WO2021087998A1 - 光发射模组、深度相机和电子设备 - Google Patents

光发射模组、深度相机和电子设备 Download PDF

Info

Publication number
WO2021087998A1
WO2021087998A1 PCT/CN2019/116769 CN2019116769W WO2021087998A1 WO 2021087998 A1 WO2021087998 A1 WO 2021087998A1 CN 2019116769 W CN2019116769 W CN 2019116769W WO 2021087998 A1 WO2021087998 A1 WO 2021087998A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
homogenizing
emitting module
microlenses
Prior art date
Application number
PCT/CN2019/116769
Other languages
English (en)
French (fr)
Inventor
成纯森
李宗政
陈冠宏
丁细超
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Priority to PCT/CN2019/116769 priority Critical patent/WO2021087998A1/zh
Publication of WO2021087998A1 publication Critical patent/WO2021087998A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • G01C11/12Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken
    • G01C11/14Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken with optical projection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • This application belongs to the field of optics, and in particular relates to a light emitting module, a depth camera with the light emitting module, and an electronic device with the depth camera.
  • In-depth information collection mainly includes time of flight (TOF) solutions, structured light solutions and binocular stereo vision solutions.
  • TOF time of flight
  • structured light solutions mainly includes structured light solutions and binocular stereo vision solutions.
  • binocular stereo vision solutions Compared with the structured light solution and the binocular stereo vision solution, the time-of-flight solution has the advantages of higher multi-angle recognition accuracy, faster recognition speed and wider recognition area.
  • the TOF scheme is applied to more and more terminal front-end scenarios.
  • the TOF scheme is a two-way ranging technology. It mainly uses the flight time of the signal to and from two asynchronous transceivers to measure the distance between nodes.
  • the existing TOF solution has defects in the arrangement of the light source and the homogenizing sheet, which causes the projection light spot to have fringes, which seriously affects the accuracy of the acquired depth information, reduces the overall uniformity of the image, and cannot achieve near-field high precision.
  • the purpose of this application is to provide a light emitting module, a depth camera and an electronic device, which can solve the above-mentioned problems.
  • the present application provides a light emitting module, including a laser and a light homogenizing plate, the laser is used to emit a first light to the light homogenizing plate, and the light homogenizing plate is used to The light diffuses and uniformly emits the second light to the target object.
  • the laser includes a plurality of light-emitting units, the light homogenizing sheet is provided with a plurality of microlenses, and the plurality of light-emitting units and/or the rows of the plurality of microlenses
  • the arrangement method is random arrangement.
  • the light emitting module can emit the second light that can collect the target object information.
  • the random arrangement of multiple light emitting units and/or multiple microlenses is adopted to avoid resonance .
  • the accuracy of the depth information obtained and the uniformity of the overall image are improved, and it can be applied to high-precision TOF application scenarios.
  • the random arrangement method includes random distribution of the first pitch of two adjacent light-emitting units among the plurality of light-emitting units.
  • the plurality of microlenses are provided on a first surface of the homogenizing plate facing the laser or a second surface opposite to the first surface.
  • the homogenizing plate can better process the first light emitted by the laser, so that the first light can be uniformly diffused and the angle of emission is more random, reducing or Avoid resonance.
  • the number of the homogenizing sheets is multiple, the plurality of the homogenizing sheets are stacked in the same direction, and the plurality of microlenses are located between the plurality of the homogenizing sheets.
  • the number of uniformity of the first light is increased, and the second light is more uniform.
  • a plurality of microlenses are located between the plurality of homogenizing plates, and the first light passes through the While diffusing and uniform, it can be focused and shaped through microlenses.
  • the random arrangement method includes a random distribution of the geometric dimensions of the plurality of microlenses; the geometric dimensions are the focal length of the microlens, the diameter of the microlens, and the diameter of the microlens At least one of the thicknesses.
  • the optical properties of the microlenses are different through the use of multiple microlenses with random geometric sizes.
  • the random arrangement method includes random distribution of the second pitch of two adjacent microlenses among the plurality of microlenses.
  • the micro lens protrudes from the surface of the homogenizing sheet to form a convex lens, or the micro lens is recessed from the surface of the homogenizing sheet to form a concave lens.
  • the light emitting module further includes a substrate and a support, the laser is provided on the substrate, the support is provided on the substrate, the support is used to support the light homogenizing sheet, the A bracket surrounds the substrate, and the bracket is provided with a through hole so that the light homogenizing plate is opposite to the laser.
  • the present application also provides a depth camera, including a light receiving module and the light emitting module as described in the first aspect, the light receiving module is used to collect a third light, the third light The second light emitted by the light emitting module is the light reflected back after reaching the target object.
  • the depth camera can avoid fringes caused by resonance, improve the accuracy of the depth information obtained and the overall uniformity of the image, and can be applied to high-precision TOF application scenarios .
  • the present application also provides an electronic device, including a housing and the depth camera as described in the second aspect, the depth camera being arranged in the housing.
  • Fig. 1 is a working schematic diagram of the depth camera provided by this application.
  • FIG. 2 is a schematic diagram of the structure of the light emitting module provided by the present application.
  • Fig. 3 is a working schematic diagram of the light emitting module provided by the present application.
  • Fig. 4a is a top view of the laser provided by the present application.
  • Fig. 4b is a top view of a conventional laser.
  • Fig. 5a is a schematic diagram of the structure of a light homogenizing sheet in an embodiment.
  • Fig. 5b is a schematic diagram of the structure of a light homogenizing sheet in another embodiment.
  • Fig. 6a is a front view of a plurality of light homogenizing plates in the first embodiment.
  • Fig. 6b is a front view of a plurality of light homogenizing sheets in the second embodiment.
  • Fig. 6c is a front view of a plurality of light homogenizing sheets in the third embodiment.
