WO2021087854A1 - 一种业务流的处理方法及设备 - Google Patents

一种业务流的处理方法及设备 Download PDF

Info

Publication number
WO2021087854A1
WO2021087854A1 PCT/CN2019/116212 CN2019116212W WO2021087854A1 WO 2021087854 A1 WO2021087854 A1 WO 2021087854A1 CN 2019116212 W CN2019116212 W CN 2019116212W WO 2021087854 A1 WO2021087854 A1 WO 2021087854A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
resource
parameter
network element
core network
Prior art date
Application number
PCT/CN2019/116212
Other languages
English (en)
French (fr)
Inventor
李欢
诸华林
施拉姆.米而科
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/116212 priority Critical patent/WO2021087854A1/zh
Priority to CN201980102060.5A priority patent/CN114946215A/zh
Publication of WO2021087854A1 publication Critical patent/WO2021087854A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • This application relates to the field of communication technology, and in particular to a method and equipment for processing service flow.
  • 5G communication technology is a new generation of cellular mobile communication technology and an extension after the fourth generation (4G) communication technology.
  • the third generation partnership project (3GPP) standard defines the architecture of a 5G communication network.
  • user equipment UE
  • 3GPP access network 3GPP access network
  • UE user equipment
  • 3GPP access network 3GPP access network
  • non-3GPP access network 3GPP access network
  • non-3GPP access network 3GPP access network
  • the 3GPP standard also defines that the service data flow between the UE and the 5G core network is divided into guaranteed bit rate (guaranteed bit rate, GBR) quality of service flow (QoS flow) and non-guaranteed bit rate.
  • GBR guaranteed bit rate
  • QoS flow quality of service flow
  • non-guaranteed bit rate non-guaranteed bit rate
  • QoS flow QoS flow
  • GBR QoS flow can only be established on one side of the 3GPP access network side or the non-3GPP access network side.
  • the service flow data needs to move from one side to the other, it needs to be re-established on the other side.
  • the establishment of GBR QoS flow has led to an increase in delay.
  • the embodiments of the present application provide a method and device for processing a service flow, which are used to reduce the time delay when the service flow data moves from one side to the other side.
  • the first core network element will receive the policy rule from the second core network element, because the policy rule is used to instruct the first core network element to ensure that the first core network element is in the two networks.
  • Flow bit rate quality of service flow GBR QoS flow allocates resources.
  • the network element of the first core network will allocate resources on the first network and the second network for the GBR QoS flow according to the policy rules.
  • the network type of the first network and the second network can be the same or can be different.
  • the service flow data corresponding to GBR QoS flow can be transmitted from the first network or the second network. ; When the service flow data needs to be moved for some reason, there is no need to re-allocate resources for GBR QoS flow.
  • the service flow data can be directly moved from the first network to the second network, or the service flow data can be directly transferred from the first network to the second network. The second network moves to the first network, so the delay is small.
  • the embodiments of the present application also provide a first implementation manner of the first aspect:
  • the first core network network element allocates resources for GBR QoS flow in the first network and the second network according to the policy rules, including:
  • the first core network element configures the first resource and the second resource for GBR QoS flow according to the policy rules, where the first resource corresponds to the first network, and the second resource corresponds to the second network.
  • the network element of the first core network configures the first resource for the first network and the second resource for the second network. Therefore, the service flow data can be transmitted in the first network according to the first resource, or the service flow data can be transmitted in the first network according to the second resource. The service flow data is transmitted in the second network.
  • an embodiment of the present application also provides a second implementation manner of the first aspect:
  • the policy rules include quality of service QoS rules and diversion rules.
  • the Qos rules can include Qos parameters, and the diversion rules can include diversion mode information.
  • the network element of the first core network can configure the first resource and the second resource according to the QoS rules and the offloading rules.
  • the embodiments of the present application also provide a third implementation manner of the first aspect:
  • the first core network element configures the first resource and the second resource for GBR QoS flow according to the policy rule.
  • Resources include:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter, the first core network element configures the guaranteed stream bandwidth in the second resource to 0, and sets the maximum stream bandwidth in the second resource Configure as the second parameter.
  • the embodiment of the present application provides a feasible solution for configuring the first resource and configuring the second resource.
  • the guaranteed stream bandwidth in the first resource and the maximum stream bandwidth in the second resource are configured respectively, so that The bandwidth of the service flow data in the first network can be guaranteed.
  • the embodiments of the present application also provide a fourth implementation manner of the first aspect:
  • the first core network element configures the first resource and the second resource for GBR QoS flow according to the policy rule.
  • Resources include:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter, and the first core network element configures the guaranteed stream bandwidth in the second resource as the difference between the third parameter and the first parameter.
  • the embodiment of the present application provides a feasible solution for configuring the first resource and configuring the second resource.
  • the guaranteed stream bandwidth in the first resource and the guaranteed stream bandwidth in the second resource are configured respectively, so that The bandwidth of the service flow data in the first network and the second network can be guaranteed.
  • the embodiments of the present application also provide a fifth implementation manner of the first aspect:
  • the fourth parameter is the maximum data burst flow
  • the first core network element is GBR according to the policy rule
  • the QoS flow configuration of the first resource and the second resource includes:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter, and the first core network element configures the guaranteed stream bandwidth in the second resource as (MDBV/PDB-GFBR/AW)*AW,
  • MDBV represents the maximum data burst flow
  • PDB represents the packet delay budget of GBR QoS flow
  • GFBR represents the first parameter
  • AW represents the average window of GBR QoS flow.
  • the embodiment of the present application provides a feasible solution for configuring the first resource and configuring the second resource.
  • the guaranteed stream bandwidth in the first resource and the guaranteed stream bandwidth in the second resource are configured respectively, so that The bandwidth of the service flow data in the first network and the second network can be guaranteed, and the guaranteed flow bandwidth in the second resource is configured according to the MDBV, which is suitable for service flow data with important delay.
  • the embodiments of the present application also provide a sixth implementation manner of the first aspect:
  • the first core network element configuring the first resource and the second resource for GBR QoS flow according to the policy rule includes:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter, and the first core network element configures the guaranteed stream bandwidth in the second resource as the fifth parameter according to the preset first local policy.
  • the embodiment of the present application provides a feasible solution for configuring the first resource and configuring the second resource.
  • the guaranteed stream bandwidth in the first resource and the guaranteed stream bandwidth in the second resource are configured respectively, so that The bandwidth of service flow data in both the first network and the second network can be guaranteed.
