WO2020228647A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2020228647A1
WO2020228647A1 PCT/CN2020/089466 CN2020089466W WO2020228647A1 WO 2020228647 A1 WO2020228647 A1 WO 2020228647A1 CN 2020089466 W CN2020089466 W CN 2020089466W WO 2020228647 A1 WO2020228647 A1 WO 2020228647A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
reference signal
terminal device
downlink control
control channel
Prior art date
Application number
PCT/CN2020/089466
Other languages
English (en)
French (fr)
Inventor
铁晓磊
周涵
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20805392.6A priority Critical patent/EP3952192A4/en
Publication of WO2020228647A1 publication Critical patent/WO2020228647A1/zh
Priority to US17/524,482 priority patent/US20220070780A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • the terminal equipment In order to receive downlink data from the base station, or in order to send uplink data to the base station, the terminal equipment needs to perform time-frequency synchronization with the base station first.
  • the terminal equipment in the connected state generally depends on the tracking reference signal (TRS) or synchronization signal And physical broadcast channel block (synchronization signal and physical broadcast channel block, SSB) to synchronize time and frequency with the base station.
  • TRS or SSB are sent periodically, then the terminal equipment will periodically synchronize time and frequency with the base station.
  • the base station does not always schedule downlink data or uplink data to the terminal device. In most cases, there may be no data transmission between the base station and the terminal device. However, the terminal equipment still periodically synchronizes time and frequency with the base station. In this case, the significance of time-frequency synchronization between the terminal equipment and the base station is actually not too great, and it also causes the terminal equipment to perform time-frequency synchronization. Consume more.
  • the embodiments of the present application provide a communication method and device, which are used to reduce the power consumption of a terminal device.
  • a first communication method includes: a terminal device detects first downlink control information DCI; the terminal device determines whether to receive a reference signal according to a detection result of the first DCI, the reference signal Used for time-frequency synchronization between the terminal equipment and the network equipment, and the detection result of the first DCI is also used to indicate whether to detect the first downlink control channel in the first time period.
  • the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a terminal device.
  • the terminal device can determine whether to receive the reference signal according to the detection result of the first DCI. If the terminal device determines not to receive the reference signal, the terminal device may not synchronize time and frequency with the network device, thereby reducing The power consumption of terminal equipment due to time-frequency synchronization.
  • the terminal device determining whether to receive a reference signal according to a detection result of the first DCI includes:
  • the detection result is that the first DCI is detected, and the terminal device determines to receive the reference signal; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates that the reference signal will be sent, and the terminal device determines to receive the reference signal; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates not to send the reference signal, and the terminal device determines not to receive the reference signal; or,
  • the detection result is that the first DCI is not detected, and the terminal device determines not to receive the reference signal.
  • the terminal device can determine to receive the reference signal when the first DCI is detected, and determine not to receive the reference signal when the first DCI is not detected.
  • the network device does not need too many instructions, and the terminal device does not need to read more instruction information.
  • the terminal device may also determine whether to receive the reference signal according to the indication of the first DCI, and this indication manner is relatively clear.
  • the reference signal may not be sent.
  • the network device needs to schedule downlink data, but the scheduled downlink data does not have high requirements for demodulation, such as low modulation order, etc., without the need for the terminal device to synchronize time and frequency with the network device, then the network device can only send the first DCI No reference signal is sent.
  • the terminal equipment can not only complete operations such as receiving and demodulating the downlink data, but also does not need to perform time-frequency synchronization with the network equipment, reducing the power consumption of the terminal equipment.
  • the method also includes:
  • the terminal device receives the first message from the network device
  • the terminal device determining whether to receive the reference signal according to the detection result of the first DCI includes: the terminal device determining whether to receive the reference signal according to the detection result of the first DCI and the association relationship ;
  • association relationship includes:
  • the terminal device detects the first DCI, and the terminal device detects the reference signal; or,
  • the terminal device does not detect the first DCI, and the terminal device does not detect the reference signal; or,
  • the terminal device detects the first DCI, the first DCI instructs to send the reference signal, and the terminal device detects the reference signal; or,
  • the terminal device detects the first DCI, the first DCI indicates not to send the reference signal, and the terminal device does not detect the reference signal.
  • the association relationship between the first DCI and the reference signal may be configured by the network device, so that the terminal device can determine whether to receive the reference signal according to the detection result of the first DCI and the association relationship.
  • detection and “receive” can be understood as the same concept, and correspondingly, “detected” and “received” (or “received”, etc.) can also be understood as the same concept.
  • the detection result is that the first DCI is detected, and the first DCI instructs not to send the reference signal, and the terminal device determines Not receiving the reference signal; after the terminal device determines whether to receive the reference signal according to the detection of the first DCI, the method further includes: the terminal device receives a second DCI from a network device, and the second DCI uses For scheduling data; when the sending parameter of the data indicated by the second DCI does not meet the pre-configured sending parameter, the terminal device determines not to transmit the data.
  • the network device only sends the first DCI but not the reference signal, or in other words, if the terminal device only detects the first DCI without detecting the reference signal, the terminal device cannot perform time-frequency synchronization with the network device. In this case, the terminal device may not be able to complete more complicated demodulation and other operations. Therefore, in this case, the scheduling of network devices may be limited.
  • the sending parameter indicated by the second DCI can be compared with the pre-configured sending parameter.
  • the terminal device may not transmit the data scheduled by the second DCI, thereby reducing the probability of transmission errors.
  • the modulation order indicated by the second DCI is greater than the pre-configured modulation order, it means that the modulation order indicated by the second DCI does not meet the pre-configured modulation order, and if the second The modulation order indicated by the DCI is less than or equal to the pre-configured modulation order, which means that the modulation order indicated by the second DCI meets the pre-configured modulation order.
  • the detection result of the first DCI is further used to indicate whether to detect the first downlink control channel within the first time period, including:
  • the detection result is that the first DCI is detected, which is used to indicate that the first downlink control channel is detected within the first time period; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates that the first downlink control channel is not to be scheduled, and is used to indicate that the first downlink control channel is not to be detected within the first time period Channel; or,
  • the detection result is that the first DCI is detected, and the first DCI instructs to schedule the first downlink control channel, which is used to indicate that the first downlink control channel is detected in the first time period ;or,
  • the detection result is that the first DCI is not detected, and is used to indicate that the first downlink control channel is not to be detected within the first time period.
  • the first DCI can realize the function of WUS.
  • the terminal device can determine to detect the first downlink control channel when the first DCI is detected, and determine not to detect the first downlink control channel when the first DCI is not detected.
  • the network device does not need excessive instructions, and the terminal device does not need to It is easier to read more instructions.
  • the terminal device may also determine whether to detect the first downlink control channel according to an indication of the first DCI. This indication manner is relatively clear.
  • the first downlink control channel includes one or any combination of the following:
  • Downlink control channel masked by TPC-SRS-RNTI.
  • the first downlink control channel may refer to a downlink control channel affected by the DRX mechanism.
  • the first downlink control channel may also include other downlink control channels, or the first downlink control channel may not include the several downlink control channels listed above, but only Including other downlink control channels, which are not specifically limited.
  • the time interval between the time when the terminal device receives the first DCI and the time when the reference signal is received is greater than a first value.
  • the terminal device may receive the first DCI through narrowband, while the terminal device may need to receive the reference signal through broadband. Therefore, after receiving the first DCI, the terminal device needs to have a certain amount of preparation time to start or switch the corresponding Parts etc.
  • the time interval between the time when the terminal device receives the first DCI and the time when the reference signal is received is greater than the first value, so as to give the terminal device enough preparation time.
  • the first value is determined according to the capability of the terminal device, for example, the terminal device may send capability information to the network device, so that the network device may determine the first value. Alternatively, the first value can also be specified by agreement.
  • the reference signal is CSI-RS, TRS or SSB.
  • the reference signal can be used for time-frequency synchronization between terminal equipment and network equipment, or the reference signal can also have other uses.
  • the reference signal may be other signals in addition to the ones listed above.
  • the embodiment of the present application does not impose restrictions on the reference signal.
  • a second communication method includes: a network device determines an association relationship between a first DCI and a reference signal, where the reference signal is used for time-frequency synchronization between the terminal device and the network device, The sending result of the first DCI is used to indicate whether to detect the first downlink control channel within the first time period; the network device sends a first message to the terminal device, and the first message is used to indicate the association relationship.
  • the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device is a network device.
  • the association relationship includes:
  • the network device sends the first DCI, and the network device sends the reference signal; or,
  • the network device does not send the first DCI, and the network device does not send the reference signal; or,
  • the network device sends the first DCI, the first DCI instructs to send the reference signal, and the network device sends the reference signal; or,
  • the network device sends the first DCI, the first DCI indicates not to send the reference signal, and the network device does not send the reference signal.
  • the sending result of the first DCI is used to indicate whether to detect the first downlink control channel within the first time period, including:
  • the sending result is sending the first DCI, which is used to instruct to detect the first downlink control channel within the first time period; or,
  • the sending result is sending the first DCI, and the first DCI indicates that the first downlink control channel is not to be scheduled, and is used to indicate not to detect the first downlink control channel in the first time period ;or,
  • the sending result is sending the first DCI, and the first DCI instructs to schedule the first downlink control channel, and is used to indicate to detect the first downlink control channel in the first time period; or,
  • the sending result is that the first DCI is not sent, and is used to indicate that the first downlink control channel is not to be detected in the first time period.
  • the method further includes:
  • the network device sends a second DCI to the terminal device, where the second DCI is used for scheduling data, and the sending parameter of the data indicated by the second DCI meets the pre-configured sending parameter.
  • the time interval between the time when the network device sends the first DCI and the time when the reference signal is sent is greater than a first value.
  • the reference signal is CSI-RS, TRS or SSB.
  • a first communication device is provided, for example, the communication device is the first communication device as described above.
  • the communication device is configured to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the communication device may include a module for executing the method in the first aspect or any possible implementation of the first aspect, for example, including a processing module and a transceiver module.
  • the communication device is a communication device.
  • the communication device is a terminal device. among them,
  • the transceiver module is configured to detect the first downlink control information DCI;
  • the processing module is configured to determine whether to receive a reference signal according to a detection result of the first DCI, the reference signal is used for time-frequency synchronization between the communication device and the network device, and the detection result of the first DCI is also Used to indicate whether to detect the first downlink control channel within the first time period.
  • the processing module is configured to determine whether to receive a reference signal according to a detection result of the first DCI in the following manner:
  • the detection result is that the first DCI is detected, and it is determined to receive the reference signal; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates that the reference signal will be sent, and the reference signal is determined to be received; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates not to send the reference signal, and it is determined not to receive the reference signal; or,
  • the detection result is that the first DCI is not detected, and it is determined not to receive the reference signal.
  • the transceiver module is further configured to receive a first message from the network device
  • the processing module is further configured to determine that there is an association relationship between the first DCI and a reference signal according to the first message;
  • the processing module is configured to determine whether to receive the reference signal according to the detection result of the first DCI in the following manner: determine whether to receive the reference signal according to the detection result of the first DCI and the association relationship;
  • association relationship includes:
  • the communication device detects the first DCI, and the communication device detects the reference signal; or,
  • the communication device does not detect the first DCI, and the communication device does not detect the reference signal; or,
  • the communication device detects the first DCI, the first DCI instructs to send the reference signal, and the communication device detects the reference signal; or,
  • the communication device detects the first DCI, the first DCI indicates not to send the reference signal, and the communication device does not detect the reference signal.
  • the detection result is that the first DCI is detected, and the first DCI instructs not to send the reference signal, and the processing module determines Not receiving the reference signal;
  • the transceiver module is further configured to receive a second DCI from a network device after the processing module determines whether to receive a reference signal according to detection of the first DCI, where the second DCI is used for scheduling data;
  • the processing module is further configured to determine not to transmit the data when the sending parameter of the data indicated by the second DCI does not meet the pre-configured sending parameter.
  • the detection result of the first DCI is further used to indicate whether to detect the first downlink control channel within the first time period, including:
  • the detection result is that the first DCI is detected, which is used to indicate that the first downlink control channel is detected within the first time period; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates that the first downlink control channel is not to be scheduled, and is used to indicate that the first downlink control channel is not to be detected within the first time period Channel; or,
  • the detection result is that the first DCI is detected, and the first DCI instructs to schedule the first downlink control channel, which is used to indicate that the first downlink control channel is detected in the first time period ;or,
  • the detection result is that the first DCI is not detected, and is used to indicate that the first downlink control channel is not to be detected within the first time period.
  • the first downlink control channel includes one or any combination of the following:
  • Downlink control channel masked by TPC-SRS-RNTI.
  • the time interval between the time when the communication device receives the first DCI and the time when the reference signal is received is greater than a first value.
  • the reference signal is CSI-RS, TRS or SSB.
  • a second communication device is provided, for example, the communication device is the second communication device as described above.
  • the communication device is configured to execute the foregoing second aspect or any possible implementation method of the second aspect.
  • the communication device may include a module for executing the method in the second aspect or any possible implementation of the second aspect, for example, including a processing module and a transceiver module.
  • the communication device is a communication device.
  • the communication device is a network device. among them,
  • the processing module is configured to determine the association relationship between the first DCI and a reference signal, the reference signal is used for time-frequency synchronization between the terminal equipment and the communication device, and the transmission result of the first DCI is used to indicate whether Detecting the first downlink control channel in the first time period;
  • the transceiver module is configured to send a first message to the terminal device, where the first message is used to indicate the association relationship.
  • the association relationship includes:
  • the communication device sends the first DCI, and the communication device sends the reference signal; or,
  • the communication device does not send the first DCI, and the communication device does not send the reference signal; or,
  • the communication device sends the first DCI, the first DCI instructs to send the reference signal, and the communication device sends the reference signal; or,
  • the communication device sends the first DCI, the first DCI indicates not to send the reference signal, and the communication device does not send the reference signal.
  • the sending result of the first DCI is used to indicate whether to detect the first downlink control channel within the first time period, including:
  • the sending result is sending the first DCI, which is used to instruct to detect the first downlink control channel within the first time period; or,
  • the sending result is sending the first DCI, and the first DCI indicates that the first downlink control channel is not to be scheduled, and is used to indicate not to detect the first downlink control channel in the first time period ;or,
  • the sending result is sending the first DCI, and the first DCI instructs to schedule the first downlink control channel, and is used to indicate to detect the first downlink control channel in the first time period; or,
  • the sending result is that the first DCI is not sent, and is used to indicate that the first downlink control channel is not to be detected in the first time period.
  • the transceiver module is further configured to:
  • the time interval between the time when the communication device sends the first DCI and the time when the reference signal is sent is greater than a first value.
  • the reference signal is CSI-RS, TRS, or SSB.
  • a third communication device is provided.
  • the communication device is, for example, the first communication device as described above.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are coupled with each other to implement the method described in the first aspect or various possible designs of the first aspect.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the information transmission and reception through the radio frequency transceiving component. among them,
  • the transceiver is used to detect the first downlink control information DCI;
  • the processor is configured to determine whether to receive a reference signal according to a detection result of the first DCI, where the reference signal is used for time-frequency synchronization between the communication device and a network device, and the detection result of the first DCI is also Used to indicate whether to detect the first downlink control channel within the first time period.
  • the processor is configured to determine whether to receive a reference signal according to a detection result of the first DCI in the following manner:
  • the detection result is that the first DCI is detected, and it is determined to receive the reference signal; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates that the reference signal will be sent, and the reference signal is determined to be received; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates not to send the reference signal, and it is determined not to receive the reference signal; or,
  • the detection result is that the first DCI is not detected, and it is determined not to receive the reference signal.
  • the transceiver is also used to receive the first message from the network device;
  • the processor is further configured to determine, according to the first message, that there is an association relationship between the first DCI and a reference signal;
  • the processor is configured to determine whether to receive the reference signal according to the detection result of the first DCI in the following manner: determine whether to receive the reference signal according to the detection result of the first DCI and the association relationship;
  • association relationship includes:
  • the communication device detects the first DCI, and the communication device detects the reference signal; or,
  • the communication device does not detect the first DCI, and the communication device does not detect the reference signal; or,
  • the communication device detects the first DCI, the first DCI instructs to send the reference signal, and the communication device detects the reference signal; or,
  • the communication device detects the first DCI, the first DCI indicates not to send the reference signal, and the communication device does not detect the reference signal.
  • the detection result is that the first DCI is detected, and the first DCI instructs not to send the reference signal, and the processor determines Not receiving the reference signal;
  • the transceiver is further configured to receive a second DCI from a network device after the processor determines whether to receive a reference signal according to detection of the first DCI, where the second DCI is used for scheduling data;
  • the processor is further configured to determine not to transmit the data when the sending parameter of the data indicated by the second DCI does not meet the pre-configured sending parameter.
  • the detection result of the first DCI is further used to indicate whether to detect the first downlink control channel within the first time period, including:
  • the detection result is that the first DCI is detected, which is used to indicate that the first downlink control channel is detected within the first time period; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates that the first downlink control channel is not to be scheduled, and is used to indicate that the first downlink control channel is not to be detected within the first time period Channel; or,
  • the detection result is that the first DCI is detected, and the first DCI instructs to schedule the first downlink control channel, which is used to indicate that the first downlink control channel is detected in the first time period ;or,
  • the detection result is that the first DCI is not detected, and is used to indicate that the first downlink control channel is not to be detected within the first time period.
  • the first downlink control channel includes one or any combination of the following:
  • Downlink control channel masked by TPC-SRS-RNTI.
  • the time interval between the time when the communication device receives the first DCI and the time when the reference signal is received is greater than a first value.
  • the reference signal is CSI-RS, TRS, or SSB.
  • a fourth communication device is provided.
  • the communication device is, for example, the fourth communication device as described above.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are coupled with each other to implement the method described in the foregoing second aspect or various possible designs of the second aspect.
  • the communication device is a chip provided in a communication device.
  • the communication device is a network device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the information transmission and reception through the radio frequency transceiving component. among them,
  • the processor is configured to determine an association relationship between a first DCI and a reference signal, the reference signal is used for time-frequency synchronization between the terminal equipment and the communication device, and the transmission result of the first DCI is used to indicate whether Detecting the first downlink control channel in the first time period;
  • the transceiver is configured to send a first message to the terminal device, where the first message is used to indicate the association relationship.
  • the association relationship includes:
  • the communication device sends the first DCI, and the communication device sends the reference signal; or,
  • the communication device does not send the first DCI, and the communication device does not send the reference signal; or,
  • the communication device sends the first DCI, the first DCI instructs to send the reference signal, and the communication device sends the reference signal; or,
  • the communication device sends the first DCI, the first DCI indicates not to send the reference signal, and the communication device does not send the reference signal.
  • the sending result of the first DCI is used to indicate whether to detect the first downlink control channel within the first time period, including:
  • the sending result is sending the first DCI, which is used to instruct to detect the first downlink control channel within the first time period; or,
  • the sending result is sending the first DCI, and the first DCI indicates that the first downlink control channel is not to be scheduled, and is used to indicate not to detect the first downlink control channel in the first time period ;or,
  • the sending result is sending the first DCI, and the first DCI instructs to schedule the first downlink control channel, and is used to indicate to detect the first downlink control channel in the first time period; or,
  • the sending result is that the first DCI is not sent, and is used to indicate that the first downlink control channel is not to be detected in the first time period.
  • the transceiver is further used for:
  • the time interval between the time when the communication device sends the first DCI and the time when the reference signal is sent is greater than a first value.
  • the reference signal is CSI-RS, TRS, or SSB.
  • a fifth communication device is provided.
  • the communication device may be the first communication device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the fifth communication device is caused to execute the foregoing first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the fifth type of communication device may also include a communication interface, and the communication interface may be a transceiver in a terminal device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the fifth type of communication
  • the device is a chip set in a terminal device, and the communication interface may be an input/output interface of the chip, such as input/output pins.
  • a sixth communication device is provided.
  • the communication device may be the second communication device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a network device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the sixth communication device executes the second aspect or the method in any one of the possible implementation manners of the second aspect.
  • the sixth communication device may also include a communication interface, and the communication interface may be a transceiver in a network device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the sixth communication
  • the device is a chip set in a network device, and the communication interface may be an input/output interface of the chip, such as input/output pins.
  • a communication system which may include the first communication device described in the third aspect, the third communication device described in the fifth aspect, or the fifth communication device described in the seventh aspect , And including the second communication device described in the fourth aspect, the fourth communication device described in the sixth aspect, or the sixth communication device described in the eighth aspect.
  • a computer storage medium stores instructions, which when run on a computer, cause the computer to execute the first aspect or any one of the possible designs of the first aspect The method described.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the second aspect or any one of the possible designs of the second aspect. The method described in.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the first aspect or any one of the first aspects described above. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the second aspect or any one of the possibilities of the second aspect. The method described in the design.
  • the terminal device can determine whether to receive the reference signal according to the detection result of the first DCI. If the terminal device determines not to receive the reference signal, the terminal device may not synchronize time and frequency with the network device, thereby reducing The power consumption of terminal equipment due to time-frequency synchronization.
  • Figure 1 is a schematic diagram of the DRX mechanism
  • Figure 2 is a schematic diagram of the PDCCH-WUS transmission process
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of the application.
  • FIG. 4 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 5 is a schematic block diagram of a terminal device provided by an embodiment of the application.
  • FIG. 6 is another schematic block diagram of a terminal device provided by an embodiment of this application.
  • FIG. 7 is a schematic block diagram of a network device provided by an embodiment of the application.
  • FIG. 8 is another schematic block diagram of a network device provided by an embodiment of this application.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the application.
  • FIG. 10 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is still another schematic block diagram of the communication device provided by an embodiment of the application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle-to-everything (V2X) Terminal equipment, machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal) , User agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • UE user equipment
  • V2X vehicle-to-everything
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, and computer-built mobile devices.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • vehicle-mounted terminal equipment for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU).
  • OBU on-board unit
  • Network equipment such as access network (AN) equipment, such as a base station (e.g., access point), may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • base station e.g., access point
  • IP Internet Protocol
  • the base station can be used to convert the received air frame and Internet Protocol (IP) packets to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet Protocol
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the access network equipment can also coordinate the attribute management of the air interface.
  • the access network equipment may include a long-term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in a long term evolution-advanced (LTE-A) system. ), or it may also include the next generation node B (gNB) in the fifth generation mobile communication technology (the 5th generation, 5G) NR system, or it may also include the cloud radio access network (Cloud access network).
  • LTE long-term evolution
  • NodeB or eNB or e-NodeB, evolutional NodeB evolutional NodeB
  • LTE-A long term evolution-advanced
  • gNB next generation node B
  • 5G fifth generation
  • 5G fifth generation
  • Cloud access network cloud access network
