WO2021088200A1 - 双级励磁高电压比例标准装置及误差补偿方法 - Google Patents

双级励磁高电压比例标准装置及误差补偿方法 Download PDF

Info

Publication number
WO2021088200A1
WO2021088200A1 PCT/CN2019/124576 CN2019124576W WO2021088200A1 WO 2021088200 A1 WO2021088200 A1 WO 2021088200A1 CN 2019124576 W CN2019124576 W CN 2019124576W WO 2021088200 A1 WO2021088200 A1 WO 2021088200A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
winding
iron core
proportional
voltage
Prior art date
Application number
PCT/CN2019/124576
Other languages
English (en)
French (fr)
Inventor
周峰
刘浩
雷民
殷小东
姜春阳
袁建平
Original Assignee
中国电力科学研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司, 国家电网有限公司 filed Critical 中国电力科学研究院有限公司
Priority to EP19951933.1A priority Critical patent/EP4057302A4/en
Publication of WO2021088200A1 publication Critical patent/WO2021088200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/24Voltage transformers
    • H01F38/26Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2895Windings disposed upon ring cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented

Definitions

  • This application relates to the technical field of power metering standard equipment, for example, to a two-stage excitation high-voltage ratio standard device, and at the same time to an error compensation method for the two-stage excitation high-voltage ratio standard device.
  • the power frequency voltage ratio standard is a measurement tool and means used to reproduce the power frequency voltage ratio, and it needs to meet the two conditions of stability and traceability. With the rapid development of the world's power industry in the past two centuries, the research and application of power frequency voltage ratio standards have also experienced a long development process. At present, the power frequency voltage ratio standards commonly used internationally mainly include three types: resistive, capacitive and electromagnetic.
  • Resistive and capacitive standard devices are greatly affected by temperature, and their stability is not as good as electromagnetic standard devices.
  • the electromagnetic power frequency voltage ratio standard has the advantages of simple principle, convenient use, stable and reliable.
  • the two-stage proportional standard device has high accuracy and good stability, and is also the most widely used.
  • This application provides a two-stage excitation high voltage ratio standard device, including:
  • first-stage iron core C1 and the second-stage iron core C2 are both rectangular rings, and the perimeter of the rectangular ring of the first-stage iron core C1 is greater than the perimeter of the rectangular ring of the second-stage iron core C2;
  • the second-stage iron core C2 is located outside the first-stage iron core C1, and one side of the first-stage iron core C1 is adjacent to one side of the second iron core C2;
  • the excitation winding N 1e and the excitation winding N 2e are wound on the opposite sides of the adjacent sides of the first-level core C1 and the second-level core C2 to form a first-level voltage transformer.
  • the proportional winding N 1 and the proportional winding N 2 are wound Manufactured on the two adjacent sides of the first-level core C1 and the second-level core C2 to form a second-level voltage transformer.
  • the winding directions of the field winding N 1e and the field winding N 2e are the same, and the proportional winding N 1 and the proportional winding N 1e
  • the winding direction of the winding N 2 is the same, and the winding directions of the two sets of excitation windings and the two sets of proportional windings are opposite;
  • the magnetic flux directions of two adjacent sides of the first-stage iron core C1 and the second-stage iron core C2 are the same.
  • the cross-sectional area of the cross section of the first-stage core (C1) may be larger than the cross-sectional area of the cross-section of the second-stage core (C2).
  • the number of turns of the field winding N 1e is equal to that of the proportional winding N 1
  • the number of turns of the field winding N 2e is equal to that of the proportional winding N 2 .
  • the material of the first-level core C1 may include silicon steel, and the material of the second-level core C2 may include permalloy.
  • This application also provides an error compensation method for the two-stage excitation high-voltage ratio standard device, which is used in the two-stage excitation high-voltage ratio standard device mentioned in the foregoing, and the method includes:
  • the error compensation amount is used to compensate the error of the two-stage excitation high voltage proportional standard device to be compensated.
  • the step of calculating the error compensation amount of the two-stage excitation high voltage ratio standard device to be compensated may further include:
  • the capacitive error and the magnetic error of the two-stage excitation high-voltage proportional standard device to be compensated are secondarily compensated.
  • ⁇ f represents the ratio difference compensation amount
  • ⁇ ⁇ represents the angle difference compensation amount
  • N 2 is the number of turns of the proportional winding of the two-stage excitation high-voltage proportional standard device to be compensated
  • N 4 is the low-voltage mutual inductance for compensation.
  • the number of turns of the compensation winding of the converter, K1 and K2 are the transformation ratios of the low-voltage transformer for compensation, ⁇ is the phase shift angle of the phase shift circuit, and ⁇ is the angle compensation amount.
  • the error compensation method may further include:
  • ⁇ 1 is the first-order error
  • ⁇ 2 is the second level error
  • is the two-stage overall error
  • I 01 the excitation current of the first-stage voltage transformer
  • I 02 the excitation current of the second-level voltage transformer
  • Z 1e The internal impedance of the primary winding of the first-stage voltage transformer
  • Z 1 The internal impedance of the primary winding of the second-level voltage transformer
  • U 1 The primary voltage of the two-stage excitation high voltage ratio standard device
  • U′ 2 The secondary voltage converted to the primary side by the double-stage excitation high-voltage proportional standard device.
  • the two-level overall error is 10 -7 -10 -5 .
  • This application provides a dual-stage excitation high-voltage ratio standard device.
  • the voltage level of the dual-stage excitation structure is improved.
  • the device can be used as a highly accurate
  • the use of power-frequency voltage proportional standard appliances at a high level solves the problem that the highest voltage level of the current two-level proportional standard device is low, and the voltage of the two-level proportional standard device is increased, which is higher than that of the single-stage proportional standard device under high voltage.
  • the accuracy of the standard proportional device is improved.
  • Fig. 1 is a schematic cross-sectional view of a two-stage excitation high-voltage ratio standard device provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of the winding direction of a two-stage excitation high-voltage ratio standard device provided by an embodiment of the present application;
