WO2021088024A1 - 一种通信方法、装置及设备 - Google Patents

一种通信方法、装置及设备 Download PDF

Info

Publication number
WO2021088024A1
WO2021088024A1 PCT/CN2019/116811 CN2019116811W WO2021088024A1 WO 2021088024 A1 WO2021088024 A1 WO 2021088024A1 CN 2019116811 W CN2019116811 W CN 2019116811W WO 2021088024 A1 WO2021088024 A1 WO 2021088024A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
period
cycle
sleep mode
network device
Prior art date
Application number
PCT/CN2019/116811
Other languages
English (en)
French (fr)
Inventor
薛丽霞
张旭
王�锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980100587.4A priority Critical patent/CN114424648A/zh
Priority to EP19951744.2A priority patent/EP4033833A4/en
Priority to PCT/CN2019/116811 priority patent/WO2021088024A1/zh
Publication of WO2021088024A1 publication Critical patent/WO2021088024A1/zh
Priority to US17/738,874 priority patent/US20220264628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method, device and equipment.
  • the terminal device in the radio resource control (RRC) connected state can be configured with the period of the physical downlink control channel (PDCCH), and the terminal device shall follow the configured PDCCH is detected periodically.
  • RRC radio resource control
  • the base station may have multiple working states, such as a normal working state or a sleep state, etc.
  • the frequency of sending the PDCCH is different in the base station in different states.
  • terminal equipment generally only detects the PDCCH according to one cycle, which obviously cannot correspond to the different states of the base station, and may increase the power consumption of the terminal equipment.
  • the embodiments of the present application provide a communication method, device, and equipment, which are used to reduce the power consumption of terminal equipment.
  • a first communication method includes: determining first signaling, the first signaling is used to indicate at least one period, and each period in the at least one period is detected by a terminal device Period of the downlink signal; sending the first signaling.
  • the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the first communication device is a network device, or a chip set in the network device for realizing the function of the network device, or other component used for realizing the function of the network device.
  • the first communication device is a network device.
  • the network device can indicate at least one cycle to the terminal device, so that the terminal device can detect the downlink signal according to the at least one cycle.
  • the at least one cycle matches the state of the network device, which is equivalent to the terminal device.
  • the downlink signal can be detected according to the state of the network device, and the power consumption of the terminal device can be reduced as much as possible.
  • the at least one cycle matches at least one sleep mode.
  • a period is matched with a sleep mode.
  • a matching method is that the difference between the length of the period and the sleep granularity of the sleep mode is smaller than the first threshold.
  • the first threshold is, for example, configured by a network device, or stipulated by a protocol. If the first threshold is 0, the length of the period is equal to the sleep granularity of the sleep mode. Make the cycle match the sleep mode of the network device, the terminal device can also detect the downlink signal according to the matching cycle when the network device is sleeping, and try to avoid the terminal device when the network device is in the sleep mode according to when the network device is in the active state.
  • the downlink signal is detected in a period of time, which reduces the probability of the terminal equipment doing useless work, and also reduces the power consumption of the terminal equipment.
  • the period can correspond to the sleep mode of the network device. If the network device may be in multiple sleep modes in sequence, the number of at least one period can be greater than 1, that is, the network device can indicate multiple periods to the terminal device.
  • the terminal device can detect the downlink signal according to the period matching the sleep mode, so that the period of the terminal device can be matched with each sleep mode of the network device, reducing the terminal device’s Power consumption.
  • the first signaling is also used to indicate the number of times that the terminal device performs detection in the at least one cycle.
  • the terminal device may execute it once, or may execute it multiple times. For example, for a sleep mode, if the network device repeatedly executes the sleep mode, if the cycle corresponds to the sleep mode, the cycle of the terminal device is repeated accordingly, or in other words, the terminal device also repeatedly detects the downlink signal accordingly. Therefore, the first signaling may indicate the number of times that the terminal device performs detection in at least one cycle, or other signaling may also indicate the number of times that the terminal device performs detection in at least one cycle. By indicating the number of detections, the cycle of the terminal device and the sleep mode of the network device can be more accurately matched.
  • the number of times can be referred to as the number of repetitions of the sleep mode, or the number of cycles of the sleep mode, etc.
  • the number of times that the terminal device performs detection in a cycle means that the interval between two adjacent detections satisfies the cycle, or refers to the number of times the terminal device performs the cycle, rather than the terminal device detecting in the cycle The number of downlink signals.
  • the first signaling is also used to instruct the terminal device to perform detection sequence in the at least one cycle.
  • the terminal device will have a corresponding sequence when detecting according to the at least one cycle, or when the terminal device executes the at least one cycle. Then, optionally, if the number of the at least one cycle is greater than 1, the first signaling may also indicate the sequence of the at least one cycle, or in other words, instruct the terminal device to perform detection in the at least one cycle. Alternatively, other signaling may also be used to indicate the order of at least one cycle. This is equivalent to indicating the order of at least one cycle in an explicit way.
  • the sequence of the at least one cycle may be the same as the sequence of the corresponding at least one sleep mode, so that the terminal device can follow the sleep mode of the network device. Match the cycle to detect the downlink signal.
  • the first signaling is further used to indicate one or more offsets, and the one or more offsets are used for auxiliary period detection.
  • the network device can also indicate to the terminal device one or more offsets corresponding to the at least one cycle, and the one or more offsets can assist the terminal device in performing Detection.
  • the period corresponds to the sleep mode.
  • the sleep mode corresponds to the deactivation time and the activation time.
  • the period can correspond to the sleep granularity of the sleep mode, and the deactivation time and activation time corresponding to the sleep mode may not be necessary.
  • the period determined by the terminal device more closely matches the sleep mode of the network device.
  • the network device may not need to indicate the offset of the at least one cycle.
  • the hardware equipment of some manufacturers has better performance, which makes the deactivation time of network equipment when entering a sleep mode is shorter, and the activation time when exiting from a sleep mode is also shorter, and it does not affect the terminal equipment to detect the downlink signal.
  • the network device does not need to indicate the offset of at least one cycle.
  • the method further includes:
  • a second signaling is sent, the second signaling is used to indicate a first cycle, and the first cycle is sequentially located after the at least one cycle.
  • the network device can also send the second signaling to the terminal device.
  • the terminal device can perform at least one cycle
  • the second signaling is received.
  • the second signaling may indicate one or more cycles, and the one or more cycles are located in the at least one cycle in sequence after that.
  • the second signaling may indicate the first period, and the first period may be a period included in the one or more periods.
  • the network device will enter multiple sleep modes in sequence, and the first signaling only indicates the period corresponding to the part of the sleep mode that will be entered next.
  • the second signaling may indicate the first cycle corresponding to the next sleep mode that is sequentially located after the at least one sleep mode.
  • the second signaling may also indicate the number of times the terminal device performs detection in the first cycle.
  • the second signaling may also indicate the offset of the first period.
  • the second signaling may be unicast signaling, multicast signaling, or broadcast signaling. For the implementation of the second signaling, refer to the introduction to the first signaling.
  • the network equipment can indicate different periods through different signaling, thereby reducing the amount of information included in the signaling.
  • the network device may determine the period to be indicated before each time the corresponding period is indicated, instead of determining all the periods at once, so that the period determined by the network device is more in line with the current situation.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling includes the at least one period; or,
  • the first signaling includes an identifier of the first period set, the identifier of the first period set is used to indicate the at least one period, and the first period set is one of a plurality of period sets, so Each of the plurality of period sets includes a sequential combination of one or more periods.
  • the network device may obtain multiple period sets, and each period set of the multiple period sets may include one type of period or a sequential combination of multiple periods.
  • the network device can set multiple cycle sets by itself, or multiple cycle sets can also be stipulated by agreement. Then, if the network device wants to determine at least one period, it can directly determine a period set from the multiple period sets, and the period set is determined, that is, at least one period is determined. For example, if the network device determines the first cycle set, the first cycle set may correspond to at least one cycle, or in other words, the first cycle set may correspond to a sequential combination of at least one cycle.
  • the first signaling may include the identification of the first period set , This can reduce the signaling overhead; or, if the terminal device has not been configured with multiple period sets in advance, or the network device has not determined the first period set, or although the network device has determined the first period set, it has not been provided to the terminal in advance. If the device is configured with multiple period sets, the first signaling may still include at least one period, so that the terminal device does not have to perceive the period set, which simplifies the implementation of the terminal device.
  • the method further includes:
  • the network device may send third signaling, and the third signaling is used to indicate the multiple period sets. After the terminal device receives the third signaling from the network device, it can determine multiple period sets.
  • the third signaling may be unicast signaling, multicast signaling, or broadcast signaling, which is not specifically limited.
  • the length of the preceding cycle is greater than the length of the following cycle.
  • the network device can determine the corresponding period according to the sleep mode. For example, the network device may determine the sequence of the at least one sleep mode according to the power consumption corresponding to the network device. For example, in at least one sleep mode, the power consumption of the network device when the network device is in the first sleep mode is less than the power consumption of the network device when the network device is in the sleep mode with the last sequence.
  • the at least one sleep mode determined by the network device is sleep mode 1, sleep mode 2, and sleep mode 3.
  • the power consumption when the network device is in sleep mode 1 is power consumption 1
  • the power consumption when in sleep mode 2 is work Consumption 2
  • the power consumption in sleep mode 3 is power consumption 3, power consumption 1>power consumption 2>power consumption 3.
  • the sequence of the three sleep modes determined by the network device may be: sleep mode 3-sleep mode 2-sleep mode 1, refer to FIG. 4B.
  • the sequence of the corresponding at least one cycle may be the cycle corresponding to sleep mode 3-the cycle corresponding to sleep mode 2-the cycle corresponding to sleep mode 1. It is equivalent to a network device performing a "deep to shallow" sleep. The network device performs sleep in this "deep to shallow" mode, which is the most energy-saving sleep mode.
  • the power consumption when the network device is in sleep mode 1 is greater than the power consumption when the network device is in sleep mode 2
  • the length of the cycle corresponding to sleep mode 1 is less than the length of the cycle corresponding to sleep mode 2. Therefore, the length of the preceding cycle is greater than the length of the following cycle.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling indicates a first duration, and the first duration is related to one of the at least one cycle.
  • the first signaling may indicate the first duration.
  • one period in the at least one period refers to this period
  • the first duration is related to one period in the at least one period, which means that the first duration is related to this period.
  • the first duration is the total duration during which the terminal device performs detection in a period corresponding to the first duration.
  • the first duration can be the total duration of the network device in the sleep mode.
  • the terminal device will perform detection in the period corresponding to the first duration, so the first duration is also It can be considered as the total length of time the terminal device performs detection in this cycle.
  • the terminal device may determine the corresponding period according to the first duration, so that the method of the terminal device for determining the period is flexible. Moreover, if the first duration is the total duration of the network device in the sleep mode, and the terminal device selects the corresponding period, the terminal device can determine the number of detections of the period according to the first duration and the length of the period. Therefore, if the first signaling indicates the first duration, the first signaling may not need to indicate the number of detections in this period, which can reduce the amount of information indicated by the first signaling and save signaling overhead.
  • the first duration is related to one of the at least one period, and includes:
  • the value of the first duration is proportional to the value of the one period.
  • the value of the first duration may be proportional to the value of the period.
  • the at least one threshold may include two thresholds Th1 and Th2, where Th1 ⁇ Th2. Let X and Y be two positive numbers. If the value of the first duration is X, the corresponding period is period A, and if the value of the first duration is Y, the corresponding period is period B. If X is less than Y, then A is less than B. For example, if 0 ⁇ X ⁇ Th1, Th1 ⁇ Y ⁇ Th2, that is, X ⁇ Y, then A is less than B, that is to say, the value of the first duration can be proportional to the value of the one period.
  • the first duration is the total duration of the network device in the sleep mode, and the longer the network device is in the sleep mode, the longer the duration of the first period can be, so that the period of the terminal device can match the sleep mode of the network device. Match.
  • the method further includes:
  • the fourth signaling is sent, and the fourth signaling is WUS signaling, or DCI for scheduling data, or signaling for carrying special information.
  • the network device when the network device is in the sleep mode, if it receives a downlink service, it will wake up; or, after the network device has executed at least one sleep mode, it will wake up regardless of whether it has received the downlink service. After the network device wakes up, it can send the fourth signaling to the terminal device to perform normal communication with the terminal device.
  • the first signaling is RRC signaling, DCI, or system message.
  • the embodiment of the present application does not limit the implementation of the first signaling.
  • the at least one period is used to change the period of the first search space of the terminal device to the at least one period, and the first search space is for sending the first search space.
  • a signaling search space, or, the first search space includes any one of all search spaces supported by the terminal device.
  • the original period of the search space may be configured by the network device through RRC signaling.
  • the first signaling may be RRC signaling or not RRC signaling, no matter what type of signaling the first signaling is, the terminal equipment can be based on the first signaling.
  • Let the indicated at least one period replace the original period configured by the network device through RRC signaling.
  • at least one period can be used to change the period of the first search space of the terminal device to at least one period, and the first search space is the search space for sending the first signaling, or the first search space Including any one of all search spaces supported by the terminal device.
  • a second communication method comprising: receiving a first signaling from a network device, the first signaling is used to indicate at least one period, each of the at least one period Detect the period of the downlink signal for the terminal device; detect the downlink signal according to the at least one period.
  • the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the second communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the second communication device is a terminal device.
  • the at least one cycle matches at least one sleep mode.
  • the first signaling is also used to indicate the number of times that the terminal device performs detection in the at least one cycle.
  • the first signaling is also used to instruct the terminal device to perform detection sequence in the at least one cycle.
  • the first signaling is further used to indicate one or more offsets, and the one or more offsets are used for auxiliary period detection.
  • the method further includes:
  • the first signaling is used to indicate at least one period, including:
  • the first signaling includes the at least one period; or,
  • the first signaling includes an identifier of the first period set, the identifier of the first period set is used to indicate the at least one period, and the first period set is one of a plurality of period sets, so Each of the plurality of period sets includes a sequential combination of one or more periods.
  • the method further includes:
  • the length of the preceding cycle is greater than the length of the following cycle.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling indicates a first duration, and the first duration is related to one of at least one cycle.
  • the first duration is related to one period of at least one period, and includes:
  • the value of the first duration is proportional to the value of the one period.
  • the method further includes:
  • the downlink signal is detected according to the second period, and the second period does not belong to the at least one period.
  • the first signaling is RRC signaling, DCI, or system message.
  • the at least one period is used to change the period of the first search space of the terminal device to the at least one period, and the first search space is for sending the first search space.
  • a signaling search space, or, the first search space includes any one of all search spaces supported by the terminal device.
  • detecting a downlink signal according to a third period of the at least one period includes:
  • the downlink signal is detected according to the third period in the first search space.
  • detecting a downlink signal according to a third period of the at least one period includes:
  • the downlink signal is detected according to the third period, or, in the first search space, the downlink signal is detected according to the period of M ⁇ P, where M is a positive integer, and P is the first The length of the two cycles.
  • the terminal device may replace the period of the first search space with the third period, and the terminal device may detect the downlink signal according to the third period in the first search space. Or, if the period of the first search space is greater than the third period, the terminal device can replace the period of the first search space with M times the third period, that is, the terminal device can follow the M ⁇ P period in the first search space.
  • Periodically detect PDCCH P represents the length of the third period, and M is a positive integer.
  • the terminal device may replace the period of the first search space with the third period, or the terminal device may set the period of the first search space as the period of the first search space.
  • the least common multiple of the original period and the third period The terminal device can determine whether to modify the period of the first search space according to the judgment result, which can make the modification of the period of the search space by the terminal device more reasonable.
  • the first search space is a search space for receiving the first signaling, or the first search space includes any one of all search spaces supported by the terminal device .
  • the terminal device can only judge the second search space, and for other search spaces except the second search space supported by the terminal device, the terminal device does not apply at least one period to these search spaces. That is to say, for search spaces other than the second search space supported by the terminal equipment, the terminal equipment still continues to use the original periodicity of these search spaces to detect downlink signals; or, the terminal equipment supports all the search spaces supported by the terminal equipment. Each search space in the search space can be judged, and the terminal device can detect the downlink signal according to the third period in each search space in all the search spaces supported.
  • the second search space refers to the search space in which the first signaling is received.
  • a third communication method includes: determining a first signaling, the first signaling is used to indicate the number of times that a terminal device performs detection in a first cycle, or instruct a terminal device to perform detection in the first cycle The first detection duration, where the first period is a period for the terminal device to detect a downlink signal; and the first signaling is sent.
  • the method may be executed by a third communication device, and the third communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the third communication device is a network device, or a chip set in the network device for realizing the function of the network device, or other component used for realizing the function of the network device.
  • the third communication device is a network device.
  • the network device can indicate the first cycle to the terminal device, so that the terminal device can detect the downlink signal according to the first cycle.
  • the first cycle matches the state of the network device, which is equivalent to that the terminal device can follow the network
  • the status of the device is used to detect the downlink signal, and the power consumption of the terminal device is minimized.
  • the first period matches the sleep mode.
  • the first period can match the sleep mode, so that the terminal device can detect the downlink signal according to the first period, which is equivalent to that the terminal device can detect the downlink signal according to the sleep mode of the network device, and try to avoid the terminal device
  • the downlink signal is still detected according to the cycle when the network device is in the active state, which reduces the probability of the terminal device doing useless work and also reduces the power consumption of the terminal device.
  • the first signaling is also used to indicate an offset, and the offset is used to detect the auxiliary period.
  • the network device may also indicate to the terminal device one or more offsets corresponding to the first period, and the one or more offsets may assist the terminal device in detection.
  • the period corresponds to the sleep mode.
  • the sleep mode corresponds to the deactivation time and the activation time.
  • the period can correspond to the sleep granularity of the sleep mode, and the deactivation time and activation time corresponding to the sleep mode may not be necessary.
  • the period determined by the terminal device more closely matches the sleep mode of the network device.
  • the network device may not need to indicate the offset of at least one cycle.
  • the hardware equipment of some manufacturers has better performance, which makes the deactivation time of network equipment when entering a sleep mode is shorter, and the activation time when exiting from a sleep mode is also shorter, and it does not affect the terminal equipment to detect the downlink signal.
  • the network device does not need to indicate the offset of the first cycle.
  • the method further includes:
  • the second signaling After waking up, the second signaling is sent, and the second signaling is WUS signaling, or DCI for scheduling data, or signaling for carrying special information.
  • the network device when the network device is in the sleep mode, if it receives a downlink service, it will wake up; or, after the network device has executed at least one sleep mode, it will wake up regardless of whether it has received the downlink service. After the network device wakes up, it can send the fourth signaling to the terminal device to perform normal communication with the terminal device.
  • the first signaling is RRC signaling, DCI, or system message.
  • the embodiment of the present application does not limit the implementation of the first signaling.
  • a fourth communication method includes: receiving first signaling from a network device, where the first signaling is used to indicate the number of times the terminal device performs detection in the first cycle, or instruct the terminal device to A first period of time for detection in a first period, where the first period is a period for the terminal device to detect a downlink signal; the downlink signal is detected according to the first period.
  • the method may be executed by a fourth communication device, and the fourth communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip.
  • the fourth communication device is a terminal device, or a chip set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the fourth communication device is a terminal device.
  • the first period matches the sleep mode.
  • the first signaling is used to indicate the first duration
  • the method further includes:
  • the number of detections performed in the first period is determined according to the first duration and the first period.
  • the terminal device can also determine the first number of times according to the first duration and the first period. After determining the first number of times, the terminal device can detect the downlink signal according to the first period and/or the first number of times.
  • the first signaling is also used to indicate an offset, and the offset is used to detect the auxiliary period.
  • the method further includes:
  • Receive second signaling from the network device where the second signaling is WUS signaling, or DCI for scheduling data, or signaling for carrying special information.
  • the first signaling is RRC signaling, DCI, or system message.
  • detecting a downlink signal according to the first period includes:
  • the downlink signal is detected according to the first period in the first search space.
  • detecting a downlink signal according to the first period includes:
  • the downlink signal is detected according to the first period, or, in the first search space, the downlink signal is detected according to the period of M ⁇ P, where M is a positive integer, and P is the first period.
  • M is a positive integer
  • P is the first period.
  • the terminal device may replace the period of the first search space with the first period, and the terminal device may detect the downlink signal according to the first period in the first search space. Or, if the period of the first search space is greater than the first period, the terminal device may replace the period of the first search space with M times the first period, that is, the terminal device may follow the M ⁇ P in the first search space.
  • Periodic detection PDCCH P represents the length of the first period
  • M is a positive integer. It is possible to make the value of M ⁇ P close to the length of the original period of the first search space as much as possible, so that the change to the period of the first search space is small, which is more conducive to the realization of the terminal device.
  • the terminal device may replace the period of the first search space with the first period, or the terminal device may set the period of the first search space as the period of the first search space.
  • the least common multiple of the original period and the first period. The terminal device can determine whether to modify the period of the first search space according to the judgment result, which can make the modification of the period of the search space by the terminal device more reasonable.
  • the first search space is a search space for receiving the first signaling, or the first search space includes any one of all search spaces supported by the terminal device .
  • the terminal device can only judge the second search space, and for other search spaces except the second search space supported by the terminal device, the terminal device does not apply the first period to these search spaces.
  • the terminal device continues to use the original periodicity of these search spaces to detect downlink signals; or, the terminal device supports all the search spaces supported by the terminal device.
  • Each search space in the search space can be judged, and the terminal device can detect the downlink signal according to the first cycle in each search space in all the search spaces supported.
  • the second search space refers to the search space in which the first signaling is received.
  • a communication device is provided, for example, the communication device is the first communication device as described above.
  • the first communication device is used to execute the method in the foregoing first aspect or any possible implementation manner.
  • the first communication device may include a module for executing the method in the first aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may also be the same functional module, but can implement different functions.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the first communication device is a network device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the first communication device is a network device, and the processing module and the transceiver module are used as examples for the introduction. among them,
  • the processing module is configured to determine first signaling, where the first signaling is used to indicate at least one cycle, and each cycle in the at least one cycle is a cycle for a terminal device to detect a downlink signal;
  • the transceiver module is used to send the first signaling.
  • the at least one cycle matches at least one sleep mode.
  • the first signaling is also used to indicate the number of times that the terminal device performs detection in the at least one cycle.
  • the first signaling is also used to instruct the terminal device to perform detection sequence in the at least one cycle.
  • the first signaling is further used to indicate one or more offsets, and the one or more offsets are used for auxiliary period detection.
  • the transceiver module is further configured to send second signaling when the number of detections in the at least one cycle ends, and the second signaling is used to indicate the first cycle, so The first period is sequentially located after the at least one period.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling includes the at least one period; or,
  • the first signaling includes an identifier of the first period set, the identifier of the first period set is used to indicate the at least one period, and the first period set is one of a plurality of period sets, so Each of the plurality of period sets includes a sequential combination of one or more periods.
  • the transceiver module is further configured to send third signaling, and the third signaling is used to indicate the multiple periodic sets.
  • the length of the period that is in the preceding order is greater than the length of the period that is in the order.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling indicates a first duration, and the first duration is related to one of the at least one cycle.
  • the first duration is related to one of the at least one period, and includes:
  • the value of the first duration is proportional to the value of the one period.
  • the transceiver module is further configured to send fourth signaling after the network device wakes up, and the fourth signaling is WUS signaling or DCI for scheduling data , Or signaling used to carry special information.
  • the first signaling is RRC signaling, DCI, or system message.
  • the at least one period is used to change the period of the first search space of the terminal device to the at least one period, and the first search space is for sending the first search space.
  • a search space for signaling, or, the first search space includes any one of all search spaces supported by the terminal device.
  • a communication device is provided, for example, the communication device is the second communication device as described above.
  • the second communication device is used to execute the method in the foregoing second aspect or any possible implementation manner.
  • the second communication device may include a module for executing the method in the second aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may also be the same functional module, but can implement different functions.
  • the second communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the second communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver (or, transmitter and receiver) is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the second communication device is continued to be a terminal device, and the processing module and the transceiver module are used as examples for the introduction. among them,
  • the transceiver module is configured to receive first signaling from a network device, where the first signaling is used to indicate at least one cycle, and each cycle in the at least one cycle is a cycle for the terminal device to detect a downlink signal ;
  • the processing module is configured to detect a downlink signal according to the at least one period.
  • the at least one cycle matches at least one sleep mode.
  • the first signaling is also used to indicate the number of times that the terminal device performs detection in the at least one cycle.
  • the first signaling is also used to instruct the terminal device to perform detection sequence in the at least one cycle.
  • the first signaling is further used to indicate one or more offsets, and the one or more offsets are used for auxiliary period detection.
  • the transceiver module is further configured to receive second signaling from the network device, where the second signaling is used to indicate a first cycle, and the first cycle is in sequence The upper is located after the at least one cycle.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling includes the at least one period; or,
  • the first signaling includes an identifier of the first period set, the identifier of the first period set is used to indicate the at least one period, and the first period set is one of a plurality of period sets, so Each of the plurality of period sets includes a sequential combination of one or more periods.
  • the transceiver module is further configured to receive third signaling from the network device, and the third signaling is used to indicate the multiple periodic sets.
  • the length of the preceding cycle is greater than the length of the following cycle.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling indicates a first duration, and the first duration is related to one of at least one cycle.
  • the first duration is related to one period of at least one period, and includes:
  • the value of the first duration is proportional to the value of the one period.
  • the transceiver module is also configured to receive fourth signaling from the network device, where the fourth signaling is WUS signaling, or DCI for scheduling data, or signaling for carrying special information ;
  • the processing module is further configured to detect a downlink signal according to a second period, and the second period does not belong to the at least one period.
  • the first signaling is RRC signaling, DCI, or system message.
  • the at least one period is used to change the period of the first search space of the terminal device to the at least one period, and the first search space is for sending the first search space.
  • a signaling search space, or, the first search space includes any one of all search spaces supported by the terminal device.
  • the processing module is configured to detect the downlink signal according to the third period of the at least one period in the following manner:
  • the downlink signal is detected according to the third period in the first search space.
  • the processing module is configured to detect a downlink signal according to a third period of the at least one period in the following manner, including:
  • the downlink signal is detected according to the third period, or, in the first search space, the downlink signal is detected according to the period of M ⁇ P, where M is a positive integer, and P is the first The length of the two cycles.
  • the first search space is a search space for receiving the first signaling, or the first search space includes any one of all search spaces supported by the terminal device .
  • a communication device is provided, for example, the communication device is the aforementioned third communication device.
  • the third communication device is used to execute the method in the foregoing third aspect or any possible implementation manner.
  • the third communication device may include a module for executing the method in the third aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may also be the same functional module, but can implement different functions.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the third communication device is a network device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the third communication device is a chip set in the communication device
  • the transceiver (or, the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the third communication device is continued to be a network device, and the processing module and the transceiver module are used as examples for the introduction. among them,
  • the processing module is configured to determine the first signaling, and the first signaling is used to indicate the number of detections performed by the terminal equipment in the first cycle, or the first duration for the terminal equipment to perform detections in the first cycle, the The first cycle is the cycle for the terminal equipment to detect the downlink signal;
  • the transceiver module is used to send the first signaling.
  • the first period matches the sleep mode.
  • the first signaling is also used to indicate an offset
  • the offset is used to detect the auxiliary period.
  • the transceiver module is further configured to send second signaling after the network device wakes up.
  • the second signaling is WUS signaling or is used to schedule data. DCI, or signaling used to carry special information.
  • the first signaling is RRC signaling, DCI, or system message.
  • a communication device is provided, for example, the communication device is the fourth communication device as described above.
  • the fourth communication device is configured to execute the method in the foregoing fourth aspect or any possible implementation manner.
  • the fourth communication device may include a module for executing the method in the fourth aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the transceiver module may include a sending module and a receiving module.
  • the sending module and the receiving module may be different functional modules, or may also be the same functional module, but can implement different functions.
  • the fourth communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the fourth communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver, and the processing module may also be implemented by a processor.
  • the sending module may be implemented by a transmitter
  • the receiving module may be implemented by a receiver.
  • the transmitter and the receiver may be different functional modules, or may be the same functional module, but can implement different functions.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the fourth communication device is a chip set in the communication device
  • the transceiver (or, the transmitter and the receiver) is, for example, a communication interface in the chip, and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • the fourth communication device is continued to be a terminal device, and the processing module and the transceiving module are used as examples for the introduction. among them,
  • the transceiver module is configured to receive first signaling from a network device, where the first signaling is used to indicate the number of times the terminal device performs detection in the first cycle, or instruct the terminal device to perform detection in the first cycle. Duration, the first period is a period for the terminal device to detect a downlink signal;
  • the processing module is configured to detect a downlink signal according to the first period.
  • the first period matches the sleep mode.
  • the first signaling is used to indicate the first time length
  • the processing module is further used to determine the first time period and the first period according to the first time length. The number of inspections performed periodically.
  • the first signaling is also used to indicate an offset
  • the offset is used to detect the auxiliary period.
  • the transceiver module is further configured to receive second signaling from the network device, where the second signaling is WUS signaling or DCI for scheduling data, Or the signaling used to carry special information.
  • the first signaling is RRC signaling, DCI, or system message.
  • the processing module is configured to detect the downlink signal according to the first period in the following manner:
  • the downlink signal is detected according to the first period in the first search space.
  • the processing module is configured to detect the downlink signal according to the first period in the following manner:
  • the downlink signal is detected according to the first period, or, in the first search space, the downlink signal is detected according to the period of M ⁇ P, where M is a positive integer, and P is the first period.
  • M is a positive integer
  • P is the first period.
  • the first search space is a search space for receiving the first signaling, or the first search space includes any one of all search spaces supported by the terminal device .
  • a communication device is provided.
  • the communication device is, for example, the first communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the first communication device may not include a memory, and the memory may be located outside the first communication device.
  • the first communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the first aspect or various possible implementation manners.
  • the first communication device when the processor executes the computer instructions stored in the memory, the first communication device is caused to execute the method in the foregoing first aspect or any one of the possible implementation manners.
  • the first communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the communication interface is realized by a transceiver (or a transmitter and a receiver) in the communication device, for example, the transceiver is realized by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as input/output pins, etc., and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the second communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the second aspect or various possible implementation manners.
  • the second communication device may not include a memory, and the memory may be located outside the second communication device.
  • the second communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the second aspect or various possible implementation manners.
  • the second communication device when the processor executes the computer instructions stored in the memory, the second communication device is caused to execute the method in the second aspect or any one of the possible implementation manners.
  • the second communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by, for example, a transceiver (or transmitter and receiver) in the communication device.
  • the transceiver is realized by an antenna, a feeder, and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the third communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the third aspect or various possible implementation manners.
  • the third communication device may not include a memory, and the memory may be located outside the third communication device.
  • the third communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the third aspect or various possible implementation manners.
  • the third communication device when the processor executes the computer instructions stored in the memory, the third communication device is caused to execute the method in the third aspect or any one of the possible implementation manners.
  • the third communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a network device.
  • the communication interface is realized by a transceiver (or a transmitter and a receiver) in the communication device, for example, for example, the transceiver is realized by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication device is provided.
  • the communication device is, for example, the fourth communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the methods described in the fourth aspect or various possible implementation manners.
  • the fourth communication device may not include a memory, and the memory may be located outside the fourth communication device.
  • the fourth communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the methods described in the fourth aspect or various possible implementation manners.
  • the second communication device when the processor executes the computer instructions stored in the memory, the second communication device is caused to execute the method in the fourth aspect or any one of the possible implementation manners.
  • the fourth communication device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by, for example, a transceiver (or a transmitter and a receiver) in the communication device, for example, the transceiver is realized by an antenna, a feeder and a receiver in the communication device. Codec and other implementations.
  • the fourth communication device is a chip set in a communication device, the communication interface is, for example, an input/output interface of the chip, such as input/output pins, etc., and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components.
  • a communication system which includes the communication device described in the fifth aspect or the communication device described in the ninth aspect, and the communication device described in the sixth aspect or the communication device described in the tenth aspect ⁇ Communication device.
  • a communication system which includes the communication device described in the seventh aspect or the communication device described in the eleventh aspect, and the communication device described in the eighth aspect or the twelfth aspect The communication device.
  • the communication system described in the thirteenth aspect and the communication system described in the fourteenth aspect may be the same communication system or may be different communication systems.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions are executed on a computer, the computer executes the first aspect or any one of the above. The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the second aspect or any one of the above. The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the third aspect or any one of the foregoing The methods described in the possible implementations.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions are executed on a computer, the computer executes the fourth aspect or any one of the foregoing. The method described in one possible implementation.
  • a computer program product containing instructions is provided.
  • the computer program product is used to store computer instructions.
  • the computer instructions run on a computer, the computer executes the first aspect or any one of the above. The method described in one possible implementation.
  • a computer program product containing instructions is provided.
  • the computer program product is used to store computer instructions.
  • the computer instructions When the computer instructions are run on a computer, the computer executes the second aspect or any one of the foregoing. The method described in one possible implementation.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the third aspect or any of the above The method described in one possible implementation.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the fourth aspect or any of the above The method described in one possible implementation.
  • the network device can indicate at least one cycle to the terminal device, so that the terminal device can detect the downlink signal according to the at least one cycle.
  • the at least one cycle matches the state of the network device, which is equivalent to the terminal device.
  • the downlink signal can be detected according to the state of the network device, and the power consumption of the terminal device can be reduced as much as possible.
  • Figure 1 is a schematic diagram of a base station using three sleep modes to sleep
  • Figure 2 is a schematic diagram of an application scenario of an embodiment of the application
  • FIG. 3 is a flowchart of the first communication method provided by an embodiment of this application.
  • 4A to 4F are schematic diagrams of the sequence of the sleep mode and the sequence of the corresponding period determined by the network device in the embodiment of this application;
  • FIG. 5 is a flowchart of a second communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic block diagram of a first network device provided by an embodiment of this application.
  • FIG. 7 is a schematic block diagram of a first terminal device provided by an embodiment of this application.
  • FIG. 8 is a schematic block diagram of a second type of network device provided by an embodiment of this application.
  • FIG. 9 is a schematic block diagram of a second type of terminal device provided by an embodiment of this application.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is still another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity Sexual equipment.
  • it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber) station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber station (subscriber) station)
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user Agent
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable device is not only a kind of hardware device, but also realizes powerful functions through software support, data interaction and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • OBU on-board unit
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • a network device in a V2X technology is a roadside unit (RSU).
  • the base station can be used to convert the received air frame and IP packet to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include a long term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in a long term evolution-advanced (LTE-A) system, Or it can also include the next generation node B (gNB) in the new radio (NR) system (also referred to as the NR system) in the 5th generation (5G) mobile communication technology (the 5th generation, 5G), or it can also Including a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (cloud radio access network, Cloud RAN) system, which is not limited in the embodiment of the present application.
  • LTE long term evolution
  • NodeB or eNB or e-NodeB, evolutional NodeB evolutional NodeB
  • LTE-A long term evolution-advanced
  • gNB next generation node B
  • NR new radio
  • 5G 5th generation
  • 5G 5th generation
  • CU centralized
  • Downlink control channel such as PDCCH, or enhanced physical downlink control channel (EPDCCH), or may also include other downlink control channels.
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the period of the downlink signal can be configured for the terminal device in the RRC connected state, and the terminal device detects the downlink signal according to the configured period.
  • the downlink signal detected by the terminal device for example, includes a control signal, or includes a data signal, or includes a control signal and a data signal.
  • the control signal is, for example, PDCCH.
  • At least one means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first signaling and the second signaling are only for distinguishing different signaling, but do not indicate the difference in content, transmission order, priority, or importance of the two signalings.
  • the base station can reduce power consumption by entering the sleep mode. Since different devices require different turn-off and wake-up times, the base station can deactivate the devices to varying degrees. Accordingly, the base station can also have one or more sleep modes. Among them, each sleep mode can correspond to parameters such as sleep granularity, sleep power consumption, and wake-up time. The values of the parameters corresponding to different sleep modes are completely different or not completely the same. Generally speaking, the lower the sleep power consumption of a sleep mode and the longer the sleep granularity, the longer the wake-up time. Sleep granularity refers to the sleep duration corresponding to the sleep mode.
  • the wake-up time can be the activation time in Table 1.
  • the deactivation time of a sleep mode refers to the time required for the base station to enter the sleep mode from the active state.
  • the activation time of a sleep mode refers to the time required for the base station to enter the active state from the sleep mode.
  • Sleep mode Deactivation time Sleep granularity Activation time Sleep mode one 35.5 ⁇ s 71 ⁇ s 35.5 ⁇ s Sleep mode two 0.5ms 1ms 0.5ms Sleep mode three 5ms 10ms 5ms
  • Table 1 is just an example.
  • the deactivation time and the activation time are equal. In practice, it is not limited to this. There may be some sleep modes where the deactivation time and the activation time are not equal.
  • the deactivation time and activation time are both equal to half of the sleep granularity, but it is actually not limited to this.
  • the deactivation time or activation time of some sleep modes is 1/4 of the sleep granularity, or the deactivation time and activation The time is relatively small compared to the sleep granularity and can be ignored.
  • Figure 1 is a schematic diagram of a base station using the three sleep modes shown in Table 1 to sleep.
  • Figure 1 describes the process in which the base station enters different sleep modes from the active state and then wakes up again.
  • the sleep modes that the base station enters in sequence are sleep mode three, sleep mode two and sleep mode one, and the sleep granularity corresponding to these three sleep modes are T 3 , T 2 and T 1, respectively .
  • the first sleep mode that the base station enters is sleep mode three with the lowest power consumption. Before fully entering sleep mode three, it needs to go through the deactivation process of sleep mode three, that is, the first section from left to right in Figure 1.
  • the deactivation time and activation time of sleep mode three are the longest among the three sleep modes. After the end of sleep mode three, the base station will switch to sleep mode two.
  • the switching process experienced before switching to sleep mode two is the process shown by the second diagonal line from left to right in Figure 1, and sleep mode
  • the activation time of three is related to the deactivation time of sleep mode two and/or the deactivation time of sleep mode three and/or the activation time of sleep mode two.
  • the power consumption level, deactivation time, and activation time of the base station corresponding to sleep mode two are all between sleep mode three and sleep mode one.
  • the base station After the end of sleep mode two, the base station undergoes a switching process from sleep mode two to sleep mode one, which is the process represented by the third diagonal line from left to right in Figure 1, and can switch to sleep mode one.
  • the switching process Is related to the activation time of sleep mode two and/or the deactivation time of sleep mode one and/or the deactivation time of sleep mode two and/or the activation time of sleep mode one.
  • the power consumption of the base station corresponding to the sleep mode is the largest, but the required activation time is the shortest.
  • the base station undergoes the activation process of the sleep mode 1, that is, the process represented by the fourth diagonal line from left to right in FIG. 1, and can exit the sleep mode 1 and return to the active state.
  • the PDCCH period can be configured for the terminal device in the RRC connected state, and the terminal device detects the PDCCH according to the configured period.
