WO2021088258A1 - 用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统 - Google Patents

用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统 Download PDF

Info

Publication number
WO2021088258A1
WO2021088258A1 PCT/CN2020/073306 CN2020073306W WO2021088258A1 WO 2021088258 A1 WO2021088258 A1 WO 2021088258A1 CN 2020073306 W CN2020073306 W CN 2020073306W WO 2021088258 A1 WO2021088258 A1 WO 2021088258A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
hybrid cable
rope
mooring system
metal
Prior art date
Application number
PCT/CN2020/073306
Other languages
English (en)
French (fr)
Inventor
朱林
沈明
宋炳涛
Original Assignee
山东鲁普科技有限公司
鲁普耐特集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东鲁普科技有限公司, 鲁普耐特集团有限公司 filed Critical 山东鲁普科技有限公司
Priority to US17/044,286 priority Critical patent/US11801917B2/en
Publication of WO2021088258A1 publication Critical patent/WO2021088258A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/147Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising electric conductors or elements for information transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/04Fixations or other anchoring arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/20Adaptations of chains, ropes, hawsers, or the like, or of parts thereof
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/005Composite ropes, i.e. ropes built-up from fibrous or filamentary material and metal wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • D07B1/0686Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration characterised by the core design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/20Adaptations of chains, ropes, hawsers, or the like, or of parts thereof
    • B63B2021/203Mooring cables or ropes, hawsers, or the like; Adaptations thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B2022/006Buoys specially adapted for measuring or watch purposes
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1012Rope or cable structures characterised by their internal structure
    • D07B2201/102Rope or cable structures characterised by their internal structure including a core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1096Rope or cable structures braided
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2051Cores characterised by a value or range of the dimension given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2061Cores characterised by their structure comprising wires resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2061Ship moorings