  • Fig. 3 is a schematic circuit diagram of a conventional two-stage voltage transformer involved in an embodiment of the present application
  • Fig. 4 is an equivalent circuit diagram of a conventional two-stage voltage transformer involved in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a conventional two-stage voltage transformer involved in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of an error compensation method for a two-stage excitation high voltage ratio standard device provided by an embodiment of the present application
  • FIG. 7 is an error compensation circuit diagram of a two-stage excitation high voltage ratio standard device related to an embodiment of the present application.
  • Fig. 8 is an error compensation vector diagram of a two-stage excitation high voltage ratio standard device related to an embodiment of the present application.
  • FIG. 1 is a schematic cross-sectional view of a two-stage excitation high-voltage ratio standard device provided by an embodiment of the present application.
  • the standard device provided by the present application will be described in detail below with reference to FIG. 1.
  • a two-stage excitation high-voltage proportional standard device includes: a first-stage iron core C1, a second-stage iron core C2, a proportional winding N 1 , a proportional winding N 2 , an excitation winding N 1e , and an excitation winding N 2e .
  • the first-stage iron core C1 and the second-stage iron core C2 are both rectangular rings. As shown in Figure 1, the perimeter of the rectangular ring of the first-level core C1 is greater than that of the second-level core C2. From the AA direction, the cross-sectional area of the first-level core C1 is larger than that of the second-level core C1. The cross-sectional area of the cross section of the second-stage core C2 is described.
  • the cross-section of the first-stage core C1 is circular, and the cross-section of the second-stage core C2 is rectangular.
  • the second-stage iron core C2 is located outside the first-stage iron core C1, and one side of the first-stage iron core C1 is adjacent to one side of the second iron core C2.
  • the excitation winding N 1e and the excitation winding N 2e are wound on the opposite sides of the adjacent sides of the first-stage iron core C1 and the second-stage iron core C2 to form a first-stage voltage transformer.
  • the proportional winding N 1 and the proportional winding N 2 are wound on two adjacent sides of the first-level core C1 and the second-level core C2 to form a second-level voltage transformer.
  • ⁇ 1 in Fig. 1 is the magnetic flux generated by the excitation winding N 1e and the proportional winding N 1 on the first-stage iron core C1
  • ⁇ 2 is the magnetic flux generated by the proportional winding N 1 on the second-stage iron core C2.
  • the number of turns of the field winding N 1e is equal to that of the proportional winding N 1
  • the number of turns of the field winding N 2e is equal to that of the proportional winding N 2 .
  • the winding directions of the field winding N 1e and the field winding N 2e are the same, and the winding directions of the proportional winding N 1 and the proportional winding N 2 are the same.
  • the winding directions of the two sets of field windings and the two sets of proportional windings are opposite, as shown in the figure 2 shown. In the above-mentioned winding direction, the magnetic flux directions of the two adjacent sides of the first-stage core C1 and the second-stage core C2 are the same.
  • the material selected for the first-level core C1 may be silicon steel, and the material selected for the second-level core C2 may be permalloy.
  • the two-stage excitation high-voltage ratio standard device provided in this application is actually a two-stage voltage transformer.
  • the principle circuit diagram of a traditional two-stage voltage transformer is shown in FIG. 3.
  • the traditional two-stage voltage transformer is a voltage transformer with a special structure composed of two-stage voltage transformers.
  • the field winding N 1e is the primary field winding
  • the field winding N 2e is the secondary power supply winding
  • the field winding N 1e and The field winding N 2e is wound on the first-stage iron core C1 to form a first-stage voltage transformer, which is equivalent to a general single-stage voltage transformer.
  • the proportional winding N 1 and the proportional winding N 2 are wound on the first-stage iron core C1 and the second-stage iron core C2.
  • the proportional winding N 1 , the proportional winding N 2 , the first-stage iron core C1 and the second-stage iron core C2 form Secondary voltage transformer.
  • the field winding N 1e , the field winding N 2e , the proportional winding N 1 , the proportional winding N 2 , the first-stage iron core C1 and the second-stage iron core C2 form a two-stage voltage transformer.
  • the number of turns of the excitation winding N 1e and the proportional winding N 1 are equal.
  • the equivalent circuit diagram of the traditional two-stage voltage transformer shown in FIG. 3 is shown in FIG. 4, where Z′ 2 and U′ 2 are the secondary impedance and the secondary induced voltage converted to the primary side, respectively.
  • the structure diagram of the traditional two-stage voltage transformer shown in Fig. 3 is shown in Fig. 5, which can be implemented as follows: uniformly wind the excitation winding N 1e on the first-stage iron core C1, and then embed the second-stage iron core C2 in it , The final proportional winding N 1 is simultaneously wound on the first-stage iron core C1 and the second-stage iron core C2.
  • the current maximum voltage level of the traditional two-stage voltage transformer is only 10kV.
  • the second-stage iron core C2 is grounded, the field winding N 1e is adjacent to the second-stage iron core C2, and the proportional winding N 1 is wound on the outside of the field winding N 1e. , The insulation between the two is not good.
  • the field winding N 2e and the proportional winding N 2 are not shown in FIG. 5.
  • the two-stage excitation high-voltage ratio standard device ie, two-stage voltage transformer
  • the first-stage iron core C1 and the second-stage iron core C2 change from a circular ring to a rectangle In the ring, the relative position of the two cores is changed, and the excitation winding and the proportional winding are wound separately, thereby solving the problems existing in the structure of the traditional two-stage voltage transformer shown in FIG. 5.
  • the winding directions of the excitation winding and the proportional winding are opposite, so that the magnetic flux directions of the two adjacent sides of the first-stage core C1 and the second-stage core C2 are the same .
  • the working magnetic density of the iron core under the rated voltage is generally 1.0T, and the selection of the turn potential needs to consider many factors such as the iron core section, the error performance and the number of turns of the secondary winding.
