WO2023035500A1 - 一种光学扩散片及光发射模组 - Google Patents

一种光学扩散片及光发射模组 Download PDF

Info

Publication number
WO2023035500A1
WO2023035500A1 PCT/CN2021/142594 CN2021142594W WO2023035500A1 WO 2023035500 A1 WO2023035500 A1 WO 2023035500A1 CN 2021142594 W CN2021142594 W CN 2021142594W WO 2023035500 A1 WO2023035500 A1 WO 2023035500A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
diffusion sheet
optical diffusion
microlens
microlenses
Prior art date
Application number
PCT/CN2021/142594
Other languages
English (en)
French (fr)
Inventor
陶欢
伍未名
刘风雷
Original Assignee
浙江水晶光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江水晶光电科技股份有限公司 filed Critical 浙江水晶光电科技股份有限公司
Publication of WO2023035500A1 publication Critical patent/WO2023035500A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission

Definitions

  • the present application relates to the technical field of optical imaging, in particular, to an optical diffusion sheet and a light emission module.
  • 3D sensing technology is widely used in emerging fields such as face recognition, machine vision, and automatic driving. It usually refers to the use of light sources in the infrared band to emit light beams, which are diffused into light spots with specific divergence angles and shapes through beam shaping devices, and projected onto objects to generate reflections. The light and reflected light are collected by the receiving optical path to the imaging sensor, so as to obtain the spatial information of the object.
  • Common beam shaping devices are mainly diffractive optical elements (DOE) and microlens arrays.
  • DOE diffractive optical elements
  • microlens arrays Compared with diffractive optical elements, microlens arrays have the advantages of lower processing accuracy requirements and higher efficiency, and can be used as shaping devices in time-of-flight (TOF) solutions.
  • TOF time-of-flight
  • the diffused light spot is often center-symmetrical.
  • the outgoing light spot spreads to both sides with the incident light beam as the center, and the deflection of the diffused light spot cannot be realized. In view of this, this application is proposed.
  • the present application provides an optical diffusion sheet and a light emission module, which can diffuse the outgoing light relative to the incident light and also deflect it.
  • An optical diffusion sheet can include a base layer and a structural layer arranged on the base layer, the structural layer can include a microlens group, the microlens group can include a plurality of interconnected microlenses, and the plurality of microlenses can Modulate the deflection of the beam direction.
  • the light incident surface of the microlens may be a free-form surface
  • the light exit surface may be a plane
  • the projection of the center of the light incident surface on the light exit surface may deviate from the center of the light exit surface
  • the light-emitting surface may be polygonal, and the boundaries of the light-emitting surfaces of two adjacent microlenses may be connected to each other.
  • the microlens may be a convex lens or a concave lens.
  • the microlens group may include multiple microlenses, the eccentric directions of the microlenses in the same microlens group may be the same, and the eccentric directions of the microlenses in different microlens groups may be the same or different.
  • multiple microlens groups may be sequentially connected in a straight line.
  • microlens groups may be arranged in a matrix.
  • a light emitting module which may include a light source and any one of the above-mentioned optical diffusion sheets, and the optical diffusion sheet may be arranged in the light emitting direction of the light source.
  • the light source is a light emitting diode, a micron light emitting diode, laser light, or a vertical cavity surface emitting laser.
  • the light source or the optical diffusion sheet is stationary or moving.
  • the light source may include multiple light sources
  • the optical diffusion sheet may include multiple micro-lens groups
  • the multiple light sources may correspond to the multiple micro-lens groups one-to-one.
  • the relative positional relationship between the light source and the optical diffusion sheet may change along a straight line.
  • the optical diffusion sheet provided by the present application may include a base layer and a structural layer arranged on the base layer.
  • the structural layer may include a microlens group. deflection modulation.
  • the optical diffusion sheet can deflect the light beam irradiated on it, and under the irradiation of a vertically incident light beam, the optical diffusion sheet can make the divergent light exit obliquely, so as to realize a more flexible beam shaping effect.
  • the light emitting module provided in the present application may include a light source and any one of the above-mentioned optical diffusion sheets, and the optical diffusion sheet may be arranged in the light emitting direction of the light source.
  • the light emitting module can deflect the light beam emitted by the light source after passing through the optical diffusion sheet, so as to realize a more flexible beam shaping effect.
  • FIG. 1 is a schematic structural view of an optical diffusion sheet provided in an embodiment of the present application.
  • Fig. 2 is the simulation diagram of the light beam provided by the embodiment of the present application passing through a single microlens
  • FIG. 3 is a distribution diagram of the exit spot after the light beam passes through a single microlens provided by the embodiment of the present application;
  • FIG. 4 is a schematic structural view of the microlens in the optical diffusion sheet provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural view of the light-emitting surface of the microlens in the optical diffusion sheet provided by the embodiment of the present application;
  • FIG. 6 is one of the structural schematic diagrams of the structural layer in the optical diffusion sheet provided by the embodiment of the present application.
  • Fig. 7 is the second structural schematic diagram of the structural layer in the optical diffusion sheet provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a light emitting module provided in an embodiment of the present application.
  • FIG. 9 is a light field combination effect diagram of the light emission module provided by the embodiment of the present application.
  • Icons 10-optical diffuser; 11-base layer; 12-structural layer; 120-microlens group; 121-microlens; 1211-light incident surface; 1212-light exit surface; 1213-boundary; ; 30 - light source; 31 - incident light; 32 - outgoing light.
  • orientations or positional relationships indicated by the terms “center”, “vertical”, “horizontal”, “inner”, “outer” etc. are based on the orientations or positions shown in the drawings relationship, or the orientation or positional relationship that the product of the invention is usually placed in use, is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, or in a specific orientation construction and operation, therefore should not be construed as limiting the application.
  • the terms “first”, “second”, “third”, etc. are only used for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
  • horizontal does not imply that a component is absolutely level or overhanging, but may be slightly inclined.
  • horizontal only means that its direction is more horizontal than “vertical”, and it does not mean that the structure must be completely horizontal, but can be slightly inclined.
  • the terms “installation”, “installation”, “connection”, and “connection” should be understood in a broad sense, for example, it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • installation can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • the present embodiment provides an optical diffusion sheet 10, which includes a base layer 11 and a structural layer 12 disposed on the base layer 11, the structural layer 12 includes a microlens group 120, and the microlens group 120 includes a plurality of mutual The connected microlenses 121, a plurality of microlenses 121 can deflect and modulate the beam direction.
