WO2022001085A1 - 一种制备高准确级双级钳形电流互感器的方法 - Google Patents

一种制备高准确级双级钳形电流互感器的方法 Download PDF

Info

Publication number
WO2022001085A1
WO2022001085A1 PCT/CN2021/071187 CN2021071187W WO2022001085A1 WO 2022001085 A1 WO2022001085 A1 WO 2022001085A1 CN 2021071187 W CN2021071187 W CN 2021071187W WO 2022001085 A1 WO2022001085 A1 WO 2022001085A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
winding
current
accuracy
turns
Prior art date
Application number
PCT/CN2021/071187
Other languages
English (en)
French (fr)
Inventor
顾红波
康俊平
Original Assignee
南京丹迪克电力仪表有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京丹迪克电力仪表有限公司 filed Critical 南京丹迪克电力仪表有限公司
Publication of WO2022001085A1 publication Critical patent/WO2022001085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means

Definitions

  • the invention relates to the technical field of current transformers, in particular to a method for preparing a high-accuracy two-stage clamp-shaped current transformer.
  • the existing clamp-shaped current transformers are all wound by a single coil, and the magnetic core used is composed of two "half magnetic cores", and each "half magnetic core” is wound with N2/2 turns. coil, and then connect the two coils in series to form a complete N2-turn coil.
  • clamp-type current transformers with better performance use iron-nickel alloy (1J85) with high magnetic permeability as the magnetic core material, due to the use of two "half magnetic cores", there are two contact surfaces, and the magnetic properties of the magnetic core are The conductivity is greatly reduced, so the accuracy level of this clamp current transformer is not high, and the highest level can only be 0.2. Even if the clamp current transformer of class 0.1 is declared on the market, it can only reach class 0.2 after actual error measurement.
  • the technical problem to be solved by the present invention is to provide a method for preparing a high-accuracy two-stage clamp-type current transformer, which adopts a two-stage structure and has a main winding and an auxiliary winding, and its accuracy can be improved by one order of magnitude, which is high Provide technical support for precision measurement applications.
  • the present invention provides a method for preparing a high-accuracy two-stage clamp-on current transformer, comprising the following steps:
  • N b turns are wound on the main magnetic core BCX to make a secondary compensation winding whose output terminal is b1b2;
  • a method for preparing a high-accuracy two-stage clamp-on current transformer comprising the following steps:
  • Winding N 2 turns of the secondary power supply winding on the auxiliary magnetic core ACX to make a power supply coil
  • N 2 turns are wound on the main magnetic core BCX as the second primary winding; then additionally N b turns are wound to make a secondary compensation winding whose output terminal is b1b2;
  • the power supply winding wound on the auxiliary magnetic core ACX is no different from the single-stage clamp current transformer, and its theoretical output current equal to primary current Due to the error of the current transformer, the output current of the power supply winding of the actual auxiliary magnetic core ACX There is a certain error
  • the accuracy level of the auxiliary magnetic core ACX power supply winding is about 0.2;
  • the secondary compensation winding of the main magnetic core BCX outputs the secondary current is the following formula:
  • the main magnetic core is in a low magnetic density state, and the accuracy level of the main magnetic core is low, generally around 1 to 10;
  • the output current of the complete set of two-stage clamp current transformers is the following formula:
  • N 2 N b in most applications
  • the auxiliary magnetic core ACX error current is measured through a 10-level main magnetic core, the output compensation current is and the secondary supply current of the auxiliary magnetic core The output is superimposed, so its accuracy level is multiplied by the accuracy level of the main magnetic core and the accuracy level of the auxiliary magnetic core. If the accuracy level of the auxiliary magnetic core is 0.2 and the accuracy level of the main magnetic core is 10, then the accuracy level of the two multiplied. is 0.02.
  • the beneficial effects of the present invention are: compared with the single-stage clamp-type current transformer, due to the use of a two-stage structure, with a main winding and an auxiliary winding, the accuracy level of the current transformer can be improved by one order of magnitude, that is, the accuracy level can be improved from the existing 0.2 level.
  • the clamp-type current transformer has been improved to 0.02 class, providing technical support for high-accuracy AC current measurement applications.
  • FIG. 1 is a schematic diagram of the stacking and winding principle of the two-stage clamp current transformer of the present invention.
  • FIG. 2 is a schematic diagram of the independent winding principle of the dual-stage clamp current transformer of the present invention.
  • FIG. 3 is a schematic diagram of the independent winding structure of the dual-stage clamp current transformer of the present invention.
  • a method for preparing a high-accuracy two-stage clamp-on current transformer includes the following steps:
  • N b turns are wound on the main magnetic core BCX to make a secondary compensation winding whose output terminal is b1b2;
  • a method for preparing a high-accuracy two-stage clamp-on current transformer includes the following steps:
  • Winding N 2 turns of the secondary power supply winding on the auxiliary magnetic core ACX to make a power supply coil
  • N 2 turns are wound on the main magnetic core BCX as the second primary winding; then additionally N b turns are wound to make a secondary compensation winding whose output terminal is b1b2;
  • the winding method is simpler than that in Figure 2, eliminating the need to wind one group of primary coils and one group of secondary coils, and using the stacking method to share the two groups of coils.
  • the clamp-type current transformer adopts an open magnetic core, when two magnetic cores are stacked and wound at the same time, it is difficult to ensure that the installation tolerance is small enough, so that it is difficult to make the contact surfaces of the two magnetic cores of the two magnetic cores effectively and stably contact. If the contact surface is not effectively fitted, the error of the clamp current transformer will be greatly increased, so it is necessary to achieve a higher level of technology and installation to ensure that the error is qualified.
  • the QXCT using the winding in Figure 2 has a simpler structure than the winding method in Figure 1 and is completely independent, so it can ensure that the processing and installation process is qualified, so that the contact surfaces of the magnetic core are effectively fitted, so that the error can reach 0.02.
  • the auxiliary winding ACX needs to add a set of coils in series with the main winding and the secondary coil, and the auxiliary winding also needs to pass the measured current wire through the primary through-hole. It is relatively troublesome to use, and the material cost is slightly higher.
  • the dual-stage clamp-shaped current transformer of the present invention is designed with two sets of magnetic cores, one is the auxiliary magnetic core and the other is the main magnetic core for error compensation, and the accuracy of class 0.02 and above can be achieved by a special winding method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一种制备高准确级双级钳形电流互感器的方法,采用了双级结构,具有主绕组和辅助绕组,其准确级可以提高1个数量级,也就是能从现有的0.2级钳形电流互感器提高至0.02级,为高精确度交流电流测量应用提供技术支撑。