  • the larger the turn potential the larger the cross-sectional area of the core is required, and the greater the excitation admittance, which leads to increased errors; on the contrary, if the turn potential is too small, more turns are required.
  • the impedance in the primary winding increases, and the error also increases.
  • k is the core lamination coefficient, which is 0.99
  • f is the frequency, which is 50Hz
  • B is the working magnetic density, which is 1.0T.
  • the calculation method for the size of the second-level core is similar to that of the first-level core, and the relevant parameters are as follows:
  • the simple production process of the two-stage excitation high-voltage proportional standard device is as follows: First, wind the excitation winding N 2e and the excitation winding N 1e on the first-stage iron core C1, and then set the second-stage iron core C2 under the first-stage iron core C1 On the other hand, the proportional winding N 2 and the proportional winding N 1 are simultaneously wound on the first-stage iron core C1 and the second-stage iron core C2.
  • the error of the two-stage excitation high-voltage proportional standard device includes three parts, namely excitation error, capacitive error and magnetic error.
  • the two-stage excitation principle solves the excitation error, and the capacitive error caused by the leakage current and the magnetic error caused by the leakage inductance can be compensated twice by the low-voltage transformer.
  • the embodiment of the present application provides an error compensation method for a two-stage excitation high voltage ratio standard device, as shown in FIG. 6, including:
  • Step S101 according to the number of turns of the proportional winding of the two-stage excitation high-voltage proportional standard device to be compensated, the number of turns and the transformation ratio of the compensation winding of the compensation low-voltage transformer, the phase shift angle of the phase shift circuit, and the angle compensation amount,
  • the error compensation amount of the to-be-compensated dual-stage excitation high voltage proportional standard device is calculated, and the error compensation amount includes a ratio difference compensation amount and an angle difference compensation amount.
  • Step S102 using the error compensation amount to compensate the error of the two-stage excitation high voltage proportional standard device to be compensated.
  • a low-voltage transformer is used for secondary compensation.
  • the error compensation circuit diagram is shown in Fig. 7, P f is a low-voltage transformer for compensation, and N 4 is a two-stage voltage
  • the compensation winding of the transformer P 0 (the number of turns is generally 1), and the error compensation vector diagram is shown in Figure 8.
  • U 21 is the output of the proportional winding N 2
  • U 2 is the output voltage after compensation
  • ⁇ U f is the ratio difference compensation voltage
  • ⁇ U ⁇ is the angle difference compensation voltage
  • is the phase shift angle of the phase shift circuit
  • the ratio difference compensation amount is composed of two parts: the in-phase component itself and the influence produced by the quadrature component during compensation. Therefore, the following formulas are used to calculate the ratio difference compensation amount and the angle difference compensation amount of the two-stage excitation high-voltage proportional standard device (ie, two-stage voltage transformer) to be compensated:
  • ⁇ f represents the ratio difference compensation amount
  • ⁇ ⁇ represents the angle difference compensation amount
  • N 2 is the number of turns of the proportional winding of the two-stage excitation high voltage proportional standard device to be compensated
  • N 4 is the low voltage for compensation.
  • the number of turns of the compensation winding of the transformer, K1 and K2 are the transformation ratios of the low-voltage transformer for compensation, ⁇ is the phase shift angle of the phase shift circuit, and ⁇ is the angle compensation amount.
  • the two-stage excitation voltage proportional standard device under voltage level uses the error compensation method of the two-stage excitation voltage proportional standard device to calculate the error compensation amount.
  • the two-stage excitation high-voltage ratio standard device provided in this application is actually a two-stage voltage transformer.
  • the reason why it can be used as a standard device is that it has an accuracy level higher than the current highest national standard device.
  • the accuracy level of the two-stage excitation voltage proportional standard device to be compensated can be determined by the following formula:
  • ⁇ 1 is the first-order error
  • ⁇ 2 is the second level error
  • is the two-stage overall error
  • I 01 the excitation current of the first-stage voltage transformer
  • I 02 the excitation current of the second-level voltage transformer
  • Z 1e The internal impedance of the primary winding N 1e of the first-stage voltage transformer
  • Z 1 The internal impedance of the primary winding N 1 of the second-level voltage transformer
  • U 1 The primary voltage of the two-stage excitation high voltage ratio standard device
  • U′ 2 The secondary voltage converted to the primary side by the double-stage excitation high-voltage proportional standard device.
  • this application provides The accuracy level of the standard device for the dual-stage excitation high voltage ratio under the voltage level is 0.002, which is higher than the current
  • the accuracy level (level 0.005) of the highest national standard device under the voltage level has been improved by an accuracy level.
  • the two-stage overall error of the two-stage excitation high-voltage proportional standard device is the negative value of the product of the first-stage error (the error of the first-stage voltage transformer) and the second-stage error (the error of the second-stage voltage transformer).
  • the internal impedance of the second-level voltage transformer is equivalent to that of the first-level voltage transformer, but due to the decrease of the excitation impedance, if the error of the first level is 0.01% to 0.1%, the error of the second level is 0.1% to 1% , Then the overall error of the two-stage is 10 -7 ⁇ 10 -5 , which can be used as a power frequency voltage proportional standard instrument with a high accuracy level.
  • This application provides a dual-stage excitation high-voltage proportional standard device.
  • the voltage level of the dual-stage excitation structure is improved.
  • the device can be used as a high
  • accuracy-level power frequency voltage proportional standard appliances solves the problem of low maximum voltage level of the current two-stage proportional standard device, and increases the voltage of the two-stage proportional standard device, which is compared with the single-stage proportional standard device under high voltage. Improve the accuracy of the proportional standard device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

