be controlled (for example, video distribution communication) when the required communication quality is not satisfied under the current load condition of the relay device. Whether or not the required communication quality can be satisfied is determined by each of the mathematical model and the communication quality analysis unit. When the result that the required communication quality can be satisfied is obtained in any of the determinations (“changeable” in step S106), the priority control unit 103b performs an operation of raising the priority of the communication to be controlled (step). S107). In other cases, the priority control unit 103b determines that the change is unnecessary (“change not required” in step S106), and does not change the priority.
  • the priority control unit 103b determines that the change is unnecessary (“change not required” in step S106), and does not change the priority.
  • the priority can be determined based on both the mathematical model and the communication quality analysis unit 105. According to this embodiment, even when the number of training data is small and a highly accurate mathematical model cannot be generated, it is possible to improve the prediction accuracy of communication quality.
  • FIG. 10 is a diagram showing a configuration of a communication system including a priority control device according to a fourth embodiment of the present invention. Since the basic configuration of the priority control device 100c is the same as that of the first embodiment, the differences will be mainly described below.
  • the difference from the priority control device 100 of the first embodiment is that the mathematical model storage unit 104 is replaced with the mathematical model generation unit 104c.
  • the mathematical model generation unit 104c is configured to include the learner 700 shown in FIG. 4, and generates a mathematical model from the training data.
  • the present invention is not limited to the above-described embodiment, and the following modifications can be made.
  • the learning device (mathematical model) is prepared for each priority and for each control direction, but a learning device (mathematical model) may be prepared for each priority.
  • the "priority change amount" may be added to the feature data in the training data.
  • the "priority change amount" and the "current priority of the controlled communication” may be added to the feature data in the training data.
  • the priority of the controlled communication is changed from A to B
  • the bit rate (video bit rate) of the communication is used as the characteristic data of the communication to be controlled.
  • the video frame rate and the GOP (Group of Picture) size are used.
  • All encoding parameters such as resolution, or any combination may be included. This makes it possible to make a more precise determination.
  • the video distribution from the video distribution server 600 to the terminal 500 has been described as the control target, but other communications can also be the control target.
  • other communications can also be the control target.
  • streaming communication other than video (eg, voice, music, broadcasting, etc.)
  • file transfer WEB browsing, text chat, telephone, etc.
  • the direction of communication to be controlled is not limited to the downlink direction (communication from the video distribution server 600 to the terminal 500), but may be the uplink direction (communication from the terminal 500 to the video distribution server 600).
  • it can be applied to priority control when staff such as police and fire departments upload shooting data of the site.
  • the controlled target communication may be selected by using a specific rule.
  • the communication to be controlled may be selected based on the degree of deviation of the communication quality from the required communication quality and the amount of communication. For example, communication with a large amount of communication (or communication with a small amount of communication) may be preferentially selected, or communication with a large degree of deviation from the required communication quality of communication quality (or communication with a small amount of communication) may be preferentially selected. ..
  • the communication to be controlled is selected from “communication whose communication quality satisfies the required communication quality", and the communication to be controlled from “communication whose communication quality does not satisfy the required communication quality”.
  • the selection criteria of the communication to be controlled may be changed depending on the case of selecting. For example, when selecting the communication to be controlled from "communication whose communication quality satisfies the required communication quality", priority is given to the communication having a large amount of communication or a degree of exceeding the required communication quality. To do. On the other hand, when selecting the communication to be controlled from "communication whose communication quality does not satisfy the required communication quality", priority is selected from the communication with a small amount of communication or a degree of less than the required communication quality. To do.
  • the procedure shown in the first to fourth embodiments described above causes a computer (9000 in FIG. 11) that functions as priority control devices 100, 100a, 100b, 100c to realize the functions as these devices. It can be realized programmatically.
  • a computer is exemplified in a configuration including a CPU (Central Processing Unit) 9010, a communication interface 9020, a memory 9030, and an auxiliary storage device 9040 in FIG. That is, the CPU 9010 in FIG. 11 may execute the communication quality acquisition program and the priority control program, and update the calculation parameters held in the auxiliary storage device 9040 and the like.
  • a CPU Central Processing Unit
  • each part (processing means, function) of the priority control device shown in the first to fourth embodiments described above uses the hardware of the processor mounted on these devices to perform the above-mentioned processing. It can be realized by a computer program that executes.
  • the mathematical model of the priority control device described above is the communication when the priority of the communication to be controlled is changed from the second priority, which is the current priority, to the first priority. It can be a mathematical model showing the relationship between the quality and the communication load information when the priority of the communication is set to the second priority.
  • the priority control unit of the priority control device uses the mathematical model when the communication quality when the priority of the communication to be controlled is the second priority satisfies the predetermined condition.
  • the feature data including at least the communication load information for each priority in the relay device and the priority of the communication to be controlled are set as the first priority.
  • a mathematical model generated by machine learning can be obtained by using training data including a label indicating whether or not the communication quality of the communication to be controlled satisfies the predetermined condition.
  • the above-mentioned priority control device further It may include a mathematical model generation unit that generates a mathematical model.
  • the communication to be controlled by the priority control device described above may be streaming data transmitted using a PS-LTE (Public Safety Long Term Evolution) network.
  • PS-LTE Public Safety Long Term Evolution
  • the priority control unit of the priority control device described above When there are a plurality of communications to be controlled, the communication to be controlled is selected based on at least one of the communication volume and the degree of deviation of the communication quality acquired by the communication quality acquisition unit from the predetermined conditions. The composition can be taken.
  • a predetermined probability distribution is assumed for the communication packets input to each queue and the communication packets output from each queue, and the average packet delay, average packet loss rate, and average in each queue are assumed.
  • the priority control unit may have a configuration in which the mathematical model and the communication quality analysis unit are used in combination to obtain the first priority and set it as the priority of the communication to be controlled.
  • [9th form] (Refer to the priority control method from the second viewpoint above)
  • [10th form] (Refer to the computer program from the third viewpoint above) To execute.
  • the ninth to tenth forms can be developed into the second to eighth forms in the same manner as the first form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

制御対象の通信に対する優先度の適正化。優先度制御装置は、2以上の通信装置間の通信毎に設定される優先度に応じ、各通信に対する通信リソース割当を制御する中継装置における前記優先度毎の通信負荷情報を取得する負荷情報取得部と、制御対象の通信についての通信品質を取得する通信品質取得部と、前記制御対象の通信について、当該通信の優先度を第1の優先度に設定する前の前記通信負荷情報と、当該通信の優先度を前記第1の優先度に設定した場合の前記通信品質と、の関係性を示す数理モデルを用いて、前記制御対象の通信について、前記通信品質が所定の条件を満足可能な前記第1の優先度を求め、前記制御対象の通信の優先度として設定する優先度制御部と、を備える。

