WO2021088173A1 - 一种机械液压复合传动装置及控制方法 - Google Patents

一种机械液压复合传动装置及控制方法 Download PDF

Info

Publication number
WO2021088173A1
WO2021088173A1 PCT/CN2019/122860 CN2019122860W WO2021088173A1 WO 2021088173 A1 WO2021088173 A1 WO 2021088173A1 CN 2019122860 W CN2019122860 W CN 2019122860W WO 2021088173 A1 WO2021088173 A1 WO 2021088173A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
gear
brake
transmission
power
Prior art date
Application number
PCT/CN2019/122860
Other languages
English (en)
French (fr)
Inventor
邹荣
朱镇
蔡英凤
陈龙
夏长高
韩江义
田翔
孙晓东
赖龙辉
袁朝春
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2015401.9A priority Critical patent/GB2585990B8/en
Priority to DE112019005366.3T priority patent/DE112019005366T5/de
Priority to US17/050,427 priority patent/US11072231B1/en
Priority to CH00591/21A priority patent/CH716880B1/de
Publication of WO2021088173A1 publication Critical patent/WO2021088173A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/52Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on the weight of the machine, e.g. change in weight resulting from passengers boarding a bus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/088Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
    • F16H2037/0886Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft with switching means, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/101Power split variators with one differential at each end of the CVT
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
    • F16H2047/045Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion the fluid gearing comprising a plurality of pumps or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0015Transmission control for optimising fuel consumptions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0244Adapting the automatic ratio to direct driver requests, e.g. manual shift signals or kick down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0078Transmissions for multiple ratios characterised by the number of forward speeds the gear ratio comprising twelve or more forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2012Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with four sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2056Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with ten engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2061Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with twelve engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2071Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using three freewheel mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2079Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches
    • F16H2200/2087Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches three freewheel mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a transmission device and a control method thereof, in particular to a mechanical-hydraulic composite transmission device and a control method that can take into account the power split and power convergence of each power section.
  • variable speed transmission can realize flexible start
  • mechanical-hydraulic transmission can realize stepless speed regulation
  • mechanical transmission can realize high-efficiency speed change, which can meet the requirements of starting, operation and transition conditions respectively.
  • composite transmissions that integrate three transmission modes, hydraulic, mechanical and mechanical, are rare, and composite transmissions that combine power splitting and power converging are even rarer.
  • Traditional mechanical-hydraulic transmission includes two transmission modes: 1Using planetary gears as the shunting mechanism and ordinary gears as the power shunting transmission mode of the confluence mechanism; 2Using ordinary gears as the shunting mechanism and planetary gears as the power converging transmission mode of the confluence mechanism.
  • the design idea of mechanical-hydraulic transmission is to sacrifice the transmission efficiency and speed range of the secondary working condition area in exchange for the high-efficiency transmission in the main working condition area.
  • the traditional design idea is difficult to take into account the various working conditions including direction change and mode switching. Transmission needs.
  • the overall design of electro-mechanical-hydraulic integration involves not only the performance of the transmission device itself, but also the matching of the engine-transmission device-walking device, and then the integration of man-machine-environment.
  • the control of the speed and torque is concentrated on the adjustment of the transmission ratio; for the engine-transmission device-traveling device, it involves the selection of the transmission mode and the switching of various gears in the transmission mode, and The content of self-adaptive optimization control of energy management system; for the integration of man-machine-environment, it involves the optimal control problem of the online bounded area.
  • the objective of the present invention is to solve the above-mentioned problems and provide a mechanical-hydraulic composite transmission device and a control method.
  • the invention realizes forward transmission and reverse transmission in a structure that combines power splitting and power converging, which is beneficial to optimizing structural parameters and improving system efficiency.
  • a mechanical hydraulic composite transmission device including an input shaft, a splitter mechanism, a hydraulic transmission assembly, a mechanical transmission assembly, a confluence mechanism, and an output shaft.
  • the input shaft is connected in parallel with the hydraulic transmission assembly and the mechanical transmission assembly through the splitter mechanism.
  • the hydraulic transmission assembly and the mechanical transmission assembly are respectively connected to the output shaft through a confluence mechanism;
  • the diverging mechanism includes a clutch C 3 , a diverging mechanism sun gear, a diverging mechanism planet carrier, a diverging mechanism gear ring, and a brake B 1 ,
  • the Clutch C 3 is respectively connected to the shunt mechanism sun gear and the shunt mechanism planet carrier, the brake B 1 is connected to the shunt mechanism gear ring;
  • the input shaft is connected to the shunt mechanism sun gear, and the shunt mechanism is hydraulically driven by the shunt mechanism gear ring Component connection;
  • the splitting mechanism is connected to the mechanical transmission assembly through the splitting mechanism sun gear and the splitting mechanism planet carrier respectively;
  • the confluence mechanism includes a brake B 6 , a confluence gear ring, a confluence mechanism planet carrier, a confluence mechanism sun gear, and a clutch C 7 , the brake B 6 is connected to the confluence gear ring, and the clutch C 7 is respectively connected to the confluence mechanism planet Carrier and confluence mechanism sun gear; the confluence mechanism is connected to the hydraulic transmission assembly through the confluence mechanism gear ring; the confluence mechanism is connected to the mechanical transmission assembly through the confluence mechanism sun gear; the confluence mechanism is respectively connected through the confluence mechanism planet carrier and the confluence mechanism The sun gear is connected to the output shaft.
  • the invention combines the planetary gear structure with the switching of the brake and the clutch to realize the conversion of the structure form of power splitting and confluence.
  • the structure of power split and power confluence is diversified and can take into account each other, which is beneficial to optimizing structural parameters, avoiding circulating power, and improving transmission efficiency.
  • the multi-mode transmission is equipped with a variety of gears to choose from, which can adapt to the operation requirements of complex working conditions.
  • the hydraulic transmission assembly includes a hydraulic transmission input clutch C 1 , a hydraulic transmission input gear pair, a one-way variable pump, a hydraulic pipeline, a one-way fixed motor, a reversing gear pair, a hydraulic Transmission output gear pair and hydraulic transmission output clutch C 2 ;
  • the one-way variable pump is connected to the shunt mechanism through a hydraulic transmission input gear pair, and a hydraulic transmission input clutch C is provided between the hydraulic transmission input gear pair and the one-way variable pump 1.
  • the one-way variable pump is connected to a one-way quantitative motor through a hydraulic oil pipe, the one-way quantitative motor is connected to the confluence mechanism through a hydraulic transmission output gear pair and a reversing gear pair in turn, and the one-way quantitative motor is connected to the hydraulic transmission
  • a hydraulic transmission output clutch C 2 is provided between the output gear pairs.
  • the mechanical transmission components include a front row sun gear, a front row planet carrier, a front row gear ring, a rear row sun gear, a rear row planet carrier, a rear row gear ring, and a clutch C 4 , Clutch C 5 , Clutch C 6 , Brake B 2 , Brake B 3 , Brake B 4 , Brake B 5 , One-way clutch F 1 , One-way clutch F 2 , One-way clutch F 3 ;
  • the front sun gear is connected to the shunt mechanism through a clutch C 5 and a clutch C 6 connected in parallel with each other, and a one-way clutch F 1 and a one-way clutch are respectively provided between the clutch C 5 and the clutch C 6 and the front sun gear F 2 , the power transmission directions of the one-way clutch F 1 and the one-way clutch F 2 are opposite; the front sun gear is also connected to the brake B 3 ;
  • the front row gear ring is respectively connected with the rear planet carrier and the confluence mechanism
  • the steering for the rear sun gear is opposite to the steering of the planet carrier of the shunt mechanism.
  • the rear planet carrier is respectively connected with the front gear ring and the confluence mechanism
  • the rear gear ring is respectively connected with the front planet carrier and the shunt mechanism; a brake B 2 and a clutch C 4 are connected in parallel with each other between the rear gear ring and the shunt mechanism.
  • the pure hydraulic transmission under the forward transmission in order to ensure that there are multiple gears to choose from, the pure hydraulic transmission under the forward transmission, the mechanical hydraulic compound transmission and the pure mechanical transmission, and the pure hydraulic transmission under the reverse transmission are realized through the combined switching between the brake and the clutch.
  • Mechanical hydraulic compound transmission and pure mechanical transmission a total of three types of transmission in two directions
  • the three transmission types of forward transmission are as follows:
  • brake B 2 hydraulic transmission input clutch C 1 , hydraulic transmission output clutch C 2 , clutch C 4 , clutch C 7 are engaged, other brakes and clutches are disengaged; brake B 2 and clutch C 4 are engaged, and the shunt mechanism
  • the planet carrier is locked, the sun gear of the shunt mechanism and the ring gear of the shunt mechanism are reversed, and the power is output through the input shaft, the shunt mechanism, the hydraulic transmission assembly, and the confluence mechanism to the output shaft;
  • the clutch C 7 is engaged, and the confluence mechanism planet carrier of the confluence mechanism and The sun gear of the confluence mechanism is interlocked, the confluence mechanism rotates as a whole, and through the action of the reversing gear pair, the input shaft and the output shaft rotate in the same direction;
  • brake B 1 , brake B 6 are engaged, while brake B 2 , brake B 4 , hydraulic transmission input clutch C 1 , hydraulic transmission output clutch C 2 , clutch C 3 , and clutch C 7 are disengaged; power is input The shaft, the splitter mechanism, the mechanical transmission assembly, the confluence mechanism to the output shaft output; the brake B 1 is engaged, the splitter mechanism gear ring is locked, the splitter mechanism sun gear and the splitter mechanism planet carrier are used as a gear transmission mechanism for transmission; the brake B 6 When engaged, the ring gear of the confluence mechanism is locked, and the power is transferred from the sun gear of the confluence mechanism to the output shaft through the planet carrier of the confluence mechanism.
  • Positive mechanical hydraulic compound transmission hydraulic transmission input clutch C 1 , hydraulic transmission output clutch C 2 and clutch C 7 are engaged, while brake B 1 , brake B 3 , brake B 5 , brake B 6 , clutch C 3 and one-way clutch F 3 is separated; power passes through the input shaft to the splitter mechanism, which transmits the power flow to the hydraulic transmission assembly and the mechanical transmission assembly, and then flows through the confluence mechanism to the output shaft for output; the clutch C 3 is separated, the splitter mechanism
  • the planet carrier transmits part of the power transmitted by the input shaft to the mechanical transmission assembly, and the splitter mechanism gear ring transmits the other part of the power transmitted by the input shaft to the hydraulic transmission assembly; clutch C 7 is engaged, and the power of the mechanical transmission assembly passes through the confluence mechanism sun gear and converges
  • the planetary carrier of the mechanism is transmitted to the output shaft, the power of the hydraulic transmission assembly is transmitted to the output shaft through the ring gear of the confluence mechanism and the planetary carrier of the confluence mechanism, and the steering of the planetary carrier of the
  • the three transmission types of reverse transmission are as follows:
  • Reverse pure hydraulic transmission hydraulic transmission input clutch C 1 , hydraulic transmission output clutch C 2 , clutch C 3 , clutch C 7 are engaged, other brakes and clutches are disengaged; clutch C 3 is engaged, the sun gear of the shunt mechanism and the planet carrier of the shunt mechanism are mutually connected Lock, the shunt mechanism rotates as a whole, the power is output to the output shaft through the input shaft, shunt mechanism, hydraulic transmission assembly, and confluence mechanism; the clutch C7 is engaged, the confluence mechanism planet carrier of the confluence mechanism and the confluence mechanism sun gear are interlocked, and the confluence mechanism is integral Rotate, the rotation of the input shaft and the output shaft are opposite;
  • brake B 1 , brake B 2 , brake B 6 , clutch C 6 and one-way clutch F 2 are engaged, and the other brakes and clutches are disengaged;
  • the brake B 1 is engaged, the gear ring of the shunt mechanism is locked, and the power is from
  • the sun gear of the splitter mechanism is transmitted to the mechanical transmission assembly through the planetary carrier of the splitter mechanism;
  • the clutch C 6 and the one-way clutch F 2 are engaged, and the power in the mechanical transmission assembly sequentially passes through the clutch C 6 , the one-way clutch F 2 , and the front sun
  • the wheel and the front row gear ring are transmitted to the confluence mechanism sun gear;
  • the brake B 6 is engaged, the confluence mechanism gear ring is locked, and the power is transferred from the confluence mechanism sun gear to the output shaft through the confluence mechanism planet carrier.
  • Reverse mechanical hydraulic compound transmission hydraulic transmission input clutch C 1 , hydraulic transmission output clutch C 2 , clutch C 3 are engaged; at the same time brake B 1 , brake B 3 , brake B 5 , brake B 6 , clutch C 7 and one-way clutch F 3 is disengaged; the power passes through the input shaft to the shunt mechanism, which transmits the power flow to the hydraulic transmission assembly and the mechanical transmission assembly respectively, and then flows through the confluence mechanism to the output shaft for output; the clutch C 3 is engaged, the shunt mechanism
  • the planet carrier transmits part of the power transmitted by the input shaft to the mechanical transmission assembly, and the splitter mechanism gear ring transmits the other part of the power transmitted by the input shaft to the hydraulic transmission assembly; clutch C 7 is separated, and the power of the mechanical transmission assembly passes through the confluence mechanism sun gear and converges
  • the planetary carrier of the mechanism is transmitted to the output shaft, and the power of the hydraulic transmission assembly is transmitted to the output shaft through the ring gear of the merging mechanism and the planetary carrier of the merging mechanism;
  • the preferred item further ensures that the forward mechanical transmission gears are available for selection.
  • the forward pure mechanical transmission includes mechanical 1st gear, mechanical 2nd gear, mechanical 3rd gear, and mechanical 4th gear.
  • the specific implementation methods are as follows:
  • the forward mechanical hydraulic compound transmission includes compound transmission 1st gear, compound transmission 2nd gear, compound transmission 3rd gear and compound transmission 4th gear, and the specific implementation methods are as follows:
  • the reverse mechanical-hydraulic compound transmission includes compound transmission 1st gear, compound transmission 2nd gear, compound transmission 3rd gear, and compound transmission 4th gear.
  • the specific implementation methods are as follows:
  • Reverse compound 1st gear Brake B 4 , clutch C 6 and one-way clutch F 2 are engaged, while brake B 2 , clutch C 4 , clutch C 5 and one-way clutch F 1 are disengaged; the power passing through the mechanical transmission assembly passes through the clutch in turn C 6 , one-way clutch F 2 , the front row of sun gear to the front row of planet carrier, at the front row of planet carrier, split to the front row of gears and rear row of gears, the rear row of gears pass through the rear planet carrier and the front row After the ring gear converges, the power is transmitted to the confluence mechanism, the brake B 4 is engaged, and the rear sun gear is locked;
  • Reverse compound 2nd gear Brake B 4 and clutch C 4 are engaged, while brake B 2 , clutch C 5 , clutch C 6 , one-way clutch F 1 and one-way clutch F 2 are disengaged; the power passing through the mechanical transmission assembly passes through the clutch in turn C 4. After the rear gear ring and the rear planet carrier, the power is transmitted to the confluence mechanism;