  • the optical diffusion sheet 10 includes a base layer 11 and a structural layer 12 , and the structural layer 12 is disposed on the base layer 11 .
  • the structural layer 12 includes a microlens group 120 , and the microlens group 120 further includes a plurality of microlenses 121 , and the plurality of microlenses 121 are connected to each other to make the structural layer 12 an integral structure including a plurality of microlenses 121 . Please refer to FIG. 2 and FIG.
  • the microlens 121 can deflect the light beam irradiated thereon, that is, under the irradiation of a beam of vertically incident light beam, the optical diffusion sheet 10 can make the divergent light emerge obliquely, for example Only irradiate the left front or right front area to achieve a more flexible beam shaping effect, which is more suitable for some 3D sensing technologies that require dynamic beam scanning, such as lidar, face recognition, and automatic driving.
  • the number, boundary shape and position arrangement of the microlens groups 120 are not limited, the number of microlens groups 120 can be one, two or more, and the boundary shape can be rectangle, polygon, or arc.
  • the multiple microlens groups 120 are randomly connected, as long as the formed optical diffusion sheet 10 can be guaranteed as a whole, for example, multiple microlens groups 120 can be connected sequentially along a straight line, Random connections are also possible.
  • the materials of the structural layer 12 and the base layer 11 are not limited, as long as the divergence and oblique emission of the light beam can be ensured.
  • the material of the structural layer 12 and the base layer 11 is glass, resin or plastic, and the materials of the structural layer 12 and the base layer 11 are the same or different.
  • the optical diffusion sheet 10 includes a base layer 11 and a structural layer 12 disposed on the base layer 11, the structural layer 12 includes a microlens group 120, the microlens group 120 includes a plurality of interconnected microlenses 121, a plurality of The microlens 121 can deflect and modulate the beam direction.
  • the optical diffusion sheet 10 can deflect the light beam irradiated thereon, and when irradiated by a vertically incident light beam, the optical diffusion sheet 10 can make the divergent light emerge obliquely to achieve a more flexible beam shaping effect.
  • the light incident surface 1211 of the microlens 121 is a free-form surface
  • the light exit surface 1212 is a plane
  • the center of the light incident surface 1211 is The projection on the light-emitting surface 1212 deviates from the center of the light-emitting surface 1212 .
  • the microlens 121 includes a light incident surface 1211 and a light exit surface 1212 , the light beam emitted by the light source 30 enters the microlens 121 from the light incident surface 1211 , and exits the microlens 121 from the light exit surface 1212 .
  • the light incident surface 1211 is a curved surface.
  • the light beam diffuses and deflects after passing through the light incident surface 1211 .
  • the light exit surface 1212 is flat and adheres to the base layer 11 . Because the center determined by the boundary shape of the light-emitting surface 1212 of the microlens 121 does not coincide with the position where the tangent plane on the light-incoming surface 1211 is parallel to the light-emitting surface 1212 , there is an offset. Therefore, each microlens 121 of the optical diffuser 10 will deflect the light beam to the same direction, forming a diffuser with a deflection effect.
  • the plane where the light-emitting surface 1212 of the microlens 121 is located is defined as the XOY plane, and point O is the geometric center of the light-emitting surface 1212, that is, point O is the center determined by the boundary shape of the light-emitting surface 1211.
  • the incident surface 1211 of the microlens 121 is a free-form surface.
  • c is the radius of curvature
  • k is the conic constant
  • ⁇ i is the coefficient of the aspheric surface
  • Z i is the Zernike polynomial
  • a i is the coefficient of the Zernike polynomial
  • is the polar diameter in normalized polar coordinates
  • the surface shape of the light incident surface 1211 of the microlens 121 is randomly set. By adjusting the surface shape height function of the light incident surface 1211, different surface shapes can be obtained, such as spherical surface, quadric surface, etc.
  • the tangent plane of point n 1 is parallel to the XOY plane, and n 1 is called the center of the light incident surface 1211 .
  • the projection of point n 1 on the XOY plane is n, and the distances between point n and point O in X and Y directions are d x and d y respectively.
  • d x and d y represent the degree of eccentricity of the curved surface, that is, the larger the value of d x and d y , the greater the deviation between the center of the light incident surface 1211 and the geometric center of the light exit surface 1212, and then the light beam irradiates the microlens 121. The greater the deflection.
  • FIG. 2 shows the situation where the light beam irradiates the microlens 121 vertically. It can be seen that the outgoing light 32 not only diffuses, but also deflects obviously relative to the incident light 31 .
  • FIG. 3 shows the distribution of the outgoing light spot with respect to the angle. The angles corresponding to the X and Y directions of the outgoing light spot center are ⁇ and ⁇ respectively, that is, the outgoing light 32 is deflected by the angles ⁇ and ⁇ relative to the incident light 31 . It can be understood that the degree of deflection of the outgoing light 32 can be controlled by adjusting the eccentricity values d x and d y .
  • the above-mentioned optical diffusion sheet 10 realizes the uniform diffusion and flexible deflection effect of the light beam through the single-layer microstructure, and avoids the diffraction fringes under the irradiation of coherent light, which has advantages in the application fields that require dynamic beam scanning technology, such as laser Radar, autonomous driving, etc.
  • the light-emitting surface 1212 is polygonal, and the boundaries 1213 of the light-emitting surfaces 1212 of two adjacent microlenses 121 are connected to each other.
  • the light emitting surface 1212 of the microlens 121 is a random polygon, which may be a triangle, a quadrangle, a pentagon, and the like.
  • the position arrangement of the plurality of microlenses 121 is also in a random state, as long as the boundaries 1213 of the light-emitting surfaces 1212 of two adjacent microlenses 121 are connected to each other.
  • the random shape and position arrangement of the light-emitting surface 1212 of the microlens 121 can eliminate the diffraction fringes caused by the regular lens, and the uniformity is better.
  • the microlens 121 is a convex lens or a concave lens.
  • the convex lens and the concave lens correspond to different surface shapes of the light incident surface 1211 , and by adjusting the type of the microlens 121 , the microlens group 120 can be optimized to obtain better deflection effect.
  • the microlens group 120 includes a plurality of microlenses 121 in the same microlens group 120.
  • the decentering directions of the microlenses 121 of the microlens group 120 are the same or different.
  • An optical diffusion sheet 10 includes a plurality of microlens groups 120 , and each microlens group 120 further includes a plurality of microlenses 121 .