  • the guaranteed flow bandwidth in the second resource is configured according to the first local policy, so the configuration method for guaranteeing the flow bandwidth in the second resource is more flexible .
  • the embodiments of the present application also provide a seventh implementation manner of the first aspect:
  • the first core network element configures the first resource and the first resource for GBR QoS flow according to the policy rule.
  • Two resources include:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter, and the first core network element configures the guaranteed stream bandwidth in the second resource as the sixth parameter.
  • the embodiment of the present application provides a feasible solution for configuring the first resource and configuring the second resource.
  • the QoS rule directly specifies the parameters of the guaranteed flow bandwidth corresponding to the first network and the second network.
  • the first network A core network element can directly configure the guaranteed flow bandwidth in the first resource and the guaranteed flow bandwidth in the second resource according to the specified parameters, so that the bandwidth of the service flow data in the first network and the second network can be obtained Guarantee.
  • the diversion rule includes diversion mode information; the diversion mode information may include: the diversion mode is a priority mode, and the priority of the first network is higher than the priority of the second network.
  • the offload mode information may also include: offload mode master-slave mode, the first network is the master network, and the second network is the slave network.
  • the offload mode information may also include: the offload mode is the minimum delay mode, and the delay of the first network is smaller than the delay of the second network.
  • the first network and the second network are distinguished according to the offloading rules, so that the first core network element can configure the first resource and the second resource differently according to the result of the difference, thereby realizing the A more reasonable allocation of the first resource and the second resource.
  • the embodiments of the present application also provide a ninth implementation manner of the first aspect:
  • the diversion rule includes diversion mode information
  • the diversion mode information includes: the diversion mode is equalization mode, and the ratio of the guaranteed flow bandwidth corresponding to the first network to the guaranteed flow bandwidth corresponding to the second network
  • the network element of the first core network configures the first resource and the second resource for GBR QoS flow according to the policy rules, including:
  • the first core network element configures the guaranteed stream bandwidth in the first resource and the guaranteed stream bandwidth in the second resource according to the first parameter and the ratio.
  • the offloading mode is a balanced mode
  • the service flow data will be transmitted in the first network and the second network at the same time. Therefore, the ratio of the guaranteed flow bandwidth of the first network and the second network can be directly set in the QoS rules.
  • the first A core network element allocates the first parameter according to the ratio to determine the guaranteed flow bandwidth in the first resource and the guaranteed flow bandwidth in the second resource, so that the bandwidth of the service flow data in the first network and the second network All can be guaranteed.
  • the embodiments of the present application also provide a tenth implementation manner of the first aspect:
  • the QoS rule includes the first parameter of guaranteed flow bandwidth corresponding to the first network and the seventh parameter of guaranteed flow bandwidth corresponding to the second network.
  • the offload rule includes offload mode information, and the offload mode information includes: when the offload mode is balanced, the first
  • the core network element configuring the first resource and the second resource for GBR QoS flow according to the policy rules includes:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter, and the first core network element configures the guaranteed stream bandwidth in the second resource as the seventh parameter.
  • the embodiment of the present application provides a feasible solution for configuring the first resource and configuring the second resource.
  • the QoS rules also directly specify the parameters of the guaranteed flow bandwidth corresponding to the first network and the second network.
  • the first core network element can directly configure the guaranteed flow bandwidth in the first resource and the guaranteed flow bandwidth in the second resource according to the specified parameters, so that the bandwidth of the service flow data in both the first network and the second network can be configured. It is guaranteed; the difference from the seventh implementation manner of the first aspect is that the split mode in the embodiment of the present application is a balanced mode.
  • the examples of this application also provide the eleventh implementation manner of the first aspect:
  • the first core network element When the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow, the first core network element will receive the first indication information from the third core network element, and the first indication information is used to indicate The access network equipment in the first network cannot transmit service flow data corresponding to GBR QoS flow.
  • the first core network element adjusts the guaranteed stream bandwidth in the second resource to the first parameter according to the first indication information.
  • the first core network element will send the adjusted second resource to the third core network element, the access network device and the terminal device in the second network.
  • adjusting the guaranteed flow bandwidth in the second resource to the first parameter can ensure the transmission of the service flow corresponding to GBR QoS flow in the second network The bandwidth of the data.
  • the embodiments of the present application also provide a twelfth implementation manner of the first aspect:
  • the first core network element will receive the first indication information from the third core network element, and the first indication information It is used to indicate that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow.
  • the first core network element adjusts the guaranteed stream bandwidth in the second resource to the sum of the first parameter and the seventh parameter according to the first indication information.
  • the first core network element sends the adjusted second resource to the third core network element, the access network device in the second network, and the terminal device.
  • adjusting the guaranteed flow bandwidth in the second resource to the sum of the first parameter and the seventh parameter can ensure the transmission of GBR in the second network The bandwidth of the service flow data corresponding to the QoS flow.
  • the method further includes:
  • the first core network element sends the first resource, the second resource, and the offloading rule corresponding to the GBR QoS flow to the terminal device.
  • the first core network element sends the first resource, the second resource, and the offloading rule corresponding to the GBR QoS flow to the third core network element.
  • the first core network element sends the first resource and the offload rule to the access network device in the first network, and sends the second resource and offload rule to the access network device in the second network.
  • the embodiments of this application respectively send corresponding resources and offloading rules to the third core network network element, the terminal device, the access network device in the first network, and the access network device in the second network, so that the terminal device can pass through the first network.
  • the access network equipment in the network and/or the access network equipment in the second network transmits service flow data corresponding to GBR QoS flow with the network element of the third core network.
  • the first network is a network established using 3GPP access technology or a network established using non-3GPP access technology
  • the second network is a network established using 3GPP access technology or a network established using non-3GPP access technology.
  • the first network and the second network can be flexibly selected, and both can be any one of a network established using 3GPP access technology and a network established using non-3GPP access technology.
  • the embodiments of this application also provide the fifteenth implementation manner of the first aspect:
  • the method further includes:
  • the first core network element obtains the second indication information, where the second indication is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • the network element of the first core network can clearly need to allocate resources for the GBR QoS flow in the first network and the second network.
  • the embodiments of the present application also provide a sixteenth implementation manner of the first aspect:
  • the second indication information is carried in the policy rule.
  • the second indication information may also be sent separately.