  • the network equipment may also include core network equipment, but because the technical solutions provided by the embodiments of this application mainly involve access network equipment, in the following text, unless otherwise specified, the “network equipment” described below is all Refers to the access network equipment.
  • Downlink control channel such as physical downlink control channel (PDCCH), or enhanced physical downlink control channel (EPDCCH), or may also include other downlink control channels.
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • At least one means one or more, and "plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first information and the second information are only for distinguishing different signaling, but do not indicate the difference in content, priority, sending order, or importance of the two types of information.
  • the 3rd generation partnership project (3rd generation partnership project, 3GPP) standards organization is currently formulating 5G NR protocol standards.
  • the NR system supports a larger transmission bandwidth, more transceiver antenna arrays, a higher transmission rate, and a more flexible and smaller-granularity scheduling mechanism.
  • the above-mentioned characteristics of the NR system provide more scope of application for the NR system, it greatly increases the power consumption burden of the terminal equipment.
  • 3GPP has designed a DRX mechanism (or called DRX mode, or DRX state, etc.) to reduce the power consumption of terminal devices in the connected state.
  • the basic time unit under the DRX mechanism is the DRX cycle (cycle), or called the DRX cycle, and the length of the DRX cycle is called the DRX cycle.
  • the DRX mechanism defined in the physical layer media access control (media access control, MAC).
  • the DRX mechanism allows the terminal device to periodically enter the sleep mode at certain times (which can be defined as inactive time), and does not monitor the designated cell radio network temporary identity (cell radio network temporary identity, C-RNTI) masked PDCCH, and when it needs to be monitored (which can be defined as active time), wake up from the sleep state and monitor these PDCCHs, which can reduce the power consumption of the terminal device .
  • the DRX (connected-DRX, C-DRX) mechanism of the connected state does not need to monitor the C-RNTI during the inactive time, configure scheduling radio network temporary identification (configured scheduling RNTI, CS-RNTI), Interrupt RNTI (interruption RNTI, INT-RNTI), slot format indicator-RNTI (slot format indicator-RNTI, SFI-RNTI), semi-persistent channel state indicator RNTI (semi-persistent channel state information RNTI, SP-CSI-RNTI), Transmit power control physical uplink control channel (PUCCH)-RNTI (transmit power control PUCCH RNTI, TPC-PUCCH-RNTI), transmit power control physical uplink shared channel (physical uplink shared channel, PUSCH) RNTI (transmit power control PUSCH RNTI, TPC-PUSCH-RNTI) or transmit power control sounding reference signal (sounding reference signal, SRS) RNTI (transmit power control RNTI, TPC-SRS-
  • scheduling radio network temporary identification configured
  • system information RNTI system information RNTI
  • SI-RNTI system information RNTI
  • paging RNTI paging RNTI
  • P-RNTI paging RNTI
  • random access RNRI random access RNTI
  • RA-RNTI temporary cell radio network temporary identification
  • TC-RNTI temporary cell radio network temporary identity
  • Discontinuous reception cycle (discontinuous reception cycle, DRX cycle): Also called DRX cycle, it is the basic time unit in the DRX state, and the length of the DRX cycle is called the DRX cycle.
  • the DRX cycle is divided into an inactive period (also called an inactive time) and an active period (also called an active time) according to the behavior of the terminal device, where:
  • the state of the terminal device during the out of active time can be referred to as sleep mode or DRX_OFF in the embodiments of this application.
  • the terminal device in the sleep state can choose to turn off radio frequency transceiver based on the implementation.
  • the terminal device in the inactive time only does not receive a type of DCI in the PDCCH, such as the DCI used for scheduling data, but can receive other DCI in the PDCCH that is not affected by whether the terminal device is in the active time.
  • PDSCH physical downlink shared channel
  • acknowledgement acknowledgement
  • NACK negative-acknowledgment
  • the C-DRX mechanism does not need to monitor C-RNTI, CS-RNTI, INT-RNTI, SFI-RNTI, SP-CSI-RNTI, TPC-PUCCH-RNTI, TPC- PUSCH-RNTI or TPC-SRS-RNTI masked DCI, and these RNTI masked DCIs need to be monitored during activation time.
  • the transmission of SI-RNTI, P-RNTI, RA-RNTI or TC-RNTI masked DCI is not affected by the C-DRX mechanism.
  • the state of the terminal device during the activation period can be called wake-up state (wake up), or DRX_ON, when the DRX cycle enters the activation time, the terminal device will be awakened, and monitor and receive PDCCH Therefore, the wake-up state is referred to as the active state in the embodiment of this application.
  • the DRX opportunity (opportunity for DRX) represents the DRX_OFF state.
  • the terminal device does not wake up when the on-duration state arrives, but will wake up in a few time slots before the on-duration state arrives, and receive the reference signal from the network device. Synchronize time and frequency with network equipment to prevent the system clock and operating frequency from deviating from the base station clock and frequency domain caused by the long sleep of the terminal equipment. At the same time, the terminal device may also first try to receive the synchronization signal and the updated system message from the network device to prevent deviation of the system message after the terminal device moves from one cell to another.
  • Wakeup signal (Wakeup Signalling, WUS).
  • WUS is a control instruction used to reduce the power consumption of terminal equipment.
  • the terminal device When in an idle state, the terminal device is generally in a dormant state, but the terminal device needs to wake up every period of time to try to receive a paging message.
  • the time when the terminal device is awakened to receive a paging message is called a paging opportunity (PO).
  • PO paging opportunity
  • the base station does not send a paging message to the terminal device at every PO. Therefore, the terminal device wakes up on the PO to receive the paging message most of the time, which is an invalid operation and increases the power consumption of the terminal device.
  • WUS is introduced in the NB-IoT system. If the base station does send a paging message to the terminal device in a certain PO, the base station will send WUS before the PO arrives, otherwise the base station will not send WUS. The terminal device will try to receive the WUS before the PO arrives. Once the WUS is received, the terminal device will confirm that there is a paging message in the next PO, and the UE will try to receive the paging message. Conversely, if the terminal device does not receive the WUS, the terminal device will consider that there is no paging message in the next PO, and the terminal device will not try to receive the paging and continue to sleep.
  • WUS Since the power consumption and complexity of receiving WUS are much less than the power consumption and complexity of trying to receive paging messages, and the probability of the base station sending paging messages to terminal devices in idle state is not high, WUS can greatly save the power of terminal devices. Consumption.
  • NR plans to introduce a PDCCH-based wake-up indication function in the release-16 version of the power saving feature, that is, to send a wake-up signal through the PDCCH this function works under the terminal equipment configured with the DRX state.
  • the terminal equipment in the connected state in the NR system when the base station has no data to be scheduled, the terminal equipment can enter the DRX mode to save power consumption.
  • the terminal device attempts to blindly detect the PDCCH during the onduration period of the DRX mode. Once the PDCCH for scheduling newly transmitted data is received during the onduration, for example, the physical downlink shared channel (PDSCH) is scheduled.
  • PDSCH physical downlink shared channel
  • the device will start (or restart) the inactivity timer after the PDCCH for scheduling new data transmission ends, and continue to detect the PDCCH within the running time of the inactivity timer, and return to the inactivity timer when the inactivity timer expires.
  • To inactive state If the terminal device does not receive any PDCCH during the onduration period, or the received PDCCH is not used to schedule new data transmission, and the onduration period ends, or the terminal device expires in the inactive timer, the terminal device will return to the non-active period. Activation time.
  • the terminal device can turn off the radio frequency transmitter and receiver, baseband processing chip or memory, etc., and only retain the crystal oscillator clock.
  • which components are closed and which components are retained by the terminal device depend on the implementation of the terminal device itself. This is just an example and not a limitation. Therefore, the terminal device mainly relies on sleeping during the inactive time to save power consumption.
  • WUS may also be introduced in the NR system.
  • design WUS as a downlink control channel, such as PDCCH
  • terminal equipment can detect WUS by detecting PDCCH .
  • the WUS design method can be called PDCCH-based WUS (PDCCH-based WUS), or PDCCH-based power saving channel/signal (PDCCH-based power saving channel/signal).
  • PDCCH-based WUS (which can be referred to as PDCCH-WUS) needs to meet the following conditions:
  • the search space of the PDCCH is in the DRX_OFF state and is sent some time before the arrival of DRX_ON; or the search space of the PDCCH is in the DRX_ON state and is sent in one or more time slots starting from DRX_ON;
  • Fig. 2 is an example of sending PDCCH-WUS for a period of time before DRX_ON arrives.
  • the terminal device before the on-duration of a DRX cycle arrives, if the base station is configured with PDCCH-WUS, the terminal device can detect the PDCCH-WUS on a fixed time-frequency resource.
  • the terminal device If the terminal device detects the PDCCH-WUS, it indicates that there is data scheduling for the terminal device in the on-duration corresponding to the PDCCH-WUS, and the terminal device needs to wake up during the on-duration to detect the PDCCH. If it is detected for scheduling a new For the PDCCH that transmits data, the terminal device starts or restarts the inactivity timer, and sends the PUSCH or receives the PDSCH according to the schedule of the detected PDCCH.
  • the terminal device can consider that there is no data scheduling for the terminal device in the on duration corresponding to the PDCCH-WUS, and the terminal device can be within the on duration corresponding to the PDCCH-WUS Without detecting the PDCCH, for example, the terminal device can continue to sleep during the on duration corresponding to the PDCCH-WUS, so as to save power consumption.
  • Time-frequency synchronization is necessary for PDSCH demodulation, especially PDSCH with high modulation order, high code rate, and high multiple-input multiple-output (MIMO) layers.
  • the terminal device For the transmission of the physical uplink shared channel (PUSCH), the terminal device also needs to perform time-frequency synchronization with the base station first. Therefore, in order to receive downlink data from the base station, or in order to send uplink data to the base station, the terminal device needs to perform time-frequency synchronization with the base station first.
  • the terminal equipment in the connected state generally relies on TRS or SSB to synchronize time and frequency with the base station. TRS or SSB are sent periodically, then the terminal equipment will periodically synchronize time and frequency with the base station.
  • the release-15 terminal device may wake up at the SSB for time-frequency synchronization and automatic gain control (AGC).
  • AGC automatic gain control
  • the period of the SSB and the DRX period are not necessarily the same. In some cases, there may be a time interval between the time domain position of the SSB and the time domain position of the DRX on duration.
  • the terminal device can determine whether to receive the reference signal according to the detection result of the first DCI. If the terminal device determines not to receive the reference signal, the terminal device may not synchronize time and frequency with the network device, thereby reducing The power consumption of the terminal device.
  • the technical solutions provided by the embodiments of this application can be applied to the 4th generation (4G) 4G system, such as the LTE system, or can be applied to the 5G system, such as the NR system, or can also be applied to the next generation of mobile communication technology.
  • 4G 4th generation
  • 5G system such as the NR system
  • the communication system or other similar communication systems are not restricted in detail.
  • Figure 3 includes network equipment and terminal equipment.
  • the terminal equipment is connected to a network equipment.
  • the number of terminal devices in FIG. 3 is just an example.
  • a network device can provide services for multiple terminal devices.
  • the network device in FIG. 3 and each of the terminal devices or all of the terminal devices among the multiple terminal devices can implement the technical solutions provided in the embodiments of the present application.
  • the terminal device in FIG. 3 uses a mobile phone as an example, which is not limited to this in practical applications.
  • the network device in FIG. 3 is, for example, an access network device, such as a base station, or may also be a device such as an RSU.
  • the base station corresponds to different devices in different systems, for example, it can correspond to eNB in 4G system, and it can correspond to gNB in 5G system.
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems. Therefore, the network equipment in FIG. 3 can also correspond to the access network equipment in the future mobile communication system.
  • the embodiment of the present application provides a first communication method. Please refer to FIG. 4, which is a flowchart of the method.
  • the application of this method to the network architecture shown in FIG. 3 is taken as an example.
  • the method can be executed by two communication devices, such as a first communication device and a second communication device, where the first communication device can be a network device or can support the network device to implement the functions required by the method.
  • the communication device or the first communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course it may also be other communication devices, such as a chip system. The same is true for the second communication device.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, or the second communication device may be a terminal device or capable of supporting the terminal device to implement the method.
  • the communication device with the required functions can of course also be other communication devices, such as a chip system.
  • the first communication device may be a network device
  • the second communication device is a terminal device, or both the first communication device and the second communication device are network devices.
  • the device, or the first communication device and the second communication device are both terminal devices, or the first communication device is a network device
  • the second communication device is a communication device capable of supporting the terminal device to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • the method is executed by a network device and a terminal device as an example, that is, it is assumed that the first communication device is a network device and the second communication device is a terminal device. Because this embodiment is applied to the network architecture shown in FIG. 3 as an example, the network device described below may be the network device in the network architecture shown in FIG. 3, and the terminal device described below may be Figure 3 shows the terminal equipment in the network architecture.
  • the network device determines the association relationship between the first DCI and the reference signal.
  • the reference signal is used for time-frequency synchronization between the terminal device and the network device, and the sending result of the first DCI is used to indicate whether to detect the first downlink control channel in the first time period.
  • the sending result of the first DCI is used to indicate whether to detect the first downlink control channel within the first time period.
  • the first DCI may be used to implement the function of WUS. It can be understood that the first DCI is WUS, or, in addition to the information used to realize the function of WUS, the first DCI also includes other information, for example, it includes information used to help the terminal device receive data within the DRX activation time. Information, such as a bandwidth part (BWP) identifier (ID) or aperiodic channel state information (channel state information, CSI) trigger, etc. Therefore, the sending result of WUS can indicate whether the terminal device detects the first downlink control channel in the first time period.
  • BWP bandwidth part
  • ID bandwidth part
  • CSI channel state information
  • the first time period may be a time period associated with the first DCI, or in other words, a time period corresponding to the first DCI.
  • the first time period may refer to the on duration time period of one or more DRX cycles, or refer to the active time of one or more DRX cycles.
  • the first time period may refer to the on duration time period of the next DRX cycle after the detected first DCI, or the active time of the next DRX cycle after the detected first DCI, or Refers to the next on duration of multiple DRX cycles after the detected first DCI, or refers to the active time of the next multiple DRX cycles after the detected first DCI.
  • the first downlink control channel may refer to the downlink control channel affected by the DRX mechanism.
  • the terminal device is affected by the DRX mechanism when detecting the first downlink control channel. If the terminal device is in the inactive DRX cycle Time, there is no need to detect the first downlink control channel.
  • the first downlink control channel may include one or more downlink control channels.
  • the terminal device is not affected by the DRX mechanism when detecting the second downlink control channel, even if the terminal device is in the inactive time of the DRX cycle. It may be necessary to detect the second downlink control channel, which is not limited in the embodiment of the present application.
  • the first downlink control channel includes, for example, one of the following or any combination thereof: a downlink control channel masked by a cell radio network temporary identifier (C-RNTI), and a downlink masked by a CS-RNTI Control channel, the downlink control channel masked by INT-RNTI, the downlink control channel masked by SFI-RNTI, the downlink control channel masked by SP-CSI-RNTI, the downlink control channel masked by TPC-PUCCH-RNTI , The downlink control channel masked by TPC-PUSCH-RNTI, or, the downlink control channel masked by TPC-SRS-RNTI. Or the first downlink control channel may also include other downlink control channels, which are not specifically limited.
  • C-RNTI cell radio network temporary identifier
  • Control channel the downlink control channel masked by INT-RNTI
  • SFI-RNTI the downlink control channel masked by SFI-RNTI
  • SP-CSI-RNTI the downlink control
  • the transmission result of the first DCI for network equipment, it is the transmission result of the first DCI, and for terminal equipment, it is the detection result of the first DCI. If packet loss is not considered, the transmission result of the first DCI and the detection result of the first DCI are It can be considered as a corresponding concept.
  • the sending result of the first DCI is used to indicate whether to detect the first downlink control channel in the first time period, and there may be several different situations.
  • Case 1 The sending result of the first DCI is that the network device sends the first DCI, and the sending result of the first DCI is used to indicate that the first downlink control channel is detected in the first time period.
  • case 1 can be understood as that the detection result of the first DCI is that the first DCI is detected, and the detection result of the first DCI is used to indicate that the first downlink control channel is detected in the first time period.
  • the sending result of the first DCI is that the network device sends the first DCI, and the first DCI includes indication information for indicating that the first downlink control channel is detected within the first time period.
  • case 2 can be understood as that the detection result of the first DCI is that the terminal device detects the first DCI, and the first DCI instructs the terminal device to detect the first downlink control channel in the first time period, then The detection result of the first DCI is used to indicate that the first downlink control channel is detected within the first time period.
  • Case 3 The sending result of the first DCI is that the network device sends the first DCI, and the first DCI indicates that the first downlink control channel is not to be detected in the first time period.
  • the detection result of the first DCI is that the terminal device detects the first DCI, and the first DCI indicates that the first downlink control channel is not detected in the first time period.
  • Case 4 The sending result of the first DCI is that the network device has not sent the first DCI, and the sending result of the first DCI is used to indicate that the first downlink control channel is not to be detected in the first time period.
  • case 4 can be understood as that the detection result of the first DCI is that the first DCI is not detected, and the detection result of the first DCI is used to indicate that the first downlink control is not detected in the first time period. channel.
  • Case 1 and Case 4 can also be combined as one way.
  • the network device indicates whether the terminal device detects the first downlink control channel in the first time period by whether to send the first DCI. For the terminal device, as long as the first DCI is detected, it can be determined to detect the first downlink control channel in the first time period, and if the first DCI is not detected, it can be determined that there is no need to detect the first downlink control channel in the first time period.
  • the downlink control channel is relatively simple.
  • Case 2 Case 3, and Case 4 can also be combined as one way.
  • the first DCI sent by the network device can indicate whether the terminal device detects the first downlink control channel within the first time period. Therefore, even if the network device sends the first DCI, it can also indicate that the terminal device is The first downlink control channel is not detected in the first time period, which is more flexible. For the terminal device, as long as the first DCI is not detected, it can be determined that there is no need to detect the first downlink control channel in the first time period. If the first DCI is detected, it can be determined whether it is The detection of the first downlink control channel in the first time period is simpler to implement and the instructions are more clear.
  • a downlink control channel can be determined in either of these two ways.
  • association relationship between the first DCI and the reference signal determined by the network device may also include several different situations.
  • the association relationship may include sub-relation 1, sub-relation 2, sub-relation 3, or sub-relation 4.
  • Sub-relation 1 is that the network device sends the first DCI, and the network device sends the reference signal. This can be understood as if the network device sends the first DCI, the network device will send the reference signal. From the perspective of the terminal device, sub-relation 1 can be understood as that the terminal device receives (or detects) the first DCI, and the terminal device receives (or detects) the reference signal. It can be understood that if the terminal device receives (or detects) the first DCI, the terminal device considers that the reference signal will also be sent, and the terminal device may choose to receive (or detect) the reference signal.
  • sub-relation 1 and situation 1 as described above can be established at the same time. That is to say, for the network device, if the first DCI is sent to instruct the terminal device to detect the first downlink control channel in the first time period, then the first DCI will also be sent to indicate that the reference signal will be sent. . Since the network device sending the first DCI instructs the terminal device to detect the first downlink control channel in the first time period, it indicates that the network device will schedule the terminal device for data transmission.
  • Sub-relation 2 is that the network device sends the first DCI, and the first DCI indicates that the reference signal will be sent, and the network device sends the reference signal. It can be understood that if the network device sends the first DCI and the first DCI indicates that the reference signal will be sent, the network device will send the reference signal. From the perspective of a terminal device, sub-relation 2 can be understood as that the terminal device receives (or detects) the first DCI, and the first DCI indicates that the reference signal will be sent. The terminal device thinks that the reference signal will be sent and the terminal device can receive (Or, detect) the reference signal. It can be understood that if the terminal device receives (or detects) the first DCI and the first DCI indicates that the reference signal will be sent, the terminal device can receive (or detect) the reference signal.
  • sub-relation 2 and situation 2 as described above can be established at the same time. That is to say, for the network device, if the terminal device is notified by the first DCI instruction to detect the first downlink control channel in the first time period, then it will also be notified through the first DCI instruction to send Reference signal. Since the first DCI instructs the scheduling of the first downlink control channel, it indicates that the network device will schedule the terminal device for data transmission. It may schedule PDSCH or PUSCH. The terminal device needs to perform time-frequency synchronization with the network device for data transmission. Therefore, the network device can indicate that the reference signal will be sent through the first DCI, so that the terminal device can synchronize time and frequency with the network device after detecting the reference signal to receive the PDSCH from the network device or send the PUSCH to the network device.
  • Sub-relation 3 is that the network device sends the first DCI, and the first DCI instructs not to send the reference signal, and the network device does not send the reference signal. It can be understood that if the network device sends the first DCI, and the first DCI indicates not to send the reference signal, the network device will not send the reference signal. From the perspective of the terminal device, sub-relation 2 can be understood as that the terminal device receives (or detects) the first DCI, and the first DCI indicates not to send the reference signal, and the terminal device does not receive (or detect) the reference signal . It can be understood that if the terminal device receives (or detects) the first DCI, and the first DCI indicates not to send the reference signal, the terminal device does not need to receive (or detect) the reference signal.
  • sub-relation 3 and situation 3 as described above can be established at the same time. That is to say, for the network device, if the first DCI is used to inform the terminal device not to detect the first downlink control channel in the first time period, then the first DCI will also be used to notify the terminal not to detect the first downlink control channel.
  • a reference signal will be sent. Since the first DCI indicates that the first downlink control channel is not to be scheduled, it indicates that the network device will not schedule the terminal device to perform data transmission, and the terminal device does not need to perform time-frequency synchronization with the network device. Therefore, the network device can indicate not to schedule the first downlink control channel through the first DCI.
  • the reference signal is sent, so that the terminal device does not need to receive the reference signal, and there is no need to synchronize time and frequency with the network device, so as to reduce the power consumption of the terminal device.
  • Sub-relation 4 is that the network device does not send the first DCI, and the network device does not send the reference signal. This can be understood as that if the network device does not send the first DCI, the network device will not send the reference signal. From the perspective of the terminal device, sub-relation 4 can be understood as that the terminal device does not receive (or does not detect) the first DCI, and the terminal device does not need to receive (or detect) the reference signal. It can be understood that if the terminal device does not receive (or does not detect) the first DCI, the terminal device does not need to receive (or detect) the reference signal.
  • the sub-relationship 4 and the situation 4 described above can be established at the same time. That is to say, for the network device, if it does not send the first DCI to instruct the terminal device not to detect the first downlink control channel in the first time period, it will also indicate that it does not send the first DCI. A reference signal will be sent.
  • the network device Since the network device does not send the first DCI indicating that the terminal device does not detect the first downlink control channel in the first time period, it indicates that the network device will not schedule the terminal device for data transmission, and the terminal device does not need to synchronize time and frequency with the network device Therefore, the network device can indicate that the reference signal will not be sent by not sending the first DCI, so that the terminal device does not need to receive the reference signal, and there is no need to synchronize time and frequency with the network device, so as to reduce the power consumption of the terminal device.
  • sub-relation 1 and sub-relation 4 can be understood as different association relations, or can also be understood as two branches of the same association relation. If understood as two branches of the same association relationship, then in this association relationship, the network device indicates whether to send the reference signal by sending the first DCI. If the network device sends the first DCI, it means that the network device will Sending the reference signal, and if the network device does not send the first DCI, it means that the network device will not send the reference signal, so the terminal device can determine whether to detect the reference signal according to whether the first DCI can be detected, and the implementation is relatively simple.
  • sub-relation 2, sub-relation 3, and sub-relation 4 can be understood as different association relations, or can also be understood as different branches of the same association. If understood as different branches of the same association relationship, then in this association relationship, the first DCI sent by the network device can indicate whether to send the reference signal, so that even if the network device sends the first DCI, it can indicate not to send Reference signal, so that the terminal device does not need to detect the reference signal, and the method is more flexible. For example, the network device sends the first DCI, indicating that the network device will schedule data, such as PDSCH, but the PDSCH scheduled by the network device does not require high demodulation. For example, the modulation order of the PDSCH is relatively low.
  • the PDSCH demodulation can be completed, and the network device may indicate not to send the reference signal through the first DCI. In this case, it does not affect the normal reception and demodulation of the PDSCH by the terminal device, and the power consumption of the terminal device can also be reduced.
  • sub-relationship 1 and sub-relationship 4 are regarded as one kind of association relationship, and sub-relationship 2, sub-relationship 3 and sub-relationship 4 are regarded as another kind of association relationship, then the said association relationship can include these two kinds of association relations.
  • the said association relationship can include these two kinds of association relations.
  • an association relationship can be set for the first DCI and the reference signal, so that the transmission of the reference signal can be controlled through this association relationship.
  • the network device may not need to periodically send the reference signal, but according to the set
  • the terminal device does not need to receive the reference signal periodically, and there is no need to periodically synchronize the time and frequency with the network device, thereby reducing the power consumption of the terminal device.
  • the behavior of the terminal device can be controlled.
  • the terminal device will only receive the reference signal according to the association relationship, instead of periodically receiving the reference signal as in the prior art. Therefore, the terminal device only needs to receive the reference signal. Then, time-frequency synchronization with the network device is sufficient, and there is no need to periodically synchronize the time-frequency with the network device, thereby reducing the power consumption of the terminal device.
  • the reference signal can be used for time-frequency synchronization between the terminal device and the network device, for example, the reference signal is TRS or SSB, or it can also be a channel state information-reference signal (CSI-RS), etc.
  • the reference signal can also have other uses.
  • the reference signal can be used for channel state estimation, and accordingly, the implementation of the reference signal will be different, and there is no specific limitation.
  • the network device sends a first message to the terminal device, and the terminal device receives the first message from the network device, where the first message is used to indicate the association relationship.
  • the network device may send the association relationship to the terminal device.
  • the terminal device After receiving the first message, the terminal device can determine according to the first message that the first DCI and the reference signal have the aforementioned association relationship.