Definitions

  • the application belongs to the technical field of fiber ropes, and specifically relates to a hybrid cable and a buoy mooring system used for marine observation buoy mooring systems.
  • Ocean observation buoys are widely used based on their long-term, continuous and unmanned characteristics, and become the most important means of marine environment observation.
  • the mooring system is an important part of the marine observation buoy.
  • the length of the mooring system of the deep-sea observation buoy can reach several kilometers.
  • the existing mooring system adopts a chain-cable hybrid structure.
  • the lower part of the mooring system adopts steel chains
  • the main anchoring part of the middle part of the mooring system uses fiber cables
  • the upper mooring part of the mooring system that is, the part of the underwater 0-1000 meters
  • adopts mooring cables for example, the mooring system of a shallow sea observation buoy can also adopt a chain-cable hybrid structure.
  • the lower part of the mooring system adopts steel chains
  • the upper part of the mooring system that is, the part of the underwater 0-1000 meters, adopts mooring cables. .
  • the mooring cable of the upper mooring part of the mooring system is usually made of plastic-coated steel cable.
  • Plastic coated steel cables usually have three functions. One is buoy mooring, the second is to suspend and fix underwater sensors that measure various indicators of seawater on the plastic steel cable, and the third is to transmit signals from underwater sensors.
  • the two ends of the plastic-coated steel cable are exposed in seawater as electrodes.
  • the plastic-coated steel cable and seawater form a complete closed loop, which becomes a data communication channel; the coupling between the underwater sensor and the surface receiver is used between the coils.
  • the electromagnetic coupling function of the underwater sensor realizes the data transmission from the underwater sensor to the surface receiver.
  • plastic-coated steel cable currently used as the mooring cable on the upper part of the marine observation buoy mooring system has the problems of large weight, strong rigidity, large storage radius, and difficulty in deployment, which seriously affects the use of the mooring system.
  • an embodiment of the present application discloses a hybrid cable for an ocean observation buoy mooring system.
  • the hybrid cable includes a metal fiber hybrid rope core and fibers.
  • the rope skin, wherein the metal fiber mixed rope core includes a metal spiral spring and a fiber support core arranged inside the metal coil spring.
  • the fiber rope skin is twisted and woven by multiple fiber strands, and the mass content of the metal fiber mixed rope core is different. It is greater than 20% of the mass of the hybrid cable, and the mass content of the fiber sheath is not less than 80% of the mass of the hybrid cable.
  • the metal spiral spring is made of metal wire, and the outer side of the metal wire is covered with a plastic insulating layer.
  • the plastic insulating layer material coated on the outer side of the metal coil spring metal wire includes polyethylene, chlorinated polyethylene and polyvinyl chloride.
  • the inner diameter of the metal coil spring is not more than 25% of the diameter of the hybrid cable.
  • the fiber support core and the fiber rope are made of fibers of the same material.
  • the fiber sheath is woven from the same number of Z-twisted fiber strands and S-twisted fiber strands.
  • the number of fiber strands used to make the fiber sheath includes 8 strands, 12 strands, and 24 strands.
  • the fiber strands used to make the fiber skin are obtained by primary twisting and double twisting of the skin fibers.
  • the twist of the fiber strands used for making the fiber sheath is set to 30-70 twists/m.
  • the twist of the skin fiber is set to 60-120 twists/meter, and the twist of the skin fiber is set to 50-110 twists/meter.
  • the buoy mooring system includes the hybrid cable used for the marine observation buoy mooring system disclosed in the embodiments of the present invention.
  • the hybrid cable used in the marine observation buoy mooring system disclosed in the embodiments of the present application has low linear density and high breaking strength. It can be used as a data transmission channel between an underwater sensor and a surface receiver. It also has a soft, flexible fiber mooring cable. The characteristics of light weight and easy deployment can be applied to the upper mooring part of the marine observation buoy mooring system, which has good prospects for popularization and application.
  • FIG. 1 Schematic diagram of the metal fiber hybrid rope core in the hybrid cable in Example 1
  • FIG. 3 Example 1 Schematic diagram of the cross-section of the cylindrical plastic-coated metal wire made of the metal coil spring
  • FIG. 4 Schematic diagram of the cross-sectional structure of the hybrid rope of Example 1
  • substantially and “approximately” used in this disclosure are used to describe small fluctuations. For example, they can mean less than or equal to ⁇ 5%, such as less than or equal to ⁇ 2%, such as less than or equal to ⁇ 1%, such as less than or equal to ⁇ 0.5%, such as less than or equal to ⁇ 0.2%, such as less than or equal to ⁇ 0.1%, such as less than or equal to ⁇ 0.05%.
  • Quantities and other numerical data may be expressed or presented in a range format herein. Such a range format is used only for convenience and brevity, and therefore should be flexibly interpreted as including not only the values explicitly listed as the limits of the range, but also all independent values or sub-ranges contained within the range.
  • a numerical range of "1 ⁇ 5%” should be interpreted as including not only the explicitly listed values from 1% to 5%, but also independent values and sub-ranges within the indicated range. Therefore, this numerical range includes Independent values, such as 2%, 3.5%, and 4%, and sub-ranges, such as 1% to 3%, 2% to 4%, and 3% to 5%. This principle also applies to a range that lists only one value. In addition, this interpretation applies regardless of the width of the range or the characteristics described.
  • the hybrid cable used for the marine observation buoy mooring system includes a metal fiber hybrid rope core and a fiber rope skin, wherein the metal fiber hybrid rope core includes a metal coil spring and a fiber support core arranged inside the metal coil spring ,
  • the fiber skin is twisted and woven by multiple fiber strands, the mass content of the metal fiber mixed rope core is not more than 20% of the mass of the mixed cable, and the mass content of the fiber skin is not less than 80% of the mass of the mixed cable.
  • the strength of the hybrid cable is mainly provided by the fiber sheath.
  • the hybrid cable can usually be used as the upper mooring part of the mooring system, which is set at a position of 0 to 1000 meters underwater.
  • the mooring cable of the main mooring part in the middle of the mooring system has a relatively large extension and retraction range, so as to Absorb higher wind and wave energy.
  • the main anchorage part of the middle part of the mooring system will expand significantly, and the energy of the wind and wave is absorbed by the fiber cable.
  • the main part of the anchorage system in the middle of the anchorage system retracts. Make the buoy return to the original point of observation.
  • the hybrid cable of this application when the hybrid cable of this application is designed and manufactured for the upper mooring part of the deep-sea ocean observation buoy mooring system, the tensile strength and tensile rigidity of the hybrid cable are greater than the mooring used for the main mooring part of the middle of the mooring system
  • the buoy mooring system when the buoy mooring system is subjected to a large tensile force, the mixed cable of the upper mooring system of the mooring system does not undergo significant elongation.
  • the diameter of the fiber support core in the metal fiber hybrid rope core is not greater than the inner diameter of the metal coil spring.
  • the fiber support core is usually used as the support material of the metal coil spring. During the process of stretching, contraction, and deformation of the hybrid cable, the degree of lateral compression deformation of the metal coil spring is reduced, and the shape and structure of the metal coil spring are maintained.
  • the diameter of the fiber support core prepared from the rope core fiber is determined according to the inner diameter of the metal coil spring. Generally, the diameter of the fiber support core is not greater than the inner diameter of the metal coil spring, so as to fit inside the metal coil spring. Support the metal spiral spring to prevent it from being severely deformed and lose its recovery ability, and it does not bring additional resistance to its deformation process, which affects the deformation function of the metal spiral spring.
  • the fiber support core is formed by bundling synthetic fibers.
  • the fiber support core is woven from synthetic fibers.
  • the fiber support core is woven from multiple S-twisted fiber strands and the same number of Z-twisted fiber strands.
  • the fiber strands of the fiber support core are obtained by primary twisting and second twisting of the rope core fibers.
  • the twist of the initial twist of the core fiber is set to 60-120 twists/meter
  • the twist of the second twist of the rope core fiber is set to 50-110 twists/meter.
  • the rope core fiber may be polyester fiber, polyamide fiber, polypropylene fiber, polyethylene fiber, ultra-high molecular weight polyethylene fiber or other synthetic fibers.
  • the metal spiral spring is made of metal wire, the outer side of the metal wire is covered with a plastic insulating layer to form a covered metal wire, and the covered metal wire is wound to form a metal spiral spring.
  • the material of the plastic insulation layer coated on the outer side of the metal coil spring wire includes polyethylene, chlorinated polyethylene and polyvinyl chloride.
  • the tensile stiffness of the metal coil spring made of metal wire is less than that of the fiber rope.
  • the metal coil spring and the rope will be elongated and deformed at the same time.
  • the tension disappears the metal coil spring and the rope are simultaneously retracted under the action of their own elastic force.