Description

一种制备高准确级双级钳形电流互感器的方法 技术领域
本发明涉及电流互感器技术领域,尤其是一种制备高准确级双级钳形电流互感器的方法。
背景技术
现有钳形电流互感器均是采用单线圈绕制的方法,采用的磁芯是由两个“半磁芯”组成,分别在每个“半磁芯”上绕制N2/2匝数的线圈,然后将两个线圈串联起来组成完整的N2匝线圈。其电流比等于匝数反比,因此I1/I2=N2/Na,其中Na=1匝。例如N2=2000t,额定一次电流I1为5A,则二次额定输出电流I2=2.5mA。虽然有些性能较好的钳形电流互感器采用高磁导率的铁镍合金(1J85)为磁芯材料,但由于采用两个“半磁芯”,存在两个接触面,其磁芯的磁导率大幅度下降,因此这种钳形电流互感器的准确级都做不高,最高只能到0.2级。即使市面上宣称0.1级的钳形电流互感器,经过实际误差测定也只能达到0.2级。
发明内容
本发明所要解决的技术问题在于,提供一种制备高准确级双级钳形电流互感器的方法,采用了双级结构,具有主绕组和辅助绕组,其准确级可以提高1个数量级,为高精确度测量应用提供技术支撑。
为解决上述技术问题,本发明提供一种制备高准确级双级钳形电流互感器的方法,包括如下步骤:
(1)在主磁芯BCX上绕制N b匝,制作出二次补偿绕组,其输出端子为b1b2;
(2)在主磁芯BCT的基础上叠加一个辅助磁芯ACX,再次绕制N 2匝,制作出二次供电绕组,其输出端子为k1k2。
一种制备高准确级双级钳形电流互感器的方法,包括如下步骤:
(1)在辅助磁芯ACX上绕制二次供电绕组N 2匝,制作出供电线圈;
(2)在主磁芯BCX上绕制N 2匝,作为第2一次绕组;然后另外绕N b匝,制作出二次补偿绕组,其输出端子为b1b2;
(3)将辅助磁芯ACX的供电绕组与主磁芯BCX上第2一次绕组串联,共同作为主绕组输出k1k2。
优选的,在辅助磁芯ACX绕制的供电绕组与单级钳形电流互感器无异,其理论输 出电流
Figure PCTCN2021071187-appb-000001
等于一次电流
Figure PCTCN2021071187-appb-000002
由于电流互感器存在误差,实际辅助磁芯ACX的供电绕组输出电流
Figure PCTCN2021071187-appb-000003
有一定的误差
Figure PCTCN2021071187-appb-000004
辅助磁芯ACX供电绕组准确级大约0.2级;
Figure PCTCN2021071187-appb-000005
优选的,主磁芯BCX具有两个一次绕组,一个为穿心1匝的一次电流绕组N a,N a=1;另一个是匝数为N 2的第2一次绕组,这个绕组输入电流为
Figure PCTCN2021071187-appb-000006
根据电流互感器安匝数平衡原理:此时主磁芯BCX的二次补偿绕组输出二次电流
Figure PCTCN2021071187-appb-000007
为以下公式:
Figure PCTCN2021071187-appb-000008
Figure PCTCN2021071187-appb-000009
若N 2=N b,则
Figure PCTCN2021071187-appb-000010
此时可以认为辅助磁芯ACX的误差电流
Figure PCTCN2021071187-appb-000011