  • the first message is, for example, high-level signaling, such as an RRC message, or may also be other messages.
  • the first message may also be used to configure parameters of the first DCI, for example, a resource used to send the first DCI, such as a control resource set (CORESET), or the first DCI may also be configured Other information, such as monitoring opportunities, is not limited.
  • a resource used to send the first DCI such as a control resource set (CORESET)
  • CORESET control resource set
  • the first message may also be used to configure resources for sending reference signals. Therefore, if the terminal device determines to receive the reference signal according to the detection result of the first DCI, it can receive the reference signal according to the resource configured for sending the reference signal in the first message.
  • the resources used to send the reference signal can also be configured to the terminal device in other ways, such as pre-defining the relative time-frequency domain position between the first DCI and the reference signal through a protocol, etc. In this case, there is no need to pass The first message to configure.
  • the method of notifying the terminal device of the information of the resource used for sending the reference signal is not limited in the embodiment of the present application.
  • association relationship between the first DCI and the reference signal can also be specified by the agreement. Then, if the association relationship between the first DCI and the reference signal is specified by the agreement, S42 can continue to be executed, but the first message can be used for Configuring the first DCI is not used to indicate the association relationship between the first DCI and the reference signal.
  • the terminal device detects the first DCI.
  • the terminal device determines whether to receive the reference signal according to the detection result of the first DCI.
  • the reference signal is used for time-frequency synchronization between the terminal device and the network device, and the detection result of the first DCI is also used to indicate whether to detect the first downlink control channel in the first time period.
  • the reference signal can be used for time-frequency synchronization, or it can be used for other purposes, and there is no specific limitation. How the detection result of the first DCI indicates whether to detect the first downlink control channel in the first time period is also introduced in S41, and will not be described in detail.
  • the sending result of the first DCI is used to indicate whether to detect the first downlink control channel within the first time period. If it is the same as the previous case 1, then, if the terminal device detects the first DCI in S43, the terminal device It can be determined that the first downlink control channel is detected in the first time period, and the terminal device can detect the first downlink control channel in the first time period; or, the transmission result of the first DCI is used to indicate whether the first downlink control channel is in the first time period. The first downlink control channel is detected within the time period.
  • the terminal device can If it is determined that the first downlink control channel is detected in the first time period, the terminal device may detect the first downlink control channel in the first time period; or, the transmission result of the first DCI is used to indicate whether it is in the first time period If the first downlink control channel is detected in the previous case 3, then, if the terminal device detects the first DCI in S43, and the first DCI indicates that the first downlink control does not need to be detected in the first time period Channel, the terminal device may determine not to detect the first downlink control channel in the first time period, and the terminal device may not detect the first downlink control channel in the first time period; or, the transmission result of the first DCI is used To indicate whether to detect the first downlink control channel in the first time period, if it is the case 4 as before, then, if the terminal device does not detect the first DCI in S43,
  • the terminal device determines whether to receive the reference signal according to the detection result of the first DCI. There may be several ways: if the detection result is that the first DCI is detected, the terminal device determines that the reference signal is sent and can receive the reference signal; or if the detection result is The result is that the first DCI is detected and the first DCI indicates that the reference signal will be sent, the terminal device determines that the reference signal will be sent and can receive the reference signal; or, if the detection result is that the first DCI is detected and the first DCI indicates that the reference signal will not be sent When the reference signal is sent, the terminal device determines that the reference signal is not sent and does not receive the reference signal; or, if the detection result is that the first DCI is not detected, the terminal device determines that the reference signal is not sent and does not receive the reference signal.
  • the terminal device determines whether to receive the reference signal according to the detection result of the first DCI, which may be related to the association relationship, or in other words, the terminal device may be based on the detection result of the first DCI and the association relationship, Determine whether to receive the reference signal. For example, if the association relationship is sub-relation 1 as before, then if the terminal device detects the first DCI in S43, the terminal device can think that the network device will send the reference signal, and the terminal device can choose to receive the reference signal, such as the terminal The device can continue to perform detection to receive the reference signal.
  • the terminal device After receiving the reference signal, the terminal device can synchronize time and frequency with the network device; or, if the association relationship is the sub-relation 2 as before, then, if the terminal device detects in S43 When the first DCI is reached, and the first DCI indicates that the reference signal will be sent, the terminal device can think that the network device will send the reference signal, and the terminal device can choose to receive the reference signal. For example, the terminal device can continue to perform detection to receive the reference signal.
  • the terminal device After receiving the reference signal, the terminal device can synchronize time and frequency with the network device; or, if the association relationship is the sub-relation 3 as before, then, if the terminal device detects the first DCI in S43, and the first DCI indicates not to send For reference signals, the terminal device can consider that the network device does not send the reference signal, and the terminal device can determine not to receive the reference signal. For example, the terminal device may not need to detect the reference signal, and naturally does not need to synchronize time and frequency with the network device; or, if the association relationship It is the sub-relation 4 as before.
  • the terminal device can consider that the network device does not send the reference signal, and the terminal device can determine not to receive the reference signal. For example, the terminal device may not Detecting the reference signal naturally does not require time-frequency synchronization with network equipment.
  • the time interval between the moment when the terminal device receives the first DCI and the moment when the reference signal is received may be greater than the first value, which is, for example, configured by the network device, or It may be stipulated by a protocol, or the time interval between the moment when the first DCI is received and the moment when the reference signal is received may be directly configured or indicated by the network.
  • the terminal device may receive the first DCI through narrowband, while the terminal device may need to receive the reference signal through broadband. Therefore, after receiving the first DCI, if it needs to receive the reference signal, the terminal device needs a certain amount of preparation time.
  • the first value may be determined according to the capability of the terminal device. For example, if the first value is configured by the network device, the terminal device can send the capability information of the terminal device to the network device in advance, so that the network device can determine the first value according to the capability information of the terminal device. Or the first value can also be determined according to other factors, and there is no specific limitation.
  • the network device will also send the first DCI.
  • S43 can also be understood as the network device sends the first DCI, and the terminal device receives the first DCI from the network device. .
  • S43 is only understood as the terminal device detecting the first DCI, but the detection result may be that it cannot be detected.
  • the network device will also send a reference signal after sending the first DCI, and the terminal device can receive the reference signal. After receiving the reference signal, the terminal device can communicate with the network device. Time-frequency synchronization. Specifically, the process of time-frequency synchronization between the terminal device and the network device will not be repeated here. Since the network device has sent the first DCI, it indicates that the network device will schedule data. It may schedule PDSCH or PUSCH. After receiving the first DCI, the terminal device may continue to detect the DCI used for scheduling data, or in other words, continue to detect the first downlink control channel.
  • the terminal device detects the second DCI, or in other words, the terminal device receives the second DCI from the network device, and the second DCI is used for scheduling data, for example, for scheduling PDSCH or PUSCH.
  • the second DCI may indicate a transmission parameter of the data scheduled by the network device, and the transmission parameter includes, for example, information such as the modulation order of the data or the number of MIMO layers.
  • the terminal device can determine to transmit the data scheduled by the second DCI, that is, the terminal device can normally receive or send the data scheduled by the second DCI.
  • the terminal device can schedule according to the second DCI, Receive the PDSCH from the network device, and perform operations such as demodulation of the PDSCH, or the terminal device may send the PUSCH to the network device according to the scheduling of the second DCI.
  • the network device does not send the reference signal after sending the first DCI, and the terminal device does not need to receive the reference signal, nor does it need to perform time-frequency synchronization with the network device.
  • the terminal device will not receive the reference signal, and the terminal device will not It will synchronize time and frequency with network equipment based on the reference signal. However, since the network device has sent the first DCI and instructed in the first DCI to monitor the first control channel in the first time period, it indicates that the network device will schedule data, and may schedule PDSCH or PUSCH. After receiving the first DCI, the terminal device may continue to detect the DCI used for scheduling data, or in other words, continue to detect the first downlink control channel.
  • the terminal device detects the second DCI, or in other words, the terminal device receives the second DCI from the network device, and the second DCI is used for scheduling data, for example, for scheduling PDSCH or PUSCH.
  • the second DCI may indicate a transmission parameter of the data scheduled by the network device, and the transmission parameter includes, for example, information such as the modulation order of the data or the number of MIMO layers. Because the terminal device does not synchronize time and frequency with the network device, the terminal device may not be able to process high-order modulation symbols or demodulate multi-layer MIMO data streams.
  • the terminal device may compare the sending parameter indicated by the second DCI with the pre-configured sending parameter to determine whether the sending parameter indicated by the second DCI meets the pre-configured sending parameter. If the transmission parameters indicated by the second DCI meet the pre-configured transmission parameters, the terminal device can determine to transmit the data scheduled by the second DCI, that is, the terminal device can accept the scheduling normally, for example, the terminal device can be scheduled according to the second DCI , Receiving the PDSCH from the network device, and performing operations such as demodulation of the PDSCH, or the terminal device may send the PUSCH to the network device according to the scheduling of the second DCI.
  • the terminal device may determine not to transmit the data scheduled by the second DCI. For example, the terminal device may not receive the PDSCH scheduled by the second DCI, or may not transmit The PUSCH scheduled by the second DCI, in this case, the terminal device can be considered as a scheduling error.
  • the network device if the network device sends the first DCI, and the first DCI indicates not to send the reference signal, the network device will try to make the sending parameters indicated by the second DCI meet the pre-configured sending parameters. , In order to reduce the possibility of errors.
  • the sending parameter indicated by the second DCI satisfies the pre-configured sending parameter, which may mean that the sending parameter indicated by the second DCI is the same as the pre-configured sending parameter, or it may also mean that the sending parameter indicated by the second DCI is for the terminal device
  • the requirements are lower than the requirements of the pre-configured sending parameters for the terminal equipment.
  • the second DCI indication is considered The modulation order meets the pre-configured modulation order, and if the modulation order indicated by the second DCI is greater than the pre-configured modulation order, it is considered that the modulation order indicated by the second DCI does not meet the pre-configured modulation order.
  • sending parameters including the number of MIMO layers.
  • the number of MIMO layers indicated by the second DCI is equal to the number of pre-configured MIMO layers, or the number of MIMO layers indicated by the second DCI is less than the number of pre-configured MIMO layers, it is considered as the second DCI.
  • the indicated number of MIMO layers meets the pre-configured number of MIMO layers, and if the number of MIMO layers indicated by the second DCI is greater than the number of pre-configured MIMO layers, it is considered that the number of MIMO layers indicated by the second DCI does not meet the pre-configured number of MIMO layers.
  • the terminal device may not be able to process the data scheduled by the second DCI. In this case, the terminal device may choose not to process the data, thereby reducing invalid processing The process also reduces the power consumption of terminal equipment.
  • the above situation can be regarded as a situation where the scheduling of network equipment is limited.
  • the limited scheduling of the network device can continue to exist. For example, if the network device sends the first DCI and the first DCI indicates not to send the reference signal, the limited scheduling can continue to exist; or, the scheduling of the network device
  • the restricted situation may not be continuous, but a certain time of existence. This time of existence can be understood as a time window. Outside of this time window, the network device can continue to schedule normally, and the terminal device can continue to receive normally. It is no longer necessary to determine whether the sending parameter indicated by the second DCI meets the pre-configured sending parameter.
  • the time window is a period of time after the first DCI, and it can be understood that the start time of the time window is the time when the network device sends the first DCI, or the terminal device detects the first DCI, or the terminal
  • the time when the device detects the second DCI, etc., the duration of the time window may be configured by the network device, for example, the network device may be configured through the first message, or configured through other messages, or the duration of the time window may also be Provided by agreement. Then within this time window, the scheduling of the network device is limited, and after the end of the time window, the network device can continue to be scheduled normally, and the terminal device can also be scheduled normally.
  • the time window is the first time period.
  • I have already introduced it in the previous article, so I won't repeat it.
  • the scheduling of the network device is limited, and after the first time period ends, the network device can continue the normal scheduling, and the terminal device can also accept the scheduling normally.
  • the time window includes the time before the inactive timer in the on duration time period corresponding to the first DCI is not started. It can be understood that, in the on duration time period corresponding to the first DCI, if the inactive timer If it is not started, the scheduling of the network device is limited, and if the inactive timer is started, the network device can continue normal scheduling, and the terminal device can also accept the scheduling normally.
  • the time window includes the first time period corresponding to the first DCI, and the time period until the PDCCH of the second DCI or the last symbol or the last time slot of the PDSCH scheduled by the second DCI is received.
  • the time window includes the first time period corresponding to the first DCI until the next symbol after the ACK/NACK corresponding to the scheduled PDSCH of the second DCI is received or the period before the start of the next time slot .
  • time window can also be implemented in other ways, and the above cases are just examples and not limitations.
  • the terminal device can perform time-frequency synchronization through the reference signal of the PDCCH or PDSCH within the time window, avoiding the terminal device being in the scheduling limit for a long time in the first time period, thereby avoiding the terminal device being in for a long time. Lower transmission rate.
  • an association relationship can be set for the first DCI and the reference signal, so that the transmission of the reference signal can be controlled through this association relationship.
  • the network device may not need to periodically send the reference signal, but according to the set
  • the terminal device does not need to receive the reference signal periodically, and there is no need to periodically synchronize the time and frequency with the network device, thereby reducing the power consumption of the terminal device.
  • the behavior of the terminal device can be controlled.
  • the terminal device will only receive the reference signal according to the association relationship, instead of periodically receiving the reference signal as in the prior art. Therefore, the terminal device only needs to receive the reference signal. Then, time-frequency synchronization with the network device is sufficient, and there is no need to periodically synchronize the time-frequency with the network device, thereby reducing the power consumption of the terminal device.
  • the reference signal is associated with the first DCI, and the first DCI can realize the function of WUS. If the association relationship indicates that the terminal device does not need to receive the reference signal, it also indicates that the network device does not schedule data to the terminal device, or indicates that the network The data scheduled by the equipment does not have high requirements for the terminal equipment. Even if the terminal equipment and the network equipment do not perform time-frequency synchronization, they can complete the processing of these data. The terminal equipment receives the DCI process even if the terminal equipment and the network equipment do not perform It can also be performed under the conditions of time-frequency synchronization, so it will not affect the normal operation of the terminal equipment.
  • FIG. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the application.
  • the communication device 500 is a terminal device 500, for example.
  • the terminal device 500 includes a processing module 510 and a transceiver module 520.
  • the processing module 510 may be used to perform all operations other than the transceiving operations performed by the terminal device in the embodiment shown in FIG. 4, such as S44, and/or other processes used to support the technology described herein.
  • the transceiving module 520 may be used to perform all the transceiving operations performed by the terminal device in the embodiment shown in FIG. 4, such as S42 and S43, and/or other processes used to support the technology described herein.
  • the transceiver module 520 is configured to detect the first downlink control information DCI;
  • the processing module 510 is configured to determine whether to receive a reference signal according to the detection result of the first DCI, the reference signal is used for time-frequency synchronization between the terminal device 500 and the network device, and the detection result of the first DCI is also used for Indicate whether to detect the first downlink control channel within the first time period.
  • the processing module 510 is configured to determine whether to receive the reference signal according to the detection result of the first DCI in the following manner:
  • the detection result is that the first DCI is detected, and it is determined to receive the reference signal; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates that the reference signal will be sent, and the reference signal is determined to be received; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates not to send the reference signal, and it is determined not to receive the reference signal; or,
  • the detection result is that the first DCI is not detected, and it is determined not to receive the reference signal.
  • the transceiver module 520 is further configured to receive a first message from the network device
  • the processing module 510 is further configured to determine, according to the first message, that there is an association relationship between the first DCI and a reference signal;
  • the processing module 510 is configured to determine whether to receive the reference signal according to the detection result of the first DCI in the following manner: determine whether to receive the reference signal according to the detection result of the first DCI and the association relationship;
  • association relationship includes:
  • the terminal device 500 detects the first DCI, and the terminal device 500 detects the reference signal; or,
  • the terminal device 500 does not detect the first DCI, and the terminal device 500 does not detect the reference signal; or,
  • the terminal device 500 detects the first DCI, the first DCI instructs to send the reference signal, and the terminal device 500 detects the reference signal; or,
  • the terminal device 500 detects the first DCI, the first DCI indicates not to send the reference signal, and the terminal device 500 detects the reference signal.
  • the detection result is that the first DCI is detected, and the first DCI indicates not to send the reference signal, and the terminal device 500 determines not to receive the reference signal; in the processing module 510 After determining whether to receive a reference signal according to the detection of the first DCI,
  • the transceiver module 520 is further configured to receive a second DCI from a network device, where the second DCI is used for scheduling data;
  • the processing module 510 is further configured to determine not to transmit the data when the sending parameter of the data indicated by the second DCI does not meet the pre-configured sending parameter.
  • the detection result of the first DCI is further used to indicate whether to detect the first downlink control channel within the first time period, including:
  • the detection result is that the first DCI is detected, which is used to indicate that the first downlink control channel is detected within the first time period; or,
  • the detection result is that the first DCI is detected, and the first DCI indicates that the first downlink control channel is not to be scheduled, and is used to indicate that the first downlink control channel is not to be detected within the first time period Channel; or,
  • the detection result is that the first DCI is detected, and the first DCI instructs to schedule the first downlink control channel, which is used to indicate that the first downlink control channel is detected in the first time period ;or,
  • the detection result is that the first DCI is not detected, and is used to indicate that the first downlink control channel is not to be detected within the first time period.
  • the first downlink control channel includes one or any combination of the following:
  • Downlink control channel masked by TPC-SRS-RNTI.
  • the time interval between the time when the terminal device 500 receives the first DCI and the time when the reference signal is received is greater than a first value.
  • the reference signal is CSI-RS, TRS or SSB.
  • processing module 510 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 520 may be implemented by a transceiver or a transceiver-related circuit component.
  • an embodiment of the present application also provides a communication device 600.
  • the communication device 600 is a terminal device 600, for example.
  • the terminal device 600 includes a processor 610, a memory 620, and a transceiver 630.
  • the memory 620 stores instructions or programs
  • the processor 610 is configured to execute the instructions or programs stored in the memory 620.
  • the processor 610 is used to perform the operations performed by the processing module 510 in the foregoing embodiment
  • the transceiver 630 is used to perform the operations performed by the transceiver module 520 in the foregoing embodiment.
  • terminal device 500 or the terminal device 600 may correspond to the terminal device in the embodiment shown in FIG. 4, and the operation and/or function of each module in the terminal device 500 or the terminal device 600 are respectively In order to implement the corresponding process in the embodiment shown in FIG. 4, for the sake of brevity, details are not described herein again.
  • FIG. 7 is a schematic block diagram of a communication device 700 according to an embodiment of the application.
  • the communication device 700 is a network device 700, for example.
  • the network device 700 includes a processing module 710 and a transceiver module 720.
  • the processing module 710 may be used to perform all operations performed by the network device in the embodiment shown in FIG. 4 except for the transceiving operation, such as S41, and/or other processes used to support the technology described herein.
  • the transceiving module 720 may be used to perform all the transceiving operations performed by the network device in the embodiment shown in FIG. 4, such as S42, and/or other processes used to support the technology described herein.
  • the processing module 710 is configured to determine the association relationship between the first DCI and a reference signal, where the reference signal is used for time-frequency synchronization between the terminal device and the network device 700, and the sending result of the first DCI is used to indicate whether Detecting the first downlink control channel in the first time period;
  • the transceiver module 720 is configured to send a first message to the terminal device, where the first message is used to indicate the association relationship.
  • the association relationship includes:
  • the network device 700 sends the first DCI, and the network device 700 sends the reference signal; or,
  • the network device 700 does not send the first DCI, and the network device 700 does not send the reference signal; or,
  • the network device 700 sends the first DCI, the first DCI instructs to send the reference signal, and the network device 700 sends the reference signal; or,
  • the network device 700 sends the first DCI, the first DCI indicates not to send the reference signal, and the network device 700 does not send the reference signal.
  • the sending result of the first DCI is used to indicate whether to detect the first downlink control channel within the first time period, including:
  • the sending result is sending the first DCI, which is used to instruct to detect the first downlink control channel within the first time period; or,
  • the sending result is sending the first DCI, and the first DCI indicates that the first downlink control channel is not to be scheduled, and is used to indicate not to detect the first downlink control channel in the first time period ;or,
  • the sending result is sending the first DCI, and the first DCI instructs to schedule the first downlink control channel, and is used to indicate to detect the first downlink control channel in the first time period; or,
  • the sending result is that the first DCI is not sent, and is used to indicate that the first downlink control channel is not to be detected in the first time period.
  • the transceiver module 820 is also used to:
  • the time interval between the moment when the network device 800 sends the first DCI and the moment when the reference signal is sent is greater than a first value.
  • the reference signal is CSI-RS, TRS or SSB.
  • processing module 710 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 720 may be implemented by a transceiver or a transceiver-related circuit component.
  • an embodiment of the present application also provides a communication device 800.
  • the communication device 800 is a network device 800, for example.
  • the network device 800 includes a processor 810, a memory 820, and a transceiver 830.
  • the memory 820 stores instructions or programs
  • the processor 810 is configured to execute the instructions or programs stored in the memory 820.
  • the processor 810 is configured to execute the operations performed by the processing module 710 in the foregoing embodiment
  • the transceiver 830 is configured to execute the operations performed by the transceiver module 720 in the foregoing embodiment.
  • network device 700 or the network device 800 may correspond to the network device in the embodiment shown in FIG. 4, and the operations and/or functions of each module in the network device 700 or the network device 800 are respectively In order to implement the corresponding process in the embodiment shown in FIG. 4, for the sake of brevity, details are not described herein again.
  • the embodiment of the present application also provides a communication device, which may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the terminal device in the method embodiment shown in FIG. 4 above.
  • FIG. 9 shows a simplified structural diagram of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 9. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory can be set independently of the processor, or integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 910 and a processing unit 920.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 910 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 910 can be regarded as the sending unit, that is, the transceiver unit 910 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 910 is used to perform the sending and receiving operations on the terminal device side in the method embodiment shown in FIG. 4, and the processing unit 920 is used to perform the method embodiment shown in FIG. Operations other than operations.
  • the transceiving unit 910 is used to perform the transceiving steps on the terminal device side in the embodiment shown in FIG. 4, such as S42 and S43, and/or other processes used to support the technology described herein .
  • the processing unit 920 is configured to perform other operations on the terminal device side in the embodiment shown in FIG. 4 in addition to the transceiving operations, such as S44, and/or other processes for supporting the technology described herein.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the device shown in FIG. 10 can be referred to.
  • the device can perform functions similar to the processor 1010 in FIG. 10.
  • the device includes a processor 1010, a data sending processor 1020, and a data receiving processor 1030.
  • the processing module 510 in the foregoing embodiment may be the processor 1010 in FIG. 10 and complete corresponding functions; the transceiver module 520 in the foregoing embodiment may be the sending data processor 1020 in FIG. 10, and/or receiving data The processor 1030.
  • channel encoder and the channel decoder are shown in FIG. 10, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1100 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1103 and an interface 1104.
  • the processor 1103 completes the function of the aforementioned processing module 510
  • the interface 1104 completes the function of the aforementioned transceiver module 520.
  • the modulation subsystem includes a memory 1106, a processor 1103, and a program stored on the memory 1106 and running on the processor.
  • the processor 1103 implements the method shown in FIG. 4 when the program is executed. The method on the terminal device side in the example.
  • the memory 1106 can be nonvolatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1100, as long as the memory 1106 can be connected to the The processor 1103 is sufficient.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can implement the process related to the terminal device in the embodiment shown in FIG. 4 provided by the foregoing method embodiment. .
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can implement the process related to the network device in the embodiment shown in FIG. 4 provided by the foregoing method embodiment. .
  • the embodiment of the present application also provides a computer program product containing instructions, which when executed, execute the method on the terminal device side in the method embodiment shown in FIG. 4.
  • the embodiment of the present application also provides a computer program product containing instructions, which when executed, execute the method on the network device side in the method embodiment shown in FIG. 4.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSP), or application specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请涉及一种通信方法及设备,其中的一种通信方法包括:终端设备检测第一下行控制信息DCI;所述终端设备根据对所述第一DCI的检测结果确定是否接收参考信号,所述参考信号用于所述终端设备与网络设备进行时频同步,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道。终端设备可以根据对第一DCI的检测结果确定是否接收参考信号,如果终端设备确定不接收参考信号,那么终端设备就可以不跟网络设备进行时频同步,从而减小终端设备因为时频同步而带来的功耗。