  • Reverse compound 3rd gear clutch C 4 , clutch C 5 and one-way clutch F 1 are engaged, while brake B 2 , brake B 4 , clutch C 6 and one-way clutch F 2 are disengaged; the power passing through the mechanical transmission assembly passes through the clutch in turn C 4.
  • the power is transmitted to the confluence mechanism; since the clutch C 5 and the one-way clutch F 1 are engaged, the front sun gear cannot rotate overspeed, and its speed is the same as the front planet carrier. Rotate the front planetary gear as a whole;
  • Reverse compound 4th gear Brake B 2 , clutch C 6 and one-way clutch F 2 are engaged, while brake B 4 , clutch C 4 , clutch C 5 and one-way clutch F 1 are disengaged; the power passing through the mechanical transmission assembly passes through the clutch in turn After C 6 , the one-way clutch F 2 , the front row sun gear and the front row ring gear, the power is transmitted to the confluence mechanism.
  • the model predictive control of the transmission system transforms the global optimal dynamic planning problem of fuel economy into a local optimization control problem in the prediction area, and continuously updates the future operation status of the vehicle in the prediction area through rolling optimization to obtain optimization results and realize predictive control Real-time application in mechanical hydraulic compound transmission system.
  • Vehicle predictive control based on time domain is based on model predictive control as the framework, combined with dynamic planning to achieve online rolling optimization control.
  • is the time discrete system function
  • the objective function for the minimum fuel consumption of the compound transmission system is:
  • J 1 is the fuel economy objective function of the linear predictive control system
  • v k is the stage index of the k-th stage.
  • the sensing device In the control area p, the sensing device is generally used for measurement; in the prediction area q, the GPS/GIS system is generally used for prediction.
  • the core of the prediction is to select a reasonable length of the prediction window to collect data, and the high cost performance of the predictive control system.
  • a nonlinear predictive control system is used to control the dynamic characteristics and state variables of the system, constrain the control variables, predict the future state, and solve the optimal control problem in the online bounded area.
  • the objective function for the minimum fuel consumption of the compound transmission system is:
  • J 2 is the fuel economy objective function of the non-linear predictive control system
  • L is the instantaneous fuel consumption function at time t.
  • the hierarchical control structure of the dynamic coordinated control system in the human-computer interaction environment includes the management layer, the coordination layer and the executive layer; the control system structure includes the control mechanism, the control algorithm and the actuator, according to the power, economy and emission of the transmission system
  • the basic control law is revised to obtain the control targets such as engine throttle opening, gear shift mechanism engagement mode, and transmission ratio of the transmission device, etc., and input the executive layer controller to implement closed-loop control of the actuator.
  • the power following adaptive control algorithm is used to closely connect the active energy control and the passive energy control to make it more robust.
  • the present invention combines the planetary gear structure with the switching of the brake and the clutch to realize the conversion of the power split and the confluence structure.
  • the structure of power split and power confluence is diversified and can take into account each other, which is beneficial to optimizing structural parameters, avoiding circulating power, and improving transmission efficiency.
  • the multi-mode transmission is equipped with a variety of gears to choose from, which can adapt to the operation requirements of complex working conditions.
  • the one-way clutch may have over-slipping, resulting in no engine braking.
  • the mechanical transmission system in the mechanical hydraulic transmission mode can be directly used to replace the mechanical system in the mechanical transmission mode to meet the requirements of engine braking or improving the life of shifting elements.
  • the use of one-way variable pump and one-way quantitative motor instead of two-way variable pump and two-way quantitative motor, greatly reducing production and maintenance costs.
  • Figure 1 is a schematic diagram of the structure of the present invention
  • Figure 2 is a table of the engagement state of the shifting element of the present invention.
  • Figure 3 is a schematic diagram of the power flow of the forward pure hydraulic gear of the present invention.
  • Figure 4 is a schematic diagram of the power flow of the reverse pure hydraulic gear of the present invention.
  • Figure 5 is a schematic diagram of the power flow of the first gear of the forward mechanical-hydraulic compound transmission of the present invention.
  • Figure 6 is a schematic diagram of the power flow of the forward mechanical-hydraulic compound transmission of the present invention in the second gear
  • Fig. 7 is a schematic diagram of the power flow in the third gear of the forward mechanical-hydraulic compound transmission of the present invention.
  • Fig. 8 is a schematic diagram of the power flow of 4 gears of the forward mechanical-hydraulic compound transmission of the present invention.
  • Figure 9 is a schematic diagram of the power flow of the first gear of the reverse mechanical-hydraulic composite transmission of the present invention.
  • Fig. 10 is a schematic diagram of the power flow in the second gear of the reverse mechanical-hydraulic compound transmission of the present invention.
  • Figure 11 is a schematic diagram of the power flow in the third gear of the reverse mechanical-hydraulic compound transmission of the present invention.
  • Fig. 12 is a schematic diagram of the power flow of 4 speeds of the reverse mechanical hydraulic compound transmission of the present invention.
  • Fig. 13 is a schematic diagram of the power flow of the first gear of the forward machine of the present invention.
  • Figure 14 is a schematic diagram of the power flow of the forward mechanical gear 2 of the present invention.
  • Figure 15 is a schematic diagram of the power flow of the forward mechanical 3 gears of the present invention.
  • Fig. 16 is a schematic diagram of the power flow of the forward mechanical 4 gears of the present invention.
  • Figure 17 is a schematic diagram of the power flow of the reverse pure mechanical transmission gear of the present invention.
  • Figure 18 is a schematic diagram of vehicle predictive control
  • Figure 19 is a schematic diagram of dynamic coordinated control of a composite transmission system in a human-computer interaction environment.
  • a mechanical-hydraulic composite transmission device includes an input shaft 1, a shunt mechanism 2, a hydraulic transmission assembly 3, a mechanical transmission assembly 4, a confluence mechanism 5, and an output shaft 6, and the input shaft 1 passes through the shunt mechanism 2.
  • the diverting mechanism 2 includes a clutch C 3 21, a diverting mechanism the sun gear 22, the carrier distribution means 23, split ring 24 and the brake mechanism B 1 25, the clutch C 3 21 are connected to the sun gear 22 and the shunt means shunt the carrier mechanism 23, the brake B 1 25 and the diversion means
  • the ring gear 24 is connected;
  • the input shaft 1 is connected to the shunt mechanism sun gear 22, and the shunt mechanism 2 is connected to the hydraulic transmission assembly 3 through the shunt mechanism gear ring 24;
  • the shunt mechanism 2 is respectively connected through the shunt mechanism sun gear 22 and the shunt
  • the mechanism planet carrier 23 is connected with the mechanical transmission assembly 4;
  • the confluence mechanism 5 includes a brake B 6 51, a confluence mechanism gear ring 52, a confluence mechanism planet carrier 53, a confluence mechanism sun gear 54 and a clutch C 7 55, and the brake B 6 51 is connected to the confluence mechanism gear ring 52.
  • Clutch C 7 55 is respectively connected to the confluence mechanism planet carrier 53 and the confluence mechanism sun gear 54;
  • the confluence mechanism 5 is connected to the hydraulic transmission assembly 3 through the confluence gear ring 52;
  • the confluence mechanism 5 is connected to the mechanical transmission through the confluence mechanism sun gear 54
  • the assembly 4 is connected; the confluence mechanism 5 is connected to the output shaft 6 through the confluence mechanism planet carrier 53 and the confluence mechanism sun gear 54 respectively.
  • the hydraulic transmission assembly 3 includes a hydraulic transmission input clutch C 1 31, a hydraulic transmission input gear pair 32, a one-way variable pump 33, a hydraulic pipe 34, a one-way quantitative motor 35, a reversing gear pair 36, and a hydraulic transmission output gear pair 37 And the hydraulic transmission output clutch C 2 38;
  • the one-way variable pump 33 is connected to the shunt mechanism 2 through a hydraulic transmission input gear pair 32, and a hydraulic transmission input is provided between the hydraulic transmission input gear pair 32 and the one-way variable pump 33 Clutch C 131
  • the one-way variable pump 33 is connected to the one-way quantitative motor 35 through the hydraulic oil pipe 34
  • the one-way quantitative motor 35 is connected to the confluence mechanism 5 through the hydraulic transmission output gear pair 37 and the reversing gear pair 36 in turn the one-way constant displacement motor 35 and the hydraulic transmission 37 is provided between the sub-hydrostatic transmission output gear output clutch C 2 38.
  • the mechanical transmission assembly 4 includes a front row sun gear 41, a front row planet carrier 42, a front row ring gear 43, a rear row sun gear 44, a rear row planet carrier 45, a rear row gear ring 46, a clutch C 4 47, and a clutch C. 5 48, clutch C 6 49, brake B 2 410, brake B 3 411, brake B 4 412, brake B 5 413, one-way clutch F 1 414, one-way clutch F 2 415, one-way clutch F 3 416;
  • the front sun gear 41 is connected to the shunt mechanism 2 through a clutch C 5 48 and a clutch C 6 49 that are connected in parallel with each other.
  • One-way sun gear 41 is provided between the clutch C 5 48 and the clutch C 6 49 and the front sun gear 41.
  • Clutch F 1 414 and one-way clutch F 2 415, said one-way clutch F 1 414 and one-way clutch F 2 415 have opposite power transmission directions; said front sun gear 41 is also connected with brake B 3 411;
  • the front carrier C via the clutch 422 is connected with the splitter mechanism 447, the front carrier 42 and the clutch C is provided between the brake B 2 410 447, the front and the rear ring gear carrier 42 46 Fixed connection
  • the front row gear ring 43 is respectively connected to the rear row planet carrier 45 and the confluence mechanism 5;
  • the rear sun gear 44 is connected to the brake B 4 412 and the brake B 5 413 in parallel with each other.
  • a one-way clutch F 3 416 is provided between the rear sun gear 44 and the brake B 5 413.
  • the one-way clutch The braking direction of the F 3 416 is that the steering of the rear sun gear 44 is opposite to the steering of the planet carrier 23 of the splitter mechanism.
  • the rear planet carrier 45 is respectively connected with the front ring gear 43 and the confluence mechanism 5;
  • the rear gear ring 46 is connected to the front planet carrier 42 and the shunt mechanism 2 respectively; a brake B 2 410 and a clutch C 4 47 are connected in parallel with each other between the rear gear ring 46 and the shunt mechanism 2.
  • the positive pure hydraulic transmission brake B 2 410, hydraulic transmission input clutch C 1 31, hydraulic transmission output clutch C 2 38, clutch C 4 47, clutch C 7 55 are engaged, and other brakes and clutches are engaged Disengage; the brake B 2 410 and the clutch C 4 47 are engaged, the planet carrier 23 of the shunt mechanism is locked into a reversing wheel, and the power is output through the input shaft 1, the shunt mechanism 2, the hydraulic transmission assembly 3, and the confluence mechanism 5 to the output shaft 6;
  • the clutch C 7 55 is engaged, and the confluence mechanism planet carrier 53 of the confluence mechanism 5 and the confluence mechanism sun gear 54 are interlocked, and the confluence mechanism 5 rotates as a whole.
  • the reversing gear pair 36 Through the action of the reversing gear pair 36, the input shaft 1 and the output shaft 6 rotate in the same direction.
  • n o is the rotational speed of the output shaft 6
  • n I is the rotational speed of the input shaft 1
  • e is the ratio of the displacement of the variable pump 33 to the displacement of the fixed motor 35
  • i 1 , i 2 and i 3 are the gear ratios respectively
  • k 1 is the characteristic parameter of the shunt mechanism
  • the component 4 is then converged by the confluence mechanism 5 to the output shaft 6;
  • the clutch C 3 21 is disengaged, the split mechanism planet carrier 23 transmits part of the power transmitted by the input shaft 1 to the mechanical transmission assembly 4, and the split mechanism ring gear 24 will Another part of the power transmitted by the input shaft 1 is transmitted to the hydraulic transmission assembly 3; the clutch C 7 55 is engaged, and the power of the mechanical transmission assembly 4 is transmitted to the output shaft 6 through the confluence mechanism sun gear 54 and the confluence mechanism planet carrier 53.
  • the hydraulic transmission assembly 3 The power is transmitted to the output shaft 6 through
  • Brake B 4 412, clutch C 6 49 and one-way clutch F 2 415 are engaged, while brake B 2 410, clutch C 4 47, clutch C 5 48 and one-way clutch F 1 414 are disengaged; the power through mechanical transmission assembly 4 is in turn After the clutch C 6 49, the one-way clutch F 2 415, the front row sun gear 41 to the front row planet carrier 42, the front row planet carrier 42 is divided to the front row gear ring 43 and the rear row gear ring 46, and the rear row gears The ring 46 passes through the rear planet carrier 45 to merge with the front ring gear 43 and then the power is transmitted to the confluence mechanism 5, the brake B 4 412 is engaged, and the rear sun gear 44 is locked.
  • hydraulic machine forward speed compound transmission 2 Hydraulic transmission input clutch C 1 31, the output of the hydraulic transmission clutch C 2 C 38 is engaged and the clutch 755, while the brake B 1 25, the brake B 3 411, Brake B 5 413, brake B 6 51, clutch C 3 21, and one-way clutch F 3 416 are released; the power is transmitted through the input shaft 1 to the shunt mechanism 2, which transmits the power flow to the hydraulic transmission assembly 3 and the mechanical transmission, respectively The component 4 is then converged by the confluence mechanism 5 to the output shaft 6; the clutch C 3 21 is disengaged, the split mechanism planet carrier 23 transmits part of the power transmitted by the input shaft 1 to the mechanical transmission assembly 4, and the split mechanism ring gear 24 will Another part of the power transmitted by the input shaft 1 is transmitted to the hydraulic transmission assembly 3; the clutch C 7 55 is engaged, and the power of the mechanical transmission assembly 4 is transmitted to the output shaft 6 through the confluence mechanism sun gear 54 and the confluence mechanism planet carrier 53.
  • the hydraulic transmission assembly 3 The power is transmitted
  • Brake B 4 412 and clutch C 4 47 are engaged, while brake B 2 410, clutch C 5 48, clutch C 6 49, one-way clutch F 1 414 and one-way clutch F 2 415 are disengaged; the power of mechanical transmission assembly 4 is in turn After passing through the clutch C 4 47, the rear gear ring 46 and the rear planet carrier 45, the power is transmitted to the confluence mechanism 5.
  • the forward third speed compound transmission hydraulic machine hydraulic transmission input clutch C 1 31, the output of the hydraulic transmission clutch and the clutch C 2 38 C 7 55 engaged while the brake B 1 25, the brake B 3 411, Brake B 5 413, brake B 6 51, clutch C 3 21, and one-way clutch F 3 416 are released; the power is transmitted through the input shaft 1 to the shunt mechanism 2, which transmits the power flow to the hydraulic transmission assembly 3 and the mechanical transmission, respectively
  • the component 4 is then converged by the confluence mechanism 5 to the output shaft 6;
  • the clutch C 3 21 is disengaged, the split mechanism planet carrier 23 transmits part of the power transmitted by the input shaft 1 to the mechanical transmission assembly 4, and the split mechanism ring gear 24 will Another part of the power transmitted by the input shaft 1 is transmitted to the hydraulic transmission assembly 3; the clutch C 7 55 is engaged, and the power of the mechanical transmission assembly 4 is transmitted to the output shaft 6 through the confluence mechanism sun gear 54 and the confluence mechanism planet carrier 53.
  • the hydraulic transmission assembly 3 The power is transmitted to the output
  • the forward fourth speed compound transmission hydraulic machine hydraulic transmission input clutch C 1 31, the output of the hydraulic transmission clutch and the clutch C 2 38 C 7 55 engaged while the brake B 1 25, the brake B 3 411, Brake B 5 413, brake B 6 51, clutch C 3 21, and one-way clutch F 3 416 are released; the power is transmitted through the input shaft 1 to the shunt mechanism 2, which transmits the power flow to the hydraulic transmission assembly 3 and the mechanical transmission, respectively
  • the component 4 is then converged by the confluence mechanism 5 to the output shaft 6;
  • the clutch C 3 21 is disengaged, the split mechanism planet carrier 23 transmits part of the power transmitted by the input shaft 1 to the mechanical transmission assembly 4, and the split mechanism ring gear 24 will Another part of the power transmitted by the input shaft 1 is transmitted to the hydraulic transmission assembly 3; the clutch C 7 55 is engaged, and the power of the mechanical transmission assembly 4 is transmitted to the output shaft 6 through the confluence mechanism sun gear 54 and the confluence mechanism planet carrier 53.