一种双级励磁高电压比例标准装置及误差补偿方法,该装置包括:第一级铁心(C1)、第二级铁心(C2)、比例绕组(N1)、比例绕组(N2)、励磁绕组(N1e)、励磁绕组(N2e);第一级铁心(C1)和第二级铁心(C2)均为矩形环,第一级铁心(C1)的矩形环的周长大于第二级铁心(C2)的矩形环的周长;第二级铁心(C2)位于第一级铁心(C1)的外侧,第一级铁心(C1)的一条边与第二级铁心(C2)的一条边相邻;励磁绕组(N1e)和励磁绕组(N2e)绕制在第一级铁心(C1)中与第二级铁心(C2)相邻的边的对边上,比例绕组(N1)和比例绕组(N2)绕制在第一级铁心(C1)与第二级铁心(C2)相邻的两条边上。该装置解决了现有双级标准装置的最高电压等级低的问题,从而提高了高压下单级标准装置的准确度。

Description

双级励磁高电压比例标准装置及误差补偿方法
本申请要求在2019年11月5日提交中国专利局、申请号为201911070684.1的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力计量标准设备技术领域,例如涉及一种双级励磁高电压比例标准装置,同时涉及双级励磁高电压比例标准装置的误差补偿方法。
背景技术
工频电压比例标准是用来复现工频电压比率的计量工具和手段,需要满足稳定性和可溯源性两个条件。伴随着世界电力工业近两个世纪的快速发展,工频电压比例标准的研究及应用工作也经历了漫长的发展过程。目前,国际上普遍采用的工频电压比例标准主要有电阻式、电容式和电磁式三大类。
电阻式和电容式标准装置受温度影响较大,其稳定性不如电磁式标准装置。电磁式工频电压比例标准具有原理简单、使用方便、稳定可靠的优点。在电磁式结构中,双级比例标准装置的准确度高且稳定性好,应用也最为广泛。
由于传统的双级比例标准装置的最高电压等级仅为10kV,为了研制10kV以上的双级比例标准装置,可采用低压励磁结构,目前已成功研制了35kV、110kV比例标准装置。低压励磁结构虽然在
Figure PCTCN2019124576-appb-000001
的电压等级下取得突破,但是其仍然存在缺陷。在误差校准试验过程中,如果比例标准装置和被测互感器的额定变比不一致,通常需要在二次侧级联多盘感应分压器来获得一致的变比。
发明内容
本申请提供一种双级励磁高电压比例标准装置,包括:
第一级铁心C1、第二级铁心C2,比例绕组N 1、比例绕组N 2、励磁绕组N 1e、励磁绕组N 2e
其中,所述第一级铁心C1和第二级铁心C2均为矩形环,第一级铁心C1的矩形环的周长大于第二级铁心C2的矩形环的周长;
第二级铁心C2位于第一级铁心C1的外侧,第一级铁心C1的一条边与第二铁心C2的一条边相邻;
励磁绕组N 1e和励磁绕组N 2e绕制在第一级铁心C1与第二级铁心C2相邻的边的对边上,形成第一级电压互感器,比例绕组N 1和比例绕组N 2绕制在第一级铁心C1与第二级铁心C2相邻的两条边上,形成第二级电压互感器,励磁绕组N 1e和励磁绕组N 2e的绕线方向相同,比例绕组N 1和比例绕组N 2的绕线方向相同,两组励磁绕组与两组比例绕组的绕线方向相反;
第一级铁心C1与第二级铁心C2相邻的两条边的磁通方向相同。
所述第一级铁心(C1)的截面的截面积可以大于所述第二级铁心(C2)的截面的截面积。
所述双级励磁高电压比例标准装置还可以包括:
励磁绕组N 1e与比例绕组N 1的绕线匝数相等,励磁绕组N 2e与比例绕组N 2的绕线匝数相等。
所述第一级铁心C1的材质可以包括硅钢,第二级铁心C2的材质可以包括坡莫合金。
本申请同时提供一种双级励磁高电压比例标准装置的误差补偿方法,用于前述内容提到的双级励磁高电压比例标准装置,所述方法包括:
获得待补偿的双级励磁高电压比例标准装置的比例绕组匝数、补偿用低压互感器的补偿绕组的匝数和变比、移相电路的移相角度、以及角度补偿量,计算所述待补偿的双级励磁高电压比例标准装置的误差补偿量,所述误差补偿量包括比差补偿量和角差补偿量;
使用所述误差补偿量对所述待补偿的双级励磁高电压比例标准装置的误差进行补偿。
在计算所述待补偿的双级励磁高电压比例标准装置的误差补偿量的步骤之后,还可以包括:
采用所述补偿用低压互感器,对所述待补偿的双级励磁高电压比例标准装置的容性误差和磁性误差进行二次补偿。
计算所述待补偿的双级励磁高电压比例标准装置的误差补偿量,可以包括:
采用如下公式分别计算所述待补偿的双级励磁高电压比例标准装置的比差补偿量和角差补偿量:
Figure PCTCN2019124576-appb-000002
Figure PCTCN2019124576-appb-000003
式中,Δε f表示比差补偿量,Δε δ表示角差补偿量,N 2所述待补偿的双级励磁高电压比例标准装置的比例绕组的匝数,N 4为所述补偿用低压互感器的补偿绕组的匝数,K1和K2为所述补偿用低压互感器的变比,α为移相电路的移相角度,β为角度补偿量。
所述误差补偿方法还可以包括:
通过如下公式确定所述待补偿的双级励磁高电压比例标准装置的准确度等级:
Figure PCTCN2019124576-appb-000004
Figure PCTCN2019124576-appb-000005
Figure PCTCN2019124576-appb-000006
式中,ε 1为第一级误差;
ε 2为第二级误差;
ε为双级整体误差;
I 01——第一级电压互感器的励磁电流;
I 02——第二级电压互感器的励磁电流;
Z m1——第一级电压互感器的励磁阻抗;
Z m2——第二级电压互感器的励磁阻抗;
Z 1e——第一级电压互感器一次绕组的内阻抗;
Z 1——第二级电压互感器一次绕组的内阻抗;