Description

一种通信方法及设备
相关申请的交叉引用
本申请要求在2019年05月13日提交国家知识产权局、申请号为201910395099.2、申请名称为“一种通信方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
终端设备为了接收来自基站的下行数据,或者为了向基站发送上行数据,需要首先与基站进行时频同步。在新空口(new radio,NR)系统中,没有小区参考信号(cell-specific reference signal,CRS),因此处于连接态的终端设备一般是依赖于跟踪参考信号(tracking reference signal,TRS)或者同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)与基站进行时频同步。TRS或SSB都是周期性发送的,那么终端设备就会周期性地与基站进行时频同步。
但基站并不是总是会向终端设备调度下行数据或上行数据,在大多数情况下,基站和终端设备之间可能并没有数据传输。但终端设备依然会周期性地与基站进行时频同步,在这种情况下,终端设备和基站之间进行时频同步的意义实际上不是太大,还导致终端设备因为进行时频同步而功耗较大。
发明内容
本申请实施例提供一种通信方法及设备,用于减小终端设备的功耗。
第一方面,提供第一种通信方法,该方法包括:终端设备检测第一下行控制信息DCI;所述终端设备根据对所述第一DCI的检测结果确定是否接收参考信号,所述参考信号用于所述终端设备与网络设备进行时频同步,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道。
该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述通信设备为终端设备。
在本申请实施例中,终端设备可以根据对第一DCI的检测结果确定是否接收参考信号,如果终端设备确定不接收参考信号,那么终端设备就可以不跟网络设备进行时频同步,从而减小终端设备因为时频同步而带来的功耗。
结合第一方面,在第一方面的一种可能的实施方式中,所述终端设备根据对所述第一DCI的检测结果确定是否接收参考信号,包括:
所述检测结果为检测到所述第一DCI,所述终端设备确定接收所述参考信号;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示会发送所述参考信号,所述终端设备确定接收所述参考信号;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,所述终端设备确定不接收所述参考信号;或,
所述检测结果为未检测到所述第一DCI,所述终端设备确定不接收所述参考信号。
终端设备可以在检测到第一DCI时就确定接收参考信号,未检测到第一DCI时就确定不接收参考信号,网络设备无需过多的指示,终端设备也无需读取更多的指示信息,方式较为简单。或者,终端设备在检测到第一DCI后,也可以根据第一DCI的指示来确定是否接收参考信号,这种指示方式相对来说更为明确。而且对于网络设备来说,即使发送了第一DCI,也可以不发送参考信号。例如网络设备要调度下行数据,但所调度的下行数据对于解调的要求不高,例如调制阶数较低等,无需终端设备与网络设备进行时频同步,那么网络设备可以只发送第一DCI而不发送参考信号。终端设备既可以完成对于下行数据的接收和解调等操作,又无需与网络设备进行时频同步,降低终端设备的功耗。
结合第一方面,在第一方面的一种可能的实施方式中,
所述方法还包括:
所述终端设备接收来自所述网络设备的第一消息;
所述终端设备根据所述第一消息确定所述第一DCI与参考信号之间具有关联关系;
所述终端设备根据对所述第一DCI的检测结果确定是否接收参考信号,包括:所述终端设备根据对所述第一DCI的检测结果,以及所述关联关系,确定是否接收所述参考信号;
其中,所述关联关系包括:
所述终端设备检测到所述第一DCI,所述终端设备检测所述参考信号;或,
所述终端设备未检测到所述第一DCI,所述终端设备不检测所述参考信号;或,
所述终端设备检测到所述第一DCI,所述第一DCI指示发送所述参考信号,所述终端设备检测所述参考信号;或,
所述终端设备检测到所述第一DCI,所述第一DCI指示不发送所述参考信号,所述终端设备不检测所述参考信号。
第一DCI和参考信号之间的关联关系可以是由网络设备配置的,从而终端设备根据第一DCI的检测结果以及关联关系就能确定是否接收参考信号。在本申请实施例中,“检测”和“接收”,可以理解为同一概念,相应的,“检测到”和“接收到”(或“收到”等),也可以理解为同一概念。
结合第一方面,在第一方面的一种可能的实施方式中,所述检测结果为检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,所述终端设备确定不接收所述参考信号;在所述终端设备根据对所述第一DCI的检测确定是否接收参考信号之后,还包括:所述终端设备接收来自网络设备的第二DCI,所述第二DCI用于调度数据;当所述第二DCI所指示的所述数据的发送参数不满足预配置的发送参数时,所述终端设备确定不传输所述数据。
如果网络设备只发送了第一DCI,而未发送参考信号,或者说,如果终端设备只检测到第一DCI,而不检测参考信号,则终端设备无法与网络设备进行时频同步。在这种情况下,终端设备可能无法完成较为复杂的解调等操作。因此在这种情况下,网络设备的调度可以是受限的。对于终端设备来说,可以将第二DCI所指示的发送参数和预配置的发送参数进行对比,如果第二DCI指示的发送参数对于终端设备的要求高于预配置的发送参数对于终端设备的要求(也就是说,第二DCI所指示的发送参数不满足预配置的发送参数), 终端设备就可以不传输第二DCI所调度的数据,从而减小传输错误的几率。以发送参数包括调制阶数为例,如果第二DCI指示的调制阶数大于预配置的调制阶数,就表明第二DCI指示的调制阶数不满足预配置的调制阶数,而如果第二DCI指示的调制阶数小于或等于预配置的调制阶数,就表明第二DCI指示的调制阶数满足预配置的调制阶数。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道,包括:
所述检测结果为检测到所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为未检测到所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
第一DCI可以实现WUS的功能。终端设备可以在检测到第一DCI时就确定检测第一下行控制信道,未检测到第一DCI时就确定不检测第一下行控制信道,网络设备无需过多的指示,终端设备也无需读取更多的指示信息,方式较为简单。或者,终端设备在检测到第一DCI后,也可以根据第一DCI的指示来确定是否检测第一下行控制信道,这种指示方式相对来说更为明确。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一下行控制信道包括如下的一种或它们的任意组合:
通过C-RNTI加掩的下行控制信道;
通过CS-RNTI加掩的下行控制信道;
通过INT-RNTI加掩的下行控制信道;
通过SFI-RNTI加掩的下行控制信道;
通过SP-CSI-RNTI加掩的下行控制信道;
通过TPC-PUCCH-RNTI加掩的下行控制信道;
通过TPC-PUSCH-RNTI加掩的下行控制信道;或,
通过TPC-SRS-RNTI加掩的下行控制信道。
第一下行控制信道可以是指受到DRX机制影响的下行控制信道。除了如上列举的几种控制信道之外,第一下行控制信道还可以包括其他的下行控制信道,或者,第一下行控制信道也可以不包括如上列举的几种下行控制信道,而是只包括其他的下行控制信道,具体的不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,所述终端设备接收所述第一DCI的时刻与接收所述参考信号的时刻之间的时间间隔大于第一值。
终端设备接收第一DCI,可能是通过窄带就能接收,而终端设备接收参考信号,可能需要通过宽带接收,因此,在接收第一DCI之后,终端设备需要有一定的准备时间来启动或切换相应的部件等。鉴于此,本申请实施例令终端设备接收第一DCI的时刻与接收参考信号的时刻之间的时间间隔大于第一值,以给予终端设备足够的准备时间。第一值例如根据终端设备的能力确定,例如终端设备可以将能力信息发送给网络设备,从而网络设备可 以确定第一值。或者,第一值也可以通过协议规定。
结合第一方面,在第一方面的一种可能的实施方式中,所述参考信号为CSI-RS、TRS或SSB。
参考信号可以用于终端设备与网络设备进行时频同步,或者参考信号还可以有其他的用途。另外,参考信号除了可以是如上列举的几种之外,还可以是其他的信号。本申请实施例对于参考信号不做限制。
第二方面,提供第二种通信方法,该方法包括:网络设备确定第一DCI与参考信号之间的关联关系,所述参考信号用于所述终端设备与所述网络设备进行时频同步,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道;网络设备向终端设备发送第一消息,所述第一消息用于指示所述关联关系。
该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述通信设备为网络设备。
结合第二方面,在第二方面的一种可能的实施方式中,所述关联关系包括:
所述网络设备发送所述第一DCI,所述网络设备发送所述参考信号;或,
所述网络设备不发送所述第一DCI,所述网络设备不发送所述参考信号;或,
所述网络设备发送所述第一DCI,所述第一DCI指示发送所述参考信号,所述网络设备发送所述参考信号;或,
所述网络设备发送所述第一DCI,所述第一DCI指示不发送所述参考信号,所述网络设备不发送所述参考信号。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,包括:
所述发送结果为发送所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为发送所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为发送所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为不发送所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:
所述网络设备向所述终端设备发送所述第一DCI,所述第一DCI指示不发送所述参考信号;
所述网络设备向所述终端设备发送第二DCI,所述第二DCI用于调度数据,且所述第二DCI所指示的所述数据的发送参数满足预配置的发送参数。
结合第二方面,在第二方面的一种可能的实施方式中,所述网络设备发送所述第一DCI的时刻与发送所述参考信号的时刻之间的时间间隔大于第一值。
结合第二方面,在第二方面的一种可能的实施方式中,所述参考信号为CSI-RS、TRS或SSB。
关于第二方面或第二方面的各种可能的实施方式的技术效果,可以参考对于第一方面或第一方面的相应的实施方式的技术效果的介绍。
第三方面,提供第一种通信装置,例如该通信装置为如前所述的第一通信装置。所述通信装置用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述通信装置为通信设备。示例性地,所述通信设备为终端设备。其中,
所述收发模块,用于检测第一下行控制信息DCI;
所述处理模块,用于根据对所述第一DCI的检测结果确定是否接收参考信号,所述参考信号用于所述通信装置与网络设备进行时频同步,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道。
结合第三方面,在第三方面的一种可能的实施方式中,所述处理模块用于通过如下方式根据对所述第一DCI的检测结果确定是否接收参考信号:
所述检测结果为检测到所述第一DCI,确定接收所述参考信号;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示会发送所述参考信号,确定接收所述参考信号;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,确定不接收所述参考信号;或,
所述检测结果为未检测到所述第一DCI,确定不接收所述参考信号。
结合第三方面,在第三方面的一种可能的实施方式中,
所述收发模块,还用于接收来自所述网络设备的第一消息;
所述处理模块,还用于根据所述第一消息确定所述第一DCI与参考信号之间具有关联关系;
所述处理模块用于通过如下方式根据对所述第一DCI的检测结果确定是否接收参考信号:根据对所述第一DCI的检测结果,以及所述关联关系,确定是否接收所述参考信号;
其中,所述关联关系包括:
所述通信装置检测到所述第一DCI,所述通信装置检测所述参考信号;或,
所述通信装置未检测到所述第一DCI,所述通信装置不检测所述参考信号;或,
所述通信装置检测到所述第一DCI,所述第一DCI指示发送所述参考信号,所述通信装置检测所述参考信号;或,
所述通信装置检测到所述第一DCI,所述第一DCI指示不发送所述参考信号,所述通信装置不检测所述参考信号。
结合第三方面,在第三方面的一种可能的实施方式中,所述检测结果为检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,所述处理模块确定不接收所述参考信号;
所述收发模块,还用于在所述处理模块根据对所述第一DCI的检测确定是否接收参考信号之后,接收来自网络设备的第二DCI,所述第二DCI用于调度数据;
所述处理模块,还用于当所述第二DCI所指示的所述数据的发送参数不满足预配置的发送参数时,确定不传输所述数据。
结合第三方面,在第三方面的一种可能的实施方式中,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道,包括:
所述检测结果为检测到所述第一DCI,用于指示在所述第一时间段内检测所述第一下 行控制信道;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为未检测到所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
结合第三方面,在第三方面的一种可能的实施方式中,所述第一下行控制信道包括如下的一种或它们的任意组合:
通过C-RNTI加掩的下行控制信道;
通过CS-RNTI加掩的下行控制信道;
通过INT-RNTI加掩的下行控制信道;
通过SFI-RNTI加掩的下行控制信道;
通过SP-CSI-RNTI加掩的下行控制信道;
通过TPC-PUCCH-RNTI加掩的下行控制信道;
通过TPC-PUSCH-RNTI加掩的下行控制信道;或,
通过TPC-SRS-RNTI加掩的下行控制信道。
结合第三方面,在第三方面的一种可能的实施方式中,所述通信装置接收所述第一DCI的时刻与接收所述参考信号的时刻之间的时间间隔大于第一值。
结合第三方面,在第三方面的一种可能的实施方式中,所述参考信号为CSI-RS、TRS或SSB。
关于第三方面或第三方面的各种可能的实施方式的技术效果,可以参考对于第一方面或第一方面的相应的实施方式的技术效果的介绍。
第四方面,提供第二种通信装置,例如该通信装置为如前所述的第二通信装置。所述通信装置用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述通信装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述通信装置为通信设备。示例性地,所述通信设备为网络设备。其中,
所述处理模块,用于确定第一DCI与参考信号之间的关联关系,所述参考信号用于终端设备与所述通信装置进行时频同步,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道;
所述收发模块,用于向所述终端设备发送第一消息,所述第一消息用于指示所述关联关系。
结合第四方面,在第四方面的一种可能的实施方式中,所述关联关系包括:
所述通信装置发送所述第一DCI,所述通信装置发送所述参考信号;或,
所述通信装置不发送所述第一DCI,所述通信装置不发送所述参考信号;或,
所述通信装置发送所述第一DCI,所述第一DCI指示发送所述参考信号,所述通信装置发送所述参考信号;或,
所述通信装置发送所述第一DCI,所述第一DCI指示不发送所述参考信号,所述通信装置不发送所述参考信号。
结合第四方面,在第四方面的一种可能的实施方式中,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,包括:
所述发送结果为发送所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为发送所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为发送所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为不发送所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
结合第四方面,在第四方面的一种可能的实施方式中,所述收发模块还用于:
向所述终端设备发送所述第一DCI,所述第一DCI指示不发送所述参考信号;
向所述终端设备发送第二DCI,所述第二DCI用于调度数据,且所述第二DCI所指示的所述数据的发送参数满足预配置的发送参数。
结合第四方面,在第四方面的一种可能的实施方式中,所述通信装置发送所述第一DCI的时刻与发送所述参考信号的时刻之间的时间间隔大于第一值。
结合第四方面,在第四方面的一种可能的实施方式中,所述参考信号为CSI-RS、TRS或SSB。
关于第四方面或第四方面的各种可能的实施方式的技术效果,可以参考对于第二方面或第二方面的相应的实施方式的技术效果的介绍。
第五方面,提供第三种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器和收发器,处理器和收发器相互耦合,用于实现上述第一方面或第一方面的各种可能的设计所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例性的,所述通信设备为终端设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述收发器,用于检测第一下行控制信息DCI;
所述处理器,用于根据对所述第一DCI的检测结果确定是否接收参考信号,所述参考信号用于所述通信装置与网络设备进行时频同步,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道。
结合第五方面,在第五方面的一种可能的实施方式中,所述处理器用于通过如下方式根据对所述第一DCI的检测结果确定是否接收参考信号:
所述检测结果为检测到所述第一DCI,确定接收所述参考信号;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示会发送所述参考信号,确定接收所述参考信号;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,确定不接收所述参考信号;或,
所述检测结果为未检测到所述第一DCI,确定不接收所述参考信号。
结合第五方面,在第五方面的一种可能的实施方式中,
所述收发器,还用于接收来自所述网络设备的第一消息;
所述处理器,还用于根据所述第一消息确定所述第一DCI与参考信号之间具有关联关系;
所述处理器用于通过如下方式根据对所述第一DCI的检测结果确定是否接收参考信号:根据对所述第一DCI的检测结果,以及所述关联关系,确定是否接收所述参考信号;
其中,所述关联关系包括:
所述通信装置检测到所述第一DCI,所述通信装置检测所述参考信号;或,
所述通信装置未检测到所述第一DCI,所述通信装置不检测所述参考信号;或,
所述通信装置检测到所述第一DCI,所述第一DCI指示发送所述参考信号,所述通信装置检测所述参考信号;或,
所述通信装置检测到所述第一DCI,所述第一DCI指示不发送所述参考信号,所述通信装置不检测所述参考信号。
结合第五方面,在第五方面的一种可能的实施方式中,所述检测结果为检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,所述处理器确定不接收所述参考信号;
所述收发器,还用于在所述处理器根据对所述第一DCI的检测确定是否接收参考信号之后,接收来自网络设备的第二DCI,所述第二DCI用于调度数据;
所述处理器,还用于当所述第二DCI所指示的所述数据的发送参数不满足预配置的发送参数时,确定不传输所述数据。
结合第五方面,在第五方面的一种可能的实施方式中,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道,包括:
所述检测结果为检测到所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为未检测到所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
结合第五方面,在第五方面的一种可能的实施方式中,所述第一下行控制信道包括如下的一种或它们的任意组合:
通过C-RNTI加掩的下行控制信道;
通过CS-RNTI加掩的下行控制信道;
通过INT-RNTI加掩的下行控制信道;
通过SFI-RNTI加掩的下行控制信道;
通过SP-CSI-RNTI加掩的下行控制信道;
通过TPC-PUCCH-RNTI加掩的下行控制信道;
通过TPC-PUSCH-RNTI加掩的下行控制信道;或,
通过TPC-SRS-RNTI加掩的下行控制信道。
结合第五方面,在第五方面的一种可能的实施方式中,所述通信装置接收所述第一DCI的时刻与接收所述参考信号的时刻之间的时间间隔大于第一值。
结合第五方面,在第五方面的一种可能的实施方式中,所述参考信号为CSI-RS、TRS或SSB。
关于第五方面或第五方面的各种可能的实施方式的技术效果,可以参考对于第一方面或第一方面的相应的实施方式的技术效果的介绍。
第六方面,提供第四种通信装置,该通信装置例如为如前所述的第四通信装置。该通信装置包括处理器和收发器,处理器和收发器相互耦合,用于实现上述第二方面或第二方面的各种可能的设计所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例性的,所述通信设备为网络设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述处理器,用于确定第一DCI与参考信号之间的关联关系,所述参考信号用于终端设备与所述通信装置进行时频同步,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道;
所述收发器,用于向所述终端设备发送第一消息,所述第一消息用于指示所述关联关系。
结合第六方面,在第六方面的一种可能的实施方式中,所述关联关系包括:
所述通信装置发送所述第一DCI,所述通信装置发送所述参考信号;或,
所述通信装置不发送所述第一DCI,所述通信装置不发送所述参考信号;或,
所述通信装置发送所述第一DCI,所述第一DCI指示发送所述参考信号,所述通信装置发送所述参考信号;或,
所述通信装置发送所述第一DCI,所述第一DCI指示不发送所述参考信号,所述通信装置不发送所述参考信号。
结合第六方面,在第六方面的一种可能的实施方式中,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,包括:
所述发送结果为发送所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为发送所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为发送所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为不发送所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
结合第六方面,在第六方面的一种可能的实施方式中,所述收发器还用于:
向所述终端设备发送所述第一DCI,所述第一DCI指示不发送所述参考信号;
向所述终端设备发送第二DCI,所述第二DCI用于调度数据,且所述第二DCI所指示的所述数据的发送参数满足预配置的发送参数。
结合第六方面,在第六方面的一种可能的实施方式中,所述通信装置发送所述第一DCI的时刻与发送所述参考信号的时刻之间的时间间隔大于第一值。
结合第六方面,在第六方面的一种可能的实施方式中,所述参考信号为CSI-RS、TRS 或SSB。