  • search space set index For example, for each search space, the following parameters need to be configured for the terminal device to detect PDCCH: search space set index, control-resource set (CORESET) index, period, slot offset, symbol ) Location, number of time slots, number of candidate PDCCHs corresponding to each aggregation level, and search space collection type.
  • CORESET control-resource set
  • the CORESET index is the index of the CORESET associated with the search space collection, and the CORESET associated with the search space collection determines the physical resources of the search space collection;
  • the period is the time interval for detecting the search space collection, and the unit is the time slot;
  • the time slot offset Is the slot offset from the beginning of the period to the actual detection of the search space set, and the offset is less than the length of the period;
  • the symbol position is the position of the CORESET start symbol associated with the search space set in each slot, The positions of two adjacent symbols are greater than or equal to the number of time-domain symbols included in the CORESET;
  • the number of time slots is the number of time slots of the continuous detection search space set, and the number of time slots is less than the number of corresponding time slots of the period.
  • the PDCCH cycle is generally not reconfigured for the terminal equipment.
  • the terminal equipment will continue to detect the PDCCH according to the cycle when the base station is in the active state. This obviously increases the power consumption of the terminal equipment and reduces The efficiency of the terminal equipment to perform useful work.
  • the network device can indicate at least one cycle to the terminal device, so that the terminal device can detect the downlink signal according to the at least one cycle.
  • the at least one cycle matches the state of the network device, which is equivalent to the terminal device.
  • the downlink signal can be detected according to the state of the network device, and the power consumption of the terminal device can be reduced as much as possible.
  • the network device can indicate multiple cycles to the terminal device. For example, different cycles can correspond to different states of the network device, so that the cycle of the terminal device can match each state of the network device as much as possible, and the function of the terminal device is reduced. Consumption.
  • the technical solutions provided in the embodiments of this application can be applied to the 4th generation (4G) 4G system, such as the LTE system, or can be applied to the 5G system, such as the NR system, or can also be applied to the next generation of mobile communication technology.
  • 4G 4th generation
  • 5G system such as the NR system
  • the communication system or other similar communication systems are not restricted in detail.
  • Figure 2 includes network equipment and terminal equipment.
  • the terminal equipment is connected to a network equipment.
  • the number of terminal devices in FIG. 2 is just an example.
  • a network device can provide services for multiple terminal devices.
  • the network device in FIG. 2 and each of the terminal devices or all of the terminal devices in the plurality of terminal devices can implement the technical solutions provided in the embodiments of the present application.
  • the terminal device in FIG. 2 uses a mobile phone as an example, which is not limited to this in practical applications.
  • the network device in FIG. 2 is, for example, an access network device, such as a base station, or may also be a device such as an RSU.
  • the base station corresponds to different devices in different systems.
  • the base station can correspond to an eNB
  • a 5G system it can correspond to a gNB.
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems. Therefore, the network equipment in FIG. 2 can also correspond to the access network equipment in the future mobile communication system.
  • the embodiment of the present application provides a first communication method. Please refer to FIG. 3, which is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the method can be executed by two communication devices, such as a first communication device and a second communication device, where the first communication device can be a network device or can support the network device to implement the functions required by the method.
  • the communication device or the first communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course it may also be other communication devices, such as a chip system. The same is true for the second communication device.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, or the second communication device may be a terminal device or capable of supporting the terminal device to implement the method.
  • the communication device with the required functions can of course also be other communication devices, such as a chip system.
  • the first communication device may be a network device
  • the second communication device is a terminal device, or both the first communication device and the second communication device are network devices.
  • the device, or the first communication device and the second communication device are both terminal devices, or the first communication device is a network device
  • the second communication device is a communication device capable of supporting the terminal device to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • the method is executed by a network device and a terminal device as an example, that is, an example is taken that the first communication device is a network device and the second communication device is a terminal device.
  • the network device described in the following may be a network device in the network architecture shown in FIG. 2, and the terminal device described in the following may be Figure 2 shows the terminal equipment in the network architecture.
  • the network device determines first signaling, where the first signaling is used to indicate at least one cycle, and one cycle of the at least one cycle is a cycle for the terminal device to detect a downlink signal.
  • the network device can determine at least one cycle that the terminal device needs to execute.
  • the sleep mode of the network device and the period of the terminal device to detect the downlink signal may have a one-to-one correspondence.
  • the at least one cycle can be matched with the at least one sleep mode.
  • a period is matched with a sleep mode.
  • a matching method is that the difference between the length of the period and the sleep granularity of the sleep mode is smaller than the first threshold.
  • the first threshold is, for example, configured by a network device, or stipulated by a protocol. If the first threshold is 0, the length of the period is equal to the sleep granularity of the sleep mode.
  • the sleep granularity of the sleep mode is directly used as the length of the period. For example, if the sleep granularity of a sleep mode is 1 ms, the corresponding period determined by the network device may also be 1 ms.
  • the determination of the at least one period described here may be the determination of the length of the at least one period.
  • different periods may have different lengths, or different periods may have the same length.
  • the length of the period mentioned in the embodiment of the present application refers to the time domain length of the period.
  • the network device before the network device enters the sleep mode, it can determine at least one sleep mode to be entered, and based on the determined sleep mode, the corresponding period can be determined.
  • the number of at least one sleep mode can be 1.
  • the network device will enter multiple sleep modes in sequence, but before entering each sleep mode, the network device only determines the next sleep mode to be entered. In this case, the number of at least one sleep mode is 1, and the number of at least one cycle is also 1.
  • the number of at least one sleep mode can also be greater than one.
  • the network device will enter multiple sleep modes in sequence. Before entering the first sleep mode, the network device can determine all sleep modes that need to be entered. In this case, the number of at least one sleep mode is greater than one, and the number of at least one cycle is also greater than one.
  • the network device Before entering a sleep mode, the network device can determine the part of the sleep mode that needs to be entered next , But the number of sleep modes in this part is greater than 1. In this case, the number of at least one sleep mode is greater than one, and the number of at least one cycle is also greater than one.
  • the network device may also determine the sequence of the at least one cycle, that is, determine the sequence of the terminal device to perform the detection in the at least one cycle. For example, the network device can randomly determine the sequence of at least one cycle, or if the cycle corresponds to the sleep mode one-to-one, the network device can determine the sequence of the at least one sleep mode, and the sequence of the at least one sleep mode can be the same as the corresponding one. The sequence of at least one cycle is the same. Therefore, the network device determines the sequence of at least one sleep mode, and also determines the sequence of at least one cycle.
  • the sequence of at least one sleep mode reflects the sequence in which the network device enters the corresponding sleep mode, that is, which sleep mode the network device enters first, and which sleep mode enters later. For example, if the network device determines that it is about to enter sleep mode 1, sleep mode 2, and sleep mode 3, the network device can determine the sequence of these three sleep modes, that is, the network device first enters sleep mode 2, then enters sleep mode 3, and finally enters Sleep mode 1.
  • the sequence of the at least one sleep mode may be flexible, or in other words, the network device may flexibly determine the sequence of the at least one sleep mode.
  • the at least one sleep mode determined by the network device is sleep mode 1, sleep mode 2, and sleep mode 3.
  • the network device may execute one or more rounds. Then the three sleep modes correspond to multiple sequences, and the network device can determine any sequence corresponding to the three sleep modes as the actual sequence of the three sleep modes, and the sequence may not be restricted by any factors when determining the sequence. For example, the network device will perform one round of sleep mode 1, two rounds of sleep mode 2, and one round of sleep mode 3.
  • the sequence of the three sleep modes determined by the network device can be sleep mode 2-sleep mode 3-sleep mode 2-Sleep mode 1, refer to Figure 4A.
  • the sequence of the corresponding at least one cycle may be a cycle corresponding to sleep mode 2-a cycle corresponding to sleep mode 3-a cycle corresponding to sleep mode 2-a cycle corresponding to sleep mode 1.
  • the order of at least one cycle is also flexible.
  • the network device may determine the sequence of the at least one sleep mode according to the power consumption corresponding to the network device. For example, in the at least one sleep mode, the power consumption of the network device when the network device is in the first sleep mode is less than the power consumption of the network device when the network device is in the sequence. Power consumption during post-sleep mode.
  • the at least one sleep mode determined by the network device is sleep mode 1, sleep mode 2, and sleep mode 3.
  • the power consumption when the network device is in sleep mode 1 is power consumption 1
  • the power consumption when in sleep mode 2 is work Consumption 2
  • the power consumption in sleep mode 3 is power consumption 3, power consumption 1>power consumption 2>power consumption 3.
  • the sequence of the three sleep modes determined by the network device may be: sleep mode 3-sleep mode 2-sleep mode 1, refer to FIG. 4B.
  • the sequence of the corresponding at least one cycle may be a cycle corresponding to sleep mode 3-a cycle corresponding to sleep mode 2-a cycle corresponding to sleep mode 1. It is equivalent to a network device performing a "deep to shallow” sleep. The network device performs sleep in this "deep to shallow" mode, which is the most energy-saving sleep mode.
  • the network device determines the sequence of at least one cycle according to the power consumption corresponding to the network device. If the network device determines the order of the at least one cycle according to the power consumption of the network device, for example, in the at least one cycle, the length of the cycle before the order may be greater than the length of the cycle after the order. If the cycle corresponds to the sleep mode one-to-one, it can also be understood that the power consumption of the network device in the sleep mode corresponding to the previous cycle is less than when the network device is in the sleep mode corresponding to the next cycle. Power consumption.
  • the network device may determine the sequence of the at least one sleep mode according to the wake-up time corresponding to the network device. For example, in at least one sleep mode, the wake-up time when the network device is in the previous sleep mode is greater than the wake-up time when the network device is in the next sleep mode.
  • the at least one sleep mode determined by the network device is sleep mode 1, sleep mode 2, and sleep mode 3.
  • the wake-up time when the network device is in sleep mode 1 is wake-up time 1
  • the wake-up time when the network device is in sleep mode 2 is wake-up.
  • Time 2 the wake-up time when in sleep mode 3 is wake-up time 3, wake-up time 1 ⁇ wake-up time 2 ⁇ wake-up time 3.
  • the sequence of the three sleep modes determined by the network device may be: sleep mode 3-sleep mode 2-sleep mode 1, refer to FIG. 4B.
  • the sequence of the corresponding at least one cycle may be a cycle corresponding to sleep mode 3-a cycle corresponding to sleep mode 2-a cycle corresponding to sleep mode 1. It is equivalent to that the network device executes a sleep with a long wake-up time to a short time. The network device performs sleep according to this way of wake-up time from long to short, which is the sleep way that can reduce the wake-up delay the most.
  • the network device determines the sequence of at least one cycle according to the wake-up time corresponding to the network device. If the network device determines the sequence of the at least one cycle according to the wake-up time of the network device, for example, in the at least one cycle, the length of the cycle before the sequence may be greater than the length of the cycle after the sequence. If the cycle corresponds to the sleep mode one-to-one, it can also be understood that the wake-up time of the network device in the sleep mode corresponding to the previous cycle is greater than when the network device is in the sleep mode corresponding to the subsequent cycle Wake up time.
  • the network device may also determine the sequence of the at least one sleep mode according to the hardware conditions of the network device.
  • the network device may first enter another sleep mode, and then enter the sleep mode from the other sleep mode.
  • the at least one sleep mode determined by the network device is sleep mode 1 and sleep mode 2.
  • the network device cannot support directly entering sleep mode 2, but can support directly entering sleep mode 1, so the network device determines to enter sleep mode 1 first.
  • enter the sleep mode 2 that is, the sequence of the two sleep modes determined by the network device may be sleep mode 1-sleep mode 2, as shown in FIG. 4C.
  • the sequence of the corresponding at least one cycle may be a cycle corresponding to sleep mode 1-a cycle corresponding to sleep mode 2.
  • the network device can return to the active state from other sleep modes.
  • the at least one sleep mode determined by the network device is sleep mode 1 and sleep mode 2.
  • the network device cannot support returning to the active state from sleep mode 2, but can support returning to the active state from sleep mode 1, then the network device can determine
  • the sequence of these two sleep modes can be: sleep mode 2-sleep mode 1, as shown in FIG. 4D. Then, the sequence of the corresponding at least one cycle may be the cycle corresponding to sleep mode 2-the cycle corresponding to sleep mode 1.
  • the network device determines the sequence of at least one cycle according to the hardware conditions of the network device. If the network device determines the sequence of at least one cycle according to the hardware conditions of the network device, for example, if the hardware of the network device does not support direct access to a longer period, the network device can put the shorter period in the first order, then In at least one of the cycles, the length of the cycle that is in front of the sequence may be less than the length of the cycle that is in the sequence.
  • the network device can also put the longer period in the front and the shorter period in the back, then at least one In the cycle, the length of the preceding cycle may be greater than the length of the succeeding cycle.
  • the network device can also use other methods to determine the sequence of at least one sleep mode, which is equivalent to using other methods to determine the sequence of at least one cycle. limit.
  • the network device may obtain a plurality of period sets, and each period set of the plurality of period sets may include one kind of period, or a sequential combination of a plurality of periods.
  • the network device can set multiple cycle sets by itself, or multiple cycle sets can also be stipulated by agreement.
  • multiple period sets include period set 1, period set 2, and period set 3.
  • Period set 1 includes period 2 to period 3, and the number of detections including period 2 is n2, and the number of detections for period 3 is n3, which indicates that period Set 1 includes two types of cycles, cycle 2 and cycle 3, and includes the order of the two cycles and the number of detections.
  • Cycle set 2 includes cycle 3-cycle 2-cycle 1, and the number of detections including cycle 3 is n3, the number of detections of cycle 2 is n2, and the number of detections of cycle 1 is n1, which indicates that cycle set 2 includes cycle 1 and cycle 2. And cycle 3 these three kinds of cycles, and include the order of these three kinds of cycles and the number of detections.
  • Cycle set 3 includes cycle 1 to cycle 2, and the number of detections including cycle 1 is n1, and the number of detections for cycle 2 is n2, which indicates that cycle set 3 includes cycle 1 and cycle 2, and includes these two cycles The order and the number of detections. The number of cycles of detection will be introduced in the next step.
  • the network device can directly determine a period set from the multiple period sets, and the period set is determined, that is, at least one period is determined.
  • the first cycle set may correspond to at least one cycle, or in other words, the first cycle set may correspond to a sequential combination of at least one cycle.
  • the manner in which the network device determines the first period set is, for example, randomly determined.
  • the network device can flexibly determine at least one period or the order of the at least one period, and the network device can randomly determine the first period set; or , The network device can also determine the first cycle set according to the principle of "deep to shallow".
  • the network device can determine the order of at least one cycle according to the principle of "deep to shallow", and then according to the order of at least one cycle. Determine the first cycle set; or, the network device may also determine the first cycle set according to the hardware conditions of the network device. For example, the network device may determine the sequence of at least one cycle according to the hardware conditions of the network device, and then according to the sequence of the at least one cycle The first period set may be determined; or, the network device may also determine the first period set according to the wake-up time of the network device. For example, the network device may determine the sequence of at least one period according to the length of the wake-up time of the network device, and then according to the at least one The order of the cycles can determine the first set of cycles.
  • the network device can also obtain multiple sleep mode sets (or can also be referred to as sleep patterns, etc.), and the sleep mode set and the cycle set have a one-to-one correspondence.
  • the network device determines a sleep mode set from the multiple sleep mode sets, and also determines the corresponding period set.
  • each sleep mode set in the plurality of sleep mode sets may include one sleep mode or a sequential combination of multiple sleep modes.
  • the network device can set multiple sleep mode sets by itself, or multiple sleep mode sets can also be stipulated by agreement.
  • multiple sleep mode sets include sleep mode set 1, sleep mode set 2, and sleep mode set 3.
  • Sleep mode set 1 includes sleep mode 2-sleep mode 3, and the number of repetitions including sleep mode 2 is n2, sleep mode 3 The number of repetitions of is n3, which indicates that the sleep mode set 1 includes two sleep modes, sleep mode 2 and sleep mode 3, and includes the sequence of these two sleep modes and the number of repetitions.
  • Sleep mode set 2 includes sleep mode 3-sleep mode 2-sleep mode 1, and the repetition number of sleep mode 3 is n3, the repetition number of sleep mode 2 is n2, and the repetition number of sleep mode 1 is n1, which indicates the sleep mode Set 1 includes three sleep modes: sleep mode 1, sleep mode 2, and sleep mode 3, and includes the sequence and number of repetitions of these three sleep modes.
  • Sleep mode set 3 includes sleep mode 1-sleep mode 2, and the repetition number of sleep mode 1 is n1, and the repetition number of sleep mode 2 is n2, which indicates that sleep mode set 3 includes sleep mode 1 and sleep mode 2 Sleep mode, including the sequence and number of repetitions of these two sleep modes. The number of repetitions of the sleep mode will also be introduced in the next step.
  • the network device can directly determine a sleep mode set from the multiple sleep mode sets, and determine the sleep mode set, that is, determine at least one sleep mode.
  • the first sleep mode set may correspond to at least one sleep mode, or in other words, the first sleep mode set may correspond to a sequential combination of at least one sleep mode.
  • the first sleep mode set also corresponds to the first cycle set. Therefore, when the network device determines the first sleep mode set, the first cycle set is also determined.
  • the manner in which the network device determines the first sleep mode set is, for example, randomly determined.
  • the network device can flexibly determine at least one sleep mode or the order of the at least one sleep mode, and the network device can randomly determine the first sleep mode. Mode set; or, the network device can also determine the first sleep mode set according to the principle of "deep to light", for example, the network device can determine the order of at least one sleep mode according to the principle of "deep to light", and then according to at least The order of one sleep mode can determine the first sleep mode set; or, the network device can also determine the first sleep mode set according to the hardware conditions of the network device. For example, the network device can determine at least one sleep mode set according to the hardware conditions of the network device.
  • the first sleep mode set can be determined; or the network device can also determine the first sleep mode set according to the wake-up time of the network device. For example, the network device can determine the first sleep mode set according to the wake-up time of the network device.
  • the sequence of the at least one sleep mode is determined, and the first sleep mode set can be determined according to the sequence of the at least one sleep mode.
  • the deactivation time of a sleep mode refers to the time required for the network device to enter the sleep mode from the active state; the activation time of a sleep mode refers to the time required for the network device to enter the active state from the sleep mode.
  • the switching time required for a network device to switch from one sleep mode (such as sleep mode A) to another sleep mode (such as sleep mode B) is related to the activation time of sleep mode A, the deactivation time of sleep mode B, and sleep mode One or more of the deactivation time of A or the activation time of sleep mode B is related.
  • the network device During the activation time, deactivation time, or switching time from one sleep mode to another sleep mode, the network device generally does not send a downlink signal, so the terminal device does not need to detect the downlink signal, or , The terminal equipment can continue to detect the downlink signal according to the original cycle.
  • the deactivation time of a sleep mode or the switching time of switching from another sleep mode to the sleep mode the sleep mode is actually entered, and the network device sleeps.
  • the terminal device can be based on at least one cycle Change the original period of the terminal device.
  • At least one cycle it may correspond to one or more offsets, and the number of offsets corresponding to the at least one cycle may be equal to or not equal to the number of at least one cycle.
  • the network device can also indicate to the terminal device one or more offsets corresponding to the at least one cycle, and the one or more offsets can assist the terminal device in performing Detection.
  • the network device may indicate an offset to the terminal device. As shown in Figure 4E, the network device indicates to the terminal device that at least one cycle is cycle 2 (T2) and cycle 1 (T1), and the sequence of at least one cycle is T2-T1, the number of detections corresponding to at least one cycle is n2-n1, and the offset P2.
  • the network device may also indicate multiple offsets to the terminal device, as shown in Figure 4F, the network device indicates to the terminal device, at least one cycle includes cycle 1 (T1), cycle 2 (T2), and cycle 3 (T3) ,
  • the sequence of at least one cycle is T2-T3-T2-T1
  • the number of detections corresponding to at least one cycle is n2-n3-n′2-n1
  • the multiple offsets are P2-P3-P′2-P1 .
  • the network device may indicate one or more offsets to the terminal device through the first signaling, and the terminal device may determine the one or more offsets after receiving the first signaling. Or the network device may also indicate one or more offsets to the terminal device through other signaling.
  • the network device may not need to indicate the offset of the at least one cycle.
  • some manufacturers' hardware devices have better performance, which makes the deactivation time of network devices shorter when entering a sleep mode, and the activation time when exiting from one sleep mode is also shorter, switching from one sleep mode to another The switching time of the sleep mode is also relatively short, which does not affect the terminal equipment to detect the downlink signal, so the network equipment does not need to indicate at least one cycle offset.
  • the first signaling indicates at least one period
  • one indication method is that the first signaling indicates a first duration
  • the first duration is associated with at least one period.
  • One of the cycles is related. If the number of at least one cycle is 1, then one cycle of the at least one cycle refers to this cycle, for example, the cycle is called the fourth cycle.
  • the first duration is the total duration during which the terminal device performs detection in a period corresponding to the first duration. For example, if the period matches the sleep mode, the first duration can be the total duration of the network device in the sleep mode. When the network device is in the sleep mode, the terminal device will perform detection in the period corresponding to the first duration, so the first duration is also It can be considered as the total length of time the terminal device performs detection in this cycle.
  • the terminal device may determine the fourth period according to the first duration. For example, the terminal device may determine the fourth period according to the first duration and at least one threshold. Wherein, at least one threshold value may be included in the first signaling, or the network device may configure at least one threshold value for the terminal device in advance, or at least one threshold value may be preconfigured in the terminal device, or at least one threshold value may be specified by a protocol. Among them, the terminal device can select a period from the first set according to the first duration, and the period is the fourth period.
  • the first set may contain one or more periods.
  • the first set may be specified by a protocol, or the network device may configure the first set to the terminal device in advance, or the first set may be pre-configured in the terminal device, or the first set may also be indicated by the first signaling.
  • the period in the first set may match the sleep granularity of the network device.
  • the first set described here is a different concept from the period set described above.
  • the first set described here includes one or more periods. There is no order relationship between the periods included in the first set.
  • the terminal device can select a period from the one or more periods according to the first duration. carried out.
  • the terminal device After receiving the first signaling, the terminal device can select a period from the first set as the period for the terminal device to detect the downlink signal according to the first duration indicated by the first signaling and at least one threshold (that is, select the fourth period) , And then the terminal equipment will detect the downlink signal according to the selected period.
  • at least one threshold may constitute one or more threshold ranges, and each threshold range may correspond to a period. The terminal device determines the threshold range to which the first duration belongs, and the period corresponding to the threshold range is the period corresponding to the first duration, and the terminal device can determine to use the period to detect the downlink signal.
  • the terminal device can determine the number of detections of the period according to the first duration and the length of the period. Therefore, if the first signaling indicates the first duration, the first signaling may not necessarily indicate the number of detections in this period.
  • the at least one threshold may include two thresholds, respectively Th1 and Th2, where Th1 ⁇ Th2.
  • the first set includes period A, period B, and period C, and the value of the first duration is Z.
  • the threshold range (0, Th1) corresponds to period A
  • the threshold range [Th1, Th2] corresponds to period B
  • the threshold range (Th2, + ⁇ ) corresponds to period C. If 0 ⁇ Z ⁇ Th1, the terminal device can select period A from the first set, if Th1 ⁇ Z ⁇ Th2, the terminal device can select period B from the first set, if Z ⁇ Th2, the terminal device can select period A from the first set. Cycle C is selected in the first set.
  • the terminal device can detect the downlink signal according to the selected period.
  • the value of the first duration may be related to the value of the period, and the value of the period may refer to the length of the period.
  • the at least one threshold includes two thresholds Th1 and Th2, where Th1 ⁇ Th2.
  • the value of the first duration may be related to the value of the period. If the two possible values X and Y of the first duration are not equal, then the two possible values of the corresponding period are also not equal.
  • the value of the first duration may be proportional to the value of the period.
  • the at least one threshold may include two thresholds Th1 and Th2, where Th1 ⁇ Th2. Let X and Y be two positive numbers. If the value of the first duration is X, the corresponding period is period A, and if the value of the first duration is Y, the corresponding period is period B. If X is less than Y, then A is less than B. For example, if 0 ⁇ X ⁇ Th1, Th1 ⁇ Y ⁇ Th2, that is, X ⁇ Y, then A is less than B, that is to say, the value of the first duration can be proportional to the value of the one period.
  • the network device sends the first signaling, and the terminal device receives the first signaling from the network device.
  • the network device may send the first signaling, and the first signaling may indicate the at least one period.
  • the first signaling may indicate at least one period.
  • the first signaling may include at least one period, or the first signaling may include at least one period.
  • the first signaling includes the length of each of the at least one period.
  • the first signaling may include at least one period, or the first signaling may include the length of at least one period, or may also include the identifier of the first period set .
  • the identifier of the first period set may indicate the first period set, and the first period set includes the sequential combination of the at least one period. Therefore, the identifier of the first period set may also indicate at least one period.
  • the identification of the first cycle set includes the number or identification number (ID) of the first cycle set.
  • the first signaling may include at least one cycle. Or, if the number of at least one period is 1, as another way for the first signaling to indicate at least one period, the first signaling may indicate the first duration, and the corresponding period may be indicated by the first duration. .
  • the first signaling may include the first period The identification of the set, which can reduce the signaling overhead; or, if multiple period sets are not configured for the terminal device in advance, the first signaling can still include at least one period, so that the terminal device does not have to perceive the period set, simplifying Realization of terminal equipment.
  • the network device may send third signaling, and the third signaling is used to indicate the multiple period sets. After the terminal device receives the third signaling from the network device, it can determine multiple period sets.
  • the third signaling may be unicast signaling, multicast signaling, or broadcast signaling, which is not specifically limited.
  • the network device may send fifth signaling, and the fifth signaling is used to indicate the at least one threshold.
  • the terminal device receives the fifth signaling from the network device, it can determine at least one threshold.
  • the fifth signaling may be unicast signaling, multicast signaling, or broadcast signaling, which is not specifically limited.
  • the network device may also configure at least one threshold value to the terminal device through the first signaling.
  • the network device may send sixth signaling, and the sixth signaling is used to indicate the first set. After the terminal device receives the sixth signaling from the network device, it can determine the first set.
  • the sixth signaling may be unicast signaling, multicast signaling, or broadcast signaling, which is not specifically limited.
  • the network device may also configure the first set to the terminal device through the first signaling.
  • the first signaling may be unicast signaling, multicast signaling, or broadcast signaling.
  • the first signaling can only be directed to one terminal device.
  • the network device can only send the first signaling to the terminal device that needs to save power consumption without covering the network device.
  • the multiple terminal devices in, all send the first signaling, so that the first signaling is more targeted.
  • the first signaling may be UE group signaling, which may be directed to multiple terminal devices, and these multiple terminal devices may apply the at least one cycle to detect downlink signal.
  • the first signaling is broadcast signaling.
  • the at least one cycle can be applied to detect the downlink signal, and the network device can indicate the at least one cycle through broadcast signaling.
  • the first signaling is multicast signaling or broadcast signaling, signaling overhead can be saved to a certain extent.
  • the first signaling may be RRC signaling or signaling carried in PDCCH, such as downlink control information (DCI) .
  • the first signaling may be a system message, such as a master information block (MIB) or a system information block (SIB).
  • MIB master information block
  • SIB system information block
  • the network equipment can send the first signaling in a semi-static manner, which can improve the reliability of the signaling; if the first signaling is signaling carried in the PDCCH, the network equipment The first signaling can be sent dynamically, which can save the time for the network device to notify the terminal device, so that the network device can enter the sleep mode faster.
  • the terminal device will have a corresponding sequence when performing detection according to at least one cycle, or when the terminal device executes the at least one cycle. .
  • the first signaling may also indicate the sequence of the at least one cycle, or in other words, instruct the terminal device to perform detection in the at least one cycle. This is equivalent to indicating the order of at least one cycle in an explicit way. If the at least one cycle matches the at least one sleep mode, the sequence of the at least one cycle may be the same as the sequence of the corresponding at least one sleep mode, so that the terminal device can follow the sleep mode of the network device. Match the cycle to detect the downlink signal.
  • the first signaling may indicate at least one cycle, but does not indicate the order of the at least one cycle.
  • the order of at least one cycle can be predefined or determined implicitly. For example, by default, network devices and terminal devices enter the sleep mode with lower power consumption. For example, the lower the power consumption of the sleep mode, the longer the corresponding period. In other words, the network device and terminal device default , The order of the longer period is before the shorter period. In this way, the first signaling does not need to include at least one cycle sequence, and after receiving the first signaling, the terminal device will perform cycle detection in an implicit manner in which the longer cycle is first detected.
  • the hardware of the network device cannot support the network device to directly enter a certain sleep mode. For example, if the network device wants to enter the sleep mode 2, it must first enter the sleep mode 1 for transition before entering the sleep mode 2, and the terminal device is also aware of this of. Then the network device and the terminal device default that the sequence of the cycle corresponding to the sleep mode one is before the cycle corresponding to the sleep mode two. If the first signaling includes a cycle corresponding to sleep mode two and a cycle corresponding to sleep mode one, the first signaling may not include the sequence of the two cycles. After receiving the first signaling, the terminal device will detect in a manner that the period corresponding to the sleep mode one is located before the period corresponding to the sleep mode two in the order of the period.
  • the network device and terminal device default to the network device before entering sleep mode two, first enter sleep mode Mode 1 transitions before entering sleep mode 2.
  • the number of detections n1 of the period corresponding to sleep mode 1 may be a predefined value.
  • the terminal device After receiving the first signaling, the terminal device will perform cycle detection in an implicit manner of first detecting n1 times with a cycle corresponding to sleep mode one and then performing detection with a cycle corresponding to sleep mode two.
  • the hardware of the network device cannot support the network device to directly return to the active state from a certain sleep mode.
  • the network device cannot return to the active state directly from the sleep mode 2. It must first enter the sleep mode 1 for transition to enter the active state.
  • the terminal equipment is also known. Then the network device and the terminal device can default that the sequence of the cycle corresponding to the sleep mode two is before the cycle corresponding to the sleep mode one. If the first signaling includes a cycle corresponding to sleep mode two and a cycle corresponding to sleep mode one, the first signaling may not include the sequence of the two cycles. After receiving the first signaling, the terminal device will perform detection in a manner that the period corresponding to sleep mode two is located before the period corresponding to sleep mode one.
  • the network device and the terminal device can default, and the network device will still return to the active state from sleep mode 2.
  • the number of detections n1 of the cycle corresponding to the sleep mode can be a predefined value.
  • the terminal device After receiving the first signaling, the terminal device will perform detection in a manner of first executing the cycle corresponding to sleep mode two and then executing the cycle corresponding to sleep mode one.
  • each of the sleep modes can execute one or more rounds, and when a certain sleep mode is executed one round, the network device can execute one or more cycles.
  • the at least one sleep mode determined by the network device includes sleep mode 1, sleep mode 2, and sleep mode 3, and the network device determines that the order of these three sleep modes is sleep mode 2-sleep mode 3-sleep mode 2-sleep mode 1. That is, the network device will perform one round of sleep mode 1, one round of sleep mode 3, and two rounds of sleep mode 2. For example, when the network device performs the first round of sleep mode 2, the number of repetitions corresponding to sleep mode 2 is 2.
  • the network device Indicates that the network device will perform sleep mode 2 twice; when the network device is performing sleep mode 3, the number of repetitions corresponding to sleep mode 3 is 2 times, indicating that the network device will perform sleep mode 3 twice; the network device is performing the second round of sleep In mode 2, the number of repetitions corresponding to sleep mode 2 is 3, indicating that the network device will execute sleep mode 2 three times; when the network device is performing sleep mode 1, the number of repetitions corresponding to sleep mode 1 is 3 times, indicating that the network device will Perform sleep mode 1 three times. 4A, where T2 represents the cycle corresponding to sleep mode 2, T3 represents the cycle corresponding to sleep mode 3, and T1 represents the cycle corresponding to sleep mode 1.
  • the cycle of the terminal device will be repeated accordingly, or in other words, the terminal device will also repeatedly detect the downlink signal accordingly.
  • the number of times the network device repeatedly executes the sleep mode and the number of times the terminal device detects the downlink signal may be the same or different.
  • the number of times can be referred to as the number of repetitions of the sleep mode, or the number of cycles of the sleep mode, etc. Reflected on the terminal device side, that is, the terminal device needs to perform multiple tests according to a cycle.
  • the first signaling may also indicate the number of times that the terminal device performs detection in at least one cycle, or in other words, the number of times that the terminal device executes at least one cycle, or in other words, at least one cycle.
  • the number of times that the terminal device performs detection in a cycle means that the interval between two adjacent detections satisfies the cycle, or refers to the number of times the terminal device performs the cycle, rather than the terminal device detecting in the cycle The number of downlink signals.
  • the network device will execute twice, then corresponding to the terminal device side, the cycle indicated by the network device (for example, the cycle corresponding to sleep mode 3) is T3, you can see that the terminal device It also needs to be tested twice according to T3, or in other words, T3 will be repeated twice.
  • T1, T2, T3, etc. are also the same as those in FIG. 4A.
  • the number of times the terminal device performs detection in a cycle is related to the number of repetitions of the sleep mode that matches the cycle.
  • the two may be equal, or of course they may not be equal.
  • the length of the period ⁇ the number of detections performed by the terminal device according to the period (or the number of repetitions of the sleep mode corresponding to the period) is equal to the total duration of the period when the terminal device detects the downlink signal.
  • the sleep granularity ⁇ the number of repetitions of the sleep mode is equal to the total sleep duration of the network device in the sleep mode.
  • the length of the cycle can be equal to the sleep granularity of the sleep mode, and the number of times the terminal device performs detection in a cycle can be equal to the number of repetitions of the sleep mode corresponding to the cycle.
  • the first signaling may also indicate the sequence in which the terminal device performs detection in at least one cycle. For example, at least one cycle includes cycle 1, cycle 2, and cycle 3. The sequence of these three cycles is cycle 2-cycle 3-cycle 2-cycle 1. The first signaling may indicate that the number of detections corresponding to this sequence is, 2-2-4-3, so that the terminal equipment can determine the number of times of detection in each cycle according to the first signaling.
  • the first signaling may not need to instruct the terminal device to perform the detection in at least one cycle.
  • the number of times, or, for each of at least one cycle, a fixed number of detections is specified.
  • the network device can be configured in advance, or can be specified through a protocol, etc., and the first signaling does not need to instruct the terminal device to at least The number of inspections performed in a cycle.
  • the number of the at least one cycle is greater than 1, then in the at least one cycle, different cycles may have different lengths, or there may be two or more cycles.
  • the length is the same. If there are two periods of the same length, for convenience of description, the two periods can still be regarded as different periods.
  • the detection times corresponding to these two cycles can be the same or different.
  • the network device will perform two rounds of sleep mode 2, and the number of repetitions corresponding to the two rounds of sleep mode 2 is different.
  • the number of repetitions of the first round of sleep mode 2 is 2, and the number of repetitions of the second round of sleep mode 2 It's 4.
  • the cycle corresponding to the first round of sleep mode 2 is cycle 1
  • the cycle corresponding to the second round of sleep mode 2 is cycle 2, but the length of cycle 1 is the same as the length of cycle 2.
  • the terminal device can perform detection based on the offset and at least one cycle.
  • the terminal device may perform detection according to the multiple offsets and at least one cycle.
  • at least one cycle includes cycle 1, cycle 2, and cycle 3.
  • the sequence of these three cycles is cycle 2-cycle 3-cycle 2-cycle 1.
  • the first signaling can indicate that the sequence corresponds to the offset
  • the amount is 2ms-2.5ms-1ms-0.5ms.
  • the terminal device needs to experience an offset of 2ms before executing cycle 2, and the terminal device needs to experience an offset of 2.5ms after executing cycle 2 and before executing cycle 3, and so on.
  • the network device may indicate all the cycles that the terminal device needs to execute through the first signaling, and the at least one cycle includes all the cycles that the terminal device needs to execute.
  • the network device may also instruct the terminal device to execute the part of the cycle through the first signaling, and the at least one kind of cycle only includes the part of the cycle that the terminal device needs to execute.
  • the network device will enter multiple sleep modes in sequence, but before entering each sleep mode, the network device only determines the part of the sleep mode that will be entered next.
  • the at least one sleep mode in S31 is only a partial sleep mode to be executed by the network device, rather than all sleep modes to be executed by the network device.
  • the at least one cycle indicated in S32 is a part of the cycle that the terminal device needs to execute.
  • the network device will enter multiple sleep modes in sequence. Before the network device enters the sleep mode, it will still determine all the sleep modes that are executed. However, when the network device sends the first signaling to the terminal device, it will only indicate that it will be next.
  • the period corresponding to the entered part of the sleep mode is only part of the sleep mode to be executed by the network device, rather than all sleep modes to be executed by the network device.
  • the at least one cycle indicated in S32 is a part of the cycle that the terminal device needs to execute.
  • the network device may also send the second signaling to the terminal device.
  • the terminal device may receive the second signaling when the execution of the at least one cycle is completed or before the execution of the at least one cycle is completed, and the second signaling may indicate One or more cycles, and the one or more cycles are sequentially located after the at least one cycle. For example, the number of the one or more cycles is 1, and the cycle is the first cycle, then the second signaling may indicate the first cycle that is sequentially located after the at least one cycle.
  • the network device will enter multiple sleep modes in sequence, and the first signaling only indicates the period corresponding to the part of the sleep mode that will be entered next. Then, when the network device wakes up from at least one sleep mode, it can send the first signal again.
  • the second signaling the second signaling may indicate the first cycle corresponding to the next sleep mode that is sequentially located after the at least one sleep mode.
  • the second signaling may also indicate the number of times the terminal device performs detection in the first cycle.
  • the second signaling may also indicate the corresponding offset.
  • the second signaling may be unicast signaling, multicast signaling, or broadcast signaling. For the implementation of the second signaling, refer to the introduction to the first signaling.
  • the network device After the network device notifies the terminal device of all the cycles that the terminal device needs to execute, the network device does not need to notify the terminal device. For example, if the network device wakes up from the last sleep mode among all sleep modes that need to be executed, the network device can directly return to the active state without sending the second signaling.
  • the sleep mode determined by the network device to be executed is sleep mode 3-sleep mode 2-sleep mode 1, and the network device only notifies the terminal device of the cycle corresponding to the next sleep mode to be performed each time. For example, when the network device wakes up from sleep mode 3, it may send second signaling, which indicates the period corresponding to sleep mode 2.
  • the network device If the network device wakes up from the sleep mode 2, it can send the second signaling again, and the second signaling at this time indicates the period corresponding to the sleep mode 1. If the network device wakes up from sleep mode 1, it does not need to send the second signaling, but returns to the active state.
  • the terminal device detects the downlink signal according to at least one period.
  • the terminal device may determine at least one period according to the first signaling. Wherein, if the first signaling indicates the first duration, the terminal device can determine the fourth cycle according to the first duration, because in this case the number of at least one cycle is 1, so the at least one cycle is The fourth cycle. For example, the terminal device may determine the fourth period according to the first duration, at least one threshold, and the first set. For example, if the first signaling is the signaling carried by the PDCCH, such as DCI, the terminal device can directly apply at least one period to the second search space, so that the terminal device can detect the downlink signal according to the at least one period in the second search space .
  • the first signaling is the signaling carried by the PDCCH, such as DCI
  • the terminal device can directly apply at least one period to all the information supported by the terminal device.
  • Search space the terminal device can detect the downlink signal according to at least one period in each search space of all the supported search spaces.
  • the second search space is, for example, a search space in which the terminal device receives the first signaling. Applying a period to a search space means replacing the period of the search space with the period.
  • the terminal device may not perform channel state measurement and/or feedback during the period of detecting the downlink signal according to at least one period.
  • the original period of the search space may be configured by the network device through RRC signaling.
  • the first signaling may be RRC signaling or not RRC signaling, no matter what type of signaling the first signaling is, the terminal equipment can be based on the first signaling. Let the indicated at least one period replace the original period configured by the network device through RRC signaling.
  • At least one period can be used to change the period of the first search space of the terminal device to at least one period, and the first search space is the search space for sending the first signaling (at this time, the first search The space and the second search space refer to the same search space), or, the first search space is any one of all search spaces supported by the terminal device.
  • the terminal device may also make a corresponding judgment to determine whether to detect the downlink signal according to at least one cycle.
  • the terminal device may also make a corresponding judgment to determine whether to detect the downlink signal according to at least one cycle.
  • one way of judging may be to judge according to the period of the search space. The following describes the terminal The way the device makes judgments based on the period of the search space. Wherein, when the judgment is made according to the period of the search space, if the first signaling only indicates one kind of period, the terminal device can directly make the judgment according to the period indicated by the first signaling.
  • the terminal device may only need to judge according to the next cycle indicated by the first signaling that the terminal device is about to execute, instead of judging each cycle.
  • the terminal device can make a judgment according to the next cycle indicated by the first signaling. For example, the first signaling indicates cycle 1 and cycle 2, and according to the indication of the first signaling, the terminal device determines to execute cycle 1 first and then execute cycle 2.
  • the terminal device can judge according to the period of the search space (that is, the original period of the search space) and cycle 1, and determine whether to modify the period of the search space according to the judgment result; after the execution of cycle 1 is completed, it is about When executing cycle 2, or before executing cycle 2, the terminal device can first judge according to the period of the search space and cycle 2, and determine whether to modify the period of the search space according to the judgment result.
  • the terminal device may determine whether the period of the first search space is greater than the third period. If the period of the first search space is less than or equal to the third period, the terminal device may replace the period of the first search space with the third period, and the terminal device may detect the downlink signal according to the third period in the first search space. Or, if the period of the first search space is greater than the third period, the terminal device can replace the period of the first search space with M times the third period, that is, the terminal device can follow the M ⁇ P period in the first search space. Cycle detection of the downlink signal, P represents the length of the third cycle, and M is a positive integer.
  • the terminal device may replace the period of the first search space with the third period, or the terminal device may set the period of the first search space as the period of the first search space.
  • the least common multiple of the original period and the third period is possible to make the value of M ⁇ P close to the length of the original period of the first search space as much as possible, so that the change to the period of the first search space is small, which is more conducive to the realization of the terminal device.
  • the terminal device may replace the period of the first search space with the third period, or the terminal device may set the period of the first search space as the period of the first search space. The least common multiple of the original period and the third period.
  • the first search space may be the second search space as described above, that is, the search space in which the terminal device receives the first signaling, or the first search space may also be the terminal Any one of all search spaces supported by the device. If the first signaling is not signaling carried by the PDCCH, the first search space may be any one of all search spaces supported by the terminal device.
  • the terminal device can only judge the second search space, and for the search spaces other than the second search space supported by the terminal device, the terminal The device does not apply at least one period to these search spaces, that is, for other search spaces supported by the terminal device except the second search space, the terminal device still continues to use the original period of these search spaces to detect downlink Signal; or, the first signaling may be the signaling carried by the PDCCH, or it may not be the signaling carried by the PDCCH, then the terminal device can judge each search space in all the search spaces supported by the terminal device, The terminal device can detect the downlink signal according to the third period in each search space of all the supported search spaces.