  • the hydraulic transmission assembly 3 The power is transmitted to the output shaft 6
  • Brake B 2 410, clutch C 6 49 and one-way clutch F 2 415 are engaged, while brake B 4 412, clutch C 4 47, clutch C 5 48 and one-way clutch F 1 414 are disengaged; the power through mechanical transmission assembly 4 is in turn After passing through the clutch C 6 49, the one-way clutch F 2 415, the front sun gear 41 and the front ring gear 43, the power is transmitted to the confluence mechanism 5.
  • the forward mechanical-hydraulic compound transmission includes four gears of mechanical-hydraulic transmission power splitting.
  • the relationship between the rotational speeds of the input shaft 1 and the output shaft 6 is:
  • i m is the transmission ratio of the mechanical transmission assembly
  • i m3 1.00 is the third gear.
  • the reverse hydraulic mechanical compound transmission speed 1 Hydraulic transmission input clutches C 1 31, the output of the hydraulic transmission clutch C 2 38, engaging the clutch C 3 21; while the brake B 1 25, the brake B 3 411, brake B 5 413, the brake B 6 51, the one-way clutch and the clutch C 7 55 F 3 416 separated; via the input shaft 1 to the power dividing mechanism 2, the power flow diversion mechanism 2 are respectively transmitted to the hydraulic and mechanical drive assembly 3
  • the transmission assembly 4 is converged by the confluence mechanism 5 and then output to the output shaft 6; the clutch C 3 21 is engaged, and the split mechanism planet carrier 23 transmits part of the power transmitted by the input shaft 1 to the mechanical transmission assembly 4, and the split mechanism ring gear 24
  • the other part of the power transmitted by the input shaft 1 is transmitted to the hydraulic transmission assembly 3; the clutch C 7 55 is disconnected, and the power of the mechanical transmission assembly 4 is transmitted to the output shaft 6 through the confluence mechanism sun gear 54 and the confluence mechanism planet carrier 53.
  • the hydraulic transmission assembly 3 The power of the fusion mechanism is transmitted to the output shaft 6 via the confluence gear ring 52 and the confluence mechanism planet carrier 53; the steering of the confluence mechanism planet carrier 53 is opposite to that of the input shaft 1 within the set displacement ratio range.
  • Brake B 4 412, clutch C 6 49 and one-way clutch F 2 415 are engaged, while brake B 2 410, clutch C 4 47, clutch C 5 48 and one-way clutch F 1 414 are disengaged; the power through mechanical transmission assembly 4 is in turn After the clutch C 6 49, the one-way clutch F 2 415, the front row sun gear 41 to the front row planet carrier 42, the front row planet carrier 42 is divided to the front row gear ring 43 and the rear row gear ring 46, and the rear row gears After the ring 46 passes through the rear planet carrier 45 and the front gear ring 43 to converge, the power is transmitted to the confluence mechanism 5, the brake B 4 412 is engaged, and the rear sun gear 44 is locked.
  • the reverse hydraulic mechanical compound transmission speed 2 Hydraulic transmission input clutch C 1 31, the output of the hydraulic transmission clutch C 2 38, engaging the clutch C 3 21; while the brake B 1 25, the brake B 3 411, brake B 5 413, the brake B 6 51, the one-way clutch and the clutch C 7 55 F 3 416 separated; via the input shaft 1 to the power dividing mechanism 2, the power flow diversion mechanism 2 are respectively transmitted to the hydraulic and mechanical drive assembly 3
  • the transmission assembly 4 is converged by the confluence mechanism 5 and then output to the output shaft 6; the clutch C 3 21 is engaged, and the split mechanism planet carrier 23 transmits part of the power transmitted by the input shaft 1 to the mechanical transmission assembly 4, and the split mechanism ring gear 24
  • the other part of the power transmitted by the input shaft 1 is transmitted to the hydraulic transmission assembly 3; the clutch C 7 55 is disconnected, and the power of the mechanical transmission assembly 4 is transmitted to the output shaft 6 through the confluence mechanism sun gear 54 and the confluence mechanism planet carrier 53.
  • the hydraulic transmission assembly 3 The power of the fusion mechanism is transmitted to the output shaft 6 via the confluence gear ring 52 and the confluence mechanism planet carrier 53; the steering of the confluence mechanism planet carrier 53 is opposite to that of the input shaft 1 within the set displacement ratio range.
  • Brake B 4 412 and clutch C 4 47 are engaged, while brake B 2 410, clutch C 5 48, clutch C 6 49, one-way clutch F 1 414 and one-way clutch F 2 415 are disengaged; the power of mechanical transmission assembly 4 is in turn After passing through the clutch C 4 47, the rear gear ring 46 and the rear planet carrier 45, the power is transmitted to the confluence mechanism 5.
  • the reverse hydraulic mechanical compound transmission gear 3 a hydraulic transmission input clutch C 1 31, the output of the hydraulic transmission clutch C 2 38, engaging the clutch C 3 21; while the brake B 1 25, the brake B 3 411, brake B 5 413, the brake B 6 51, the one-way clutch and the clutch C 7 55 F 3 416 separated; via the input shaft 1 to the power dividing mechanism 2, the power flow diversion mechanism 2 are respectively transmitted to the hydraulic and mechanical drive assembly 3
  • the transmission assembly 4 is converged by the confluence mechanism 5 and then output to the output shaft 6; the clutch C 3 21 is engaged, and the split mechanism planet carrier 23 transmits part of the power transmitted by the input shaft 1 to the mechanical transmission assembly 4, and the split mechanism ring gear 24
  • the other part of the power transmitted by the input shaft 1 is transmitted to the hydraulic transmission assembly 3; the clutch C 7 55 is disconnected, and the power of the mechanical transmission assembly 4 is transmitted to the output shaft 6 through the confluence mechanism sun gear 54 and the confluence mechanism planet carrier 53.
  • the hydraulic transmission assembly 3 The power of the fusion mechanism is transmitted to the output shaft 6 via the confluence gear ring 52 and the confluence mechanism planet carrier 53; the steering of the confluence mechanism planet carrier 53 is opposite to that of the input shaft 1 within the set displacement ratio range.
  • the hydraulic mechanical compound transmission 4 reverse speed: Hydraulic transmission input clutch C 1 31, the output of the hydraulic transmission clutch C 2 38, engaging the clutch C 3 21; while the brake B 1 25, the brake B 3 411, brake B 5 413, the brake B 6 51, the one-way clutch and the clutch C 7 55 F 3 416 separated; via the input shaft 1 to the power dividing mechanism 2, the power flow diversion mechanism 2 are respectively transmitted to the hydraulic and mechanical drive assembly 3
  • the transmission assembly 4 is converged by the confluence mechanism 5 and then output to the output shaft 6; the clutch C 3 21 is engaged, and the split mechanism planet carrier 23 transmits part of the power transmitted by the input shaft 1 to the mechanical transmission assembly 4, and the split mechanism ring gear 24
  • the other part of the power transmitted by the input shaft 1 is transmitted to the hydraulic transmission assembly 3; the clutch C 7 55 is disconnected, and the power of the mechanical transmission assembly 4 is transmitted to the output shaft 6 through the confluence mechanism sun gear 54 and the confluence mechanism planet carrier 53.
  • the hydraulic transmission assembly 3 The power of the fusion mechanism is transmitted to the output shaft 6 via the confluence gear ring 52 and the confluence mechanism planet carrier 53; the steering of the confluence mechanism planet carrier 53 is opposite to that of the input shaft 1 within the set displacement ratio range.
  • Brake B 2 410, clutch C 6 49 and one-way clutch F 2 415 are engaged, while brake B 4 412, clutch C 4 47, clutch C 5 48 and one-way clutch F 1 414 are disengaged; the power through mechanical transmission assembly 4 is in turn After passing through the clutch C 6 49, the one-way clutch F 2 415, the front sun gear 41 and the front ring gear 43, the power is transmitted to the confluence mechanism 5.
  • the reverse mechanical-hydraulic compound transmission includes four gears of power converging for mechanical-hydraulic transmission.
  • the relationship between the rotational speeds of input shaft 1 and output shaft 6 is:
  • k 2 is the characteristic parameter of the confluence mechanism
  • the forward gear purely mechanical transmission 1 13 brake B 1 25, engaging the brake B 6 51, while the brake B 2 410, the brake B 4 412, hydraulic transmission input clutch C 1 31, the output of the hydraulic transmission clutch C 2 38, the clutch C 3 21, separating clutch C 7 55; 1, 2 distribution means, mechanical drive assembly 4, the bus means to the power output shaft 6 through the input shaft 5; engagement of the brake B 1 25, shunt mechanism tooth
  • the ring 24 is locked, and the shunt mechanism 2 rotates as a whole; the brake B 6 51 is engaged, the confluence gear ring 52 is locked, and the power is transferred from the confluence mechanism sun gear 54 to the output shaft 6 through the confluence mechanism planet carrier 53.
  • Brake B 5 413, one-way clutch F 3 416, clutch C 6 49 and one-way clutch F 2 415 are engaged, while brake B 3 411, clutch C 4 47, clutch C 5 48, and one-way clutch F 1 414 are disengaged; power Pass through the clutch C 6 49, the one-way clutch F 2 415, the front sun gear 41 to the front planet carrier 42 in turn, and then split at the front planet carrier 42 to the front gear ring 43 and the rear gear ring 46, respectively.
  • the gear ring 46 merges with the front gear ring 43 through the rear planet carrier 45, the power is transmitted to the confluence mechanism 5, the brake B 5 413 and the one-way clutch F 3 416 are engaged, and the rear sun gear 44 is locked.
  • Brake B 5 413, one-way clutch F 3 416 and clutch C 4 47 are engaged, while brake B 3 411, clutch C 5 48, clutch C 6 49, one-way clutch F 1 414 and one-way clutch F 2 415 are disengaged; power After passing through the clutch C 4 47, the rear gear ring 46 and the rear planet carrier 45 in sequence, the power is transmitted to the confluence mechanism 5, the brake B 5 413 and the one-way clutch F 3 416 are engaged, and the rear sun gear 44 is locked.
  • the forward pure mechanical transmission 3 gears brake B 1 25, brake B 6 51 are engaged, while brake B 2 410, brake B 4 412, hydraulic transmission input clutch C 1 31, hydraulic transmission output clutch C 2 38, the clutch C 3 21, separating clutch C 7 55; 1, 2 distribution means, mechanical drive assembly 4, the bus means to the power output shaft 6 through the input shaft 5; engagement of the brake B 1 25, shunt mechanism tooth The ring 24 is locked, and the shunt mechanism 2 rotates as a whole; the brake B 6 51 is engaged, the confluence gear ring 52 is locked, and the power is transferred from the confluence mechanism sun gear 54 to the output shaft 6 through the confluence mechanism planet carrier 53.
  • the forward pure mechanical transmission 4 gears brake B 1 25, brake B 6 51 are engaged, while brake B 2 410, brake B 4 412, hydraulic transmission input clutch C 1 31, hydraulic transmission output clutch C 2 38, the clutch C 3 21, separating clutch C 7 55; 1, 2 distribution means, mechanical drive assembly 4, the bus means to the power output shaft 6 through the input shaft 5; engagement of the brake B 1 25, shunt mechanism tooth The ring 24 is locked, and the shunt mechanism 2 rotates as a whole; the brake B 6 51 is engaged, the confluence gear ring 52 is locked, and the power is transferred from the confluence mechanism sun gear 54 to the output shaft 6 through the confluence mechanism planet carrier 53.
  • Brake B 3 411 and clutch C 4 47 are engaged, while brake B 5 413, clutch C 5 48, clutch C 6 49, one-way clutch F 1 414, one-way clutch F 2 415 and one-way clutch F 3 416 are disengaged; After passing through the clutch C 4 47, the front row planet carrier 42, and the front row ring gear 43 in sequence, the power is transmitted to the confluence mechanism 5.
  • the model predictive control of the transmission system transforms the global optimal dynamic planning problem of fuel economy into a local optimization control problem in the prediction area, and continuously updates the future operation status of the vehicle in the prediction area through rolling optimization to obtain optimization results and realize predictive control Real-time application in mechanical hydraulic compound transmission system.
  • Vehicle predictive control based on time domain is based on model predictive control as the framework, combined with online rolling optimization control realized by dynamic programming, the principle is shown in Figure 18 (a).
  • is a time-discrete system function.
  • the objective function for the minimum fuel consumption of the compound transmission system is:
  • J 1 is the fuel economy objective function of the linear predictive control system
  • v k is the stage index of the k-th stage.
  • the sensing device In the control area p, the sensing device is generally used for measurement; in the prediction area q, the GPS/GIS system is generally used for prediction.
  • the core of the prediction is to select a reasonable length of the prediction window to collect data, and the high cost performance of the predictive control system.
  • the structure of the predictive control system is shown in Figure 18(b).
  • the vehicle dynamics model of the compound transmission system is a typical nonlinear system and needs to meet many constraints. It is difficult to describe the actual vehicle system dynamics by using a linear predictive control system. model. Therefore, a nonlinear predictive control system is used to control the dynamic characteristics and state variables of the system, constrain the control variables, predict the future state, and solve the optimal control problem in the online bounded area.
  • the objective function for the minimum fuel consumption of the compound transmission system is:
  • J 2 is the fuel economy objective function of the non-linear predictive control system
  • L is the instantaneous fuel consumption function at time t.
  • control method with nonlinear predictive control as the framework and dynamic programming as the optimization algorithm can basically meet the requirements of on-line real-time control of the compound transmission system.
  • the transmission ratio of the transmission system can be adjusted coarsely by shifting gears, or finely adjusted by adjusting the displacement ratio of the hydraulic system.
  • the dynamic coordinated control principle of the compound transmission system in the human-computer interaction environment is shown in Figure 19: the hierarchical control structure is shown in Figure 19(a), including three parts: the management layer, the coordination layer and the executive layer; the control system structure is shown in the figure As shown in 19(b), it includes three parts: control mechanism, control algorithm and executive mechanism, of which the control algorithm is the core.
  • the driver combines external information and his own intentions to operate the gear position, pedal opening and working mode through the operating mechanism.
  • the operation signal and the transmission system feedback signal are used as the input of the control system.
  • the transmission system determines the target transmission ratio and torque of vehicle operation, and determines the instantaneous vehicle speed and torque based on the adaptive real-time optimization control algorithm of power follower.
  • the basic control law is revised to obtain the control objectives such as the engine throttle opening, the gear shifting mechanism engagement mode, and the transmission ratio of the transmission, which are input to the executive level controller Implement closed-loop control of the actuator.
  • the power following adaptive control algorithm is used to closely connect the active energy control and the passive energy control to make it more robust.
  • the electronic control unit calculates the target engine speed corresponding to the throttle opening, combines with the instantaneous vehicle speed to obtain the target transmission ratio of the transmission, and performs adaptive tracking adjustment.
  • the pedal opening does not change, the engine uses the power at this time as the fuel economy target power, and continuously changes the accelerator opening to make the operating point return to the fuel economy curve along the constant power curve, and the system automatically adjusts the pedal opening to make it Corresponds to the throttle opening.
  • the passive energy control mode is entered.
  • the electronic control unit automatically adjusts the throttle opening of the engine, and calculates the instantaneous required speed of the engine based on the initial vehicle speed and the instantaneous transmission ratio of the transmission, and the engine automatically increases or decreases its throttle opening for adjustment.
  • the electronic control unit calculates the target engine speed corresponding to the throttle opening, combines with the instantaneous vehicle speed to obtain the target transmission ratio of the transmission, and performs adaptive tracking adjustment.
  • the operation process is similar to the active energy control, so I won't repeat it.
  • the controller judges the vehicle status mode according to the input signal, and sends the control command to the upper computer through the CAN card, and the upper computer transmits the data sent by the controller to the simulation model.
  • Measure the driving status of operating conditions and transportation conditions through photoelectric encoders, radar sensors, load sensors and full bridge circuits, and calculate the corresponding performance index parameters such as vehicle speed and slip rate, and import the road condition detection data to the host computer.
  • output control instructions After data processing, output control instructions.
  • the transmission system control unit TCU is combined with the engine electronic control unit ECU to conduct research on intelligent shifting and optimal matching.
  • the upper computer outputs the platform operation command, and the test data of the platform is fed back to the upper computer to form a closed loop.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)