关于第六方面或第六方面的各种可能的实施方式的技术效果,可以参考对于第二方面或第二方面的相应的实施方式的技术效果的介绍。
第七方面,提供第五种通信装置。该通信装置可以为上述方法设计中的第一通信装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,所述通信设备为终端设备。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第五种通信装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,第五种通信装置还可以包括通信接口,该通信接口可以是终端设备中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果第五种通信装置为设置在终端设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第八方面,提供第六种通信装置。该通信装置可以为上述方法设计中的第二通信装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,所述通信设备为网络设备。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第六种通信装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,第六种通信装置还可以包括通信接口,该通信接口可以是网络设备中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果第六种通信装置为设置在网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第九方面,提供一种通信系统,该通信系统可以包括第三方面所述的第一种通信装置、第五方面所述的第三种通信装置或第七方面所述的第五种通信装置,以及包括第四方面所述的第二种通信装置、第六方面所述的第四种通信装置或第八方面所述的第六种通信装置。
第十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
在本申请实施例中,终端设备可以根据对第一DCI的检测结果确定是否接收参考信号,如果终端设备确定不接收参考信号,那么终端设备就可以不跟网络设备进行时频同步,从而减小终端设备因为时频同步而带来的功耗。
附图说明
图1为DRX机制的示意图;
图2为PDCCH-WUS的发送过程的示意图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的一种通信方法的流程图;
图5为本申请实施例提供的终端设备的示意性框图;
图6为本申请实施例提供的终端设备的另一示意性框图;
图7为本申请实施例提供的网络设备的示意性框图;
图8为本申请实施例提供的网络设备的另一示意性框图;
图9为本申请实施例提供的通信装置的示意性框图;
图10为本申请实施例提供的通信装置的另一示意性框图;
图11为本申请实施例提供的通信装置的再一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle-to-everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿 戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的接入网设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。接入网设备还可协调对空口的属性管理。例如,接入网设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
当然网络设备还可以包括核心网设备,但因为本申请实施例提供的技术方案主要涉及的是接入网设备,因此在后文中,如无特殊说明,则后文所描述的“网络设备”均是指接入网设备。
3)下行控制信道,例如物理下行控制信道(physical downlink control channel,PDCCH),或者增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH),或者也可能包括其他的下行控制信道。具体的不做限制。
4)“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的信令,而并不是表示这两种信息的内容、优先级、发送顺序或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
第三代合作伙伴计划(3rd generation partnership project,3GPP)标准组织目前正在制定5G NR的协议标准。与LTE系统相比,NR系统支持更大的传输带宽,更多的收发天线阵列,更高的传输速率以及更灵活、粒度更小的调度机制。NR系统的上述特性虽然为NR系统提供了更多的适用范围,但却极大的增加了终端设备的功耗负担。
为降低终端设备的功率消耗,3GPP在Rel-16版本的NR系统中引入了功耗节省(power saving)研究课题,其目的是研究使终端设备可在各种状态下(包括连接态,空闲态,以 及非激活态)下可能的降低功耗的方案。其中,在如何节省处于无线资源控制(radio resource control,RRC)连接态的终端设备的功耗,是一个研究重点。
一、非连续接收(discontinuous reception,DRX)机制。
在LTE系统中,3GPP设计了DRX机制(或称为DRX模式,或DRX状态等)以降低连接态的终端设备的功耗。DRX机制下的基本时间单位为DRX周期(cycle),或称为DRX循环,DRX cycle的长短称为DRX周期。
DRX机制:定义在物理层的媒体访问控制(media access control,MAC)。DRX机制可以让终端设备周期性地在某些时候(可定义为非激活时间(inactive time))进入睡眠状态(sleep mode),不去监听指定的小区无线网络临时标识(cell radio network temporary identity,C-RNTI)加掩的PDCCH,而在需要监听的时候(可定义为激活时间(active time)),则从睡眠状态中唤醒(wake up)并监听这些PDCCH,这样就可以降低终端设备功耗。例如,对于NR系统来说,连接状态的DRX(connected-DRX,C-DRX)机制在非激活时间内不需要监听C-RNTI、配置调度无线网络临时标识(configured scheduling RNTI,CS-RNTI)、中断RNTI(interruption RNTI,INT-RNTI)、时隙格式指示RNTI(slot format indicator-RNTI,SFI-RNTI)、半持续信道状态指示RNTI(semi-persistent channel state information RNTI,SP-CSI-RNTI)、发射功率控制物理上行控制信道(physical uplink control channel,PUCCH)-RNTI(transmit power control PUCCH RNTI,TPC-PUCCH-RNTI)、发射功率控制物理上行共享信道(physical uplink shared channel,PUSCH)RNTI(transmit power control PUSCH RNTI,TPC-PUSCH-RNTI)或发射功率控制探测参考信号(sounding reference signal,SRS)RNTI(transmit power control RNTI,TPC-SRS-RNTI)加掩的DCI(或者说,是加掩的PDCCH),而在激活时间则需要监听这些RNTI加掩的DCI。对于NR系统,系统消息RNTI(system information RNTI,SI-RNTI)、寻呼RNTI(paging RNTI,P-RNTI)、随机接入RNRI(random access RNTI,RA-RNTI)和临时小区无线网络临时标识(temporary cell radio network temporary identity,TC-RNTI)加掩的DCI(或者说,是加掩的PDCCH)的发送不受C-DRX机制的影响。其中,如果为终端设备配置了DRX机制,那么按照终端设备所处的状态,所配置的DRX机制可以分为空闲状态DRX(idle-DRX)和C-DRX。
非连续接收循环(discontinuous reception cycle,DRX cycle):也称DRX循环,是DRX状态下的基本时间单位,DRX循环的长短称为DRX周期。DRX周期按终端设备的行为划分为非激活期(也可以称为非激活时间)和激活期(也可称为激活时间),其中:
终端设备在非激活期(out of active time)的状态在本申请实施例中可以称为睡眠状态(sleep mode),或者也可以称为DRX_OFF,处于睡眠状态的终端设备可以基于实现选择关闭射频收发器(或接收机)和基带处理器等通信器件以降低功耗,或者虽然打开了射频器件,但是只做一些功耗较低的监听检测过程,例如监听一些终端设备必须监听的消息,如寻呼消息、广播消息、或系统消息等。需要说明的是,处于非激活时间的终端设备,只是不接收PDCCH中的一类DCI,例如用于调度数据的DCI等,但是可以接收PDCCH中的其他不受终端设备是否处于激活时间影响的DCI,以及可以接收来自其他物理信道的数据,例如物理下行共享信道(physical downlink shared channel,PDSCH)、确认应答(acknowledgment,ACK)、否定应答(negative-acknowledgment,NACK)等。例如,对于NR相同来说,C-DRX机制在非激活时间内不需要监听C-RNTI、CS-RNTI、INT-RNTI、SFI-RNTI、SP-CSI-RNTI、TPC-PUCCH-RNTI、TPC-PUSCH-RNTI或TPC-SRS-RNTI加掩 的DCI,而在激活时间则需要监听这些RNTI加掩的DCI。对于NR系统,SI-RNTI、P-RNTI、RA-RNTI或TC-RNTI加掩的DCI的发送不受C-DRX机制的影响。
在本申请实施例中,终端设备在激活期的状态可以称为唤醒状态(wake up),也可以称为DRX_ON,当DRX循环进入到激活时间时,终端设备将被唤醒,并监听和接收PDCCH,因此本申请实施例中将唤醒状态称为激活态。
如上过程可以参考图1。其中在图1中,DRX机会(opportunity for DRX)就表示DRX_OFF状态。
需要注意的是,在一般情况下终端设备并不是在on duration状态到来时才唤醒,而是会在on duration状态到来前的几个时隙内先唤醒,并接收来自网络设备的参考信号,以与网络设备进行时频同步,防止终端设备因为长时间休眠造成的系统的时钟和工作频率与基站的时钟和频域出现偏差。同时,终端设备也可以先尝试接收来自网络设备的同步信号和更新的系统消息,以防止终端设备从一个小区移动到另一个小区后系统消息出现偏差。
二、唤醒信号(wakeup signalling,WUS)。
WUS是用于降低终端设备的功耗的一种控制指示。
在处于空闲态时,终端设备一般情况下处于休眠状态,但终端设备需要每过一段时间唤醒来尝试接收寻呼(paging)消息。其中终端设备被唤醒接收寻呼消息的时间的被称为寻呼机会(paging occasion,PO)。在实际系统中,基站并不是在每个PO都会给终端设备发送paging消息,因此终端设备在大部分时间中在PO唤醒接收paging消息都属于无效操作,并且会增加终端设备的功耗。
为此,NB-IoT系统中引入了WUS,如果在某一个PO中基站确实向终端设备发送了paging消息,基站会在PO到来之前发送WUS,否则基站不会发送WUS。终端设备会在PO到来之前的时间尝试接收WUS,一旦收到了WUS,终端设备确认接下来的PO中存在paging消息,UE会尝试接收paging消息。反之,如果终端设备没有收到WUS,终端设备将认为接下来的PO中不存在paging消息,终端设备将不尝试接收paging,并继续休眠。
由于接收WUS的功耗和复杂度远小于尝试接收paging消息的功耗和复杂度,而且基站向处于空闲态的终端设备发送paging消息的概率并不高,因此WUS可以极大地节省终端设备的功耗。
NR计划在release-16版本的功耗节省特性中引入基于PDCCH的唤醒指示功能,也就是说,通过PDCCH来发送唤醒信号,这种功能工作在配置了DRX状态的终端设备下。对于在NR系统中处于连接态的终端设备,当基站没有数据需要调度时,终端设备可以通过进入DRX模式来节省功耗。终端设备在DRX模式的on duration时间段内尝试盲检PDCCH,一旦在on duration期间接收到了用于调度新传数据的PDCCH,例如调度的是物理下行共享信道(physical downlink shared channel,PDSCH),终端设备会在调度新传数据的PDCCH发送结束后启动(或重启)非激活定时器(inactivity timer),并在非激活定时器的运行时间内继续检测PDCCH,以及在非激活定时器超时时重新回到非激活状态。而如果终端设备在on duration期间内没有接收任何PDCCH,或者接收的PDCCH并不用于调度新传数据,并且on duration时间段结束,或者终端设备在非激活定时器超时,终端设备将重新回到非激活时间。
在非激活时间,终端设备可以关闭射频发送接收机、基带处理芯片或内存等,只保留晶振时钟。当然,终端设备究竟关闭哪些部件以及保留哪些部件,取决于终端设备自身的 实现方式,这里只是举例而不是限制。因此,终端设备主要依靠在非激活时间进行休眠来达到节省功耗的目的。
考虑到终端设备仍需要在激活时间内监听指定的C-RNTI加掩的PDCCH,而在大多数情况下,在激活时间内可能都不会存在发送给终端设备的通过指定的C-RNTI加掩的PDCCH,也就是说,在大多数情况下,基站并不会调度终端设备。因此,终端设备在激活时间内的监听PDCCH的操作实际上仍然白白消耗了终端设备大量的功耗。
所以为了节省功耗,在NR系统中也可能会引入WUS。而对于WUS的设计,一种可能的方案是复用现有的NR系统中的PDCCH的设计,即,将WUS设计成下行控制信道,下行控制信道例如PDCCH,终端设备通过检测PDCCH就可以检测WUS。WUS这种设计方式可以称基于PDCCH的WUS(为PDCCH-based WUS),或称为基于PDCCH的节能信道/信号(PDCCH based power saving channel/signal)。
基于PDCCH的WUS(可以简称为PDCCH-WUS)的发送需要满足如下条件:
(1)该PDCCH的搜索空间(search space)处于DRX_OFF状态,并且在DRX_ON到来之前的一段时间发送;或者,该PDCCH的搜索空间处于DRX_ON状态,并且在DRX_ON开始的一个或多个时隙发送;
(2)在后续的DRX_ON期间,存在发送给当前的终端设备的用于调度数据的PDCCH。也就是说,只有当基站在DRX_ON中需要调度终端设备发送数据或者接收数据,且基站会在DRX_ON期间向该终端设备发送用于调度数据的PDCCH时,基站才会发送PDCCH-WUS,否则不发送PDCCH-WUS。
PDCCH-WUS的发送过程可以参考图2,图2是以PDCCH-WUS在DRX_ON到来之前的一段时间发送为例。对终端设备而言,在一个DRX cycle的on duration到来之前,如果基站配置了PDCCH-WUS,终端设备可以在固定的时频资源上去检测PDCCH-WUS。
如果终端设备检测到了PDCCH-WUS,则表明在该PDCCH-WUS对应的on duration内存在针对该终端设备的数据调度,该终端设备需要在on duration内唤醒以检测PDCCH,如果检测到了用于调度新传数据的PDCCH,则终端设备启动或重启非激活定时器,并根据所检测到的PDCCH的调度发送PUSCH或接收PDSCH。
而如果终端设备没有检测到PDCCH-WUS,该终端设备可以认为在该PDCCH-WUS对应的on duration内不存在针对该终端设备的数据调度,该终端设备在该PDCCH-WUS对应的on duration内可以不检测PDCCH,例如该终端设备在该PDCCH-WUS对应的on duration内可以继续休眠,以达到节省功耗的目的。
时频同步对于PDSCH的解调是必要的,尤其是高调制阶数、高码率、高多输入多输出(multiple-input multiple-output,MIMO)层数(layer)的PDSCH。对于物理上行共享信道(physical uplink shared channel,PUSCH)的发送来说,终端设备也需要首先与基站进行时频同步。因此,终端设备为了接收来自基站的下行数据,或者为了向基站发送上行数据,需要首先与基站进行时频同步。在NR系统中,没有CRS,因此处于连接态的终端设备一般是依赖于TRS或者SSB与基站进行时频同步。TRS或SSB都是周期性发送的,那么终端设备就会周期性地与基站进行时频同步。
但在前文也介绍了,在大多数情况下,在DRX_ON内都不会存在发送给终端设备的PDCCH。而终端设备依然会周期性地与基站进行时频同步,在这种情况下,终端设备无需解调PDSCH,因此终端设备和基站之间进行时频同步的意义实际上不是太大,还导致终端 设备因为进行时频同步而功耗较大。
另外,release-15的终端设备为了保证数据传输性能,可能在SSB处唤醒进行时频同步和自动增益控制(automatic gain control,AGC)。但是SSB的周期和DRX周期不一定一致,在有些情况下,SSB的时域位置和DRX的on duration的时域位置之间可能存在时间间隔,终端设备在SSB处与基站进行时频同步后,因为on duration还未到来,终端设备可能再次进入休眠,直到on duration到来或者在on duration到来之前再次醒来。而终端设备进入休眠,再从休眠状态醒来,这个过程本身也要消耗一定的功率,这也造成了终端设备的功率浪费。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,终端设备可以根据对第一DCI的检测结果确定是否接收参考信号,如果终端设备确定不接收参考信号,那么终端设备就可以不跟网络设备进行时频同步,从而减小终端设备的功耗。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)4G系统中,例如LTE系统,或可以5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。
下面介绍本申请实施例所应用的一种网络架构,请参考图3。
图3包括网络设备和终端设备,终端设备与一个网络设备连接。当然图3中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。图3中的网络设备,以及多个终端设备中的部分终端设备或全部终端设备中的每个终端设备都可以实施本申请实施例所提供的技术方案。另外,图3中的终端设备以手机为例,在实际应用中不限于此。
图3中的网络设备例如为接入网设备,例如基站,或者也可以是RSU等设备。其中,基站在不同的系统对应不同的设备,例如在4G系统中可以对应eNB,在5G系统中可以对应gNB。当然本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,因此图3中的网络设备也可以对应未来的移动通信系统中的接入网设备。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供第一种通信方法,请参见图4,为该方法的流程图。在下文的介绍过程中,以该方法应用于图3所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是网络设备,第二通信装置是终端设备,或者第一通信装置和第二通信装置都是网络设备,或者第一通信装置和第二通信装置都是终端设备,或者第一通信装置是网络设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例,也就是说,以第一通信装置是网络设备、第二通信装置是终端设备为例。因为本实施例是以应用在图3 所示的网络架构为例,因此,下文中所述的网络设备可以是图3所示的网络架构中的网络设备,下文中所述的终端设备可以是图3所示的网络架构中的终端设备。
S41、网络设备确定第一DCI与参考信号之间的关联关系。所述参考信号用于所述终端设备与所述网络设备进行时频同步,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道。
第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,那么作为一种实施方式,第一DCI可以用于实现WUS的功能。对此可以理解为,第一DCI就是WUS,或者,第一DCI除了包括用于实现WUS的功能的信息外,还包括其它一些信息,例如包括用于帮助终端设备在DRX激活时间内接收数据的信息,例如带宽部分(bandwidth part,BWP)标识符(identifier,ID)或非周期信道状态信息(channel state information,CSI)触发等。因此,WUS的发送结果就能够指示终端设备是否在第一时间段内检测第一下行控制信道。
第一时间段可以是与第一DCI关联的时间段,或者说是第一DCI所对应的时间段。例如,第一时间段可以是指一个或多个DRX周期的on duration时间段,或者是指一个或多个DRX周期的激活时间(active time)。例如,第一时间段可以是指位于所检测的第一DCI之后的下一个DRX周期的on duration时间段,或者是指位于所检测的第一DCI之后的下一个DRX周期的active time,或者是指接下来的位于所检测的第一DCI之后的多个DRX周期的on duration时间段,或者是指位于所检测的第一DCI之后的接下来的多个DRX周期的active time。
在本申请实施例中,第一下行控制信道可以是指受到DRX机制影响的下行控制信道,终端设备在检测第一下行控制信道时受到DRX机制影响,如果终端设备处于DRX周期的非激活时间,就可以无需检测第一下行控制信道。第一下行控制信道可以包括一种或多种下行控制信道。另外还有不受DRX机制影响的下行控制信道,例如称为第二下行控制信道,终端设备在检测第二下行控制信道时不受DRX机制影响,即使终端设备处于DRX周期的非激活时间,也可能需要检测第二下行控制信道,本申请实施例对此不做限制。
第一下行控制信道例如包括如下的一种或它们的任意组合:通过小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加掩的下行控制信道,通过CS-RNTI加掩的下行控制信道,通过INT-RNTI加掩的下行控制信道,通过SFI-RNTI加掩的下行控制信道,通过SP-CSI-RNTI加掩的下行控制信道,通过TPC-PUCCH-RNTI加掩的下行控制信道,通过TPC-PUSCH-RNTI加掩的下行控制信道,或,通过TPC-SRS-RNTI加掩的下行控制信道。或者第一下行控制信道还可以包括其他的下行控制信道,具体的不做限制。
其中,对于网络设备来说是第一DCI的发送结果,而对于终端设备来说就是第一DCI的检测结果,如果不考虑丢包等情况,第一DCI的发送结果和第一DCI的检测结果可以认为是相对应的概念。第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,可能有几种不同的情况。
情况1、第一DCI的发送结果为网络设备发送了第一DCI,则第一DCI的发送结果就用于指示在第一时间段内检测第一下行控制信道。对于终端设备来说,情况1可以理解为,第一DCI的检测结果为检测到第一DCI,则第一DCI的检测结果就用于指示在第一时间段内检测第一下行控制信道。
情况2、第一DCI的发送结果为网络设备发送了第一DCI,且,第一DCI中包含指示信息用于指示在第一时间段内检测第一下行控制信道。对于终端设备来说,情况2可以理解 为,第一DCI的检测结果为终端设备检测到第一DCI,且,第一DCI指示终端设备在第一时间段内检测第一下行控制信道,则第一DCI的检测结果用于指示在第一时间段内检测第一下行控制信道。
情况3、第一DCI的发送结果为网络设备发送了第一DCI,且,第一DCI指示在第一时间段内不检测第一下行控制信道。对于终端设备来说,情况3可以理解为,第一DCI的检测结果为终端设备检测到第一DCI,且,第一DCI指示在第一时间段内不检测第一下行控制信道。