  • the terminal device can modify the period of the first search space to 1ms, and the terminal device can detect the downlink signal according to the period of 1ms in the first search space.
  • the terminal device can modify the period of the first search space to 3ms, or modify it to 4ms, etc. according to the principle of making the value of M ⁇ P as close to the original period of the first search space as possible; or, according to the The period of a search space is replaced by the principle of the third period, and the period of the first search space is modified to 1ms; alternatively, the period of the first search space can be set to the original period of the first search space and the minimum of the third period
  • the principle of common multiple is to modify the period of the first search space to 16ms.
  • the terminal device can detect the downlink signal according to the modified period in the first search space.
  • the terminal device can determine whether to modify the period of the first search space according to the judgment result, which can make the modification of the period of the search space by the terminal device more reasonable.
  • the sequence of the at least one sleep mode is sleep mode 2-sleep mode 3-sleep mode 2-sleep mode 1
  • the sequence of the at least one cycle is T2-T3-T2-T1
  • T1 represents the length of the cycle of sleep mode 1.
  • T2 represents the length of the sleep mode 2 cycle
  • T3 represents the length of the sleep mode 3 cycle
  • the number of detections corresponding to at least one cycle is n2-n3-n′2-n1.
  • the terminal device may first adjust the period of the first search space to T2 that matches the sleep mode 2. After detecting according to T2 and/or n2, the network device will enter sleep mode three, and the terminal device will also adjust the period of the first search space to T3 that matches sleep mode 3.
  • the network device After detecting according to T3 and/or n3, the network device will enter sleep mode 2, and the terminal device will also adjust the period of the first search space to a period T2 that matches sleep mode 2. After detecting according to T2 and/or n′2, the network device will enter sleep mode 1, and the terminal device will also adjust the period of the first search space to T1 that matches sleep mode 1. After detecting according to T1 and/or n1, the network device ends the dormant state and enters the active state. At this time, the terminal device will also detect the downlink signal from the awakened network device.
  • the terminal device also needs to consider this one when detecting the downlink signal according to the first cycle. Or multiple offsets.
  • the sequence of at least one sleep mode is sleep mode 2-sleep mode 3-sleep mode 2-sleep mode 1
  • the sequence of at least one cycle is T2-T3-T2-T1
  • the number of detections corresponding to at least one cycle is n2-n3-n'2-n1
  • the offset corresponding to at least one cycle is P2-P3-P'2-P1.
  • the terminal device may adjust the period of the first search space to T2 that matches sleep mode 2 according to P2 and/or T2. After detecting according to P2 and or T2 and/or n2, the network device will enter sleep mode 3.
  • the terminal device adjusts the period of the first search space to T3 that matches sleep mode 3 according to the offset P3 and/or T3 .
  • the network device After detecting according to P3 and/or T3 and/or n3, the network device will enter sleep mode 2.
  • the terminal device adjusts the period of the first search space to be the same as sleep mode 2 according to the offset P′2 and/or T2. Matched period T2.
  • the network device After performing detections based on P'2 and/or T2 and n'2 times, the network device will enter sleep mode 1, and the terminal device will adjust the period of the first search space to be the same as sleep mode 1 based on the offset P1 and/or T1.
  • Match T1 After detecting according to P1 and/or T1 and/or n1, the network device ends the sleep state and enters the active state. At this time, the terminal device will also detect the downlink signal from the awakened network device.
  • the network device receives the downlink service.
  • the network device receives the downlink service during the Nth repetition process of the first sleep mode in the at least one sleep mode, or the network device ends the Nth repetition process of the first sleep mode in the at least one sleep mode
  • the Nth repetition process may be any repetition process of the first sleep mode
  • the first sleep mode may be any sleep mode among at least one sleep mode.
  • the network device receives the downlink service from the core network device during the Nth repetition process in the first sleep mode or at the end of the Nth repetition process, and the downlink service corresponds to the terminal device, for example, corresponding to S33 Terminal equipment in.
  • the first sleep mode may be any sleep mode among at least one sleep mode
  • the Nth repetition process may be any repetition process of the first sleep mode.
  • the first sleep mode may be any sleep mode among at least one sleep mode, and the number of repetitions of the first sleep mode may be greater than or equal to N.
  • the first sleep mode is the last sleep mode in the at least one sleep mode, and the number of repetitions of the first sleep mode is equal to N
  • the network device is the first sleep mode in the at least one sleep mode.
  • the downlink service is received at the end of the N repetition process. In this case, it can be considered that the network device wakes up after the execution of at least one sleep mode is completed.
  • the network device may receive the downlink service, or it is also possible that even if the network device does not receive the downlink service, after the execution of at least one sleep mode is completed, the network The device will also wake up. And S34 only takes the network equipment to receive the downlink service as an example.
  • the network device wakes up after the Nth repetition process of the first sleep mode among the at least one sleep mode ends. In addition, the network device no longer executes the remaining repetitive processes of the first sleep mode except for the N repetitive processes, and no longer executes at least one of the other sleep modes that are sequentially located after the first sleep mode.
  • the network device can wake up in time to execute the downlink service as soon as possible and reduce the delay of the downlink service.
  • the sleep mode to be executed by the network device is sleep mode 3-sleep mode 2-sleep mode 1, wherein the repetition number of sleep mode 3 is 6, the repetition number of sleep mode 2 is 2, and the repetition number of sleep mode 1 is 2.
  • the network device receives the downlink service during the third repetition of sleep mode 3.
  • sleep mode 3 has been repeated twice, and it is now in the third repetition process of sleep mode 3, and sleep mode 3 is still There were 3 repetitions that were not executed.
  • the network device can still start to wake up after the third repetition process of sleep mode 3 ends.
  • the three repetitive processes that have not been executed in sleep mode 3, and the subsequent sleep mode 2 and sleep mode 1, are not executed by the network device.
  • the network device After waking up, the network device sends fourth signaling to the terminal device.
  • the terminal device it can be the fourth signaling from the network device during the Nth detection in the fifth cycle in at least one cycle, where the Nth detection can be any detection in the fifth cycle,
  • the fifth cycle may be any one of at least one cycle.
  • the fifth cycle may be the last sleep mode in at least one cycle; otherwise, the fifth cycle is not the last sleep mode in at least one cycle. Located in the last cycle.
  • the number of repetitions of the first sleep mode may be equal to or not equal to the number of detections in the fifth cycle. For example, when the two are equal, if the number of repetitions of the first sleep mode is equal to N, the number of detections in the fifth cycle is equal to N, and if the number of repetitions of the first sleep mode is greater than N, the number of detections in the fifth cycle is Greater than N.
  • the terminal device receives the data from the at least one cycle at the Nth detection in the fifth cycle
  • the terminal device For the fourth signaling of the network device, it can be considered that the terminal device has received the fourth signaling after the execution of at least one cycle is completed, that is, the terminal device normally corresponds to the sleep mode of the network device.
  • the terminal device may receive the fourth signaling when the first duration ends or after the first duration ends.
  • the period of the terminal device matches the sleep mode of the network device, so the terminal device can receive the fourth signaling sent after the network device wakes up. After the terminal device receives the fourth signaling, it can perform normal services with the network device.
  • the fourth signaling may be signaling carried by the PDCCH.
  • the fourth signaling is a wake-up signal (wake up signal, WUS) used to wake up a terminal device; or, the fourth signaling is a signaling used to schedule downlink data or uplink data, such as DCI; or, the fourth signal Let the signaling be used to transmit special information, such as tsunami information or earthquake information.
  • WUS wake up signal
  • the fourth signaling may also be other signaling, and the fourth signaling may also have other uses.
  • the terminal device uses the second cycle to detect the downlink control channel, and the second cycle does not belong to at least one cycle.
  • the terminal device may modify the period of the terminal device to the second period. Or, even if the terminal device does not receive the fourth signaling, the terminal device can modify the period of the terminal device to the second period after executing at least one period (here, at least one period is used by the network device to send the terminal device to the terminal device). Take the entire cycle indicated as an example).
  • the terminal device may resume the channel state measurement and/or Feedback; or, the terminal device may not resume the measurement and/or feedback of the channel state at this time, that is, whether to resume the measurement and/or feedback of the channel state may be independent of the fourth signaling.
  • the terminal device can modify the period of these search spaces to the second period in S37; or, regardless of which search space period the terminal device modifies in S33
  • the terminal device may modify the period of each search space in all search spaces supported by the terminal device in S37, or the terminal device may only modify the period of the search space for receiving the fourth signaling to the first period in S37. Two cycles.
  • the second cycle does not belong to at least one cycle, nor is it the first cycle.
  • the second cycle is not a cycle that matches at least one sleep mode of the network device.
  • the second cycle should be the terminal device and the network device. The cycle of the terminal device when both are working normally.
  • the second period may be the original period of the terminal device before the terminal device modifies the period of the terminal device in S33, or in other words, the second period may be before the network device enters the sleep mode, or the terminal device is receiving the first period.
  • the original period of the terminal device; or, the second period may also be the period indicated by the fourth signaling; or, the second period may also be the period specified by the protocol, and so on.
  • S34 to S37 are all optional steps, not mandatory.
  • the network device after determining that the network device is about to enter at least one sleep mode, can indicate at least one cycle to the terminal device, and the at least one cycle can match the at least one sleep mode, so that the terminal device
  • the downlink signal can be detected according to at least one cycle, which is equivalent to that the terminal device can detect the downlink signal according to the sleep mode of the network device, and try to avoid the terminal device to detect the downlink according to the cycle when the network device is in the sleep mode.
  • the signal reduces the probability of the terminal equipment doing useless work and also reduces the power consumption of the terminal equipment.
  • the period can correspond to the sleep mode of the network device.
  • the number of at least one period can be greater than 1, that is, the network device can indicate multiple periods to the terminal device
  • the terminal device can detect the downlink signal according to the period matching the sleep mode, so that the period of the terminal device can be matched with each sleep mode of the network device, reducing the terminal device’s Power consumption.
  • the network device will indicate at least one cycle.
  • the terminal device can match the state of the network device only by detecting the downlink signal according to a cycle.
  • FIG. 5 is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the method can be executed by two communication devices, such as a first communication device and a second communication device, where the first communication device can be a network device or can support the network device to implement the functions required by the method.
  • the communication device or the first communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course it may also be other communication devices, such as a chip system.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, or the second communication device may be a terminal device or capable of supporting the terminal device to implement the method.
  • the communication device with the required functions can of course also be other communication devices, such as a chip system. And there are no restrictions on the implementation of the first communication device and the second communication device.
  • the first communication device may be a network device
  • the second communication device is a terminal device
  • both the first communication device and the second communication device are network devices.
  • the device, or the first communication device and the second communication device are both terminal devices, or the first communication device is a network device
  • the second communication device is a communication device capable of supporting the terminal device to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • the method is executed by a network device and a terminal device as an example, that is, an example is taken that the first communication device is a network device and the second communication device is a terminal device.
  • the network device described in the following may be a network device in the network architecture shown in FIG. 2, and the terminal device described in the following may be Figure 2 shows the terminal equipment in the network architecture.
  • the network device determines first signaling, where the first signaling is used to indicate a first number of times or a first duration, and the first number of times is the number of times the terminal device performs detection according to the first period.
  • the duration is the duration for the terminal device to perform detection according to the first cycle.
  • the network device may determine the first period, and the first period is used for the terminal device to detect the downlink signal.
  • the length of the first cycle is already known by the terminal device, for example, the network device has been configured to the terminal device, or the first cycle can be pre-configured in the terminal device, or the first cycle is specified by a protocol. Then the network device only needs to indicate the number of detections in the first cycle to the terminal device through the first signaling. Or, if the terminal device does not know the length of the first period, the first signaling may also indicate the length of the first period; or, the network device may send third signaling to indicate the length of the first period through the third signaling . After receiving the third signaling, the terminal device can determine the length of the first cycle.
  • the first period matches the sleep mode of the network device.
  • the network device only supports one sleep mode, and the network device only needs to determine a period that matches the sleep mode.
  • a period is matched with a sleep mode.
  • a matching method is that the difference between the length of the period and the sleep granularity of the sleep mode is smaller than the first threshold.
  • the first threshold is, for example, configured by a network device, or stipulated by a protocol. If the first threshold is 0, the length of the period is equal to the sleep granularity of the sleep mode. For example, if the sleep granularity of a sleep mode is 1 ms, the corresponding period determined by the network device may also be 1 ms.
  • the first signaling may also indicate the offset, or the network device may also indicate the offset through other signaling.
  • the first signaling may indicate one or more offsets. These offsets can assist the terminal device to detect the first cycle. For more description of the offset of the period, refer to S31 in the embodiment shown in FIG. 3.
  • the first signaling may not necessarily indicate the first number of times, but may indicate the first duration, for example, the first duration is the total duration of the terminal device performing detection in the first cycle.
  • the first duration can be the total duration of the network device in the sleep mode.
  • the terminal device performs detection in the first cycle, so the first duration can also be considered as the terminal The total time for the device to detect in the first cycle. If the first duration is the total duration of the network device in the sleep mode, and the terminal device can determine the first cycle, the terminal device can determine the number of detections in the first cycle according to the first duration and the length of the first cycle. Therefore, if the first signaling indicates the first duration, the first signaling may not necessarily indicate the first number of times.
  • the network device sends the first signaling, and the terminal device receives the first signaling from the network device.
  • the first signaling may be unicast signaling, multicast signaling, or broadcast signaling.
  • the first signaling can only be directed to one terminal device.
  • the network device can only send the first signaling to the terminal device that needs to save power consumption without covering the network device.
  • the multiple terminal devices in, all send the first signaling, so that the first signaling is more targeted.
  • the first signaling may be UE group signaling, which may be directed to multiple terminal devices, and these multiple terminal devices can use the first cycle to detect downlink signals.
  • the first signaling is broadcast signaling. For example, for a cell, the first cycle can be applied to detect the downlink signal, and the network device can indicate the first cycle through broadcast signaling. If the first signaling is multicast signaling or broadcast signaling, signaling overhead can be saved to a certain extent.
  • the first signaling may be RRC signaling, or may also be signaling carried in PDCCH, such as DCI. If the first signaling is broadcast signaling, the first signaling may be a system message, such as MIB or SIB. If the first signaling is RRC signaling, the network equipment can send the first signaling in a semi-static manner, which can improve the reliability of the signaling; if the first signaling is signaling carried in the PDCCH, the network equipment The first signaling can be sent dynamically, which can save the time for the network device to notify the terminal device, so that the network device can enter the sleep mode faster.
  • the terminal device detects the downlink signal according to the first cycle.
  • the terminal device After the terminal device receives the first signaling, if the first signaling indicates the first number of times, the terminal device can determine the first number of times; or, if the first signaling indicates the first duration, the terminal device can determine the first number of times. Period, the terminal device may also determine the first number of times according to the first duration and the first period. After determining the first number of times, the terminal device can detect the downlink signal according to the first period and/or the first number of times.
  • the terminal device can directly apply the first period to the second search space, so that the terminal device can detect the downlink signal in the second search space according to the first period.
  • the terminal device can directly apply the first period to all searches supported by the terminal device Space, the terminal device can detect the downlink signal according to the first cycle in each search space of all the supported search spaces.
  • the second search space is, for example, a search space in which the terminal device receives the first signaling. Applying a period to a search space means replacing the period of the search space with the period.
  • the original period of the search space may be configured by the network device through RRC signaling.
  • the first signaling may be RRC signaling or not RRC signaling, no matter what type of signaling is the first signaling, the terminal device can receive the first signaling. After a signaling, the original period configured by the network device through the RRC signaling is replaced according to the first period.
  • the first period can be used to change the period of the first search space of the terminal device to the first period, and the first search space is the search space for sending the first signaling (at this time, the first search space and The second search space refers to the same search space), or the first search space is any one of all search spaces supported by the terminal device.
  • the terminal device may also make a corresponding judgment to determine whether to detect the downlink signal according to the first cycle.
  • the terminal device may also make a corresponding judgment to determine whether to detect the downlink signal according to the first cycle.
  • one way of judging may be to judge according to the cycle of the search space. The terminal equipment is described below. The method of judging based on the period of the search space.
  • the terminal device may determine whether the period of the first search space is greater than the first period. If the period of the first search space is less than or equal to the first period, the terminal device may replace the period of the first search space with the first period, and the terminal device may detect the downlink signal according to the first period in the first search space. Or, if the period of the first search space is greater than the first period, the terminal device may replace the period of the first search space with M times the first period, that is, the terminal device may follow the M ⁇ P in the first search space.
  • Periodic detection PDCCH P represents the length of the first period
  • M is a positive integer.
  • the terminal device may replace the period of the first search space with the first period, or the terminal device may set the period of the first search space as the period of the first search space. The least common multiple of the original period and the first period.
  • the first search space may be the second search space as described above, that is, the search space in which the terminal device receives the first signaling, or the first search space may also be the terminal Any one of all search spaces supported by the device. If the first signaling is not signaling carried by the PDCCH, the first search space may be any one of all search spaces supported by the terminal device.
  • the terminal device also needs to consider the offset when detecting the downlink signal according to the first cycle.
  • the network device receives the downlink service.
  • the network device receives the downlink service during the Nth repetition process of the sleep mode or at the end of the Nth repetition process, and N is a positive integer.
  • the Nth repetition process can be any repetition process in the sleep mode.
  • the network device may receive downlink services, or it is also possible that even if the network device does not receive downlink services, the network device will wake up after the sleep mode is executed.
  • S54 only takes the network equipment to receive the downlink service as an example.
  • the network device wakes up after the Nth repetition process of the sleep mode ends. In addition, the network device no longer executes the remaining repetitive processes of the sleep mode except for the N repetitive processes.
  • the network device can wake up in time to execute the downlink service as soon as possible and reduce the delay of the downlink service. For example, the network device receives downlink traffic during the third repetition of sleep mode, and the repetition number of sleep mode 3 is 6. At this time, the sleep mode has been repeated twice, and it is now in the third sleep mode. During the repetition process, and the sleep mode has 3 repetition processes that have not been executed. However, the network device can still start to wake up after the third repetition process of the sleep mode ends. At this time, it is equivalent to that the network device starts to wake up before the first time period ends. However, the network device no longer executes the three repetitive processes that have not been executed in the sleep mode.
  • the network device may also wake up when the sleep mode ends or after the sleep mode ends.
  • the network device receives downlink traffic during the 6th repetition of sleep mode, and the repetition number of sleep mode 3 is 6. At this time, the sleep mode has been repeated 5 times, and it is now in the 6th sleep mode. Repeat the process. Then the network device can start to wake up after the sixth repetition process of the sleep mode ends. At this time, it is equivalent to the network device starting to wake up at the end of the first time period.
  • the network device may not receive the downlink service, and the network device may also start to wake up when the sleep mode ends or after the sleep mode ends.
  • the network device After waking up, the network device sends the second signaling to the terminal device.
  • the terminal device For the terminal device, it is to receive the second signaling from the network device during the Nth detection in the first cycle, where the Nth detection can be any detection in the first cycle.
  • the terminal device may receive the second signaling from the network device when the first duration is not over; or, it may receive the second signaling from the network device when the first duration ends or after the first duration ends.
  • the period of the terminal device matches the sleep mode of the network device, so the terminal device can receive the second signaling sent after the network device wakes up. After the terminal device receives the second signaling, it can perform normal services with the network device.
  • the second signaling may be signaling carried by the PDCCH.
  • the second signaling is WUS used to wake up terminal equipment; or, the second signaling is signaling used to schedule downlink data or uplink data, such as DCI; or, the second signaling is used to transmit special information.
  • Signaling and special information are, for example, tsunami information or earthquake information.
  • the second signaling may also be other signaling, and the second signaling may also have other uses.
  • the terminal device uses the second cycle to detect the downlink control channel, and the second cycle is not the same cycle as the first cycle.
  • the terminal device may modify the period of the terminal device to the second period. Or, even if the terminal device does not receive the second signaling, the terminal device may modify the period of the terminal device to the second period after executing at least one period.
  • the terminal device can modify the period of these search spaces to the second period in S57; or, regardless of which search space period the terminal device modifies in S53
  • the terminal device may change the period of each search space in all search spaces supported by the terminal device in S57, or the terminal device may only modify the period of the search space for receiving the second signaling to the first period in S57. Two cycles.
  • the second cycle is not the same cycle as the first cycle.
  • the second cycle is not a cycle that matches the sleep mode of the network device.
  • the second cycle should be the cycle of the terminal device when both the terminal device and the network device are working normally.
  • the second period may be the original period of the terminal device before the terminal device modifies the period of the terminal device in S53, or in other words, the second period may be before the network device enters the sleep mode, or the terminal device is receiving the first period.
  • the original period of the terminal device; or, the second period may also be the period indicated by the second signaling; or, the second period may also be the period specified by the protocol, and so on.
  • S54 to S57 are only optional steps, not mandatory.
  • the terminal device may not perform channel state measurement and/or feedback during the period when the terminal device detects the downlink signal according to the first period; accordingly, After receiving the second signaling, the terminal device may resume the measurement and/or feedback of the channel state, or may not resume the measurement and/or feedback of the channel state at this time, that is, whether to resume the measurement and/or feedback of the channel state may be related to the first Two signaling is irrelevant.
  • the network device after determining the sleep mode of the network device, can indicate the number of detections in the first cycle to the terminal device, and the first cycle can match the sleep mode, so that the terminal device can detect according to the first cycle
  • the downlink signal is equivalent to that the terminal device can detect the downlink signal according to the sleep mode of the network device. Try to avoid the terminal device to detect the downlink signal according to the cycle when the network device is in the active state when the network device is in the sleep mode, which reduces the size of the terminal device. The probability of doing useless work also reduces the power consumption of the terminal equipment.
  • FIG. 6 is a schematic block diagram of a communication device 600 according to an embodiment of the application.
  • the communication device 600 is a network device 600, for example.
  • the network device 600 includes a processing module 610 and a transceiver module 620.
  • the network device 600 may be a network device, or may be a chip applied to the network device, or other combination devices, components, etc. having the functions of the above-mentioned network device.
  • the transceiver module 620 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 610 may be a processor
  • the processor may include one or more central processing units (central processing units). unit, CPU).
  • the transceiver module 620 may be a radio frequency unit, and the processing module 610 may be a processor, such as a baseband processor.
  • the transceiver module 620 may be an input/output interface of a chip (such as a baseband chip), and the processing module 610 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 610 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 620 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 610 can be used to perform all operations performed by the network device in the embodiment shown in FIG. 3 except for the transceiving operations, such as S31, S34, and S35, and/or to support the technology described herein Other processes.
  • the transceiver module 620 may be used to perform all the receiving operations performed by the network device in the embodiment shown in FIG. 3, such as S32 and S36, and/or other processes used to support the technology described herein.
  • the transceiver module 620 may be a functional module that can perform both sending and receiving operations.
  • the transceiver module 620 may be used to perform all the sending operations performed by the network device in the embodiment shown in FIG. 3
  • receiving operations for example, when performing a sending operation, the transceiver module 620 can be considered as a sending module, and when performing a receiving operation, the transceiver module 620 can be considered as a receiving module; or, the transceiver module 620 can also be two functional modules, The transceiver module can be regarded as a collective term for these two functional modules.
  • the two functional modules are respectively a sending module and a receiving module.
  • the sending module is used to complete the sending operation.
  • the receiving module is used to complete the receiving operation.
  • the receiving module may be used to perform all the receiving operations performed by the network device in the embodiment shown in FIG. 3.
  • the processing module 610 is configured to determine first signaling, where the first signaling is used to indicate at least one cycle, and each cycle in the at least one cycle is a cycle for the terminal device to detect a downlink signal;
  • the transceiver module 620 is configured to send the first signaling.
  • the at least one cycle matches at least one sleep mode.
  • the first signaling is also used to indicate the number of times that the terminal device performs detection in the at least one cycle.
  • the first signaling is also used to instruct the terminal device to perform detection sequence in the at least one cycle.
  • the first signaling is further used to indicate one or more offsets, and the one or more offsets are used for auxiliary period detection.
  • the transceiver module 620 is further configured to send second signaling when the number of detections in the at least one cycle ends, where the second signaling is used to indicate the first cycle, and the The first cycle is sequentially located after the at least one cycle.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling includes the at least one period; or,
  • the first signaling includes an identifier of the first period set, the identifier of the first period set is used to indicate the at least one period, and the first period set is one of a plurality of period sets, so Each of the plurality of period sets includes a sequential combination of one or more periods.
  • the transceiver module 620 is further configured to send third signaling, and the third signaling is used to indicate the multiple periodic sets.
  • the length of the preceding cycle is greater than the length of the following cycle.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling indicates a first duration, and the first duration is related to one of the at least one cycle.
  • the first duration is related to one of the at least one period, and includes:
  • the value of the first duration is proportional to the value of the one period.
  • the transceiver module 620 is further configured to send fourth signaling after the network device 600 wakes up.
  • the fourth signaling is WUS signaling, or DCI for scheduling data, or It is the signaling used to carry special information.
  • the first signaling is RRC signaling, DCI, or system message.
  • the at least one period is used to change the period of the first search space of the terminal device to the at least one period, and the first search space is for sending the first search space.
  • a search space for signaling, or, the first search space includes any one of all search spaces supported by the terminal device.
  • FIG. 7 is a schematic block diagram of a communication device 700 according to an embodiment of the application.
  • the communication apparatus 700 is a terminal device 700, for example.
  • the terminal device 700 includes a processing module 710 and a transceiver module 720.
  • the terminal device 700 may be a network device, or may be a chip applied in a terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 720 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 710 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more CPU.
  • the transceiver module 720 may be a radio frequency unit, and the processing module 710 may be a processor, such as a baseband processor.
  • the transceiver module 720 may be an input/output interface of a chip (for example, a baseband chip), and the processing module 710 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 710 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 720 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 710 may be used to perform all operations performed by the terminal device in the embodiment shown in FIG. 3 except for the transceiving operations, such as S33 and S37, and/or other operations used to support the technology described herein. process.
  • the transceiver module 720 may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 3, such as S32 and S36, and/or other processes used to support the technology described herein.
  • the transceiver module 720 may be a functional module that can perform both sending and receiving operations.
  • the transceiver module 720 may be used to perform all the sending operations performed by the terminal device in the embodiment shown in FIG. 3
  • receiving operations for example, when performing a sending operation, the transceiver module 720 can be considered as a sending module, and when performing a receiving operation, the transceiver module 720 can be considered as a receiving module; alternatively, the transceiver module 720 can also be two functional modules, The transceiver module can be regarded as a collective term for these two functional modules.
  • the two functional modules are respectively a sending module and a receiving module.
  • the sending module is used to complete the sending operation.
  • the receiving module is used to complete the receiving operation.
  • the receiving module may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 3.
  • the transceiver module 720 is configured to receive first signaling from a network device, where the first signaling is used to indicate at least one cycle, and each cycle in the at least one cycle is for the terminal device 700 to detect a downlink signal Period of
  • the processing module 710 is configured to detect a downlink signal according to the at least one period.
  • the at least one cycle matches at least one sleep mode.
  • the first signaling is also used to indicate the number of times that the terminal device 700 performs detection in the at least one cycle.
  • the first signaling is also used to instruct the terminal device 700 to perform detection sequence in the at least one cycle.
  • the first signaling is further used to indicate one or more offsets, and the one or more offsets are used for auxiliary period detection.
  • the transceiver module 720 is further configured to receive second signaling from the network device, where the second signaling is used to indicate a first period, and the first period is located in sequence After the at least one cycle.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling includes the at least one period; or,
  • the first signaling includes an identifier of the first period set, the identifier of the first period set is used to indicate the at least one period, and the first period set is one of a plurality of period sets, so Each of the plurality of period sets includes a sequential combination of one or more periods.
  • the transceiver module 720 is further configured to receive third signaling from the network device, where the third signaling is used to indicate the multiple periodic sets.
  • the length of the preceding cycle is greater than the length of the following cycle.
  • the first signaling is used to indicate at least one period, including:
  • the first signaling indicates a first duration, and the first duration is related to one of at least one cycle.
  • the first duration is related to one period of at least one period, and includes:
  • the value of the first duration is proportional to the value of the one period.
  • the transceiver module 720 is further configured to receive fourth signaling from the network device, where the fourth signaling is WUS signaling, or DCI for scheduling data, or signaling for carrying special information;
  • the processing module 710 is further configured to detect a downlink signal according to a second period, where the second period does not belong to the at least one period.
  • the first signaling is RRC signaling, DCI, or system message.
  • the at least one period is used to change the period of the first search space of the terminal device 700 to the at least one period, and the first search space is for sending the first information.
  • the first search space includes any one of all search spaces supported by the terminal device 700.
  • the processing module 710 is configured to detect the downlink signal according to the third period of the at least one period in the following manner:
  • the downlink signal is detected according to the third period in the first search space.
  • the processing module 710 is configured to detect the downlink signal according to the third period of the at least one period in the following manner:
  • the downlink signal is detected according to the third period, or, in the first search space, the downlink signal is detected according to the period of M ⁇ P, where M is a positive integer, and P is the first The length of the two cycles.
  • the first search space is a search space for receiving the first signaling, or the first search space includes any one of all search spaces supported by the terminal device 700.
  • FIG. 8 is a schematic block diagram of a communication device 800 provided by an embodiment of the application.
  • the communication device 800 is a network device 800, for example.
  • the network device 800 includes a processing module 810 and a transceiver module 820.
  • the network device 800 may be a network device, or may be a chip applied in the network device or other combination devices or components having the functions of the above-mentioned network device.
  • the transceiver module 820 may be a transceiver, the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 810 may be a processor, and the processor may include one or more CPUs.
  • the transceiver module 820 may be a radio frequency unit, and the processing module 810 may be a processor, such as a baseband processor.
  • the transceiver module 820 may be an input/output interface of a chip (such as a baseband chip), and the processing module 810 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 810 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 820 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 810 can be used to perform all the operations performed by the network device in the embodiment shown in FIG. 5 except for the transceiving operations, such as S51, S54, and S55, and/or to support the technology described herein Other processes.
  • the transceiver module 820 may be used to perform all the receiving operations performed by the network device in the embodiment shown in FIG. 5, such as S52 and S56, and/or other processes used to support the technology described herein.
  • the transceiver module 820 may be a functional module that can perform both sending and receiving operations.
  • the transceiver module 820 may be used to perform all the sending operations performed by the network device in the embodiment shown in FIG. 5
  • receiving operation for example, when performing a sending operation, the transceiver module 820 can be considered as a sending module, and when performing a receiving operation, the transceiver module 820 can be considered as a receiving module; or, the transceiver module 820 can also be two functional modules, The transceiver module can be regarded as a collective term for these two functional modules.
  • the two functional modules are respectively a sending module and a receiving module.
  • the sending module is used to complete the sending operation.
  • the receiving module is used to complete the receiving operation.
  • the receiving module may be used to perform all the receiving operations performed by the network device in the embodiment shown in FIG. 5.
  • the processing module 810 is configured to determine the first signaling, and the first signaling is used to indicate the number of detections performed by the terminal device in the first cycle, or the first time length for instructing the terminal device to perform detection in the first cycle, so The first cycle is the cycle for the terminal equipment to detect the downlink signal;
  • the transceiver module 820 is configured to send the first signaling.
  • the first period matches the sleep mode.
  • the first signaling is also used to indicate an offset, and the offset is used to detect the auxiliary period.
  • the transceiver module 820 is further configured to send second signaling after the network device 800 wakes up.
  • the second signaling is WUS signaling, or DCI for scheduling data, or It is the signaling used to carry special information.
  • the first signaling is RRC signaling, DCI, or system message.
  • FIG. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the application.
  • the communication device 900 is a terminal device 900, for example.
  • the terminal device 900 includes a processing module 910 and a transceiver module 920.
  • the terminal device 900 may be a network device, or may be a chip applied in a terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 920 may be a transceiver
  • the transceiver may include an antenna and a radio frequency circuit, etc.
  • the processing module 910 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more CPU.
  • the transceiver module 920 may be a radio frequency unit, and the processing module 910 may be a processor, such as a baseband processor.
  • the transceiver module 920 may be an input/output interface of a chip (such as a baseband chip), and the processing module 910 may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 910 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component, and the transceiver module 920 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 910 may be used to perform all the operations performed by the terminal device in the embodiment shown in FIG. 5 except for the transceiving operations, such as S53 and S57, and/or other operations used to support the technology described herein. process.
  • the transceiver module 920 may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 5, such as S52 and S56, and/or other processes used to support the technology described herein.
  • the transceiver module 920 can be a functional module that can complete both sending and receiving operations.
  • the transceiver module 920 can be used to perform all the sending operations performed by the terminal device in the embodiment shown in FIG. 5
  • receiving operations for example, when performing a sending operation, the transceiver module 920 can be considered as a sending module, and when performing a receiving operation, the transceiver module 920 can be considered as a receiving module; or the transceiver module 920 can also be two functional modules, The transceiver module can be regarded as a collective term for these two functional modules.
  • the two functional modules are respectively a sending module and a receiving module.
  • the sending module is used to complete the sending operation.
  • the receiving module is used to complete the receiving operation.
  • the receiving module may be used to perform all the receiving operations performed by the terminal device in the embodiment shown in FIG. 5.
  • the transceiver module 920 is configured to receive first signaling from a network device, where the first signaling is used to indicate the number of times the terminal device performs detection in the first cycle, or instruct the terminal device to perform detection in the first cycle.
  • the first period is a period for the terminal device 900 to detect a downlink signal;
  • the processing module 910 is configured to detect a downlink signal according to the first period.
  • the first period matches the sleep mode.
  • the first signaling is used to indicate the first duration
  • the processing module 910 is further configured to determine that the first period is used according to the first period and the first period. The number of tests performed.
  • the first signaling is also used to indicate an offset, and the offset is used to detect the auxiliary period.
  • the transceiver module 920 is further configured to receive second signaling from the network device, where the second signaling is WUS signaling, or DCI for scheduling data, or Signaling used to carry special information.
  • the first signaling is RRC signaling, DCI, or system message.
  • the processing module 910 is configured to detect the downlink signal according to the first period in the following manner:
  • the downlink signal is detected according to the first period in the first search space.
  • the processing module 910 is configured to detect the downlink signal according to the first period in the following manner:
  • the downlink signal is detected according to the first period, or, in the first search space, the downlink signal is detected according to the period of M ⁇ P, where M is a positive integer, and P is the first period.
  • M is a positive integer
  • P is the first period.
  • the first search space is a search space in which the first signaling is received, or, the first search space includes any one of all search spaces supported by the terminal device 900.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 10 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only one memory and processor are shown in FIG. 10. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with transceiving functions can be regarded as the transceiving unit of the terminal device (the transceiving unit can be a functional unit that can realize the sending and receiving functions; or the transceiving unit can also be It includes two functional units, namely a receiving unit capable of realizing the receiving function and a transmitting unit capable of realizing the transmitting function), and the processor with the processing function is regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1010 and a processing unit 1020.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1010 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1010 as the sending unit, that is, the transceiver unit 1010 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1010 is used to perform the sending and receiving operations on the terminal device side in the foregoing method embodiment, and the processing unit 1020 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiver unit 1010 is used to perform all the sending and receiving operations of the terminal device in the embodiment shown in FIG. 3, such as S32 and S36, and/or the transceiver unit 1010 is also used to perform support for this text.
  • the processing unit 1320 is configured to perform all operations performed by the terminal device in the embodiment shown in FIG. 3 except for the transceiving operations, such as S33 and S37, and/or the processing unit 1020 is also configured to perform the support described herein Other processes of technology.
  • the transceiver unit 1010 is used to perform all the sending operations and receiving operations of the terminal device in the embodiment shown in FIG. 5, such as S52 and S56, and/or the transceiver unit 1010 is also used to perform support Other processes of the technique described in this article.
  • the processing unit 1020 is configured to perform all operations performed by the terminal device in the embodiment shown in FIG. 5 except for the transceiving operations, such as S53 and S57, and/or the processing unit 1020 is also configured to perform the support described herein Other processes of technology.
  • the device may include a transceiver unit and a processing unit.
  • the transceiving unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or a microprocessor or an integrated circuit.
  • the device shown in FIG. 11 can be referred to.
  • the device can perform functions similar to the processing module 710 in FIG. 7.
  • the device can perform functions similar to the processing module 910 in FIG. 9.
  • the device includes a processor 1110, a data sending processor 1120, and a data receiving processor 1130.
  • the processing module 710 in the foregoing embodiment may be the processor 1110 in FIG. 11 and complete corresponding functions;
  • the transceiving module 720 in the foregoing embodiment may be the sending data processor 1120 in FIG. 11, and/or receiving data Processor 1130, and complete the corresponding functions.
  • the processing module 910 in the foregoing embodiment may be the processor 1110 in FIG.
  • the transceiver module 920 in the foregoing embodiment may be the data sending processor 1120 in FIG. 11, and/or Receive data processor 1130 and complete corresponding functions.
  • the channel encoder and the channel decoder are shown in FIG. 11, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • Fig. 12 shows another form of this embodiment.
  • the processing device 1200 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1203 and an interface 1204.
  • the processor 1203 completes the function of the aforementioned processing module 710
  • the interface 1204 completes the function of the aforementioned transceiver module 720.
  • the processor 1203 completes the function of the aforementioned processing module 910
  • the interface 1204 completes the function of the aforementioned transceiver module 920.
  • the modulation subsystem includes a memory 1206, a processor 1203, and a program stored in the memory 1206 and running on the processor.
  • the processor 1203 executes the program, the terminal device side in the above method embodiment is implemented.
  • Methods It should be noted that the memory 1206 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1200, as long as the memory 1206 can be connected to the The processor 1203 is sufficient.
  • the device 1300 includes one or more radio frequency units, such as a remote radio unit (RRU) 1310 and one or more baseband units (BBU) (also referred to as a digital unit, digital unit, DU) 1320 .
  • the RRU 1310 may be referred to as a transceiver module, and the transceiver module may include a transmitting module and a receiving module, or the transceiver module may be a module capable of implementing the transmitting function and the receiving function.
  • the transceiver module may correspond to the transceiver module 620 in FIG. 6; or, the transceiver module may correspond to the transceiver module 820 in FIG. 8.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1311 and a radio frequency unit 1312.
  • the RRU 1310 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the BBU1310 part is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 1310 and the BBU 1320 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1320 is the control center of the base station, and may also be called a processing module. It may correspond to the processing module 610 in FIG. 6, or may correspond to the processing module 810 in FIG. 8, and is mainly used to complete baseband processing functions, such as channel processing. Encoding, multiplexing, modulation, spread spectrum, etc.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1320 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1320 also includes a memory 1321 and a processor 1322.
  • the memory 1321 is used to store necessary instructions and data.
  • the processor 1322 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1321 and the processor 1322 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the embodiment of the present application provides a first communication system.
  • the first communication system may include the network equipment involved in the above-mentioned embodiment shown in FIG. 3 and the terminal equipment involved in the above-mentioned embodiment shown in FIG. 3.
  • the terminal device is, for example, the terminal device 700 in FIG. 7.
  • the network device is, for example, the network device 600 in FIG. 6.
  • the embodiment of the present application provides a second communication system.
  • the second communication system may include the terminal device involved in the embodiment shown in FIG. 5 and the network device involved in the embodiment shown in FIG. 5 described above.
  • the terminal device is, for example, the terminal device 900 in FIG. 9.
  • the network device is, for example, the network device 800 in FIG. 8.
  • the first communication system and the second communication system may be the same communication system or different communication systems.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 3 provided by the foregoing method embodiment.
  • the process related to the network device in the embodiment is not limited to a computer-readable storage medium.
  • the embodiments of the present application also provide a computer-readable storage medium, which is used to store a computer program.
  • the computer program When the computer program is executed by a computer, the computer can implement the method shown in FIG. 3 provided by the above-mentioned method embodiment. The process related to the terminal device in the embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. 5 provided by the foregoing method embodiment.
  • the process related to the network device in the embodiment is not limited to a computer-readable storage medium.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the method shown in FIG. The process related to the terminal device in the embodiment.
  • the embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 3 provided by the above method embodiment Processes related to network equipment.
  • the embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 3 provided by the above method embodiment Processes related to terminal equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 5 provided by the above method embodiment Processes related to network equipment.
  • the embodiments of the present application also provide a computer program product, the computer program product is used to store a computer program, when the computer program is executed by a computer, the computer can implement the embodiment shown in FIG. 5 provided by the above method embodiment Processes related to terminal equipment.
  • processors mentioned in the embodiments of this application may be a CPU, or other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请涉及一种通信方法、装置及设备。确定第一信令,所述第一信令用于指示至少一种周期,至少一种周期中的一种周期为终端设备检测下行信号的周期。发送第一信令。在本申请实施例中,网络设备可以向终端设备指示至少一种周期,从而终端设备可以根据至少一种周期检测下行信号,例如,至少一种周期与网络设备的状态相匹配,相当于终端设备可以按照网络设备的状态来检测下行信号,尽量降低终端设备的功耗。