  • Fig. 7 is a schematic diagram of the geometric structure of a light homogenizing plate in an embodiment.
  • Fig. 8a is a top view of the homogenizing sheet provided by the present application.
  • Fig. 8b is a top view of a conventional light homogenizing sheet.
  • Fig. 9a is a front view of a homogenizing sheet in the form of a convex lens in an embodiment.
  • Fig. 9b is a front view of a homogenizing sheet formed in the form of a concave lens in an embodiment.
  • an embodiment of the present application provides a depth camera 1000.
  • the depth camera 1000 can be a video camera, a projector, a camera, a surveillance camera, etc., and can also be applied to an electronic device as a component of an electronic device, such as a mobile phone.
  • the depth camera 1000 includes a light receiving module 300 and the light emitting module 100 provided in the embodiment of the application.
  • the light receiving module 300 is used to collect a third light 93, which is the second light emitted by the light emitting module 100. The light reflected by the light 92 after reaching the target object 200.
  • the light receiving module 300 may be arranged on one side of the light emitting module 100 to facilitate receiving the third light 93.
  • the light receiving module 300 can obtain a 3D image of the target object 200 by analyzing the collected third light 93.
  • the depth camera 1000 can avoid fringes generated by resonance, which improves the accuracy of the obtained depth information and the overall uniformity of the image, so that the present application provides The depth camera 1000 can be applied to high-precision TOF application scenarios.
  • the embodiments of the present application also provide an electronic device.
  • the electronic device may be a projector, a depth camera, a motion sensing game machine, a mobile phone, and the like.
  • the electronic device includes a housing and the depth camera 1000 provided in the embodiment of the present application, and the depth camera 1000 is arranged in the housing.
  • the reason for resonance is: the regular light emitted by the vertical cavity surface emitting laser is directed to multiple microlenses at a specific angle, and multiple identical microlenses are arranged regularly to distribute the light so that the light is projected The surface is distributed regularly, so resonance occurs and fringes are generated.
  • the idea of solving the resonance problem in this application is to set a vertical cavity surface emitting laser to emit irregular light and/or multiple irregular microlenses to avoid resonance and eliminate fringes.
  • the specific structure of the light emitting module will be described in detail below.
  • an embodiment of the present application also provides a light emitting module 100, which includes a laser 10 and a light homogenizing sheet 20.
  • the laser 10 is specifically a vertical cavity surface emitting laser 10. In theory, other types of lasers can also achieve the purpose of the present application.
  • the vertical cavity surface emitting laser 10 will be described below.
  • the vertical cavity surface emitting laser 10 includes a plurality of light-emitting units 11, and the multiple light-emitting units 11 can simultaneously emit the first light 91 to the light homogenizing sheet 20, or only part of the light-emitting units 11 can work to emit the first light 91.
  • the homogenizing sheet 20 is provided with a plurality of microlenses 21.
  • the plurality of microlenses 21 cooperate with the homogenizing sheet 20 to diffuse the first light 91 and uniformly emit the second light 92 to the target object 200.
  • the number of the microlenses 21 is not limited , The first light 91 can be diffused smoothly and uniformly. Generally speaking, the more light-emitting units 11 of the vertical cavity surface emitting laser 10, the more the number of microlenses 21, so as to ensure that the first light 91 can be diffused and the second light 92 can be uniformly emitted to the target object 200.
  • the arrangement of the multiple light-emitting units 11 and/or the multiple microlenses 21 is random arrangement, and the random arrangement includes three ways: the first is that the multiple light-emitting units 11 are arranged irregularly, and the multiple microlenses 21 are regular Arrangement; the second is that the multiple light-emitting units 11 are arranged regularly, and the multiple microlenses 21 are irregularly arranged; the third is that the multiple light-emitting units 11 and the multiple microlenses 21 are all irregularly arranged.
  • the light emitting module 100 emits the second light 92 capable of collecting information of the target object 200, and at the same time, multiple light emitting units 11 and/or multiple light emitting units 11 and/or multiple light emitting units 11 are used.
  • the random arrangement of the microlenses 21 avoids resonance, improves or eliminates the fringes of the projected spot, improves the accuracy of the depth information obtained and the overall uniformity of the image, so that the light emitting module 100 provided in this application can be applied to TOF High-precision application scenarios.
  • the light emitting module 100 further includes a substrate 30 and a bracket 40.
  • the vertical cavity surface emitting laser 10 is disposed on the substrate 30.
  • the substrate 30 is a printed circuit board (PCB), and the vertical cavity surface emitting laser 10 can be fixed on the substrate 30 by means of glue, welding or screw connection. It is electrically connected to the substrate 30.
  • a drive circuit can be provided on the substrate 30 to control the working parameters of the vertical cavity surface emitting laser 10 (laser wavelength, etc.). The application does not limit the fixing of the vertical cavity surface emitting laser 10 to the substrate. Method and specific type of drive circuit.
  • the bracket 40 is disposed on the substrate 30. The bracket 40 is used to support the homogenizing sheet 20.
  • the homogenizing sheet 20 can be fixed on the bracket 40 by interference embedding or using glue.
  • the application does not limit the homogenizing sheet 20 and the bracket 40. a fixed way.
  • the bracket 40 surrounds the substrate 30, so that the energy of the first light 91 emitted by the vertical cavity surface emitting laser 10 is not easily leaked, so as to avoid environmental pollution.
  • the surface of the bracket 40 and the substrate 30 can be coated with black silicon nitride material to Enhance light absorption effect.
  • the bracket 40 is provided with a through hole 41 so that the homogenizing plate 20 is opposed to the vertical cavity surface emitting laser 10, and the vertical cavity surface emitting laser 10 and the homogenizing plate 20 are respectively arranged on both sides of the through hole 41, so that the vertical cavity surface emitting laser 10
  • the emitted first light 91 can reach the homogenizing sheet 20 through the through hole 41.
  • the vertical cavity surface emitting laser 10 and the homogenizing plate 20 are fixed, so that the first light 91 emitted by the vertical cavity surface emitting laser 10 is stable, and the second light 92 emitted by the homogenizing plate 20 is stable.
  • the bracket 40 surrounds the substrate 30, so that the first light 91 does not easily leak, and avoids environmental pollution caused by laser leakage.