Description

優先度制御装置、優先度制御方法及びプログラム
 本発明は、優先度制御装置、優先度制御方法及びプログラムに関する。
 通信分野において、限られたネットワーク資源を有効に活用する方法として優先制御が知られている。
 この優先制御は、モバイル通信分野においては、基地局におけるスケジューリング技術として各種の方法が提案されている。例えば、非特許文献1には、「アプリケーション毎の許容遅延までの残り時間」および「残りデータサイズ」をもとに、各通信の優先度を決定する手法が開示されている。また、特許文献1には、一度定めた優先度に必ずしもとらわれずに、パケットを送信する際の状況等に応じて、臨機応変にチャネルを割り当てることができる通信方法が開示されている。具体的には、パケットを移動局に送信する伝送速度、基地局がパケットを取得してから該パケットを送信せずにいる時間、端末装置がパケットを送信した時からの経過時間等に基づいて、優先度に重み付けを行うことが開示されている。
 また、送信端末で優先度を制御する方法も多数提案されている。例えば、特許文献2には、ベストエフォート型のパケット転送サービスと、転送帯域及び転送遅延を保証したパケット転送サービスとを共に提供するネットワークにおける優先度の設定方法が開示されている。より具体的には、同文献記載の端末装置は、高優先通信について、最初は低優先度でパケットを送信する。そして、高優先度に変更したとしても品質劣化(パケットロス)が発生しないと予測された場合に、同文献記載の端末装置は、優先度を高優先度に設定する。この品質劣化の予測手法としては、高優先通信のトラヒック総量を求め、当該総量が有線リンク帯域を超えるか否かで品質劣化を予測することが開示されている。
 また、特許文献3には、パケット通信量やパケット通信品質を監視し、監視結果によりパケットの送出制御を行いトラヒック増大を防ぐことで、全体のスループットを向上させる方法が開示されている。より具体的には、同文献記載の端末装置は、通信品質の劣化が推定される場合に、特定の通信フローの優先度を下げることにより、他の通信フローの通信品質を守る動作を行う。また、同文献には、特定の通信フローの優先度を上げることにより、当該通信フローの通信品質を守ることも記載されている。
特許第3828431号公報 特許第3246380号公報 特許第3786935号公報
Marcus Haferkamp, Benjamin Sliwa, Christoph Ide and Christian Wietfeld, "Payload-Size and Deadline-Aware Scheduling for Time-critical Cyber Physical System", TU Dortmund University, 2017
 以下の分析は、本発明者によって与えられたものである。上記した非特許文献1、特許文献1の方法では、基地局の存在を前提としている上、そのスケジューラーに改造が必要となるため、適用分野が限られてしまうという問題点がある。また、特許文献2、3の方法では、端末側で優先度の増減を行うことになるが、精度よく品質劣化を予測することが困難であり、不適切な優先度の設定により品質劣化が発生する可能性が高いという問題点がある。
 本発明は、基地局のスケジューラー等の改造の必要がなく、また、制御対象の通信に対し設定する優先度の適正化に貢献できる優先度制御装置、優先度制御方法及びプログラムを提供することを目的とする。
 第1の視点によれば、2以上の通信装置間の通信毎に設定される優先度に応じ、各通信に対する通信リソース割当を制御する中継装置における前記優先度毎の通信負荷情報を取得する負荷情報取得部と、制御対象の通信についての通信品質を取得する通信品質取得部と、前記制御対象の通信について、当該通信の優先度を第1の優先度に設定する前の前記通信負荷情報と、当該通信の優先度を前記第1の優先度に設定した場合の前記通信品質と、の関係性を示す数理モデルを用いて、前記制御対象の通信について、前記通信品質が所定の条件を満足可能な前記第1の優先度を求め、前記制御対象の通信の優先度として設定する優先度制御部と、を備える優先度制御装置が提供される。
 第2の視点によれば、2以上の通信装置間の通信毎に設定される優先度に応じ、各通信に対する通信リソース割当を制御する中継装置における前記優先度毎の通信負荷情報を取得し、制御対象の通信についての通信品質を取得し、前記制御対象の通信について、当該通信の優先度を第1の優先度に設定する前の前記通信負荷情報と、当該通信の優先度を前記第1の優先度に設定した場合の前記通信品質と、の関係性を示す数理モデルを用いて、前記制御対象の通信について、前記通信品質が所定の条件を満足可能な前記第1の優先度を求め、前記制御対象の通信の優先度として設定する、優先度制御方法が提供される。本方法は、制御対象の通信の優先度を設定する優先度設定装置という、特定の機械に結びつけられている。
 第3の視点によれば、上記した優先度設定装置の機能を実現するためのコンピュータプログラムが提供される。このプログラムは、コンピュータ装置に入力装置又は外部から通信インターフェースを介して入力され、記憶装置に記憶されて、プロセッサを所定のステップないし処理に従って駆動させ、必要に応じ中間状態を含めその処理結果を段階毎に表示装置を介して表示することができ、あるいは通信インターフェースを介して、外部と交信することができる。そのためのコンピュータ装置は、一例として、典型的には互いにバスによって接続可能なプロセッサ、記憶装置、入力装置、通信インターフェース、及び必要に応じ表示装置を備える。また、このプログラムは、コンピュータが読み取り可能な(非トランジトリーな)記憶媒体に記録することができる。
 本発明によれば、簡便な構成で、制御対象の通信に対し設定する優先度の適正化に貢献できる優先度制御装置、優先度制御方法及びプログラムが提供される。
本発明の一実施形態の構成を示す図である。 本発明の第1の実施形態の優先度制御装置を含んだ通信システムの構成を示す図である。 本発明の第1の実施形態の優先度制御装置が取得する負荷情報を説明するための図である。 本発明の第1の実施形態で用いる数理モデルの生成方法を説明するための図である。 本発明の第1の実施形態で用いる数理モデルを生成するための教師データの一例示す図である。 本発明の第1の実施形態の優先度制御装置の動作の一例を表したフローチャートである。 本発明の第2の実施形態の優先度制御装置を含んだ通信システムの構成を示す図である。 本発明の第3の実施形態の優先度制御装置を含んだ通信システムの構成を示す図である。 本発明の第3の実施形態の動作の一例を表したフローチャートである。 本発明の第4の実施形態の優先度制御装置を含んだ通信システムの構成を示す図である。 本発明の優先度制御装置を構成するコンピュータの構成を示す図である。
 はじめに本発明の一実施形態の概要について図面を参照して説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではない。また、以降の説明で参照する図面等のブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。プログラムはコンピュータ装置を介して実行され、コンピュータ装置は、例えば、プロセッサ、記憶装置、入力装置、通信インターフェース、及び必要に応じ表示装置を備える。また、このコンピュータ装置は、通信インターフェースを介して装置内又は外部の機器(コンピュータを含む)と、有線、無線を問わず、通信可能に構成される。また、図中の各ブロックの入出力の接続点には、ポート乃至インターフェースがあるが図示を省略する。また、以下の説明において、「A及び/又はB」は、A又はB、若しくは、A及びBという意味で用いる。
 本発明は、その一実施形態において、図1に示すように、負荷情報取得部11と、通信品質取得部12と、優先度制御部13と、を備える優先度制御装置10にて実現できる。
 より具体的には、負荷情報取得部11は、2以上の通信装置間の通信毎に設定される優先度に応じ、各通信に対する通信リソース割当を制御する中継装置(例えば、モバイル網の基地局)における優先度毎の通信負荷情報を取得する。
 通信品質取得部12は、制御対象の通信についての通信品質を取得する。この通信品質としては、パケット伝送品質を示すネットワークQoS(Quality of Service)、例えば、パケットロス率、パケット遅延、ジッタ、スループット、リオーダー(reorder)率などを用いることができる。また、通信品質としては、ユーザーの体感品質を示すQoE(Quality of Experience)などを用いることもできる。