  • Multiple microlenses 121 constituting the same microlens group 120 have the same eccentric direction, while the eccentric directions of multiple microlenses 121 constituting different microlens groups 120 may be the same or different. It should be understood that the eccentric direction refers to the direction in which the projection of the center of the light incident surface 1211 on the light exit surface 1212 deviates from the geometric center of the light exit surface 1212 .
  • the light beams can be diffused and deflected in different directions, the degree of freedom of adjustment is large, and the outgoing light 32 with different diffusion ranges, boundary shapes, light and dark distributions, etc. can be obtained.
  • a plurality of microlens groups 120 are sequentially connected in a straight line.
  • optical diffusion sheet 10 Multiple microlens groups 120 are sequentially connected to form an optical diffusion sheet 10 .
  • the eccentric directions of different regions of the optical diffusion sheet 10 may be the same or different.
  • the same light source 30 irradiates the optical diffusion sheet 10 at different positions, light spots with different diffusion ranges and light and dark distributions can be obtained.
  • the eccentric directions of the two microlens groups 120 in the middle can be set to be close to each other.
  • the eccentric directions of the two microlens groups 120 on both sides are set to be far away from each other, so that the desired light spot can be obtained.
  • a plurality of microlens groups 120 are arranged in a matrix.
  • a plurality of microlens groups 120 are connected in pairs to form a rectangular optical diffusion sheet 10 .
  • the eccentric directions of different regions of the optical diffusion sheet 10 may be the same or different.
  • the eccentric directions of the upper left microlens group and the lower left microlens group can be set to deviate from each other and the obtained light spots are on the same straight line, and the eccentric directions of the upper right microlens group and the lower right microlens group Also deviate from each other and are on the same straight line with the light spots formed by the upper left microlens group and the lower left microlens group, the deflection degree of the upper right microlens group and the lower right microlens group is smaller than the deflection degree of the upper left microlens group and the lower left microlens group, In this way, the desired spot can be obtained.
  • the embodiment of the present application also discloses a light emitting module 20 , including a light source 30 and any one of the above-mentioned optical diffusion sheets 10 , and the optical diffusion sheet 10 is arranged in the light emitting direction of the light source 30 .
  • the light emitting module 20 includes a light source 30 and the aforementioned optical diffusion sheet 10 , and the light beam emitted by the light source 30 is diffused and deflected after passing through the optical diffusion sheet 10 .
  • the light source 30 can be in various forms such as LED (that is, light-emitting diode), MicroLED (that is, micron light-emitting diode), LD (that is, laser light), VCSEL (that is, vertical cavity surface emitting laser), or multiple or multiple types of light source at the same time.
  • Independent light source 30 may include one microlens group 120, or may include multiple microlens groups 120, and different microlens groups 120 may achieve different deflection effects. Either the light source 30 or the optical diffuser 10 can be stationary or moving.
  • the light emitting module 20 has the same structure and beneficial effects as the optical diffusion sheet 10 in the foregoing embodiments.
  • the structure and beneficial effects of the optical diffusion sheet 10 have been described in detail in the foregoing embodiments, and will not be repeated here.
  • the light source 30 includes a plurality
  • the optical diffusion sheet 10 includes a plurality of microlens groups 120
  • the plurality of light sources 30 corresponds to the plurality of microlens groups 120 one by one.
  • each light source 30 corresponds to one microlens group 120 , and only emits light beams to one microlens group 120 .
  • the light emission module 20 can flexibly control the brightness and darkness of a certain area of the outgoing light spot, and illuminate different areas in time-sharing. On the one hand, all the light sources 30 do not need to be lit at the same time, which can reduce the power consumption of the module.
  • each microlens group 120 only diffuses the light beam to a specific angle, and the range illuminated by the entire light emitting module 20 is the union of all partitions, so the entire light emitting module 20 is easier to achieve large-scale, Large-angle projection effect.
  • the light emitting module 20 includes four light sources 30 and an optical diffusion sheet 10, and the optical diffusion sheet 10 includes four microlens groups 120 connected in a straight line, wherein the light source 30 is VCSEL light source, the wavelength is 940nm near-infrared light, the four light sources 30 can be turned on or off independently, and the four light sources 30 emit light beams with a certain divergence angle, which are respectively irradiated on four microlens groups 120 with different deflection effects .
  • the deflection angles of the four microlens groups 120 are 15°, 5°, -5°, -15° respectively, and the diffusion angles of the four microlens groups 120 are the same, 40° in the horizontal direction and 10° in the vertical direction. Therefore, the four microlens groups 120 respectively diffuse the light beams of the four light sources 30 into four rectangular light spots, but the deflection angle of each light spot is different.
  • the four rectangular light spots can just be spliced together in the far field to form a nearly square light spot as shown in Figure 9.
  • the relative positional relationship between the light source 30 and the optical diffusion sheet 10 changes along a straight line.
  • one of the light source 30 or the optical diffusion sheet 10 can move in a linear direction relative to the other, that is, the light source 30 moves along the length direction of the optical diffusion sheet 10, or the optical diffusion sheet 10 moves along its length direction .
  • the length direction of the optical diffusion sheet 10 refers to a direction parallel to the light-emitting surface 1212 of the optical diffusion sheet 10 . Light spots with different effects can be obtained by moving the light source 30 or the optical diffusion sheet 10 .
  • the light source 30 includes a VCSEL, and the light source 30 moves relative to the optical diffusion sheet 10 or the optical diffusion sheet 10 moves relative to the light source 30 .
  • the light source 30 can illuminate different areas of the optical diffusion sheet 10 in time divisions to achieve the effect of dynamic scanning of the diffusion spot.
  • the present application discloses an optical diffusion sheet and a light emitting module.
  • the optical diffusion sheet includes a base layer and a structural layer arranged on the base layer.
  • the structural layer includes a microlens group, and the microlens group includes a plurality of interconnected microlenses. , multiple microlenses can deflect and modulate the beam direction.
  • the optical diffusion sheet provided by this application can deflect the light beam irradiated on it. Under the irradiation of a vertically incident light beam, the optical diffusion sheet can make the divergent light emerge obliquely, so as to achieve a more flexible beam shaping effect.
  • optical diffuser and the light emitting module of the present application are reproducible and can be used in various industrial applications.
  • the optical diffusion sheet and the light emitting module of the present application can be used in the field of optical imaging technology.