  • the random arrangement includes that the first distance d1 of two adjacent light-emitting units 11 among the plurality of light-emitting units 11 is randomly distributed. Specifically, the centers of any two adjacent light emitting units 11 projected on the base surface of the vertical cavity surface emitting laser 10 are respectively q1 and q2, and the first distance d1 is the linear distance from the center q1 to the center q2, so any two Adjacent light-emitting units 11 all have a first pitch d1.
  • the first distance d1 of two adjacent light-emitting units 11 among the plurality of light-emitting units 11 is randomly distributed. Specifically, the centers of any two adjacent light emitting units 11 projected on the base surface of the vertical cavity surface emitting laser 10 are respectively q1 and q2, and the first distance d1 is the linear distance from the center q1 to the center q2, so any two Adjacent light-emitting units 11 all have a first pitch d1.
  • FIG. 4a the random arrangement includes that the first distance d1 of two
  • the homogenizing sheet 20 is beneficial to reduce or even avoid the occurrence of resonance.
  • a plurality of microlenses 21 are provided on the first surface 81 or the second surface 82 of the homogenizing sheet 20, and the first surface 81 is facing upwards of the homogenizing sheet 20
  • the second surface 82 is the surface of the homogenizing plate 20 opposite to the first surface 81.
  • a plurality of microlenses 21 are arranged on the first surface 81 of the homogenizing plate 20, so that the first light 91 emitted by the vertical cavity surface emitting laser 10 first enters the microlens 21 and then enters the homogenizing plate 20, and the first light 91 is first focused and shaped After uniform diffusion is performed, and focusing and shaping are performed first, the emission angle of the first light 91 can be better changed, so that the angle of the first light 91 is more random, and resonance is less likely to occur.
  • a plurality of microlenses 21 are arranged on the second surface 82 of the light homogenizing plate 20, so that the first light 91 emitted by the vertical cavity surface emitting laser 10 first passes through the light homogenizing plate 20 and then enters the microlens 21. The first light 91 is uniformed first. Focusing and shaping are performed after diffusion, and uniform diffusion is performed first to ensure the uniformity of the image as a whole.
  • the homogenizing plate 20 can better process the first light 91 emitted by the vertical cavity surface emitting laser 10, so that the second light 92 can be uniformly diffused. At the same time, the exit angle is more random, reducing or avoiding resonance.
  • the number of the homogenizing sheets 20 is multiple, the plurality of homogenizing sheets are stacked in the same direction, and the plurality of microlenses 21 are located between the plurality of homogenizing sheets 20.
  • the homogenizing sheet 20 may be 2, 3, 4, 5, or more, and multiple homogenizing sheets 20 are stacked so that the first light 91 can be evened by the homogenizing sheet 20 multiple times. The greater the number of homogenizing sheets 20, the higher the uniformity of the overall image and the higher the accuracy.
  • the thickness and optical performance of each of the light homogenizing sheets 20 may be the same or different.
  • the number of light homogenizing sheets 20 is two, and the microlenses 21 are all on the first surface 81 of the first light homogenizing sheet 201.
  • the number of the light homogenizing sheet 20 is two, and the microlenses 21 are all on the second surface 82 of the second light homogenizing sheet 202.
  • the number of homogenizing plates 20 is two
  • the microlens 21 includes a first microlens group 211 and a second microlens group 212
  • the first microlens group 211 is in the first homogenizing lens group.
  • the first surface 81 of the light sheet 201 and the second microlens group 212 are on the second surface 82 of the second homogenizing sheet 202.
  • the number of uniform diffusion of the first light 91 is increased, so that the second light 92 is more uniform.
  • the plurality of microlenses 21 are located between the plurality of homogenizing sheets 20, and the first light 91 is diffused and uniform by the homogenizing sheet 20, and can be focused and shaped by the microlens 21 at the same time.
  • the random arrangement method includes a random distribution of the geometric dimensions of a plurality of microlenses 21, the geometric dimensions being the focal length k of the microlens 21, the diameter of the microlens 21, and the microlens 21. At least one of the thickness h of the lens 21.
  • Point O is the optical center of the microlens
  • point F is the focal point of the microlens
  • the focal length k of the microlens 21 is the distance from the optical center O to the focal point F
  • the diameter d of the microlens 21 is the microlens.
  • the diameter d of the projection of 21 on the homogenizing sheet 20 and the thickness h are the height of the microlens 21 protruding from the homogenizing sheet 20 or the depth of recessing in the homogenizing sheet 20.
  • the optical properties of the microlenses 21 are different through the use of a plurality of microlenses 21 with randomly distributed geometric sizes.
  • the first light 91 passes through the light distribution of the light homogenizing plate 20 provided with the microlenses 21, and then emits the first light to the target object 200.
  • the two rays 92 are irregularly distributed on the projection surface to avoid resonance, so as to further improve and eliminate fringes.
  • the random arrangement method includes a random distribution of the second distance d2 of two adjacent microlenses 21 among the plurality of microlenses 21.
  • the centers of circles projected by any two adjacent microlenses 21 on the base surface of the vertical cavity surface emitting laser 10 are respectively p1 and p2, and the second distance d2 is a linear distance from q1 to q2, so any two adjacent Each of the microlenses 21 has a second pitch d2.
  • the second distance d2 is a linear distance from q1 to q2
  • the multiple microlenses 21 are arranged in an irregular manner, so that the second light rays 92 are irregularly arranged at an indefinite angle. Illuminate the target object 200 to avoid resonance to improve and eliminate fringes.
  • the microlens 21 protrudes from the surface of the homogenizing sheet 20 to form a convex lens, so that the microlens 21 can aggregate the first light 91 that is too dispersed, which is beneficial to improve the second light.
  • the microlens 21 is formed by recessing the surface of the homogenizing sheet 20 inward to form a concave lens, so that the microlens 21 can disperse the overly concentrated first light 91, which is beneficial to improve the uniformity of the second light 92.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种光发射模组(100)、深度相机(1000)和电子设备。光发射模组(100)包括垂直腔面发射激光器(10)和均光片(20)。垂直腔面发射激光器(10)用于向均光片(20)发射第一光线(91)。均光片(20)用于将第一光线(91)扩散并均匀向目标物体(200)发射第二光线(92)。垂直腔面发射激光器(10)包括多个发光单元(11),均光片(20)设有多个微透镜(21),多个发光单元(11)和/或多个微透镜(21)的排布方式为随机排布。通过合理设置垂直腔面发射激光器(10)和均光片(20)的结构,使得光发射模组(100)发射出能够收集目标物体(200)信息的第二光线(92),同时,采用多个发光单元(11)和/或多个微透镜(21)的随机排布方式,避免共振,以改善、消除投射光斑的条纹,提高了所获得的深度信息的精度和图像整体的均匀性,能够应用于TOF高精度的应用场景。