Description

一种通信方法、装置及设备 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法、装置及设备。
背景技术
为了降低终端设备的功耗,可以为处于无线资源控制(radio resource control,RRC)连接(connected)态的终端设备配置物理下行控制信道(physical downlink control channel,PDCCH)的周期,终端设备按照配置的周期检测PDCCH。
但基站可能有多种工作状态,例如正常工作状态或休眠状态等,基站在不同的状态下,发送PDCCH的频率是不同的。但是目前,终端设备一般只会按照一种周期来检测PDCCH,这显然无法与基站的不同的状态相对应,可能会增加终端设备的功耗。
发明内容
本申请实施例提供一种通信方法、装置及设备,用于降低终端设备的功耗。
第一方面,提供第一种通信方法,该方法包括:确定第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的每种周期为终端设备检测下行信号的周期;发送所述第一信令。
该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第一通信装置为网络设备,或者为设置在网络设备中的用于实现网络设备的功能的芯片,或者为用于实现网络设备的功能的其他部件。在下文的介绍过程中,以第一通信装置是网络设备为例。
在本申请实施例中,网络设备可以向终端设备指示至少一种周期,从而终端设备可以根据至少一种周期检测下行信号,例如,至少一种周期与网络设备的状态相匹配,相当于终端设备可以按照网络设备的状态来检测下行信号,尽量降低终端设备的功耗。
在一种可选的实施方式中,所述至少一种周期与至少一种休眠模式相匹配。
一种周期与一种休眠模式相匹配,例如一种匹配方式为,该周期的长度和该休眠模式的休眠粒度之间的差值小于第一阈值。第一阈值例如由网络设备配置,或者通过协议规定等。如果第一阈值为0,则该周期的长度和该休眠模式的休眠粒度相等。使得周期与网络设备的休眠模式相匹配,则网络设备在休眠时终端设备也可以按照相匹配的周期来检测下行信号,尽量避免终端设备在网络设备处于休眠模式时依然按照网络设备处于激活状态时的周期来检测下行信号,减小了终端设备做无用功的概率,也降低了终端设备的功耗。而且,周期与网络设备的休眠模式可以是对应的,如果网络设备可能会依次处于多种休眠模式,则至少一种周期的个数可以大于1,即,网络设备可以向终端设备指示多种周期,在网络设备处于一种休眠模式时,终端设备可以根据与该休眠模式匹配的周期来检测下行信号,从而使得终端设备的周期与网络设备的每种休眠模式都能匹配,减小终端设备的功耗。
在一种可选的实施方式中,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的次数。
对于至少一种周期中的一种周期或多种周期,终端设备可以执行一次,或者也可以执行多次。例如对于一种休眠模式,如果网络设备会重复执行该休眠模式,则如果周期与休眠模式对应,终端设备的周期也就相应进行重复,或者说,终端设备也相应重复检测下行信号。因此,第一信令可以指示终端设备以至少一种周期进行检测的次数,或者也可以通过其他信令来指示以至少一种周期进行检测的次数。通过指示检测次数,使得终端设备的周期与网络设备的休眠模式实现更为准确的匹配。对于休眠模式来说,如果网络设备重复执行多次,那么该次数可以称为休眠模式的重复次数,或称为休眠模式的循环次数等。这里所述的,终端设备以一种周期进行检测的次数,是指相邻两次检测的间隔满足周期,或者说是指终端设备执行该周期的次数,而不是指终端设备在该周期内检测下行信号的次数。
在一种可选的实施方式中,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的先后顺序。
如果至少一种周期的个数大于1,那么终端设备在根据至少一种周期进行检测时,或者说终端设备在执行所述的至少一种周期时,会有相应的顺序。那么可选的,如果至少一种周期的个数大于1,第一信令还可以指示至少一种周期的顺序,或者说,指示终端设备以至少一种周期进行检测的先后顺序。或者,也可以通过其他信令指示至少一种周期的顺序。这相当于通过显式的方式指示至少一种周期的顺序。如果至少一种周期与至少一种休眠模式相匹配,那么至少一种周期的顺序,与对应的至少一种休眠模式的顺序,可以是相同的,从而终端设备可以按照与网络设备的休眠模式相匹配的周期来检测下行信号。
在一种可选的实施方式中,所述第一信令还用于指示一个或多个偏移量,所述一个或多个偏移量用于辅助周期的检测。
对于至少一种周期来说,可能对应一个或多个偏移量,至少一种周期所对应的偏移量的个数和至少一种周期的个数可能相等,也可能不相等。网络设备除了可以向终端设备指示至少一种周期之外,还可以向终端设备指示至少一种周期对应的一个或多个偏移量,所述的一个或多个偏移量可以辅助终端设备进行检测。例如,周期与休眠模式对应,休眠模式对应有去激活时间和激活时间,通过偏移量,可以使得周期能够与休眠模式的休眠粒度对应,而休眠模式对应的去激活时间和激活时间等可以不必与周期对应。这样使得终端设备所确定的周期与网络设备的休眠模式更为匹配。
或者,如果至少一种周期对应的偏移量很短,可忽略,则网络设备也可以不必指示至少一种周期的偏移量。例如有些厂商的硬件设备性能较好,使得网络设备进入一种休眠模式时的去激活时间较短,从一种休眠模式退出时的激活时间也较短,均不影响终端设备检测下行信号,那么网络设备就可以不必指示至少一种周期的偏移量。
在一种可选的实施方式中,所述方法还包括:
在所述至少一种周期的检测次数结束时,发送第二信令,所述第二信令用于指示第一周期,所述第一周期在顺序上位于所述至少一个周期之后。
如果终端设备需要依次执行多种周期,而第一信令只指示了接下来即将执行的部分周期,那么网络设备还可以向终端设备发送第二信令,例如终端设备可以在将至少一种周期执行完毕时或者在将至少一种周期执行完毕之前,接收第二信令,第二信令可以指示一种或多种周期,所述的一种或多种周期在顺序上位于至少一种周期之后。例如,第二信令可以指示第一周期,第一周期可以是所述的一种或多种周期包括的一种周期。例如,网络设备会依次进入多种休眠模式,而第一信令只指示接下来即将进入的部分休眠模式对应的周 期,那么,网络设备在从至少一种休眠模式中唤醒时,可以再发送第二信令,第二信令可以指示顺序位于至少一种休眠模式之后的下一个休眠模式对应的第一周期。可选的,第二信令还可以指示终端设备以第一周期进行检测的次数。可选的,第二信令还可以指示第一周期的偏移量。同理,第二信令可以是单播信令、组播信令或广播信令,关于第二信令的实现,可参考对于第一信令的介绍。
通过这种方式,网络设备可以分别通过不同的信令指示不同的周期,减小信令所包括的信息量。而且,例如网络设备可以在每次指示相应的周期之前再确定所要指示的周期,而不必一次确定全部的周期,使得网络设备所确定的周期更为符合当前的情况。
在一种可选的实施方式中,所述第一信令用于指示至少一种周期,包括:
所述第一信令包括所述至少一种周期;或,
所述第一信令包括所述第一周期集合的标识,所述第一周期集合的标识用于指示所述至少一种周期,所述第一周期集合是多个周期集合中的一个,所述多个周期集合中的每个周期集合包括一种或多种周期的顺序组合。
例如,网络设备可以获得多个周期集合,多个周期集合中的每个周期集合可以包括一种周期,或包括多种周期的顺序组合。例如网络设备可以自行设置多个周期集合,或者,多个周期集合也可以通过协议规定。那么,网络设备如果要确定至少一种周期,可以直接从多个周期集合中确定一个周期集合,确定了周期集合,也就是确定了至少一种周期。例如网络设备确定了第一周期集合,第一周期集合就可以对应至少一种周期,或者说,第一周期集合可以对应至少一种周期的顺序组合。
如果网络设备事先向终端设备配置了多个周期集合,或者多个周期集合预配置在终端设备中,或者多个周期集合是通过协议规定的,则第一信令可以包括第一周期集合的标识,这样可以减小信令开销;或者,如果事先未给终端设备配置多个周期集合,或者网络设备并未确定第一周期集合,或者虽然网络设备确定了第一周期集合,但事先未给终端设备配置多个周期集合,则第一信令还是可以包括至少一种周期,这样可以使得终端设备不必感知周期集合,简化终端设备的实现。
在一种可选的实施方式中,所述方法还包括:
发送第三信令,所述第三信令用于指示所述多个周期集合。
如果由网络设备向终端设备配置多个周期集合,那么例如,网络设备可以发送第三信令,第三信令用于指示多个周期集合。终端设备接收来自网络设备的第三信令后,就可以确定多个周期集合。第三信令可以是单播信令、组播信令或广播信令,具体的不作限制。
在一种可选的实施方式中,所述至少一种周期中,顺序在前的周期的长度,大于顺序在后的周期的长度。
例如,周期与休眠模式对应,那么网络设备可以根据休眠模式确定相应的周期。例如网络设备可以根据网络设备所对应的功耗确定至少一种休眠模式的顺序。例如,至少一种休眠模式中,网络设备处于顺序在前的休眠模式时的功耗,小于网络设备处于顺序在后的休眠模式时的功耗。例如,网络设备所确定的至少一种休眠模式为休眠模式1、休眠模式2和休眠模式3,网络设备处于休眠模式1时的功耗为功耗1,处于休眠模式2时的功耗为功耗2,处于休眠模式3时的功耗为功耗3,功耗1>功耗2>功耗3。那么,网络设备所确定的这3种休眠模式的顺序可以是,休眠模式3-休眠模式2-休眠模式1,可参考图4B。那么,相应的至少一种周期的顺序就可以是,休眠模式3对应的周期-休眠模式2对应的周期 -休眠模式1对应的周期。相当于,网络设备执行“由深到浅”的休眠。网络设备按照这种“由深到浅”的方式执行休眠,是最为节能的休眠方式。那么相应的,如果网络设备处于休眠模式1时的功耗大于网络设备处于休眠模式2时的功耗,则休眠模式1对应的周期的长度就小于休眠模式2对应的周期的长度。因此,顺序在前的周期的长度,大于顺序在后的周期的长度。
在一种可选的实施方式中,所述第一信令用于指示至少一种周期,包括:
所述第一信令指示第一时长,所述第一时长与所述至少一种周期中的一种周期有关。
例如,当至少一种周期的个数为1时,第一信令可以指示第一时长。此时,至少一种周期中的一种周期,就是指这一种周期,那么第一时长与至少一种周期中的一种周期有关,就是指第一时长与这种周期有关。例如第一时长为终端设备以第一时长所对应的周期进行检测的总时长。例如周期与休眠模式相匹配,那么第一时长可以是网络设备处于休眠模式的总时长,在网络设备处于休眠模式时,终端设备就以第一时长所对应的周期进行检测,因此第一时长也可以认为是终端设备以该周期进行检测的总时长。终端设备可以根据第一时长确定对应的周期,使得终端设备确定周期的方式较为灵活。而且,如果第一时长是网络设备处于休眠模式的总时长,而终端设备又选择了对应的周期,那么终端设备根据第一时长和该周期的长度就可以确定该周期的检测次数。因此如果第一信令指示了第一时长,那么第一信令可以不必指示该周期的检测次数,这样可以减少第一信令所指示的信息量,节省信令开销。
在一种可选的实施方式中,所述第一时长与所述至少一种周期中的一种周期有关,包括:
所述第一时长的取值与所述一种周期的取值成正比。
例如,第一时长的取值可以与周期的取值成正比。例如,至少一种阈值可以包括两个阈值Th1和Th2,其中Th1<Th2。令X和Y是两个正数,如果第一时长的取值为X,则对应的周期为周期A,如果第一时长的取值为Y,则对应的周期为周期B。如果X小于Y,那么A就小于B。例如,如果0<X<Th1,Th1≤Y<Th2,即X<Y,那么A就小于B,也就是说第一时长的取值可以与所述一种周期的取值成正比。
例如第一时长是网络设备处于休眠模式的总时长,那么网络设备处于休眠模式的时间越长,则第一周期的时长也就可以越长,从而使得终端设备的周期能够与网络设备的休眠模式相匹配。
在一种可选的实施方式中,所述方法还包括:
在唤醒后,发送第四信令,所述第四信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令。
例如,网络设备在处于休眠模式时,如果接收了下行业务,则会唤醒;或者,网络设备在将至少一种休眠模式执行完毕后,无论是否接收了下行业务,都会唤醒。网络设备在唤醒后,就可以向终端设备发送第四信令,以与终端设备之间进行正常的通信。
在一种可选的实施方式中,所述第一信令为RRC信令、DCI、或系统消息。
本申请实施例对于第一信令的实现方式不做限制。
在一种可选的实施方式中,所述至少一种周期用于将所述终端设备的第一搜索空间的周期更改为所述至少一种周期,所述第一搜索空间为发送所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间中的任意一个。
终端设备在根据至少一种周期替换终端设备的搜索空间的周期之前,搜索空间的原周期可能是网络设备通过RRC信令配置的。可以看到,在本申请实施例中,虽然第一信令可能是RRC信令,也可能不是RRC信令,无论第一信令是何种类型的信令,终端设备都可以根据第一信令所指示的至少一种周期来替换网络设备通过RRC信令所配置的原周期。从该意义上说,至少一种周期可以用于将终端设备的第一搜索空间的周期更改为至少一种周期,第一搜索空间为发送第一信令的搜索空间,或,第一搜索空间包括终端设备支持的全部搜索空间中的任意一个。
第二方面,提供第二种通信方法,该方法包括:接收来自网络设备的第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的每种周期为终端设备检测下行信号的周期;根据所述至少一种周期检测下行信号。
该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第二通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。在下文的介绍过程中,以第二通信装置是终端设备为例。
在一种可选的实施方式中,所述至少一种周期与至少一种休眠模式相匹配。
在一种可选的实施方式中,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的次数。
在一种可选的实施方式中,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的先后顺序。
在一种可选的实施方式中,所述第一信令还用于指示一个或多个偏移量,所述一个或多个偏移量用于辅助周期的检测。
在一种可选的实施方式中,所述方法还包括:
接收来自所述网络设备的第二信令,所述第二信令用于指示第一周期,所述第一周期在顺序上位于所述至少一个周期之后。
在一种可选的实施方式中,所述第一信令用于指示至少一种周期,包括:
所述第一信令包括所述至少一种周期;或,
所述第一信令包括所述第一周期集合的标识,所述第一周期集合的标识用于指示所述至少一种周期,所述第一周期集合是多个周期集合中的一个,所述多个周期集合中的每个周期集合包括一种或多种周期的顺序组合。
在一种可选的实施方式中,所述方法还包括:
接收来自所述网络设备的第三信令,所述第三信令用于指示所述多个周期集合。
在一种可选的实施方式中,所述至少一种周期中,顺序在前的周期的长度,大于顺序在后的周期的长度。
在一种可选的实施方式中,所述第一信令用于指示至少一种周期,包括:
所述第一信令指示第一时长,所述第一时长与至少一种周期中的一种周期有关。
在一种可选的实施方式中,所述第一时长与至少一种周期中的一种周期有关,包括:
所述第一时长的取值与所述一种周期的取值成正比。
在一种可选的实施方式中,所述方法还包括:
接收来自所述网络设备的第四信令,所述第四信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令;
根据第二周期检测下行信号,所述第二周期不属于所述至少一种周期。
在一种可选的实施方式中,所述第一信令为RRC信令、DCI、或系统消息。
在一种可选的实施方式中,所述至少一种周期用于将所述终端设备的第一搜索空间的周期更改为所述至少一种周期,所述第一搜索空间为发送所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间中的任意一个。
在一种可选的实施方式中,根据所述至少一种周期中的第三周期检测下行信号,包括:
确定第一搜索空间的周期小于或等于所述第三周期,所述第一搜索空间为待执行所述第三周期的搜索空间;
在所述第一搜索空间内按照所述第三周期检测下行信号。
在一种可选的实施方式中,根据所述至少一种周期中的第三周期检测下行信号,包括:
确定第一搜索空间的周期大于所述第三周期,所述第一搜索空间为待执行所述第三周期的搜索空间;
在所述第一搜索空间内,按照所述第三周期检测下行信号,或,在所述第一搜索空间内,按照M×P的周期检测下行信号,M为正整数,P为所述第二周期的长度。
如果第一搜索空间的周期小于或等于第三周期,则终端设备可以将第一搜索空间的周期替换为第三周期,终端设备可以在第一搜索空间内按照第三周期检测下行信号。或者,如果第一搜索空间的周期大于第三周期,则终端设备可以将第一搜索空间的周期替换为第三周期的M倍,即,终端设备可以在第一搜索空间内按照M×P的周期检测PDCCH,P表示第三周期的长度,M为正整数。可以尽量使得M×P的取值接近于第一搜索空间的原周期的长度,这样对于第一搜索空间的周期的改动较小,更利于终端设备的实现。或者,如果第一搜索空间的周期大于第三周期,则终端设备可以将第一搜索空间的周期替换为第三周期,或者,终端设备可以将第一搜索空间的周期设置为第一搜索空间的原周期和第三周期的最小公倍数。终端设备可以根据判断结果确定是否修改第一搜索空间的周期,可以使得终端设备对于搜索空间的周期的修改更为合理。
在一种可选的实施方式中,所述第一搜索空间为接收所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间中的任意一个。
也就是说,终端设备可以只对第二搜索空间进行判断,而对于终端设备所支持的除了第二搜索空间之外的其他的搜索空间,终端设备不将至少一种周期应用于这些搜索空间,也就是说,对于终端设备所支持的除了第二搜索空间之外的其他的搜索空间,终端设备还是继续使用这些搜索空间原有的周期检测下行信号;或者,终端设备对于终端设备所支持的全部的搜索空间中的每个搜索空间,都可以进行判断,终端设备在所支持的全部的搜索空间中的每个搜索空间中,都可以根据第三周期检测下行信号。第二搜索空间是指接收第一信令的搜索空间。
关于第二方面或各种实施方式的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供第三种通信方法,该方法包括:确定第一信令,所述第一信令用于指示终端设备以第一周期进行检测的次数,或指示终端设备以第一周期进行检测的第一时长,所述第一周期为终端设备检测下行信号的周期;发送所述第一信令。
该方法可由第三通信装置执行,第三通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第三通信装置为网络设备, 或者为设置在网络设备中的用于实现网络设备的功能的芯片,或者为用于实现网络设备的功能的其他部件。在下文的介绍过程中,以第三通信装置是网络设备为例。
在本申请实施例中,网络设备可以向终端设备指示第一周期,从而终端设备可以根据第一周期检测下行信号,例如,第一周期与网络设备的状态相匹配,相当于终端设备可以按照网络设备的状态来检测下行信号,尽量降低终端设备的功耗。
在一种可选的实施方式中,所述第一周期与休眠模式相匹配。
在本申请实施例中,第一周期可以与该休眠模式相匹配,从而终端设备可以根据第一周期检测下行信号,相当于终端设备可以按照网络设备的休眠模式来检测下行信号,尽量避免终端设备在网络设备处于休眠模式时依然按照网络设备处于激活状态时的周期来检测下行信号,减小了终端设备做无用功的概率,也降低了终端设备的功耗。
在一种可选的实施方式中,所述第一信令还用于指示偏移量,所述偏移量用于辅助周期的检测。
对于第一周期来说,可能对应一个或多个偏移量。网络设备除了可以向终端设备指示第一周期之外,还可以向终端设备指示第一周期对应的一个或多个偏移量,所述的一个或多个偏移量可以辅助终端设备进行检测。例如,周期与休眠模式对应,休眠模式对应有去激活时间和激活时间,通过偏移量,可以使得周期能够与休眠模式的休眠粒度对应,而休眠模式对应的去激活时间和激活时间等可以不必与周期对应。这样使得终端设备所确定的周期与网络设备的休眠模式更为匹配。
或者,如果第一周期对应的偏移量很短,可忽略,则网络设备也可以不必指示至少一种周期的偏移量。例如有些厂商的硬件设备性能较好,使得网络设备进入一种休眠模式时的去激活时间较短,从一种休眠模式退出时的激活时间也较短,均不影响终端设备检测下行信号,那么网络设备就可以不必指示第一周期的偏移量。
在一种可选的实施方式中,所述方法还包括:
在唤醒后,发送第二信令,所述第二信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令。
例如,网络设备在处于休眠模式时,如果接收了下行业务,则会唤醒;或者,网络设备在将至少一种休眠模式执行完毕后,无论是否接收了下行业务,都会唤醒。网络设备在唤醒后,就可以向终端设备发送第四信令,以与终端设备之间进行正常的通信。
在一种可选的实施方式中,所述第一信令为RRC信令、DCI、或系统消息。
本申请实施例对于第一信令的实现方式不做限制。
第四方面,提供第四种通信方法,该方法包括:接收来自网络设备的第一信令,所述第一信令用于指示终端设备以第一周期进行检测的次数,或指示终端设备以第一周期进行检测的第一时长,所述第一周期为终端设备检测下行信号的周期;根据所述第一周期检测下行信号。
该方法可由第四通信装置执行,第四通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片。示例性地,所述第四通信装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片,或者为用于实现终端设备的功能的其他部件。在下文的介绍过程中,以第四通信装置是终端设备为例。
在一种可选的实施方式中,所述第一周期与休眠模式相匹配。
在一种可选的实施方式中,所述第一信令用于指示所述第一时长,所述方法还包括:
根据所述第一时长和所述第一周期确定以所述第一周期进行检测的次数。
如果第一信令指示第一时长,则由于终端设备可以确定第一周期,则终端设备也可以根据第一时长和第一周期确定第一次数。在确定第一次数后,终端设备就可以根据第一周期和/或第一次数检测下行信号。
在一种可选的实施方式中,所述第一信令还用于指示偏移量,所述偏移量用于辅助周期的检测。
在一种可选的实施方式中,所述方法还包括:
接收来自所述网络设备的第二信令,所述第二信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令。
在一种可选的实施方式中,所述第一信令为RRC信令、DCI、或系统消息。
在一种可选的实施方式中,根据所述第一周期检测下行信号,包括:
确定第一搜索空间的周期小于或等于所述第一周期,所述第一搜索空间为待执行所述第一周期的搜索空间;
在所述第一搜索空间内按照所述第一周期检测下行信号。
在一种可选的实施方式中,根据所述第一周期检测下行信号,包括:
确定第一搜索空间的周期大于所述第一周期,所述第一搜索空间为待执行所述第一周期的搜索空间;
在所述第一搜索空间内,按照所述第一周期检测下行信号,或,在所述第一搜索空间内,按照M×P的周期检测下行信号,M为正整数,P为所述第一周期的长度。
如果第一搜索空间的周期小于或等于第一周期,则终端设备可以将第一搜索空间的周期替换为第一周期,终端设备可以在第一搜索空间内按照第一周期检测下行信号。或者,如果第一搜索空间的周期大于第一周期,则终端设备可以将第一搜索空间的周期替换为第一周期的M倍,即,终端设备可以在第一搜索空间内按照M×P的周期检测PDCCH,P表示第一周期的长度,M为正整数。可以尽量使得M×P的取值接近于第一搜索空间的原周期的长度,这样对于第一搜索空间的周期的改动较小,更利于终端设备的实现。或者,如果第一搜索空间的周期大于第一周期,则终端设备可以将第一搜索空间的周期替换为第一周期,或者,终端设备可以将第一搜索空间的周期设置为第一搜索空间的原周期和第一周期的最小公倍数。终端设备可以根据判断结果确定是否修改第一搜索空间的周期,可以使得终端设备对于搜索空间的周期的修改更为合理。
在一种可选的实施方式中,所述第一搜索空间为接收所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间中的任意一个。
也就是说,终端设备可以只对第二搜索空间进行判断,而对于终端设备所支持的除了第二搜索空间之外的其他的搜索空间,终端设备不将第一周期应用于这些搜索空间,也就是说,对于终端设备所支持的除了第二搜索空间之外的其他的搜索空间,终端设备还是继续使用这些搜索空间原有的周期检测下行信号;或者,终端设备对于终端设备所支持的全部的搜索空间中的每个搜索空间,都可以进行判断,终端设备在所支持的全部的搜索空间中的每个搜索空间中,都可以根据第一周期检测下行信号。第二搜索空间是指接收第一信令的搜索空间。
关于第四方面或各种实施方式的技术效果,可参考对于第三方面或相应的实施方式的技术效果的介绍。
第五方面,提供一种通信装置,例如该通信装置为如前所述的第一通信装置。所述第一通信装置用于执行上述第一方面或任一可能的实施方式中的方法。具体地,所述第一通信装置可以包括用于执行第一方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为网络设备。下面以第一通信装置是网络设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第一通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第五方面的介绍过程中,继续以所述第一通信装置是网络设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述处理模块,用于确定第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的每种周期为终端设备检测下行信号的周期;
所述收发模块,用于发送所述第一信令。
在一种可能的实施方式中,所述至少一种周期与至少一种休眠模式相匹配。
在一种可能的实施方式中,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的次数。
在一种可能的实施方式中,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的先后顺序。
在一种可能的实施方式中,所述第一信令还用于指示一个或多个偏移量,所述一个或多个偏移量用于辅助周期的检测。
在一种可能的实施方式中,所述收发模块,还用于在所述至少一种周期的检测次数结束时,发送第二信令,所述第二信令用于指示第一周期,所述第一周期在顺序上位于所述至少一个周期之后。
在一种可能的实施方式中,所述第一信令用于指示至少一种周期,包括:
所述第一信令包括所述至少一种周期;或,
所述第一信令包括所述第一周期集合的标识,所述第一周期集合的标识用于指示所述至少一种周期,所述第一周期集合是多个周期集合中的一个,所述多个周期集合中的每个周期集合包括一种或多种周期的顺序组合。
在一种可能的实施方式中,所述收发模块,还用于发送第三信令,所述第三信令用于指示所述多个周期集合。
在一种可能的实施方式中,所述至少一种周期中,顺序在前的周期的长度,大于顺序在后的周期的长度。
在一种可能的实施方式中,所述第一信令用于指示至少一种周期,包括:
所述第一信令指示第一时长,所述第一时长与所述至少一种周期中的一种周期有关。
在一种可能的实施方式中,所述第一时长与所述至少一种周期中的一种周期有关,包 括:
所述第一时长的取值与所述一种周期的取值成正比。
在一种可能的实施方式中,所述收发模块,还用于在所述网络设备唤醒后,发送第四信令,所述第四信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令。
在一种可能的实施方式中,所述第一信令为RRC信令、DCI、或系统消息。
在一种可能的实施方式中,所述至少一种周期用于将所述终端设备的第一搜索空间的周期更改为所述至少一种周期,所述第一搜索空间为发送所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间中的任意一个。
关于第五方面或各种实施方式的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第六方面,提供一种通信装置,例如该通信装置为如前所述的第二通信装置。所述第二通信装置用于执行上述第二方面或任一可能的实施方式中的方法。具体地,所述第二通信装置可以包括用于执行第二方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。下面以第二通信装置是终端设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第二通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第六方面的介绍过程中,继续以所述第二通信装置是终端设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述收发模块,用于接收来自网络设备的第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的每种周期为终端设备检测下行信号的周期;
所述处理模块,用于根据所述至少一种周期检测下行信号。
在一种可选的实施方式中,所述至少一种周期与至少一种休眠模式相匹配。
在一种可选的实施方式中,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的次数。
在一种可选的实施方式中,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的先后顺序。
在一种可能的实施方式中,所述第一信令还用于指示一个或多个偏移量,所述一个或多个偏移量用于辅助周期的检测。
在一种可选的实施方式中,所述收发模块,还用于接收来自所述网络设备的第二信令,所述第二信令用于指示第一周期,所述第一周期在顺序上位于所述至少一个周期之后。
在一种可选的实施方式中,所述第一信令用于指示至少一种周期,包括:
所述第一信令包括所述至少一种周期;或,
所述第一信令包括所述第一周期集合的标识,所述第一周期集合的标识用于指示所述至少一种周期,所述第一周期集合是多个周期集合中的一个,所述多个周期集合中的每个周期集合包括一种或多种周期的顺序组合。
在一种可选的实施方式中,所述收发模块,还用于接收来自所述网络设备的第三信令,所述第三信令用于指示所述多个周期集合。
在一种可选的实施方式中,所述至少一种周期中,顺序在前的周期的长度,大于顺序在后的周期的长度。
在一种可选的实施方式中,所述第一信令用于指示至少一种周期,包括:
所述第一信令指示第一时长,所述第一时长与至少一种周期中的一种周期有关。
在一种可选的实施方式中,所述第一时长与至少一种周期中的一种周期有关,包括:
所述第一时长的取值与所述一种周期的取值成正比。
在一种可选的实施方式中,
所述收发模块,还用于接收来自所述网络设备的第四信令,所述第四信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令;
所述处理模块,还用于根据第二周期检测下行信号,所述第二周期不属于所述至少一种周期。
在一种可选的实施方式中,所述第一信令为RRC信令、DCI、或系统消息。
在一种可选的实施方式中,所述至少一种周期用于将所述终端设备的第一搜索空间的周期更改为所述至少一种周期,所述第一搜索空间为发送所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间中的任意一个。
在一种可选的实施方式中,所述处理模块用于通过如下方式根据所述至少一种周期中的第三周期检测下行信号:
确定第一搜索空间的周期小于或等于所述第三周期,所述第一搜索空间为待执行所述第三周期的搜索空间;
在所述第一搜索空间内按照所述第三周期检测下行信号。
在一种可选的实施方式中,所述处理模块用于通过如下方式根据所述至少一种周期中的第三周期检测下行信号,包括:
确定第一搜索空间的周期大于所述第三周期,所述第一搜索空间为待执行所述第三周期的搜索空间;
在所述第一搜索空间内,按照所述第三周期检测下行信号,或,在所述第一搜索空间内,按照M×P的周期检测下行信号,M为正整数,P为所述第二周期的长度。
在一种可选的实施方式中,所述第一搜索空间为接收所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间中的任意一个。
关于第六方面或各种实施方式的技术效果,可参考对于第二方面或相应的实施方式的技术效果的介绍。
第七方面,提供一种通信装置,例如该通信装置为如前所述的第三通信装置。所述第三通信装置用于执行上述第三方面或任一可能的实施方式中的方法。具体地,所述第三通信装置可以包括用于执行第三方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例 性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为网络设备。下面以第三通信装置是网络设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第三通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第三通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第七方面的介绍过程中,继续以所述第三通信装置是网络设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述处理模块,用于确定第一信令,所述第一信令用于指示终端设备以第一周期进行检测的次数,或指示终端设备以第一周期进行检测的第一时长,所述第一周期为终端设备检测下行信号的周期;
所述收发模块,用于发送所述第一信令。
在一种可选的实施方式中,所述第一周期与休眠模式相匹配。
在一种可能的实施方式中,所述第一信令还用于指示偏移量,所述偏移量用于辅助周期的检测。
在一种可选的实施方式中,所述收发模块,还用于在所述网络设备唤醒后,发送第二信令,所述第二信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令。
在一种可选的实施方式中,所述第一信令为RRC信令、DCI、或系统消息。
关于第七方面或各种实施方式的技术效果,可参考对于第三方面或相应的实施方式的技术效果的介绍。
第八方面,提供一种通信装置,例如该通信装置为如前所述的第四通信装置。所述第四通信装置用于执行上述第四方面或任一可能的实施方式中的方法。具体地,所述第四通信装置可以包括用于执行第四方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,收发模块可以包括发送模块和接收模块,发送模块和接收模块可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。示例性地,所述第四通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。下面以第四通信装置是终端设备为例。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。或者,发送模块可以通过发送器实现,接收模块可以通过接收器实现,发送器和接收器可以是不同的功能模块,或者也可以是同一个功能模块,但能够实现不同的功能。如果第四通信装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第四通信装置为设置在通信设备中的芯片,那么收发器(或,发送器和接收器)例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第八方面的介绍过程中,继续以所述第四通信装置是终端设备,以及,以所述处理模块和所述收发模块为例进行介绍。其中,
所述收发模块,用于接收来自网络设备的第一信令,所述第一信令用于指示终端设备以第一周期进行检测的次数,或指示终端设备以第一周期进行检测的第一时长,所述第一 周期为终端设备检测下行信号的周期;
所述处理模块,用于根据所述第一周期检测下行信号。
在一种可选的实施方式中,所述第一周期与休眠模式相匹配。
在一种可能的实施方式中,所述第一信令用于指示所述第一时长,所述处理模块,还用于根据所述第一时长和所述第一周期确定以所述第一周期进行检测的次数。
在一种可能的实施方式中,所述第一信令还用于指示偏移量,所述偏移量用于辅助周期的检测。
在一种可选的实施方式中,所述收发模块,还用于接收来自所述网络设备的第二信令,所述第二信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令。
在一种可选的实施方式中,所述第一信令为RRC信令、DCI、或系统消息。
在一种可选的实施方式中,所述处理模块用于通过如下方式根据所述第一周期检测下行信号:
确定第一搜索空间的周期小于或等于所述第一周期,所述第一搜索空间为待执行所述第一周期的搜索空间;
在所述第一搜索空间内按照所述第一周期检测下行信号。
在一种可选的实施方式中,所述处理模块用于通过如下方式根据所述第一周期检测下行信号:
确定第一搜索空间的周期大于所述第一周期,所述第一搜索空间为待执行所述第一周期的搜索空间;
在所述第一搜索空间内,按照所述第一周期检测下行信号,或,在所述第一搜索空间内,按照M×P的周期检测下行信号,M为正整数,P为所述第一周期的长度。
在一种可选的实施方式中,所述第一搜索空间为接收所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间中的任意一个。
关于第八方面或各种实施方式的技术效果,可参考对于第四方面或相应的实施方式的技术效果的介绍。
第九方面,提供一种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。或者,第一通信装置也可以不包括存储器,存储器可以位于第一通信装置外部。可选的,第一通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第一通信装置执行上述第一方面或任意一种可能的实施方式中的方法。示例性地,所述第一通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为网络设备。
其中,如果第一通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第一通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十方面,提供一种通信装置,该通信装置例如为如前所述的第二通信装置。该通信 装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。或者,第二通信装置也可以不包括存储器,存储器可以位于第二通信装置外部。可选的,第二通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第二通信装置执行上述第二方面或任意一种可能的实施方式中的方法。示例性地,所述第二通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。
其中,如果第二通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第二通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十一方面,提供一种通信装置,该通信装置例如为如前所述的第三通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第三方面或各种可能的实施方式所描述的方法。或者,第三通信装置也可以不包括存储器,存储器可以位于第三通信装置外部。可选的,第三通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第三方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第三通信装置执行上述第三方面或任意一种可能的实施方式中的方法。示例性地,所述第三通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为网络设备。
其中,如果第三通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第三通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第十二方面,提供一种通信装置,该通信装置例如为如前所述的第四通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第四方面或各种可能的实施方式所描述的方法。或者,第四通信装置也可以不包括存储器,存储器可以位于第四通信装置外部。可选的,第四通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第四方面或各种可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第二通信装置执行上述第四方面或任意一种可能的实施方式中的方法。示例性地,所述第四通信装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。
其中,如果第四通信装置为通信设备,通信接口例如通过所述通信设备中的收发器(或者,发送器和接收器)实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第四通信装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连 接,以通过射频收发组件实现信息的收发。
第十三方面,提供一种通信系统,该通信系统包括第五方面所述的通信装置或第九方面所述的通信装置,以及,包括第六方面所述的通信装置或第十方面所述的通信装置。
第十四方面,提供一种通信系统,该通信系统包括第七方面所述的通信装置或第十一方面所述的通信装置,以及,包括第八方面所述的通信装置或第十二方面所述的通信装置。
第十三方面所述的通信系统和第十四方面所述的通信系统,可以是同一个通信系统,或者也可以是不同的通信系统。
第十五方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或任意一种可能的实施方式中所述的方法。
第十六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或任意一种可能的实施方式中所述的方法。
十七方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第三方面或任意一种可能的实施方式中所述的方法。
第十八方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第四方面或任意一种可能的实施方式中所述的方法。
第十九方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或的任意一种可能的实施方式中所述的方法。
第二十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或的任意一种可能的实施方式中所述的方法。
第二十一方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第三方面或的任意一种可能的实施方式中所述的方法。
第二十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第四方面或的任意一种可能的实施方式中所述的方法。
在本申请实施例中,网络设备可以向终端设备指示至少一种周期,从而终端设备可以根据至少一种周期检测下行信号,例如,至少一种周期与网络设备的状态相匹配,相当于终端设备可以按照网络设备的状态来检测下行信号,尽量降低终端设备的功耗。
附图说明
图1为基站运用三种休眠模式进行休眠的示意图;
图2为本申请实施例的一种应用场景示意图;
图3为本申请实施例提供的第一种通信方法的流程图;
图4A~图4F为本申请实施例中网络设备确定的休眠模式的顺序以及对应的周期的顺序的示意图;
图5为本申请实施例提供的第二种通信方法的流程图;
图6为本申请实施例提供的第一种网络设备的示意性框图;
图7为本申请实施例提供的第一种终端设备的示意性框图;
图8为本申请实施例提供的第二种网络设备的示意性框图;
图9为本申请实施例提供的第二种终端设备的示意性框图;
图10为本申请实施例提供的通信装置的示意性框图;
图11为本申请实施例提供的通信装置的另一示意性框图;
图12为本申请实施例提供的通信装置的再一示意性框图;
图13为本申请实施例提供的通信装置的又一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅 是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,也可以理解为,能够与基站进行数据通信的都可以看作终端设备。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新无线(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)下行控制信道,例如PDCCH,或者增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH),或者也可能包括其他的下行控制信道。具体的不做限制。本申请实施例主要以下行控制信道是PDCCH为例。