  • the second aspect of this application provides a service flow processing method:
  • the network element of the second core network first determines the need to allocate resources on the first network and the second network for the GBR QoS flow that guarantees the bit rate of the stream.
  • the second core network element sends a policy rule to the first core network element, and the policy rule is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • the service flow data corresponding to the GBR QoS flow can be transmitted from the first network or the second network. For transmission; when the service flow data needs to be moved for some reason, there is no need to re-allocate resources for GBR QoS flow.
  • the service flow data can be directly moved from the first network to the second network, or the service flow can be directly moved Data moves from the second network to the first network, so the delay is small.
  • the embodiments of the present application also provide the first implementation manner of the second aspect:
  • the policy rules include quality of service QoS rules and diversion rules.
  • the Qos rules can include Qos parameters, and the diversion rules can include diversion mode information.
  • the network element of the first core network can configure the first resource and the second resource according to the QoS rules and the offloading rules.
  • the embodiments of the present application also provide the second implementation manner of the second aspect:
  • the QoS rule includes a first parameter that guarantees the flow bandwidth and a second parameter of the maximum flow bandwidth, where the second parameter is greater than the first parameter.
  • the embodiment of the present application provides a configuration solution for QoS rules, so that the first core network element configures the first resource and the second resource according to the first parameter and the second parameter.
  • the embodiments of the present application also provide a third implementation manner of the second aspect:
  • the QoS rule includes a first parameter that guarantees flow bandwidth and a third parameter that guarantees the maximum flow bandwidth, where the third parameter is greater than the first parameter.
  • the embodiment of the present application provides a QoS rule configuration solution, so that the first core network element configures the first resource and the second resource according to the first parameter and the third parameter.
  • the embodiments of the present application also provide a fourth implementation manner of the second aspect:
  • the QoS rule includes a first parameter and a fourth parameter that guarantee the flow bandwidth, the fourth parameter is the maximum data burst flow, and the maximum data burst flow is greater than the first parameter.
  • the embodiment of the present application provides a configuration solution for QoS rules, so that the first core network element configures the first resource and the fourth resource according to the first parameter and the second parameter.
  • the embodiments of the present application also provide a fifth implementation manner of the second aspect:
  • the QoS rule includes the first parameter that guarantees the flow bandwidth.
  • the embodiment of the present application provides a configuration solution for QoS rules, so that the first core network element configures the first resource and the second resource according to the first parameter.
  • the embodiments of the present application also provide a sixth implementation manner of the second aspect:
  • the QoS rule includes a first parameter corresponding to the first network to guarantee a stream bandwidth and a sixth parameter corresponding to the second network to guarantee a stream bandwidth.
  • the embodiment of the present application provides a configuration solution for QoS rules, so that the first core network element configures the first resource and the second resource according to the first parameter and the sixth parameter.
  • the diversion rule includes diversion mode information; the diversion mode information may include: the diversion mode is a priority mode, and the priority of the first network is higher than the priority of the second network.
  • the offload mode information may also include: offload mode master-slave mode, the first network is the master network, and the second network is the slave network.
  • the offload mode information may further include: the offload mode is the minimum delay mode, and the delay of the first network is smaller than the delay of the second network.
  • the offload rule includes offload mode information, so that the first core network element can configure the first resource and the second resource for the first network and the second network respectively according to the offload mode information.
  • an embodiment of the present application also provides an eighth implementation manner of the second aspect:
  • the QoS rule includes a first parameter for guaranteeing flow bandwidth, and the offloading rule includes offloading mode information; the offloading mode information includes: the offloading mode is a balanced mode, and the ratio of the guaranteed stream bandwidth corresponding to the first network to the guaranteed stream bandwidth corresponding to the second network.
  • an embodiment of the present application also provides a ninth implementation manner of the second aspect:
  • the QoS rule includes a first parameter of guaranteed flow bandwidth corresponding to the first network and a seventh parameter of guaranteed flow bandwidth corresponding to the second network.
  • the offload rule includes offload mode information, and the offload mode information includes: the offload mode is a balanced mode.
  • the embodiment of the present application provides a configuration scheme for QoS rules.
  • the offload mode is a balanced mode
  • the first core network element can separate the first network and the second network according to the first parameter and the seventh parameter. Configure the first resource and the second resource.
  • the method further includes:
  • the second core network element sends second indication information to the first core network element, where the second indication is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • the network element of the first core network can clearly need to allocate resources for the GBR QoS flow in the first network and the second network.
  • an embodiment of the present application also provides an eleventh implementation manner of the second aspect:
  • the second indication information is carried in the policy rule.
  • the second indication information may also be sent separately.
  • the third aspect of the embodiments of the present application provides a service flow processing method, including:
  • the third core network element will receive the first resource, the second resource and the offloading rule corresponding to the GBR QoS flow from the first core network element, the first resource corresponds to the first network, and the second resource corresponds to the GBR QoS flow.
  • the resource corresponds to the second network.
  • the third core network element sends service flow data corresponding to GBR QoS flow to the terminal device through the access network device in the first network according to the offloading rule and the first resource.
  • the third core network element can also simultaneously
  • the service flow data corresponding to the GBR QoS flow sent by the access network device in the second network to the terminal device can be specifically determined according to the offloading rule.
  • the third core network element determines that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow
  • the third core network element will pass the access network device in the second network according to the second resource Send the service flow data corresponding to the GBR QoS flow to the terminal device to realize the switching of the service flow data from the first network to the second network.
  • the first core network element allocates resources for GBR QoS flow in the first network and the second network respectively, when the third core network element determines that the access network device in the first network cannot transmit services corresponding to GBR QoS flow
  • the third core network element determines that the access network device in the first network cannot transmit services corresponding to GBR QoS flow
  • streaming data there is no need to re-allocate resources for GBR QoS flow on the second network, and the service flow data can be directly switched from the first network to the second network, so the delay is small.
  • the embodiments of the present application also provide the first implementation manner of the third aspect:
  • the third core network element determines that the access network device in the first network cannot transmit the service flow data corresponding to GBR QoS flow
  • the third core network element sends the first indication information to the first core network element, and An indication information is used to indicate that the access network device in the first network cannot transmit the service flow data corresponding to the GBR QoS flow.
  • the access network device in the first network will adjust the second resource, and then the third core network element will receive the adjusted second resource from the first core network element.
  • the third core network element After receiving the adjusted second resource, the third core network element sends the service flow data corresponding to the GBR QoS flow to the terminal device through the access network device in the second network according to the second resource, which includes:
  • the third core network element sends the service flow data corresponding to the GBR QoS flow to the terminal device through the access network device in the second network according to the adjusted second resource.