Description

光发射模组、深度相机和电子设备 技术领域
本申请属于光学领域,尤其涉及一种光发射模组、具有该光发射模组的深度相机和具有该深度相机的电子设备。
背景技术
随着科技发展,深度信息采集技术不断革新,深度信息采集主要有飞行时间(Time of flight,TOF)方案、结构光方案和双目立体视觉方案。飞行时间方案相对于结构光方案和双目立体视觉方案具有的优势是多角度识别精度更高,识别速度更快以及识别区域更广。
现今,TOF方案应用于终端前置的场景越来越多,TOF方案属于双向测距技术,它主要利用信号在两个异步收发机之间往返的飞行时间来测量节点间的距离。
TOF方案在应用于终端前置时,尤其是人脸识别,需要达到近场高精度。而现有的TOF方案的光源和均光片的排布方式具有缺陷,使得投射光斑存在条纹,严重影响所获取的深度信息的精度,降低图像整体均匀性,无法达到近场高精度。
发明内容
本申请的目的是提供一种光发射模组、深度相机和电子设备,能解决上述问题。
为实现本申请的目的,本申请提供了如下的技术方案:
第一方面,本申请提供了一种光发射模组,包括激光器和均光片,所述激光器用于向所述均光片发射第一光线,所述均光片用于将所述第一光线扩散并均匀向目标物体发射第二光线,所述激光器包括多个发光单元,所述均光片设有多个微透镜,所述多个发光单元和/或所述多个微透镜的排布方式为随机排布。
通过合理设置激光器和均光片的结构,使得光发射模组发射出能够收集目标物体信息的第二光线,同时,采用多个发光单元和/或多个微透镜的随机排布方式,避免共振,以改善、消除投射光斑的条纹,提高了所获得的深度信息的精度和图像整体的均匀性,能够应用于TOF高精度的应用场景。
一种实施方式中,所述随机排布的方式包括所述多个发光单元中相邻的两个所述发光单元的第一间距随机分布。通过采用上述相邻的两个所述发光单元的第一间距随机分布的发光单元阵列,使得多个发光单元具有不规则的排布方式,进而使得第一光线不规律地以不定角度照射均光片,有利于减少甚至避免共振发生。
一种实施方式中,所述多个微透镜设于所述均光片之朝向所述激光器的第一表面或与所述第一表面相背的第二表面。通过合理设置多个微透镜在均光片上的位置关系,使得均光片能够更好地处理激光器发出的第一光线,使得第一光线得以均匀扩散的同时出射的角度更具有随机性,减少或避免共振发生。
一种实施方式中,所述均光片的数量为多个,多个所述均光片在同一方向上层叠设置,所述多个微透镜位于多个所述均光片之间。通过增加均光片的数量,提升了第一光线的均匀次数,使得第二光线更为均匀,而且,多个微透镜位于多个所述均光片之间,第一光线经过均光片的扩散并均匀的同时,能够通过微透镜进行聚焦、整形。
一种实施方式中,所述随机排布的方式包括所述多个微透镜的几何尺寸随机分布;所述几何尺寸为所述微透镜的焦距、所述微透镜的直径和所述微透镜的厚度中的至少其中之一。通过采用几何尺寸随机分布的多个微透镜,使得微透镜的光学属性存在差异,第一光线经过开设有微透镜的均光片的配光后,向目标物体发出的第二光线在投射面上不规则性分布,避免共振,以进而改善、消除条纹。
一种实施方式中,所述随机排布的方式包括所述多个微透镜中相邻的两个所述微透镜的第二间距随机分布。通过采用上述相邻的两个所述微透镜的第二间距随机分布的微透镜阵列,使得多个微透镜具有不规则的排布方式,进而使得第二光线不规律地以不定角度照射目标物体,避免共振,以改善、消除条纹。
一种实施方式中,所述微透镜突出于所述均光片的表面而形成凸透镜,或,所述微透镜由所述均光片的表面向内凹入而形成凹透镜。通过设置上述的微透镜的结构,使得均光片能实现聚光或散光功能。
一种实施方式中,所述光发射模组还包括基板和支架,所述激光器设置于所述基板,所述支架设置于所述基板,所述支架用于支承所述均光片,所述支架包围所述基板,所述支架设有通孔以使所述均光片与所述激光器相对。通过 设置基板与支架,固定激光器与均光片,使得激光器发出的第一光线稳定,均光片发出的第二光线稳定,同时,支架包围基板,使得第一光线不容易泄露,避免激光泄露造成环境污染。
第二方面,本申请还提供了一种深度相机,包括光接收模组和如第一方面所述的光发射模组,所述光接收模组用于采集第三光线,所述第三光线为所述光发射模组发出的第二光线到达目标物体反射回来的光线。通过在深度相机中加入第一方面中的光发射模组,使得深度相机能够避免共振产生条纹,提高了所获得的深度信息的精度和图像整体的均匀性,能够应用于TOF高精度的应用场景。
第三方面,本申请还提供了一种电子设备,包括壳体和如第二方面所述的深度相机,所述深度相机设置在所述壳体内。通过在电子设备中加入第二方面的深度相机,消除条纹,提高了所获得的深度信息的精度和图像整体的均匀性,能够应用于TOF高精度的应用场景。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的深度相机的工作示意图。
图2是本申请提供的光发射模组的结构示意图。
图3是本申请提供的光发射模组的工作示意图。
图4a是本申请提供的激光器的俯视图。
图4b是现有的激光器的俯视图。
图5a是一种实施例中均光片的结构示意图。
图5b是另一种实施例中均光片的结构示意图。
图6a是第一种实施例中多片均光片的正视图。
图6b是第二种实施例中多片均光片的正视图。