 優先度制御部13は、数理モデル14を用いて、前記制御対象の通信について、前記通信品質が所定の条件を満足可能な優先度を求め、前記制御対象の通信の優先度として設定する。この数理モデル14は、前記制御対象の通信について、当該通信の優先度を所定値に設定する前の前記通信負荷情報と、当該通信の優先度を前記所定値に設定した場合の前記通信品質と、の関係性を示すモデルである。この数理モデル14に各パラメーター(例えば、優先度毎の通信負荷情報)を入力することで、当該通信の優先度を所定値に設定した場合に、当該通信の通信品質が前記所定の条件を満足可能か否かを判定することができる。
 上記構成による優先度制御装置10は、優先度毎の通信負荷情報を取得すると、優先度制御部13にて、数理モデル14を用いて、制御対象の通信に設定すべき優先度を求める。これにより、制御対象の通信に対し設定する優先度を適正化することが可能となる。
[第1の実施形態]
 続いて、本発明を、Public Safety向けに通信サービスを提供するPS-LTEシステムに適用した第1の実施形態について図面を参照して詳細に説明する。図2は、本発明の第1の実施形態の優先度制御装置を含んだ通信システムの構成を示す図である。なお、LTEは、Long Term Evolutionの略である。
 図2を参照すると、LTEコア網300、基地局400及びO&M装置200を含んで構成されたPS-LTEシステムに、優先度制御装置100を追加した構成が示されている。
 O&M装置200は、運用保守(Operation and Maintenance)装置とも呼ばれる機器である。本実施形態では、中継装置である基地局400における優先度毎の負荷情報を、優先度制御装置100に提供する役割を担う。O&M装置の代わりに、基地局400を監視または管理する機能を担う装置、例えばOAM(Operation,Administration and Maintenance)装置、NMS(Network Management System)装置、EMS(Element Management System)装置を用いてもよい。
 LTEコア網300は、PCRF301、MME302、HSS303、S-GW304及びP-GW305を含み、EPC(Evolved Packet Core)とも記される。PCRF301は、Policy and Charging Rules Functionの略であり、ユーザーデータのQoSや課金のための制御を行う機能を担うノードである。MME302は、Mobility Management Entityの略であり、端末500の位置登録や、呼出、基地局間ハンドオーバなどのモビリティ管理を行うノードである。HSS303は、Home Subscriber Serverの略であり、ユーザー情報を管理し、MME302からの要求に応じてユーザー情報を提供する。S-GW304は、Serving GateWayの略であり、ユーザーデータを扱うゲートウェイである。P-GW305は、Packet data network GateWayの略であり、インターネット等の外部ネットワークへ接続するためのゲートウェイである。なお、図2の例では、PCRF301が、LTEコア網300内に配置されているが、PCRF301はLTEコア網300の外側に配置されていてもよい。
 基地局400は、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)と呼ばれる無線ネットワークを構成する。本実施形態では、この基地局400が、各通信に対する通信リソース割当を制御する中継装置として機能する。
 端末500は、PS-LTEを利用する警察や消防等の職員が利用する端末である。端末500には、映像配信サーバー600に映像を配信するため、もしくは映像配信サーバー600から配信された映像を受信するためのアプリケーションを有してもよい。また、映像配信通信のパケット伝送品質を示すネットワークQoS(Quality of Service)、例えば、パケットロス率、パケット遅延、ジッタ、スループット、リオーダー(reorder)率などの情報を、所定のプロトコルに従い送信する機能を有してもよい。
 映像配信サーバー600は、端末500からの要求に応じて、ストリーミング映像を送信し、または、端末500からストリーミング映像のアップロードを受け付けるサーバーである。映像配信サーバー600は、端末500や優先度制御装置100とは異なる装置として構成してもよいし、端末500や優先度制御装置100の一部として構成してもよい。
 優先度制御装置100は、負荷情報取得部101、通信品質取得部102、優先度制御部103及び数理モデル記憶部104を備える。なお、優先度制御装置100と他の装置との接続形態は図2に示した形態に限定されず、他の形態であってもよい。例えば、LTEコア網300と映像配信サーバー600との間の通信を中継するプロキシサーバーとして、優先度制御装置100を配置してもよい。
 負荷情報取得部101は、通信の負荷状態を表す通信負荷情報として、基地局400における優先度毎の負荷状態を取得する。本実施形態では、負荷情報取得部101は、優先度毎の負荷状態として、O&M装置200からQCI(QoS Class Identifier)毎のアクティブユーザ数やResource Block(RB)使用率のうち事前に定めたものを取得するものとして説明する。なお、RB使用率及びアクティブユーザ数は、3GPP TS 36.314において「PRB usage per traffic class」、「Number of Active UEs in the DL/UL per QCI」と規定されている値を用いることができる。なお、負荷情報取得部101は、3GPP TS 36.314に規定されている以下の情報を負荷状態として取得してもよい。
・パケット遅延(Packet Delay in the DL per QCI)
・パケットロス率(Packet Discard Rate in the DL per QCI, Packet Uu Loss Rate in the DL per QCI, Packet Loss Rate in the UL per QCI)
 通信負荷情報は、上記に限られたものではなく、CPU等の処理装置の使用率、キューやメモリの使用率、キューやメモリ内のデータ量、流入通信量(流入データ量)、通信回線帯域の使用率などを含む、通信の負荷を直接的または間接的に示す情報を用いることができる。
 図3は、本発明の第1の実施形態の優先度制御装置が取得する負荷情報を説明するための図である。図中の数値1~4がQCIを示している。また、図中の符号Pはパケットを表している。図3の例では、QCI=2が高負荷であり、QCI=1が低負荷となる。なお、1~4のQCIを使用するのは単なる例示であり、これに限定するものではない。3GPPで規定された全てのQCIを用いても良いし、GBR用のQCIのみを用いてもよいし、Non-GBR用のQCIのみを用いてもよい。
 通信品質取得部102は、制御対象の通信の通信品質を取得する。通信品質としては、パケット伝送品質を示すネットワークQoS(Quality of Service)、例えば、パケットロス率、パケット遅延、ジッタ、スループット、リオーダー(reorder)率などを用いることができる。通信品質取得部102は、例えば、RTCP(Real-time Transport Control Protocol)を用いて、制御対象の通信に関するネットワークQoSを端末500から取得する。また、通信品質として、ユーザーの体感品質を示すQoE(Quality of Experience)を用いることもできる。例えば、映像のQoE評価手法としては、基準映像との直接比較に基づく評価手法(Full Reference法)、基準映像から抽出した特徴量を使用した評価手法(Reduced Reference法)、評価映像のみを使用した評価手法(No Reference法)などを用いることができる。さらに、QoEの評価手法としては、上述のネットワークQoSからQoEを推定する手法を採ることができる。例えば、パケットロス率をL、ジッタをG、リオーダー率をRとして、αL+βG+γRなどとしてQoEを評価してもよい。ここで、α、β、γは所定の定数である。
 数理モデル記憶部104は、「中継装置(基地局400)におけるQCI毎の負荷状態」と「当該負荷状態のもとで、制御対象の通信のQCIをXからYに変更した際の当該通信の通信品質」との関係性をモデル化した数理モデルを記憶する。本実施形態では、教師ありの訓練データを用いた機械学習を用いて数理モデル(学習器)を作成するものとする。