  • the first network access device cannot transmit the service flow data corresponding to GBR QoS flow, it is necessary to switch the service flow data in the first network to the second network for transmission. Because the second resource corresponding to the second network is insufficient, the second network is insufficient. The resource is adjusted, and the adjusted second resource is used to transmit the service flow data, which can provide sufficient bandwidth for the transmission of the service flow data.
  • the embodiments of the present application also provide the second implementation manner of the third aspect:
  • the method further includes:
  • the third core network element receives the second indication information from the first core network element, where the second indication information is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • the third core network element can clarify that the first core network element allocates resources for the GBR QoS flow in the first network and the second network.
  • the access network equipment in the first network is unavailable, it can The service flow data is directly switched from the access network device in the first network to the access network device in the second network.
  • the fourth aspect of the embodiments of the present application provides a service flow processing method, including:
  • the terminal device receives the first resource, the second resource, and the offloading rule corresponding to the GBR QoS flow from the first core network element, where the first resource corresponds to the first network, and the second resource corresponds to the second network .
  • the terminal device sends the service flow data corresponding to GBR QoS flow to the third core network element through the access network device in the first network according to the offloading rule and the first resource.
  • the terminal device can also send the service flow data corresponding to the GBR QoS flow in the second network at the same time.
  • the access network device in the first network sends the service flow data corresponding to the GBR QoS flow to the terminal device, which can be specifically determined according to the offloading rule.
  • the terminal device determines that the access network device in the first network cannot transmit the service flow data corresponding to GBR QoS flow
  • the terminal device sends the GBR to the third core network element through the access network device in the second network according to the second resource
  • the service flow data corresponding to the QoS flow realizes the switching of the service flow data from the first network to the second network.
  • the first core network element allocates resources for GBR QoS flow in the first network and the second network respectively, when the third core network element determines that the access network device in the first network cannot transmit services corresponding to GBR QoS flow
  • the third core network element determines that the access network device in the first network cannot transmit services corresponding to GBR QoS flow
  • streaming data there is no need to re-allocate resources for GBR QoS flow on the second network, and the service flow data can be directly switched from the first network to the second network, so the delay is small.
  • the embodiments of the present application also provide the first implementation manner of the fourth aspect:
  • the terminal device When the terminal device determines that the access network device in the first network cannot transmit the service flow data corresponding to the GBR QoS flow, the terminal device will receive the adjusted second resource from the network element of the first core network.
  • the terminal device sending service flow data corresponding to GBR QoS flow to the third core network element through the access network device in the second network according to the second resource includes:
  • the terminal device sends the service flow data corresponding to the GBR QoS flow to the third core network network element through the access network device in the second network according to the adjusted second resource.
  • the first network access device cannot transmit the service flow data corresponding to GBR QoS flow, it is necessary to switch the service flow data in the first network to the second network for transmission. Because the second resource corresponding to the second network is insufficient, the second network is insufficient. The resource is adjusted, and the adjusted second resource is used to transmit the service flow data, which can provide sufficient bandwidth for the transmission of the service flow data.
  • the embodiments of the present application also provide the second implementation manner of the fourth aspect:
  • the method further includes:
  • the terminal device receives second indication information from the first core network element, where the second indication information is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • the terminal device can determine that the first core network element has allocated resources for the GBR QoS flow in the first network and the second network.
  • the access network device in the first network is unavailable, it can directly transfer the service flow The data is switched from the access network device in the first network to the access network device in the second network.
  • a fifth aspect of the embodiments of the present application provides a communication device, including:
  • the receiving unit is configured to receive the policy rule from the network element of the second core network.
  • the processing unit is configured to allocate resources on the first network and the second network for the GBR QoS flow that guarantees the bit rate and quality of service flow according to the policy rules.
  • a sixth aspect of the embodiments of the present application provides a communication device, including:
  • the processing unit is configured to determine that resources need to be allocated in the first network and the second network for the GBR QoS flow that guarantees the bit rate of the stream.
  • the sending unit is configured to send a policy rule to the first core network element, where the policy rule is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • the embodiments of the present application also provide the first implementation manner of the sixth aspect: the policy rules include QoS rules and offloading rules.
  • the embodiments of the present application also provide the second implementation manner of the sixth aspect:
  • the QoS rule includes a first parameter that guarantees the flow bandwidth and a second parameter of the maximum flow bandwidth, where the second parameter is greater than the first parameter.
  • the embodiments of the present application also provide a third implementation manner of the sixth aspect:
  • the QoS rule includes a first parameter that guarantees flow bandwidth and a third parameter that guarantees the maximum flow bandwidth, where the third parameter is greater than the first parameter.
  • the embodiments of the present application also provide a fourth implementation manner of the sixth aspect:
  • the QoS rule includes a first parameter and a fourth parameter that guarantee the flow bandwidth, the fourth parameter is the maximum data burst flow, and the maximum data burst flow is greater than the first parameter.
  • an embodiment of the present application also provides a fifth implementation manner of the sixth aspect:
  • the QoS rule includes the first parameter that guarantees the flow bandwidth.
  • the embodiments of the present application also provide the sixth implementation manner of the sixth aspect:
  • the QoS rule includes a first parameter corresponding to the first network to guarantee a stream bandwidth and a sixth parameter corresponding to the second network to guarantee a stream bandwidth.
  • the diversion rule includes diversion mode information; the diversion mode information includes: the diversion mode is a priority mode, and the priority of the first network is higher than the priority of the second network; or the diversion mode information includes: the diversion mode is the master-slave mode, and the first network is the priority mode.
  • the main network and the second network are the slave networks; or the offload mode information includes: the offload mode is the minimum delay mode, and the delay of the first network is smaller than the delay of the second network.
  • the embodiments of the present application also provide an eighth implementation manner of the sixth aspect:
  • the QoS rule includes the first parameter to guarantee the flow bandwidth, and the diversion rule includes diversion mode information; the diversion mode information includes: the diversion mode is a balanced mode, and the ratio of the guaranteed flow bandwidth corresponding to the first network to the guaranteed flow bandwidth corresponding to the second network.
  • the embodiments of the present application also provide a ninth implementation manner of the sixth aspect:
  • the QoS rule includes a first parameter of guaranteed flow bandwidth corresponding to the first network and a seventh parameter of guaranteed flow bandwidth corresponding to the second network.