Abstract

一种机械液压复合传动装置,包括输入轴(1)、分流机构(2)、液压传动组件(3)、机械传动组件(4)、汇流机构(5)和输出轴(6),所述输入轴(1)通过分流机构(2)与相互并联的液压传动组件(3)和机械传动组件(4)连接,所述液压传动组件(3)和机械传动组件(4)通过汇流机构(5)分别与输出轴(6)连接;有益效果:将行星齿轮结构与制动器和离合器的切换相结合,实现功率分流与汇流结构形式的转换;实现正向传动和反向传动时,功率分流和功率汇流结构形式多样化并且能够相互兼顾,有利于优化结构参数,并且避免产生循环功率,提高了传动效率;具有多模式的传动装置内设置了多种可供选择的档位,可以适应复杂工况的作业要求;采用单向变量泵(33)和单向定量马达(35),减少了生产和维修成本。

Description

一种机械液压复合传动装置及控制方法 技术领域
本发明涉及一种传动装置及其控制方法,特别提供了一种能够兼顾各功率段的功率分流和功率汇流的机械液压复合传动装置及控制方法。
背景技术
大功率工程车辆作业环境恶劣,载荷变化频繁,对变速传动系统的适应性提出了较高的要求,这就要求变速传动装置适时地以不同的转速和转矩适应不同的工况要求,以保证车辆运行的动力性和燃油经济性。液压传动能够实现柔性起步,机液传动能够实现无级调速,机械传动能够实现高效变速,可分别满足起步、作业和转场工况的要求。目前,集液压、机液和机械三种传动方式为一体的复合传动装置并不多见,兼具功率分流和功率汇流的复合传动装置则更为少见。
传统的机液传动包括两种传动方式:①采用行星齿轮作为分流机构,普通齿轮作为汇流机构的功率分流传动方式;②采用普通齿轮作为分流机构,行星齿轮作为汇流机构的功率汇流传动方式。目前,机液传动的设计思路是牺牲次要工况区的传动效率和调速范围来换取主要工况区的高效传动,传统的设计思路难以兼顾包括方向变化和模式切换等各种工况的传动需要。
传统的传动装置在实现正向传动和反向传动时,功率分流和功率汇流结构形式单一、难以相互兼顾,不利于优化结构参数,并且容易产生循环功率,降低了传动效率。具有多模式的传动装置往往模式内可供选择档位较少,无法适应复杂工况的作业要求。
机电液一体化整体设计不仅涉及到传动装置自身的性能,还涉及到发动机—传动装置—行走装置的匹配,进而发展到人—机—环境一体化。就传动装置自身而言,对转速、转矩的控制集中在传动比的调节上;对发动机—传动装置—行走装置而言,涉及到传动模式的选择以及传动模式内各档位的切换,以及能量管理系统的自适应优化控制等内容;对人—机—环境一体化而言,涉及到在线有界区域的最优控制问题。
发明内容
发明目的:本发明的目的是为了解决上述问题,提供一种机械液压复合传动装置及控制方法。本发明将功率分流和功率汇流相结合的结构形式来实现正向传动和反向传动,有利于优化结构参数,提高系统效率。
技术方案:一种机械液压复合传动装置,包括输入轴、分流机构、液压传动组件、机械传动组件、汇流机构和输出轴,所述输入轴通过分流机构与相互并联的液压传动组件和机械传动组件连接,所述液压传动组件和机械传动组件通过汇流机构分别与输出轴连接;所述分流机构包括离合器C 3、分流机构太阳轮、分流机构行星架、分流机构齿圈和制动器B 1,所述离合器C 3分别连接分流机构太阳轮和分流机构行星架,所述制动器B 1与分流机 构齿圈连接;所述输入轴与分流机构太阳轮连接,所述分流机构通过分流机构齿圈与液压传动组件连接;所述分流机构分别通过分流机构太阳轮和分流机构行星架与机械传动组件连接;
所述汇流机构包括制动器B 6、汇流机构齿圈、汇流机构行星架、汇流机构太阳轮和离合器C 7,所述制动器B 6与汇流机构齿圈连接,所述离合器C 7分别连接汇流机构行星架和汇流机构太阳轮;所述汇流机构通过汇流机构齿圈与液压传动组件连接;所述汇流机构通过汇流机构太阳轮与机械传动组件连接;所述汇流机构分别通过汇流机构行星架和汇流机构太阳轮与输出轴连接。
本发明将行星齿轮结构与制动器和离合器的切换相结合,实现功率分流与汇流的结构形式的转换。在实现正向传动和反向传动时,功率分流和功率汇流结构形式多样化并且能够相互兼顾,有利于优化结构参数,并且避免产生循环功率,提高了传动效率。具有多模式的传动装置内设置了多种可供选择的档位,可以适应复杂工况的作业要求。
优选项,为了保证液压传动组件的可靠性,所述液压传动组件包括液压传动输入离合器C 1、液压传动输入齿轮副、单向变量泵、液压管道、单向定量马达、换向齿轮副、液压传动输出齿轮副和液压传动输出离合器C 2;所述单向变量泵通过液压传动输入齿轮副与分流机构连接,所述液压传动输入齿轮副与单向变量泵之间设有液压传动输入离合器C 1,所述单向变量泵通过液压油管与单向定量马达连接,所述单向定量马达依次通过液压传动输出齿轮副和换向齿轮副与汇流机构连接,所述单向定量马达与液压传动输出齿轮副之间设有液压传动输出离合器C 2
优选项,为了保证机械传动的可靠性,所述机械传动组件包括前排太阳轮、前排行星架、前排齿圈、后排太阳轮、后排行星架、后排齿圈、离合器C 4、离合器C 5、离合器C 6、制动器B 2、制动器B 3、制动器B 4、制动器B 5、单向离合器F 1、单向离合器F 2、单向离合器F 3
所述前排太阳轮通过相互并联的离合器C 5和离合器C 6与分流机构连接,所述离合器C 5和离合器C 6与前排太阳轮之间分别设有单向离合器F 1和单向离合器F 2,所述单向离合器F 1和单向离合器F 2动力传导方向相反;所述前排太阳轮还与制动器B 3连接;
所述前排行星架通过离合器C 4与分流机构连接,所述前排行星架与离合器C 4之间设有制动器B 2、前排行星架与后排齿圈固连;
所述前排齿圈分别与后排行星架和汇流机构连接;
所述后排太阳轮与相互并联的制动器B 4和制动器B 5连接,所述后排太阳轮与制动器B 5之间设有单向离合器F 3,所述单向离合器F 3的制动方向为后排太阳轮的转向与分流机构行星架转向相反。
所述后排行星架分别与前排齿圈和汇流机构连接;
所述后排齿圈分别与前排行星架和分流机构连接;所述后排齿圈与分流机构之间设有 相互并联的制动器B 2和离合器C 4
优选项,为了保证有多档位可供选择,通过制动器和离合器之间的组合切换实现正向传动下的纯液压传动、机械液压复合传动和纯机械传动,以及反向传动下的纯液压传动、机械液压复合传动和纯机械传动,共两个方向三个类型的传动,
正向传动的三个传动类型如下:
正向纯液压传动:制动器B 2、液压传动输入离合器C 1、液压传动输出离合器C 2、离合器C 4、离合器C 7接合,其他制动器和离合器分离;制动器B 2和离合器C 4接合,分流机构行星架锁定,分流机构太阳轮与分流机构齿圈转向相反,动力经输入轴、分流机构、液压传动组件、汇流机构至输出轴输出;所述离合器C 7接合,汇流机构的汇流机构行星架和汇流机构太阳轮互锁,汇流机构整体旋转,经过换向齿轮副的作用,输入轴与输出轴转向相同;
正向纯机械传动:制动器B 1、制动器B 6接合,同时制动器B 2、制动器B 4、液压传动输入离合器C 1、液压传动输出离合器C 2、离合器C 3、离合器C 7分离;动力经输入轴、分流机构、机械传动组件、汇流机构至输出轴输出;所述制动器B 1接合,分流机构齿圈锁定,分流机构太阳轮和分流机构行星架作为齿轮传动机构进行传动;所述制动器B 6接合,汇流机构齿圈锁定,动力从汇流机构太阳轮经汇流机构行星架至输出轴。
正向机械液压复合传动:液压传动输入离合器C 1、液压传动输出离合器C 2和离合器C 7接合,同时制动器B 1、制动器B 3、制动器B 5、制动器B 6、离合器C 3和单向离合器F 3分离;动力经输入轴至分流机构,所述分流机构将动力流分别传递至液压传动组件和机械传动组件,再经汇流机构汇流后至输出轴输出;所述离合器C 3分离,分流机构行星架将输入轴传递的一部分动力传递给机械传动组件,分流机构齿圈将输入轴传递的另一部分动力传递给液压传动组件;离合器C 7接合,机械传动组件的动力经汇流机构太阳轮、汇流机构行星架传递给输出轴,液压传动组件的动力经汇流机构齿圈、汇流机构行星架传递给输出轴,所述汇流机构行星架的转向在设定排量比范围内与输入轴相同;
反向传动的三个传动类型如下:
反向纯液压传动:液压传动输入离合器C 1、液压传动输出离合器C 2、离合器C 3、离合器C 7接合,其他制动器和离合器分离;离合器C 3接合,分流机构太阳轮与分流机构行星架互锁,分流机构整体旋转,动力经输入轴、分流机构、液压传动组件、汇流机构至输出轴输出;所述离合器C7接合,汇流机构的汇流机构行星架和汇流机构太阳轮互锁,汇流机构整体旋转,输入轴与输出轴转向相反;
反向纯机械传动:制动器B 1、制动器B 2、制动器B 6、离合器C 6和单向离合器F 2接合,其他制动器和离合器分离;所述制动器B 1接合,分流机构齿圈锁定,动力从分流机构太阳轮经分流机构行星架传递至机械传动组件;所述离合器C 6和单向离合器F 2接合,所述机械传动组件内动力依次经过离合器C 6、单向离合器F 2、前排太阳轮、前排齿圈传递至汇流机 构太阳轮;所述制动器B 6接合,汇流机构齿圈锁定,动力从汇流机构太阳轮经汇流机构行星架至输出轴。
反向机械液压复合传动:液压传动输入离合器C 1、液压传动输出离合器C 2、离合器C 3接合;同时制动器B 1、制动器B 3、制动器B 5、制动器B 6、离合器C 7和单向离合器F 3分离;动力经输入轴至分流机构,所述分流机构将动力流分别传递至液压传动组件和机械传动组件,再经汇流机构汇流后至输出轴输出;所述离合器C 3接合,分流机构行星架将输入轴传递的一部分动力传递给机械传动组件,分流机构齿圈将输入轴传递的另一部分动力传递给液压传动组件;离合器C 7分离,机械传动组件的动力经汇流机构太阳轮、汇流机构行星架传递给输出轴,液压传动组件的动力经汇流机构齿圈、汇流机构行星架传递给输出轴;所述汇流机构行星架的转向在设定排量比范围内与输入轴相反。
优选项,进一步确保正向机械传动档位可供选择,所述正向纯机械传动包括机械1档、机械2档、机械3档和机械4档,具体实现方法如下:
机械1档:制动器B 5、单向离合器F 3、离合器C 6和单向离合器F 2接合,同时制动器B 3、离合器C 4、离合器C 5、单向离合器F 1分离;动力依次经过离合器C 6、单向离合器F 2、前排太阳轮至前排行星架,在前排行星架处分流分别至前排齿圈和后排齿圈,后排齿圈经过后排行星架与前排齿圈汇流后,动力传递至汇流机构,所述制动器B 5和单向离合器F 3接合,后排太阳轮锁止;
机械2档:制动器B 5、单向离合器F 3和离合器C 4接合,同时制动器B 3、离合器C 5、离合器C 6、单向离合器F 1和单向离合器F 2分离;动力依次经过离合器C 4、后排齿圈和后排行星架后,动力传递至汇流机构,所述制动器B 5和单向离合器F 3接合,后排太阳轮锁止;
机械3档:制动器B 5、离合器C 4、离合器C 5、单向离合器F 1和单向离合器F 3接合,同时制动器B 3、离合器C 6和单向离合器F 2分离;动力依次经过离合器C 4、前排行星架、前排齿圈后,动力传递至汇流机构;由于离合器C 5和单向离合器F 1接合,使前排太阳轮不能超速旋转,其转速与前排行星架一致,使前行星排机构整体旋转;
机械4档:制动器B 3和离合器C 4接合,同时制动器B 5、离合器C 5、离合器C 6、单向离合器F 1、单向离合器F 2和单向离合器F 3分离;动力依次经过离合器C 4、前排行星架、前排齿圈后,动力传递至汇流机构。
优选项,为了丰富正向复合传动的档位,所述正向机械液压复合传动包括复合传动1档、复合传动2档、复合传动3档和复合传动4档,具体实现方法如下:
正向复合1档:制动器B 4、离合器C 6和单向离合器F 2接合,同时制动器B 2、离合器C 4、离合器C 5和单向离合器F 1分离;经过机械传动组件的动力依次经过离合器C 6、单向离合器F 2、前排太阳轮至前排行星架,在前排行星架处分流分别至前排齿圈和后排齿圈,后排齿圈经过后排行星架与前排齿圈汇流后,动力传递至汇流机构,制动器B 4接合,后排太阳轮锁止;
正向复合2档:制动器B 4和离合器C 4接合,同时制动器B 2、离合器C 5、离合器C 6、单向离合器F 1和单向离合器F 2分离;经过机械传动组件的动力依次经过离合器C 4、后排齿圈和后排行星架后,动力传递至汇流机构;
正向复合3档:离合器C 4、离合器C 5和单向离合器F 1接合,同时制动器B 2、制动器B 4、离合器C 6和单向离合器F 2分离;经过机械传动组件的动力依次经过离合器C 4、前排行星架、前排齿圈后,动力传递至汇流机构;由于离合器C 5和单向离合器F 1接合,使前排太阳轮不能超速旋转,其转速与前排行星架一致,使前行星排机构整体旋转;
正向复合4档:制动器B 2、离合器C 6和单向离合器F 2接合,同时制动器B 4、离合器C 4、离合器C 5和单向离合器F 1分离;经过机械传动组件的动力依次经过离合器C 6、单向离合器F 2、前排太阳轮和前排齿圈后,动力传递至汇流机构。
优选项,为了丰富反向复合传动的档位,所述反向机械液压复合传动包括复合传动1档、复合传动2档、复合传动3档和复合传动4档,具体实现方法如下:
反向复合1档:制动器B 4、离合器C 6和单向离合器F 2接合,同时制动器B 2、离合器C 4、离合器C 5和单向离合器F 1分离;经过机械传动组件的动力依次经过离合器C 6、单向离合器F 2、前排太阳轮至前排行星架,在前排行星架处分流分别至前排齿圈和后排齿圈,后排齿圈经过后排行星架与前排齿圈汇流后,动力传递至汇流机构,制动器B 4接合,后排太阳轮锁止;
反向复合2档:制动器B 4和离合器C 4接合,同时制动器B 2、离合器C 5、离合器C 6、单向离合器F 1和单向离合器F 2分离;经过机械传动组件的动力依次经过离合器C 4、后排齿圈和后排行星架后,动力传递至汇流机构;
反向复合3档:离合器C 4、离合器C 5和单向离合器F 1接合,同时制动器B 2、制动器B 4、离合器C 6和单向离合器F 2分离;经过机械传动组件的动力依次经过离合器C 4、前排行星架、前排齿圈后,动力传递至汇流机构;由于离合器C 5和单向离合器F 1接合,使前排太阳轮不能超速旋转,其转速与前排行星架一致,使前行星排机构整体旋转;
反向复合4档:制动器B 2、离合器C 6和单向离合器F 2接合,同时制动器B 4、离合器C 4、离合器C 5和单向离合器F 1分离;经过机械传动组件的动力依次经过离合器C 6、单向离合器F 2、前排太阳轮和前排齿圈后,动力传递至汇流机构。
传动系统的模型预测控制将燃油经济性全局最优动态规划问题转化为预测区域内的局部优化控制问题,并通过滚动优化不断更新预测区域内车辆未来的运行状态,以获得优化结果,实现预测控制在机械液压复合传动系统中的实时应用。基于时域的车辆预测控制是以模型预测控制为框架,结合动态规划实现的在线滚动优化控制。
在预测区域q内,复合传动车辆预测控制的状态转移方程为:
x(k+1)=μ[x(k),u(k)]
式中,μ为时间离散系统函数;
在预测区域q内,复合传动系统油耗最小的目标函数为:
Figure PCTCN2019122860-appb-000001
式中,J 1为采用线性预测控制系统的燃油经济性目标函数,v k为第k阶段的阶段指标。
在控制区域p,一般采用传感装置进行测量;在预测区域q,一般借助GPS/GIS系统进行预测。预测的核心在于选取合理的预测窗口长度采集数据,以及预测控制系统的高性价比。
采用非线性预测控制系统对系统的动态特性和状态变量进行控制,对控制变量进行约束,对未来状态进行预估,解决在线有界区域的最优控制问题。