U 1——双级励磁高电压比例标准装置一次电压;
U′ 2——双级励磁高电压比例标准装置折算到一次侧的二次电压。
若所述第一级误差为0.01%~0.1%,所述第二级误差为0.1%~1%,则所述双级整体误差为10 -7~10 -5
本申请提供一种双级励磁高电压比例标准装置,通过改变铁心的形状和励磁绕组的绕制方式,同时配合高精度误差补偿方法,提高双级励磁结构的电压等级,该装置可以作为高准确度级别的工频电压比例标准器具使用,解决目前双级比例标准装置的最高电压等级低的问题,提升了双级比例标准装置的电压,从而相较于高电压下单级比例标准装置,提高了标准比例装置的准确度。
附图说明
图1是本申请实施例提供的一种双级励磁高电压比例标准装置的截面示意图;
图2是本申请实施例提供的一种双级励磁高电压比例标准装置的绕线方向示意图;
图3是本申请实施例涉及的传统的双级电压互感器的原理线路图;
图4是本申请实施例涉及的传统的双级电压互感器的等值电路图;
图5是本申请实施例涉及的传统的双级电压互感器的结构示意图;
图6是本申请实施例提供的一种双级励磁高电压比例标准装置的误差补偿方法的流程示意图;
图7是本申请实施例涉及的一种双级励磁高电压比例标准装置的误差补偿线路图;
图8是本申请实施例涉及的一种双级励磁高电压比例标准装置的误差补偿矢量图。
具体实施方式
在下面的描述中阐述了很多细节以便于充分理解本申请,本申请能够以很多不同于在此描述的其他方式来实施。
图1是本申请实施例提供的一种双级励磁高电压比例标准装置的截面示意图,下面结合图1对本申请提供的标准装置进行详细说明。
一种双级励磁高电压比例标准装置,包括:第一级铁心C1、第二级铁心C2,比例绕组N 1、比例绕组N 2、励磁绕组N 1e、励磁绕组N 2e。所述第一级铁心C1 和第二级铁心C2均为矩形环。如图1所示,第一级铁心C1的矩形环的周长大于第二级铁心C2的矩形环的周长,从A-A方向来看,所述第一级铁心C1的截面的截面积大于所述第二级铁心C2的截面的截面积。在一实施方式中,第一级铁心C1的截面为圆形,第二级铁心C2的截面为矩形。第二级铁心C2位于第一级铁心C1的外侧,第一级铁心C1的一条边与第二铁心C2的一条边相邻。
励磁绕组N 1e和励磁绕组N 2e绕制在第一级铁心C1与第二级铁心C2相邻的边的对边上,形成第一级电压互感器。比例绕组N 1和比例绕组N 2绕制在第一级铁心C1与第二级铁心C2相邻的两条边上,形成第二级电压互感器。图1中的φ 1为励磁绕组N 1e和比例绕组N 1在第一级铁心C1上产生的磁通量,φ 2为比例绕组N 1在第二级铁心C2上产生的磁通量。励磁绕组N 1e与比例绕组N 1的绕线匝数相等,励磁绕组N 2e与比例绕组N 2的绕线匝数相等。励磁绕组N 1e和励磁绕组N 2e的绕线方向相同,比例绕组N 1和比例绕组N 2的绕线方向相同,两组励磁绕组与两组比例绕组的绕线方向相反,绕线方向如图2所示。在上述绕线方向下,第一级铁心C1与第二级铁心C2相邻的两条边的磁通方向相同。
在一实施方式中,第一级铁心C1选用的材质可以为硅钢,第二级铁心C2选用的材质可以为坡莫合金。
本申请提供的双级励磁高电压比例标准装置,实际为双级电压互感器,传统的双级电压互感器的原理线路图如图3所示。传统的双级电压互感器是由两级电压互感器组成的特殊结构电压互感器,图3中,励磁绕组N 1e为一次励磁绕组,励磁绕组N 2e为二次供电绕组,励磁绕组N 1e和励磁绕组N 2e绕在第一级铁芯C1上,形成第一级电压互感器,相当于一般的单级电压互感器。比例绕组N 1和比例绕组N 2绕在第一级铁芯C1和第二级铁芯C2上,比例绕组N 1、比例绕组N 2、第一级铁心C1及第二级铁芯C2形成了第二级电压互感器。这样,励磁绕组N 1e、 励磁绕组N 2e、比例绕组N 1、比例绕组N 2、第一级铁心C1、第二级铁心C2组成了双级电压互感器。其中,励磁绕组N 1e和比例绕组N 1的绕线匝数相等。图3所示的传统的双级电压互感器的等值电路图如图4所示,图4中Z′ 2和U′ 2分别为折算到一次侧的二次阻抗和二次感应电压。
图3所示的传统的双级电压互感器的结构示意图如图5所示,可实施如下:将励磁绕组N 1e均匀绕制在第一级铁心C1上,然后将第二级铁心C2嵌入其中,最后比例绕组N 1同时绕制在第一级铁心C1和第二级铁心C2上。传统的双级电压互感器目前最高电压等级仅为10kV的原因如下:第二级铁心C2接地,励磁绕组N 1e与第二级铁心C2紧邻,比例绕组N 1绕制在励磁绕组N 1e的外侧,二者间的绝缘性不好。需要说明的是,励磁绕组N 2e和比例绕组N 2在图5中未示出。
本申请提供的双级励磁高电压比例标准装置(即双级电压互感器),与传统的双级电压互感器相比,第一级铁心C1与第二级铁心C2由圆形环变成矩形环,两个铁心的相对位置发生改变,励磁绕组和比例绕组分开绕线,从而解决了图5所示的传统的双级电压互感器的结构存在的问题。此外,本申请提供的双级励磁高电压比例标准装置中,励磁绕组和比例绕组的绕线方向相反,使得第一级铁心C1和第二级铁心C2相邻的两条边的磁通方向相同。
根据双级励磁原理及双级电压互感器结构设计方法,研制出
Figure PCTCN2019124576-appb-000007
电压等级下的双级励磁高电压比例标准装置。
首先,以第一级铁心C1的材质选用硅钢片为例。额定电压下铁芯的工作磁密一般取1.0T,匝电势的选取需要考虑铁芯截面、误差性能及二次绕组匝数等多方面因素。在工作磁密一定的前提下,匝电势越大,需要铁芯的截面积越大,励磁导纳增大,导致误差增大;相反,若匝电势太小,则需要更多的匝数,一次绕组内阻抗变大,误差也增大。本次选取一次绕组N 1=N 1e=150000,则匝电势