4)周期,或者称为检测周期等。为了降低终端设备的功耗,可以为处于RRC连接态的终端设备配置下行信号的周期,终端设备按照配置的周期检测下行信号。
5)终端设备所检测的下行信号,例如包括控制信号,或包括数据信号,或包括控制信号和数据信号。控制信号例如为PDCCH。
6)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信令和第二信令,只是为了区分不同的信令,而并不是表示这两个信令的内容、发送顺序、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
基站可以通过进入休眠模式的方式来减小功耗。由于不同器件关断和唤醒所需时间不 同,所以基站可以不同程度地去激活(deactive)器件,相应的,基站也就可以有一种或多种休眠模式。其中,每种休眠模式可以对应休眠粒度、休眠功耗和唤醒时间等参数。不同的休眠模式所对应的参数的取值完全不同,或者不完全相同。一般来说,一个休眠模式的休眠功耗越低,休眠粒度越长,则唤醒时间越长。休眠粒度,是指休眠模式所对应的休眠时长。
可参考表1,给出了三种休眠模式对应的休眠粒度和唤醒时间,唤醒时间可以是表1中的激活时间。一个休眠模式的去激活时间是指基站从激活态进入该休眠模式所需的时间。一个休眠模式的激活时间是指基站从该休眠模式进入激活态所需的时间。
表1
休眠模式 去激活时间 休眠粒度 激活时间
休眠模式一 35.5μs 71μs 35.5μs
休眠模式二 0.5ms 1ms 0.5ms
休眠模式三 5ms 10ms 5ms
当然,表1只是一种示例。例如表1中,对于一种休眠模式来说,去激活时间和激活时间相等,在实际中不限于此,可能有些休眠模式的去激活时间和激活时间不相等。另外表1中,去激活时间和激活时间都等于休眠粒度的一半,实际也不限于此,例如有的休眠模式的去激活时间或激活时间是休眠粒度的1/4,或者去激活时间和激活时间相对于休眠粒度而言很小可以忽略等。
可再参考图1,为基站运用表1所示的三种休眠模式进行休眠的示意图,具体的,图1描述的是基站从激活状态依次进入不同的休眠模式,然后再次被唤醒的过程。从图1中可以看到,基站依次进入的休眠模式为休眠模式三、休眠模式二和休眠模式一,这三种休眠模式对应的休眠粒度分别为T 3,T 2和T 1。图1中,基站首先进入的休眠模式是功耗最低的休眠模式三,在完全进入休眠模式三前,需要经历休眠模式三的去激活过程,即图1中的从左至右的第一段斜线所表示的过程,休眠模式三的去激活时间和激活时间在这三种休眠模式中都是最长的。基站在休眠模式三结束后,将切换到休眠模式二,在切换到休眠模式二之前所经历的切换过程,即图1中从左至右的第二段斜线所示的过程,与休眠模式三的激活时间和/或休眠模式二的去激活时间和/或休眠模式三的去激活时间和/或休眠模式二的激活时间有关。休眠模式二对应的基站的功耗水平、去激活时间和激活时间等,都介于休眠模式三和休眠模式一之间。基站在休眠模式二结束后,经历休眠模式二到休眠模式一的切换过程,即图1中从左至右的第三段斜线所表示的过程,就可以切换到休眠模式一,该切换过程,与休眠模式二的激活时间和/或休眠模式一的去激活时间和/或休眠模式二的去激活时间和/或休眠模式一的激活时间有关。休眠模式一对应的基站的功耗最大,但是所需的激活时间最短。基站在休眠模式一结束后,经历休眠模式一的激活过程,即图1中从左至右的第四段斜线所表示的过程,就可以退出休眠模式一,返回激活状态。
另外,为了降低终端设备的功耗,可以为处于RRC连接态的终端设备配置PDCCH的周期,终端设备按照配置的周期检测PDCCH。
例如,对每一个搜索空间,需要为终端设备配置以下参数以检测PDCCH:搜索空间集合索引,控制资源集合(control-resource set,CORESET)索引,周期,时隙(slot)偏 移,符号(symbol)位置,时隙数量,每个聚合等级对应的候选PDCCH数量,搜索空间集合类型。其中,CORESET索引为搜索空间集合关联的CORESET的索引,搜索空间集合所关联的CORESET决定了该搜索空间集合的物理资源;周期为检测搜索空间集合的时间间隔,单位为时隙;时隙偏移为从周期开始到实际检测搜索空间集合之间的时隙偏移量,且该偏移量小于周期的长度;符号位置是每个时隙内,搜索空间集合关联的CORESET起始符号的位置,相邻的两个符号位置大于或等于CORESET包括的时域符号的数量;时隙数量是连续检测搜索空间集合的时隙数量,且时隙数量小于周期的对应的时隙的数量。
目前,在基站进入休眠模式时,一般是不会为终端设备重新配置PDCCH的周期,终端设备会继续按照基站处于激活状态时的周期检测PDCCH,这样显然会增加终端设备的功耗,且降低了终端设备做有用功的效率。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,网络设备可以向终端设备指示至少一种周期,从而终端设备可以根据至少一种周期检测下行信号,例如,至少一种周期与网络设备的状态相匹配,相当于终端设备可以按照网络设备的状态来检测下行信号,尽量降低终端设备的功耗。而且,网络设备可以向终端设备指示多种周期,例如不同的周期可以与网络设备不同的状态相对应,从而使得终端设备的周期与网络设备的每种状态尽量能匹配,减小终端设备的功耗。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)4G系统中,例如LTE系统,或可以5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。
下面介绍本申请实施例所应用的一种网络架构,请参考图2。
图2包括网络设备和终端设备,终端设备与一个网络设备连接。当然图2中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。图2中的网络设备,以及多个终端设备中的部分终端设备或全部终端设备中的每个终端设备都可以实施本申请实施例所提供的技术方案。另外,图2中的终端设备以手机为例,在实际应用中不限于此。
图2中的网络设备例如为接入网设备,例如基站,或者也可以是RSU等设备。其中,基站在不同的系统对应不同的设备,例如在4G系统中可以对应eNB,在5G系统中可以对应gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图2中的网络设备也可以对应未来的移动通信系统中的接入网设备。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供第一种通信方法,请参见图3,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是网络设备,第二通信装置是终端设备,或者第一通信装置和第二通信装置都是网络设备,或 者第一通信装置和第二通信装置都是终端设备,或者第一通信装置是网络设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例,也就是说,以第一通信装置是网络设备、第二通信装置是终端设备为例。因为本实施例是以应用在图2所示的网络架构为例,因此,下文中所述的网络设备可以是图2所示的网络架构中的网络设备,下文中所述的终端设备可以是图2所示的网络架构中的终端设备。
S31、网络设备确定第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的一种周期为终端设备检测下行信号的周期。
网络设备可以确定终端设备需要执行的至少一种周期。作为一种可选的方式,网络设备的休眠模式和终端设备检测下行信号的周期,可以是一一对应的。那么,所述的至少一种周期可以与至少一种休眠模式相匹配。一种周期与一种休眠模式相匹配,例如一种匹配方式为,该周期的长度和该休眠模式的休眠粒度之间的差值小于第一阈值。第一阈值例如由网络设备配置,或者通过协议规定等。如果第一阈值为0,则该周期的长度和该休眠模式的休眠粒度相等。也可以不利用第一阈值,当一种周期与一种休眠模式相匹配时,直接将该休眠模式的休眠粒度作为该周期的长度。例如,一种休眠模式的休眠粒度为1ms,则网络设备所确定的对应的周期也可以是1ms。
这里所述的确定至少一种周期,可以是确定至少一种周期的长度。其中,至少一种周期中,不同的周期的长度可能均不相同,或者也可能不同的周期的长度相同。本申请实施例所述的周期的长度,是指周期的时域长度。
例如,网络设备在进入休眠模式之前,可以确定即将进入的至少一种休眠模式,根据所确定的休眠模式,就可以确定对应的周期。
至少一种休眠模式的个数可以为1。例如,网络设备会依次进入多种休眠模式,但是在进入每个休眠模式之前,网络设备只确定接下来即将进入的一个休眠模式。在这种情况下,至少一种休眠模式的个数就为1,则至少一种周期的个数也为1。或者,至少一种休眠模式的个数也可以大于1。例如,网络设备会依次进入多种休眠模式,在进入第一个休眠模式之前,网络设备可以确定需要进入的全部休眠模式。在这种情况下,至少一种休眠模式的个数就大于1,则至少一种周期的个数也大于1。
或者,如果至少一种休眠模式的个数大于1,那么还可能有一种情况,网络设备会依次进入多种休眠模式,在进入一个休眠模式之前,网络设备可以确定接下来需要进入的部分休眠模式,但这部分休眠模式的个数大于1。在这种情况下,至少一种休眠模式的个数大于1,至少一种周期的个数也大于1。
如果至少一种周期的个数大于1,那么终端设备在执行至少一种周期时,还涉及到先后顺序。因此,网络设备还可以确定至少一种周期的顺序,也就是说,是确定终端设备以至少一种周期进行检测的先后顺序。例如网络设备可以随机确定至少一种周期的顺序,或者,如果周期与休眠模式一一对应,那么网络设备可以确定至少一种休眠模式的顺序,而至少一种休眠模式的顺序,可以与相应的至少一种周期的顺序相同。因此,网络设备确定了至少一种休眠模式的顺序,也就确定了至少一种周期的顺序。
至少一种休眠模式的顺序体现了网络设备进入相应的休眠模式的顺序,即,网络设备先进入哪个休眠模式,后进入哪个休眠模式。例如,网络设备确定即将进入休眠模式1、 休眠模式2和休眠模式3,则网络设备可以确定这三种休眠模式的顺序,即,网络设备先进入休眠模式2,接着进入休眠模式3,最后进入休眠模式1。
至少一种休眠模式的顺序可以是灵活的,或者说,网络设备可以灵活确定至少一种休眠模式的顺序。例如,网络设备所确定的至少一种休眠模式为休眠模式1、休眠模式2和休眠模式3,这3种休眠模式中的每种休眠模式,网络设备可以执行一轮或多轮。则这3种休眠模式会对应多种顺序,网络设备可以将这3种休眠模式对应的任意一种顺序确定为这3种休眠模式的实际顺序,在确定顺序时可以不受任何因素的限制。例如,网络设备会执行一轮休眠模式1,两轮休眠模式2,以及一轮休眠模式三,则网络设备所确定的这3种休眠模式的顺序可以是休眠模式2-休眠模式3-休眠模式2-休眠模式1,可参考图4A。那么,相应的至少一种周期的顺序就可以是,休眠模式2对应的周期-休眠模式3对应的周期-休眠模式2对应的周期-休眠模式1对应的周期。在这种情况下,至少一种周期的顺序也就是灵活的。
或者,网络设备可以根据网络设备所对应的功耗确定至少一种休眠模式的顺序,例如,至少一种休眠模式中,网络设备处于顺序在前的休眠模式时的功耗,小于网络设备处于顺序在后的休眠模式时的功耗。例如,网络设备所确定的至少一种休眠模式为休眠模式1、休眠模式2和休眠模式3,网络设备处于休眠模式1时的功耗为功耗1,处于休眠模式2时的功耗为功耗2,处于休眠模式3时的功耗为功耗3,功耗1>功耗2>功耗3。那么,网络设备所确定的这3种休眠模式的顺序可以是,休眠模式3-休眠模式2-休眠模式1,可参考图4B。那么,相应的至少一种周期的顺序就可以是,休眠模式3对应的周期-休眠模式2对应的周期-休眠模式1对应的周期。相当于,网络设备执行“由深到浅”的休眠。网络设备按照这种“由深到浅”的方式执行休眠,是最为节能的休眠方式。
如果是这种情况,那么也相当于,网络设备是根据网络设备所对应的功耗确定至少一种周期的顺序。如果网络设备根据网络设备的功耗确定至少一种周期的顺序,那么例如,至少一种周期中,顺序在前的周期的长度,可以大于顺序在后的周期的长度。如果周期与休眠模式一一对应,那么对此也可以理解为,网络设备处于顺序在前的周期所对应的休眠模式时的功耗,小于网络设备处于顺序在后的周期所对应的休眠模式时的功耗。
或者,网络设备可以根据网络设备所对应的唤醒时间确定至少一种休眠模式的顺序。例如,至少一种休眠模式中,网络设备处于顺序在前的休眠模式时的唤醒时间,大于网络设备处于顺序在后的休眠模式时的唤醒时间。例如,网络设备所确定的至少一种休眠模式为休眠模式1、休眠模式2和休眠模式3,网络设备处于休眠模式1时的唤醒时间为唤醒时间1,处于休眠模式2时的唤醒时间为唤醒时间2,处于休眠模式3时的唤醒时间为唤醒时间3,唤醒时间1<唤醒时间2<唤醒时间3。那么,网络设备所确定的这3种休眠模式的顺序可以是,休眠模式3-休眠模式2-休眠模式1,可参考图4B。那么,相应的至少一种周期的顺序就可以是,休眠模式3对应的周期-休眠模式2对应的周期-休眠模式1对应的周期。相当于,网络设备执行唤醒时间由长到短的休眠。网络设备按照这种唤醒时间由长到短的方式执行休眠,是最能降低唤醒时延的休眠方式。
如果是这种情况,那么也相当于,网络设备是根据网络设备所对应的唤醒时间确定至少一种周期的顺序。如果网络设备根据网络设备的唤醒时间确定至少一种周期的顺序,那么例如,至少一种周期中,顺序在前的周期的长度,可以大于顺序在后的周期的长度。如果周期与休眠模式一一对应,那么对此也可以理解为,网络设备处于顺序在前的周期所对 应的休眠模式时的唤醒时间,大于网络设备处于顺序在后的周期所对应的休眠模式时的唤醒时间。
或者,网络设备也可以根据网络设备的硬件条件确定至少一种休眠模式的顺序。
例如,网络设备的硬件无法支持网络设备直接进入某种休眠模式,那么网络设备可以先进入其他的休眠模式,再从其他的休眠模式进入该休眠模式。例如,网络设备所确定的至少一种休眠模式为休眠模式1和休眠模式2,网络设备无法支持直接进入休眠模式2,但可以支持直接进入休眠模式1,因此网络设备确定先进入休眠模式1,之后再进入休眠模式2,也就是说,网络设备所确定的这2种休眠模式的顺序可以是,休眠模式1-休眠模式2,如图4C所示。那么,相应的至少一种周期的顺序就可以是,休眠模式1对应的周期-休眠模式2对应的周期。
再例如,网络设备的硬件无法支持网络设备直接从某种休眠模式返回激活状态,那么网络设备可以从其他的休眠模式返回激活状态。例如,网络设备所确定的至少一种休眠模式为休眠模式1和休眠模式2,网络设备无法支持从休眠模式2返回激活状态,但可以支持从休眠模式1返回激活状态,则网络设备可以确定的这2种休眠模式的顺序可以是,休眠模式2-休眠模式1,如图4D所示。那么,相应的至少一种周期的顺序就可以是,休眠模式2对应的周期-休眠模式1对应的周期。
如果是这种情况,那么也相当于,网络设备是根据网络设备的硬件条件确定至少一种周期的顺序。如果网络设备根据网络设备的硬件条件确定至少一种周期的顺序,例如,网络设备的硬件不支持直接进入长度较长的周期,则网络设备可以将长度较短的周期的顺序放在前,那么至少一种周期中,顺序在前的周期的长度,可以小于顺序在后的周期的长度。再例如,网络设备的硬件不支持网络设备直接从长度较长的周期退出,则网络设备同样可以将长度较长的周期放在前,将长度较短的周期的放在后,那么至少一种周期中,顺序在前的周期的长度,可以大于顺序在后的周期的长度。
当然,除了以上几种方式之外,网络设备还可以采用其他方式确定至少一种休眠模式的顺序,也就相当于可以采用其他方式确定至少一种周期的顺序,本申请实施例对此并不限制。
或者,网络设备可以获得多个周期集合,多个周期集合中的每个周期集合可以包括一种周期,或包括多种周期的顺序组合。例如网络设备可以自行设置多个周期集合,或者,多个周期集合也可以通过协议规定。例如,多个周期集合包括周期集合1、周期集合2和周期集合3,周期集合1包括周期2-周期3,且包括周期2的检测次数为n2,周期3的检测次数为n3,这表明周期集合1包括周期2和周期3这2种周期,且包括这2种周期的顺序以及检测次数。周期集合2包括周期3-周期2-周期1,且包括周期3的检测次数为n3,周期2的检测次数为n2,周期1的检测次数为n1,这表明周期集合2包括周期1、周期2和周期3这3种周期,且包括这3种周期的顺序以及检测次数。周期集合3包括周期1-周期2,且包括周期1的检测次数为n1,周期2的检测次数为n2,这表明周期集合3包括周期1和周期2这2种周期,且包括这2种周期的顺序以及检测次数。关于周期的检测次数,将在下个步骤中介绍。
那么,网络设备如果要确定至少一种周期,可以直接从多个周期集合中确定一个周期集合,确定了周期集合,也就是确定了至少一种周期。例如网络设备确定了第一周期集合,第一周期集合就可以对应至少一种周期,或者说,第一周期集合可以对应至少一种周期的 顺序组合。网络设备确定第一周期集合的方式,例如为随机确定,例如网络设备可以灵活确定至少一种周期,也可以灵活确定至少一种周期的顺序,则网络设备就可以随机确定第一周期集合;或者,网络设备也可以按照“由深到浅”的原则确定第一周期集合,例如网络设备可以按照“由深到浅”的原则确定至少一种周期的顺序,再根据至少一种周期的顺序可以确定第一周期集合;或者,网络设备也可以根据网络设备的硬件条件确定第一周期集合,例如网络设备可以根据网络设备的硬件条件确定至少一种周期的顺序,再根据至少一种周期的顺序可以确定第一周期集合;或者,网络设备也可以根据网络设备的唤醒时间确定第一周期集合,例如网络设备可以按照网络设备的唤醒时间的长短确定至少一种周期的顺序,再根据至少一种周期的顺序可以确定第一周期集合。
例如,周期与休眠模式一一对应,那么,网络设备也可以获得多个休眠模式集合(或者也可以称为休眠图样(pattern)等),休眠模式集合与周期集合一一对应。网络设备从多个休眠模式集合中确定一个休眠模式集合,也就确定了对应的周期集合。
例如多个休眠模式集合中的每个休眠模式集合可以包括一种休眠模式,或包括多种休眠模式的顺序组合。例如网络设备可以自行设置多个休眠模式集合,或者,多个休眠模式集合也可以通过协议规定。例如,多个休眠模式集合包括休眠模式集合1、休眠模式集合2和休眠模式集合3,休眠模式集合1包括休眠模式2-休眠模式3,且包括休眠模式2的重复次数为n2,休眠模式3的重复次数为n3,这表明休眠模式集合1包括休眠模式2和休眠模式3这2种休眠模式,且包括这2种休眠模式的顺序以及重复次数。休眠模式集合2包括休眠模式3-休眠模式2-休眠模式1,且包括休眠模式3的重复次数为n3,休眠模式2的重复次数为n2,休眠模式1的重复次数为n1,这表明休眠模式集合1包括休眠模式1、休眠模式2和休眠模式3这3种休眠模式,且包括这3种休眠模式的顺序以及重复次数。休眠模式集合3包括休眠模式1-休眠模式2,且包括休眠模式1的重复次数为n1,休眠模式2的重复次数为n2,这表明休眠模式集合3包括休眠模式1和休眠模式2这2种休眠模式,且包括这2种休眠模式的顺序以及重复次数。关于休眠模式的重复次数,也将在下个步骤中介绍。
那么,网络设备如果要确定即将进入的至少一种休眠模式,可以直接从多个休眠模式集合中确定一个休眠模式集合,确定了休眠模式集合,也就是确定了至少一种休眠模式。例如网络设备确定了第一休眠模式集合,第一休眠模式集合就可以对应至少一种休眠模式,或者说,第一休眠模式集合可以对应至少一种休眠模式的顺序组合。而第一休眠模式集合也与第一周期集合对应,因此,网络设备确定了第一休眠模式集合,也就确定了第一周期集合。网络设备确定第一休眠模式集合的方式,例如为随机确定,例如网络设备可以灵活确定至少一种休眠模式,也可以灵活确定至少一种休眠模式的顺序,则网络设备就可以随机确定第一休眠模式集合;或者,网络设备也可以按照“由深到浅”的原则确定第一休眠模式集合,例如网络设备可以按照“由深到浅”的原则确定至少一种休眠模式的顺序,再根据至少一种休眠模式的顺序可以确定第一休眠模式集合;或者,网络设备也可以根据网络设备的硬件条件确定第一休眠模式集合,例如网络设备可以根据网络设备的硬件条件确定至少一种休眠模式的顺序,再根据至少一种休眠模式的顺序可以确定第一休眠模式集合;或者,网络设备也可以根据网络设备的唤醒时间确定第一休眠模式集合,例如网络设备可以按照网络设备的唤醒时间的长短确定至少一种休眠模式的顺序,再根据至少一种休眠模式的顺序可以确定第一休眠模式集合。
另外,根据前文的表1可知,对于休眠模式来说,可能会有对应的去激活时间和激活时间。一种休眠模式的去激活时间是指网络设备从激活状态进入该休眠模式所需的时间;一种休眠模式的激活时间是指网络设备从该休眠模式进入激活状态所需的时间。网络设备从一种休眠模式(例如休眠模式A)切换到另一种休眠模式(例如休眠模式B)所需的切换时间,与休眠模式A的激活时间、休眠模式B的去激活时间、休眠模式A的去激活时间、或休眠模式B的激活时间中的一种或多种有关。
在一种休眠模式的激活时间、去激活时间、或者从一种休眠模式切换到另一种休眠模式的切换时间内,网络设备一般不会发送下行信号,因此终端设备可以不必检测下行信号,或者,终端设备可以继续按照原有的周期检测下行信号。在一种休眠模式的去激活时间或者从另一种休眠模式切换到该休眠模式的切换时间结束后,才真正进入该休眠模式,网络设备进行休眠,此时,终端设备可以根据至少一种周期更改终端设备的原周期。
对于至少一种周期来说,可能对应一个或多个偏移量,至少一种周期所对应的偏移量的个数和至少一种周期的个数可能相等,也可能不相等。
网络设备除了可以向终端设备指示至少一种周期之外,还可以向终端设备指示至少一种周期对应的一个或多个偏移量,所述的一个或多个偏移量可以辅助终端设备进行检测。例如,网络设备可以向终端设备指示一个偏移量,如图4E,网络设备向终端设备指示了,至少一种周期为周期2(T2)和周期1(T1),至少一种周期的顺序为T2-T1,至少一种周期对应的检测次数为n2-n1,以及偏移量P2。或者,网络设备也可以向终端设备指示多个偏移量,如图4F,网络设备向终端设备指示了,至少一种周期包括周期1(T1)、周期2(T2)和周期3(T3),至少一种周期的顺序为T2-T3-T2-T1,至少一种周期对应的检测次数为n2-n3-n′2-n1,多个偏移量为P2-P3-P′2-P1。
例如网络设备可以通过第一信令向终端设备指示一个或多个偏移量,终端设备接收第一信令后就可以确定一个或多个偏移量。或者网络设备也可以通过其他信令向终端设备指示一个或多个偏移量。
或者还有一种情况,如果至少一种周期对应的偏移量很短,可忽略,则网络设备也可以不必指示至少一种周期的偏移量。例如有些厂商的硬件设备性能较好,使得网络设备进入一种休眠模式时的去激活时间较短,从一种休眠模式退出时的激活时间也较短,从一种休眠模式切换到另一种休眠模式的切换时间也较短,均不影响终端设备检测下行信号,那么网络设备就可以不必指示至少一种周期的偏移量。
可选的,如果至少一种周期的个数为1,那么,第一信令指示至少一种周期,一种指示方式为,第一信令指示第一时长,第一时长与至少一种周期中的一种周期有关。如果至少一种周期的个数为1,那么所述的至少一种周期中的一种周期,就是指这一种周期,例如将该周期称为第四周期。例如第一时长为终端设备以第一时长所对应的周期进行检测的总时长。例如周期与休眠模式相匹配,那么第一时长可以是网络设备处于休眠模式的总时长,在网络设备处于休眠模式时,终端设备就以第一时长所对应的周期进行检测,因此第一时长也可以认为是终端设备以该周期进行检测的总时长。
终端设备可以根据第一时长确定第四周期。例如,终端设备可以根据第一时长和至少一个阈值来确定第四周期。其中,至少一个阈值可以包含在第一信令中,或者网络设备事先向终端设备配置了至少一个阈值,或者至少一个阈值可以预配置在终端设备中,或者至少一个阈值是通过协议规定的。其中,终端设备可以根据第一时长,从第一集合中选择一 种周期,该周期就是第四周期。该第一集合可以包含一种或多种周期。该第一集合可以通过协议规定,或者网络设备事先向终端设备配置了该第一集合,或者该第一集合可以预配置在终端设备中,或者该第一集合也可以通过第一信令指示。可选的,该第一集合中的周期可以与网络设备的休眠粒度相匹配。需要说明的是,这里所述的第一集合与前文中所述的周期集合是不同的概念。这里所述的第一集合包括一种或多种周期,该第一集合所包括的周期之间没有顺序关系,终端设备可以根据第一时长从这一种或多种周期中选择一种周期来执行。
终端设备接收第一信令后,可以根据第一信令指示的第一时长和至少一个阈值,从第一集合中选择一种周期作为终端设备检测下行信号的周期(也就是选择第四周期),然后终端设备将依据选择的周期对下行信号进行检测。例如,至少一种阈值可以构成一个或多个阈值范围,每个阈值范围可以对应一种周期。终端设备确定第一时长所属的阈值范围,则该阈值范围对应的周期就是第一时长所对应的周期,终端设备就可以确定使用该周期检测下行信号。另外,如果第一时长是网络设备处于休眠模式的总时长,而终端设备又选择了对应的周期,那么终端设备根据第一时长和该周期的长度就可以确定该周期的检测次数。因此如果第一信令指示了第一时长,那么第一信令可以不必指示该周期的检测次数。
例如,至少一种阈值可以包括两个阈值,分别为Th1和Th2,其中Th1<Th2。第一集合包括周期A、周期B和周期C,第一时长的取值为Z。其中,阈值范围(0,Th1)对应于周期A,阈值范围[Th1,Th2]对应于周期B,阈值范围(Th2,+∞)对应于周期C。如果0<Z<Th1,则终端设备可以从第一集合中选择周期A,如果Th1≤Z<Th2,则终端设备可以从第一集合中选择周期B,如果Z≥Th2,则终端设备可以从第一集合中选择周期C。终端设备可以按照所选择的周期对下行信号进行检测。
根据如上介绍可知,第一时长的取值可以与周期的取值有关,周期的取值可以指周期的长度。例如,至少一种阈值包括两个阈值Th1和Th2,其中Th1<Th2。令X和Y为两个正数,如果第一时长的取值为X,则第一时长对应于周期A,如果第一时长的取值为Y,则第一时长对应于周期B,如果X不等于Y,那么A就不等于B。例如,如果0<X<Th1,Th1≤Y<Th2,即X不等于Y,那么A≠B。也就是说,第一时长的取值可以与周期的取值有关,如果第一时长的两个可能的取值X和Y不相等,那么对应的周期的两个可能的取值也不相等。
可选的,第一时长的取值可以与周期的取值成正比。例如,至少一种阈值可以包括两个阈值Th1和Th2,其中Th1<Th2。令X和Y是两个正数,如果第一时长的取值为X,则对应的周期为周期A,如果第一时长的取值为Y,则对应的周期为周期B。如果X小于Y,那么A就小于B。例如,如果0<X<Th1,Th1≤Y<Th2,即X<Y,那么A就小于B,也就是说第一时长的取值可以与所述一种周期的取值成正比。
S32、网络设备发送第一信令,终端设备接收来自网络设备的第一信令。
网络设备确定至少一种周期后,可以发送第一信令,第一信令可以指示至少一种周期。其中,如果网络设备是直接确定了至少一种周期,则第一信令可以指示至少一种周期,例如第一信令可以包括至少一种周期,或者说第一信令可以包括至少一种周期的长度,例如第一信令包括至少一种周期中的每种周期的长度。或者,如果网络设备确定的是第一周期集合,则第一信令可以包括至少一种周期,或者说第一信令可以包括至少一种周期的长度,或者也可以包括第一周期集合的标识,第一周期集合的标识可以指示第一周期集合,而第 一周期集合包括所述的至少一种周期的顺序组合,因此第一周期集合的标识也就可以指示至少一种周期。例如第一周期集合的标识包括第一周期集合的编号或身份号(ID)等。
作为第一信令指示至少一种周期的一种方式,第一信令可以包括至少一种周期。或者,如果至少一种周期的个数为1,则作为第一信令指示至少一种周期的另一种方式,第一信令可以指示第一时长,通过第一时长就可以指示对应的周期。
其中,如果网络设备事先向终端设备配置了多个周期集合,或者多个周期集合可以预配置在终端设备中,或者多个周期集合是通过协议规定的,则第一信令可以包括第一周期集合的标识,这样可以减小信令开销;或者,如果事先未给终端设备配置多个周期集合,则第一信令还是可以包括至少一种周期,这样可以使得终端设备不必感知周期集合,简化终端设备的实现。其中,如果由网络设备向终端设备配置多个周期集合,那么例如,网络设备可以发送第三信令,第三信令用于指示多个周期集合。终端设备接收来自网络设备的第三信令后,就可以确定多个周期集合。第三信令可以是单播信令、组播信令或广播信令,具体的不作限制。
其中,如果由网络设备向终端设备配置至少一个阈值,那么例如,网络设备可以发送第五信令,第五信令用于指示至少一个阈值。终端设备接收来自网络设备的第五信令后,就可以确定至少一个阈值。第五信令可以是单播信令、组播信令或广播信令,具体的不作限制。或者,网络设备也可以通过第一信令向终端设备配置至少一个阈值。
其中,如果由网络设备向终端设备配置第一集合,那么例如,网络设备可以发送第六信令,第六信令用于指示第一集合。终端设备接收来自网络设备的第六信令后,就可以确定第一集合。第六信令可以是单播信令、组播信令或广播信令,具体的不作限制。或者,网络设备也可以通过第一信令向终端设备配置第一集合。
第一信令可以是单播信令、组播信令或广播信令。例如,第一信令是单播信令,则第一信令可以只针对一个终端设备,例如网络设备可以只向需要节省功耗的终端设备发送第一信令,而无需向该网络设备覆盖的多个终端设备都发送第一信令,使得第一信令更有针对性。或者,第一信令是组播信令,则第一信令可以是UE组信令,可以针对多个终端设备,则这多个终端设备都可以应用所述的至少一种周期来检测下行信号。或者,第一信令是广播信令,例如对于一个小区来说,都可以应用所述的至少一种周期来检测下行信号,则网络设备可以通过广播信令来指示所述的至少一种周期。第一信令如果是组播信令或广播信令,则可以在一定程度上节省信令开销。
如果第一信令是单播信令或组播信令,则第一信令可以是RRC信令,或者也可以是承载在PDCCH中的信令,例如下行控制信息(downlink control information,DCI)。如果第一信令是广播信令,则第一信令可以是系统消息,例如主信息块(master information block,MIB)或系统信息块(system information block,SIB)等。如果第一信令是RRC信令,则网络设备可以以半静态的方式发送第一信令,可以提升信令的可靠性;如果第一信令是承载在PDCCH中的信令,则网络设备可以动态发送第一信令,可以节省网络设备通知终端设备的时间,使得网络设备能够较快进入休眠模式。
在S31中介绍了,如果至少一种周期的个数大于1,那么终端设备在根据至少一种周期进行检测时,或者说终端设备在执行所述的至少一种周期时,会有相应的顺序。那么可选的,如果至少一种周期的个数大于1,第一信令还可以指示至少一种周期的顺序,或者说,指示终端设备以至少一种周期进行检测的先后顺序。这相当于通过显式的方式指示至 少一种周期的顺序。如果至少一种周期与至少一种休眠模式相匹配,那么至少一种周期的顺序,与对应的至少一种休眠模式的顺序,可以是相同的,从而终端设备可以按照与网络设备的休眠模式相匹配的周期来检测下行信号。
或者,第一信令可以指示至少一种周期,但不指示至少一种周期的顺序。而至少一种周期的顺序可以预定义,或者通过隐式方式确定。例如,网络设备和终端设备默认,网络设备优先进入休眠功耗较低的休眠模式,例如休眠模式的功耗越低,则对应的周期越长,那么也就是说,网络设备和终端设备都默认,长度较长的周期的顺序位于长度较短的周期之前。这样,第一信令无需包含至少一种周期的顺序,终端设备在接收第一信令后,将按照长度较长的周期优先进行检测的隐式方式进行周期检测。
又例如,网络设备的硬件无法支持网络设备直接进入某种休眠模式,例如网络设备若要进入休眠模式二,必须首先进入休眠模式一进行过渡才能进入休眠模式二,而对此,终端设备也是知晓的。那么网络设备和终端设备默认,休眠模式一对应的周期的顺序位于休眠模式二对应的周期之前。如果第一信令包含休眠模式二对应的周期和休眠模式一对应的周期,那么第一信令可以不包含这两种周期的顺序。终端设备在接收第一信令后,将按照休眠模式一对应的周期的顺序位于休眠模式二对应的周期之前的方式检测。或者,如果第一信令包括休眠模式二对应的周期,但不包括作为过渡的休眠模式一对应的周期,那么网络设备和终端设备默认,网络设备依然会在进入休眠模式二前,首先进入休眠模式一进行过渡才进入休眠模式二,网络设备在休眠模式一过渡时,休眠模式一对应的周期的检测次数n1,可以是预定义的数值。终端设备在接收第一信令后,将按照先以休眠模式一对应的周期检测n1次再以休眠模式二对应的周期进行检测的隐式方式进行周期检测。
再例如,网络设备的硬件无法支持网络设备直接从某种休眠模式返回激活状态,例如网络设备无法直接从休眠模式二返回激活状态,必须首先进入休眠模式一进行过渡才能进入激活状态,而对此,终端设备也是知晓的。那么网络设备和终端设备可以默认,休眠模式二对应的周期的顺序位于休眠模式一对应的周期之前。如果第一信令包含休眠模式二对应的周期和休眠模式一对应的周期,那么第一信令可以不包含这两种周期的顺序。终端设备在接收第一信令后,将按照休眠模式二对应的周期的顺序位于休眠模式一对应的周期之前的方式进行检测。或者,如果第一信令包括休眠模式二对应的周期,但不包括作为过渡的休眠模式一对应的周期,那么网络设备和终端设备可以默认,网络设备依然会在从休眠模式二返回激活态前,首先进入休眠模式一进行过渡才返回激活态。网络设备在休眠模式一过渡时,休眠模式一对应的周期的检测次数n1,可以是预定义的数值。终端设备在接收第一信令后,将按照先执行休眠模式二对应的周期再执行休眠模式一对应的周期的方式进行检测。
网络设备在执行至少一种休眠模式时,对于其中的每种休眠模式可以执行一轮或多轮,而在执行一轮某种休眠模式时,网络设备又可以执行一次或多次。例如,网络设备确定的至少一种休眠模式包括休眠模式1、休眠模式2和休眠模式3,以及网络设备确定这3种休眠模式的顺序是休眠模式2-休眠模式3-休眠模式2-休眠模式1,即,网络设备会执行一轮休眠模式1、一轮休眠模式3以及两轮休眠模式2,例如网络设备在执行第一轮休眠模式2时,休眠模式2对应的重复次数是2次,表明网络设备会执行2次休眠模式2;网络设备在执行休眠模式3时,休眠模式3对应的重复次数是2次,表明网络设备会执行2次休眠模式3;网络设备在执行第二轮休眠模式2时,休眠模式2对应的重复次数是3次, 表明网络设备会执行3次休眠模式2;网络设备在执行休眠模式1时,休眠模式1对应的重复次数是3次,表明网络设备会执行3次休眠模式1。可继续参考图4A,其中的T2表示休眠模式2对应的周期,T3表示休眠模式3对应的周期,T1表示休眠模式1对应的周期。
可以看到,对于一种休眠模式来说,如果网络设备会重复执行该休眠模式,则终端设备的周期也就相应进行重复,或者说,终端设备也相应重复检测下行信号。但网络设备重复执行休眠模式的次数,与终端设备检测下行信号的次数可以相同,也可以不同。对于休眠模式来说,如果网络设备重复执行多次,那么该次数可以称为休眠模式的重复次数,或称为休眠模式的循环次数等。体现在终端设备侧,就是终端设备需要根据一种周期进行多次检测。例如作为一种可选的实施方式,第一信令还可以指示终端设备以至少一种周期进行检测的次数,或者说,指示终端设备执行至少一种周期的次数,或者说,至少一种周期的重复次数(或循环次数),等等。这里所述的,终端设备以一种周期进行检测的次数,是指相邻两次检测的间隔满足周期,或者说是指终端设备执行该周期的次数,而不是指终端设备在该周期内检测下行信号的次数。例如图4A中,对于休眠模式3,网络设备会执行2次,那么对应到终端设备侧,网络设备所指示的周期(例如,与休眠模式3对应的周期)为T3,可以看到,终端设备也需要根据T3检测2次,或者说,T3会重复2次。
另外,对于图4B、图4C和图4D,其中的T1、T2、T3等的含义也都与图4A中相同。
如果周期与休眠模式一一对应,则终端设备以一种周期进行检测的次数(也简称为周期的检测次数),与该周期相匹配的休眠模式的重复次数有关。例如两者可以相等,当然也可以不相等。例如,两者相等时,周期的长度×终端设备根据该周期进行检测次数(或者,该周期对应的休眠模式的重复次数),就等于以该周期终端设备检测下行信号的总时长。休眠粒度×休眠模式的重复次数,就等于网络设备在该休眠模式下的总的休眠时长。其中,如果周期与休眠模式一一对应,周期的长度可以等于休眠模式的休眠粒度,终端设备以一种周期进行检测的次数就可以等于与该周期对应的休眠模式的重复次数。
如果第一信令还指示终端设备以至少一种周期进行检测的次数,那么第一信令也可以按照终端设备以至少一种周期进行检测的先后顺序来指示。例如,至少一种周期包括周期1、周期2和周期3,这3种周期的顺序为周期2-周期3-周期2-周期1,第一信令可以指示,该顺序对应的检测次数为,2-2-4-3,这样终端设备根据第一信令就可以确定每种周期的检测次数。
作为一种可选的实施方式,如果对于至少一种周期中的每种周期,网络设备都配置终端设备只执行一次,那么第一信令也可以不必指示终端设备以至少一种周期进行检测的次数,或者,对于至少一种周期中的每种周期,都规定了固定的检测次数,例如网络设备可以事先配置,或者可以通过协议规定等,则第一信令也可以不必指示终端设备以至少一种周期进行检测的次数。
但需要注意的是,如果所述的至少一种周期的个数大于1,那么在所述的至少一种周期中,可能不同的周期的长度不同,或者也可能有两种或多种周期的长度相同。如果有两种周期的长度相同,为了方便描述,这两种周期依然可以视为不同的周期。这两种周期所对应的检测次数可以相同,也可以不同。
例如,网络设备会执行两轮休眠模式2,而这两轮休眠模式2所对应的重复次数是不同的,例如第一轮休眠模式2的重复次数是2,第二轮休眠模式2的重复次数是4。那么 也认为,第一轮休眠模式2对应的周期是周期1,第二轮休眠模式2对应的周期是周期2,只是周期1的长度和周期2的长度相同。
如果第一信令还指示一个偏移量,例如图4E,第一信令指示了至少一个周期和一个偏移量,那么终端设备就可以根据该偏移量和至少一个周期进行检测。
或者,如果第一信令还指示多个偏移量,则终端设备可以根据该多个偏移量和至少一个周期进行检测。例如图4F,至少一种周期包括周期1、周期2和周期3,这3种周期的顺序为周期2-周期3-周期2-周期1,第一信令可以指示,该顺序对应的偏移量为,2ms-2.5ms-1ms-0.5ms。例如,终端设备在执行周期2之前需要经历2ms的偏移,终端设备在执行周期2完毕后以及在执行周期3之前需要经历2.5ms的偏移,以此类推。
网络设备可以通过第一信令指示终端设备需要执行的全部的周期,所述的至少一种周期就包括终端设备需要执行的全部的周期。或者,网络设备也可以通过第一信令指示终端设备需要执行的部分的周期,所述的至少一种周期就只包括终端设备需要执行的部分的周期。
例如,周期与休眠模式一一对应,那么例如,网络设备会依次进入多种休眠模式,但是在进入每个休眠模式之前,网络设备只确定接下来即将进入的部分休眠模式。在这种情况下,S31中的至少一种休眠模式只是网络设备所要执行的部分休眠模式,而不是网络设备所要执行的全部休眠模式。而S32中所指示的至少一种周期,也就是终端设备需要执行的部分周期。或者,网络设备会依次进入多种休眠模式,网络设备在进入休眠模式之前,还是会确定所执行的全部休眠模式,但网络设备在向终端设备发送第一信令时,只会指示接下来即将进入的部分休眠模式对应的周期。在这种情况下,S31中的至少一种休眠模式也只是网络设备所要执行的部分休眠模式,而不是网络设备所要执行的全部休眠模式。而S32中所指示的至少一种周期,也就是终端设备需要执行的部分周期。
如果终端设备需要依次执行多种周期,而第一信令只指示了接下来即将执行的部分周期,也就是说,所述的至少一种周期只是终端设备即将执行的部分周期。那么网络设备还可以向终端设备发送第二信令,例如终端设备可以在将至少一种周期执行完毕时或者在将至少一种周期执行完毕之前,接收第二信令,第二信令可以指示一种或多种周期,所述的一种或多种周期在顺序上位于至少一种周期之后。例如所述的一种或多种周期的个数为1,该周期为第一周期,则第二信令可以指示顺序位于至少一种周期之后的第一周期。
例如,网络设备会依次进入多种休眠模式,而第一信令只指示接下来即将进入的部分休眠模式对应的周期,那么,网络设备在从至少一种休眠模式中唤醒时,可以再发送第二信令,第二信令可以指示顺序位于至少一种休眠模式之后的下一个休眠模式对应的第一周期。可选的,第二信令还可以指示终端设备以第一周期进行检测的次数。可选的,第二信令还可以指示相应的偏移量。同理,第二信令可以是单播信令、组播信令或广播信令,关于第二信令的实现,可参考对于第一信令的介绍。
而在网络设备将终端设备需要执行的全部周期都通知终端设备后,网络设备可以不必再通知。例如,网络设备从需要执行的全部休眠模式中顺序位于最后的一个休眠模式中唤醒,则网络设备可以直接返回激活状态,无需再发送第二信令。例如,网络设备确定的需要执行的休眠模式为休眠模式3-休眠模式2-休眠模式1,且网络设备每次只向终端设备通知即将进行的下一个休眠模式所对应的周期。例如网络设备从休眠模式3中唤醒,则可以发送第二信令,第二信令指示休眠模式2对应的周期。如果网络设备从休眠模式2中唤醒, 则可以再发送第二信令,此时的第二信令指示休眠模式1对应的周期。而如果网络设备从休眠模式1中唤醒,则无需再发送第二信令,而是返回激活状态。
S33、终端设备根据至少一种周期检测下行信号。
终端设备接收第一信令后,可以根据第一信令确定至少一种周期。其中,如果第一信令指示第一时长,那么终端设备可以根据第一时长确定第四周期,因为在这种情况下至少一种周期的个数为1,因此所述的至少一种周期就是第四周期。例如,终端设备可以根据第一时长、至少一个阈值和第一集合,确定第四周期。例如,如果第一信令为PDCCH承载的信令,例如DCI,终端设备可以直接将至少一种周期应用于第二搜索空间,从而终端设备可以在第二搜索空间根据至少一种周期检测下行信号。或者,如果第一信令为PDCCH承载的信令,或者第一信令为RRC信令,或者第一信令为系统消息,终端设备可以直接将至少一种周期应用于终端设备支持的全部的搜索空间,则终端设备在所支持的全部的搜索空间中的每个搜索空间中,都可以根据至少一种周期检测下行信号。其中,第二搜索空间例如为终端设备接收第一信令的搜索空间。将一种周期应用于一个搜索空间,也就是将该搜索空间的周期替换为该周期。可选的,终端设备在根据至少一种周期检测下行信号期间,可以不进行信道状态的测量和/或反馈。
终端设备在将搜索空间的周期进行替换之前,搜索空间的原周期可能是网络设备通过RRC信令配置的。可以看到,在本申请实施例中,虽然第一信令可能是RRC信令,也可能不是RRC信令,无论第一信令是何种类型的信令,终端设备都可以根据第一信令所指示的至少一种周期来替换网络设备通过RRC信令所配置的原周期。从该意义上说,至少一种周期可以用于将终端设备的第一搜索空间的周期更改为至少一种周期,第一搜索空间为发送第一信令的搜索空间(此时,第一搜索空间和第二搜索空间是指同一搜索空间),或,第一搜索空间为终端设备支持的全部搜索空间中的任意一个。
或者,终端设备在接收第一信令后,也可以进行相应的判断,以确定是否根据至少一种周期检测下行信号。在本申请实施例中,终端设备在接收第一信令后如果要通过判断确定是否根据至少一种周期检测下行信号,那么一种判断方式可以是,根据搜索空间的周期进行判断,下面介绍终端设备根据搜索空间的周期进行判断的方式。其中,当根据搜索空间的周期进行判断时,如果第一信令只指示了一种周期,则终端设备可以直接根据第一信令指示的该周期进行判断。而如果第一信令指示了多种周期,则终端设备可以只需根据第一信令所指示的、终端设备即将执行的下一种周期进行判断,而无需判断每个周期。在终端设备将一种周期执行完毕,需要执行下一种周期时,终端设备可以再根据第一信令所指示的该下一种周期进行判断。例如,第一信令指示了周期1和周期2,按照第一信令的指示,终端设备确定先执行周期1再执行周期2。那么在执行周期1之前,终端设备可以先根据搜索空间的周期(即,搜索空间的原周期)和周期1进行判断,根据判断结果确定是否要修改搜索空间的周期;在周期1执行完毕,即将执行周期2时,或者说在执行周期2之前,终端设备可以先根据搜索空间的周期和周期2进行判断,根据判断结果确定是否要修改搜索空间的周期。
例如,终端设备要根据第一搜索空间的周期和至少一种周期中的第三周期进行判断,则,终端设备可以确定第一搜索空间的周期是否大于第三周期。如果第一搜索空间的周期小于或等于第三周期,则终端设备可以将第一搜索空间的周期替换为第三周期,终端设备可以在第一搜索空间内按照第三周期检测下行信号。或者,如果第一搜索空间的周期大于 第三周期,则终端设备可以将第一搜索空间的周期替换为第三周期的M倍,即,终端设备可以在第一搜索空间内按照M×P的周期检测下行信号,P表示第三周期的长度,M为正整数。可以尽量使得M×P的取值接近于第一搜索空间的原周期的长度,这样对于第一搜索空间的周期的改动较小,更利于终端设备的实现。或者,如果第一搜索空间的周期大于第三周期,则终端设备可以将第一搜索空间的周期替换为第三周期,或者,终端设备可以将第一搜索空间的周期设置为第一搜索空间的原周期和第三周期的最小公倍数。
如果第一信令为PDCCH承载的信令,第一搜索空间可以是如前所述的第二搜索空间,即终端设备接收第一信令的搜索空间,或者,第一搜索空间也可以是终端设备所支持的全部搜索空间中的任意一个。如果第一信令不是PDCCH承载的信令,那么第一搜索空间可以是终端设备所支持的全部搜索空间中的任意一个。也就是说,如果第一信令为PDCCH承载的信令,那么终端设备可以只对第二搜索空间进行判断,而对于终端设备所支持的除了第二搜索空间之外的其他的搜索空间,终端设备不将至少一种周期应用于这些搜索空间,也就是说,对于终端设备所支持的除了第二搜索空间之外的其他的搜索空间,终端设备还是继续使用这些搜索空间原有的周期检测下行信号;或者,第一信令可以是PDCCH承载的信令,也可以不是PDCCH承载的信令,那么终端设备对于终端设备所支持的全部的搜索空间中的每个搜索空间,都可以进行判断,终端设备在所支持的全部的搜索空间中的每个搜索空间中,都可以根据第三周期检测下行信号。
例如,第一搜索空间的原周期为0.5ms,第三周期为1ms,则第一搜索空间的周期小于第三周期。那么终端设备可以将第一搜索空间的周期修改为1ms,终端设备在第一搜索空间内可以按照1ms的周期检测下行信号。
或者,第一搜索空间的原周期为3.2ms,第三周期为1ms,则第一搜索空间的周期大于第三周期。那么终端设备可以按照尽量使得M×P的取值接近于第一搜索空间的原周期的长度的原则,将第一搜索空间的周期修改为3ms,或者修改为4ms等;或者,可以按照将第一搜索空间的周期替换为第三周期的原则,将第一搜索空间的周期修改为1ms;或者,可以按照将第一搜索空间的周期设置为第一搜索空间的原周期和第三周期的最小公倍数的原则,将第一搜索空间的周期修改为16ms。终端设备在第一搜索空间内可以按照修改后的周期检测下行信号。