  • the two metal ends of the metal coil spring are exposed in the seawater, and the coated metal wire is electrically connected to the seawater to become a data communication channel.
  • the underwater sensor and the surface receiver are used. The electromagnetic coupling between the coupling coils realizes the data transmission from the underwater sensor to the surface receiver.
  • a cylindrical stainless steel wire is selected to make a metal spiral spring, for example, a stainless steel wire with a diameter of 0.4-0.5 mm.
  • Cylindrical stainless steel wire refers to a circular cross-section.
  • a ribbon-shaped metal wire is selected to make a metal spiral spring.
  • the ribbon-shaped metal wire can also be called a metal ribbon, and its cross-section is rectangular or elliptical.
  • the length of the cross section of the rectangular metal belt can be selected between 0.8 and 1.0 mm, and the width can be selected between 0.3 and 0.4 mm.
  • the resistivity of the metal wire is not greater than 10 ⁇ /m, that is, R ⁇ 10 ⁇ /m.
  • the inner diameter of the metal coil spring is not more than 25% of the diameter of the hybrid cable.
  • the synthetic fiber raw material for the woven rope skin can be polyester fiber, polyamide fiber, polypropylene fiber, polyethylene fiber, ultra-high molecular weight polyethylene fiber or other synthetic fibers.
  • the linear density of the rope skin fiber can be It is determined according to the performance setting requirements of the hybrid cable.
  • the fiber sheath is woven from the same number of Z-twisted fiber strands and S-twisted fiber strands.
  • the twist of the fiber strands of the fiber sheath is set to 30-70 twists/meter.
  • the number of fiber strands used to make the sheath is usually set to multiple, for example, it can be set to 8 strands, 12 strands, 24 strands, etc., usually Z-twisted fiber strands and S-twisted fiber strands
  • the quantity is set to be equal, and the twist is also set to be equal.
  • the fiber strands used to make the rope skin are obtained by primary twisting and second twisting of rope skin fibers.
  • the twist of the primary twist of the sheath fiber is set to 60-120 twists/meter, and the twist of the secondary twist of the sheath fiber is set to 50-110 twists/meter.
  • the fiber support core and the fiber rope are made of fibers of the same material. That is, the rope core fiber and the rope sheath fiber use fibers of the same material.
  • the rope sheath fiber and the rope core fiber undergo the same initial twisting and double twisting process, and are respectively made into sheath fiber strands and rope core fiber strands.
  • the marine observation buoy mooring system includes the hybrid cable for the marine observation buoy mooring system disclosed in the embodiment of the present invention.
  • the deep-sea ocean observation buoy mooring system includes a steel chain part, a central main mooring part, and an upper mooring part arranged at the lower part.
  • the hybrid cable disclosed in the embodiments of the present application is usually used as the upper mooring part of the deep-sea ocean observation buoy, which mainly lifts the buoy.
  • the shallow sea ocean observation buoy mooring system includes a steel chain part and an upper mooring part arranged at the lower part.
  • the hybrid cable disclosed in the embodiments of the present application can be used as the upper mooring system part of the shallow sea ocean observation buoy, mainly for mooring and underwater buoys.
  • the role of the sensor suspension to fix and transmit the data channel of the underwater sensor.
  • the hybrid cable used for the observation buoy mooring system is made by the following methods, which specifically include:
  • Multiple cord fiber yarns are first twisted to obtain the yarn, and multiple yarns are combined and twisted to obtain the same number of Z-twisted rope yarn and S-twisted rope yarn;
  • the fiber support core, the plastic-coated metal wire and the rope strands are mixed and braided to obtain a mixed cable;
  • the fiber support core is obtained by initial twisting, double twisting, and weaving of rope core fibers.
  • Fig. 1 is a schematic diagram of the structure of a hybrid cable for the marine observation buoy mooring system disclosed in Example 1
  • Fig. 2 is a schematic diagram of the structure of a metal fiber hybrid rope core in the hybrid cable
  • Fig. 3 is a cylindrical plastic-coated metal for making a metal coil spring
  • Figure 4 is a schematic cross-sectional view of a hybrid cable.
  • the fiber support core 21 is arranged inside the metal coil spring 22, the fiber support core 21 and the metal coil spring 22 form a metal fiber hybrid rope core 2, and the metal fiber hybrid rope core 2 is woven with a rope skin 1.
  • the rope core fibers are bundled into one strand to form a cylindrical fiber support core 21.
  • the fiber support core 21 is wound with plastic-coated metal wires.
  • the wound plastic-coated metal wires form a metal spiral spring 22.
  • the diameter of the fiber support core 21 is slightly It is smaller than the diameter of the metal coil spring 22.
  • the inside of the plastic-coated metal wire is a cylindrical stainless steel wire 221, and the stainless steel wire 221 is covered with a polyethylene insulating layer 222.
  • the diameter of the hybrid cable is D
  • the inner diameter of the metal coil spring 22 is ⁇
  • the outer diameter is D 1
  • the diameter of the fiber support core 21 is d, where ⁇ is not greater than one-fourth of D, and d is less than ⁇ , the thickness of the cord 1 is half of DD 1.
  • the hybrid cable used for the observation buoy mooring system disclosed in Example 2 is prepared by the following steps:
  • the breaking strength of the fiber multifilament is ⁇ 8.5cN/dtex, and the elongation at break is equal to 22%;
  • the twist is 100 twists/meter, and the twist directions of the first twist and the second twist are divided into two twist directions, S twist direction and Z twist direction, and S twist direction rope yarn and Z twist direction rope yarn are obtained respectively;
  • the structure is the middle one and the surrounding 7 strands structure, that is, the 7+1 structure.
  • the twist is 40 twists/m, and the Z twist direction and S are obtained respectively. Twisted rope strands;
  • the metal spiral tension spring is made of stainless steel wire with a cylindrical plastic-coated polyethylene insulation layer.
  • the inner diameter of the metal spiral tension spring is 2mm.
  • the weight of the spring per meter is 5.5g, that is, its linear density is 5.5g/m;
  • 1260D polyamide 6 fiber multifilaments are selected and bundled into a support core to obtain a fiber support core with a linear density of 2.1g/m and a diameter of 1.9mm;
  • the 8-strand braided structure is used to braid the strands into a rope.
  • the fiber support core is fed into the 8-strand braided rope core from the center of the braiding machine, and the plastic-coated stainless steel wire is in the opposite direction of the spiral direction of the metal spring.
  • the diameter of the hybrid cable obtained in Example 2 was 19.9 mm, the linear density was 183.6 g/m, and the breaking strength was 81.3 KN.
  • the hybrid cable used for the observation buoy mooring system disclosed in Example 3 is prepared by the following steps:
  • the breaking strength of the fiber multifilament is ⁇ 8cN/dtex, and the elongation at break is equal to 12%;
  • the metal spiral spring is made of stainless steel wire with a cylindrical plastic-coated polyethylene insulation layer.
  • the inner diameter of the obtained metal spiral spring is 2mm, and the weight of the metal spiral spring is 3.96 per meter. g, that is, its linear density is 3.96g/m;
  • the 8-strand braided structure is used to braid the strands into a rope.
  • the fiber support core is fed into the 8-strand braided rope core from the center of the braiding machine, and the plastic-coated stainless steel wire is wrapped in the opposite direction of the spring spiral direction.
  • the support core moves in a circular motion, is wound on the fiber support core, and is fed into the 8-strand braided rope sandwich core synchronously, and the pitch of the adjusting rope is 125mm to obtain a hybrid rope.
  • the diameter of the hybrid cable obtained in Example 3 is 35.1 mm, the linear density is 602.8 g/m, and the breaking strength is 130 KN.
  • the hybrid cable used for the observation buoy mooring system disclosed in Example 4 is prepared by the following steps:
  • 840D polypropylene fiber multifilament is selected as the raw material, the breaking strength of the fiber multifilament is ⁇ 7cN/dtex, and the breaking elongation is equal to 13%;
  • the 7 rope yarns are combined into one strand, and the structure is the middle one and the surrounding six-strand structure, that is, the 6+1 structure.
  • the twist is twisted in the process of doubling, and the twist is 50 twists/m, and the Z twist direction and S are obtained respectively. Twisted rope strands;
  • the spiral tension spring is made of stainless steel wire with a cylindrical plastic-coated polyethylene insulation layer.
  • the inner diameter of the spiral tension spring is 2mm, and the spiral tension spring is per meter.
  • the weight is 5.5g, that is, its linear density is 5.5g/m;
  • the 12-strand braided structure is used to braid the strands into a rope.
  • the fiber support core is fed into the 12-strand braided rope sandwich core from the center of the braiding machine, and the plastic-coated stainless steel wire is wrapped in the opposite direction of the spring spiral direction.
  • the supporting core moves in a circular motion, is wound on the supporting core, and is fed into the 12-strand braided rope sandwich core synchronously, and the pitch of the adjusting rope is 110mm to obtain a hybrid rope.
  • the diameter of the hybrid cable obtained in Example 4 was 30.1 mm, the linear density was 267.4 g/m, and the breaking strength was 75 KN.
  • the hybrid cable used in the marine observation buoy mooring system disclosed in the embodiments of the present application has low linear density and high breaking strength, and can be used as the upper mooring part of the marine observation buoy mooring system.
  • the buoy is moored, and the underwater sensor is suspended and fixed.
  • the function of the data channel for transmitting underwater sensors has the characteristics of soft, light weight and easy deployment of fiber mooring cables, and has good application prospects in marine observation buoy mooring systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Ropes Or Cables (AREA)