图6c是第三种实施例中多片均光片的正视图。
图7是一种实施例中均光片的几何结构示意图。
图8a是本申请提供的均光片的俯视图。
图8b是现有均光片的俯视图。
图9a是一种实施例中形成凸透镜形态的均光片的正视图。
图9b是一种实施例中形成凹透镜形态的均光片的正视图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
请参阅图1,本申请实施例提供了一种深度相机1000,深度相机1000可以为摄像机、投影仪、照相机和监控摄像头等,也可以应用在电子设备上,作为电子设备的一个部件,如手机上的摄像头、打卡记录仪的摄像头和体感游戏机的感应器等。该深度相机1000包括光接收模组300和本申请实施例提供的光发射模组100,光接收模组300用于采集第三光线93,第三光线93为光发射模组100发出的第二光线92到达目标物体200后反射回来的光线。光接收模组300可以设置在光发射模组100的一侧,以便于接收第三光线93。光接收模组300通过分析采集得到的第三光线93,可以得到目标物体200的3D图像。
通过在深度相机1000中加入本申请实施例提供的光发射模组100,使得深度相机1000能够避免共振产生条纹,提高了所获得的深度信息的精度和图像整体的均匀性,使得本申请提供的深度相机1000能够应用于TOF高精度的应用场景。
本申请实施例还提供了一种电子设备,该电子设备可以是投影仪、深度摄像机、体感游戏机和手机等。该电子设备包括壳体和本申请实施例提供的深度相机1000,深度相机1000设置在壳体内。通过在电子设备中设置深度相机1000,提高了所获得的深度信息的精度和图像整体的均匀性,使得本申请提供的电子设备能够应用于TOF高精度的应用场景。
基于共振产生的原因为:垂直腔面发射激光器发出的、规律性的光线以特 定的角度射向多个微透镜,多个规则排布的相同微透镜对此光线进行配光,使得光线在投射面规则性分布,从而发生共振,产生条纹。本申请解决共振问题的思路是通过设置垂直腔面发射激光器出射不规律的光线和/或不规则的多个微透镜,以避免共振,消除条纹,下面具体介绍光发射模组的具体结构。
请参阅图3,本申请实施例还提供了一种光发射模组100,该光发射模组100包括激光器10和均光片20。激光器10具体为垂直腔面发射激光器10,理论上,其他种类激光器也可实现本申请的目的,以下均以垂直腔面发射激光器10进行描述。垂直腔面发射激光器10包括多个发光单元11,多个发光单元11可同时向均光片20发射第一光线91,也可以仅部分发光单元11工作,发射第一光线91。均光片20设有多个微透镜21,多个微透镜21与均光片20协作,将第一光线91扩散并均匀向目标物体200发射第二光线92,微透镜21的数量不做限定,能够顺利将第一光线91扩散并均匀即可。一般而言,垂直腔面发射激光器10的发光单元11越多,微透镜21的数目也越多,以保证能将第一光线91扩散并均匀向目标物体200发射第二光线92。多个发光单元11和/或多个微透镜21的排布方式为随机排布,该随机排布的方式包括3种:第一是多个发光单元11不规则排列,多个微透镜21规则排列;第二是多个发光单元11规则排列,多个微透镜21不规则排列;第三是多个发光单元11和多个微透镜21均为不规则排列。
通过合理设置垂直腔面发射激光器10和均光片20的结构,使得光发射模组100发射出能够收集目标物体200信息的第二光线92,同时,采用多个发光单元11和/或多个微透镜21的随机排布方式,避免共振,改善或消除投射光斑的条纹,提高了所获得的深度信息的精度和图像整体的均匀性,使得本申请提供的光发射模组100能够应用于TOF高精度的应用场景。
一种实施方式中,请参阅图2,光发射模组100还包括基板30和支架40。垂直腔面发射激光器10设置于基板30,具体的,基板30为印制电路板(Printed Circuit Board,PCB),垂直腔面发射激光器10可通过黏胶、焊接或者螺纹连接等方式固定在基板30上,并与基板30电性连接,基板30上可以设置驱动电路,以控制垂直腔面发射激光器10的工作参数(激光的波长等),本申请不限定垂直腔面发射激光器10与基板的固定方式以及驱动电路的具体型式。支架40设置于基板30,支架40用于支承均光片20,均光片20可以通过过盈嵌入或者使 用黏胶的方式固定在支架40上,本申请不限定均光片20与支架40的固定方式。支架40包围基板30,使得垂直腔面发射激光器10发出的第一光线91的能量不易泄露,避免造成环境污染,另外,支架40和基板30的表面上可以涂有黑色的氮化硅材料,以增强吸光效果。支架40设有通孔41以使均光片20与垂直腔面发射激光器10相对,垂直腔面发射激光器10和均光片20分别设置在通孔41的两侧,使得垂直腔面发射激光器10发出的第一光线91能通过通孔41到达均光片20。通过设置基板30与支架40,固定垂直腔面发射激光器10与均光片20,使得垂直腔面发射激光器10发出的第一光线91稳定,均光片20发出的第二光线92稳定,同时,支架40包围基板30,使得第一光线91不容易泄露,避免激光泄露造成环境污染。