Figure PCTCN2019124576-appb-000008
根据公式e t=4.44fBSk×10 -4,计算铁心的截面积,上式中,k为铁芯叠片系数,取0.99,f为频率,取50Hz,B为工作磁密,取1.0T,则计算出截面积S=87.36(cm 2)。
第二级铁心的尺寸计算方法与第一级铁心类似,相关参数如下表:
Figure PCTCN2019124576-appb-000009
双级励磁高电压比例标准装置的简单制作流程如下:首先在第一级铁心C1上绕制励磁绕组N 2e、励磁绕组N 1e,然后将第二级铁心C2设置在第一级铁心C1的下侧,在第一级铁心C1和第二级铁心C2上同时绕制比例绕组N 2、比例绕组N 1
在高压条件下,双级励磁高电压比例标准装置的误差包括三部分,分别是励磁误差、容性误差和磁性误差。双级励磁原理解决的是励磁误差,而漏电流引起的容性误差和漏电感引起的磁性误差可通过低压互感器进行二次补偿。
本申请实施例提供了一种双级励磁高电压比例标准装置的误差补偿方法,如图6所示,包括:
步骤S101,根据待补偿的双级励磁高电压比例标准装置的比例绕组的匝数、补偿用低压互感器的补偿绕组的匝数和变比、移相电路的移相角度、以及角度补偿量,计算所述待补偿的双级励磁高电压比例标准装置的误差补偿量,所述误差补偿量包括比差补偿量和角差补偿量。
步骤S102,使用所述误差补偿量对所述待补偿的双级励磁高电压比例标准 装置的误差进行补偿。
在一实施方式中,对双级励磁高电压比例标准装置,采用低压互感器进行二次补偿,误差补偿线路图如图7所示,P f为补偿用低压互感器,N 4为双级电压互感器P 0的补偿绕组(匝数一般为1),误差补偿矢量图如图8所示。
图8中,U 21为比例绕组N 2的输出,U 2为补偿后的输出电压,ΔU f为比差补偿电压,ΔU δ为角差补偿电压,α为移相电路的移相角度,β为最终的角度补偿量。
Figure PCTCN2019124576-appb-000010
Figure PCTCN2019124576-appb-000011
Figure PCTCN2019124576-appb-000012
由误差补偿矢量图可以看出,当进行正交分量补偿时,会引起同相分量误差。因此,比差补偿量由两部分组成:同相分量本身和正交分量补偿时产生的影响。所以,采用如下公式分别计算待补偿的双级励磁高电压比例标准装置(即双级电压互感器)的比差补偿量和角差补偿量:
Figure PCTCN2019124576-appb-000013
Figure PCTCN2019124576-appb-000014
式中,Δε f表示比差补偿量,Δε δ表示角差补偿量,N 2为所述待补偿的双级励磁高电压比例标准装置的比例绕组的匝数,N 4为所述补偿用低压互感器的补偿绕组的匝数,K1和K2为所述补偿用低压互感器的变比,α为移相电路的移相角度,β为角度补偿量。
接着,对本申请提供的
Figure PCTCN2019124576-appb-000015
电压等级下的双级励磁电压比例标准装 置,使用双级励磁电压比例标准装置的误差补偿方法,计算其误差补偿量,相关参数取值为:N 2=41,N 4=1,R=100Ω,C=10uf,K 1=200,K 2=500。
将上述参数代入式(4)、(5)计算得:
Δε f=1.09×10 -4
Δε δ=6×10 -5
本申请提供的双级励磁高电压比例标准装置,实际为双级电压互感器,之所以能够作为一种标准装置使用,是因为比目前国家最高标准装置提高了一个准确度等级。
在一实施方式中,可通过如下公式确定待补偿的双级励磁电压比例标准装置的准确度等级:
Figure PCTCN2019124576-appb-000016
Figure PCTCN2019124576-appb-000017
Figure PCTCN2019124576-appb-000018
式中,ε 1为第一级误差;
ε 2为第二级误差;
ε为双级整体误差;
I 01——第一级电压互感器的励磁电流;
I 02——第二级电压互感器的励磁电流;
Z m1——第一级电压互感器的励磁阻抗;
Z m2——第二级电压互感器的励磁阻抗;
Z 1e——第一级电压互感器一次绕组N 1e的内阻抗;
Z 1——第二级电压互感器一次绕组N 1的内阻抗;
U 1——双级励磁高电压比例标准装置一次电压;
U′ 2——双级励磁高电压比例标准装置折算到一次侧的二次电压。
通过上述准确度等级的确定方法,本申请提供的
Figure PCTCN2019124576-appb-000019
电压等级下的双级励磁高电压比例标准装置的准确度等级为0.002级,比目前
Figure PCTCN2019124576-appb-000020
电压等级下的国家最高标准装置的准确度等级(0.005级)提高了一个准确度等级。
双级励磁高电压比例标准装置的双级整体误差为第一级误差(第一级电压互感器的误差)和第二级误差(第二级电压互感器的误差)的乘积的负值。第二级电压互感器的内阻抗与第一级电压互感器的内阻抗相当,但由于励磁阻抗下降,若第一级误差为0.01%~0.1%,则第二级误差为0.1%~1%,那么双级整体误差为10 -7~10 -5,可以作为高准确度级别的工频电压比例标准器具使用。
本申请提供一种双级励磁高电压比例标准装置,通过改变铁心的形状和高压励磁绕组的绕制方式,同时配合高精度误差补偿方法,提高双级励磁结构的电压等级,该装置可以作为高准确度级别的工频电压比例标准器具使用,解决目前双级比例标准装置的最高电压等级低的问题,提升了双级比例标准装置的电压,从而相较于高电压下单级比例标准装置,提高了比例标准装置的准确度。