Abstract

一种用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统。该混合缆绳包括金属纤维混合绳芯(2)和纤维绳皮(1),其中,金属纤维混合绳芯(2)包括金属螺旋弹簧(22)和设置在金属螺旋弹簧(22)内部的纤维支撑芯(21),纤维绳皮(1)由多股纤维绳股加捻编织而成,金属纤维混合绳芯(2)的质量含量不大于混合缆绳质量的20%,纤维绳皮(1)的质量含量不小于混合缆绳质量的80%。该混合缆绳线密度小、断裂强度高,既可以作为水下传感器与水面接收器之间的数据传输通道,又具有纤维锚系缆绳柔软、质轻、容易布放的特点。

Description

用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统 技术领域
本申请属于纤维绳索技术领域,具体涉及用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统。
背景技术
海洋观测浮标基于其长期、连续性且无人值守的特点被广泛使用,成为海洋环境观测的最重要的手段。
锚系系统是海洋观测浮标的重要组成部分,例如,深海观测浮标的锚系系统长度可达几千米,为了控制锚系系统的重量,现有锚系系统采用链缆混合的结构形式,锚系系统的下部采用钢链,锚系系统中部的主体锚系部分使用纤维缆绳,锚系系统的上部锚系部分,即水下0~1000米部分,采用锚系缆绳。例如,浅海观测浮标的锚系系统也可以采用链缆混合的结构形式,锚系系统的下部采用钢链,锚系系统的上部锚系部分,即水下0~1000米部分,采用锚系缆绳。
目前锚系系统上部锚系部分的锚系缆绳通常采用包塑钢缆。包塑钢缆通常有三个作用,其一是浮标系泊作用,其二是把测量海水各种指标的水下传感器悬挂固定在包塑钢缆上,其三是进行水下传感器的信号传输。
包塑钢缆的两端裸露在海水中作为电极,利用海水的导电特性,包塑钢缆和海水构成一个完整的闭合回路,成为数据通信的信道;利用水下传感器和水面接收器之间耦合线圈间的电磁耦合作用,实现水下传感器向水面接收器的数据传输。
但是,目前使用在海洋观测浮标锚系系统上部作为锚系缆绳的包塑钢缆,存在重量大、刚度强、收纳半径大、布放困难的问题,严重影响锚系系统的使用。
发明内容
为了至少解决以上提到现有技术存在的技术问题之一,一方面,本申请 实施例公开了一种用于海洋观测浮标锚系系统的混合缆绳,该混合缆绳包括金属纤维混合绳芯和纤维绳皮,其中,金属纤维混合绳芯包括金属螺旋弹簧和设置在金属螺旋弹簧内部的纤维支撑芯,纤维绳皮由多股纤维绳股加捻编织而成,金属纤维混合绳芯的质量含量不大于混合缆绳质量的20%,纤维绳皮的质量含量不小于混合缆绳质量的80%。
一些实施例公开的用于海洋观测浮标锚系系统的混合缆绳,金属螺旋弹簧由金属丝制作而成,金属丝外侧包覆有塑料绝缘层。
一些实施例公开的用于海洋观测浮标锚系系统的混合缆绳,金属螺旋弹簧金属丝外侧包覆的塑料绝缘层材料包括聚乙烯、氯化聚乙烯和聚氯乙烯。
一些实施例公开的用于海洋观测浮标锚系系统的混合缆绳,金属螺旋弹簧的内径不大于混合缆绳直径的25%。
一些实施例公开的用于海洋观测浮标锚系系统的混合缆绳,纤维支撑芯与纤维绳皮由相同材质的纤维制成。
一些实施例公开的用于海洋观测浮标锚系系统的混合缆绳,纤维绳皮由相同数量的Z捻向纤维绳股和S捻向纤维绳股编织而成。
一些实施例公开的用于海洋观测浮标锚系系统的混合缆绳,制作纤维绳皮的纤维绳股的数量包括8股、12股、24股。
一些实施例公开的用于海洋观测浮标锚系系统的混合缆绳,制作纤维绳皮的纤维绳股由绳皮纤维经初捻、复捻得到。
一些实施例公开的用于海洋观测浮标锚系系统的混合缆绳,制作纤维绳皮的纤维绳股的捻度设置为30~70捻/米。
一些实施例公开的用于海洋观测浮标锚系系统的混合缆绳,绳皮纤维初捻的捻度设置为60~120捻/米,绳皮纤维复捻的捻度设置为50~110捻/米。
另一方面,本申请一些实施例公开了一种海洋观测浮标锚系系统,该浮标锚系系统包括本发明实施例公开的用于海洋观测浮标锚系系统的混合缆绳。
本申请实施例公开的用于海洋观测浮标锚系系统的混合缆绳,线密度小、断裂强度高,可以作为水下传感器与水面接收器之间的数据传输通道,又具有纤维锚系缆绳柔软、质轻、容易布放的特点,可以应用于海洋观测浮标锚系系统上部锚系部分,有良好推广应用前景。
附图说明
图1实施例1用于海洋观测浮标锚系系统的混合缆绳结构示意图
图2实施例1混合缆绳中金属纤维混合绳芯示意图
图3实施例1制作金属螺旋弹簧的圆柱形包塑金属丝横截面示意图
图4实施例1混合缆绳横截面结构示意图
具体实施方式
在这里专用的词“实施例”,作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。本申请实施例中性能指标测试,除非特别说明,采用本领域常规试验方法。应理解,本申请中所述的术语仅仅是为描述特别的实施方式,并非用于限制本申请公开的内容。
除非另有说明,否则本文使用的技术和科学术语具有本申请所属技术领域的普通技术人员通常理解的相同含义;作为本申请中其它未特别注明的试验方法和技术手段均指本领域内普通技术人员通常采用的实验方法和技术手段。
本公开所用的术语“基本”和“大约”用于描述小的波动。例如,它们可以是指小于或等于±5%,如小于或等于±2%,如小于或等于±1%,如小于或等于±0.5%,如小于或等于±0.2%,如小于或等于±0.1%,如小于或等于±0.05%。量和其它数值数据在本文中可以以范围格式表示或呈现。这样的范围格式仅为方便和简要起见使用,因此应灵活解释为不仅包括作为该范围的界限明确列举的数值,还包括该范围内包含的所有独立的数值或子范围。例如,“1~5%”的数值范围应被解释为不仅包括1%至5%的明确列举的值,还包括在所示范围内的独立值和子范围,因此,在这一数值范围中包括独立值,如2%、3.5%和4%,和子范围,如1%~3%、2%~4%和3%~5%等。这一原理同样适用于仅列举一个数值的范围。此外,无论该范围的宽度或所述特征如何,这样的解释都适用。