乘以主磁芯BCX第2一次绕组匝数N 2作为主绕组的一次安匝数;
此时由于
Figure PCTCN2021071187-appb-000012
安匝数很小,主磁芯处于低磁密状态,主磁芯的准确级较低,一般在1级至10级左右;
整套双级钳形电流互感器的输出电流
Figure PCTCN2021071187-appb-000013
为以下公式:
Figure PCTCN2021071187-appb-000014
在大多数应用情况下N 2=N b
Figure PCTCN2021071187-appb-000015
Figure PCTCN2021071187-appb-000016
由于将辅助磁芯ACX误差电流再通过一个10级的主磁芯测量出来输出补偿电流
Figure PCTCN2021071187-appb-000017
并于辅助磁芯的二次供电电流
Figure PCTCN2021071187-appb-000018
相叠加输出,因此其准确级为主磁芯准确级与辅助磁芯准确级相乘,若辅助磁芯准确级为0.2级,主磁芯准确级为10级,则两者相乘准确度等级为0.02级。
本发明的有益效果为:与单级钳形电流互感器相比,由于采用了双级结构,具有主绕组和辅助绕组,其准确级可以提高1个数量级,也就是能从现有的0.2级钳形电流互感器提高至0.02级,为高精确度交流电流测量应用提供技术支撑。
附图说明
图1为本发明的双级钳形电流互感器叠放绕制原理示意图。
图2为本发明的双级钳形电流互感器独立绕制原理示意图。
图3为本发明的双级钳形电流互感器独立绕制结构示意图。
具体实施方式
如图1所示,一种制备高准确级双级钳形电流互感器的方法,包括如下步骤:
(1)在主磁芯BCX上绕制N b匝,制作出二次补偿绕组,其输出端子为b1b2;
(2)在主磁芯BCT的基础上叠加一个辅助磁芯ACX,再次绕制N 2匝,制作出二次供电绕组,其输出端子为k1k2。
如图2和图3所示,一种制备高准确级双级钳形电流互感器的方法,包括如下步骤:
(1)在辅助磁芯ACX上绕制二次供电绕组N 2匝,制作出供电线圈;
(2)在主磁芯BCX上绕制N 2匝,作为第2一次绕组;然后另外绕N b匝,制作出二次补偿绕组,其输出端子为b1b2;
(3)将辅助磁芯ACX的供电绕组与主磁芯BCX上第2一次绕组串联,共同作为主绕组输出k1k2。
采用图1绕组的QXCT,比图2绕制方法简单,省却了1组一次线圈和一组二次线圈的绕制,采用叠放的方法使得两组线圈共享。由于钳形电流互感器采用开口磁芯,两个磁芯叠放同时绕制的时候,不易保证安装公差足够小,从而不易让两组磁芯的开口磁芯接触面都能有效稳定的接触。若没有达到接触面有效贴合,会造成钳形电流互感器的误差大幅度增加,因此需要达到较高的工艺和安装水平才能保证误差合格。
采用图2绕组的QXCT比图1绕制方法结构简单,是完全独立,因此能够保证加工安装工艺合格,使得磁芯接触面有效贴合,从而保证误差能够达到0.02级。但是辅助绕组ACX需要增加一组线圈与主绕组二次线圈串联,同时辅助绕组也要将被测电流导线通过一次穿心孔。使用起来相对麻烦一点,材料成本稍高。
本发明的双级钳形电流互感器采用两组磁芯设计,一组为辅助磁芯、另一组为误差补偿的主磁芯,通过特殊的绕线方式从而达到0.02级及以上准确级。