Abstract

本申请公开了一种光学扩散片及光发射模组,涉及光学成像技术领域,本申请的光学扩散片,包括基底层和设置在基底层上的结构层,结构层包括微透镜组,微透镜组包括多个相互连接的微透镜,多个微透镜能够对光束方向偏折调制。本申请提供的光学扩散片,能够使照射在其上的光束发生偏折,在一束垂直入射的光束照射下,光学扩散片可以使发散光倾斜出射,实现更灵活的光束整形效果。

Description

一种光学扩散片及光发射模组
相关申请的交叉引用
本申请要求于2021年09月10日提交中国国家知识产权局的申请号为202111062075.9、名称为“一种光学扩散片及光发射模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学成像技术领域,具体而言,涉及一种光学扩散片及光发射模组。
背景技术
3D传感技术广泛应用于人脸识别,机器视觉,自动驾驶等新兴领域,通常指采用红外波段的光源发射光束,经过光束整形器件扩散成特定发散角和形状的光斑,投射到物体上产生反射光,反射光被接收光路收集到成像传感器上,从而得到物体的空间信息。
常见的光束整形器件主要是衍射光学元件(DOE)和微透镜阵列。微透镜阵列相比于衍射光学元件具有加工精度要求低、效率较高的优势,可作为飞行时间(TOF)方案中的整形器件。
现有的微透镜阵列,其扩散光斑往往是中心对称的,当一束入射光垂直照射扩散片,其出射光斑是以入射光束为中心向两边扩散,而不能实现扩散光斑的偏折。有鉴于此,特提出本申请。
发明内容
本申请提供了一种光学扩散片及光发射模组,其能够在使出射光相对于入射光发生扩散的同时还发生偏折。
本发明的一些实施例提供了:
一种光学扩散片,该光学扩散片可以包括基底层和设置在基底层上的结构层,结构层可以包括微透镜组,微透镜组可以包括多个相互连接的微透镜,多个微透镜能够对光束方向偏折调制。
可选的,作为一种可实施的方式,微透镜的入光面可以为自由曲面,出光面可以为平面,入光面的中心可以在出光面上的投影偏离于出光面的中心。
可选的,作为一种可实施的方式,出光面可以为多边形,相邻两个微透镜的出光面边界可以相互连接。
可选的,作为一种可实施的方式,微透镜可以为凸透镜或凹透镜。
可选的,作为一种可实施的方式,微透镜组可以包括多个,同一微透镜组的多个微透镜的偏心方向可以相同,不同微透镜组的微透镜的偏心方向可以相同或不同。
可选的,作为一种可实施的方式,多个微透镜组可以呈直线依次连接。
可选的,作为一种可实施的方式,多个微透镜组可以呈矩阵排布。
本申请的另一些实施例提供了一种光发射模组,该光发射模组可以包括光源和上述任一项的光学扩散片,光学扩散片可以设置在光源的出光方向。
可选的,作为一种可实施的方式,所述光源是发光二极管、微米发光二极管、镭射光、垂直腔面发射激光器。
可选的,作为一种可实施的方式,所述光源或所述光学扩散片是静止的或者运动的。
可选的,作为一种可实施的方式,光源可以包括多个,光学扩散片可以包括多个微透镜组,多个光源可以与多个微透镜组一一对应。
可选的,作为一种可实施的方式,光源与光学扩散片之间的相对位置关系可以沿直线变化。
本申请实施例的有益效果至少包括:
本申请提供的光学扩散片可以包括基底层和设置在基底层上的结构层,结构层可以包括微透镜组,微透镜组可以包括多个相互连接的微透镜,多个微透镜能够对光束方向偏折调制。该光学扩散片能够使照射在其上的光束发生偏折,在一束垂直入射的光束照射下,光学扩散片可以使发散光倾斜出射,实现更灵活的光束整形效果。
本申请提供的光发射模组可以包括光源和上述任意一项的光学扩散片,光学扩散片可以设置在光源的出光方向。该光发射模组能够使光源发出的光束经光学扩散片后发生偏折,实现更灵活的光束整形效果。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的光学扩散片的结构示意图;
图2为本申请实施例提供的光束经过单个微透镜的模拟图;
图3为本申请实施例提供的光束经过单个微透镜后出射光斑的分布图;
图4为本申请实施例提供的光学扩散片中微透镜的结构示意图;
图5为本申请实施例提供的光学扩散片中微透镜出光面的结构示意图;
图6为本申请实施例提供的光学扩散片中结构层的结构示意图之一;
图7为本申请实施例提供的光学扩散片中结构层的结构示意图之二;
图8为本申请实施例提供的光发射模组的结构示意图;
图9为本申请实施例提供的光发射模组的光场组合效果图。
图标:10-光学扩散片;11-基底层;12-结构层;120-微透镜组;121-微透镜;1211-入光面;1212-出光面;1213-边界;20-光发射模组;30-光源;31-入射光;32-出射光。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
请参照图1,本实施例提供一种光学扩散片10,其包括基底层11和设置在基底层11上的结构层12,结构层12包括微透镜组120,微透镜组120包括多个相互连接的微透镜121,多个微透镜121能够对光束方向偏折调制。
光学扩散片10包括基底层11和结构层12,结构层12设置于基底层11之上。结构层12包括微透镜组120,微透镜组120又包括多个微透镜121,多个微透镜121之间相互连接成一体,以使结构层12为一个包括多个微透镜121的整体结构。请结合参照图2和图3, 微透镜121能够使照射在其上的光束发生偏折,也即是,在一束垂直入射的光束照射下,光学扩散片10可以使发散光倾斜出射,例如只照射左前方或者右前方的区域,实现更灵活的光束整形效果,从而更适用于一些需要光束动态扫描的3D传感技术,如激光雷达、人脸识别、自动驾驶等。