此时复合传动系统油耗最小的目标函数为:
Figure PCTCN2019122860-appb-000002
式中,J 2为采用非线性预测控制系统的燃油经济性目标函数,L为t时刻的瞬时燃油消耗量函数。
人机交互环境下的动态协调控制系统的分层控制结构包括管理层、协同层和执行层;控制系统结构包括操纵机构、控制算法和执行机构,根据传动系统的动力性、经济性和排放性等要求,对基本控制规律进行修正,得出发动机节气门开度、换挡机构接合方式、以及变速装置传动比等控制目标,输入执行层控制器对执行机构实施闭环控制。
采用功率跟随自适应控制算法,将主动型能量控制和被动型能量控制紧密相连,使其具有较好地鲁棒性。
使用Simulink和Simulation X软件完成机液复合传动系统模型的搭建,并将模型状态数据传递给控制器;控制器根据输入信号判断整车状态模式,并将控制命令数据传递给仿真模型;通过测量作业工况和运输工况的行驶状态,并计算相应的车速和滑转率等性能指标参数,将路况检测数据经过数据处理,输出控制指令;使传动系统控制单元TCU与发动机电子控制单元ECU相结合,进行智能换挡和优化匹配。
有益效果:本发明将行星齿轮结构与制动器和离合器的切换相结合,实现功率分流与汇流结构形式的转换。实现正向传动和反向传动时,功率分流和功率汇流结构形式多样化并且能够相互兼顾,有利于优化结构参数,并且避免产生循环功率,提高了传动效率。具有多模式的传动装置内设置了多种可供选择的档位,可以适应复杂工况的作业要求。在机 械传动各档位中,由于单向离合器可能会发生超越滑动,导致无发动机制动。在特定情况下,可直接使用机械液压传动模式中的机械传动系统替代机械传动模式的机械系统,满足发动机制动或提高换挡元件寿命的要求。采用单向变量泵和单向定量马达取代双向变量泵和双向定量马达,大大减少了生产和维修成本。
附图说明
图1为本发明的结构原理图;
图2为本发明的换挡元件接合状态表;
图3为本发明正向纯液压档功率流向示意图;
图4为本发明反向纯液压档功率流向示意图;
图5为本发明正向机械液压复合传动1档功率流向示意图;
图6为本发明正向机械液压复合传动2档功率流向示意图;
图7为本发明正向机械液压复合传动3档功率流向示意图;
图8为本发明正向机械液压复合传动4档功率流向示意图;
图9为本发明反向机械液压复合传动1档功率流向示意图;
图10为本发明反向机械液压复合传动2档功率流向示意图;
图11为本发明反向机械液压复合传动3档功率流向示意图;
图12为本发明反向机械液压复合传动4档功率流向示意图;
图13为本发明正向机械1档功率流向示意图;
图14为本发明正向机械2档功率流向示意图;
图15为本发明正向机械3档功率流向示意图;
图16为本发明正向机械4档功率流向示意图;
图17为本发明反向纯机械传动档功率流向示意图;
图18为车辆预测控制原理图;
图19为人机交互环境下的复合传动系统动态协调控制原理图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,一种机械液压复合传动装置,包括输入轴1、分流机构2、液压传动组件3、机械传动组件4、汇流机构5和输出轴6,所述输入轴1通过分流机构2与相互并联的液压传动组件3和机械传动组件4连接,所述液压传动组件3和机械传动组件4通过汇流机构5分别与输出轴6连接;所述分流机构2包括离合器C 321、分流机构太阳轮22、分流机构行星架23、分流机构齿圈24和制动器B 125,所述离合器C 321分别连接分流机构太阳轮22和分流机构行星架23,所述制动器B 125与分流机构齿圈24连接;所述输入轴1与分流机构太阳轮22连接,所述分流机构2通过分流机构齿圈24与液压传动组件3连接;所述分流机构2分别通过分流机构太阳轮22和分流机构行星架23与机械传动组件4连接;
所述汇流机构5包括制动器B 651、汇流机构齿圈52、汇流机构行星架53、汇流机构太阳轮54和离合器C 755,所述制动器B 651与汇流机构齿圈52连接,所述离合器C 755分别连接汇流机构行星架53和汇流机构太阳轮54;所述汇流机构5通过汇流机构齿圈52与液压传动组件3连接;所述汇流机构5通过汇流机构太阳轮54与机械传动组件4连接;所述汇流机构5分别通过汇流机构行星架53和汇流机构太阳轮54与输出轴6连接。
所述液压传动组件3包括液压传动输入离合器C 131、液压传动输入齿轮副32、单向变量泵33、液压管道34、单向定量马达35、换向齿轮副36、液压传动输出齿轮副37和液压传动输出离合器C 238;所述单向变量泵33通过液压传动输入齿轮副32与分流机构2连接,所述液压传动输入齿轮副32与单向变量泵33之间设有液压传动输入离合器C 131,所述单向变量泵33通过液压油管34与单向定量马达35连接,所述单向定量马达35依次通过液压传动输出齿轮副37和换向齿轮副36与汇流机构5连接,所述单向定量马达35与液压传动输出齿轮副37之间设有液压传动输出离合器C 238。
所述机械传动组件4包括前排太阳轮41、前排行星架42、前排齿圈43、后排太阳轮44、后排行星架45、后排齿圈46、离合器C 447、离合器C 548、离合器C 649、制动器B 2410、制动器B 3411、制动器B 4412、制动器B 5413、单向离合器F 1414、单向离合器F 2415、单向离合器F 3416;
所述前排太阳轮41通过相互并联的离合器C 548和离合器C 649与分流机构2连接,所述离合器C 548和离合器C 649与前排太阳轮41之间分别设有单向离合器F 1414和单向离合器F 2415,所述单向离合器F 1414和单向离合器F 2415动力传导方向相反;所述前排太阳轮41还与制动器B 3411连接;
所述前排行星架42通过离合器C 447与分流机构2连接,所述前排行星架42与离合器C 447之间设有制动器B 2410,前排行星架42与后排齿圈46固连;
所述前排齿圈43分别与后排行星架45和汇流机构5连接;
所述后排太阳轮44与相互并联的制动器B 4412和制动器B 5413连接,所述后排太阳轮44与制动器B 5413之间设有单向离合器F 3416,所述单向离合器F 3416的制动方向为后排太阳轮44的转向与分流机构行星架23转向相反。
所述后排行星架45分别与前排齿圈43和汇流机构5连接;
所述后排齿圈46分别与前排行星架42和分流机构2连接;所述后排齿圈46与分流机构2之间设有相互并联的制动器B 2410和离合器C 447。
如图2和3所示,正向纯液压传动:制动器B 2410、液压传动输入离合器C 131、液压传动输出离合器C 238、离合器C 447、离合器C 755接合,其他制动器和离合器分离;制动器B 2410和离合器C 447接合,分流机构行星架23锁定成为换向轮,动力经输入轴1、分流机构2、液压传动组件3、汇流机构5至输出轴6输出;所述离合器C 755接合,汇流机构5的汇流机构行星架53和汇流机构太阳轮54互锁,汇流机构5整体旋转,经过换向齿轮 副36的作用,输入轴1与输出轴6转向相同。
输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000003
其中,n o为输出轴6的转速,n I为输入轴1转速,e为变量泵33排量与定量马达35排量之比,i 1、i 2和i 3分别为齿轮传动比,k 1为分流机构特性参数,
令k 1=2,i 1i 2i 3=1,
Figure PCTCN2019122860-appb-000004
当e∈[0,1],
Figure PCTCN2019122860-appb-000005
如图2和4所示,反向纯液压传动:液压传动输入离合器C 131、液压传动输出离合器C 238、离合器C 321、离合器C 755接合,其他制动器和离合器分离;离合器C 321接合,分流机构太阳轮22与分流机构行星架23互锁,分流机构2整体旋转,动力经输入轴1、分流机构2、液压传动组件3、汇流机构5至输出轴6输出;所述离合器C 755接合,汇流机构5的汇流机构行星架53和汇流机构太阳轮54互锁,输入轴1与输出轴6转向相反。
输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000006
当e∈[0,1],n 0∈[-1,0]n I
如图2和5所示,正向机械液压复合传动1档:液压传动输入离合器C 131、液压传动输出离合器C 238和离合器C 755接合,同时制动器B 125、制动器B 3411、制动器B 5413制动器B 651、离合器C 321和单向离合器F 3416分离;动力经输入轴1至分流机构2,所述分流机构2将动力流分别传递至液压传动组件3和机械传动组件4,再经汇流机构5汇流后至输出轴6输出;所述离合器C 321分离,分流机构行星架23将输入轴1传递的一部分动力传递给机械传动组件4,分流机构齿圈24将输入轴1传递的另一部分动力传递给液压传动组件3;离合器C 755接合,机械传动组件4的动力经汇流机构太阳轮54、汇流机构行星架53传递给输出轴6,液压传动组件3的动力经汇流机构齿圈52、汇流机构行星架53传递给输出轴6,所述汇流机构行星架53的转向在设定排量比范围内与输入轴1相同。
制动器B 4412、离合器C 649和单向离合器F 2415接合,同时制动器B 2410、离合器C 447、离合器C 548和单向离合器F 1414分离;经过机械传动组件4的动力依次经过离合器C 649、单向离合器F 2415、前排太阳轮41至前排行星架42,在前排行星架42处分流分别至前排齿圈43和后排齿圈46,后排齿圈46经过后排行星架45与前排齿圈43汇流后动力传递至 汇流机构5,制动器B 4412接合,后排太阳轮44锁止。
如图2和6所示,正向机械液压复合传动2档:液压传动输入离合器C 131、液压传动输出离合器C 238和离合器C 755接合,同时制动器B 125、制动器B 3411、制动器B 5413制动器B 651、离合器C 321和单向离合器F 3416分离;动力经输入轴1至分流机构2,所述分流机构2将动力流分别传递至液压传动组件3和机械传动组件4,再经汇流机构5汇流后至输出轴6输出;所述离合器C 321分离,分流机构行星架23将输入轴1传递的一部分动力传递给机械传动组件4,分流机构齿圈24将输入轴1传递的另一部分动力传递给液压传动组件3;离合器C 755接合,机械传动组件4的动力经汇流机构太阳轮54、汇流机构行星架53传递给输出轴6,液压传动组件3的动力经汇流机构齿圈52、汇流机构行星架53传递给输出轴6,所述汇流机构行星架53的转向在设定排量比范围内与输入轴1相同。
制动器B 4412和离合器C 447接合,同时制动器B 2410、离合器C 548、离合器C 649、单向离合器F 1414和单向离合器F 2415分离;经过机械传动组件4的动力依次经过离合器C 447、后排齿圈46和后排行星架45后,动力传递至汇流机构5。
如图2和7所示,正向机械液压复合传动3档:液压传动输入离合器C 131、液压传动输出离合器C 238和离合器C 755接合,同时制动器B 125、制动器B 3411、制动器B 5413制动器B 651、离合器C 321和单向离合器F 3416分离;动力经输入轴1至分流机构2,所述分流机构2将动力流分别传递至液压传动组件3和机械传动组件4,再经汇流机构5汇流后至输出轴6输出;所述离合器C 321分离,分流机构行星架23将输入轴1传递的一部分动力传递给机械传动组件4,分流机构齿圈24将输入轴1传递的另一部分动力传递给液压传动组件3;离合器C 755接合,机械传动组件4的动力经汇流机构太阳轮54、汇流机构行星架53传递给输出轴6,液压传动组件3的动力经汇流机构齿圈52、汇流机构行星架53传递给输出轴6,所述汇流机构行星架53的转向在设定排量比范围内与输入轴1相同。
离合器C 447、离合器C 548和单向离合器F 1414接合,同时制动器B 2410、制动器B 4412、离合器C 649和单向离合器F 2415分离;经过机械传动组件4的动力依次经过离合器C 447、前排行星架42、前排齿圈43后,动力传递至汇流机构5;由于离合器C 548和单向离合器F 1414接合,使前排太阳轮41不能超速旋转,其转速与前排行星架42一致,使前行星排机构整体旋转。
如图2和8所示,正向机械液压复合传动4档:液压传动输入离合器C 131、液压传动输出离合器C 238和离合器C 755接合,同时制动器B 125、制动器B 3411、制动器B 5413制动器B 651、离合器C 321和单向离合器F 3416分离;动力经输入轴1至分流机构2,所述分流机构2将动力流分别传递至液压传动组件3和机械传动组件4,再经汇流机构5汇流后至输出轴6输出;所述离合器C 321分离,分流机构行星架23将输入轴1传递的一部分动力传递给机械传动组件4,分流机构齿圈24将输入轴1传递的另一部分动力传递给液压传动组件3;离合器C 755接合,机械传动组件4的动力经汇流机构太阳轮54、汇流机构行星 架53传递给输出轴6,液压传动组件3的动力经汇流机构齿圈52、汇流机构行星架53传递给输出轴6,所述汇流机构行星架53的转向在设定排量比范围内与输入轴1相同。
制动器B 2410、离合器C 649和单向离合器F 2415接合,同时制动器B 4412、离合器C 447、离合器C 548和单向离合器F 1414分离;经过机械传动组件4的动力依次经过离合器C 649、单向离合器F 2415、前排太阳轮41和前排齿圈43后,动力传递至汇流机构5。
正向机械液压复合传动包括机液传动功率分流四档位,输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000007
令k 1=2,i 1i 2i 3=1,则
Figure PCTCN2019122860-appb-000008
其中,i m为机械传动组件传动比,i m1=2.92为机械1档时机械传动组件传动比,i m2=1.57为机械2档时机械传动组件传动比,i m3=1.00为机械3档时机械传动组件传动比,i m4=-2.38为机械4档时机械传动组件传动比;
当机液传动分流1档时,i m1=2.92,输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000009
当e∈[0,1]时,n 0∈[0,0.093]n I
当机液传动分流2档时,i m2=1.57,输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000010
当e∈[0,1]时,n 0∈[0,0.149]n I
当机液传动分流3档时,i m3=1.00,输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000011
当e∈[0,1]时,n 0∈[0,0.200]n I
当机液传动分流4档时,i m4=-2.38,输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000012
当e∈[0,0.25]时,n 0∈[0,1.163]n I