Claims (4)

  1. 一种制备高准确级双级钳形电流互感器的方法,其特征在于,包括如下步骤:
    (1)在主磁芯BCX上绕制N b匝,制作出二次补偿绕组,其输出端子为b1b2;
    (2)在主磁芯BCT的基础上叠加一个辅助磁芯ACX,再次绕制N 2匝,制作出二次供电绕组,其输出端子为k1k2。
  2. 一种制备高准确级双级钳形电流互感器的方法,其特征在于,包括如下步骤:
    (1)在辅助磁芯ACX上绕制二次供电绕组N 2匝,制作出供电线圈;
    (2)在主磁芯BCX上绕制N 2匝,作为第2一次绕组;然后另外绕N b匝,制作出二次补偿绕组,其输出端子为b1b2;
    (3)将辅助磁芯ACX的供电绕组与主磁芯BCX上第2一次绕组串联,共同作为主绕组输出k1k2。
  3. 如权利要求1或权利要求2所述的制备高准确级双级钳形电流互感器的方法,其特征在于,在辅助磁芯ACX绕制的供电绕组其理论输出电流
    Figure PCTCN2021071187-appb-100001
    等于一次电流
    Figure PCTCN2021071187-appb-100002
    由于电流互感器存在误差,实际辅助磁芯ACX的供电绕组输出电流
    Figure PCTCN2021071187-appb-100003
    有一定的误差
    Figure PCTCN2021071187-appb-100004
    辅助磁芯ACX供电绕组准确级大约0.2级;
    Figure PCTCN2021071187-appb-100005
  4. 如权利要求1或权利要求2所述的制备高准确级双级钳形电流互感器的方法,其特征在于,主磁芯BCX具有两个一次绕组,一个为穿心1匝的一次电流绕组N a,N a=1;另一个是匝数为N 2的第2一次绕组,这个绕组输入电流为
    Figure PCTCN2021071187-appb-100006
    根据电流互感器安匝数平衡原理:此时主磁芯BCX的二次补偿绕组输出二次电流
    Figure PCTCN2021071187-appb-100007
    如下:
    Figure PCTCN2021071187-appb-100008
    Figure PCTCN2021071187-appb-100009
    若N 2=N b,则
    Figure PCTCN2021071187-appb-100010
    此时认为辅助磁芯ACX的误差电流
    Figure PCTCN2021071187-appb-100011
    乘以主磁芯BCX第2一次绕组匝数N 2作为主绕组的一次安匝数;
    此时由于
    Figure PCTCN2021071187-appb-100012
    安匝数很小,主磁芯处于低磁密状态,主磁芯的准确级较低,在1级至10级左右;
    整套双级钳形电流互感器的输出电流
    Figure PCTCN2021071187-appb-100013
    如下:
    Figure PCTCN2021071187-appb-100014
    在大多数应用情况下N 2=N b
    Figure PCTCN2021071187-appb-100015
    Figure PCTCN2021071187-appb-100016
    由于将辅助磁芯ACX误差电流再通过一个10级的主磁芯测量出来输出补偿电流
    Figure PCTCN2021071187-appb-100017
    并于辅助磁芯的二次供电电流
    Figure PCTCN2021071187-appb-100018
    相叠加输出,因此其准确级为主磁芯准确级与辅助磁芯准确级相乘,若辅助磁芯准确级为0.2级,主磁芯准确级为10级,则两者相乘准确度等级为0.02级。
PCT/CN2021/071187 2020-07-01 2021-01-12 一种制备高准确级双级钳形电流互感器的方法 WO2022001085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010618596.7A CN111785510B (zh) 2020-07-01 2020-07-01 一种制备高准确级双级钳形电流互感器的方法
CN202010618596.7 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022001085A1 true WO2022001085A1 (zh) 2022-01-06

Family

ID=72760011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071187 WO2022001085A1 (zh) 2020-07-01 2021-01-12 一种制备高准确级双级钳形电流互感器的方法

Country Status (2)