在本实施例中,对微透镜组120的数量、边界形状和位置排布不作限定,微透镜组120的数量可以为一个、两个或者多个、边界形状可以为矩形、多边形,也可以为弧形。当微透镜组120为两个或多个时,相邻的两个微透镜组120之间相互连接。当微透镜组120为多个时,多个微透镜组120之间随机连接,只要能够保证形成的光学扩散片10为一个整体即可,例如,多个微透镜组120可以沿直线依次连接,也可以随机连接。
同样,在本实施例中,对结构层12和基底层11的材料也不作限定,只要能够保证光束的发散和倾斜出射即可。示例地,结构层12和基底层11的材料为玻璃、树脂或塑料,结构层12和基底层11的材料相同或不同。
如上所述,该光学扩散片10包括基底层11和设置在基底层11上的结构层12,结构层12包括微透镜组120,微透镜组120包括多个相互连接的微透镜121,多个微透镜121能够对光束方向偏折调制。该光学扩散片10能够使照射在其上的光束发生偏折,在一束垂直入射的光束照射下,光学扩散片10可以使发散光倾斜出射,实现更灵活的光束整形效果。
请参照图2和图4,可选的,本申请实施例的一种可实现的方式中,微透镜121的入光面1211为自由曲面、出光面1212为平面,入光面1211的中心在出光面1212上的投影偏离于出光面1212的中心。
微透镜121包括入光面1211和出光面1212,光源30发射的光束由入光面1211射入微透镜121,再由出光面1212射出微透镜121。入光面1211为曲面,光束经入光面1211后发生扩散和偏折,出光面1212为平面,与基底层11贴合,扩散和偏折后的光束经由出光面1212射出。由于微透镜121出光面1212的边界形状确定的中心和入光面1211上切平面平行于出光面1212的位置不重合,存在偏移。因此光学扩散片10的每个微透镜121都会将光束偏折至同一方向,形成具有偏折效果的扩散片。
为了方便描述,将微透镜121的出光面1212所在平面定义为XOY平面,点O为出光面1212的几何中心,即点O是入光面1211的边界形状确定的中心。微透镜121的入光面1211为自由曲面。入光面1211的面型满足高度函数z=z(x,y),z(x,y)的表达式如下所示:
Figure PCTCN2021142594-appb-000001
其中,
Figure PCTCN2021142594-appb-000002
c为曲率半径,k为圆锥常数,α i为非球面系数,Z i为泽尼克多 项式,A i为泽尼克多项式的系数,ρ为归一化极坐标下的极径,
Figure PCTCN2021142594-appb-000003
为极坐标下的极角。
微透镜121入光面1211的面型随机设置,通过对入光面1211的面型高度函数的调整,可以获得不同面型的曲面,例如:球面、二次曲面等。
在入光面1211上,n 1点的切平面与XOY平面平行,称n 1为入光面1211的中心。点n 1在XOY平面的投影为n,点n和点O在X和Y方向的距离分别为d x和d y。d x和d y代表了曲面的偏心程度,即d x和d y的值越大,代表入光面1211中心和出光面1212几何中心的偏离程度越大,那么光束照射到微透镜121后发生的偏折也就越大。
图2所示即为光束垂直照射微透镜121的情况,可以看到,出射光32不只是发生了扩散,还明显地相对入射光31发生了偏折。图3是出射光斑关于角度的分布,出射光斑中心对应X、Y方向的角度分别为α、β,即出射光32相对入射光31偏折了角度α、β。可以理解,调整偏心值d x和d y,便可以控制出射光32的偏折程度。
上述光学扩散片10通过单层的微结构,实现了光束的均匀扩散和灵活的偏折效果,且避免了相干光照射下的衍射条纹,在需要光束动态扫描技术的应用领域具有优势,如激光雷达、自动驾驶等。
请参照图5,可选的,本申请实施例的一种可实现的方式中,出光面1212为多边形,相邻两个微透镜121的出光面1212边界1213相互连接。
微透镜121的出光面1212为随机的多边形,可以为三角形、四边形、五边形等。在本实施例中,多个微透镜121的位置排布也呈随机状态,只要保证相邻的两个微透镜121的出光面1212边界1213相互连接即可。微透镜121出光面1212的随机形状和位置排布,可以消除规则透镜带来的衍射条纹,均匀性更好。
可选的,本申请实施例的一种可实现的方式中,微透镜121为凸透镜或凹透镜。
凸透镜和凹透镜对应了不同的入光面1211面型,通过调整微透镜121的类型,可以对微透镜组120进行优化,得到更好的偏折效果。
请参照图6和图7,可选的,本申请实施例的一种可实现的方式中,微透镜组120包括多个,同一微透镜组120的多个微透镜121的偏心方向相同,不同微透镜组120的微透镜121的偏心方向相同或不同。
一个光学扩散片10包括多个微透镜组120,每个微透镜组120又包括多个微透镜121。组成同一微透镜组120的多个微透镜121具有相同的偏心方向,而组成不同微透镜组120的多个微透镜121的偏心方向则可以相同,也可以不同。应理解,偏心方向是指入光面1211的中心在出光面1212上的投影偏离于出光面1212的几何中心的方向。