如图2和9所示,反向机械液压复合传动1档:液压传动输入离合器C 131、液压传动输出离合器C 238、离合器C 321接合;同时制动器B 125、制动器B 3411、制动器B 5413、制动器B 651、离合器C 755和单向离合器F 3416分离;动力经输入轴1至分流机构2,所述分流机构2将动力流分别传递至液压传动组件3和机械传动组件4,再经汇流机构5汇流后至输出轴6输出;所述离合器C 321接合,分流机构行星架23将输入轴1传递的一部分动力传递给机械传动组件4,分流机构齿圈24将输入轴1传递的另一部分动力传递给液压传动组件3;离合器C 755分离,机械传动组件4的动力经汇流机构太阳轮54、汇流机构行星架53传递给输出轴6,液压传动组件3的动力经汇流机构齿圈52、汇流机构行星架53传递给输出轴6;所述汇流机构行星架53的转向在设定排量比范围内与输入轴1相反。
制动器B 4412、离合器C 649和单向离合器F 2415接合,同时制动器B 2410、离合器C 447、离合器C 548和单向离合器F 1414分离;经过机械传动组件4的动力依次经过离合器C 649、单向离合器F 2415、前排太阳轮41至前排行星架42,在前排行星架42处分流分别至前排齿圈43和后排齿圈46,后排齿圈46经过后排行星架45与前排齿圈43汇流后,动力传递至汇流机构5,制动器B 4412接合,后排太阳轮44锁止。
如图2和10所示,反向机械液压复合传动2档:液压传动输入离合器C 131、液压传动输出离合器C 238、离合器C 321接合;同时制动器B 125、制动器B 3411、制动器B 5413、制动器B 651、离合器C 755和单向离合器F 3416分离;动力经输入轴1至分流机构2,所述分流机构2将动力流分别传递至液压传动组件3和机械传动组件4,再经汇流机构5汇流后至输出轴6输出;所述离合器C 321接合,分流机构行星架23将输入轴1传递的一部分动力传递给机械传动组件4,分流机构齿圈24将输入轴1传递的另一部分动力传递给液压传动组件3;离合器C 755分离,机械传动组件4的动力经汇流机构太阳轮54、汇流机构行星架53传递给输出轴6,液压传动组件3的动力经汇流机构齿圈52、汇流机构行星架53传递给输出轴6;所述汇流机构行星架53的转向在设定排量比范围内与输入轴1相反。
制动器B 4412和离合器C 447接合,同时制动器B 2410、离合器C 548、离合器C 649、单向离合器F 1414和单向离合器F 2415分离;经过机械传动组件4的动力依次经过离合器C 447、后排齿圈46和后排行星架45后,动力传递至汇流机构5。
如图2和11所示,反向机械液压复合传动3档:液压传动输入离合器C 131、液压传动输出离合器C 238、离合器C 321接合;同时制动器B 125、制动器B 3411、制动器B 5413、制动器B 651、离合器C 755和单向离合器F 3416分离;动力经输入轴1至分流机构2,所述分流机构2将动力流分别传递至液压传动组件3和机械传动组件4,再经汇流机构5汇流 后至输出轴6输出;所述离合器C 321接合,分流机构行星架23将输入轴1传递的一部分动力传递给机械传动组件4,分流机构齿圈24将输入轴1传递的另一部分动力传递给液压传动组件3;离合器C 755分离,机械传动组件4的动力经汇流机构太阳轮54、汇流机构行星架53传递给输出轴6,液压传动组件3的动力经汇流机构齿圈52、汇流机构行星架53传递给输出轴6;所述汇流机构行星架53的转向在设定排量比范围内与输入轴1相反。
离合器C 447、离合器C 548和单向离合器F 1414接合,同时制动器B 2410、制动器B 4412、离合器C 649和单向离合器F 2415分离;经过机械传动组件4的动力依次经过离合器C 447、前排行星架42、前排齿圈43后,动力传递至汇流机构5;由于离合器C 548和单向离合器F 1414接合,使前排太阳轮41不能超速旋转,其转速与前排行星架42一致,使前行星排机构整体旋转。
如图2和12所示,反向机械液压复合传动4档:液压传动输入离合器C 131、液压传动输出离合器C 238、离合器C 321接合;同时制动器B 125、制动器B 3411、制动器B 5413、制动器B 651、离合器C 755和单向离合器F 3416分离;动力经输入轴1至分流机构2,所述分流机构2将动力流分别传递至液压传动组件3和机械传动组件4,再经汇流机构5汇流后至输出轴6输出;所述离合器C 321接合,分流机构行星架23将输入轴1传递的一部分动力传递给机械传动组件4,分流机构齿圈24将输入轴1传递的另一部分动力传递给液压传动组件3;离合器C 755分离,机械传动组件4的动力经汇流机构太阳轮54、汇流机构行星架53传递给输出轴6,液压传动组件3的动力经汇流机构齿圈52、汇流机构行星架53传递给输出轴6;所述汇流机构行星架53的转向在设定排量比范围内与输入轴1相反。
制动器B 2410、离合器C 649和单向离合器F 2415接合,同时制动器B 4412、离合器C 447、离合器C 548和单向离合器F 1414分离;经过机械传动组件4的动力依次经过离合器C 649、单向离合器F 2415、前排太阳轮41和前排齿圈43后,动力传递至汇流机构5。
反向机械液压复合传动包括机液传动功率汇流四档位,输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000013
其中,k 2为汇流机构特性参数,
令k 2=2,i 1i 2i 3=1,则
Figure PCTCN2019122860-appb-000014
当机液传动汇流1档时,i m1=2.92,输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000015
当e∈[0.171,1]时,n 0∈[-0.553,0]n I
当机液传动汇流2档时,i m2=1.57,输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000016
当e∈[0.3185,1]时,n 0∈[-0.454,0]n I
当机液传动汇流3档时,i m3=1.00,输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000017
当e∈[0.5,1]时,n 0∈[-0.333,0]n I
当机液传动汇流4档时,i m4=-2.38,输入轴1与输出轴6的转速关系为:
Figure PCTCN2019122860-appb-000018
当e∈[0,1]时,n 0∈[-0.807,-0.140]n I
如图2和13所示,正向纯机械传动1档:制动器B 125、制动器B 651接合,同时制动器B 2410、制动器B 4412、液压传动输入离合器C 131、液压传动输出离合器C 238、离合器C 321、离合器C 755分离;动力经输入轴1、分流机构2、机械传动组件4、汇流机构5至输出轴6输出;所述制动器B 125接合,分流机构齿圈24锁定,分流机构2整体旋转;所述制动器B 651接合,汇流机构齿圈52锁定,动力从汇流机构太阳轮54经汇流机构行星架53至输出轴6。
制动器B 5413、单向离合器F 3416、离合器C 649和单向离合器F 2415接合,同时制动器B 3411、离合器C 447、离合器C 548、单向离合器F 1414分离;动力依次经过离合器C 649、单向离合器F 2415、前排太阳轮41至前排行星架42,在前排行星架42处分流分别至前排齿圈43和后排齿圈46,后排齿圈46经过后排行星架45与前排齿圈43汇流后,动力传递至汇流机构5,所述制动器B 5413和单向离合器F 3416接合,后排太阳轮44锁止。
如图2和14所示,正向纯机械传动2档:制动器B 125、制动器B 651接合,同时制动器B 2410、制动器B 4412、液压传动输入离合器C 131、液压传动输出离合器C 238、离合器C 321、离合器C 755分离;动力经输入轴1、分流机构2、机械传动组件4、汇流机构5至输出轴6输出;所述制动器B 125接合,分流机构齿圈24锁定,分流机构2整体旋转;所述制动器B 651接合,汇流机构齿圈52锁定,动力从汇流机构太阳轮54经汇流机构行星架53至输出轴6。
制动器B 5413、单向离合器F 3416和离合器C 447接合,同时制动器B 3411、离合器C 548、离合器C 649、单向离合器F 1414和单向离合器F 2415分离;动力依次经过离合器C 447、后排齿圈46和后排行星架45后,动力传递至汇流机构5,所述制动器B 5413和单向离合器F 3416接合,后排太阳轮44锁止。
如图2和15所示,正向纯机械传动3档:制动器B 125、制动器B 651接合,同时制动器B 2410、制动器B 4412、液压传动输入离合器C 131、液压传动输出离合器C 238、离合器C 321、离合器C 755分离;动力经输入轴1、分流机构2、机械传动组件4、汇流机构5至输出轴6输出;所述制动器B 125接合,分流机构齿圈24锁定,分流机构2整体旋转;所述制动器B 651接合,汇流机构齿圈52锁定,动力从汇流机构太阳轮54经汇流机构行星架53至输出轴6。
制动器B 5413、离合器C 447、离合器C 548、单向离合器F 1414和单向离合器F 3416接合,同时制动器B 3411、离合器C 649和单向离合器F 2415分离;动力依次经过离合器C 447、前排行星架42、前排齿圈43后,动力传递至汇流机构5;由于离合器C 548和单向离合器F 1414接合,使前排太阳轮41不能超速旋转,其转速与前排行星架42一致,使前行星排机构整体旋转。
如图2和16所示,正向纯机械传动4档:制动器B 125、制动器B 651接合,同时制动器B 2410、制动器B 4412、液压传动输入离合器C 131、液压传动输出离合器C 238、离合器C 321、离合器C 755分离;动力经输入轴1、分流机构2、机械传动组件4、汇流机构5至输出轴6输出;所述制动器B 125接合,分流机构齿圈24锁定,分流机构2整体旋转;所述制动器B 651接合,汇流机构齿圈52锁定,动力从汇流机构太阳轮54经汇流机构行星架53至输出轴6。
制动器B 3411和离合器C 447接合,同时制动器B 5413、离合器C 548、离合器C 649、单向离合器F 1414、单向离合器F 2415和单向离合器F 3416分离;动力依次经过离合器C 447、前排行星架42、前排齿圈43后,动力传递至汇流机构5。
如图2和17所示,反向纯机械传动:制动器B 125、制动器B 2410、制动器B 651、离合器C 649和单向离合器F 2415接合,其他制动器和离合器分离;所述制动器B 125接合,分流机构齿圈24锁定,动力从分流机构太阳轮22经分流机构行星架23传递至机械传动组件4;所述离合器C 649和单向离合器F 2415接合,所述机械传动组件4内动力依次经过离合器C 649、单向离合器F 2415、前排太阳轮41、前排齿圈43传递至汇流机构太阳轮54;所述制动器B 651接合,汇流机构齿圈52锁定,动力从汇流机构太阳轮54经汇流机构行星架53至输出轴6。
纯机械传动时输入轴1与输出轴6的转速关系为:
机械1档:n 0=0.342n I
机械2档:n 0=0.637n I
机械3档:n 0=n I
机械4档:n 0=1.429n I
机械倒挡:n 0=-0.420n I
传动系统的模型预测控制将燃油经济性全局最优动态规划问题转化为预测区域内的局部优化控制问题,并通过滚动优化不断更新预测区域内车辆未来的运行状态,以获得优化结果,实现预测控制在机械液压复合传动系统中的实时应用。基于时域的车辆预测控制是以模型预测控制为框架,结合动态规划实现的在线滚动优化控制,原理如图18(a)所示。
在预测区域q内,复合传动车辆预测控制的状态转移方程为:
x(k+1)=μ[x(k),u(k)]
式中,μ为时间离散系统函数。
在预测区域q内,复合传动系统油耗最小的目标函数为:
Figure PCTCN2019122860-appb-000019
式中,J 1为采用线性预测控制系统的燃油经济性目标函数,v k为第k阶段的阶段指标。
在控制区域p,一般采用传感装置进行测量;在预测区域q,一般借助GPS/GIS系统进行预测。预测的核心在于选取合理的预测窗口长度采集数据,以及预测控制系统的高性价比。
预测控制系统结构如图18(b)所示,复合传动系统整车动力学模型是一种典型的非线性系统,并需要满足诸多约束条件,采用线性预测控制系统难以描述实际的车辆系统动力学模型。因此,采用非线性预测控制系统对系统的动态特性和状态变量进行控制,对控制变量进行约束,对未来状态进行预估,解决在线有界区域的最优控制问题。
此时复合传动系统油耗最小的目标函数为:
Figure PCTCN2019122860-appb-000020
式中,J 2为采用非线性预测控制系统的燃油经济性目标函数,L为t时刻的瞬时燃油消耗量函数。
随着计算机技术的发展和控制算法的改进,以非线性预测控制为框架,以动态规划为优化算法的控制方法已基本可以满足复合传动系统在线实时控制的要求。
传动系统的传动比调节可通过档位切换进行粗调,也可通过调节液压系统排量比进行微调。人机交互环境下的复合传动系统动态协调控制原理如图19所示:分层控制结构如图19(a)所示,包括管理层、协同层和执行层3个部分;控制系统结构如图19(b)所示,包括操纵机构、控制算法和执行机构3个部分,其中控制算法是核心。
驾驶员结合外部信息和自身意图,通过操纵机构对档位、踏板开度和工作模式进行操作,操作信号与传动系统反馈信号一起作为控制系统的输入。传动系统根据输入信号、发 动机转速、车速和负载等,确定车辆运行的目标传动比及扭矩,并基于功率跟随的自适应实时优化控制算法,确定车辆运行的瞬时车速和扭矩。参照传动系统的动力性、经济性和排放性等要求,对基本控制规律进行修正,得出发动机节气门开度、换挡机构接合方式、以及变速装置传动比等控制目标,输入执行层控制器对执行机构实施闭环控制。
采用功率跟随自适应控制算法,将主动型能量控制和被动型能量控制紧密相连,使其具有较好地鲁棒性。当驾驶员操纵加速踏板时,进入主动型能量控制模式。电控单元计算出油门开度所对应的发动机目标转速,结合瞬时车速得到变速器目标传动比,进行自适应跟踪调节。当踏板开度不再变化时,发动机以此时功率为燃油经济性目标功率,连续改变油门开度使其工作点沿等功率曲线回到燃油经济性曲线上,系统自动调整踏板开度使其与油门开度相对应。当车速变化量和阻力变化量同时符合基于鲁棒界设定的条件时,进入被动型能量控制模式。电控单元自动调节发动机油门开度,根据初始车速和变速器瞬时传动比,计算出发动机瞬时所需转速,发动机自动增大或减小其油门开度进行调节。电控单元计算出油门开度所对应的发动机目标转速,结合瞬时车速得到变速器目标传动比,进行自适应跟踪调节。当踏板开度不再变化时,运行过程与主动型能量控制相似,不再赘述。
使用Simulink和Simulation X软件完成机液复合传动系统模型的搭建,并将模型状态数据传递给上位机,上位机通过CAN卡再将运行参数传递给控制器。控制器根据输入信号判断整车状态模式,并将控制命令通过CAN卡发送到上位机,上位机再将控制器发送来的数据传递给仿真模型。通过光电编码器、雷达传感器、负荷传感器和全桥电路等测量作业工况和运输工况的行驶状态,并计算相应的车速和滑转率等性能指标参数,将路况检测数据导入到上位机,经过数据处理,输出控制指令。使传动系统控制单元TCU与发动机电子控制单元ECU相结合,进行智能换挡和优化匹配的研究,上位机输出台架运行命令,台架检测数据反馈到上位机,形成闭环回路。