  • the offload rule includes offload mode information, and the offload mode information includes: the offload mode is a balanced mode.
  • Embodiments of the present application also provide a tenth embodiment of the sixth aspect:
  • the sending unit is further configured to send second indication information to the first core network element, where the second indication is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • an embodiment of the present application further provides an eleventh implementation manner of the sixth aspect: the second indication information is carried in the policy rule.
  • a seventh aspect of the embodiments of the present application provides a communication device, including:
  • the receiving unit is configured to receive the first resource, the second resource, and the offloading rule corresponding to the GBR QoS flow from the first core network element, the first resource corresponds to the first network, and the second resource corresponds to the GBR QoS flow The second network.
  • the sending unit is configured to send service flow data corresponding to GBR QoS flow to the terminal device through the access network device in the first network according to the offloading rule and the first resource.
  • the sending unit is also used to send GBR QoS flow to the terminal device through the access network device in the second network according to the second resource when it is determined that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow Corresponding business flow data.
  • the embodiments of the present application also provide the first implementation manner of the seventh aspect:
  • the sending unit is further configured to send first indication information to the first core network element, and the first indication information is used to indicate the first The access network equipment in the network cannot transmit service flow data corresponding to GBR QoS flow;
  • the receiving unit is further configured to receive the adjusted second resource from the network element of the first core network
  • the sending unit is further configured to send service flow data corresponding to GBR QoS flow to the terminal device through the access network device in the second network according to the adjusted second resource.
  • the embodiments of the present application also provide a second implementation manner of the seventh aspect:
  • the receiving unit is further configured to receive second indication information from the first core network element, where the second indication information is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • An eighth aspect of the embodiments of the present application provides a terminal device, including:
  • the receiving unit is configured to receive the first resource, the second resource, and the offloading rule corresponding to the GBR QoS flow from the first core network element, the first resource corresponds to the first network, and the second resource corresponds to the GBR QoS flow The second network.
  • the sending unit is configured to send service flow data corresponding to GBR QoS flow to the third core network element through the access network device in the first network according to the offloading rule and the first resource.
  • the sending unit is further configured to, when it is determined that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow, to the third core network element through the access network device in the second network according to the second resource Send service flow data corresponding to GBR QoS flow.
  • the embodiments of the present application also provide a first implementation manner of the eighth aspect:
  • the receiving unit is further configured to receive the adjusted second resource from the network element of the first core network;
  • the sending unit is further configured to send service flow data corresponding to the GBR QoS flow to the third core network network element through the access network device in the second network according to the adjusted second resource.
  • the embodiments of the present application also provide a second implementation manner of the eighth aspect:
  • the receiving unit is further configured to receive second indication information from the first core network element, where the second indication information is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • a ninth aspect of the present application provides a network element with a session management function, including: at least one processor and a memory, the memory stores computer-executable instructions that can run on the processor, and when the computer-executed instructions are executed by the processor ,
  • the session management function network element executes the method described in the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • a tenth aspect of the present application provides a network element with a policy control function, including: at least one processor and a memory, the memory stores computer-executable instructions that can run on the processor, and when the computer-executable instructions are executed by the processor ,
  • the policy control function network element executes the method described in the second aspect or any one of the possible implementation manners of the second aspect.
  • the eleventh aspect of the present application provides a user plane function network element, including: at least one processor and a memory, the memory stores computer-executable instructions that can run on the processor, and when the computer-executable instructions are executed by the processor When the user plane function network element executes the method described in the third aspect or any one of the possible implementation manners of the third aspect.
  • a twelfth aspect of the present application provides a terminal device, including: at least one processor and a memory, the memory stores computer-executable instructions that can run on the processor, and when the computer-executable instructions are executed by the processor, the The terminal device executes the method described in the foregoing fourth aspect or any one of the possible implementation manners of the fourth aspect.
  • the thirteenth aspect of the embodiments of the present application provides a computer storage medium for storing computer software instructions used for the above-mentioned session management function network element, policy control function network element, user plane function network element, or terminal device. , Which includes programs used to execute programs designed for session management function network elements, policy control function network elements, user plane function network elements, or terminal devices.
  • the session management function network element may be the communication device described in the foregoing fifth aspect.
  • the policy control function network element may be the communication device described in the foregoing sixth aspect.
  • the user plane function network element may be the communication device described in the seventh aspect.
  • the terminal device may be the terminal device described in the foregoing eighth aspect.
  • the fourteenth aspect of the embodiments of the present application provides a computer program product, the computer program product includes computer software instructions, the computer software instructions can be loaded by a processor to achieve any one of the first to fourth aspects.
  • the process in the processing method of the business flow is not limited to.
  • the fifteenth aspect of the embodiments of the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected through a wire, and the at least one processor is used to run a computer program or Instructions to execute the service flow processing method described in any one of the implementation manners of the first aspect to the first aspect.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the embodiments of the present application further provide the first implementation manner of the fifteenth aspect.
  • the chip or chip system described above in the present application further includes at least one memory, and the at least one memory stores instructions.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • the sixteenth aspect of the embodiments of the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected through a wire, and the at least one processor is used to run a computer program or Instructions to execute the service flow processing method described in any one of the implementation manners of the second aspect to the second aspect.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the embodiments of the present application further provide the first implementation manner of the sixteenth aspect.
  • the chip or chip system described above in the present application further includes at least one memory, and the at least one memory stores instructions.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • the seventeenth aspect of the embodiments of the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected through a wire, and the at least one processor is used to run a computer program or Instructions to execute the service flow processing method described in any one of the implementation manners of the third aspect to the third aspect.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the embodiments of the present application further provide the first implementation manner of the seventeenth aspect.
  • the chip or chip system described above in the present application further includes at least one memory, and the at least one memory stores instructions.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • the eighteenth aspect of the embodiments of the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected through a wire, and the at least one processor is used to run a computer program or Instructions to execute the service flow processing method described in any one of the implementation manners of the fourth aspect to the fourth aspect.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the embodiments of the present application further provide the first implementation manner of the eighteenth aspect.
  • the chip or chip system described above in the present application further includes at least one memory, and the at least one memory stores instructions.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • a nineteenth aspect of the embodiments of the present application provides a communication system, which includes any two of a session management function network element, a policy control function network element, a user plane function network element, and a terminal device;
  • the session management function network element is used to execute the foregoing first aspect or any one of the possible implementation methods of the first aspect
  • the policy control function network element is used to execute the above-mentioned second aspect or any one of the possible implementation methods of the second aspect;
  • the user plane function network element is used to execute the third aspect or any one of the possible implementation methods of the third aspect
  • the communication device is configured to execute the foregoing fourth aspect or any one of the possible implementation methods of the fourth aspect.