终端设备可以根据判断结果确定是否修改第一搜索空间的周期,可以使得终端设备对于搜索空间的周期的修改更为合理。
例如,至少一种休眠模式的顺序为休眠模式2-休眠模式3-休眠模式2-休眠模式1,至少一种周期的顺序为T2-T3-T2-T1,T1代表休眠模式1的周期的长度,T2代表休眠模式2的周期的长度,T3代表休眠模式3的周期的长度,至少一种周期对应的检测次数为n2-n3-n′2-n1。例如对于第一搜索空间,终端设备可以先将第一搜索空间的周期调整为与休眠模式2相匹配的T2。在根据T2和/或n2进行检测后,网络设备将进入休眠模式三,终端设备也将第一搜索空间的周期调整为与休眠模式3相匹配的T3。在根据T3和/或n3进行检测后,网络设备将进入休眠模式2,终端设备也将第一搜索空间的周期调整为与休眠模式2相匹配的周期T2。在根据T2和/或n′2进行检测后,网络设备将进入休眠模式1,终端设备也将第一搜索空间的周期调整为与休眠模式1相匹配的T1。在根据T1和/或n1进行检测后,网络设备结束休眠状态,进入激活状态,此时终端设备也将检测到来自唤醒后的网络设备的下行信号。
如果第一信令还指示了一个或多个偏移量,或者网络设备通过其他信令指示了一个或多个偏移量,则终端设备在根据第一周期检测下行信号时也需考虑该一个或多个偏移量。
例如,至少一种休眠模式的顺序为休眠模式2-休眠模式3-休眠模式2-休眠模式1,至少一种周期的顺序为T2-T3-T2-T1,至少一种周期对应的检测次数为n2-n3-n′2-n1,至少一种周期对应的偏移量为P2-P3-P′2-P1。例如对于第一搜索空间,终端设备可以在接收第一信令后,依据P2和/或T2,将第一搜索空间的周期调整为与休眠模式2相匹配的T2。在依据P2和或T2和/或n2进行检测后,网络设备将进入休眠模式三,终端设备依据偏移P3和/或T3,将第一搜索空间的周期调整为与休眠模式3相匹配的T3。在依据P3和/或T3和/或n3进行检测后,网络设备将进入休眠模式2,终端设备依据偏移P′2和/或T2,将第一搜索空间的周期调整为与休眠模式2相匹配的周期T2。在依据P′2和/或T2和n′2次进行检测后,网络设备将进入休眠模式1,终端设备依据偏移P1和/或T1,将第一搜索空间的周期调整为与休眠模式1相匹配的T1。在依据P1和/或T1和/或n1进行检测后,网络设备结束休眠状态,进入激活状态,此时终端设备也将检测到来自唤醒后的网络设备的下行信号。
S34、网络设备接收下行业务。
例如,网络设备在至少一种休眠模式中的第一休眠模式的第N次重复过程中接收下行业务,或,网络设备在至少一种休眠模式中的第一休眠模式的第N次重复过程结束时接收下行业务,其中,N为正整数,第N次重复过程可以是第一休眠模式的任何一次重复过程,第一休眠模式可以是至少一种休眠模式中的任何一次休眠模式。
例如,网络设备在处于第一休眠模式的第N次重复过程中或第N次重复过程结束时,接收了来自核心网设备的下行业务,该下行业务是对应于终端设备的,例如对应于S33中的终端设备。第一休眠模式可以是至少一种休眠模式中的任意一种休眠模式,第N次重复过程,可以是第一休眠模式的任意一次重复过程。
第一休眠模式可以是至少一种休眠模式中的任意一种休眠模式,第一休眠模式的重复次数可以大于或等于N。其中,如果第一休眠模式是至少一种休眠模式中顺序位于最后的休眠模式,且第一休眠模式的重复次数等于N,且网络设备是在至少一种休眠模式中的第一休眠模式的第N次重复过程结束时接收下行业务,这种情况,可以认为网络设备是在至少一种休眠模式均执行完毕之后唤醒。如果网络设备是在至少一种休眠模式均执行完毕之后唤醒,那么网络设备可能会接收下行业务,或者也有可能,网络设备即使没有接收下行业务,但在至少一种休眠模式均执行完毕后,网络设备也会唤醒。而S34只是以网络设备接收下行业务为例。
S35、网络设备在至少一种休眠模式中的第一休眠模式的第N次重复过程结束后唤醒。另外,网络设备不再执行第一休眠模式除了N次重复过程之外剩余的重复过程,以及不再执行至少一种休眠模式中顺序位于第一休眠模式之后的其他的休眠模式。
网络设备在休眠过程中,如果收到下行业务,则网络设备可以及时唤醒,以尽快执行下行业务,减小下行业务的时延。例如,网络设备要执行的休眠模式为休眠模式3-休眠模式2-休眠模式1,其中休眠模式3的重复次数为6,休眠模式2的重复次数为2,休眠模式1的重复次数为2。例如网络设备在休眠模式3的第三次重复过程中收到下行业务,此时休眠模式3已经重复了2次,现在正处在休眠模式3的第3次重复过程中,且休眠模式3还有3次重复过程没有执行。但网络设备依然可以在休眠模式3的第3次重复过程结束后, 开始唤醒。而休眠模式3还未执行的3次重复过程,以及后续的休眠模式2和休眠模式1,网络设备均不再执行。
S36、网络设备在唤醒后,向终端设备发送第四信令。
对于终端设备来说,可以是在至少一种周期中的第五周期的第N次检测时,接收来自网络设备的第四信令,其中第N次检测可以是第五周期的任何一次检测,第五周期可以是至少一种周期中的任何一个周期。
如果第一休眠模式是至少一种休眠模式中顺序位于最后的休眠模式,则第五周期就可以是至少一种周期中顺序位于最后的周期,否则,第五周期就不是至少一种周期中顺序位于最后的周期。第一休眠模式的重复次数等于可以等于第五周期的检测次数,也可以不等于。例如,当两者相等时,如果第一休眠模式的重复次数等于N,则第五周期的检测次数就等于N,而如果第一休眠模式的重复次数大于N,则第五周期的检测次数就大于N。
其中,如果第五周期是至少一种周期中顺序位于最后的周期,且第五周期的检测次数等于N,且终端设备是在至少一种周期中的第五周期的第N次检测时接收来自网络设备的第四信令,则可以认为终端设备是在至少一种周期均执行完毕之后接收了第四信令,也就是说,终端设备正常对应了网络设备的休眠模式。
或者,如果至少一种周期的个数为1,则如果第五周期的检测次数等于N,且终端设备是在至少一种周期中的第五周期的第N次检测时接收来自网络设备的第四信令,则可以认为终端设备是在至少一种周期均执行完毕之后接收了第四信令。例如,第一信令指示了第一时长,那么终端设备可以是在第一时长结束时或第一时长结束后接收了第四信令。
例如终端设备的周期与网络设备的休眠模式相匹配,所以网络设备唤醒后所发送的第四信令,终端设备能够收到。终端设备接收第四信令后,就可以与网络设备进行正常的业务。
例如,第四信令可以是PDCCH承载的信令。例如,第四信令为用于唤醒终端设备的唤醒信号(wake up signal,WUS);或者,第四信令为用于调度下行数据或上行数据的信令,例如DCI;或者,第四信令为用于传输特殊信息的信令,特殊信息例如为海啸信息或地震信息等。当然,第四信令还可能是其他的信令,以及第四信令也还可能有其它的用途。
S37、终端设备使用第二周期检测下行控制信道,第二周期不属于至少一种周期。
终端设备在接收第四信令后,可以将终端设备的周期修改为第二周期。或者,终端设备即使没有接收第四信令,但终端设备在将至少一种周期执行完毕后,也可以将终端设备的周期修改为第二周期(这里以至少一种周期是网络设备向终端设备指示的全部周期为例)。可选的,如果终端设备此前在根据至少一种周期检测下行信号期间,不进行信道状态的测量和/或反馈,则在接收第四信令后,终端设备可以恢复信道状态的测量和/或反馈;或者,终端设备也可以不在此时恢复信道状态的测量和/或反馈,即,是否恢复信道状态的测量和/或反馈可以与第四信令无关。
其中,终端设备在S33中修改了哪些搜索空间的周期,在S37中终端设备就可以将这些搜索空间的周期修改为第二周期;或者,无论终端设备在S33中修改了哪些搜索空间的周期修改为第二周期,终端设备在S37中可以将终端设备支持的全部搜索空间中的每个搜索空间的周期,或者终端设备在S37中可以只将接收第四信令的搜索空间的周期修改为第二周期。
第二周期不属于至少一种周期,也不是所述的第一周期,换句话说,第二周期不是与 网络设备的至少一种休眠模式匹配的周期,第二周期应该是终端设备和网络设备都正常工作时,终端设备的周期。
例如,第二周期可以是终端设备在S33中修改终端设备的周期之前,终端设备原有的周期,或者说,第二周期可以是网络设备在进入休眠模式前,或者是终端设备在接收第一信令前,终端设备原有的周期;或者,第二周期也可以是通过第四信令指示的周期;或者,第二周期也可以是通过协议规定的周期,等等。
其中,S34~S37,都只是可选执行的步骤,不是必须执行的。
在本申请实施例中,网络设备在确定网络设备即将进入的至少一种休眠模式后,可以向终端设备指示至少一种周期,至少一种周期可以与至少一种休眠模式相匹配,从而终端设备可以根据至少一种周期检测下行信号,相当于终端设备可以按照网络设备的休眠模式来检测下行信号,尽量避免终端设备在网络设备处于休眠模式时依然按照网络设备处于激活状态时的周期来检测下行信号,减小了终端设备做无用功的概率,也降低了终端设备的功耗。而且,周期与网络设备的休眠模式可以是对应的,如果网络设备可能会依次处于多种休眠模式,则至少一种周期的个数可以大于1,即,网络设备可以向终端设备指示多种周期,在网络设备处于一种休眠模式时,终端设备可以根据与该休眠模式匹配的周期来检测下行信号,从而使得终端设备的周期与网络设备的每种休眠模式都能匹配,减小终端设备的功耗。
在图3所示的实施例中,网络设备会指示至少一种周期。而还有一种情况,可能终端设备只需根据一种周期来检测下行信号,就能够与网络设备的状态相匹配。为此,本申请实施例提供第二种通信方法,图5为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是网络设备,第二通信装置是终端设备,或者第一通信装置和第二通信装置都是网络设备,或者第一通信装置和第二通信装置都是终端设备,或者第一通信装置是网络设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例,也就是说,以第一通信装置是网络设备、第二通信装置是终端设备为例。因为本实施例是以应用在图2所示的网络架构为例,因此,下文中所述的网络设备可以是图2所示的网络架构中的网络设备,下文中所述的终端设备可以是图2所示的网络架构中的终端设备。
S51、网络设备确定第一信令,所述第一信令用于指示第一次数或第一时长,所述第一次数为终端设备根据第一周期进行检测的次数,所述第一时长为终端设备根据第一周期进行检测的时长。
在本申请实施例中,网络设备可以确定第一周期,第一周期用于终端设备检测下行信号。例如第一周期的长度是终端设备已经知晓的,例如网络设备已配置给终端设备,或者 第一周期可以预配置在终端设备中,或者第一周期是通过协议规定的。那么网络设备只需通过第一信令向终端设备指示第一周期的检测次数即可。或者,如果终端设备并不知晓第一周期的长度,那么第一信令还可以指示第一周期的长度;或者,网络设备可以发送第三信令,通过第三信令指示第一周期的长度。终端设备接收第三信令后,就可以确定第一周期的长度。
例如,第一周期与网络设备的休眠模式相匹配。例如网络设备只支持一种休眠模式,则网络设备就只需确定与该休眠模式相匹配的一种周期即可。一种周期与一种休眠模式相匹配,例如一种匹配方式为,该周期的长度和该休眠模式的休眠粒度之间的差值小于第一阈值。第一阈值例如由网络设备配置,或者通过协议规定等。如果第一阈值为0,则该周期的长度和该休眠模式的休眠粒度相等。例如,一种休眠模式的休眠粒度为1ms,则网络设备所确定的对应的周期也可以是1ms。
可选的,第一信令还可以指示偏移量,或者,网络设备也可以通过其他的信令指示该偏移量。例如第一信令可以指示一个或多个偏移量。这些偏移量可以辅助终端设备对第一周期进行检测。关于周期的偏移量的更多描述,可参考图3所示的实施例中的S31。
或者,第一信令也可以不必指示第一次数,而是可以指示第一时长,例如第一时长为终端设备以第一周期进行检测的总时长。例如周期与休眠模式相匹配,那么第一时长可以是网络设备处于休眠模式的总时长,在网络设备处于休眠模式时,终端设备就以第一周期进行检测,因此第一时长也可以认为是终端设备以第一周期进行检测的总时长。如果第一时长是网络设备处于休眠模式的总时长,而终端设备又可以确定第一周期,那么终端设备根据第一时长和第一周期的长度就可以确定第一周期的检测次数。因此如果第一信令指示了第一时长,那么第一信令可以不必指示第一次数。
S52、网络设备发送第一信令,终端设备接收来自网络设备的第一信令。
第一信令可以是单播信令、组播信令或广播信令。例如,第一信令是单播信令,则第一信令可以只针对一个终端设备,例如网络设备可以只向需要节省功耗的终端设备发送第一信令,而无需向该网络设备覆盖的多个终端设备都发送第一信令,使得第一信令更有针对性。或者,第一信令是组播信令,则第一信令可以是UE组信令,可以针对多个终端设备,则这多个终端设备都可以应用所述的第一周期来检测下行信号。或者,第一信令是广播信令,例如对于一个小区来说,都可以应用所述的第一周期来检测下行信号,则网络设备可以通过广播信令来指示所述的第一周期。第一信令如果是组播信令或广播信令,则可以在一定程度上节省信令开销。
如果第一信令是单播信令或组播信令,则第一信令可以是RRC信令,或者也可以是承载在PDCCH中的信令,例如DCI。如果第一信令是广播信令,则第一信令可以是系统消息,例如MIB或SIB等。如果第一信令是RRC信令,则网络设备可以以半静态的方式发送第一信令,可以提升信令的可靠性;如果第一信令是承载在PDCCH中的信令,则网络设备可以动态发送第一信令,可以节省网络设备通知终端设备的时间,使得网络设备能够较快进入休眠模式。
S53、终端设备根据第一周期检测下行信号。
终端设备接收第一信令后,如果第一信令指示第一次数,则终端设备可以确定第一次数;或者,如果第一信令指示第一时长,则由于终端设备可以确定第一周期,则终端设备也可以根据第一时长和第一周期确定第一次数。在确定第一次数后,终端设备就可以根据 第一周期和/或第一次数检测下行信号。
例如,如果第一信令为PDCCH承载的信令,例如DCI,终端设备可以直接将第一周期应用于第二搜索空间,从而终端设备可以在第二搜索空间根据第一周期检测下行信号。或者,如果第一信令为PDCCH承载的信令,或者第一信令为RRC信令,或者第一信令为系统消息,终端设备可以直接将第一周期应用于终端设备支持的全部的搜索空间,则终端设备在所支持的全部的搜索空间中的每个搜索空间中,都可以根据第一周期检测下行信号。其中,第二搜索空间例如为终端设备接收第一信令的搜索空间。将一种周期应用于一个搜索空间,也就是将该搜索空间的周期替换为该周期。
终端设备在将搜索空间的周期进行替换之前,搜索空间的原周期可能是网络设备通过RRC信令配置的。可以看到,在本申请实施例中,虽然第一信令可能是RRC信令,也可能不是RRC信令,无论第一信令是何种类型的信令,终端设备都可以在收到第一信令后,按照第一周期来替换网络设备通过RRC信令所配置的原周期。从该意义上说,第一周期可以用于将终端设备的第一搜索空间的周期更改为第一周期,第一搜索空间为发送第一信令的搜索空间(此时,第一搜索空间和第二搜索空间是指同一搜索空间),或,第一搜索空间是终端设备支持的全部搜索空间中的任意一个。
或者,终端设备在接收第一信令后,也可以进行相应的判断,以确定是否根据第一周期检测下行信号。在本申请实施例中,终端设备在接收第一信令后如果要通过判断确定是否根据第一周期检测下行信号,那么一种判断方式可以是,根据搜索空间的周期进行判断,下面介绍终端设备根据搜索空间的周期进行判断的方式。
例如,终端设备可以确定第一搜索空间的周期是否大于第一周期。如果第一搜索空间的周期小于或等于第一周期,则终端设备可以将第一搜索空间的周期替换为第一周期,终端设备可以在第一搜索空间内按照第一周期检测下行信号。或者,如果第一搜索空间的周期大于第一周期,则终端设备可以将第一搜索空间的周期替换为第一周期的M倍,即,终端设备可以在第一搜索空间内按照M×P的周期检测PDCCH,P表示第一周期的长度,M为正整数。可以尽量使得M×P的取值接近于第一搜索空间的原周期的长度,这样对于第一搜索空间的周期的改动较小,更利于终端设备的实现。或者,如果第一搜索空间的周期大于第一周期,则终端设备可以将第一搜索空间的周期替换为第一周期,或者,终端设备可以将第一搜索空间的周期设置为第一搜索空间的原周期和第一周期的最小公倍数。
如果第一信令为PDCCH承载的信令,第一搜索空间可以是如前所述的第二搜索空间,即终端设备接收第一信令的搜索空间,或者,第一搜索空间也可以是终端设备所支持的全部搜索空间中的任意一个。如果第一信令不是PDCCH承载的信令,那么第一搜索空间可以是终端设备所支持的全部搜索空间中的任意一个。
如果第一信令还指示了偏移量,或者网络设备通过其他信令指示了偏移量,则终端设备在根据第一周期检测下行信号时也需考虑该偏移量。
关于终端设备的判断方式的更多介绍,可参考图3所示的实施例中的S33中的相关内容。
S54、网络设备接收下行业务。
例如,网络设备在休眠模式的第N次重复过程中或第N次重复过程结束时接收下行业务,N为正整数。其中,第N次重复过程可以是休眠模式的任何一次重复过程。其中,如果网络设备是在该休眠模式执行完毕之后唤醒,那么网络设备可能会接收下行业务,或者 也有可能,网络设备即使没有接收下行业务,但在该休眠模式执行完毕后,网络设备也会唤醒。而S54只是以网络设备接收下行业务为例。
关于S54的更多介绍,可参考图3所示的实施例中的S34中的相关内容。
S55、网络设备在该休眠模式的第N次重复过程结束后唤醒。另外,网络设备不再执行该休眠模式除了N次重复过程之外剩余的重复过程。
网络设备在休眠过程中,如果收到下行业务,则网络设备可以及时唤醒,以尽快执行下行业务,减小下行业务的时延。例如,网络设备在休眠模式的第3次重复过程中收到下行业务,休眠模式3的重复次数为6,此时该休眠模式已经重复了2次,现在正处在该休眠模式的第3次重复过程中,且该休眠模式还有3次重复过程没有执行。但网络设备依然可以在该休眠模式的第3次重复过程结束后,开始唤醒。此时相当于网络设备在第一时长未结束时开始唤醒。而该休眠模式还未执行的3次重复过程,网络设备不再执行。
或者,网络设备也可能是在休眠模式结束时或休眠模式结束后唤醒。例如,网络设备在休眠模式的第6次重复过程中收到下行业务,休眠模式3的重复次数为6,此时该休眠模式已经重复了5次,现在正处在该休眠模式的第6次重复过程中。则网络设备可以在该休眠模式的第6次重复过程结束后,开始唤醒。此时相当于网络设备在第一时长结束时开始唤醒。
或者,网络设备也有可能并未接收下行业务,则网络设备也可以在休眠模式结束时或休眠模式结束后开始唤醒。
S56、网络设备在唤醒后,向终端设备发送第二信令。对于终端设备来说,就是在第一周期的第N次检测时,接收来自网络设备的第二信令,其中第N次检测可以是第一周期的任何一次检测。
或者说,终端设备可以是在第一时长未结束时接收来自网络设备的第二信令;或者,是在第一时长结束时或第一时长结束后,接收来自网络设备的第二信令。
例如终端设备的周期与网络设备的休眠模式相匹配,所以网络设备唤醒后所发送的第二信令,终端设备能够收到。终端设备接收第二信令后,就可以与网络设备进行正常的业务。
例如,第二信令可以是PDCCH承载的信令。例如,第二信令为用于唤醒终端设备的WUS;或者,第二信令为用于调度下行数据或上行数据的信令,例如DCI;或者,第二信令为用于传输特殊信息的信令,特殊信息例如为海啸信息或地震信息等。当然,第二信令还可能是其他的信令,以及第二信令也还可能有其它的用途。
关于S56的更多介绍,可参考图3所示的实施例中的S36中的相关内容。
S57、终端设备使用第二周期检测下行控制信道,第二周期与第一周期不是同一周期。
终端设备在接收第二信令后,可以将终端设备的周期修改为第二周期。或者,终端设备即使没有接收第二信令,但终端设备在将至少一种周期执行完毕后,也可以将终端设备的周期修改为第二周期。
其中,终端设备在S53中修改了哪些搜索空间的周期,在S57中终端设备就可以将这些搜索空间的周期修改为第二周期;或者,无论终端设备在S53中修改了哪些搜索空间的周期修改为第二周期,终端设备在S57中可以将终端设备支持的全部搜索空间中的每个搜索空间的周期,或者终端设备在S57中可以只将接收第二信令的搜索空间的周期修改为第二周期。
第二周期与第一周期不是同一周期,换句话说,第二周期不是与网络设备的休眠模式匹配的周期,第二周期应该是终端设备和网络设备都正常工作时,终端设备的周期。
例如,第二周期可以是终端设备在S53中修改终端设备的周期之前,终端设备原有的周期,或者说,第二周期可以是网络设备在进入休眠模式前,或者是终端设备在接收第一信令前,终端设备原有的周期;或者,第二周期也可以是通过第二信令指示的周期;或者,第二周期也可以是通过协议规定的周期,等等。
其中,S54~S57,都只是可选执行的步骤,不是必须执行的。
类似于图3所示的实施例中的S33和S37中所述,可选的,终端设备在根据第一周期检测下行信号期间,可以不进行信道状态的测量和/或反馈;相应的,在接收第二信令后,终端设备可以恢复信道状态的测量和/或反馈,也可以不在此时恢复信道状态的测量和/或反馈,即,是否恢复信道状态的测量和/或反馈可以与第二信令无关。
在本申请实施例中,网络设备在确定网络设备的休眠模式后,可以向终端设备指示第一周期的检测次数,第一周期可以与该休眠模式相匹配,从而终端设备可以根据第一周期检测下行信号,相当于终端设备可以按照网络设备的休眠模式来检测下行信号,尽量避免终端设备在网络设备处于休眠模式时依然按照网络设备处于激活状态时的周期来检测下行信号,减小了终端设备做无用功的概率,也降低了终端设备的功耗。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图6为本申请实施例提供的通信装置600的示意性框图。示例性地,通信装置600例如为网络设备600。
网络设备600包括处理模块610和收发模块620。示例性地,网络设备600可以是网络设备,也可以是应用于网络设备中的芯片或者其他具有上述网络设备功能的组合器件、部件等。当网络设备600是网络设备时,收发模块620可以是收发器,收发器可以包括天线和射频电路等,处理模块610可以是处理器,处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当网络设备600是具有上述网络设备功能的部件时,收发模块620可以是射频单元,处理模块610可以是处理器,例如基带处理器。当网络设备600是芯片系统时,收发模块620可以是芯片(例如基带芯片)的输入输出接口、处理模块610可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块610可以由处理器或处理器相关电路组件实现,收发模块620可以由收发器或收发器相关电路组件实现。
其中,处理模块610可以用于执行图3所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如S31、S34和S35,和/或用于支持本文所描述的技术的其它过程。收发模块620可以用于执行图3所示的实施例中由网络设备所执行的全部接收操作,例如S32和S36,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块620可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块620可以用于执行图3所示的实施例中由网络设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块620是发送模块,而在执行接收操作时,可以认为收发模块620是接收模块;或者,收发模块620也可以是两个功能模块,收发模块可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图3所示的实施例中 由网络设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图3所示的实施例中由网络设备所执行的全部接收操作。
其中,处理模块610,用于确定第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的每种周期为终端设备检测下行信号的周期;
收发模块620,用于发送所述第一信令。
作为一种可选的实施方式,所述至少一种周期与至少一种休眠模式相匹配。
作为一种可选的实施方式,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的次数。
作为一种可选的实施方式,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的先后顺序。
作为一种可选的实施方式,所述第一信令还用于指示一个或多个偏移量,所述一个或多个偏移量用于辅助周期的检测。
作为一种可选的实施方式,收发模块620,还用于在所述至少一种周期的检测次数结束时,发送第二信令,所述第二信令用于指示第一周期,所述第一周期在顺序上位于所述至少一个周期之后。
作为一种可选的实施方式,所述第一信令用于指示至少一种周期,包括:
所述第一信令包括所述至少一种周期;或,
所述第一信令包括所述第一周期集合的标识,所述第一周期集合的标识用于指示所述至少一种周期,所述第一周期集合是多个周期集合中的一个,所述多个周期集合中的每个周期集合包括一种或多种周期的顺序组合。
作为一种可选的实施方式,收发模块620,还用于发送第三信令,所述第三信令用于指示所述多个周期集合。
作为一种可选的实施方式,所述至少一种周期中,顺序在前的周期的长度,大于顺序在后的周期的长度。
作为一种可选的实施方式,所述第一信令用于指示至少一种周期,包括:
所述第一信令指示第一时长,所述第一时长与所述至少一种周期中的一种周期有关。
作为一种可选的实施方式,所述第一时长与所述至少一种周期中的一种周期有关,包括:
所述第一时长的取值与所述一种周期的取值成正比。
作为一种可选的实施方式,收发模块620,还用于在网络设备600唤醒后,发送第四信令,所述第四信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令。
作为一种可选的实施方式,所述第一信令为RRC信令、DCI、或系统消息。
作为一种可选的实施方式,所述至少一种周期用于将所述终端设备的第一搜索空间的周期更改为所述至少一种周期,所述第一搜索空间为发送所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间中的任意一个。
图7为本申请实施例提供的通信装置700的示意性框图。示例性地,通信装置700例如为终端设备700。
终端设备700包括处理模块710和收发模块720。示例性地,终端设备700可以是网络设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、 部件等。当终端设备700是终端设备时,收发模块720可以是收发器,收发器可以包括天线和射频电路等,处理模块710可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当终端设备700是具有上述终端设备功能的部件时,收发模块720可以是射频单元,处理模块710可以是处理器,例如基带处理器。当终端设备700是芯片系统时,收发模块720可以是芯片(例如基带芯片)的输入输出接口、处理模块710可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块710可以由处理器或处理器相关电路组件实现,收发模块720可以由收发器或收发器相关电路组件实现。
其中,处理模块710可以用于执行图3所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S33和S37,和/或用于支持本文所描述的技术的其它过程。收发模块720可以用于执行图3所示的实施例中由终端设备所执行的全部接收操作,例如S32和S36,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块720可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块720可以用于执行图3所示的实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块720是发送模块,而在执行接收操作时,可以认为收发模块720是接收模块;或者,收发模块720也可以是两个功能模块,收发模块可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图3所示的实施例中由终端设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图3所示的实施例中由终端设备所执行的全部接收操作。
其中,收发模块720,用于接收来自网络设备的第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的每种周期为终端设备700检测下行信号的周期;
处理模块710,用于根据所述至少一种周期检测下行信号。
作为一种可选的实施方式,所述至少一种周期与至少一种休眠模式相匹配。
作为一种可选的实施方式,所述第一信令还用于指示终端设备700以所述至少一种周期进行检测的次数。
作为一种可选的实施方式,所述第一信令还用于指示终端设备700以所述至少一种周期进行检测的先后顺序。
作为一种可选的实施方式,所述第一信令还用于指示一个或多个偏移量,所述一个或多个偏移量用于辅助周期的检测。
作为一种可选的实施方式,收发模块720,还用于接收来自所述网络设备的第二信令,所述第二信令用于指示第一周期,所述第一周期在顺序上位于所述至少一个周期之后。
作为一种可选的实施方式,所述第一信令用于指示至少一种周期,包括:
所述第一信令包括所述至少一种周期;或,
所述第一信令包括所述第一周期集合的标识,所述第一周期集合的标识用于指示所述至少一种周期,所述第一周期集合是多个周期集合中的一个,所述多个周期集合中的每个周期集合包括一种或多种周期的顺序组合。
作为一种可选的实施方式,收发模块720,还用于接收来自所述网络设备的第三信令,所述第三信令用于指示所述多个周期集合。
作为一种可选的实施方式,所述至少一种周期中,顺序在前的周期的长度,大于顺序 在后的周期的长度。
作为一种可选的实施方式,所述第一信令用于指示至少一种周期,包括:
所述第一信令指示第一时长,所述第一时长与至少一种周期中的一种周期有关。
作为一种可选的实施方式,所述第一时长与至少一种周期中的一种周期有关,包括:
所述第一时长的取值与所述一种周期的取值成正比。
作为一种可选的实施方式,
收发模块720,还用于接收来自所述网络设备的第四信令,所述第四信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令;
处理模块710,还用于根据第二周期检测下行信号,所述第二周期不属于所述至少一种周期。
作为一种可选的实施方式,所述第一信令为RRC信令、DCI、或系统消息。
作为一种可选的实施方式,所述至少一种周期用于将终端设备700的第一搜索空间的周期更改为所述至少一种周期,所述第一搜索空间为发送所述第一信令的搜索空间,或,所述第一搜索空间包括终端设备700支持的全部搜索空间中的任意一个。
作为一种可选的实施方式,处理模块710用于通过如下方式根据所述至少一种周期中的第三周期检测下行信号:
确定第一搜索空间的周期小于或等于所述第三周期,所述第一搜索空间为待执行所述第三周期的搜索空间;
在所述第一搜索空间内按照所述第三周期检测下行信号。
作为一种可选的实施方式,处理模块710用于通过如下方式根据所述至少一种周期中的第三周期检测下行信号:
确定第一搜索空间的周期大于所述第三周期,所述第一搜索空间为待执行所述第三周期的搜索空间;
在所述第一搜索空间内,按照所述第三周期检测下行信号,或,在所述第一搜索空间内,按照M×P的周期检测下行信号,M为正整数,P为所述第二周期的长度。
作为一种可选的实施方式,所述第一搜索空间为接收所述第一信令的搜索空间,或,所述第一搜索空间包括终端设备700支持的全部搜索空间中的任意一个。
图8为本申请实施例提供的通信装置800的示意性框图。示例性地,通信装置800例如为网络设备800。
网络设备800包括处理模块810和收发模块820。示例性地,网络设备800可以是网络设备,也可以是应用于网络设备中的芯片或者其他具有上述网络设备功能的组合器件、部件等。当网络设备800是网络设备时,收发模块820可以是收发器,收发器可以包括天线和射频电路等,处理模块810可以是处理器,处理器中可以包括一个或多个CPU。当网络设备800是具有上述网络设备功能的部件时,收发模块820可以是射频单元,处理模块810可以是处理器,例如基带处理器。当网络设备800是芯片系统时,收发模块820可以是芯片(例如基带芯片)的输入输出接口、处理模块810可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块810可以由处理器或处理器相关电路组件实现,收发模块820可以由收发器或收发器相关电路组件实现。
其中,处理模块810可以用于执行图5所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如S51、S54和S55,和/或用于支持本文所描述的技术的其它过 程。收发模块820可以用于执行图5所示的实施例中由网络设备所执行的全部接收操作,例如S52和S56,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块820可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块820可以用于执行图5所示的实施例中由网络设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块820是发送模块,而在执行接收操作时,可以认为收发模块820是接收模块;或者,收发模块820也可以是两个功能模块,收发模块可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图5所示的实施例中由网络设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图5所示的实施例中由网络设备所执行的全部接收操作。
其中,处理模块810,用于确定第一信令,所述第一信令用于指示终端设备以第一周期进行检测的次数,或指示终端设备以第一周期进行检测的第一时长,所述第一周期为终端设备检测下行信号的周期;
收发模块820,用于发送所述第一信令。
作为一种可选的实施方式,所述第一周期与休眠模式相匹配。
作为一种可选的实施方式,所述第一信令还用于指示偏移量,所述偏移量用于辅助周期的检测。
作为一种可选的实施方式,收发模块820,还用于在网络设备800唤醒后,发送第二信令,所述第二信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令。
作为一种可选的实施方式,所述第一信令为RRC信令、DCI、或系统消息。
图9为本申请实施例提供的通信装置900的示意性框图。示例性地,通信装置900例如为终端设备900。
终端设备900包括处理模块910和收发模块920。示例性地,终端设备900可以是网络设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当终端设备900是终端设备时,收发模块920可以是收发器,收发器可以包括天线和射频电路等,处理模块910可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当终端设备900是具有上述终端设备功能的部件时,收发模块920可以是射频单元,处理模块910可以是处理器,例如基带处理器。当终端设备900是芯片系统时,收发模块920可以是芯片(例如基带芯片)的输入输出接口、处理模块910可以是芯片系统的处理器,可以包括一个或多个中央处理单元。应理解,本申请实施例中的处理模块910可以由处理器或处理器相关电路组件实现,收发模块920可以由收发器或收发器相关电路组件实现。
其中,处理模块910可以用于执行图5所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S53和S57,和/或用于支持本文所描述的技术的其它过程。收发模块920可以用于执行图5所示的实施例中由终端设备所执行的全部接收操作,例如S52和S56,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块920可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块920可以用于执行图5所示的实施例中由终端设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块920是发送模块,而在 执行接收操作时,可以认为收发模块920是接收模块;或者,收发模块920也可以是两个功能模块,收发模块可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图5所示的实施例中由终端设备所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图5所示的实施例中由终端设备所执行的全部接收操作。
其中,收发模块920,用于接收来自网络设备的第一信令,所述第一信令用于指示终端设备以第一周期进行检测的次数,或指示终端设备以第一周期进行检测的第一时长,所述第一周期为终端设备900检测下行信号的周期;
处理模块910,用于根据所述第一周期检测下行信号。
作为一种可选的实施方式,所述第一周期与休眠模式相匹配。
作为一种可选的实施方式,所述第一信令用于指示所述第一时长,处理模块910,还用于根据所述第一时长和所述第一周期确定以所述第一周期进行检测的次数。
作为一种可选的实施方式,所述第一信令还用于指示偏移量,所述偏移量用于辅助周期的检测。
作为一种可选的实施方式,收发模块920,还用于接收来自所述网络设备的第二信令,所述第二信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令。
作为一种可选的实施方式,所述第一信令为RRC信令、DCI、或系统消息。
作为一种可选的实施方式,处理模块910用于通过如下方式根据所述第一周期检测下行信号:
确定第一搜索空间的周期小于或等于所述第一周期,所述第一搜索空间为待执行所述第一周期的搜索空间;
在所述第一搜索空间内按照所述第一周期检测下行信号。
作为一种可选的实施方式,处理模块910用于通过如下方式根据所述第一周期检测下行信号:
确定第一搜索空间的周期大于所述第一周期,所述第一搜索空间为待执行所述第一周期的搜索空间;
在所述第一搜索空间内,按照所述第一周期检测下行信号,或,在所述第一搜索空间内,按照M×P的周期检测下行信号,M为正整数,P为所述第一周期的长度。
作为一种可选的实施方式,所述第一搜索空间为接收所述第一信令的搜索空间,或,所述第一搜索空间包括终端设备900支持的全部搜索空间中的任意一个。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图10示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图10所示,终端设备包括收发单元1010和处理单元1020。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1010用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1020用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1010用于执行图3所示的实施例中终端设备的全部发送操作和接收操作,例如S32和S36,和/或收发单元1010还用于执行支持本文所描述的技术的其它过程。处理单元1320,用于执行图3所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S33和S37,和/或处理单元1020还用于执行支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,收发单元1010用于执行图5所示的实施例中终端设备的全部发送操作和接收操作,例如S52和S56,和/或收发单元1010还用于执行支持本文所描述的技术的其它过程。处理单元1020,用于执行图5所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S53和S57,和/或处理单元1020还用于执行支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图11所示的设备。作为一个例子,该设备可以完成类似于图7中处理模块710的功能。作为另一个例子,该设备可以完成类似于图9中处理模块910的功能。在图11中,该设备包括处理器1110,发送数据处理器1120,接收数据处理器1130。上述实施例中的处理模块710可以是图11中的该处理器1110,并完成相应的功能;上述实施例中的收发模块720可以是图11中的发送数据处理器1120,和/或接收数据处理器1130,并完成相应的功能。或者,上述实施例中的处理模块910可以是图11中的该处理器1110,并完成相应的功能;上述实施例中的收发模块920可以是 图11中的发送数据处理器1120,和/或接收数据处理器1130,并完成相应的功能。虽然图11中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图12示出本实施例的另一种形式。处理装置1200中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1203,接口1204。其中,处理器1203完成上述处理模块710的功能,接口1204完成上述收发模块720的功能。或者,处理器1203完成上述处理模块910的功能,接口1204完成上述收发模块920的功能。作为另一种变形,该调制子系统包括存储器1206、处理器1203及存储在存储器1206上并可在处理器上运行的程序,该处理器1203执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1206可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1200中,只要该存储器1206可以连接到所述处理器1203即可。
本申请实施例中的装置为网络设备时,该装置可以如图13所示。装置1300包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1310和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1320。所述RRU1310可以称为收发模块,该收发模块可以包括发送模块和接收模块,或者,该收发模块可以是一个能够实现发送功能和接收功能的模块。该收发模块可以与图6中的收发模块620对应;或者,该收发模块可以与图8中的收发模块820对应。可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1311和射频单元1312。所述RRU 1310部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU1310部分主要用于进行基带处理,对基站进行控制等。所述RRU 1310与BBU1320可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1320为基站的控制中心,也可以称为处理模块,可以与图6中的处理模块610对应,或者可以与图8中的处理模块810对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1320可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。所述BBU 1320还包括存储器1321和处理器1322。所述存储器1321用以存储必要的指令和数据。所述处理器1322用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1321和处理器1322可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例提供第一通信系统。第一通信系统可以包括上述的图3所示的实施例中所涉及的网络设备,以及包括上述的图3所示的实施例中所涉及的终端设备。终端设备例如为图7中的终端设备700。网络设备例如为图6中的网络设备600。
本申请实施例提供第二通信系统。第二通信系统可以包括上述的图5所示的实施例中所涉及的终端设备,以及包括上述的图5所示的实施例中所涉及的网络设备。终端设备例 如为图9中的终端设备900。网络设备例如为图8中的网络设备800。
第一通信系统和第二通信系统可以是同一个通信系统,或者是不同的通信系统。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图3所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图3所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图3所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图3所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图5所示的实施例中与终端设备相关的流程。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器 (enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (58)