 図4は、本発明の第1の実施形態で用いる数理モデルの生成方法(学習フェーズ)を説明するための図である。図4の例では、学習器700は、L1,L2,L3,L4,ビットレート(bitrate)を含む特徴データと、教師ラベル(T)とで構成された訓練データとを用いて、数理モデルを生成する。ここで、L1,L2,L3,L4は、QCI=1~4の負荷状態を示す数値である。また、「ビットレート」は、注目する(制御対象となりうる)映像配信通信のビットレートであり、制御対象の通信の特徴量として用いている。また、学習器700としては、Gaussian Naive Bayes、ランダムフォレスト、SVM(Support vector machine)、ニューラルネットワークを用いた学習器が挙げられる。
 図5は、本発明の第1の実施形態で用いる数理モデルを生成するための訓練データの一例を示す図である。例えば、図3(図5)に示す負荷状態において、ある通信のQCIをXからY(例えば図5の白丸で表した通信のQCIを2から3)に変更した場合の通信品質が、所定の条件(所要通信品質)を満たす場合、教師ラベル(T)として1(変更可)を設定する。一方、ある通信のQCIをXからY(例えば図5の白丸で表した通信のQCIを2から3)に変更した場合の通信品質が、所定の条件(所要通信品質)を満たさない場合、教師ラベル(T)として0(変更不可)を設定する。このような訓練データを用いて数理モデルを生成することにより、例えば、図3に示す負荷状態において、ある通信のQCIをXからYに変更した場合に、所要通信品質を満たすことができるか否かについての精度の高い予測結果が得られる。なお、教師ラベルの付与方法として、上述のように所要通信品質を満足するか否かで教師ラベルを分ける以外に、通信品質が改善するか否かで教師ラベルを分けてもよい。また、訓練データは、実際の通信システム上で実際に優先度変更を実施し、通信品質および優先度毎の通信負荷情報を収集することで作成することができる。また、実際の通信システムを使用する代わりに、当該通信システムを模擬したシミュレータを用いて、シミュレータ内で優先度変更を実施して訓練データを作成してもよい。
 さらに、本実施形態では、より少ない訓練データ(データセット、データレコード)の数で数理モデルを生成するために、優先度(QCI)毎かつ制御方向(優先度増加方向または減少方向)毎に、学習器(数理モデル)を用意することとしている。従って、優先度Nが設定された通信の優先度制御用には、優先度増加方向の学習器(数理モデル)と優先度減少方向の学習器(数理モデル)を用意することになる。もちろん、優先度Nが上限値の場合、優先度増加方向の学習器(数理モデル)を用意する必要はない。また、優先度Nが下限値の場合、優先度減少方向の学習器(数理モデル)を用意する必要はない。
 優先度制御部103は、制御対象の通信(例えば、映像配信通信)について、現在の中継装置の負荷状況の下で所要通信品質を満足している場合、優先度を下げても所要通信品質を満足している状態を維持できるか否かを、上記した数理モデルを用いて判定する。前記判定の結果、所要通信品質を満足している状態を維持できるとの結果が得られた場合、優先度制御部103は、制御対象の通信について優先度を下げる動作を行う。また、優先度制御部103は、制御対象の通信(例えば、映像配信通信)について、現在の中継装置の負荷状況の下で所要通信品質を満足していない場合、優先度を上げることにより所要通信品質を満足できるか否かを判定してもよい。前記判定の結果、所要通信品質を満足できるとの結果が得られた場合、優先度制御部103は、制御対象の通信について優先度を上げる動作を行う。
 これにより、優先度制御部103は、制御対象の通信の優先度が第1の優先度のときに当該通信の通信品質が所定の条件を満足している場合、数理モデルを用いて、所要通信品質を満足可能な第2の優先度の中から、最も低い優先度を求めることができる。
 本実施形態では、優先度制御部103は、一例として、PCRF301の標準インターフェースであるRx-Interfaceを介して優先度の変更を指示する。従って、本実施形態では、基地局400のスケジューラーへの改造は不要となる。なお、Rx-Interfaceを介してPCRF301に指示する優先度は、優先度の他、優先度に変換可能な情報であってもよい。例えば、上述のQCIや、メディア情報(media type)であってもよい。
 続いて、本実施形態の動作について図面を参照して詳細に説明する。図6は、本発明の第1の実施形態の優先度制御装置100の動作の一例を表したフローチャートである。図6を参照すると、まず、優先度制御装置100は、制御対象の通信を選択する(ステップS001)。以下の説明では、優先度制御装置100は、制御対象の通信として、映像配信サーバー600から端末500に向けて送信される映像配信通信を選択するものとする。もちろん、制御対象の通信は、映像配信通信以外の通信であってもよい。
 次に、優先度制御装置100は、当該通信について、通信品質取得部102にて取得した通信品質を参照し、所要通信品質を満たしているか否かを判定する(ステップS002、S003)。
 前記判定の結果、通信品質が所要通信品質を満たしていると判定された場合、優先度制御装置100は、数理モデルを用いて、優先度の減少可否を判定する(ステップS004、S005)。具体的には、優先度制御装置100は、数理モデルに、負荷情報取得部101から得られた優先度毎の負荷情報と制御対象の映像配信通信のビットレートを含む特徴データを入力し、制御対象の通信の優先度を減少しても所要通信品質を満足している状態を維持可能か否かの判定結果を得る。ここで使用する数理モデルとしては、制御対象の通信の優先度を減少可能か否か判定するための数理モデルが使用される。
 前記判定の結果、優先度を減少しても、制御対象の通信について所要通信品質を満足している状態を維持可能との判定結果が得られた場合(ステップS005のYes)、優先度制御装置100は、制御対象の通信の優先度を減少する(ステップS006)。一方、優先度を減少した場合に制御対象の通信について所要通信品質を満足できないとの判定結果が得られた場合、優先度制御装置100は、制御対象の通信の優先度を変更しない(ステップS005のNo)。
 一方、ステップS003で、通信品質が所要通信品質を満足していないと判定された場合、優先度制御装置100は、数理モデルを用いて、優先度の増大可否を判定する(ステップS007、S008)。具体的には、優先度制御装置100は、数理モデルに、負荷情報取得部101から得られた優先度毎の負荷情報と制御対象の映像配信通信のビットレートを含む特徴データを入力し、制御対象の通信の優先度を増大することにより所要通信品質を満足可能か否かの判定結果を得る。ここで使用する数理モデルとしては、制御対象の通信の優先度を増大可能か否か判定するための数理モデルが使用される。なお、ここで使用する数理モデルは、制御対象の通信の優先度を増大することにより通信品質が改善可能か否かを判定するものであってもよい。
 前記判定の結果、優先度を増大することにより制御対象の通信について所要通信品質を満足可能との判定結果が得られた場合(ステップS008のYes)、優先度制御装置100は、制御対象の通信の優先度を増大する(ステップS009)。一方、優先度を増大しても制御対象の通信について所要通信品質を満足できないとの判定結果が得られた場合、優先度制御装置100は、制御対象の通信の優先度を変更しない(ステップS008のNo)。
 以上のように、本実施形態の優先度制御装置100によれば、精度よく優先度変更後の通信品質を予測し、中継装置(基地局)側の改造を行うことなく、制御対象の通信に適切な優先度を設定することが可能となる。また、このような優先度制御装置100は、利用可能な周波数帯域が一般的な民間向け商用LTEよりも狭いPS-LTEに好適に適用することができる。より具体的には、PS-LTEでやり取りされる様々な通信のうち、災害や事故現場から指令本部への映像配信、ドローン(UAV:Unmanned Aerial Vehicle)の空撮映像の隊員への配信など、所要の通信品質を確保する必要のある通信について最適な優先度を設定することも可能となる。
[第2の実施形態]
 上記した第1の実施形態では、PS-LTEへの適用を前提としたが、本発明は、LTEのみならず、その他の無線通信システムや有線通信システムにも適用することができる。続いて、本発明を有線通信システムに適用した第2の実施形態について説明する。図7は、本発明の第2の実施形態の優先度制御装置を含んだ通信システムの構成を示す図である。優先度制御装置100aの基本的な構成は第1の実施形態と同様であるため、以下、その相違点を中心に説明する。