  • FIG. 1 is a schematic diagram of an architecture in which a terminal device is connected to a 5G core network in an embodiment of the application;
  • FIG. 2 is another schematic diagram of the architecture of a terminal device accessing a 5G core network in an embodiment of the application;
  • FIG. 3 is a schematic diagram of a first embodiment of a method for processing a service flow in an embodiment of this application;
  • FIG. 4 is a schematic diagram of an embodiment of allocating resources in an embodiment of the application.
  • FIG. 5 is a schematic diagram of an eleventh embodiment of a method for processing a service flow in an embodiment of this application;
  • FIG. 6 is a schematic diagram of a twelfth embodiment of a method for processing a service flow in an embodiment of this application;
  • FIG. 7 is a schematic diagram of an application example of a method for processing a service flow in an embodiment of the application
  • FIG. 8 is a schematic diagram of an embodiment of a session management function network element provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of an embodiment of a policy control function network element provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of an embodiment of a user plane function network element provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of an embodiment of a terminal device provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of a first embodiment of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of a second embodiment of a communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of a third embodiment of a communication device according to an embodiment of this application.
  • FIG. 15 is a schematic diagram of another embodiment of a terminal device provided by an embodiment of this application.
  • FIG. 1 is a schematic diagram of an architecture in which a terminal device accesses a 5G core network in an embodiment of the present application.
  • the architecture mainly includes three major parts: terminal equipment, access network, and 5G core network.
  • the access network includes the 3GPP access network Access Network and the untrusted non-3GPP Access Network
  • the 5G core network includes the access and mobility management function (Core Access and Mobility Management Function, AMF) network elements , Policy Control Function (PCF) network elements, Session Management Function (SMF) network elements, User Plane Function (UPF) network elements, and Non-3GPP Interworking Function (Non-3GPP Interworking Function) , N3IWF) network element.
  • AMF Access and Mobility Management Function
  • PCF Policy Control Function
  • SMF Session Management Function
  • UPF User Plane Function
  • N3IWF Non-3GPP Interworking Function
  • the AMF network element the mobility management function, is responsible for the mobility management of the user, including the mobility status management, assigning the user's temporary identity, and authenticating and authorizing users.
  • SMF network element responsible for UPF selection, UPF reselection, IP address allocation, responsible for bearer establishment, modification and release, and QoS control.
  • UPF network elements support all or part of the following functions: Interconnect protocol data unit (PDU) sessions with data networks; packet routing and forwarding (for example, support for Uplink classifier and forwarding of traffic to the data network, support for Branching point to support multi-homed PDU session); data packet inspection.
  • PDU Interconnect protocol data unit
  • packet routing and forwarding for example, support for Uplink classifier and forwarding of traffic to the data network, support for Branching point to support multi-homed PDU session
  • data packet inspection for example, support for Uplink classifier and forwarding of traffic to the data network, support for Branching point to support multi-homed PDU session.
  • PCF network elements include policy control decision-making and flow-based charging control functions, including user subscription data management functions, policy control functions, charging policy control functions, QoS control, etc.
  • Terminal device also called user equipment (user equipment, UE), is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water It can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • FIG. 1 replaces the terminal device with a UE.
  • N1, N2, N3, N4, N6, N11, Y1, Y2, and NWu in Figure 1 represent the interface serial numbers respectively.
  • the meanings of these interface serial numbers can be referred to the meanings defined in the third generation partnership project (third generation partnership project, 3GPP) standard protocol, which is not limited here.
  • the terminal device can access the 5G core network through the 3GPP access network.
  • the terminal device can be connected to the 3GPP access network, and the terminal device can also be directly connected to the AMF network element through the N1 interface.
  • the access network can be connected to the AMF network element through the N2 interface, and the 3GPP access network can be connected to the UPF network element through the N3 interface.
  • the terminal device can also access the 5G core network through the untrusted non-3GPP access network. Specifically, the terminal device can connect to the untrusted non-3GPP access network through the Y1 interface, and the terminal device can also directly connect to the AMF network through the N1 interface.
  • the N3IWF network element is introduced, and the non-trusted non-3GPP access network can be connected to the N3IWF network element through the Y2 interface, and the N3IWF network element can be connected to the AMF network element through the N2 interface.
  • the N3IWF network element It can be connected to the UPF network element through the N3 interface, so the N3IWF network element is equivalent to a radio access network (Radio Access Network, RAN) node for the 5G core network.
  • Radio Access Network Radio Access Network
  • FIG. 2 another schematic diagram of the architecture in which the terminal device is connected to the 5G core network in the embodiment of the present application.
  • the architecture also mainly includes three major parts: terminal equipment, access network, and 5G core network.
  • the access network includes the 3GPP access network and the trusted non-3GPP access network Trusted Non-3GPP Access Network.
  • the trusted non-3GPP access network Trusted Non-3GPP Access Network includes the trusted non-3GPP gateway function (Trusted Non-3GPP Gateway). Function, TNGF) network element and Trusted Non-3GPP Access Point.
  • the 5G core network includes access and AMF network elements, PCF network elements, SMF network elements, and UPF network elements.
  • the UE is used instead of the terminal equipment in FIG. 2.
  • N1, N2, N3, N4, N6, N11, Yt, Ta, Tn, and NWt in Figure 2 represent the serial numbers of the interfaces, respectively.
  • the meanings of these interface serial numbers can be referred to the meanings defined in the third generation partnership project (third generation partnership project, 3GPP) standard protocol, which is not limited here.
  • the terminal device can access the 5G core network through the 3GPP access network.
  • the terminal device can be connected to the 3GPP access network, and the terminal device can also be directly connected to the AMF network element through the N1 interface.
  • the access network can be connected to the AMF network element through the N2 interface, and the 3GPP access network can be connected to the UPF network element through the N3 interface.
  • the terminal device can also access the 5G core network through the trusted non-3GPP access network.