  1. 一种通信方法,其特征在于,包括:
    确定第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的一种周期为终端设备检测下行信号的周期;
    发送所述第一信令。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一种周期与至少一种休眠模式相匹配。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的次数。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的先后顺序。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述第一信令还用于指示一个或多个偏移量,所述偏移量用于辅助周期的检测。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述方法还包括:
    在所述至少一种周期的检测次数结束时,发送第二信令,所述第二信令用于指示第一周期,所述第一周期在顺序上位于所述至少一个周期之后。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述第一信令用于指示至少一种周期,包括:
    所述第一信令包括所述至少一种周期;或,
    所述第一信令包括所述第一周期集合的标识,所述第一周期集合的标识用于指示所述至少一种周期,所述第一周期集合是多个周期集合中的一个,所述多个周期集合中的每个周期集合包括一种或多种周期的顺序组合。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    发送第三信令,所述第三信令用于指示所述多个周期集合。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述至少一种周期中,顺序在前的周期的长度,大于顺序在后的周期的长度。
  10. 根据权利要求1所述的方法,其特征在于,所述第一信令用于指示至少一种周期,包括:
    所述第一信令指示第一时长,所述第一时长与所述至少一种周期中的一种周期有关。
  11. 根据权利要求10所述的方法,其特征在于,所述第一时长与所述至少一种周期中的一种周期有关,包括:
    所述第一时长的取值与所述一种周期的取值成正比。
  12. 根据权利要求1~11任一项所述的方法,其特征在于,所述方法还包括:
    在唤醒后,发送第四信令,所述第四信令为唤醒信号WUS信令,或为用于调度数据的下行控制信息DCI,或为用于承载特殊信息的信令。
  13. 根据权利要求1~12任一项所述的方法,其特征在于,所述第一信令为无线资源控制RRC信令、DCI、或系统消息。
  14. 根据权利要求1~13任一项所述的方法,其特征在于,所述至少一种周期用于将所述终端设备的第一搜索空间的周期更改为所述至少一种周期,所述第一搜索空间为发送所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间 中的任意一个。
  15. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的一种周期为终端设备检测下行信号的周期;
    根据所述至少一种周期检测下行信号。
  16. 根据权利要求15所述的方法,其特征在于,所述至少一种周期与至少一种休眠模式相匹配。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的次数。
  18. 根据权利要求15~17任一项所述的方法,其特征在于,所述第一信令还用于指示所述终端设备以所述至少一种周期进行检测的先后顺序。
  19. 根据权利要求15~18任一项所述的方法,其特征在于,所述第一信令还用于指示一个或多个偏移量,所述偏移量用于辅助周期的检测。
  20. 根据权利要求15~19任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二信令,所述第二信令用于指示第一周期,所述第一周期在顺序上位于所述至少一个周期之后。
  21. 根据权利要求15~20任一项所述的方法,其特征在于,所述第一信令用于指示至少一种周期,包括:
    所述第一信令包括所述至少一种周期;或,
    所述第一信令包括所述第一周期集合的标识,所述第一周期集合的标识用于指示所述至少一种周期,所述第一周期集合是多个周期集合中的一个,所述多个周期集合中的每个周期集合包括一种或多种周期的顺序组合。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第三信令,所述第三信令用于指示所述多个周期集合。
  23. 根据权利要求15~22任一项所述的方法,其特征在于,所述至少一种周期中,顺序在前的周期的长度,大于顺序在后的周期的长度。
  24. 根据权利要求15所述的方法,其特征在于,所述第一信令用于指示至少一种周期,包括:
    所述第一信令指示第一时长,所述第一时长与至少一种周期中的一种周期有关。
  25. 根据权利要求24所述的方法,其特征在于,所述第一时长与至少一种周期中的一种周期有关,包括:
    所述第一时长的取值与所述一种周期的取值成正比。
  26. 根据权利要求15~25任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第四信令,所述第四信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令;
    根据第二周期检测下行信号,所述第二周期不属于所述至少一种周期。
  27. 根据权利要求15~26任一项所述的方法,其特征在于,所述第一信令为RRC信令、DCI、或系统消息。
  28. 根据权利要求15~27任一项所述的方法,其特征在于,所述至少一种周期用于将所述终端设备的第一搜索空间的周期更改为所述至少一种周期,所述第一搜索空间为发送 所述第一信令的搜索空间,或,所述第一搜索空间包括所述终端设备支持的全部搜索空间中的任意一个。
  29. 一种网络设备,其特征在于,包括:
    处理模块,用于确定第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的一种周期为通信装置检测下行信号的周期;
    收发模块,用于发送所述第一信令。
  30. 根据权利要求29所述的网络设备,其特征在于,所述至少一种周期与至少一种休眠模式相匹配。
  31. 根据权利要求29或30所述的网络设备,其特征在于,所述第一信令还用于指示所述通信装置以所述至少一种周期进行检测的次数。
  32. 根据权利要求29~31任一项所述的网络设备,其特征在于,所述第一信令还用于指示所述通信装置以所述至少一种周期进行检测的先后顺序。
  33. 根据权利要求29~32任一项所述的网络设备,其特征在于,所述第一信令还用于指示一个或多个偏移量,所述偏移量用于辅助周期的检测。
  34. 根据权利要求29~33任一项所述的网络设备,其特征在于,所述收发模块,还用于在所述至少一种周期的检测次数结束时,发送第二信令,所述第二信令用于指示第一周期,所述第一周期在顺序上位于所述至少一个周期之后。
  35. 根据权利要求29~34任一项所述的网络设备,其特征在于,所述第一信令用于指示至少一种周期,包括:
    所述第一信令包括所述至少一种周期;或,
    所述第一信令包括所述第一周期集合的标识,所述第一周期集合的标识用于指示所述至少一种周期,所述第一周期集合是多个周期集合中的一个,所述多个周期集合中的每个周期集合包括一种或多种周期的顺序组合。
  36. 根据权利要求35所述的网络设备,其特征在于,所述收发模块,还用于发送第三信令,所述第三信令用于指示所述多个周期集合。
  37. 根据权利要求29~36任一项所述的网络设备,其特征在于,所述至少一种周期中,顺序在前的周期的长度,大于顺序在后的周期的长度。
  38. 根据权利要求29所述的网络设备,其特征在于,所述第一信令用于指示至少一种周期,包括:
    所述第一信令指示第一时长,所述第一时长与所述至少一种周期中的一种周期有关。
  39. 根据权利要求38所述的网络设备,其特征在于,所述第一时长与所述至少一种周期中的一种周期有关,包括:
    所述第一时长的取值与所述一种周期的取值成正比。
  40. 根据权利要求29~39任一项所述的网络设备,其特征在于,所述收发模块,还用于在所述网络设备唤醒后,发送第四信令,所述第四信令为唤醒信号WUS信令,或为用于调度数据的下行控制信息DCI,或为用于承载特殊信息的信令。
  41. 根据权利要求29~40任一项所述的网络设备,其特征在于,所述第一信令为无线资源控制RRC信令、DCI、或系统消息。
  42. 根据权利要求29~41任一项所述的网络设备,其特征在于,所述至少一种周期用于将所述通信装置的第一搜索空间的周期更改为所述至少一种周期,所述第一搜索空间为 发送所述第一信令的搜索空间,或,所述第一搜索空间包括所述通信装置支持的全部搜索空间中的任意一个。
  43. 一种通信装置,其特征在于,包括:
    收发模块,用于接收来自网络设备的第一信令,所述第一信令用于指示至少一种周期,所述至少一种周期中的一种周期为所述通信装置检测下行信号的周期;
    处理模块,用于根据所述至少一种周期检测下行信号。
  44. 根据权利要求43所述的通信装置,其特征在于,所述至少一种周期与至少一种休眠模式相匹配。
  45. 根据权利要求43或44所述的通信装置,其特征在于,所述第一信令还用于指示所述通信装置以所述至少一种周期进行检测的次数。
  46. 根据权利要求43~45任一项所述的通信装置,其特征在于,所述第一信令还用于指示所述通信装置以所述至少一种周期进行检测的先后顺序。
  47. 根据权利要求43~46任一项所述的通信装置,其特征在于,所述第一信令还用于指示一个或多个偏移量,所述偏移量用于辅助周期的检测。
  48. 根据权利要求43~47任一项所述的通信装置,其特征在于,所述收发模块,还用于接收来自所述网络设备的第二信令,所述第二信令用于指示第一周期,所述第一周期在顺序上位于所述至少一个周期之后。
  49. 根据权利要求43~48任一项所述的通信装置,其特征在于,所述第一信令用于指示至少一种周期,包括:
    所述第一信令包括所述至少一种周期;或,
    所述第一信令包括所述第一周期集合的标识,所述第一周期集合的标识用于指示所述至少一种周期,所述第一周期集合是多个周期集合中的一个,所述多个周期集合中的每个周期集合包括一种或多种周期的顺序组合。
  50. 根据权利要求49所述的通信装置,其特征在于,所述收发模块,还用于接收来自所述网络设备的第三信令,所述第三信令用于指示所述多个周期集合。
  51. 根据权利要求43~50任一项所述的通信装置,其特征在于,所述至少一种周期中,顺序在前的周期的长度,大于顺序在后的周期的长度。
  52. 根据权利要求51所述的通信装置,其特征在于,所述第一信令用于指示至少一种周期,包括:
    所述第一信令指示第一时长,所述第一时长与至少一种周期中的一种周期有关。
  53. 根据权利要求52所述的通信装置,其特征在于,所述第一时长与至少一种周期中的一种周期有关,包括:
    所述第一时长的取值与所述一种周期的取值成正比。
  54. 根据权利要求43~53任一项所述的通信装置,其特征在于,所述收发模块,还用于接收来自所述网络设备的第四信令,所述第四信令为WUS信令,或为用于调度数据的DCI,或为用于承载特殊信息的信令;
    根据第二周期检测下行信号,所述第二周期不属于所述至少一种周期。
  55. 根据权利要求43~54任一项所述的通信装置,其特征在于,所述第一信令为RRC信令、DCI、或系统消息。
  56. 根据权利要求43~55任一项所述的通信装置,其特征在于,所述至少一种周期用 于将所述通信装置的第一搜索空间的周期更改为所述至少一种周期,所述第一搜索空间为发送所述第一信令的搜索空间,或,所述第一搜索空间包括所述通信装置支持的全部搜索空间中的任意一个。
  57. 一种通信装置,其特征在于,包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述通信装置执行如权利要求1~14中任意一项所述的方法,或者使得所述计算机执行如权利要求15~28中任意一项所述的方法。
  58. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~14中任意一项所述的方法,或者使得所述计算机执行如权利要求15~28中任意一项所述的方法。
PCT/CN2019/116811 2019-11-08 2019-11-08 一种通信方法、装置及设备 WO2021088024A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980100587.4A CN114424648A (zh) 2019-11-08 2019-11-08 一种通信方法、装置及设备
EP19951744.2A EP4033833A4 (en) 2019-11-08 2019-11-08 COMMUNICATION METHOD AND DEVICE AND DEVICE
PCT/CN2019/116811 WO2021088024A1 (zh) 2019-11-08 2019-11-08 一种通信方法、装置及设备
US17/738,874 US20220264628A1 (en) 2019-11-08 2022-05-06 Communication method, communication apparatus, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116811 WO2021088024A1 (zh) 2019-11-08 2019-11-08 一种通信方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/738,874 Continuation US20220264628A1 (en) 2019-11-08 2022-05-06 Communication method, communication apparatus, and device