情况4、第一DCI的发送结果为网络设备未发送第一DCI,则第一DCI的发送结果就用于指示在第一时间段内不检测第一下行控制信道。对于终端设备来说,情况4可以理解为,第一DCI的检测结果为未检测到第一DCI,则第一DCI的检测结果就用于指示在第一时间段内不检测第一下行控制信道。
情况1和情况4也可以联合视为一种方式。在这种方式下,网络设备是通过是否发送第一DCI来指示终端设备是否在第一时间段内检测第一下行控制信道。对于终端设备来说,只要检测到第一DCI就可以确定要在第一时间段内检测第一下行控制信道,而检测不到第一DCI就可以确定无需在第一时间段内检测第一下行控制信道,方式较为简单。
情况2、情况3和情况4也可以联合视为一种方式。在这种方式下,网络设备所发送的第一DCI可以指示终端设备是否在第一时间段内检测第一下行控制信道,从而,即使网络设备发送了第一DCI,也可以指示终端设备在第一时间段内不检测第一下行控制信道,方式更为灵活。对于终端设备来说,只要检测不到第一DCI就可以确定无需在第一时间段内检测第一下行控制信道,而如果检测到了第一DCI,根据第一DCI的指示就可以确定是否在第一时间段内检测第一下行控制信道,实现较为简单,指示也更为明确。
如果将情况1和情况4视为一种方式,以及将情况2、情况3和情况4视为另一种方式,那么,第一DCI的发送结果究竟如何指示是否在第一时间段内检测第一下行控制信道,可以采用这两种方式中的任一种方式来确定。
另外,网络设备所确定的第一DCI和参考信号之间的关联关系,也可以包括几种不同的情况。例如,关联关系可以包括子关系1、子关系2、子关系3或子关系4。
子关系1为,网络设备发送第一DCI,网络设备发送参考信号。对此可以理解为,如果网络设备发送了第一DCI,则网络设备就会发送参考信号。如果从终端设备的角度,则子关系1可以理解为,终端设备接收了(或者,检测到)第一DCI,终端设备接收(或者,检测)参考信号。对此可以理解为,如果终端设备接收了(或者,检测到)第一DCI,则终端设备认为参考信号也会发送,则终端设备可以选择接收(或者,检测)参考信号。
另外,子关系1和如前介绍的情况1,可以同时成立。也就是说,对于网络设备来说,如果是通过发送第一DCI来指示终端设备在第一时间段内检测第一下行控制信道,那么也就会通过发送第一DCI来指示会发送参考信号。既然网络设备发送第一DCI指示了终端设备在第一时间段内检测第一下行控制信道,就表明网络设备会调度终端设备进行数据传输,可能调度PDSCH,也可能调度PUSCH,终端设备要进行数据传输就需要与网络设备进行时频同步,因此网络设备可以通过发送第一DCI指示会发送参考信号,从而终端设备在检测到参考信号后就可以跟网络设备进行时频同步,以接收来自网络设备的PDSCH,或者向网络设备发送PUSCH。
子关系2为,网络设备发送第一DCI,且第一DCI指示会发送参考信号,网络设备发 送参考信号。对此可以理解为,如果网络设备发送了第一DCI,且第一DCI指示会发送参考信号,则网络设备就会发送参考信号。从终端设备的角度,则子关系2可以理解为,终端设备接收了(或者,检测到)第一DCI,且第一DCI指示会发送参考信号,终端设备认为参考信号会发送,终端设备可以接收(或者,检测)参考信号。对此可以理解为,如果终端设备接收了(或者,检测到)第一DCI,且第一DCI指示会发送参考信号,则终端设备就可以接收(或者,检测)参考信号。
另外,子关系2和如前介绍的情况2,可以同时成立。也就是说,对于网络设备来说,如果是通过第一DCI的指示来通知终端设备在第一时间段内检测第一下行控制信道,那么也就会通过第一DCI的指示来通知会发送参考信号。既然第一DCI指示了调度第一下行控制信道,就表明网络设备会调度终端设备进行数据传输,可能调度PDSCH,也可能调度PUSCH,终端设备要进行数据传输就需要与网络设备进行时频同步,因此网络设备可以通过第一DCI指示会发送参考信号,从而终端设备在检测到参考信号后就可以跟网络设备进行时频同步,以接收来自网络设备的PDSCH,或者向网络设备发送PUSCH。
子关系3为,网络设备发送第一DCI,且第一DCI指示不发送参考信号,网络设备不发送参考信号。对此可以理解为,如果网络设备发送了第一DCI,且第一DCI指示不发送参考信号,则网络设备就不会发送参考信号。如果从终端设备的角度,则子关系2可以理解为,终端设备接收了(或者,检测到)第一DCI,且第一DCI指示不发送参考信号,终端设备不接收(或者,检测)参考信号。对此可以理解为,如果终端设备接收了(或者,检测到)第一DCI,且第一DCI指示不发送参考信号,则终端设备就无需接收(或者,检测)参考信号。
另外,子关系3和如前介绍的情况3,可以同时成立。也就是说,对于网络设备来说,如果是通过第一DCI的指示来通知终端设备在第一时间段内不检测第一下行控制信道,那么也就会通过第一DCI的指示来通知不会发送参考信号。既然第一DCI指示了不调度第一下行控制信道,就表明网络设备不会调度终端设备进行数据传输,则终端设备无需与网络设备进行时频同步,因此网络设备可以通过第一DCI指示不会发送参考信号,从而终端设备无需接收参考信号,也就无需与网络设备进行时频同步,以减小终端设备的功耗。
子关系4为,网络设备不发送第一DCI,网络设备不发送参考信号。对此可以理解为,如果网络设备不发送第一DCI,则网络设备就不会发送参考信号。如果从终端设备的角度,则子关系4可以理解为,终端设备未接收到(或者,未检测到)第一DCI,终端设备不需要接收(或者,检测)参考信号。对此可以理解为,如果终端设备未接收到(或者,未检测到)第一DCI,则终端设备不需要接收(或者,检测)参考信号。
另外,子关系4和如前介绍的情况4,可以同时成立。也就是说,对于网络设备来说,如果是通过不发送第一DCI来指示终端设备在第一时间段内不检测第一下行控制信道,那么也就会通过不发送第一DCI来指示不会发送参考信号。既然网络设备不发送第一DCI指示了终端设备在第一时间段内不检测第一下行控制信道,就表明网络设备不会调度终端设备进行数据传输,终端设备无需与网络设备进行时频同步,因此网络设备可以通过不发送第一DCI指示不会发送参考信号,从而终端设备无需接收参考信号,也就无需与网络设备进行时频同步,以减小终端设备的功耗。
其中,子关系1和子关系4可以理解为不同的关联关系,或者也可以理解为是同一种关联关系的两个分支。如果理解为同一种关联关系的两种分支,那么在这种关联关系下, 网络设备是通过是否发送第一DCI来指示是否发送参考信号,如果网络设备发送第一DCI,也就表明网络设备会发送参考信号,而如果网络设备不发送第一DCI,就表明网络设备不会发送参考信号,从而终端设备根据是否能检测到第一DCI就能确定是否要检测参考信号,实现较为简单。
或者,子关系2、子关系3和子关系4可以理解为不同的关联关系,或者也可以理解为同一种关联关系的不同分支。如果理解为同一种关联关系的不同分支,那么在这种关联关系下,网络设备所发送的第一DCI可以指示是否发送参考信号,从而,即使网络设备发送了第一DCI,也可以指示不发送参考信号,从而终端设备无需检测参考信号,方式更为灵活。例如,网络设备发送了第一DCI,表明网络设备会调度数据,例如会调度PDSCH,但是网络设备所调度的PDSCH在解调时要求不高,例如PDSCH的调制阶数等相对较低,对于终端设备来说,即使没有与网络设备进行时频同步也能完成对PDSCH的解调,则网络设备可以通过第一DCI指示不发送参考信号。在这种情况下,既不影响终端设备正常接收及解调PDSCH,也能够减小终端设备的功耗。
如果将子关系1和子关系4视为一种关联关系,以及将子关系2、子关系3和子关系4视为另一种关联关系,那么,所述的关联关系可以包括这两种关联关系中的一种。
在本申请实施例中,可以为第一DCI和参考信号设置关联关系,从而通过这种关联关系可以控制参考信号的发送,例如网络设备可以无需周期性地发送参考信号,而是根据所设置的关联关系来发送参考信号,则终端设备无需周期性接收参考信号,也就无需周期性地与网络设备进行时频同步,减小终端设备的功耗。或者,通过这种关联关系可以控制终端设备的行为,终端设备只会根据关联关系来相应接收参考信号,而无需像现有技术中周期性地接收参考信号,因此终端设备只需在接收参考信号后与网络设备进行时频同步即可,无需周期性地与网络设备进行时频同步,从而减小终端设备的功耗。
参考信号可以用于终端设备与网络设备进行时频同步,例如参考信号为TRS或SSB,或者也可以是信道状态信息参考信号(channel state information-reference signal,CSI-RS)等。或者,参考信号也可以有其他的用途,例如,参考信号可以用来进行信道状态估计,那么相应的,参考信号的实现方式也会有所不同,具体的不做限制。
S42、网络设备向终端设备发送第一消息,终端设备接收来自网络设备的所述第一消息,所述第一消息用于指示所述关联关系。
网络设备在确定第一DCI和参考信号之间的关联关系后,可以将关联关系发送给终端设备。终端设备接收第一消息后,就可以根据第一消息确定第一DCI与参考信号之间具有所述的关联关系。第一消息例如为高层信令,例如RRC消息,或者也可以是其他的消息。
作为一种可选的实施方式,第一消息还可以用于配置第一DCI的参数,例如可以配置用于发送第一DCI的资源,例如控制资源集(CORESET),或者还可以配置第一DCI的其他信息,例如监听机会,具体的不做限制。
另外,第一消息除了可以配置第一DCI的参数之外,还可以用于配置用于发送参考信号的资源。从而,如果终端设备根据第一DCI的检测结果确定要接收参考信号,就可以根据第一消息所配置的用于发送参考信号的资源来接收参考信号。或者,用于发送参考信号的资源也可以通过其他方式配置给终端设备,例如通过协议预定义第一DCI和参考信号之间的相对时频域位置等,在这种情况下,也就无需通过第一消息来配置。对于将用于发送参考信号的资源的信息通知给终端设备的方式,本申请实施例不做限制。
或者,第一DCI和参考信号之间的关联关系也可以通过协议规定,那么,如果第一DCI和参考信号之间的关联关系通过协议规定,则S42可以继续执行,但第一消息可以用于配置第一DCI,而并不用于指示第一DCI和参考信号之间的关联关系。
S43、终端设备检测第一DCI。
S44、终端设备根据对第一DCI的检测结果确定是否接收参考信号。所述参考信号用于终端设备与网络设备进行时频同步,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道。
在S41中介绍了,参考信号可以用于时频同步,或者也可以有其他的用途,具体的不做限制。关于第一DCI的检测结果如何指示是否在第一时间段内检测第一下行控制信道,在S41中也有介绍,不多赘述。
其中,第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,如果是如前的情况1,那么,如果终端设备在S43中检测到了第一DCI,终端设备就可以确定在第一时间段内检测第一下行控制信道,则终端设备可以在第一时间段内检测第一下行控制信道;或者,第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,如果是如前的情况2,那么,如果终端设备在S43中检测到了第一DCI,并且第一DCI指示调度第一下行控制信道,终端设备就可以确定在第一时间段内检测第一下行控制信道,则终端设备可以在第一时间段内检测第一下行控制信道;或者,第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,如果是如前的情况3,那么,如果终端设备在S43中检测到了第一DCI,并且第一DCI指示在第一时间段内不需要检测第一下行控制信道,终端设备就可以确定在第一时间段内不检测第一下行控制信道,则终端设备在第一时间段内可以不检测第一下行控制信道;或者,第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,如果是如前的情况4,那么,如果终端设备在S43中未检测到第一DCI,终端设备就可以确定在第一时间段内不检测第一下行控制信道,则终端设备在第一时间段内可以不检测第一下行控制信道。
终端设备根据对第一DCI的检测结果确定是否接收参考信号,可能有以下几种方式:如果检测结果为检测到第一DCI,则终端设备确定参考信号发送,可以接收参考信号;或者,如果检测结果为检测到第一DCI,且第一DCI指示会发送参考信号,则终端设备确定参考信号会发送,可以接收参考信号;或者,如果检测结果为检测到第一DCI,且第一DCI指示不发送参考信号,则终端设备确定参考信号不发送,不接收参考信号;或者,如果检测结果为未检测到第一DCI,则终端设备确定参考信号不发送,不接收参考信号。
作为一种实施方式,终端设备根据对第一DCI的检测结果确定是否接收参考信号,可以与所述的关联关系有关,或者说,终端设备可以是根据对第一DCI的检测结果以及关联关系,确定是否接收参考信号。例如,如果关联关系是如前的子关系1,那么,如果终端设备在S43中检测到了第一DCI,终端设备就可以认为网络设备会发送参考信号,则终端设备可以选择接收参考信号,例如终端设备可以继续进行检测,以接收参考信号,在接收参考信号后,终端设备可以与网络设备进行时频同步;或者,如果关联关系是如前的子关系2,那么,如果终端设备在S43中检测到了第一DCI,并且第一DCI指示会发送参考信号,终端设备就可以认为网络设备会发送参考信号,则终端设备可以选择接收参考信号,例如终端设备可以继续进行检测,以接收参考信号,在接收参考信号后,终端设备可以与网络设备进行时频同步;或者,如果关联关系是如前的子关系3,那么,如果终端设备在 S43中检测到了第一DCI,并且第一DCI指示不发送参考信号,终端设备就可以认为网络设备不发送参考信号,则终端设备可以确定不接收参考信号,例如终端设备可以无需检测参考信号,自然也无需与网络设备进行时频同步;或者,如果关联关系是如前的子关系4,那么,如果终端设备在S43中未检测到第一DCI,终端设备就可以认为网络设备不发送参考信号,则终端设备可以确定不接收参考信号,例如终端设备可以无需检测参考信号,自然也无需与网络设备进行时频同步。
其中,终端设备如果能够接收参考信号,那么,终端设备接收第一DCI的时刻与接收参考信号的时刻之间的时间间隔可以大于第一值,第一值例如为网络设备所配置的,或者也可以通过协议规定,或者接收第一DCI的时刻与接收参考信号的时刻之间的时间间隔可以由网络直接配置或指示。终端设备接收第一DCI,可能通过窄带就能接收,而终端设备接收参考信号,可能需要通过宽带接收,因此在接收第一DCI后,如果需要接收参考信号,则终端设备需要一定的准备时间,以使得终端设备的相应部件完成启动或者切换等准备工作,因此作为一种实施方式,第一值可以是根据终端设备的能力所确定的。例如,第一值是由网络设备配置,那么终端设备可以预先向网络设备发送终端设备的能力信息,从而网络设备根据终端设备的能力信息就可以确定第一值。或者第一值也可以根据其他因素确定,具体的不做限制。
当然,如果终端设备在S43中能够检测到第一DCI,那么网络设备就还会发送第一DCI,则S43也可以理解为,网络设备发送第一DCI,终端设备接收来自网络设备的第一DCI。或者,如果网络设备在S43中检测不到第一DCI,那么S43就只是理解为终端设备检测第一DCI即可,但检测结果可能是检测不到。
如果关联关系是如前的子关系1或子关系2,那么网络设备发送第一DCI后还会发送参考信号,则终端设备可以接收参考信号,在接收参考信号后,终端设备可以与网络设备进行时频同步。具体的,终端设备与网络设备进行时频同步的过程在此不多赘述。网络设备既然发送了第一DCI,表明网络设备会调度数据,可能调度PDSCH,也可能调度PUSCH。则终端设备在接收第一DCI后,可以继续检测用于调度数据的DCI,或者说,继续检测第一下行控制信道。例如,终端设备检测到了第二DCI,或者说,终端设备接收了来自网络设备的第二DCI,第二DCI用于调度数据,例如用于调度PDSCH或PUSCH。第二DCI可以指示网络设备所调度的数据的发送参数,发送参数例如包括数据的调制阶数或MIMO层数等信息。则终端设备在接收第二DCI后,可以确定传输第二DCI所调度的数据,也就是说,终端设备可以正常接收或发送第二DCI调度的数据,例如终端设备可以根据第二DCI的调度,接收来自网络设备的PDSCH,并对PDSCH进行解调等操作,或者终端设备可以根据第二DCI的调度,向网络设备发送PUSCH。
或者,如果关联关系是如前的子关系4,那么网络设备在发送第一DCI后不会发送参考信号,终端设备无需接收参考信号,也无需与网络设备进行时频同步。
或者,如果关联关系是如前的子关系3,或者说,如果网络设备发送了第一DCI,且第一DCI指示不发送参考信号,那么终端设备就不会接收参考信号,则终端设备也不会根据参考信号与网络设备进行时频同步。但是网络设备既然发送了第一DCI,且在第一DCI中指示了在第一时间段监听第一控制信道,则表明网络设备会调度数据,可能调度PDSCH,也可能调度PUSCH。则终端设备在接收第一DCI后,可以继续检测用于调度数据的DCI,或者说,继续检测第一下行控制信道。例如,终端设备检测到了第二DCI,或者说,终端 设备接收了来自网络设备的第二DCI,第二DCI用于调度数据,例如用于调度PDSCH或PUSCH。第二DCI可以指示网络设备所调度的数据的发送参数,发送参数例如包括数据的调制阶数或MIMO层数等信息。因为终端设备没有与网络设备进行时频同步,则终端设备可能无法处理高阶的调制符号或解调多层MIMO数据流等过程。因此,终端设备在接收第二DCI后,可以将第二DCI指示的发送参数与预配置的发送参数进行对比,以确定第二DCI指示的发送参数是否满足预配置的发送参数。如果第二DCI指示的发送参数满足预配置的发送参数,则终端设备可以确定传输第二DCI所调度的数据,也就是说,终端设备可以正常接受调度,例如终端设备可以根据第二DCI的调度,接收来自网络设备的PDSCH,并对PDSCH进行解调等操作,或者终端设备可以根据第二DCI的调度,向网络设备发送PUSCH。而如果第二DCI指示的发送参数不满足预配置的发送参数,则终端设备可以确定不传输第二DCI所调度的数据,例如终端设备可以不接收第二DCI所调度的PDSCH,或者可以不发送第二DCI所调度的PUSCH,在这种情况下,终端设备可以认为是调度出错。而对于网络设备来说,如果网络设备发送了第一DCI,且第一DCI指示不发送参考信号,那么网络设备也会尽量使得所发送的第二DCI指示的发送参数能够满足预配置的发送参数,以减少出错的可能性。
其中,第二DCI指示的发送参数满足预配置的发送参数,可以是指第二DCI指示的发送参数和预配置的发送参数相同,或者也可以是指,第二DCI指示的发送参数对于终端设备的要求低于预配置的发送参数对于终端设备的要求。以发送参数包括调制阶数为例,如果第二DCI指示的调制阶数等于预配置的调制阶数,或者第二DCI指示的调制阶数小于预配置的调制阶数,都认为第二DCI指示的调制阶数满足预配置的调制阶数,而如果第二DCI指示的调制阶数大于预配置的调制阶数,则认为第二DCI指示的调制阶数不满足预配置的调制阶数。再以发送参数包括MIMO层数为例,如果第二DCI指示的MIMO层数等于预配置的MIMO层数,或者第二DCI指示的MIMO层数小于预配置的MIMO层数,都认为第二DCI指示的MIMO层数满足预配置的MIMO层数,而如果第二DCI指示的MIMO层数大于预配置的MIMO层数,则认为第二DCI指示的MIMO层数不满足预配置的MIMO层数。
如果第二DCI指示的发送参数不满足预配置的发送参数,则终端设备可能无法处理第二DCI所调度的数据,在这种情况下,终端设备可以选择不处理这些数据,从而减少无效的处理过程,也减小终端设备的功耗。
如上的这种情况,可以认为是网络设备的调度受限的情况。网络设备的调度受限的情况可以持续存在,例如,如果网络设备发送了第一DCI,且第一DCI指示不发送参考信号,则调度受限的情况就可以持续存在;或者,网络设备的调度受限的情况也可以不是持续存在,而是有一定的存在时间,该存在时间可以理解为时间窗,在该时间窗之外,网络设备可以继续正常调度,终端设备也可以继续正常接收,而无需再判断第二DCI指示的发送参数是否满足预配置的发送参数。
例如,该时间窗就是第一DCI之后的一段时间,可以理解为,该时间窗的起始时刻是网络设备发送第一DCI的时刻,或者是终端设备检测到第一DCI的时刻,或者是终端设备检测到第二DCI的时刻等,该时间窗的持续时长可以是网络设备配置的,例如网络设备可以通过第一消息配置,或者通过其他消息配置,或者,该时间窗的持续时长也可以是通过协议规定的。那么在该时间窗内,网络设备的调度受限,而在该时间窗结束之后,网络设 备可以继续正常调度,终端设备也可以正常接受调度。
或者,该时间窗就是第一时间段。关于第一时间段,在前文已有介绍,因此不再多赘述。那么在第一时间段内,网络设备的调度受限,而在第一时间段结束之后,网络设备可以继续正常调度,终端设备也可以正常接受调度。
或者,该时间窗包括第一DCI所对应的on duration时间段内的非激活定时器未启动之前的时间,可以理解为,在第一DCI所对应的on duration时间段内,如果非激活定时器未启动,则网络设备的调度受限,而如果非激活定时器启动了,则网络设备可以继续正常调度,终端设备也可以正常接受调度。
或者,该时间窗包括第一DCI所对应的第一时间段内,直到第二DCI的PDCCH或者到接收完第二DCI调度的PDSCH的最后一个符号或者最后一个时隙这之间的时间段。
或者,该时间窗包括第一DCI所对应的第一时间段内,直到第二DCI的调度的PDSCH所对应的ACK/NACK收到后的下一个符号或者下一个时隙开始之前的这一段时间。
当然,该时间窗还可以有其他的实现方式,如上几种情况只是举例而不是限制。
通过定义上述时间窗,终端设备可以通过该时间窗内的PDCCH或PDSCH的参考信号进行时频同步,避免终端设备在第一时间段内由于长时间处于调度受限,从而避免终端设备长时间处于较低的传输速率。
在本申请实施例中,可以为第一DCI和参考信号设置关联关系,从而通过这种关联关系可以控制参考信号的发送,例如网络设备可以无需周期性地发送参考信号,而是根据所设置的关联关系来发送参考信号,则终端设备无需周期性接收参考信号,也就无需周期性地与网络设备进行时频同步,减小终端设备的功耗。或者,通过这种关联关系可以控制终端设备的行为,终端设备只会根据关联关系来相应接收参考信号,而无需像现有技术中周期性地接收参考信号,因此终端设备只需在接收参考信号后与网络设备进行时频同步即可,无需周期性地与网络设备进行时频同步,从而减小终端设备的功耗。
而且,参考信号是与第一DCI相关联的,第一DCI可以实现WUS的功能,如果关联关系指示终端设备无需接收参考信号,也就表明网络设备并不会向终端设备调度数据,或者表明网络设备所调度的数据对于终端设备的要求不高,即使终端设备与网络设备不进行时频同步也能够完成对这些数据的处理,而终端设备接收DCI的过程,即使在终端设备和网络设备没有进行时频同步的条件下也能进行,所以不会影响终端设备的正常工作。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图5为本申请实施例提供的通信设备500的示意性框图。示例性地,通信设备500例如为终端设备500。终端设备500包括处理模块510和收发模块520。其中,处理模块510可以用于执行图4所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,例如S44,和/或用于支持本文所描述的技术的其它过程。收发模块520可以用于执行图4所示的实施例中由终端设备所执行的全部收发操作,例如S42和S43,和/或用于支持本文所描述的技术的其它过程。
收发模块520,用于检测第一下行控制信息DCI;
处理模块510,用于根据对所述第一DCI的检测结果确定是否接收参考信号,所述参考信号用于终端设备500与网络设备进行时频同步,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道。
作为一种可选的实施方式,处理模块510用于通过如下方式根据对所述第一DCI的检测结果确定是否接收参考信号:
所述检测结果为检测到所述第一DCI,确定接收所述参考信号;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示会发送所述参考信号,确定接收所述参考信号;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,确定不接收所述参考信号;或,
所述检测结果为未检测到所述第一DCI,确定不接收所述参考信号。
作为一种可选的实施方式,
收发模块520,还用于接收来自所述网络设备的第一消息;
处理模块510,还用于根据所述第一消息确定所述第一DCI与参考信号之间具有关联关系;
处理模块510用于通过如下方式根据对所述第一DCI的检测结果确定是否接收参考信号:根据对所述第一DCI的检测结果,以及所述关联关系,确定是否接收所述参考信号;
其中,所述关联关系包括:
终端设备500检测到所述第一DCI,终端设备500检测所述参考信号;或,