通过调整不同微透镜组120的偏心方向,可以将光束扩散并偏折至不同方向,调整自由度大且能够得到不同扩散范围、边界形状、明暗分布等的出射光32。
请参照图6,可选的,本申请实施例的一种可实现的方式中,多个微透镜组120呈直线依次连接。
多个微透镜组120之间依次连接,共同组成一个光学扩散片10。该光学扩散片10的不同区域的偏心方向可以相同,也可以不同。同一光源30在不同位置照射该光学扩散片10时,能够得到不同扩散范围以及明暗分布的光斑。
示例地,以一个光学扩散片10包括四个微透镜组120为例,当需要得到中间亮度高,两侧亮度低的光斑时,可以将中间两个微透镜组120的偏心方向设置为相互靠近,两边的两个微透镜组120的偏心方向设置为相互远离,如此便可以得到所需光斑。
请参照图7,可选的,本申请实施例的一种可实现的方式中,多个微透镜组120呈矩阵排布。
多个微透镜组120之间两两连接,共同组成一个矩形的光学扩散片10。该光学扩散片10的不同区域的偏心方向可以相同,也可以不同。同一光源30在不同位置照射该光学扩散片10时,能够得到不同扩散范围以及明暗分布的光斑。
示例地,以一个光学扩散片10包括四个微透镜组120为例,为了方便描述,以图7中的视角为准,四个微透镜组120分别定义为左上微透镜组、左下微透镜组、右上微透镜组和右下微透镜组。当需要得到长条形的光斑时,可以将左上微透镜组和左下微透镜组的偏心方向设置为相互背离且得到的光斑位于同一直线上,右上微透镜组和右下微透镜组的偏心方向也相互背离并与左上微透镜组和左下微透镜组形成的光斑位于同一直线,右上微透镜组和右下微透镜组的偏折程度小于左上微透镜组和左下微透镜组的偏折程度,如此便可以得到所需光斑。
请参照图8,本申请实施例还公开了一种光发射模组20,包括光源30和上述任意一项的光学扩散片10,光学扩散片10设置在光源30的出光方向。
光发射模组20包括光源30和上述的光学扩散片10,光源30发射的光束经光学扩散片10后发生扩散和偏折。光源30可以是LED(即发光二极管)、MicroLED(即微米发光二极管)、LD(即镭射光)、VCSEL(即垂直腔面发射激光器)等多种形式,也可以是同时存在多个、多种独立的光源30。光学扩散片10可以包括一个微透镜组120,也可以包括多个微透镜组120,不同微透镜组120可以实现不同的偏折效果。光源30或者光学扩散片10都可以是静止的或者运动的。
该光发射模组20包含与前述实施例中的光学扩散片10相同的结构和有益效果。光学扩散片10的结构和有益效果已经在前述实施例中进行了详细描述,在此不再赘述。
可选的,本申请实施例的一种可实现的方式中,光源30包括多个,光学扩散片10包括多个微透镜组120,多个光源30与多个微透镜组120一一对应。
光源30与微透镜组120的数量相同,每个光源30对应一个微透镜组120,只向一个微透镜组120发射光束。该光发射模组20可以灵活控制出射光斑某一区域的亮暗,分时照亮不同区域,一方面所有光源30不需要同时点亮,可以降低模组的功耗。另一方面,每个微透镜组120只会将光束扩散至特定的角度,整个光发射模组20照亮的范围是各分区的并集,因此整个光发射模组20更易于实现大范围、大角度的投射效果。
请结合参照图8和图9,示例地,光发射模组20包括四个光源30和一个光学扩散片10,光学扩散片10包括四个呈直线连接的微透镜组120,其中,光源30为VCSEL光源,波长为940nm近红外光,四个光源30可以独立点亮或熄灭,四个光源30发出带有一定发散角的光束,分别照射在四个具有不同偏折效果的微透镜组120上。四个微透镜组120的偏折角分别为15°、5°、-5°、-15°,四个微透镜组120的扩散角相同,水平方向为40°,竖直方向为10°。因此,四个微透镜组120分别将四个光源30的光束扩散成四个长方形的光斑,只是每个光斑的偏折角不同。四个长方形的光斑在远场刚好可以拼接,形成如图9所示的接近正方形的光斑。
可选的,本申请实施例的一种可实现的方式中,光源30与光学扩散片10之间的相对位置关系沿直线变化。
本实施例中,光源30或光学扩散片10中的一个可以相对于另一个沿直线方向运动,即光源30沿与光学扩散片10的长度方向移动,或者,光学扩散片10沿其长度方向移动。应理解,光学扩散片10的长度方向是指平行于光学扩散片10出光面1212的方向。通过光源30或者光学扩散片10的移动,可以得到不同效果的光斑。
示例地,光源30包括一个VCSEL,光源30相对于光学扩散片10移动或者光学扩散片10相对于光源30移动。通过光源30或者光学扩散片10的上下移动,可以使光源30分时照亮光学扩散片10的不同区域,达到扩散光斑动态扫描的效果。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请公开了一种光学扩散片及光发射模组,该光学扩散片包括基底层和设置在基底层上的结构层,结构层包括微透镜组,微透镜组包括多个相互连接的微透镜,多个微透镜能够对光束方向偏折调制。本申请提供的光学扩散片,能够使照射在其上的光束发生偏折,在一束垂直入射的光束照射下,光学扩散片可以使发散光倾斜出射,实现更灵活的光束整形效果。
此外,可以理解的是,本申请的光学扩散片及光发射模组是可以重现的,并且可以用 在多种工业应用中。例如,本申请的光学扩散片及光发射模组可以用于光学成像技术领域。