Claims (9)

  1. 一种双级励磁高电压比例标准装置,包括:
    第一级铁心(C1)、第二级铁心(C2)、比例绕组(N 1)、比例绕组(N 2)、励磁绕组(N 1e)、励磁绕组(N 2e);
    其中,所述第一级铁心(C1)和所述第二级铁心(C2)均为矩形环,所述第一级铁心(C1)的矩形环的周长大于所述第二级铁心(C2)的矩形环的周长;
    所述第二级铁心(C2)位于所述第一级铁心(C1)的外侧,所述第一级铁心(C1)的一条边与所述第二级铁心(C2)的一条边相邻;
    所述励磁绕组(N 1e)和所述励磁绕组(N 2e)绕制在所述第一级铁心(C1)与所述第二级铁心(C2)相邻的边的对边上,形成第一级电压互感器,所述比例绕组(N 1)和所述比例绕组(N 2)绕制在所述第一级铁心(C1)与所述第二级铁心(C2)相邻的两条边上,形成第二级电压互感器,所述励磁绕组(N 1e)和所述励磁绕组(N 2e)的绕线方向相同,所述比例绕组(N 1)和所述比例绕组(N 2)的绕线方向相同,两组励磁绕组与两组比例绕组的绕线方向相反;
    所述第一级铁心(C1)与所述第二级铁心(C2)相邻的两条边的磁通方向相同。
  2. 根据权利要求1所述的装置,其中,所述第一级铁心(C1)的截面的截面积大于所述第二级铁心(C2)的截面的截面积。
  3. 根据权利要求1或2所述的装置,还包括:
    所述励磁绕组(N 1e)与所述比例绕组(N 1)的绕线匝数相等,所述励磁绕组(N 2e)与所述比例绕组(N 2)的绕线匝数相等。
  4. 根据权利要求1或2或3所述的装置,其中,所述第一级铁心(C1)的材质包括硅钢,所述第二级铁心(C2)的材质包括坡莫合金。
  5. 一种双级励磁高电压比例标准装置的误差补偿方法,用于权利要求1-4中任一项所述的装置,所述方法包括:
    根据待补偿的双级励磁高电压比例标准装置的比例绕组的匝数、补偿用低压互感器的补偿绕组的匝数和变比、移相电路的移相角度、以及角度补偿量,计算所述待补偿的双级励磁高电压比例标准装置的误差补偿量,所述误差补偿量包括比差补偿量和角差补偿量;
    使用所述误差补偿量对所述待补偿的双级励磁高电压比例标准装置的误差进行补偿。
  6. 根据权利要求5所述的方法,在计算所述待补偿的双级励磁高电压比例标准装置的误差补偿量的步骤之后,还包括:
    采用所述补偿用低压互感器,对所述待补偿的双级励磁高电压比例标准装置的容性误差和磁性误差进行二次补偿。
  7. 根据权利要求5或6所述的方法,其中,所述计算所述待补偿的双级励磁高电压比例标准装置的误差补偿量,包括:
    采用如下公式分别计算所述待补偿的双级励磁高电压比例标准装置的比差补偿量和角差补偿量:
    Figure PCTCN2019124576-appb-100001
    Figure PCTCN2019124576-appb-100002
    式中,Δε f表示比差补偿量,Δε δ表示角差补偿量,N 2为所述待补偿的双级励磁高电压比例标准装置的比例绕组的匝数,N 4为所述补偿用低压互感器的补偿绕组的匝数,K1和K2为所述补偿用低压互感器的变比,α为所述移相电路的移相角度,β为角度补偿量。
  8. 根据权利要求5或6或7所述的方法,还包括:
    通过如下公式确定所述待补偿的双级励磁高电压比例标准装置的准确度等级:
    Figure PCTCN2019124576-appb-100003
    Figure PCTCN2019124576-appb-100004
    Figure PCTCN2019124576-appb-100005
    式中,ε 1为第一级误差;
    ε 2为第二级误差;
    ε为双级整体误差;
    I 01——第一级电压互感器的励磁电流;
    I 02——第二级电压互感器的励磁电流;
    Z m1——第一级电压互感器的励磁阻抗;
    Z m2——第二级电压互感器的励磁阻抗;
    Z 1e——第一级电压互感器一次绕组的内阻抗;
    Z 1——第二级电压互感器一次绕组的内阻抗;
    U 1——双级励磁高电压比例标准装置一次电压;
    U′ 2——双级励磁高电压比例标准装置折算到一次侧的二次电压。
  9. 根据权利要求8所述的方法,其中,若所述第一级误差为0.01%~0.1%,且所述第二级误差为0.1%~1%,则所述双级电整体误差为10 -7~10 -5
PCT/CN2019/124576 2019-11-05 2019-12-11 双级励磁高电压比例标准装置及误差补偿方法 WO2021088200A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19951933.1A EP4057302A4 (en) 2019-11-05 2019-12-11 TWO STAGE PROPORTIONAL HIGH VOLTAGE STANDARD DEVICE WITH MAGNETIC EXCITATION AND ERROR COMPENSATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911070684.1 2019-11-05
CN201911070684.1A CN110993273B (zh) 2019-11-05 2019-11-05 一种双级励磁高电压比例标准装置及误差补偿方法