一种实施方式中,请参阅图4a,随机排布的方式包括多个发光单元11中相邻的两个发光单元11的第一间距d1随机分布。具体的,任意两个相邻的发光单元11在垂直腔面发射激光器10的基面上投影的中心分别为q1和q2,第一间距d1为中心q1至中心q2的直线距离,因此任意两个相邻的发光单元11均具有第一间距d1。一般而言,请参阅图4b,相邻的、间距相同的发光单元11的数目占比重越大,发光单元11阵列的规则程度越高,第一光线91的角度相差较小,容易发生共振从而产生条纹;反之,相邻的、间距相同的发光单元11的数目占比重越小,发光单元11阵列的熵值(混乱程度)越高,因此发射出的第一光线91的方向越为随机。通过采用相邻的两个发光单元11的第一间距d1随机分布的发光单元11阵列,使得多个发光单元11具有不规则的排布方式,进而使得第一光线91不规律地以不定角度照射均光片20,有利于减少甚至避免共振发生。
一种实施方式中,请参阅图3、图5a和图5b,多个微透镜21设于均光片20的第一表面81或第二表面82,第一表面81为均光片20上朝向垂直腔面发射激光器10的表面,第二表面82为均光片20相背于第一表面81的表面。将多个微透镜21设置在均光片20的第一表面81,使得垂直腔面发射激光器10发出的第一光线91先进入微透镜21再进入均光片20,第一光线91先进行聚焦整形后再进行均匀扩散,先进行聚焦整形可以更好的改变第一光线91的发射角度,使得第一光线91的角度更为随机,共振不易发生。将多个微透镜21设置在均光片20的第二表面82,使得垂直腔面发射激光器10发出的第一光线91先经过 均光片20再进入微透镜21,第一光线91先进行均匀扩散后再进行聚焦整形,先进行均匀扩散有利于保证图像整体的均匀性。
通过合理设置多个微透镜21在均光片20上的位置关系,使得均光片20能够更好地处理垂直腔面发射激光器10发出的第一光线91,使得第二光线92得以均匀扩散的同时出射的角度更具有随机性,减少或避免共振发生。
一种实施方式中,均光片20的数量为多个,多个均光片在同一方向上层叠设置,多个微透镜21位于多个均光片20之间。具体的,均光片20可以为2片、3片、4片和5片等更多,多个均光片20层叠设置,使得第一光线91可被均光片20多次均匀。均光片20的数目越多,图像整体的均匀性越高,精度越高。多个均光片20中,每个均光片20的厚度以及光学性能可以相同也可以不相同。
一种实施例中,请参阅图6a,均光片20的数量为2个,微透镜21均在第一均光片201的第一表面81。
另一种实施例中,请参阅图6b,均光片20的数量为2个,微透镜21均在第二均光片202的第二表面82。
另一种实施例中,请参阅图6c,均光片20的数量为2个,微透镜21包括第一微透镜组211和第二微透镜组212,第一微透镜组211在第一均光片201的第一表面81,第二微透镜组212在第二均光片202的第二表面82。
通过增加均光片20的数量,提升了第一光线91的均匀扩散的次数,使得第二光线92更为均匀,而且,多个微透镜21位于多个均光片20之间,第一光线91经过均光片20的扩散并均匀的同时,能够通过微透镜21进行聚焦、整形。
一种实施方式中,请参阅图3和图8a,所述随机排布的方式包括多个微透镜21的几何尺寸随机分布,几何尺寸为微透镜21的焦距k、微透镜21的直径和微透镜21的厚度h中的至少其中之一。具体请参阅图7,点O为微透镜21的光心,点F为微透镜21的焦点,微透镜21的焦距k为光心O到焦点F的距离,微透镜21的直径d为微透镜21在均光片20的投影的直径d,厚度h为微透镜21突出于均光片20的高度或凹陷于均光片20的深度。通过采用几何尺寸随机分布的多个微透镜21,使得微透镜21的光学属性存在差异,第一光线91经过开设有微透镜21的均光片20的配光后,向目标物体200发出的第二光线92在投射面上不规则性分布,避免共振,以进而改善、消除条纹。
一种实施方式中,请参阅图3和图8a,随机排布的方式包括多个微透镜21 中相邻的两个微透镜21的第二间距d2随机分布。具体的,任意两个相邻的微透镜21在垂直腔面发射激光器10的基面上投影的圆心分别为p1和p2,第二间距d2为q1至q2的直线距离,因此任意两个相邻的微透镜21均具有第二间距d2。一般而言,请参阅图8b,相邻的、间距相同的微透镜21的数目占比重越大,微透镜21阵列的规则程度越高,第二光线92在目标物体200上分布越规律,进而发生共振,产生条纹;反之,请参阅图3和图8a,相邻的、间距相同的发光单元11的数目占比重越小,微透镜21阵列的熵值(混乱程度)越高,因此发射出的第二光线92的方向越为随机。通过采用上述相邻的两个微透镜21的第二间距d2随机分布的微透镜21阵列,使得多个微透镜21具有不规则的排布方式,进而使得第二光线92不规律地以不定角度照射目标物体200,避免共振,以改善、消除条纹。
一种实施方式中,请参阅图3和图9a,微透镜21突出于均光片20的表面而形成凸透镜,使得微透镜21能够将过于分散的第一光线91聚合,有利于提高第二光线92的强度。请参阅图9b,微透镜21由均光片20的表面向内凹入而形成凹透镜,使得微透镜21能够将过于集中的第一光线91分散,有利于提高第二光线92的均匀度。通过设置上述的微透镜21的结构,使得均光片20能实现聚光或散光功能。
以上所揭露的仅为本申请一种较佳实施方式而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施方式的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (10)