Claims (10)

  1. 一种机械液压复合传动装置,包括输入轴(1)、分流机构(2)、液压传动组件(3)、机械传动组件(4)、汇流机构(5)和输出轴(6),所述输入轴(1)通过分流机构(2)与相互并联的液压传动组件(3)和机械传动组件(4)连接,所述液压传动组件(3)和机械传动组件(4)通过汇流机构(5)分别与输出轴(6)连接;其特征在于:所述分流机构(2)包括离合器C 3(21)、分流机构太阳轮(22)、分流机构行星架(23)、分流机构齿圈(24)和制动器B 1(25),所述离合器C 3(21)分别连接分流机构太阳轮(22)和分流机构行星架(23),所述制动器B 1(25)与分流机构齿圈(24)连接;所述输入轴(1)与分流机构太阳轮(22)连接,所述分流机构(2)通过分流机构齿圈(24)与液压传动组件(3)连接;所述分流机构(2)分别通过分流机构太阳轮(22)和分流机构行星架(23)与机械传动组件(4)连接;
    所述汇流机构(5)包括制动器B 6(51)、汇流机构齿圈(52)、汇流机构行星架(53)、汇流机构太阳轮(54)和离合器C 7(55),所述制动器B 6(51)与汇流机构齿圈(52)连接,所述离合器C 7(55)分别连接汇流机构行星架(53)和汇流机构太阳轮(54);所述汇流机构(5)通过汇流机构齿圈(52)与液压传动组件(3)连接;所述汇流机构(5)通过汇流机构太阳轮(54)与机械传动组件(4)连接;所述汇流机构(5)分别通过汇流机构行星架(53)和汇流机构太阳轮(54)与输出轴(6)连接;
    所述液压传动组件(3)包括液压传动输入离合器C 1(31)、液压传动输入齿轮副(32)、单向变量泵(33)、液压管道(34)、单向定量马达(35)、换向齿轮副(36)、液压传动输出齿轮副(37)和液压传动输出离合器C 2(38);所述单向变量泵(33)通过液压传动输入齿轮副(32)与分流机构(2)连接,所述液压传动输入齿轮副(32)与单向变量泵(33)之间设有液压传动输入离合器C 1(31),所述单向变量泵(33)通过液压油管(34)与单向定量马达(35)连接,所述单向定量马达(35)依次通过液压传动输出齿轮副(37)和换向齿轮副(36)与汇流机构(5)连接,所述单向定量马达(35)与液压传动输出齿轮副(37)之间设有液压传动输出离合器C 2(38)。
  2. 根据权利要求1所述的机械液压复合传动装置,其特征在于:所述机械传动组件(4)包括前排太阳轮(41)、前排行星架(42)、前排齿圈(43)、后排太阳轮(44)、后排行星架(45)、后排齿圈(46)、离合器C 4(47)、离合器C 5(48)、离合器C 6(49)、制动器B 2(410)、制动器B 3(411)、制动器B 4(412)、制动器B 5(413)、单向离合器F 1(414)、单向离合器F 2(415)、单向离合器F 3(416);
    所述前排太阳轮(41)通过相互并联的离合器C 5(48)和离合器C 6(49)与分流机构(2)连接,所述离合器C 5(48)和离合器C 6(49)与前排太阳轮(41)之间分别设有单向离合器F 1(414)和单向离合器F 2(415),所述单向离合器F 1(414)和单向离合器F 2(415)动力传导方向相反;所述前排太阳轮(41)还与制动器B 3(411)连接;
    所述前排行星架(42)通过离合器C 4(47)与分流机构(2)连接,所述前排行星架(42) 与离合器C 4(47)之间设有制动器B 2(410),前排行星架(42)与后排齿圈(46)固连;
    所述前排齿圈(43)分别与后排行星架(45)和汇流机构(5)连接;
    所述后排太阳轮(44)与相互并联的制动器B 4(412)和制动器B 5(413)连接,所述后排太阳轮(44)与制动器B 5(413)之间设有单向离合器F 3(416),所述单向离合器F 3(416)的制动方向为后排太阳轮(44)的转向与分流机构行星架(23)转向相反;
    所述后排行星架(45)分别与前排齿圈(43)和汇流机构(5)连接;
    所述后排齿圈(46)分别与前排行星架(42)和分流机构(2)连接;所述后排齿圈(46)与分流机构(2)之间设有相互并联的制动器B 2(410)和离合器C 4(47)。
  3. 根据权利要求2所述的机械液压复合传动装置的控制方法,其特征在于:通过制动器和离合器之间的组合切换实现正向传动下的纯液压传动、机械液压复合传动和纯机械传动,以及反向传动下的纯液压传动、机械液压复合传动和纯机械传动,共两个方向三个类型的传动,
    正向传动的三个传动类型如下:
    正向纯液压传动:制动器B 2(410)、液压传动输入离合器C 1(31)、液压传动输出离合器C 2(38)、离合器C 4(47)、离合器C 7(55)接合,其他制动器和离合器分离;制动器B 2(410)和离合器C 4(47)接合,分流机构行星架(23)锁定,分流机构太阳轮(22)与分流机构齿圈(24)转向相反,动力经输入轴(1)、分流机构(2)、液压传动组件(3)、汇流机构(5)至输出轴(6)输出;所述离合器C 7(55)接合,汇流机构(5)的汇流机构行星架(53)和汇流机构太阳轮(54)互锁,汇流机构(5)整体旋转,经过换向齿轮副(36)的作用,输入轴(1)与输出轴(6)转向相同;
    正向纯机械传动:制动器B 1(25)、制动器B 6(51)接合,同时制动器B 2(410)、制动器B 4(412)、液压传动输入离合器C 1(31)、液压传动输出离合器C 2(38)、离合器C 3(21)、离合器C 7(55)分离;动力经输入轴(1)、分流机构(2)、机械传动组件(4)、汇流机构(5)至输出轴(6)输出;所述制动器B 1(25)接合,分流机构齿圈(24)锁定,分流机构太阳轮(22)和分流机构行星架(23)作为齿轮传动机构进行传动;所述制动器B 6(51)接合,汇流机构齿圈(52)锁定,动力从汇流机构太阳轮(54)经汇流机构行星架(53)至输出轴(6);
    正向机械液压复合传动:液压传动输入离合器C 1(31)、液压传动输出离合器C 2(38)和离合器C 7(55)接合,同时制动器B 1(25)、制动器B 3(411)、制动器B 5(413)、制动器B 6(51)、离合器C 3(21)和单向离合器F 3(416)分离;动力经输入轴(1)至分流机构(2),所述分流机构(2)将动力流分别传递至液压传动组件(3)和机械传动组件(4),再经汇流机构(5)汇流后至输出轴(6)输出;所述离合器C 3(21)分离,分流机构行星架(23)将输入轴(1)传递的一部分动力传递给机械传动组件(4),分流机构齿圈(24)将输入轴(1)传递的另一部分动力传递给液压传动组件(3);离合器C 7(55)接合,机械传动组件(4) 的动力经汇流机构太阳轮(54)、汇流机构行星架(53)传递给输出轴(6),液压传动组件(3)的动力经汇流机构齿圈(52)、汇流机构行星架(53)传递给输出轴(6),所述汇流机构行星架(53)的转向在设定排量比范围内与输入轴(1)相同;
    反向传动的三个传动类型如下:
    反向纯液压传动:液压传动输入离合器C 1(31)、液压传动输出离合器C 2(38)、离合器C 3(21)、离合器C 7(55)接合,其他制动器和离合器分离;离合器C 3(21)接合,分流机构太阳轮(22)与分流机构行星架(23)互锁,分流机构(2)整体旋转,动力经输入轴(1)、分流机构(2)、液压传动组件(3)、汇流机构(5)至输出轴(6)输出;所述离合器C 7(55)接合,汇流机构(5)的汇流机构行星架(53)和汇流机构太阳轮(54)互锁,汇流机构(5)整体旋转,输入轴(1)与输出轴(6)转向相反;
    反向纯机械传动:制动器B 1(25)、制动器B 2(410)、制动器B 6(51)、离合器C 6(49)和单向离合器F 2(415)接合,其他制动器和离合器分离;所述制动器B 1(25)接合,分流机构齿圈(24)锁定,动力从分流机构太阳轮(22)经分流机构行星架(23)传递至机械传动组件(4);所述离合器C 6(49)和单向离合器F 2(415)接合,所述机械传动组件(4)内动力依次经过离合器C 6(49)、单向离合器F 2(415)、前排太阳轮(41)、前排齿圈(43)传递至汇流机构太阳轮(54);所述制动器B 6(51)接合,汇流机构齿圈(52)锁定,动力从汇流机构太阳轮(54)经汇流机构行星架(53)至输出轴(6);
    反向机械液压复合传动:液压传动输入离合器C 1(31)、液压传动输出离合器C 2(38)、离合器C 3(21)接合;同时制动器B 1(25)、制动器B 3(411)、制动器B 5(413)、制动器B 6(51)、离合器C 7(55)和单向离合器F 3(416)分离;动力经输入轴(1)至分流机构(2),所述分流机构(2)将动力流分别传递至液压传动组件(3)和机械传动组件(4),再经汇流机构(5)汇流后至输出轴(6)输出;所述离合器C 3(21)接合,分流机构行星架(23)将输入轴(1)传递的一部分动力传递给机械传动组件(4),分流机构齿圈(24)将输入轴(1)传递的另一部分动力传递给液压传动组件(3);离合器C 7(55)分离,机械传动组件(4)的动力经汇流机构太阳轮(54)、汇流机构行星架(53)传递给输出轴(6),液压传动组件(3)的动力经汇流机构齿圈(52)、汇流机构行星架(53)传递给输出轴(6);所述汇流机构行星架(53)的转向在设定排量比范围内与输入轴(1)相反。
  4. 根据权利要求3所述的机械液压复合传动装置的控制方法,其特征在于:所述正向纯机械传动包括机械1档、机械2档、机械3档和机械4档,具体实现方法如下:
    机械1档:制动器B 5(413)、单向离合器F 3(416)、离合器C 6(49)和单向离合器F 2(415)接合,同时制动器B 3(411)、离合器C 4(47)、离合器C 5(48)、单向离合器F 1(414)分离;动力依次经过离合器C 6(49)、单向离合器F 2(415)、前排太阳轮(41)至前排行星架(42),在前排行星架(42)处分流分别至前排齿圈(43)和后排齿圈(46),后排齿圈(46)经过后排行星架(45)与前排齿圈(43)汇流后,动力传递至汇流机构(5),所述制动器B 5 (413)和单向离合器F 3(416)接合,后排太阳轮(44)锁止;
    机械2档:制动器B 5(413)、单向离合器F 3(416)和离合器C 4(47)接合,同时制动器B 3(411)、离合器C 5(48)、离合器C 6(49)、单向离合器F 1(414)和单向离合器F 2(415)分离;动力依次经过离合器C 4(47)、后排齿圈(46)和后排行星架(45)后,动力传递至汇流机构(5),所述制动器B 5(413)和单向离合器F 3(416)接合,后排太阳轮(44)锁止;
    机械3档:制动器B 5(413)、离合器C 4(47)、离合器C 5(48)、单向离合器F 1(414)和单向离合器F 3(416)接合,同时制动器B 3(411)、离合器C 6(49)和单向离合器F 2(415)分离;动力依次经过离合器C 4(47)、前排行星架(42)、前排齿圈(43)后,动力传递至汇流机构(5);由于离合器C 5(48)和单向离合器F 1(414)接合,使前排太阳轮(41)不能超速旋转,其转速与前排行星架(42)一致,使前行星排机构整体旋转;
    机械4档:制动器B 3(411)和离合器C 4(47)接合,同时制动器B 5(413)、离合器C 5(48)、离合器C 6(49)、单向离合器F 1(414)、单向离合器F 2(415)和单向离合器F 3(416)分离;动力依次经过离合器C 4(47)、前排行星架(42)、前排齿圈(43)后,动力传递至汇流机构(5)。
  5. 根据权利要求3所述的机械液压复合传动装置的控制方法,其特征在于:所述正向机械液压复合传动包括复合传动1档、复合传动2档、复合传动3档和复合传动4档,具体实现方法如下:
    正向复合1档:制动器B 4(412)、离合器C 6(49)和单向离合器F 2(415)接合,同时制动器B 2(410)、离合器C 4(47)、离合器C 5(48)和单向离合器F 1(414)分离;经过机械传动组件(4)的动力依次经过离合器C 6(49)、单向离合器F 2(415)、前排太阳轮(41)至前排行星架(42),在前排行星架(42)处分流分别至前排齿圈(43)和后排齿圈(46),后排齿圈(46)经过后排行星架(45)与前排齿圈(43)汇流后,动力传递至汇流机构(5),制动器B 4(412)接合,后排太阳轮(44)锁止;
    正向复合2档:制动器B 4(412)和离合器C 4(47)接合,同时制动器B 2(410)、离合器C 5(48)、离合器C 6(49)、单向离合器F 1(414)和单向离合器F 2(415)分离;经过机械传动组件(4)的动力依次经过离合器C 4(47)、后排齿圈(46)和后排行星架(45)后,动力传递至汇流机构(5);
    正向复合3档:离合器C 4(47)、离合器C 5(48)和单向离合器F 1(414)接合,同时制动器B 2(410)、制动器B 4(412)、离合器C 6(49)和单向离合器F 2(415)分离;经过机械传动组件(4)的动力依次经过离合器C 4(47)、前排行星架(42)、前排齿圈(43)后,动力传递至汇流机构(5);由于离合器C 5(48)和单向离合器F 1(414)接合,使前排太阳轮(41)不能超速旋转,其转速与前排行星架(42)一致,使前行星排机构整体旋转;
    正向复合4档:制动器B 2(410)、离合器C 6(49)和单向离合器F 2(415)接合,同时制动器B 4(412)、离合器C 4(47)、离合器C 5(48)和单向离合器F 1(414)分离;经过机械 传动组件(4)的动力依次经过离合器C 6(49)、单向离合器F 2(415)、前排太阳轮(41)和前排齿圈(43)后,动力传递至汇流机构(5)。
  6. 根据权利要求3所述的机械液压复合传动装置的控制方法,其特征在于:所述反向机械液压复合传动包括复合传动1档、复合传动2档、复合传动3档和复合传动4档,具体实现方法如下:
    反向复合1档:制动器B 4(412)、离合器C 6(49)和单向离合器F 2(415)接合,同时制动器B 2(410)、离合器C 4(47)、离合器C 5(48)和单向离合器F 1(414)分离;经过机械传动组件(4)的动力依次经过离合器C 6(49)、单向离合器F 2(415)、前排太阳轮(41)至前排行星架(42),在前排行星架(42)处分流分别至前排齿圈(43)和后排齿圈(46),后排齿圈(46)经过后排行星架(45)与前排齿圈(43)汇流后,动力传递至汇流机构(5),制动器B 4(412)接合,后排太阳轮(44)锁止;
    反向复合2档:制动器B 4(412)和离合器C 4(47)接合,同时制动器B 2(410)、离合器C 5(48)、离合器C 6(49)、单向离合器F 1(414)和单向离合器F 2(415)分离;经过机械传动组件(4)的动力依次经过离合器C 4(47)、后排齿圈(46)和后排行星架(45)后,动力传递至汇流机构(5);
    反向复合3档:离合器C 4(47)、离合器C 5(48)和单向离合器F 1(414)接合,同时制动器B 2(410)、制动器B 4(412)、离合器C 6(49)和单向离合器F 2(415)分离;经过机械传动组件(4)的动力依次经过离合器C 4(47)、前排行星架(42)、前排齿圈(43)后,动力传递至汇流机构(5);由于离合器C 5(48)和单向离合器F 1(414)接合,使前排太阳轮(41)不能超速旋转,其转速与前排行星架(42)一致,使前行星排机构整体旋转;
    反向复合4档:制动器B 2(410)、离合器C 6(49)和单向离合器F 2(415)接合,同时制动器B 4(412)、离合器C 4(47)、离合器C 5(48)和单向离合器F 1(414)分离;经过机械传动组件(4)的动力依次经过离合器C 6(49)、单向离合器F 2(415)、前排太阳轮(41)和前排齿圈(43)后,动力传递至汇流机构(5)。
  7. 根据权利要求5所述的机械液压复合传动装置的控制方法,其特征在于:采用基于时域的车辆预测控制,结合动态规划实现在线滚动优化控制;
    在预测区域q内,复合传动车辆预测控制的状态转移方程为:
    x(k+1)=μ[x(k),u(k)]
    式中,μ为时间离散系统函数;
    在预测区域q内,复合传动系统油耗最小的目标函数为:
    Figure PCTCN2019122860-appb-100001
    式中,J 1为采用线性预测控制系统的燃油经济性目标函数,v k为第k阶段的阶段指标;
    在控制区域p,采用传感装置进行测量;在预测区域q,采用GPS/GIS系统进行预测;
    采用非线性预测控制对兼顾各功率段的功率分流和功率汇流的机械液压复合传动系统的状态变量进行控制,对控制变量进行约束,对未来状态进行预估;
    此时复合传动系统油耗最小的目标函数为:
    Figure PCTCN2019122860-appb-100002
    式中,J 2为采用非线性预测控制系统的燃油经济性目标函数,L为t时刻的瞬时燃油消耗量函数。
  8. 根据权利要求5和7所述的机械液压复合传动装置的控制方法,其特征在于:人机交互环境下的动态协调控制系统主要由分层控制结构和控制系统结构组成;
    分层控制结构包括管理层、协同层和执行层三个层次;管理层依据外部环境信息和响应反馈数据通过加速和制动踏板将车辆所需功率传递到协同层,协同层的核心在于稳态能量管理算法和模式切换动态协调控制算法,前者根据管理层发送的车辆需求功率确定传动系统工作模式,后者对工作模式进行识别,并对目标转速和转矩进行协调;执行层主要将协同层发送出来的控制命令传送到执行部件,使得执行层各部件响应输出功率以满足管理层的要求;
    控制系统结构包括操纵机构、控制算法和执行机构;驾驶员结合外部信息和自身意图,通过操纵机构对档位、踏板开度和工作模式进行操作,操作信号与传动系统反馈信号一起作为控制系统的输入;传动系统根据输入信号、发动机转速、车速和负载等,确定车辆运行的目标传动比及扭矩,并基于功率跟随的自适应实时优化控制算法,确定车辆运行的瞬时车速和扭矩;参照传动系统的动力性、经济性和排放性等要求,对基本控制规律进行修正,得出发动机节气门开度、换挡机构接合方式、以及变速器传动比等控制目标,输入执行层控制器对执行机构实施闭环控制。
  9. 根据权利要求8所述的机械液压复合传动装置的控制方法,其特征在于:所述的主动型能量控制算法,当驾驶员操纵加速踏板时,进入主动型能量控制模式;电控单元计算出油门开度所对应的发动机目标转速,结合瞬时车速得到变速器目标传动比,进行自适应跟踪调节;当踏板开度不再变化时,发动机以此时功率为燃油经济性目标功率,连续改变油门开度使其工作点沿等功率曲线回到燃油经济性曲线上,系统自动调整踏板开度使其与油门开度相对应。
  10. 根据权利要求8所述的机械液压复合传动装置的控制方法,其特征在于:所述的被动型能量控制算法,当车速变化量和阻力变化量同时符合基于鲁棒界设定的条件时,进入被动型能量控制模式;电控单元自动调节发动机油门开度,根据初始车速和变速器瞬时传动比,计算出发动机瞬时所需转速,发动机自动增大或减小其油门开度进行调节;电控单元计算出油门开度所对应的发动机目标转速,结合瞬时车速得到变速器目标传动比,进行自适应跟踪 调节;当踏板开度不再变化时,运行过程与主动型能量控制相似。
PCT/CN2019/122860 2019-11-06 2019-12-04 一种机械液压复合传动装置及控制方法 WO2021088173A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB2015401.9A GB2585990B8 (en) 2019-11-06 2019-12-04 Hydro-mechanical hybrid transmission device and control method thereof
DE112019005366.3T DE112019005366T5 (de) 2019-11-06 2019-12-04 Hydromechanische hybridgetriebeeinrichtung und zugehöriges steuerverfahren
US17/050,427 US11072231B1 (en) 2019-11-06 2019-12-04 Hydro-mechanical hybrid transmission device and control method thereof
CH00591/21A CH716880B1 (de) 2019-11-06 2019-12-04 Hydromechanische Hybridgetriebeeinrichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911076475.8 2019-11-06
CN201911076475.8A CN110953318B (zh) 2019-11-06 2019-11-06 一种机械液压复合传动装置及控制方法