 図7を参照すると、レイヤ2スイッチ(L2SW)及び/又はレイヤ3スイッチ(L3SW)810で構成されたネットワーク800を介して、端末500と映像配信サーバー600とが接続された構成が示されている。そして、優先度制御装置100aは、L2SW/L3SW810に接続されている。優先度制御装置100aが接続するL2SW/L3SW810は、優先制御機能を有する中継装置である。ここでの優先制御機能とは、データリンク層で実現されるものであってもよいし、ネットワーク層やトランスポート層で実現されるものであってもよい。例えば、IEEE802.11pで規定された、VLANタグフィールド内のPCP(Priority Code Point)を用いて優先制御を行ってもよい。また、IPヘッダ内のTOS(Type of Service)フィールドに設定されたDSCP(Differentiated Services Code Point)やIP Precedenceを用いて優先制御を行ってもよい。具体的な優先制御としては、優先度に応じた、分類、キューイング、スケジューリングなどを用いることができる。例えば、L2SW/L3SW810は、優先度毎のキューを用意しておく。そして、受信したパケットを、当該パケットに設定された優先度に応じて適切なキューに分類する。さらに、各キューに格納されたパケットを所定のスケジューリング方式(例えば、重み付きラウンドロビン)に従い取り出し、次装置に向けて送信する。
 なお、L2SW/L3SW810としては、ネットワーク800の端末側(ネットワーク800がアクセス網とコア網から構成される場合にはアクセス網)に配置されたノードであることが好ましい。また、第1の実施形態と同様、優先度制御装置100aは、ネットワーク800と映像配信サーバー600との間の通信を中継するプロキシサーバーとして配置されてもよい。
 優先度制御装置100aは、負荷情報取得部101a、通信品質取得部102a、優先度制御部103a及び数理モデル記憶部104aを備える。
 負荷情報取得部101aは、L2SW/L3SW810における優先度毎の負荷状態を取得する。本実施形態では、負荷情報取得部101aは、L2SW/L3SW810の各キューのキュー使用率、パケット遅延、パケットロス率、流入通信量(Incoming通信量)、流出通信量(Outgoing通信量)の少なくとも1つ以上を取得するものとして説明する。
 通信品質取得部102aは、通信負荷情報として、制御対象の通信の通信品質を取得する。第1の実施形態と同様、本実施形態においても、通信品質としては、パケット伝送品質を示すネットワークQoSやユーザーの体感品質を示すQoEを用いることができる。
 数理モデル記憶部104aは、「中継装置(L2SW/L3SW810)における優先度毎の負荷状態」と「当該負荷状態のもとで、制御対象の通信の優先度をXからYに変更した際の当該通信の通信品質」との関係性をモデル化した数理モデルを記憶する。本実施形態では、教師ありの訓練データを用いた機械学習を用いて数理モデル(学習器)を作成するものとする。
 優先度制御部103aは、制御対象の通信(例えば、映像配信通信)について、現在の中継装置(L2SW/L3SW810)の負荷状況の下で所要通信品質を満足している場合、優先度を下げても所要通信品質を満足している状態を維持できるか否かを、上記した数理モデルを用いて判定する。前記判定の結果、所要通信品質を満足している状態を維持できるとの結果が得られた場合、優先度制御部103aは、制御対象の通信について優先度を下げる動作を行う。また、優先度制御部103aは、制御対象の通信(例えば、映像配信通信)について、現在の中継装置(L2SW/L3SW810)の負荷状況の下で所要通信品質を満足していない場合、優先度を上げることにより所要通信品質を満足できるか否かを判定してもよい。前記判定の結果、所要通信品質を満足できるとの結果が得られた場合、優先度制御部103aは、制御対象の通信について優先度を上げる動作を行う。なお、制御対象の通信(例えば、映像配信通信)について、現在の中継装置(L2SW/L3SW810)の負荷状況の下で所要通信品質を満足していない場合、優先度を上げることにより通信品質が改善可能か否かを判定してもよい。この場合、通信品質が改善可能と判定された場合に、制御対象の通信について優先度を上げる動作を行うようにしてもよい。
 優先度制御部103aが制御する優先度としては、上述のVLANタグフィールド内のPCP、IPヘッダ内のTOSフィールドに設定されたDSCPやIP Precedenceなどを用いることができる。
 本実施形態の動作は第1の実施形態と同様であるため説明を省略する。上記した優先度制御装置100aの各部の動作からも明らかなように、本発明は、有線通信システムの中継装置における優先度の設定にも好適に適用できる。
[第3の実施形態]
 続いて、上記した優先度制御装置に、待ち行列理論を用いて通信品質を解析する通信品質解析機能を追加した第3の実施形態について説明する。図8は、本発明の第3の実施形態の優先度制御装置を含んだ通信システムの構成を示す図である。優先度制御装置100bの基本的な構成は第1の実施形態と同様であるため、以下、その相違点を中心に説明する。
 図8を参照すると、優先度制御装置100bは、負荷情報取得部101、通信品質取得部102、優先度制御部103b、数理モデル記憶部104及び通信品質解析部105を備える。
 通信品質解析部105は、待ち行列理論に基づき、中継装置に設けられた優先度別キューの通信品質を解析する。解析する通信品質は、例えば、各キューにおける平均パケット遅延、平均パケットロス率、平均待ちパケット数などである。
 優先度制御部103bは、通信品質解析部105が解析した通信品質と、数理モデル記憶部104が記憶する数理モデルによる通信品質の予測結果との双方に基づいて、制御対象の通信の優先度を決定する。
 続いて、本実施形態の動作について図面を参照して詳細に説明する。図9は、本発明の第3の実施形態の動作の一例を表したフローチャートである。通信品質解析部105は、中継装置(基地局400)の優先度別キューについて、各キューに到着する通信(Incoming通信)とキューから送信される通信(Outgoing通信)の通信量をそれぞれ取得する(ステップS101)。Incoming通信量およびOutgoing通信量は、中継装置(基地局400)から取得してもよいし、O&M装置200から取得してもよい。また、優先度制御装置100bが、LTEコア網300と映像配信サーバー600との間の通信を中継するプロキシサーバーとして配置される場合、中継装置(基地局400)における優先度別キュー毎のIncoming通信量およびOutgoing通信量を、優先度制御装置100bが測定してもよい。この場合、優先度制御装置100bは、優先度制御装置100bにより中継される通信パケットと、当該通信パケットが経由する中継装置(基地局400)および当該通信パケットに設定される優先度との対応関係(関係性)を管理してもよい。例えば、優先度制御装置100bは、通信パケットの宛先情報及び/又は送信元情報と、当該通信パケットが経由する中継装置(基地局400)および優先度との対応関係(関係性)を管理してもよい。
 通信品質解析部105は、優先度別キュー毎のIncoming通信量およびOutgoing通信量の取得結果をもとに、特定通信の優先度を変更したと仮定した場合における優先度別キュー毎のIncoming通信量およびOutgoing通信量を予測する(ステップS102)。一例として、中継装置(基地局400)における優先度別キューが4つあり、キュー1(優先度1)のIncoming通信量がV1、キュー2(優先度2)のIncoming通信量がV2、キュー3(優先度3)のIncoming通信量がV3、キュー4(優先度4)のIncoming通信量がV4の場合を考える。この場合、制御対象の通信のIncoming通信量をVtとすると、当該通信の優先度を優先度2から優先度3に変更した際のIncoming通信量を、キュー1はV1、キュー2はV2-Vt、キュー3はV3+Vt、キュー4はV4として予測できる。
 通信品質解析部105は、上記予測結果をもとに、上記優先度変更を実施したと仮定した場合における、優先度別キュー毎のパケット到着分布およびパケット送信分布を算出する(ステップS103)。このとき、Incoming通信とOutgoing通信のそれぞれに、所定の確率分布を仮定してもよい。例えば、Incoming通信とOutgoing通信の両者にポアソン分布を仮定し、当該確率分布のパラメーターを、Incoming通信量およびOutgoing通信量の予測結果をもとに算出する。例えば、ポアソン分布の場合、確率分布のパラメーターとして、平均到着率や平均サービス時間を算出する。
 通信品質解析部105は、上記確率分布を用いて、上記優先度変更を実施したと仮定した場合における、各キューの通信品質を算出する(ステップS104)。ここでの通信品質とは、例えば、各キューにおける平均パケット遅延、平均パケットロス率、平均待ちパケット数などである。なお、通信品質は、上記確率分布をもとに理論解析的に算出してもよいし、上記確率分布をもとにモンテカルロ法等に代表されるシミュレーション手法によって算出してもよい。さらに、通信品質解析部105は、平均パケット遅延、平均パケットロス率、平均待ちパケット数などの通信品質をもとに、QoEを算出してもよい。