  1. 一种光发射模组,其特征在于,包括激光器和均光片,所述激光器用于向所述均光片发射第一光线,所述均光片用于将所述第一光线扩散并均匀向目标物体发射第二光线,所述激光器包括多个发光单元,所述均光片设有多个微透镜,所述多个发光单元和/或所述多个微透镜的排布方式为随机排布。
  2. 如权利要求1所述的光发射模组,其特征在于,所述随机排布的方式包括所述多个发光单元中相邻的两个所述发光单元的第一间距随机分布。
  3. 如权利要求1所述的光发射模组,其特征在于,所述多个微透镜设于所述均光片之朝向所述激光器的第一表面或与所述第一表面相背的第二表面。
  4. 如权利要求3所述的光发射模组,其特征在于,所述均光片的数量为多个,多个所述均光片在同一方向上层叠设置,所述多个微透镜位于多个所述均光片之间。
  5. 如权利要求1所述的光发射模组,其特征在于,所述随机排布的方式包括所述多个微透镜的几何尺寸随机分布;
    所述几何尺寸为所述微透镜的焦距、所述微透镜的直径和所述微透镜的厚度中的至少其中之一。
  6. 如权利要求1或5所述的光发射模组,其特征在于,所述随机排布的方式包括所述多个微透镜中相邻的两个所述微透镜的第二间距随机分布。
  7. 如权利要求3所述的光发射模组,其特征在于,所述微透镜突出于所述均光片的表面而形成凸透镜,或,所述微透镜由所述均光片的表面向内凹入而形成凹透镜。
  8. 如权利要求1所述的光发射模组,其特征在于,所述光发射模组还包括基板和支架,所述激光器设置于所述基板,所述支架设置于所述基板,所述支架用于支承所述均光片,所述支架包围所述基板,所述支架设有通孔以使所述均光片与所述激光器相对。
  9. 一种深度相机,其特征在于,包括光接收模组和如权利要求1至8任一项所述的光发射模组,所述光接收模组用于采集第三光线,所述第三光线为所述光发射模组发出的第二光线到达目标物体反射回来的光线。
  10. 一种电子设备,其特征在于,包括壳体和如权利要求9所述的深度相机,所述深度相机设置在所述壳体内。
PCT/CN2019/116769 2019-11-08 2019-11-08 光发射模组、深度相机和电子设备 WO2021087998A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116769 WO2021087998A1 (zh) 2019-11-08 2019-11-08 光发射模组、深度相机和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116769 WO2021087998A1 (zh) 2019-11-08 2019-11-08 光发射模组、深度相机和电子设备