Publications (1)

Publication Number Publication Date
WO2021088173A1 true WO2021088173A1 (zh) 2021-05-14

Family

ID=69976107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122860 WO2021088173A1 (zh) 2019-11-06 2019-12-04 一种机械液压复合传动装置及控制方法

Country Status (6)

Country Link
US (1) US11072231B1 (zh)
CN (1) CN110953318B (zh)
CH (1) CH716880B1 (zh)
DE (1) DE112019005366T5 (zh)
GB (1) GB2585990B8 (zh)
WO (1) WO2021088173A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110953318B (zh) * 2019-11-06 2021-06-22 江苏大学 一种机械液压复合传动装置及控制方法
CN111306278B (zh) * 2020-04-10 2023-11-28 吉林大学 一种商用车辆液压机械无级变速器及起步控制方法
CN111546350B (zh) * 2020-04-30 2021-09-10 浙江大学 一种多关节重载液压机器人系统及高精度运动控制方法
CN111946792B (zh) * 2020-07-20 2021-08-03 江苏大学 一种功率分流和功率汇流相结合的机液复合传动装置
US11499616B2 (en) * 2020-07-20 2022-11-15 Jiangsu University Hydro-mechanical hybrid transmission device with energy management mechanism
CN112622599B (zh) * 2020-12-28 2022-06-28 潍柴动力股份有限公司 一种机械-液压传动系统、其模式切换控制方法及工程机械
CN113137462B (zh) * 2021-05-18 2022-05-03 吉林大学 一种作业车辆的行走传动装置及其控制方法
CN113147378B (zh) * 2021-05-18 2022-10-04 吉林大学 一种多模式机械液压传动装置及其控制方法
CN114087334B (zh) * 2021-11-17 2023-11-03 浙江盘毂动力科技有限公司 一种液压机械复合式综合传动装置和车辆
CN114593180A (zh) * 2022-02-25 2022-06-07 江苏大学 一种机械与电气无级变速的复合传动系统及其控制方法
CN114877046B (zh) * 2022-04-28 2023-04-07 扬州大学 一种多模式机液传动装置
CN114909453B (zh) * 2022-06-07 2023-08-22 江苏大学 一种机电液复合传动装置及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102849A (ja) * 1981-12-14 1983-06-18 Nissan Motor Co Ltd 油圧−機械式変速機
JP2008039016A (ja) * 2006-08-03 2008-02-21 Toyota Motor Corp 流体圧機械式動力伝達装置
US7588509B1 (en) * 2006-03-14 2009-09-15 John David Marsha Infinitely variable gear transmission with parallel hydraulic ratio control
CN107152511A (zh) * 2017-06-14 2017-09-12 重庆大学 混合式机械液压复合无级变速器
CN107869563A (zh) * 2017-11-21 2018-04-03 河南科技大学 一种多段多模式机械及液压无级变速器
CN109185417A (zh) * 2018-09-27 2019-01-11 江苏大学 一种快速换向功率分流液压机械无级变速器
CN109723789A (zh) * 2019-01-16 2019-05-07 江苏大学 一种混合动力多模式切换的无级变速传动系统
CN109764107A (zh) * 2019-01-16 2019-05-17 江苏大学 一种变速传动装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093302B2 (en) * 2015-12-08 2018-10-09 Caterpillar Inc. Supplemental hydraulic motor for continuously variable transmission
CN110056634A (zh) * 2019-01-24 2019-07-26 南京农业大学 三行星排四段液压机械无级变速箱
GB2596367B (en) * 2019-10-08 2022-12-07 Univ Jiangsu Hydro-mechanical hybrid transmission device with multiple power distribution modes and control method thereof
CN110953318B (zh) * 2019-11-06 2021-06-22 江苏大学 一种机械液压复合传动装置及控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102849A (ja) * 1981-12-14 1983-06-18 Nissan Motor Co Ltd 油圧−機械式変速機
US7588509B1 (en) * 2006-03-14 2009-09-15 John David Marsha Infinitely variable gear transmission with parallel hydraulic ratio control
JP2008039016A (ja) * 2006-08-03 2008-02-21 Toyota Motor Corp 流体圧機械式動力伝達装置
CN107152511A (zh) * 2017-06-14 2017-09-12 重庆大学 混合式机械液压复合无级变速器
CN107869563A (zh) * 2017-11-21 2018-04-03 河南科技大学 一种多段多模式机械及液压无级变速器
CN109185417A (zh) * 2018-09-27 2019-01-11 江苏大学 一种快速换向功率分流液压机械无级变速器
CN109723789A (zh) * 2019-01-16 2019-05-07 江苏大学 一种混合动力多模式切换的无级变速传动系统
CN109764107A (zh) * 2019-01-16 2019-05-17 江苏大学 一种变速传动装置

Also Published As

Publication number Publication date
GB2585990B8 (en) 2022-10-19
US20210245597A1 (en) 2021-08-12
US11072231B1 (en) 2021-07-27
CH716880B1 (de) 2022-02-28
DE112019005366T5 (de) 2021-07-15
GB2585990A (en) 2021-01-27
GB2585990B (en) 2022-05-25
CN110953318B (zh) 2021-06-22
CN110953318A (zh) 2020-04-03
GB202015401D0 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2021088173A1 (zh) 一种机械液压复合传动装置及控制方法
CN109723789B (zh) 一种混合动力多模式切换的无级变速传动系统
EP2934977B1 (en) System and method for reducing fuel consumption of a work vehicle
US7195580B2 (en) Vehicle control system
CN111237424B (zh) 一种多模式混合动力-复合传动动力传动装置
CN106080585B (zh) 一种双行星排式混合动力汽车非线性模型预测控制方法
CN107117160B (zh) 一种电动汽车驱动系统及控制方法
CN102493519B (zh) 装载机自动变速控制系统及控制方法
CN204623112U (zh) 一种混合动力驱动系统
CN111231650B (zh) 一种拖拉机功率分流混合动力系统及其控制方法
Wang et al. Down shift control with power of planetary-type automatic transmission for a heavy-duty vehicle
CN110304046A (zh) 一种无级变速拖拉机控制系统的经济性控制方法
CN112128336B (zh) 一种兼具转速和转矩耦合的多模式无级变速器
CN108755828B (zh) 调配装载机功率分配比例的方法
CN111976458A (zh) 一种串联式重度混合动力工程机械传动系统及其控制方法
CN109185444A (zh) 一种用于新型履带水田拖拉机变速传动系统的作业控制方法
CN114909453A (zh) 一种机电液复合传动装置及其控制方法
CN105850327A (zh) 一种插秧机液压系统
Schulte LMI-based observer design on a power-split continuously variable transmission for off-road vehicles
CN101524961B (zh) 电动汽车变速箱与离合器联动一体机
Shengbo et al. A control strategy of ACC system considering fuel consumption
CN111306278B (zh) 一种商用车辆液压机械无级变速器及起步控制方法
CN103291864A (zh) 多动力控制自动无级变速箱
CN210371860U (zh) 并联双电机行星功率分流的无级变速传动系统
CN109720192B (zh) 一种装载机用多模式切换动力传动装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202015401

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20191204

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951614

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19951614

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19951614

Country of ref document: EP

Kind code of ref document: A1