终端设备500未检测到所述第一DCI,终端设备500不检测所述参考信号;或,
终端设备500检测到所述第一DCI,所述第一DCI指示发送所述参考信号,终端设备500检测所述参考信号;或,
终端设备500检测到所述第一DCI,所述第一DCI指示不发送所述参考信号,终端设备500检测所述参考信号。
作为一种可选的实施方式,所述检测结果为检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,终端设备500确定不接收所述参考信号;在处理模块510根据对所述第一DCI的检测确定是否接收参考信号之后,
收发模块520,还用于接收来自网络设备的第二DCI,所述第二DCI用于调度数据;
处理模块510,还用于当所述第二DCI所指示的所述数据的发送参数不满足预配置的发送参数时,确定不传输所述数据。
作为一种可选的实施方式,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道,包括:
所述检测结果为检测到所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为检测到所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述检测结果为未检测到所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
作为一种可选的实施方式,所述第一下行控制信道包括如下的一种或它们的任意组合:
通过C-RNTI加掩的下行控制信道;
通过CS-RNTI加掩的下行控制信道;
通过INT-RNTI加掩的下行控制信道;
通过SFI-RNTI加掩的下行控制信道;
通过SP-CSI-RNTI加掩的下行控制信道;
通过TPC-PUCCH-RNTI加掩的下行控制信道;
通过TPC-PUSCH-RNTI加掩的下行控制信道;或,
通过TPC-SRS-RNTI加掩的下行控制信道。
作为一种可选的实施方式,终端设备500接收所述第一DCI的时刻与接收所述参考信号的时刻之间的时间间隔大于第一值。
作为一种可选的实施方式,所述参考信号为CSI-RS、TRS或SSB。
应理解,本申请实施例中的处理模块510可以由处理器或处理器相关电路组件实现,收发模块520可以由收发器或收发器相关电路组件实现。
如图6所示,本申请实施例还提供一种通信设备600。示例性地,通信设备600例如为终端设备600。终端设备600包括处理器610,存储器620与收发器630,其中,存储器620中存储指令或程序,处理器610用于执行存储器620中存储的指令或程序。存储器620中存储的指令或程序被执行时,该处理器610用于执行上述实施例中处理模块510执行的操作,收发器630用于执行上述实施例中收发模块520执行的操作。
应理解,根据本申请实施例的终端设备500或终端设备600可对应于图4所示的实施例中的终端设备,并且终端设备500或终端设备600中的各个模块的操作和/或功能分别为了实现图4所示的实施例中的相应流程,为了简洁,在此不再赘述。
图7为本申请实施例提供的通信设备700的示意性框图。示例性地,通信设备700例如为网络设备700。网络设备700包括处理模块710和收发模块720。其中,处理模块710可以用于执行图4所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如S41,和/或用于支持本文所描述的技术的其它过程。收发模块720可以用于执行图4所示的实施例中由网络设备所执行的全部收发操作,例如S42,和/或用于支持本文所描述的技术的其它过程。
处理模块710,用于确定第一DCI与参考信号之间的关联关系,所述参考信号用于所述终端设备与网络设备700进行时频同步,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道;
收发模块720,用于向终端设备发送第一消息,所述第一消息用于指示所述关联关系。
作为一种可选的实施方式,所述关联关系包括:
网络设备700发送所述第一DCI,网络设备700发送所述参考信号;或,
网络设备700不发送所述第一DCI,网络设备700不发送所述参考信号;或,
网络设备700发送所述第一DCI,所述第一DCI指示发送所述参考信号,网络设备700发送所述参考信号;或,
网络设备700发送所述第一DCI,所述第一DCI指示不发送所述参考信号,网络设备700不发送所述参考信号。
作为一种可选的实施方式,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,包括:
所述发送结果为发送所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为发送所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为发送所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
所述发送结果为不发送所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
作为一种可选的实施方式,收发模块820还用于:
向所述终端设备发送所述第一DCI,所述第一DCI指示不发送所述参考信号;
向所述终端设备发送第二DCI,所述第二DCI用于调度数据,且所述第二DCI所指示的所述数据的发送参数满足预配置的发送参数。
作为一种可选的实施方式,网络设备800发送所述第一DCI的时刻与发送所述参考信号的时刻之间的时间间隔大于第一值。
作为一种可选的实施方式,所述参考信号为CSI-RS、TRS或SSB。
应理解,本申请实施例中的处理模块710可以由处理器或处理器相关电路组件实现,收发模块720可以由收发器或收发器相关电路组件实现。
如图8所示,本申请实施例还提供一种通信设备800。示例性地,通信设备800例如为网络设备800。网络设备800包括处理器810,存储器820与收发器830,其中,存储器820中存储指令或程序,处理器810用于执行存储器820中存储的指令或程序。存储器820中存储的指令或程序被执行时,该处理器810用于执行上述实施例中处理模块710执行的操作,收发器830用于执行上述实施例中收发模块720执行的操作。
应理解,根据本申请实施例的网络设备700或网络设备800可对应于图4所示的实施例中的网络设备,并且网络设备700或网络设备800中的各个模块的操作和/或功能分别为了实现图4所示的实施例中的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述图4所示的方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图9示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图9中,终端设备以手机作为例子。如图9所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限 制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图9所示,终端设备包括收发单元910和处理单元920。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元910用于执行上述图4所示的方法实施例中终端设备侧的发送操作和接收操作,处理单元920用于执行上述图4所示的方法实施例中终端设备侧除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元910用于执行图4所示的实施例中的终端设备侧的收发步骤,例如S42和S43,和/或用于支持本文所描述的技术的其它过程。处理单元920,用于执行图4所示的实施例中的终端设备侧除了收发操作之外的其他操作,例如S44,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例中的通信装置为终端设备时,可以参照图10所示的设备。作为一个例子,该设备可以完成类似于图10中处理器1010的功能。在图10中,该设备包括处理器1010,发送数据处理器1020,接收数据处理器1030。上述实施例中的处理模块510可以是图10中的该处理器1010,并完成相应的功能;上述实施例中的收发模块520可以是图10中的发送数据处理器1020,和/或接收数据处理器1030。
虽然图10中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图11示出本实施例的另一种形式。处理装置1100中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1103,接口1104。其中,处理器1103完成上述处理模块510的功能,接口1104完成上述收发模块520的功能。作为另一种变形,该调制子系统包括存储器1106、处理器1103及存储在存储器1106上并可在处理器上运行的程序,该处理器1103执行该程序时实现上述图4所示的方法实施例中终端设备侧的方法。需要注意的是,所述存储器1106可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1100中,只要该存储器1106可以连接到所述处理器1103即可。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图4所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图4所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图4所示的方法实施例中终端设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图4 所示的方法实施例中网络设备侧的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    终端设备检测第一下行控制信息DCI;
    所述终端设备根据对所述第一DCI的检测结果确定是否接收参考信号,所述参考信号用于所述终端设备与网络设备进行时频同步,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据对所述第一DCI的检测结果确定是否接收参考信号,包括:
    所述检测结果为检测到所述第一DCI,所述终端设备确定接收所述参考信号;或,
    所述检测结果为检测到所述第一DCI,且所述第一DCI指示会发送所述参考信号,所述终端设备确定接收所述参考信号;或,
    所述检测结果为检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,所述终端设备确定不接收所述参考信号;或,
    所述检测结果为未检测到所述第一DCI,所述终端设备确定不接收所述参考信号。
  3. 根据权利要求1所述的方法,其特征在于,
    所述方法还包括:
    所述终端设备接收来自所述网络设备的第一消息;
    所述终端设备根据所述第一消息确定所述第一DCI与参考信号之间具有关联关系;
    所述终端设备根据对所述第一DCI的检测结果确定是否接收参考信号,包括:所述终端设备根据对所述第一DCI的检测结果,以及所述关联关系,确定是否接收所述参考信号;
    其中,所述关联关系包括:
    所述终端设备检测到所述第一DCI,所述终端设备检测所述参考信号;或,
    所述终端设备未检测到所述第一DCI,所述终端设备不检测所述参考信号;或,
    所述终端设备检测到所述第一DCI,所述第一DCI指示发送所述参考信号,所述终端设备检测所述参考信号;或,
    所述终端设备检测到所述第一DCI,所述第一DCI指示不发送所述参考信号,所述终端设备不检测所述参考信号。
  4. 根据权利要求2所述的方法,其特征在于,所述终端设备检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,所述终端设备确定不接收所述参考信号;在所述终端设备根据对所述第一DCI的检测确定是否接收参考信号之后,还包括:
    所述终端设备接收来自网络设备的第二DCI,所述第二DCI用于调度数据;
    当所述第二DCI所指示的所述数据的发送参数不满足预配置的发送参数时,所述终端设备确定不传输所述数据。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道,包括:
    所述检测结果为检测到所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
    所述检测结果为检测到所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
    所述检测结果为检测到所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
    所述检测结果为未检测到所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
  6. 根据权利要求5所述的方法,其特征在于,所述第一下行控制信道包括如下的一种或它们的任意组合:
    通过小区无线网络临时标识C-RNTI加掩的下行控制信道;
    通过CS-RNTI加掩的下行控制信道;
    通过中断INT-RNTI加掩的下行控制信道;
    通过时隙格式指示SFI-RNTI加掩的下行控制信道;
    通过SP-CSI-RNTI加掩的下行控制信道;
    通过发送功率控制TPC-物理上行控制信道PUCCH-RNTI加掩的下行控制信道;
    通过TPC-PUSCH-RNTI加掩的下行控制信道;或,
    通过TPC-探测参考信号SRS-RNTI加掩的下行控制信道。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述终端设备接收所述第一DCI的时刻与接收所述参考信号的时刻之间的时间间隔大于第一值。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,所述参考信号为信道状态信息参考信号CSI-RS、跟踪参考信号TRS或同步信号和物理广播信道块SSB。
  9. 一种通信方法,其特征在于,包括:
    网络设备确定第一DCI与参考信号之间的关联关系,所述参考信号用于所述终端设备与所述网络设备进行时频同步,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道;
    网络设备向终端设备发送第一消息,所述第一消息用于指示所述关联关系。
  10. 根据权利要求9所述的方法,其特征在于,所述关联关系包括:
    所述网络设备发送所述第一DCI,所述网络设备发送所述参考信号;或,
    所述网络设备不发送所述第一DCI,所述网络设备不发送所述参考信号;或,
    所述网络设备发送所述第一DCI,所述第一DCI指示发送所述参考信号,所述网络设备发送所述参考信号;或,
    所述网络设备发送所述第一DCI,所述第一DCI指示不发送所述参考信号,所述网络设备不发送所述参考信号。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,包括:
    所述发送结果为发送所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
    所述发送结果为发送所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
    所述发送结果为发送所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
    所述发送结果为不发送所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送所述第一DCI,所述第一DCI指示不发送所述参考信号;
    所述网络设备向所述终端设备发送第二DCI,所述第二DCI用于调度数据,且所述第二DCI所指示的所述数据的发送参数满足预配置的发送参数。
  13. 根据权利要求9~12任一项所述的方法,其特征在于,所述网络设备发送所述第一DCI的时刻与发送所述参考信号的时刻之间的时间间隔大于第一值。
  14. 根据权利要求9~13任一项所述的方法,其特征在于,所述参考信号为信道状态信息参考信号CSI-RS、跟踪参考信号TRS或同步信号和物理广播信道块SSB。
  15. 一种通信设备,其特征在于,包括:
    收发器,用于检测第一下行控制信息DCI;
    处理器,用于根据对所述第一DCI的检测结果确定是否接收参考信号,所述参考信号用于所述终端设备与网络设备进行时频同步,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道。
  16. 根据权利要求15所述的通信设备,其特征在于,所述处理器用于通过如下方式根据对所述第一DCI的检测结果确定是否接收参考信号:
    所述检测结果为检测到所述第一DCI,确定接收所述参考信号;或,
    所述检测结果为检测到所述第一DCI,且所述第一DCI指示会发送所述参考信号,确定接收所述参考信号;或,
    所述检测结果为检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,确定不接收所述参考信号;或,
    所述检测结果为未检测到所述第一DCI,所述终端设备确定不接收所述参考信号。
  17. 根据权利要求15所述的通信设备,其特征在于,
    所述收发器还用于接收来自所述网络设备的第一消息;
    所述处理器还用于根据所述第一消息确定所述第一DCI与参考信号之间具有关联关系;
    所述处理器用于通过如下方式根据对所述第一DCI的检测结果确定是否接收参考信号:根据对所述第一DCI的检测结果,以及所述关联关系,确定是否接收所述参考信号;
    其中,所述关联关系包括:
    所述终端设备检测到所述第一DCI,所述终端设备检测所述参考信号;或,
    所述终端设备未检测到所述第一DCI,所述终端设备不检测所述参考信号;或,
    所述终端设备检测到所述第一DCI,所述第一DCI指示发送所述参考信号,所述终端设备检测所述参考信号;或,
    所述终端设备检测到所述第一DCI,所述第一DCI指示不发送所述参考信号,所述终端设备不检测所述参考信号。
  18. 根据权利要求16所述的通信设备,其特征在于,所述终端设备检测到所述第一DCI,且所述第一DCI指示不发送所述参考信号,所述终端设备确定不接收所述参考信号;
    所述收发器,还用于在所述处理器根据对所述第一DCI的检测确定是否接收参考信号之后,接收来自网络设备的第二DCI,所述第二DCI用于调度数据;
    所述处理器,还用于当所述第二DCI所指示的所述数据的发送参数不满足预配置的发送参数时,确定不传输所述数据。
  19. 根据权利要求15~18任一项所述的通信设备,其特征在于,所述第一DCI的检测结果还用于指示是否在第一时间段内检测第一下行控制信道,包括:
    所述检测结果为检测到所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
    所述检测结果为检测到所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
    所述检测结果为检测到所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
    所述检测结果为未检测到所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
  20. 根据权利要求19所述的通信设备,其特征在于,所述第一下行控制信道包括如下的一种或它们的任意组合:
    通过小区无线网络临时标识C-RNTI加掩的下行控制信道;
    通过CS-RNTI加掩的下行控制信道;
    通过中断INT-RNTI加掩的下行控制信道;
    通过时隙格式指示SFI-RNTI加掩的下行控制信道;
    通过SP-CSI-RNTI加掩的下行控制信道;
    通过发送功率控制TPC-物理上行控制信道PUCCH-RNTI加掩的下行控制信道;
    通过TPC-PUSCH-RNTI加掩的下行控制信道;或,
    通过TPC-探测参考信号SRS-RNTI加掩的下行控制信道。
  21. 根据权利要求15~20任一项所述的通信设备,其特征在于,所述终端设备接收所述第一DCI的时刻与接收所述参考信号的时刻之间的时间间隔大于第一值。
  22. 根据权利要求15~21任一项所述的通信设备,其特征在于,所述参考信号为信道状态信息参考信号CSI-RS、跟踪参考信号TRS或同步信号和物理广播信道块SSB。
  23. 一种通信设备,其特征在于,包括:
    处理器,用于确定第一DCI与参考信号之间的关联关系,所述参考信号用于所述终端设备与所述网络设备进行时频同步,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道;
    收发器,用于向终端设备发送第一消息,所述第一消息用于指示所述关联关系。
  24. 根据权利要求23所述的通信设备,其特征在于,所述关联关系包括:
    所述网络设备发送所述第一DCI,所述网络设备发送所述参考信号;或,
    所述网络设备不发送所述第一DCI,所述网络设备不发送所述参考信号;或,
    所述网络设备发送所述第一DCI,所述第一DCI指示发送所述参考信号,所述网络设备发送所述参考信号;或,
    所述网络设备发送所述第一DCI,所述第一DCI指示不发送所述参考信号,所述网络设备不发送所述参考信号。
  25. 根据权利要求23或24所述的通信设备,其特征在于,所述第一DCI的发送结果用于指示是否在第一时间段内检测第一下行控制信道,包括:
    所述发送结果为发送所述第一DCI,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
    所述发送结果为发送所述第一DCI,且所述第一DCI指示不调度所述第一下行控制信道,用于指示不在所述第一时间段内检测所述第一下行控制信道;或,
    所述发送结果为发送所述第一DCI,且所述第一DCI指示调度所述第一下行控制信道,用于指示在所述第一时间段内检测所述第一下行控制信道;或,
    所述发送结果为不发送所述第一DCI,用于指示不在所述第一时间段内检测所述第一下行控制信道。
  26. 根据权利要求24所述的通信设备,其特征在于,所述收发器还用于:
    向所述终端设备发送所述第一DCI,所述第一DCI指示不发送所述参考信号;
    向所述终端设备发送第二DCI,所述第二DCI用于调度数据,且所述第二DCI所指示的所述数据的发送参数满足预配置的发送参数。
  27. 根据权利要求23~26任一项所述的通信设备,其特征在于,所述网络设备发送所述第一DCI的时刻与发送所述参考信号的时刻之间的时间间隔大于第一值。
  28. 根据权利要求23~27任一项所述的通信设备,其特征在于,所述参考信号为信道状态信息参考信号CSI-RS、跟踪参考信号TRS或同步信号和物理广播信道块SSB。
PCT/CN2020/089466 2019-05-13 2020-05-09 一种通信方法及设备 WO2020228647A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20805392.6A EP3952192A4 (en) 2019-05-13 2020-05-09 COMMUNICATION METHOD AND DEVICE
US17/524,482 US20220070780A1 (en) 2019-05-13 2021-11-11 Communication Method And Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910395099.2A CN111934830B (zh) 2019-05-13 2019-05-13 一种通信方法及设备
CN201910395099.2 2019-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/524,482 Continuation US20220070780A1 (en) 2019-05-13 2021-11-11 Communication Method And Device