在本公开,包括权利要求书中,所有连接词,如“包含”、“包括”、“带有”、“具有”、“含有”、“涉及”、“容纳”等被理解为是开放性的,即是指“包括但不限于”。只有连接词“由……构成”和“由……组成” 是封闭连接词。
为了更好的说明本申请内容,在下文的具体实施例中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在实施例中,对于本领域技术人员熟知的一些方法、手段、仪器、设备等未作详细描述,以便凸显本申请的主旨。在不冲突的前提下,本申请实施例公开的技术特征可以任意组合,得到的技术方案属于本申请实施例公开的内容。本申请述及的Z捻向和S捻向仅为表述两个相反的加捻方向。
在一些实施方式中,用于海洋观测浮标锚系系统的混合缆绳包括金属纤维混合绳芯和纤维绳皮,其中,金属纤维混合绳芯包括金属螺旋弹簧和设置在金属螺旋弹簧内部的纤维支撑芯,纤维绳皮由多股纤维绳股加捻编织而成,金属纤维混合绳芯的质量含量不大于混合缆绳质量的20%,纤维绳皮的质量含量不小于混合缆绳质量的80%。通常混合缆绳的强度主要由纤维绳皮提供。混合缆绳通常可以作为锚系系统的上部锚系部分,设置在水下0~1000米的位置上。
通常深海海洋观测浮标锚系系统中,不管是采用张紧式系留方式还是松弛式系留方式,锚系系统中部主体锚系部分的系留缆绳具有较大的伸长和回缩幅度,以吸收较高的风浪能量。在浮标受到较大风浪推力时,锚系系统中部主体锚系部分发生较大幅度的伸长,风浪的能量被纤维缆绳吸收,风浪平息之后,锚系系统中部的主体锚系部分发生回缩,使得浮标回复到观测原点。因此,在设计和制造本申请的混合缆绳用于深海海洋观测浮标锚系系统上部锚系部分时,混合缆绳的抗张强力和抗张刚度要大于锚系系统中部主体锚系部分使用的系留缆绳,在浮标锚系系统受到较大拉力时,锚系系统上部锚系部分混合缆绳并不发生较大幅度的伸长。
作为可选实施方式,金属纤维混合绳芯中纤维支撑芯的直径不大于金属螺旋弹簧的内径。纤维支撑芯通常作为金属螺旋弹簧的支撑材料,在混合缆绳拉伸、收缩、变形等过程中,减少金属螺旋弹簧在横向受压变形的程度,保持良好的形状和结构,延长其使用寿命,通常由绳芯纤维制备得到的纤维支撑芯的直径根据金属螺旋弹簧的内径而确定,一般地,纤维支撑芯的直径不大于金属螺旋弹簧的内径,以便适配地设置在金属螺旋弹簧内部,既能支撑金属螺旋弹簧,防止其变形严重而失去恢复能力,也不对其形变过程带来 额外阻力,影响金属螺旋弹簧的形变功能。
作为可选实施方式,纤维支撑芯由合成纤维集束而成。
作为可选实施方式,纤维支撑芯由合成纤维编织而成。
进一步,作为可选实施方式,纤维支撑芯由多根S捻向纤维绳股和相同数量的Z捻向纤维绳股编织而成。
作为可选实施方式,纤维支撑芯的纤维绳股由绳芯纤维经初捻、复捻得到。作为可选实施方式,绳芯纤维初捻的捻度设置为60~120捻/米,绳芯纤维复捻的捻度设置为50~110捻/米。
作为可选实施方式,绳芯纤维可选用聚酯纤维、聚酰胺纤维、聚丙烯纤维、聚乙烯纤维、超高分子量聚乙烯纤维或其他合成纤维。
作为可选实施方式,金属螺旋弹簧由金属丝制作而成,金属丝外侧包覆有塑料绝缘层,形成包覆金属丝,包覆金属丝缠绕形成金属螺旋弹簧。金属螺旋弹簧金属丝外侧包覆的塑料绝缘层材料包括聚乙烯、氯化聚乙烯和聚氯乙烯。
通常包覆金属丝制作而成的金属螺旋弹簧的抗张刚度小于纤维绳皮的抗张刚度,当混合缆绳受到拉伸张力作用时,金属螺旋弹簧与绳皮同时发生伸长形变,当拉升张力消失时,金属螺旋弹簧与绳皮同时在自身弹力的作用下回缩。通常,当混合缆绳布设使用时,金属螺旋弹簧的两个金属端头裸露在海水中,包覆金属丝与海水之间电性连接,成为数据通信的信道,利用水下传感器和水面接收器之间的耦合线圈间的电磁耦合作用,实现水下传感器向水面接收器的数据传输。
作为可选实施方式,选择圆柱形不锈钢丝制作金属螺旋弹簧,例如直径为0.4~0.5mm的不锈钢丝。圆柱形不锈钢丝是指横截面为圆形。
作为可选实施方式,选择带状金属丝制作金属螺旋弹簧,带状金属丝又可以称为金属带,其横截面为长方形,或者椭圆形。例如,长方形金属带横截面的长度可选定在0.8~1.0mm之间,宽度可选定在0.3~0.4mm之间。
作为可选实施方式,金属丝的电阻率不大于10Ω/m,即R≤10Ω/m。
作为可选实施方式,金属螺旋弹簧的内径不大于混合缆绳直径的25%。
作为可选实施方式,编织绳皮的合成纤维原料可选用聚酯纤维、聚酰胺纤维、聚丙烯纤维、聚乙烯纤维、超高分子量聚乙烯纤维或其他合成纤维, 通常绳皮纤维的线密度可以根据混合缆绳的性能设定要求而确定。
作为可选实施方式,纤维绳皮由相同数量的Z捻向纤维绳股和S捻向纤维绳股编织而成。
作为可选实施方式,纤维绳皮的纤维绳股的捻度设置为30~70捻/米。
作为可选实施方式,制作绳皮的纤维绳股的数量通常设置为多个,例如可以设置为8股、12股、24股等,通常Z捻向纤维绳股和S捻向纤维绳股的数量设置为相等,捻度也设置为相等。
作为可选实施方式,制作绳皮的纤维绳股由绳皮纤维经初捻、复捻得到。作为可选实施方式,绳皮纤维初捻的捻度设置为60~120捻/米,绳皮纤维复捻的捻度设置为50~110捻/米。
作为可选实施方式,纤维支撑芯与纤维绳皮由相同材质的纤维制成。即,绳芯纤维与绳皮纤维采用相同材质的纤维。
进一步作为可选实施方式,绳皮纤维与绳芯纤维经过相同的初捻、复捻过程,分别制作为绳皮纤维绳股和绳芯纤维绳股。
在一些实施方式中,海洋观测浮标锚系系统包括本发明实施方式公开的用于海洋观测浮标锚系系统的混合缆绳。
通常深海海洋观测浮标锚系系统包括设置在下部的钢链部分、中部主锚系部分和上部锚系部分,本申请实施例公开的混合缆绳通常作为深海海洋观测浮标上部锚系部分,主要起浮标系留、水下传感器悬挂固定和传输水下传感器的数据通道的作用。
通常浅海海洋观测浮标锚系系统包括设置在下部的钢链部分和上部锚系部分,本申请实施例公开的混合缆绳可以作为浅海海洋观测浮标上部锚系系统部分,主要起浮标系留、水下传感器悬挂固定和传输水下传感器的数据通道的作用。
在一些实施方式中,用于观测浮标锚系系统的混合缆绳通过以下方法制作,具体包括:
多根绳皮纤维纱线并丝初捻得到纱线,多根纱线并线复捻,分别得到相同数量的Z捻向绳纱和S捻向绳纱;
多根同向加捻绳纱并线加捻,分别得到Z捻向和S捻向的绳皮绳股;
支撑芯纤维纱线集束,得到纤维支撑芯;
选定制作金属螺旋弹簧的包塑金属丝;
纤维支撑芯、包塑金属丝和绳皮绳股混合编织,得到混合缆绳;
在一些实施方式中,纤维支撑芯经过绳芯纤维初捻、复捻、编织得到。
以下结合实施例对技术细节做进一步说明。
实施例1
图1为实施例1公开的用于海洋观测浮标锚系系统的混合缆绳结构示意图,图2为混合缆绳中金属纤维混合绳芯的结构示意图,图3为制作金属螺旋弹簧的圆柱形包塑金属丝横截面示意图,图4为混合缆绳横截面示意图。
图1中,纤维支撑芯21设置在金属螺旋弹簧22内部,纤维支撑芯21和金属螺旋弹簧22组成金属纤维混合绳芯2,金属纤维混合绳芯2外编织有绳皮1。
图2中,绳芯纤维集束成一股,形成圆柱形纤维支撑芯21,纤维支撑芯21外缠绕有包塑金属丝,缠绕的包塑金属丝形成金属螺旋弹簧22,纤维支撑芯21的直径略小于金属螺旋弹簧22的直径。
图3中,包塑金属丝内部为圆柱形不锈钢丝221,不锈钢丝221外包覆有聚乙烯绝缘层222。
图4中,混合缆绳的直径为D,金属螺旋弹簧22的内径为Φ,其外径为D 1,纤维支撑芯21的直径为d,其中,Φ不大于D的四分之一,d小于Φ,绳皮1的厚度为D-D 1的一半。
实施例2
实施例2公开的用于观测浮标锚系系统的混合缆绳,通过以下步骤制备:
选用1260D聚酰胺6纤维复丝为原料,纤维复丝的断裂强度≥8.5cN/dtex,断裂伸长率等于22%;
采用5根1260D聚酰胺6纤维复丝并为1根纱线,并丝过程中进行初捻,捻度为110捻/米,再将三根纱线并为一根绳纱,并线过程中复捻,捻度为100捻/米,初捻和复捻的捻向都分为S捻向和Z捻向两种,分别得到S捻向绳纱和Z捻向绳纱;
将8根绳纱并纱为1根绳股,结构为中间一股周围7股结构,即7+1结构,并纱过程中加捻,捻度为40捻/米,分别得到Z捻向和S捻向的绳皮绳股;
选用圆柱形包塑聚乙烯绝缘层的不锈钢丝制作金属螺旋拉伸弹簧,不锈钢丝直径为0.5mm,电阻率R=3.7Ω/m,得到的金属螺旋拉伸弹簧内径为2mm,金属螺旋拉伸弹簧每米重量为5.5g,即其线密度为5.5g/m;
选用15根1260D聚酰胺6纤维复丝集束成一根支撑芯,得到纤维支撑芯,其线密度为2.1g/m,直径为1.9mm;
采用8股编织结构,将绳股编织成绳,在制绳过程中,将纤维支撑芯从编织机中心喂入8股编织绳索夹芯,同时将包塑不锈钢丝以金属弹簧螺旋方向相反的方向围绕纤维支撑芯做圆周运动,缠绕于纤维支撑芯上,同步喂入到8股编织绳索夹芯中,调试绳皮节距为70mm,得到混合缆绳。
实施例2得到的混合缆绳直径为19.9mm,线密度为183.6g/m,断裂强力为81.3KN。
实施例3
实施例3公开的用于观测浮标锚系系统的混合缆绳,通过以下步骤制备:
选用2000D聚酯纤维复丝为原料,纤维复丝的断裂强度≥8cN/dtex,断裂伸长率等于12%;
采用6根2000D聚酯纤维复丝并为1根纱线,并丝过程中进行初捻,捻度为90捻/米,再将三根纱线并为一根绳纱,并线过程中复捻,捻度为80捻/米,初捻和复捻的捻向都分为S捻向和Z捻向两种,分别得到S捻向绳纱和Z捻向绳纱;
将15根绳纱并纱为1根绳股,并纱过程中加捻,捻度为60捻/米,分别得到Z捻向和S捻向的绳皮绳股;
选用圆柱形包塑聚乙烯绝缘层的不锈钢丝制作金属螺旋弹簧,不锈钢丝直径为0.4mm,电阻率R=5.8Ω/m,得到的金属螺旋弹簧内径为2mm,金属螺旋弹簧每米重量为3.96g,即其线密度为3.96g/m;
选用24根1000D聚酯纤维复丝集束成一根支撑芯,得到纤维支撑芯,其线密度为2.7g/m,直径为1.9mm;
采用8股编织结构,将绳股编织成绳,在制绳过程中,将纤维支撑芯从编织机中心喂入8股编织绳索夹芯,同时将包塑不锈钢丝以弹簧螺旋方向相反的方向围绕支撑芯做圆周运动,缠绕于纤维支撑芯上,同步喂入到8股编 织绳索夹芯中,调试绳皮节距为125mm,得到混合缆绳。
实施例3得到的混合缆绳直径为35.1mm,线密度为602.8g/m,断裂强力为130KN。
实施例4
实施例4公开的用于观测浮标锚系系统的混合缆绳,通过以下步骤制备:
选用840D聚丙烯纤维复丝为原料,纤维复丝的断裂强度≥7cN/dtex,断裂伸长率等于13%;
采用10根840D聚酯纤维复丝并为1根纱线,并丝过程中进行初捻,捻度为100捻/米,再将三根纱线并为一根绳纱,并线过程中复捻,捻度为80捻/米,初捻和复捻的捻向都分为S捻向和Z捻向两种,分别得到S捻向绳纱和Z捻向绳纱;
将7根绳纱并纱为1根绳股,结构为中间一股周围六股结构,即6+1结构,并纱过程中加捻,捻度为50捻/米,分别得到Z捻向和S捻向的绳皮绳股;
选用圆柱形包塑聚乙烯绝缘层的不锈钢丝制作螺旋拉伸弹簧,不锈钢丝直径为0.5mm,电阻率R=3.7Ω/m,得到的螺旋拉伸弹簧内径为2mm,螺旋拉伸弹簧每米重量为5.5g,即其线密度为5.5g/m;
选用20根840D聚丙烯纤维复丝集束成一根支撑芯,得到纤维支撑芯,其线密度为1.9g/m,直径为1.9mm;
采用12股编织结构,将绳股编织成绳,在制绳过程中,将纤维支撑芯从编织机中心喂入12股编织绳索夹芯,同时将包塑不锈钢丝以弹簧螺旋方向相反的方向围绕支撑芯做圆周运动,缠绕于支撑芯上,同步喂入到12股编织绳索夹芯中,调试绳皮节距为110mm,得到混合缆绳。
实施例4得到的混合缆绳直径为30.1mm,线密度为267.4g/m,断裂强力为75KN。
本申请实施例公开的用于海洋观测浮标锚系系统的混合缆绳,线密度小、断裂强度高,可以作为海洋观测浮标锚系系统上部锚系部分,起浮标系留、水下传感器悬挂固定和传输水下传感器的数据通道的作用,具有纤维锚系缆绳般柔软、质轻、容易布放的特点,在海洋观测浮标锚系系统中有良好应用前景。
本申请公开的技术方案和实施例中公开的技术细节,仅是示例性说明本申请的构思,并不构成对本申请技术方案的限定,凡是对本申请公开的技术细节所做的没有创造性的改变,都与本申请具有相同的发明构思,都在本申请权利要求的保护范围之内。