Country Link
CN (1) CN111785510B (zh)
WO (1) WO2022001085A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115561695A (zh) * 2022-11-18 2023-01-03 山西互感器电测设备有限公司 三相电流互感器现场校验装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785510B (zh) * 2020-07-01 2022-03-15 南京丹迪克电力仪表有限公司 一种制备高准确级双级钳形电流互感器的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709042A (zh) * 2012-06-21 2012-10-03 陈德才 一种电流互感器
CN103928226A (zh) * 2013-01-14 2014-07-16 上海浦东金盛互感器厂 误差补偿式单铁心3绕组电流互感器及钳形电流互感器
CN110277239A (zh) * 2019-07-04 2019-09-24 南京丹迪克电力仪表有限公司 一种制备可以实现任意变化的双级标准电流互感器的方法
US20190324075A1 (en) * 2013-09-26 2019-10-24 James J. Kinsella Monitoring service current for arc fault detection in electrical branch circuits
CN111785510A (zh) * 2020-07-01 2020-10-16 南京丹迪克电力仪表有限公司 一种制备高准确级双级钳形电流互感器的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258347A (ja) * 1993-03-03 1994-09-16 Sankooshiya:Kk 計器用電流変成器
CN103592490B (zh) * 2013-10-21 2017-06-16 国家电网公司 一种高准确度电子补偿式电流互感器
CN107424815B (zh) * 2017-08-18 2019-04-30 陈宇斯 一种采用减匝补偿的双级电流互感器
CN207318694U (zh) * 2017-08-25 2018-05-04 天津市计量监督检测科学研究院 一种非接触式电流仪表在线校准装置
CN109754998B (zh) * 2019-03-06 2020-07-21 陈德才 一种有源双级电流互感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709042A (zh) * 2012-06-21 2012-10-03 陈德才 一种电流互感器
CN103928226A (zh) * 2013-01-14 2014-07-16 上海浦东金盛互感器厂 误差补偿式单铁心3绕组电流互感器及钳形电流互感器
US20190324075A1 (en) * 2013-09-26 2019-10-24 James J. Kinsella Monitoring service current for arc fault detection in electrical branch circuits
CN110277239A (zh) * 2019-07-04 2019-09-24 南京丹迪克电力仪表有限公司 一种制备可以实现任意变化的双级标准电流互感器的方法
CN111785510A (zh) * 2020-07-01 2020-10-16 南京丹迪克电力仪表有限公司 一种制备高准确级双级钳形电流互感器的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115561695A (zh) * 2022-11-18 2023-01-03 山西互感器电测设备有限公司 三相电流互感器现场校验装置及方法
CN115561695B (zh) * 2022-11-18 2023-06-09 山西互感器电测设备有限公司 三相电流互感器现场校验装置及方法

Also Published As

Publication number Publication date
CN111785510B (zh) 2022-03-15
CN111785510A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2022001085A1 (zh) 一种制备高准确级双级钳形电流互感器的方法
US11742139B2 (en) Current transformer
WO2021088200A1 (zh) 双级励磁高电压比例标准装置及误差补偿方法
CN102496446A (zh) 零磁通直流电流互感器
CN212209198U (zh) 一种无源零磁通的宽量程计量用电流互感器
CN112906199A (zh) 一种多变压器电磁解耦与高度磁集成设计方法
JP2011159851A (ja) リアクトル
CN107424815B (zh) 一种采用减匝补偿的双级电流互感器
CN112271061A (zh) 一种计量用电流互感器
CN106443536B (zh) 一种电流比较仪的校准系统及校准方法
CN111540574A (zh) 一种宽量程电流互感器及其制造方法
CN1020520C (zh) 高导磁特性的电流互感器
CN204067022U (zh) 综合误差补偿型互感器
Liu et al. Design and optimization of high frequency transformer with nanocrystalline core
US20120092116A1 (en) High voltage transformer
CN113161134A (zh) 抗直流分量双级电流互感器
CN212965376U (zh) 一种交流仪表检验装置精细化调节器
CN213519516U (zh) 三相磁性组件以及一体化的芯体
CN107037252B (zh) 电子补偿式感应分流器
US1504611A (en) Current transformer
CN218975258U (zh) 一种零磁通电流互感器
CN112347720A (zh) 新型三相八柱式磁控型可控电抗器的建模方法及仿真模型
CN219778684U (zh) 一种宽量程双级电流互感器
CN215342240U (zh) 一种应用于配电网的可每相独立调压的三相变压器
CN213815761U (zh) 一种计量用电流互感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834177

Country of ref document: EP

Kind code of ref document: A1