 通信品質解析部105は、上記優先度変更を実施したと仮定した場合に、算出した各キューの通信品質が所要通信品質を満足可能か否かを判定する(ステップS105)。
 優先度制御部103bは、数理モデルに基づく通信品質の判定結果と、通信品質解析部105による通信品質の判定結果との双方に基づいて、制御対象の通信の優先度を決定する(ステップS106;総合判定)。例えば、制御対象の通信(例えば、映像配信通信)について、現在の中継装置の負荷状況の下で所要通信品質を満足している場合、優先度を下げても所要通信品質を満足している状態を維持できるか否かを、数理モデルと通信品質解析部のそれぞれで判定する。いずれの判定においても所要通信品質を満足している状態を維持できるとの結果が得られた場合(ステップS106の「変更可」)、優先度制御部103bは、制御対象の通信について優先度を下げる動作を行う(ステップS107)。他の一例として、優先度制御部103bは、制御対象の通信(例えば、映像配信通信)について、現在の中継装置の負荷状況の下で所要通信品質を満足していない場合、優先度を上げることにより所要通信品質を満足できるか否かを、数理モデルと通信品質解析部のそれぞれで判定する。いずれの判定においても所要通信品質を満足できるとの結果が得られた場合(ステップS106の「変更可」)、優先度制御部103bは、制御対象の通信について優先度を上げる動作を行う(ステップS107)。それ以外の場合、優先度制御部103bは、変更不要と判定し(ステップS106の「変更不要」)、優先度の変更を行わない。
 以上のように、通信品質解析部105を追加した構成によれば、数理モデルと通信品質解析部105の双方に基づいて優先度を決定することができる。本実施形態によれば、訓練データの数が少なく、精度の高い数理モデルを生成できない場合においても、通信品質の予測精度を向上させることが可能となる。
[第4の実施形態]
 続いて、上記した優先度制御装置に、数理モデルの生成機能を追加した第4の実施形態について説明する。図10は、本発明の第4の実施形態の優先度制御装置を含んだ通信システムの構成を示す図である。優先度制御装置100cの基本的な構成は第1の実施形態と同様であるため、以下、その相違点を中心に説明する。
 第1の実施形態の優先度制御装置100との相違点は、数理モデル記憶部104が、数理モデル生成部104cに置き換えられている点である。数理モデル生成部104cは、図4に示した学習器700を含んで構成され、訓練データから数理モデルを生成する。
 以上のように、優先度制御装置100cに数理モデル生成機能を追加した構成によれば、訓練データを用いて数理モデルを生成または更新することが可能となる。
 以上、本発明の各実施形態を説明したが、本発明は、上記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形・置換・調整を加えることができる。例えば、各図面に示したネットワーク構成、各要素の構成、データの表現形態は、本発明の理解を助けるための一例であり、これらの図面に示した構成に限定されるものではない。
 本発明は、上記した実施形態に限られず、以下のような変形実施を施すことが可能である。
[学習器(数理モデル)の構成方法]
 上記した実施形態では、優先度毎かつ制御方向毎に学習器(数理モデル)を用意するものとして説明したが、優先度毎に学習器(数理モデル)を用意してもよい。この場合、訓練データ中の特徴データに「優先度変更量」を追加してもよい。制御対象の通信について優先度をAからBに変更する場合、優先度A用の学習器に対し、優先度毎の通信負荷情報および優先度変更量(=B-A)を含む特徴データを入力することで、当該優先度変更を実施した際に制御対象の通信の通信品質が所要通信品質を満足可能か否かを予測することができる。
 さらに、優先度毎に学習器(数理モデル)を用意する代わりに、全体で1つの学習器(数理モデル)を用意する構成とすることもできる。この場合、訓練データ中の特徴データに「優先度変更量」と「制御対象通信の現在の優先度」を追加してもよい。制御対象の通信について優先度をAからBに変更する場合、学習器に対し、優先度毎の通信負荷情報、優先度変更量(=B-A)、および制御対象の通信の現在の優先度(=A)を含む特徴データを入力することで、当該優先度変更を実施した際に制御対象の通信の通信品質が所要通信品質を満足可能か否かを予測することができる。
 上記した実施形態では、制御対象の通信の特徴データとして、当該通信のビットレート(映像ビットレート)を用いるものとして説明したが、ビットレートに加えて、映像フレームレート、GOP(Group of Picture)サイズ、解像度などのエンコーディングパラメータの全て、あるいは任意の組み合わせを含めてもよい。これにより、より精緻な判定を行うことが可能となる。
[制御対象通信の種類]
 上記した実施形態では、映像配信サーバー600から端末500向けの映像配信を制御対象とするものとして説明したが、その他の通信も、制御対象とすることができる。例えば、映像以外のストリーミング通信(例:音声、音楽、放送など)に加え、ファイル転送、WEBブラウジング、テキストチャット、電話などを制御対象とすることができる。
 また、制御対象とする通信の方向は、下り方向(映像配信サーバー600から端末500への通信)に限定されず、上り方向(端末500から映像配信サーバー600への通信)であってもよい。例えば、警察や消防等の職員が現場の撮影データをアップロードする際の優先制御にも適用可能である。
[制御対象通信の選択]
 上記した実施形態の図6のステップS001において、制御対象の通信が複数ある場合、特定のルールを用いて、制御対象の通信を選択してもよい。例えば、通信品質の所要通信品質からの乖離度合や通信量をもとに、制御対象の通信を選択してもよい。例えば、通信量が多い通信(あるいは少ない通信)から優先的に選択してもよいし、通信品質の所要通信品質からの乖離度合が大きい通信(あるいは小さい通信)から優先的に選択してもよい。
 また、「通信品質が所要通信品質を満足している通信」の中から制御対象の通信を選択する場合と、「通信品質が所要通信品質を満足していない通信」の中から制御対象の通信を選択する場合とで、制御対象の通信の選択基準を変えても良い。例えば、「通信品質が所要通信品質を満足している通信」の中から制御対象の通信を選択する場合、通信量が多い、または所要通信品質を上回っている度合が大きい通信から優先的に選択する。一方、「通信品質が所要通信品質を満足していない通信」の中から制御対象の通信を選択する場合、通信量が少ない、または所要通信品質を下回っている度合が小さい通信から優先的に選択する。
 また、上記した第1~第4の実施形態に示した手順は、優先度制御装置100、100a、100b、100cとして機能するコンピュータ(図11の9000)に、これらの装置としての機能を実現させるプログラムにより実現可能である。このようなコンピュータは、図11のCPU(Central Processing Unit)9010、通信インターフェース9020、メモリ9030、補助記憶装置9040を備える構成に例示される。すなわち、図11のCPU9010にて、通信品質取得プログラムや優先度制御プログラムを実行し、その補助記憶装置9040等に保持された各計算パラメーターの更新処理を実施させればよい。
 即ち、上記した第1~第4の実施形態に示した優先度制御装置の各部(処理手段、機能)は、これらの装置に搭載されたプロセッサに、そのハードウェアを用いて、上記した各処理を実行させるコンピュータプログラムにより実現することができる。
 最後に、本発明の好ましい形態を要約する。
[第1の形態]
 (上記第1の視点による優先度制御装置参照)
[第2の形態]
 上記した優先度制御装置の数理モデルは、前記制御対象の通信について、当該通信の優先度を現在の優先度である第2の優先度から、前記第1の優先度に変更した場合における前記通信品質と、当該通信の優先度が前記第2の優先度に設定されているときの前記通信負荷情報と、の関係性を示す数理モデルとすることができる。
[第3の形態]
 上記した優先度制御装置の優先度制御部は、前記制御対象の通信の優先度が前記第2の優先度のときの通信品質が前記所定の条件を満足している場合、前記数理モデルを用いて、前記通信品質が前記所定の条件を満足可能な前記第1の優先度の中から、前記第2の優先度よりも低い優先度を求める構成を採ることができる。
[第4の形態]
 上記した優先度制御装置が参照する前記数理モデルは、前記中継装置における優先度毎の通信負荷情報を少なくとも含む特徴データと、前記制御対象の通信の優先度を前記第1の優先度に設定した場合に前記制御対象の通信の通信品質が前記所定の条件を満足したか否かを示すラベルとを含む訓練データを用いて、機械学習により生成される数理モデルとすることができる。
[第5の形態]
 上記した優先度制御装置は、さらに、
 数理モデルを生成する数理モデル生成部を備えていてもよい。
[第6の形態]
 上記した優先度制御装置による制御対象の通信は、PS-LTE(Public Safety Long Term Evolution)網を用いて送信されるストリーミングデータとすることもできる。
[第7の形態]
 上記した優先度制御装置の前記優先度制御部は、
 前記制御対象の通信が複数ある場合、通信量、前記通信品質取得部にて取得した通信品質の、前記所定の条件からの乖離度合、の少なくともいずれかに基づき、前記制御対象の通信を選択する構成を採ることができる。
[第8の形態]
 上記した優先度制御装置において、さらに、
 前記優先度別に設けられたキューに関し、各キューに入力される通信パケットおよび各キューから出力される通信パケットに所定の確率分布をそれぞれ仮定し、各キューにおける平均パケット遅延、平均パケットロス率、平均待ちパケット数の少なくともいずれかを待ち行列理論に基づき算出する通信品質解析部をさらに備え、
 前記優先度制御部は、前記数理モデルと前記通信品質解析部とを併用して前記第1の優先度を求め、前記制御対象の通信の優先度として設定する構成を採ることができる。
[第9の形態]
 (上記第2の視点による優先度制御方法参照)
[第10の形態]
 (上記第3の視点によるコンピュータプログラム参照)
に実行させる。
 なお、上記第9~第10の形態は、第1の形態と同様に、第2~第8の形態に展開することが可能である。
 なお、上記の特許文献および非特許文献の各開示は、本書に引用をもって繰り込み記載されているものとし、必要に応じて本発明の基礎ないし一部として用いることが出来るものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし選択(部分的削除を含む)が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。さらに、上記引用した文献の各開示事項は、必要に応じ、本発明の趣旨に則り、本発明の開示の一部として、その一部又は全部を、本書の記載事項と組み合わせて用いることも、本願の開示事項に含まれるものと、みなされる。
 10、100、100a、100b、100c 優先度制御装置
 11、101、101a 負荷情報取得部
 12、102、102a 通信品質取得部
 13、103、103a、103b 優先度制御部
 14 数理モデル
 104、104a 数理モデル記憶部
 104c 数理モデル生成部
 105 通信品質解析部
 200 O&M装置
 300 LTEコア網
 301 PCRF
 302 MME
 303 HSS
 304 S-GW
 305 P-GW
 400 基地局
 500 端末
 600 映像配信サーバー
 700 学習器
 800 ネットワーク
 810 L2SW/L3SW
 9000 コンピュータ
 9010 CPU
 9020 通信インターフェース
 9030 メモリ
 9040 補助記憶装置
 P パケット