Claims (10)

  1. 一种用于海洋观测浮标锚系系统的混合缆绳,其特征在于,该混合缆绳包括金属纤维混合绳芯和纤维绳皮,其中:
    所述金属纤维混合绳芯包括金属螺旋弹簧和设置在所述金属螺旋弹簧内部的纤维支撑芯;
    所述纤维绳皮由多股纤维绳股加捻编织而成;
    所述金属纤维混合绳芯的质量含量不大于所述混合缆绳质量的20%,所述纤维绳皮的质量含量不小于所述混合缆绳质量的80%。
  2. 根据权利要求1所述用于海洋观测浮标锚系系统的混合缆绳,其特征在于,所述金属螺旋弹簧由金属丝制作而成,所述金属丝外侧包覆有塑料绝缘层。
  3. 根据权利要求1所述用于海洋观测浮标锚系系统的混合缆绳,其特征在于,所述金属螺旋弹簧的内径不大于所述混合缆绳直径的25%。
  4. 根据权利要求1~3任一项所述用于海洋观测浮标锚系系统的混合缆绳,其特征在于,所述纤维支撑芯与所述纤维绳皮由相同材质的纤维制成。
  5. 根据权利要求1~3任一项所述用于海洋观测浮标锚系系统的混合缆绳,其特征在于,所述纤维绳皮由相同数量的Z捻向纤维绳股和S捻向纤维绳股编织而成。
  6. 根据权利要求1~3任一项所述用于海洋观测浮标锚系系统的混合缆绳,其特征在于,所述纤维绳皮的纤维绳股的数量包括8股、12股、24股。
  7. 根据权利要求1~3任一项所述用于海洋观测浮标锚系系统的混合缆绳,其特征在于,所述纤维绳皮的纤维绳股由绳皮纤维经初捻、复捻得到。
  8. 根据权利要求5所述用于海洋观测浮标锚系系统的混合缆绳,其特征在于,所述纤维绳股的捻度设置为30~70捻/米。
  9. 根据权利要求7所述用于海洋观测浮标锚系系统的混合缆绳,其特征在于,所述绳皮纤维的初捻捻度设置为60~120捻/米,所述绳皮纤维的复捻捻度设置为50~110捻/米。
  10. 一种海洋观测浮标锚系系统,其特征在于,包括权利要求1~9任一项所述的用于海洋观测浮标锚系系统的混合缆绳。
PCT/CN2020/073306 2019-11-05 2020-01-20 用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统 WO2021088258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/044,286 US11801917B2 (en) 2019-11-05 2020-01-20 Oceanographic buoy mooring system and a mixed rope used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911072455.3 2019-11-05
CN201911072455.3A CN110761095B (zh) 2019-11-05 2019-11-05 用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统