Publications (1)

Publication Number Publication Date
WO2020228647A1 true WO2020228647A1 (zh) 2020-11-19

Family

ID=73282615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089466 WO2020228647A1 (zh) 2019-05-13 2020-05-09 一种通信方法及设备

Country Status (4)

Country Link
US (1) US20220070780A1 (zh)
EP (1) EP3952192A4 (zh)
CN (2) CN111934830B (zh)
WO (1) WO2020228647A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044908A1 (en) * 2021-09-27 2023-03-30 Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd. Validity time method of availability indication, user equipment and base station

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585060B (zh) * 2020-11-30 2024-03-01 上海华为技术有限公司 一种数据处理方法及其设备
WO2022160298A1 (zh) * 2021-01-29 2022-08-04 华为技术有限公司 时间同步方法、装置和系统
CN114342492A (zh) * 2021-11-25 2022-04-12 北京小米移动软件有限公司 终端与网络同步的方法、装置、通信设备及存储介质
CN116234070A (zh) * 2021-12-02 2023-06-06 华为技术有限公司 一种传输指示方法及通信装置
CN117460059A (zh) * 2022-07-14 2024-01-26 华为技术有限公司 一种下行数据的控制信息的接收、发送方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171770A1 (zh) * 2017-03-24 2018-09-27 中兴通讯股份有限公司 物理下行控制信道的传输方法、装置、设备及存储介质
CN108781432A (zh) * 2017-08-07 2018-11-09 北京小米移动软件有限公司 信息传输方法、装置和计算机可读存储介质
CN109474991A (zh) * 2017-09-08 2019-03-15 中国移动通信有限公司研究院 一种系统信息的发送方法、设备和计算机可读存储介质
CN109587786A (zh) * 2017-09-29 2019-04-05 展讯通信(上海)有限公司 检测trs的方法、装置及用户设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611486B (zh) * 2011-01-19 2018-03-16 中兴通讯股份有限公司 一种扰码标识信令组的通知方法及系统
US9642126B2 (en) * 2012-02-11 2017-05-02 Lg Electronics Inc. Method for receiving downlink data channels in multicell-based wireless communication systems and apparatus for same
CN112218360A (zh) * 2013-05-28 2021-01-12 索尼公司 用于在无线通信系统中进行无线通信的方法、装置和系统
EP3050232B1 (en) * 2013-09-27 2020-04-01 Samsung Electronics Co., Ltd. Method and apparatus for discovery signals for lte advanced
TWI753859B (zh) * 2015-08-25 2022-02-01 美商Idac控股公司 無線傳輸/接收單元及由其執行的方法
CN109644423B (zh) * 2016-08-12 2021-11-05 索尼公司 位置服务器、基础设施设备、通信装置和用于使用补充定位参考信号的方法
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
US11190234B2 (en) * 2018-04-27 2021-11-30 Qualcomm Incorporated Opportunistic frequency switching for frame based equipment
US11503559B2 (en) * 2018-05-29 2022-11-15 Qualcomm Incorporated Cell acquisition in frequency diversity implementing opportunistic frequency switching for frame based equipment access
CN111757510A (zh) * 2019-03-26 2020-10-09 夏普株式会社 由用户设备执行的方法以及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171770A1 (zh) * 2017-03-24 2018-09-27 中兴通讯股份有限公司 物理下行控制信道的传输方法、装置、设备及存储介质
CN108781432A (zh) * 2017-08-07 2018-11-09 北京小米移动软件有限公司 信息传输方法、装置和计算机可读存储介质
CN109474991A (zh) * 2017-09-08 2019-03-15 中国移动通信有限公司研究院 一种系统信息的发送方法、设备和计算机可读存储介质
CN109587786A (zh) * 2017-09-29 2019-04-05 展讯通信(上海)有限公司 检测trs的方法、装置及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952192A4 *
SPREADTRUM COMMUNICATIONS: "Beam measurement, report, and indication", 3GPP TSG RAN WG1 MEETING 90BIS R1-1717743, 13 October 2017 (2017-10-13), XP051340928, DOI: 20200718073732A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044908A1 (en) * 2021-09-27 2023-03-30 Huizhou Tcl Cloud Internet Corporation Technology Co., Ltd. Validity time method of availability indication, user equipment and base station

Also Published As

Publication number Publication date
EP3952192A1 (en) 2022-02-09
CN111934830A (zh) 2020-11-13
EP3952192A4 (en) 2022-06-08
US20220070780A1 (en) 2022-03-03
CN116248241A (zh) 2023-06-09
CN111934830B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2020228647A1 (zh) 一种通信方法及设备
US20220225151A1 (en) Signal measurement method and communications apparatus
WO2020224552A1 (zh) 唤醒终端设备的方法、装置、网络设备和终端设备
WO2020156378A1 (zh) 接收参考信号的方法、发送参考信号的方法和装置
WO2021017603A1 (zh) 一种节能信号的传输方法、基站及终端设备
WO2021062612A1 (zh) 通信方法及装置
CN113518478A (zh) 一种drx控制方法及装置
CN110831120A (zh) 传输物理下行控制信道的方法、终端设备和网络设备
CN110912662B (zh) 一种信息检测方法及装置
AU2017428589A1 (en) Discontinuous reception method, terminal device and network device
WO2019047128A1 (zh) 非连续接收的方法、终端设备和网络设备
US20230199655A1 (en) Transmission control method and apparatus, and related device
TW202034720A (zh) 通訊裝置及其省電方法
WO2021204214A1 (zh) 一种检测方法及装置
CN114503681B (zh) 指示信息的发送方法和装置
WO2020181943A1 (zh) 一种请求系统信息的方法及设备
CN114286429A (zh) 一种通信方法及设备
WO2020164143A1 (zh) 非连续接收的方法、终端设备和网络设备
WO2021147060A1 (zh) 一种通信方法及装置
WO2023098566A1 (zh) 一种通信方法及装置
WO2023207990A1 (zh) 信号传输的方法和通信装置
WO2020200119A1 (zh) 一种信号检测方法及设备
US20220400433A1 (en) Wake-Up Signaling during a Discontinuous Reception Cycle
CN117279121A (zh) 一种唤醒信号传输方法及通信系统
CN117015015A (zh) 信号传输的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020805392

Country of ref document: EP

Effective date: 20211028

NENP Non-entry into the national phase

Ref country code: DE