Publications (1)

Publication Number Publication Date
WO2021087998A1 true WO2021087998A1 (zh) 2021-05-14

Family

ID=75849123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116769 WO2021087998A1 (zh) 2019-11-08 2019-11-08 光发射模组、深度相机和电子设备

Country Status (1)

Country Link
WO (1) WO2021087998A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201596A1 (zh) * 2022-04-20 2023-10-26 华为技术有限公司 一种探测装置及终端设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583804A (zh) * 2012-08-14 2015-04-29 微软公司 深度相机的照明光投射
CN104603676A (zh) * 2012-08-14 2015-05-06 微软公司 深度相机的照明光整形
CN106990659A (zh) * 2017-05-09 2017-07-28 深圳奥比中光科技有限公司 激光投影装置
CN106990548A (zh) * 2017-05-09 2017-07-28 深圳奥比中光科技有限公司 阵列激光投影装置及深度相机
WO2018147963A1 (en) * 2017-02-08 2018-08-16 Princeton Optronics, Inc. Vcsel illuminator package including an optical structure integrated in the encapsulant
CN109477911A (zh) * 2016-05-25 2019-03-15 赫普塔冈微光有限公司 微透镜阵列漫射器
CN109613792A (zh) * 2018-11-24 2019-04-12 深圳阜时科技有限公司 投影装置及其光源和设备
CN109613791A (zh) * 2018-11-24 2019-04-12 深圳阜时科技有限公司 投影装置及其光源和设备
CN209167533U (zh) * 2018-11-16 2019-07-26 南昌欧菲生物识别技术有限公司 激光发射器、投影模组、深度相机和电子设备
CN110445012A (zh) * 2019-08-01 2019-11-12 浙江舜宇光学有限公司 发光模块、其制备方法以及具有其的深度探测装置
CN110850599A (zh) * 2019-08-19 2020-02-28 上海鲲游光电科技有限公司 红外泛光照明组件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583804A (zh) * 2012-08-14 2015-04-29 微软公司 深度相机的照明光投射
CN104603676A (zh) * 2012-08-14 2015-05-06 微软公司 深度相机的照明光整形
CN109477911A (zh) * 2016-05-25 2019-03-15 赫普塔冈微光有限公司 微透镜阵列漫射器
WO2018147963A1 (en) * 2017-02-08 2018-08-16 Princeton Optronics, Inc. Vcsel illuminator package including an optical structure integrated in the encapsulant
CN106990659A (zh) * 2017-05-09 2017-07-28 深圳奥比中光科技有限公司 激光投影装置
CN106990548A (zh) * 2017-05-09 2017-07-28 深圳奥比中光科技有限公司 阵列激光投影装置及深度相机
CN209167533U (zh) * 2018-11-16 2019-07-26 南昌欧菲生物识别技术有限公司 激光发射器、投影模组、深度相机和电子设备
CN109613792A (zh) * 2018-11-24 2019-04-12 深圳阜时科技有限公司 投影装置及其光源和设备
CN109613791A (zh) * 2018-11-24 2019-04-12 深圳阜时科技有限公司 投影装置及其光源和设备
CN110445012A (zh) * 2019-08-01 2019-11-12 浙江舜宇光学有限公司 发光模块、其制备方法以及具有其的深度探测装置
CN110850599A (zh) * 2019-08-19 2020-02-28 上海鲲游光电科技有限公司 红外泛光照明组件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201596A1 (zh) * 2022-04-20 2023-10-26 华为技术有限公司 一种探测装置及终端设备

Similar Documents

Publication Publication Date Title
CN210629640U (zh) 光发射模组、深度相机和电子设备
US8908277B2 (en) Lens array projector
US20130284708A1 (en) Laser processing apparatus
KR20090047495A (ko) 백라이트 장치에 사용되는 마이크로렌즈 어레이 시트 및 마이크로렌즈 어레이 시트를 제조하기 위한 롤판
CN111198444A (zh) 增维摄像装置及其光发射组件和应用
WO2023035500A1 (zh) 一种光学扩散片及光发射模组
WO2021087998A1 (zh) 光发射模组、深度相机和电子设备
CN112866508A (zh) 光发射模组、深度相机和电子设备
TWI747289B (zh) 成像裝置及成像方法
WO2017002725A1 (ja) 発光装置、面光源装置および表示装置
KR102673806B1 (ko) 3차원 거리 측정 시스템에서의 사용을 위한 선 패턴 프로젝터
CN113950638A (zh) 基于vcsel的图案投影仪
JP2017016995A (ja) 発光装置、面光源装置および表示装置
US20090059584A1 (en) Illumination system
CN211236319U (zh) 微透镜阵列、光发射模组、深度相机和电子设备
TWI417586B (zh) 導光板及其製造方法,以及採用該導光板之背光模組
TWI444609B (zh) 面形掃描單元及具面形掃描單元的光學檢測裝置
CN217305653U (zh) 一字线型激光投射器、相机组件和电子装置
CN104102080A (zh) 光源模块及其所适用的投影装置
US11506757B2 (en) Projection optical system and radar device
US20230017619A1 (en) Structured-light projector, camera assembly, and electronic device
CN216351771U (zh) 一种直写式光刻机的光学系统
JP6097133B2 (ja) 光線指向制御部の光線特性測定装置および光線指向制御部の光線特性測定方法
CN221175213U (zh) 一种高均匀组合背光源
JP2024065760A (ja) ライン光照射装置及び検査システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951347

Country of ref document: EP

Kind code of ref document: A1