Publications (1)

Publication Number Publication Date
WO2021088200A1 true WO2021088200A1 (zh) 2021-05-14

Family

ID=70083458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124576 WO2021088200A1 (zh) 2019-11-05 2019-12-11 双级励磁高电压比例标准装置及误差补偿方法

Country Status (3)

Country Link
EP (1) EP4057302A4 (zh)
CN (1) CN110993273B (zh)
WO (1) WO2021088200A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103060B (zh) * 2020-08-07 2022-07-01 中国电力科学研究院有限公司 多级励磁高电压比例标准装置
CN114300244B (zh) * 2022-01-06 2023-12-19 北京东方计量测试研究所 双级误差补偿scott变压装置
CN115966387A (zh) * 2022-04-15 2023-04-14 中国电力科学研究院有限公司 一种全中压双级电压互感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203112A (ja) * 2000-01-21 2001-07-27 Tabuchi Electric Co Ltd 電磁誘導機器
CN202110934U (zh) * 2011-05-11 2012-01-11 广东电网公司电力科学研究院 一种用圆筒线圈绕制的双级电压互感器
CN106328349A (zh) * 2016-09-23 2017-01-11 国网江西省电力公司电力科学研究院 一种双二次绕组双级电压互感器
CN107424814A (zh) * 2017-07-27 2017-12-01 中国电力科学研究院 一种高低压混合励磁双级电压互感器及其校准方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1004835B (zh) * 1986-05-23 1989-07-19 北京电力科学研究所 电能计量综合误差补偿器
CN101086917A (zh) * 2006-06-09 2007-12-12 郑州大学 电压互感器及二次回路压降误差的补偿方法及补偿装置
CN102360857B (zh) * 2011-05-30 2013-01-16 国网电力科学研究院 一种带误差补偿互感器的一体化配网变压器
KR101798689B1 (ko) * 2013-12-05 2017-11-16 엘에스산전 주식회사 계기용 변류기를 포함하는 전원 장치 및 계기용 변류기의 보상 방법
CN109065343A (zh) * 2018-07-10 2018-12-21 中国电力科学研究院有限公司 一种高压双级电压互感器
CN109212293B (zh) * 2018-10-18 2021-04-02 中国电力科学研究院有限公司 一种具有电压计量功能的供电型电压互感器及使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203112A (ja) * 2000-01-21 2001-07-27 Tabuchi Electric Co Ltd 電磁誘導機器
CN202110934U (zh) * 2011-05-11 2012-01-11 广东电网公司电力科学研究院 一种用圆筒线圈绕制的双级电压互感器
CN106328349A (zh) * 2016-09-23 2017-01-11 国网江西省电力公司电力科学研究院 一种双二次绕组双级电压互感器
CN107424814A (zh) * 2017-07-27 2017-12-01 中国电力科学研究院 一种高低压混合励磁双级电压互感器及其校准方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEI MIN, ZHOU FENG, XIANG QIONG, XIAO KAI, CHEN SONG: "Application of New Generation 110kV Power Frequency Voltage Ratio Standard Apparatus", DISTRIBUTION & UTILIZATION, 1 March 2013 (2013-03-01), pages 71 - 75, XP055810384, ISSN: 1006-6357 *
See also references of EP4057302A4
YUE CHANGXI, E. MOHNS, FENG ZHOU, MIN LEI, ZHANG SHU-HAN, QIONG XIANG: "A Method of Precision Measurement for Voltage Ratio", ELECTRICAL MEASUREMENT & INSTRUMENTATION, vol. 50, no. 567, 1 March 2013 (2013-03-01), pages 37 - 40, XP055810383, ISSN: 1001-1390 *

Also Published As

Publication number Publication date
CN110993273A (zh) 2020-04-10
EP4057302A1 (en) 2022-09-14
EP4057302A4 (en) 2024-01-03
CN110993273B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2021088200A1 (zh) 双级励磁高电压比例标准装置及误差补偿方法
CN107068373A (zh) 一种抗直流电流互感器
You et al. AC loss measurement and simulation in a REBCO coil assembly utilising low-loss magnetic flux diverters
CN102969138B (zh) 0.2Ss级特种高压计量电流互感器
KR101192830B1 (ko) 변류기 및 전기 에너지 미터기
CN102426909A (zh) 一种基于复合磁芯的抗直流电流互感器及其制造方法
CN104851580A (zh) 基于磁位计补偿的带间隙铁芯式罗氏线圈互感器
WO2022001085A1 (zh) 一种制备高准确级双级钳形电流互感器的方法
Baguley et al. A new technique for measuring ferrite core loss under DC bias conditions
CN112271061A (zh) 一种计量用电流互感器
Arnold Current-transformer testing
CN205789476U (zh) 电流互感器
CN103854841A (zh) 可带直流的电流互感器误差补偿方法
CN204067022U (zh) 综合误差补偿型互感器
CN107170571A (zh) 一种多级电压互感器
CN204464036U (zh) 基于磁位计补偿的带间隙铁芯式罗氏线圈互感器
CN112103060B (zh) 多级励磁高电压比例标准装置
Zurek et al. Finite-element modeling and measurements of flux and eddy current distribution in toroidal cores wound from electrical steel
CN205666125U (zh) 抗直流测量用电流互感器
WO2021023115A1 (zh) 一种电流互感器的线圈总成及生产方法
CN105957696A (zh) 抗直流测量用电流互感器及制备方法
CN104764919A (zh) 基于有损二重积分电路的电子式电压互感器
CN204462231U (zh) 基于有损二重积分电路的电子式电压互感器
Liu et al. High Precision $500/\surd {}\3\\mathrm {kV} $ Two-Stage Voltage Transformer with High-Voltage Excitation
CN213815761U (zh) 一种计量用电流互感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019951933

Country of ref document: EP

Effective date: 20220607