Claims (10)

  1.  2以上の通信装置間の通信毎に設定される優先度に応じ、各通信に対する通信リソース割当を制御する中継装置における前記優先度毎の通信負荷情報を取得する負荷情報取得部と、
     制御対象の通信についての通信品質を取得する通信品質取得部と、
     前記制御対象の通信について、当該通信の優先度を第1の優先度に設定する前の前記通信負荷情報と、当該通信の優先度を前記第1の優先度に設定した場合の前記通信品質と、の関係性を示す数理モデルを用いて、前記制御対象の通信について、前記通信品質が所定の条件を満足可能な前記第1の優先度を求め、前記制御対象の通信の優先度として設定する優先度制御部と、
     を備える優先度制御装置。
  2.  前記数理モデルは、前記制御対象の通信について、当該通信の優先度を現在の優先度である第2の優先度から、前記第1の優先度に変更した場合における前記通信品質と、当該通信の優先度が前記第2の優先度に設定されているときの前記通信負荷情報と、の関係性を示す数理モデルである請求項1の優先度制御装置。
  3.  前記優先度制御部は、
     前記制御対象の通信の優先度が前記第2の優先度のときの通信品質が前記所定の条件を満足している場合、前記数理モデルを用いて、前記通信品質が前記所定の条件を満足可能な前記第1の優先度の中から、前記第2の優先度よりも低い優先度を求める請求項2の優先度制御装置。
  4.  前記数理モデルは、前記中継装置における優先度毎の通信負荷情報を少なくとも含む特徴データと、前記制御対象の通信の優先度を前記第1の優先度に設定した場合に前記制御対象の通信の通信品質が前記所定の条件を満足したか否かを示すラベルとを含む訓練データを用いて、機械学習により生成される請求項1から3いずれか一の優先度制御装置。
  5.  さらに、
     前記数理モデルを生成する数理モデル生成部を備える請求項1から4のいずれか一の優先度制御装置。
  6.  前記制御対象の通信は、PS-LTE(Public Safety Long Term Evolution)網を用いて送信されるストリーミングデータである請求項1から5いずれか一の優先度制御装置。
  7.  前記優先度制御部は、
     前記制御対象の通信が複数ある場合、通信量、前記通信品質取得部にて取得した通信品質の、前記所定の条件からの乖離度合、の少なくともいずれかに基づき、前記制御対象の通信を選択する請求項1から6いずれか一の優先度制御装置。
  8.  前記優先度別に設けられたキューに関し、各キューに入力される通信パケットおよび各キューから出力される通信パケットに所定の確率分布をそれぞれ仮定し、各キューにおける平均パケット遅延、平均パケットロス率、平均待ちパケット数の少なくともいずれかを待ち行列理論に基づき算出する通信品質解析部をさらに備え、
     前記優先度制御部は、前記数理モデルと前記通信品質解析部とを併用して前記第1の優先度を求め、前記制御対象の通信の優先度として設定する、
     請求項1から7のいずれか一の優先度制御装置。
  9.  2以上の通信装置間の通信毎に設定される優先度に応じ、各通信に対する通信リソース割当を制御する中継装置における前記優先度毎の通信負荷情報を取得し、
     制御対象の通信についての通信品質を取得し、
     前記制御対象の通信について、当該通信の優先度を第1の優先度に設定する前の前記通信負荷情報と、当該通信の優先度を前記第1の優先度に設定した場合の前記通信品質と、の関係性を示す数理モデルを用いて、前記制御対象の通信について、前記通信品質が所定の条件を満足可能な前記第1の優先度を求め、前記制御対象の通信の優先度として設定する、
     優先度制御方法。
  10.  2以上の通信装置間の通信毎に設定される優先度に応じ、各通信に対する通信リソース割当を制御する中継装置における前記優先度毎の通信負荷情報を取得する処理と、
     制御対象の通信についての通信品質を取得する処理と、
     前記制御対象の通信について、当該通信の優先度を第1の優先度に設定する前の前記通信負荷情報と、当該通信の優先度を前記第1の優先度に設定した場合の前記通信品質と、の関係性を示す数理モデルを用いて、前記制御対象の通信について、前記通信品質が所定の条件を満足可能な前記第1の優先度を求め、前記制御対象の通信の優先度として設定する処理とを、
     優先度制御装置に搭載されたコンピュータに実行させるプログラムを記録したコンピュータが読み取り可能な記憶媒体。
PCT/JP2019/043407 2019-11-06 2019-11-06 優先度制御装置、優先度制御方法及びプログラム WO2021090383A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/770,735 US20220408304A1 (en) 2019-11-06 2019-11-06 Priority control apparatus, priority control method, and non-transitory computer-readable storage medium storing program
JP2021554452A JP7318726B2 (ja) 2019-11-06 2019-11-06 優先度制御装置、優先度制御方法及びプログラム
PCT/JP2019/043407 WO2021090383A1 (ja) 2019-11-06 2019-11-06 優先度制御装置、優先度制御方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043407 WO2021090383A1 (ja) 2019-11-06 2019-11-06 優先度制御装置、優先度制御方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2021090383A1 true WO2021090383A1 (ja) 2021-05-14