  • the terminal device can connect to the trusted non-3GPP access point in the trusted non-3GPP access network through the Yt interface, and the terminal device can also It is directly connected to the AMF network element through the N1 interface, and in this way, the TNGF network element is introduced into the trusted non-3GPP access network, and the trusted non-3GPP access point can be connected to the N3IWF network element through the Ta interface, and the N3IWF network
  • the element can be connected to the AMF network element through the N2 interface, and the N3IWF network element can be connected to the UPF network element through the N3 interface. Therefore, the N3IWF network element is also equivalent to a RAN node for the 5G core network.
  • the terminal equipment can access the 5G core network through two access networks respectively.
  • the two access networks include but are not limited to the two access networks shown in Figure 1 and the one shown in Figure 2.
  • Two access networks When a terminal device accesses the 5G core network through two access networks, the service flow data between the terminal device and the 5G core network can be transmitted from one of the two access networks, or from two Another access network in the access network performs transmission.
  • the movement of service flow data from one access network to another access network includes the case of switching the service flow data from one access network to another access network.
  • the embodiment of the present application provides a service flow processing method, which allocates resources in advance in two access networks respectively to reduce the time delay when the service flow data moves from one side to the other side.
  • the first core network element can be the SMF network element in the 5G core network
  • the second core network element can be the PCF network element in the 5G core network
  • the third core network element can be the SMF network element in the 5G core network.
  • the first core network network element, the second core network network element, and the third core network network element can also be future communications.
  • the sixth generation (6th generation, 6G) network has the above-mentioned AMF, SMF, PCF, AF, RAN, and NEF.
  • the network element of the UPF function is not limited in the embodiment of this application.
  • FIG. 3 is a schematic diagram of a first embodiment of a method for processing a service flow in an embodiment of the present application.
  • an embodiment of the present application provides a first embodiment of a method for processing a service flow, including:
  • the network element of the second core network determines that it is necessary to allocate resources on the first network and the second network for the GBR QoS flow that guarantees the bit rate of the stream.
  • the first network can be understood as a network including terminal equipment, access network equipment, and 5G core network.
  • a first transmission path can be formed between the terminal equipment and the 5G core network through the access network equipment;
  • the network can also be understood as a network including terminal equipment, access network equipment, and a 5G core network.
  • a second transmission path can be formed between the terminal equipment and the 5G core network through the access network equipment.
  • the first network may be a network established using 3GPP access technology or a network established using non-3GPP access technology; the second network may be a network established using 3GPP access technology or a network established using non-3GPP access technology.
  • the access network equipment in the first network is a 3GPP access network equipment.
  • the first network is a network established using non-3GPP access technology
  • the first The access network equipment in the network is a non-3GPP access network equipment or a non-3GPP access network gateway; similarly, when the second network is a network established using 3GPP access technology, the access network equipment in the second network It is a 3GPP access network device.
  • the second network is a network established using a non-3GPP access technology
  • the access network device in the second network is a non-3GPP access network device or a non-3GPP access network gateway.
  • the service information includes but is not limited to the application of the terminal device Identification, application type, IP 5-tuple, source MAC address and destination MAC address.
  • each application type corresponds to a local operator policy.
  • the corresponding local operator policy indicates that resources need to be allocated for GBR QoS flow in the first network and the second network to ensure the application type
  • the second core network element can determine the need to allocate resources for the GBR QoS flow in the first network and the second network according to the application type.
  • the second core network element can determine the need for GBR according to the IP quintuple QoS flow allocates resources on the first network and the second network.
  • the execution of operation 101 may occur during the establishment of a Multi-Access Protocol Data Unit (MA PDU) session.
  • MA PDU Multi-Access Protocol Data Unit
  • the terminal device may first send a non-access stratum (NAS) message to the AMF network element, and the NAS message includes a MA PDU session establishment request.
  • the AMF network element will forward the MA PDU session establishment request to the SMF network element, and the SMF network element will send a session management policy association establishment request message to the PCF network element.
  • the session management policy association establishment request message is used to request the policy rules for session establishment.
  • the PCF network element After receiving the session management policy association establishment request message, the PCF network element first performs operation 101.
  • the execution of operation 101 may also occur during the MA PDU session modification process.
  • the AMF network element directly sends a request to re-establish GBR QoS flow to the PCF network element, and the PCF network element will also perform operation 101 after receiving the request to re-establish GBR QoS flow.
  • the execution of operation 101 may also occur in a scenario where the local operator's policy is modified. For example, suppose the current local operator policy indicates that GBR QoS flow is only established in the first network. When the local operator policy is modified, the local operator policy indicates that GBR QoS flow needs to be allocated resources in the first network and the second network. , The PCF network element can also perform operation 101.
  • the PCF network element allocates resources for the GBR QoS flow in the first network and the second network, and there are corresponding MA PDU sessions between the terminal device and the 5G core network, so the terminal device needs to have multiple access capabilities
  • an identifier may be used to indicate that the terminal device has the multi-access capability.
  • the identifier may be stored in the session management policy association establishment request message, so that the PCF network element can determine that the terminal device has the multi-access capability according to the identifier.
  • the network element of the second core network sends a policy rule to the network element of the first core network.
  • the network element of the second core network After determining that the network element of the second core network needs to allocate resources for the GBR QoS flow in the first network and the second network, it will configure specific policy rules according to local operator policies, etc.
  • the embodiment of this application provides a method for configuring policy rules
  • the policy rule is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network, and then send the policy rule to the first core network element.
  • the policy rule can It is carried in the session management policy association establishment response message sent by the second core network element to the first core network element.
  • the first core network element will come from the policy rule of the second core network element.
  • the network element of the first core network allocates resources on the first network and the second network for the GBR QoS flow that guarantees the bit rate of the stream according to the policy rules.
  • the first core network element After the first core network element receives the policy rules, it will allocate resources for the GBR QoS flow in the first network and the second network according to the policy rules. There are many ways to allocate resources, which can be determined by the policy rules. This application The embodiment does not specifically limit this.
  • the service flow data corresponding to GBR QoS flow can be transmitted from the first network or It can be transmitted from the second network; when the service flow data needs to be moved for some reason, there is no need to re-allocate resources for GBR QoS flow, and the service flow data can be directly moved from the first network to the second network.
  • the service flow data can be directly moved from the second network to the first network, so the delay is small.
  • the first core network element allocates resources for the GBR QoS flow in the first network and the second network.
  • the process of allocating resources by the first core network element will be described in detail below.
  • FIG. 4 is a schematic diagram of an embodiment of allocating resources in an embodiment of the present application.