Claims (12)

  1. 一种光学扩散片,其特征在于,所述光学扩散片包括基底层和设置在所述基底层上的结构层,所述结构层包括微透镜组,所述微透镜组包括多个相互连接的微透镜,多个所述微透镜能够对光束方向偏折调制。
  2. 根据权利要求1所述的光学扩散片,其特征在于,所述微透镜的入光面为自由曲面、出光面为平面,所述入光面的中心在所述出光面上的投影偏离于所述出光面的中心。
  3. 根据权利要求2所述的光学扩散片,其特征在于,所述出光面为多边形,相邻两个所述微透镜的出光面边界相互连接。
  4. 根据权利要求1至3中的任一项所述的光学扩散片,其特征在于,所述微透镜为凸透镜或凹透镜。
  5. 根据权利要求1至4中的任一项所述的光学扩散片,其特征在于,所述微透镜组包括多个,同一所述微透镜组的多个所述微透镜的偏心方向相同,不同所述微透镜组的所述微透镜的偏心方向相同或不同。
  6. 根据权利要求5所述的光学扩散片,其特征在于,多个所述微透镜组呈直线依次连接。
  7. 根据权利要求5或6所述的光学扩散片,其特征在于,多个所述微透镜组呈矩阵排布。
  8. 一种光发射模组,其特征在于,包括光源和如权利要求1至7中任一项所述的光学扩散片,所述光学扩散片设置在所述光源的出光方向。
  9. 根据权利要求8所述的光发射模组,其特征在于,所述光源是发光二极管、微米发光二极管、镭射光、垂直腔面发射激光器。
  10. 根据权利要求8或9所述的光发射模组,其特征在于,所述光源或所述光学扩散片是静止的或者运动的。
  11. 根据权利要求8至10中的任一项所述的光发射模组,其特征在于,所述光源包括多个,所述光学扩散片包括多个微透镜组,多个所述光源与多个所述微透镜组一一对应。
  12. 根据权利要求8至11中的任一项所述的光发射模组,其特征在于,所述光源与所述光学扩散片之间的相对位置关系沿直线变化。
PCT/CN2021/142594 2021-09-10 2021-12-29 一种光学扩散片及光发射模组 WO2023035500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111062075.9 2021-09-10
CN202111062075.9A CN113777680A (zh) 2021-09-10 2021-09-10 一种光学扩散片及光发射模组