Family

ID=75848780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043407 WO2021090383A1 (ja) 2019-11-06 2019-11-06 優先度制御装置、優先度制御方法及びプログラム

Country Status (3)

Country Link
US (1) US20220408304A1 (ja)
JP (1) JP7318726B2 (ja)
WO (1) WO2021090383A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114257965A (zh) * 2021-12-27 2022-03-29 重庆金康赛力斯新能源汽车设计院有限公司 基于多蓝牙设备连接的车载终端控制方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228148A (ja) * 2006-02-22 2007-09-06 Furuno Electric Co Ltd パケット通信装置
JP2012015667A (ja) * 2010-06-30 2012-01-19 Alaxala Networks Corp パケット中継装置
JP2019169783A (ja) * 2018-03-22 2019-10-03 日本電気株式会社 経路制御システム、経路制御方法、及び、プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269281A1 (en) * 2013-03-14 2014-09-18 Cavium, Inc. Apparatus and Method for Providing Sort Offload
US10660146B2 (en) * 2014-03-21 2020-05-19 Samsung Electronics Co., Ltd. Methods and apparatus for device to device synchronization priority
US11197195B2 (en) * 2015-10-12 2021-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Load balancing of data traffic in a communications network
WO2017142345A1 (en) * 2016-02-18 2017-08-24 Samsung Electronics Co., Ltd. Method and terminal for providing mcptt(mission critical push to talk) service

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228148A (ja) * 2006-02-22 2007-09-06 Furuno Electric Co Ltd パケット通信装置
JP2012015667A (ja) * 2010-06-30 2012-01-19 Alaxala Networks Corp パケット中継装置
JP2019169783A (ja) * 2018-03-22 2019-10-03 日本電気株式会社 経路制御システム、経路制御方法、及び、プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114257965A (zh) * 2021-12-27 2022-03-29 重庆金康赛力斯新能源汽车设计院有限公司 基于多蓝牙设备连接的车载终端控制方法、装置及存储介质
CN114257965B (zh) * 2021-12-27 2023-09-12 重庆金康赛力斯新能源汽车设计院有限公司 基于多蓝牙设备连接的车载终端控制方法、装置及存储介质

Also Published As

Publication number Publication date
JP7318726B2 (ja) 2023-08-01
US20220408304A1 (en) 2022-12-22
JPWO2021090383A1 (ja) 2021-05-14

Similar Documents

Publication Publication Date Title
US10999758B2 (en) Systems and method for quality of service monitoring, policy enforcement, and charging in a communications network
US11240724B2 (en) Method and device for handover
EP3198836B1 (en) System and method for transmission management in software defined networks
WO2020057261A1 (zh) 通信方法和装置
WO2019242664A1 (zh) 一种资源管理方法及装置
EP3251451B1 (en) Method and device for selecting uplink data
CN102547388A (zh) 移动网络中的视频转码的自适应控制
CN104871591A (zh) 上行链路背压协调
US10715453B2 (en) Method and network node for congestion management in a wireless communications network
US20140341031A1 (en) Differentiation of traffic flows mapped to the same bearer
WO2021090383A1 (ja) 優先度制御装置、優先度制御方法及びプログラム
Baccarelli et al. QoS stochastic traffic engineering for the wireless support of real-time streaming applications
JP6439414B2 (ja) 通信装置
Yuan et al. iVoIP: an intelligent bandwidth management scheme for VoIP in WLANs
Aghmadi et al. A MTC traffic generation and QCI priority-first scheduling algorithm over LTE
WO2016042687A1 (ja) 送信装置及びその制御方法
EP3198983B1 (en) Method for managing transport tunnels of packet data services in a lte telecommunication network and network architecture implementing such method
US20240284441A1 (en) Policy based performance management for highly scalable o-ran networks
EP4418718A1 (en) Policy based performance management for highly scalable o-ran networks
Toseef et al. Coordinated LTE uplink radio interface scheduling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951524

Country of ref document: EP

Kind code of ref document: A1