Publications (1)

Publication Number Publication Date
WO2021088024A1 true WO2021088024A1 (zh) 2021-05-14

Family

ID=75849506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116811 WO2021088024A1 (zh) 2019-11-08 2019-11-08 一种通信方法、装置及设备

Country Status (4)

Country Link
US (1) US20220264628A1 (zh)
EP (1) EP4033833A4 (zh)
CN (1) CN114424648A (zh)
WO (1) WO2021088024A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219113A (zh) * 2017-07-05 2019-01-15 维沃移动通信有限公司 一种盲检测方法、信号发送方法、相关设备和系统
WO2019031580A1 (ja) * 2017-08-09 2019-02-14 シャープ株式会社 端末装置、および、方法
CN110167151A (zh) * 2018-02-12 2019-08-23 维沃移动通信有限公司 信息检测方法、传输方法、终端及网络设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3111702B1 (en) * 2014-03-21 2021-06-23 Huawei Technologies Co., Ltd. Methods and nodes in a wireless communication network
GB201602150D0 (en) * 2016-02-05 2016-03-23 Nec Corp Communication system
EP3451553B1 (en) * 2017-09-05 2021-03-03 Apple Inc. Mechanisms for monitoring physical downlink control channel with common search space and user equipment-specific search space in a beamformed system
US11012981B2 (en) * 2017-10-02 2021-05-18 Qualcomm Incorporated Flexible monitoring periodicity for slot format indicator
US10993216B2 (en) * 2018-04-06 2021-04-27 Intel Corporation Flexible slot format indication (SFI) monitoring for new radio unlicensed communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219113A (zh) * 2017-07-05 2019-01-15 维沃移动通信有限公司 一种盲检测方法、信号发送方法、相关设备和系统
WO2019031580A1 (ja) * 2017-08-09 2019-02-14 シャープ株式会社 端末装置、および、方法
CN110167151A (zh) * 2018-02-12 2019-08-23 维沃移动通信有限公司 信息检测方法、传输方法、终端及网络设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLE INC: "Potential Enhancements for NR UE Power Saving1", 3GPP DRAFT; R1-1804773 POTENTIAL ENHANCEMENTS FOR NR UE POWER SAVING, vol. RAN WG1, 7 April 2018 (2018-04-07), Sanya, China, pages 1 - 5, XP051414129 *
SAMSUNG: "Discussion on UE adaptation schemes", 3GPP DRAFT; R1-1810892 UE ADAPTATION SCHEMES, vol. RAN WG1, 28 September 2018 (2018-09-28), Chengdu, China, pages 1 - 6, XP051518297 *
SAMSUNG: "UE adaptation schemes", 3GPP DRAFT; R1-1813011 UE ADAPTATION SCHEMES, vol. RAN WG1, 2 November 2018 (2018-11-02), Spokane, USA, pages 1 - 11, XP051479274 *
See also references of EP4033833A4 *

Also Published As

Publication number Publication date
US20220264628A1 (en) 2022-08-18
CN114424648A (zh) 2022-04-29
EP4033833A1 (en) 2022-07-27
EP4033833A4 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
WO2020200075A1 (zh) 通信方法和装置
WO2018218687A1 (zh) 传输信号的方法、网络设备和终端设备
US20210329431A1 (en) Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus
WO2021062794A1 (zh) 一种信号测量方法及通信装置
CN114982317B (zh) 一种寻呼方法及装置
CN111989959B (zh) 一种信息发送、接收方法及装置
WO2020238428A1 (zh) 一种通信方法及装置
WO2020228647A1 (zh) 一种通信方法及设备
TW202005448A (zh) 信號傳輸方法及裝置
US20220303901A1 (en) Energy conservation signal transmission method, base station, and terminal device
WO2019191984A1 (zh) 一种信号发送方法、网络设备及终端设备
WO2022104542A1 (zh) 无线通信方法和通信装置
WO2021031043A1 (zh) 一种通信方法及装置
WO2020073986A1 (zh) 信息处理的方法和装置
WO2021197233A1 (zh) 一种通信方法及设备
CN114503681B (zh) 指示信息的发送方法和装置
WO2020029855A1 (zh) 一种通信方法、设备及装置
WO2021239064A1 (zh) 通信方法及装置
WO2020155112A1 (zh) 一种资源管理方法及装置
CN109104756B (zh) 唤醒方法、接入点和站点
WO2021088024A1 (zh) 一种通信方法、装置及设备
WO2022033263A1 (zh) 数据传输方法及装置
WO2020253849A1 (zh) 一种通信方法及设备
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
WO2021031632A1 (zh) 一种下行控制信息dci的发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019951744

Country of ref document: EP

Effective date: 20220421

NENP Non-entry into the national phase

Ref country code: DE