Publications (1)

Publication Number Publication Date
WO2023035500A1 true WO2023035500A1 (zh) 2023-03-16

Family

ID=78842403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142594 WO2023035500A1 (zh) 2021-09-10 2021-12-29 一种光学扩散片及光发射模组

Country Status (2)

Country Link
CN (1) CN113777680A (zh)
WO (1) WO2023035500A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777680A (zh) * 2021-09-10 2021-12-10 浙江水晶光电科技股份有限公司 一种光学扩散片及光发射模组
CN114200556B (zh) * 2021-12-31 2024-03-15 嘉兴驭光光电科技有限公司 微光学透镜、制备方法及显示系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201078650Y (zh) * 2007-08-03 2008-06-25 科桥电子股份有限公司 导光板
CN111221062A (zh) * 2020-03-19 2020-06-02 宁波舜宇车载光学技术有限公司 显示设备
CN211575019U (zh) * 2020-04-22 2020-09-25 宁波舜宇奥来技术有限公司 匀光片和用于tof模组的光源
TW202122835A (zh) * 2019-10-25 2021-06-16 日商迪睿合股份有限公司 擴散板、顯示裝置、投影裝置及照明裝置
CN113777680A (zh) * 2021-09-10 2021-12-10 浙江水晶光电科技股份有限公司 一种光学扩散片及光发射模组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207146287U (zh) * 2017-09-25 2018-03-27 欧普照明股份有限公司 一种用于台灯的微透镜阵列和台灯
CN113156743A (zh) * 2021-04-29 2021-07-23 浙江水晶光电科技股份有限公司 红外3d探测发射端模组及深度相机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201078650Y (zh) * 2007-08-03 2008-06-25 科桥电子股份有限公司 导光板
TW202122835A (zh) * 2019-10-25 2021-06-16 日商迪睿合股份有限公司 擴散板、顯示裝置、投影裝置及照明裝置
CN111221062A (zh) * 2020-03-19 2020-06-02 宁波舜宇车载光学技术有限公司 显示设备
CN211575019U (zh) * 2020-04-22 2020-09-25 宁波舜宇奥来技术有限公司 匀光片和用于tof模组的光源
CN113777680A (zh) * 2021-09-10 2021-12-10 浙江水晶光电科技股份有限公司 一种光学扩散片及光发射模组

Also Published As

Publication number Publication date
CN113777680A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
US11095365B2 (en) Wide-angle illuminator module
WO2023035500A1 (zh) 一种光学扩散片及光发射模组
CN104956179B (zh) 利用折射或反射光的结构化元件从光源阵列生成结构化光场的光学系统
US20220350050A1 (en) Meta illuminator
US11885945B2 (en) Total internal reflection lens to improve color mixing of an LED light source
KR102439748B1 (ko) 광학 소자 및 광학 시스템
KR20130120527A (ko) 광소자 및 그러한 광소자를 포함하는 복사 방출 장치
US9459436B2 (en) Linear LED optical assembly for emitting collimated light
US20220050301A1 (en) Light Modulator and its Modulation Method
WO2014051308A1 (ko) 엘이디용 조명렌즈 및 이를 이용한 백라이트 유닛에 적용되는 조명장치
US11655957B2 (en) Microstructures for transforming light having Lambertian distribution into batwing distributions
CN114296298A (zh) 一种用于辅助照明、测距的配光结构及其配光方法
CN216308923U (zh) 点泛光切换投射模组及摄像模组
US20200251886A1 (en) Optical device
US20140354955A1 (en) Stereoscopic Image Projection Apparatus and Optical Module
US20120314417A1 (en) Optical lens and light-emitting module using the same
CN114488080A (zh) 匀光片、可用于激光雷达的光发射单元和激光雷达
CN113640903B (zh) 复眼透镜、背光照明系统及其制造方法
US20210141199A1 (en) Small scale light projection device facilitating the structuring of light emitted for depth-calculating purposes
CN218956844U (zh) 光源模组和照明装置
WO2024075599A1 (ja) 光照射装置、光測距装置および車両
US11026303B2 (en) Illuminator
CN114172023B (zh) 集成的泛光和点照明器
US20240126092A1 (en) Optical navigation device with increased depth of field
JP2017107768A (ja) 面状照明装置、及びそれを備える光学機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956669

Country of ref document: EP

Kind code of ref document: A1