Publications (1)

Publication Number Publication Date
WO2021088258A1 true WO2021088258A1 (zh) 2021-05-14

Family

ID=69336197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073306 WO2021088258A1 (zh) 2019-11-05 2020-01-20 用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统

Country Status (3)

Country Link
US (1) US11801917B2 (zh)
CN (1) CN110761095B (zh)
WO (1) WO2021088258A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107953728B (zh) * 2017-11-27 2020-02-11 江苏兴达钢帘线股份有限公司 一种缆型胎圈及轮胎
CN112726239B (zh) * 2020-12-28 2023-05-16 青岛鲁普耐特绳网研究院有限公司 混合纤维浮水系泊绳及其制作方法
CN113184113A (zh) * 2021-05-26 2021-07-30 海南浙江大学研究院 一种漂浮式风机系泊系统的意外状况应急措施实现方法
CN114750876B (zh) * 2022-03-16 2023-04-14 青岛鲁普耐特绳网研究院有限公司 灯浮标长工作寿命锚泊系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742310A (ja) * 1993-08-03 1995-02-10 Tokyo Seiko Co Ltd コンクリ−ト補強用繊維複合型補強材およびその端末定着方法
CN2257830Y (zh) * 1995-10-31 1997-07-16 熊华业 无粘结预应力钢丝束
CN1580386A (zh) * 2004-05-20 2005-02-16 赵全玺 防腐蚀防火缆索
CN200971449Y (zh) * 2006-10-19 2007-11-07 山东省科学院海洋仪器仪表研究所 复合橡胶缆
US8695317B2 (en) * 2012-01-23 2014-04-15 Hampidjan Hf Method for forming a high strength synthetic rope
CN108708201A (zh) * 2018-06-14 2018-10-26 江苏省香川绳缆科技有限公司 一种双层多股编织绳缆
CN108951238A (zh) * 2018-07-16 2018-12-07 山东鲁普科技有限公司 适用于深海浮标的系留缆绳及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039325A (en) * 1996-10-17 2000-03-21 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Resilient braided rope seal
CN2679212Y (zh) * 2004-03-18 2005-02-16 孙致明 绳索
CN2777023Y (zh) * 2005-02-04 2006-05-03 冯文鸿 一种绳
CN201412435Y (zh) * 2009-06-22 2010-02-24 江阴艺林索具有限公司 不锈钢扁丝推拉索芯
CN205839456U (zh) * 2016-07-12 2016-12-28 江苏曼杰克有限公司 一种新型登山绳索
CN107881819A (zh) * 2017-11-18 2018-04-06 浙江海轮绳网有限公司 一种深海工程缆绳
CN110258147A (zh) * 2019-06-27 2019-09-20 鲁普耐特集团有限公司 一种抗斜拉撕裂绳索及其制作方法
CN211112889U (zh) * 2019-11-05 2020-07-28 山东鲁普科技有限公司 用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742310A (ja) * 1993-08-03 1995-02-10 Tokyo Seiko Co Ltd コンクリ−ト補強用繊維複合型補強材およびその端末定着方法
CN2257830Y (zh) * 1995-10-31 1997-07-16 熊华业 无粘结预应力钢丝束
CN1580386A (zh) * 2004-05-20 2005-02-16 赵全玺 防腐蚀防火缆索
CN200971449Y (zh) * 2006-10-19 2007-11-07 山东省科学院海洋仪器仪表研究所 复合橡胶缆
US8695317B2 (en) * 2012-01-23 2014-04-15 Hampidjan Hf Method for forming a high strength synthetic rope
CN108708201A (zh) * 2018-06-14 2018-10-26 江苏省香川绳缆科技有限公司 一种双层多股编织绳缆
CN108951238A (zh) * 2018-07-16 2018-12-07 山东鲁普科技有限公司 适用于深海浮标的系留缆绳及其制备方法和应用

Also Published As

Publication number Publication date
US11801917B2 (en) 2023-10-31
CN110761095B (zh) 2021-12-14
US20210245843A1 (en) 2021-08-12
CN110761095A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2021088258A1 (zh) 用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统
CN104762843B (zh) 一种海上用水中构件装置系留缆绳及其制作方法
DK180681B1 (en) High resolution headline sonar cable
US20220163748A1 (en) High strength data transmission cable
US3842584A (en) Strand for a wire cable of synthetic wires and synthetic fibres
EP2673414A1 (en) Braided rope, suitable to be used as a towing warp, comprising changing properties in the length direction thereof
CN110485186B (zh) 一种用于码头停靠的弹性系泊绳缆及其制备方法
CN211112889U (zh) 用于海洋观测浮标锚系系统的混合缆绳及浮标锚系系统
KR101284285B1 (ko) 가요성 전기 콘트롤 라인
CN111593591A (zh) 一种用于航标锚系系统的复合缆绳及其制作方法
CN209249182U (zh) 光电高强缆
US20220120984A1 (en) Improved high resolution headline sonar cable
CN213123817U (zh) 一种导流拖缆
JP2022516605A (ja) 飛行風力発電システム用のロープ
CN111681810A (zh) 一种导流拖缆及其制造方法
RU171487U1 (ru) Комбинированный многофункциональный грузонесущий кабель
CN109473226A (zh) 光电高强缆及其制造方法
EP0132571B1 (en) Faired umbilical cable
RU71470U1 (ru) Плавучий провод связи
CN215770558U (zh) 一种环保仿生型硅胶数据线
CN216212398U (zh) 一种水下水密电缆
CN214671889U (zh) 一种带气管拖链电缆
US20240145121A1 (en) High resolution headline sonar cable
CN218768798U (zh) 一种高端设备控制系统用电缆
JP7249468B2 (ja) 二重ロープ構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885290

Country of ref document: EP

Kind code of ref document: A1