  • the first core network element to allocate resources for GBR QoS flow in the first network and the second network includes:
  • the first core network element configures the first resource and the second resource for GBR QoS flow according to the policy rules.
  • policy rules can include quality of service QoS rules and diversion rules.
  • QoS rules can include QoS flow related parameters, such as guaranteed flow bandwidth, maximum flow bandwidth, and maximum data burst traffic, etc.
  • diversion rules can include diversion mode information, such as The shunt mode information can include a specific shunt mode.
  • the shunt mode can be a priority mode, a master-slave mode, a minimum delay mode, and an equalization mode. In addition, it can also be other modes, which are not limited in the embodiment of the application. .
  • the first resource corresponds to the first network
  • the second resource corresponds to the second network.
  • the embodiment of the present application does not specifically limit the content of the first resource and the second resource, and can be specifically determined according to policy rules.
  • the first core network element sends the first resource and the offloading rule to the access network device in the first network.
  • the network element of the first core network sends the second resource and the offloading rule to the access network device in the second network.
  • the first core network element can send related resources and offloading rules to the access network device in the first network and the access network device in the second network through the AMF network element; specifically, the first core network
  • the network element can send the N1N2 interface message containing the first resource, the second resource and the offloading rule to the AMF network element to transfer the N1N2MessageTransfer message, and then the AMF network element sends the first resource and offloading rule to the access network device in the first network.
  • the N2 interface PDU session request N2PDU Session Request message the AMF network element sends the N2PDU Session Request message containing the second resource and the offloading rule to the access network device in the second network.
  • the first core network element can send the first resource and offload rule to the access network device in the first network, and send the second resource and offload rule to the access network device in the second network.
  • the first core network element sends the first resource, the second resource, and the offloading rule corresponding to the GBR QoS flow to the terminal device.
  • the AMF network element can directly send the offload rule to the terminal device, and the first resource and the second resource can be separately It is sent to the terminal device through the access network device in the first network and the access network device in the second network; specifically, after receiving the first resource, the access network device in the first network will Establish air interface resources with the terminal device. During the process of establishing the air interface resources, the terminal device will receive the first resource. Similarly, after the second machine connects to the network and receives the second resource, it will establish the air interface resource with the terminal device based on the second resource. In the process of establishing the air interface resource, the terminal device will receive the second resource. Through the above process, the first core network element can send the first resource, the second resource, and the offloading rule to the terminal device.
  • the terminal device will receive the first resource, the second resource, and the offloading rule corresponding to the GBR QoS flow from the first core network element.
  • the first resource corresponds to the first network and the second resource Corresponds to the second network.
  • the first core network element sends the first resource, the second resource, and the offloading rule corresponding to the GBR QoS flow to the third core network element.
  • the first core network element can establish an N4 session with the third core network element, and send the first resource, the second resource, and the offloading rule to the third core network element through the N4 session.
  • the third core network element will receive from the first core network element the first resource, the second resource and the offloading rule corresponding to the guaranteed flow bit rate quality of service flow GBR QoS flow, and the first resource corresponds to the first network , The second resource corresponds to the second network.
  • the third core network element sends the service flow data corresponding to the GBR QoS flow to the terminal device through the access network device in the first network according to the offloading rule and the first resource.
  • the network element of the third core network may determine a specific scheme for transmitting service flow data according to the offloading rule. Since both the first network and the second network can be a network established using 3GPP access technology or a network established using non-3GPP access technology, the embodiment of this application may assume that the third core network element selects the access in the first network. The network access equipment transmits the service flow data.
  • the third core network element determines that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow
  • the third core network element passes through the access network in the second network according to the second resource.
  • the device sends the service flow data corresponding to the GBR QoS flow to the terminal device.
  • the third core network element can determine that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow according to various situations, for example, if the access network device in the first network Failure, it can be determined that the access network equipment in the first network cannot transmit service flow data corresponding to GBR QoS flow; for another example, if the access network equipment in the first network is congested, in this case, there are two types Possibly, the first possibility is that part of the service flow data corresponding to GBR QoS flow can still be transmitted through the access network equipment in the first network, but due to congestion, another part of the service flow data corresponding to GBR QoS flow cannot pass through the first network.
  • the second possibility is that the service flow data corresponding to GBR QoS flow cannot be transmitted through the access network equipment in the first network.
  • both possibilities are As the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow.
  • the third core network network element transmits to the terminal through the access network device in the second network according to the second resource.
  • the device sends the service flow data corresponding to the GBR QoS flow, and at the same time, it can choose not to send the service flow data corresponding to the GBR QoS flow to the terminal device through the access network device in the first network, or it can choose to pass the access in the first network
  • the network device sends the service flow data corresponding to the GBR QoS flow to the terminal device, which can be specifically determined according to the actual situation that cannot be transmitted and the distribution rule.
  • the terminal device sends the service flow data corresponding to the GBR QoS flow to the third core network element through the access network device in the first network according to the offloading rule and the first resource.
  • the terminal device can determine a specific plan for transmitting service flow data according to the offloading rules. Since both the first network and the second network can be a network established using 3GPP access technology or a network established using non-3GPP access technology, the embodiment of this application may assume that the terminal device selects the access network device in the first network to perform Transmission of business flow data.
  • the terminal device determines that the access network device in the first network cannot transmit the service flow data corresponding to GBR QoS flow
  • the terminal device transmits the service flow data corresponding to the GBR QoS flow to the third core network element through the access network device in the second network according to the second resource.
  • the terminal device can also determine that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow according to various situations.
  • the various situations are similar to the multiple situations mentioned in operation 206, and the details can be Refer to multiple situations in operation 206 for understanding.
  • the terminal device When it is determined that the access network device in the first network cannot transmit the service flow data corresponding to GBR QoS flow, the terminal device will also select the access network device in the second network, or select the access network device in the first network and The access network device in the second network transmits service flow data corresponding to the GBR QoS flow.
  • the access network device in the second network For details, refer to the description of operation 206 for understanding.
  • the third core network network element and the terminal device may first transmit service flow data through the access network device in the first network.
  • the access network device in the first network cannot transmit GBR QoS flow
  • the access network device in the second network can be directly used to transmit the service flow data corresponding to GBR QoS flow, and there is no need to reconfigure resources for GBR QoS flow in the second network, so the delay is small.
  • the first core network element can configure the first resource and the second resource for GBR QoS flow according to the policy rules.
  • the policy rules can include QoS rules and offloading rules, but there are many types of QoS rules and offloading rules. Possibly, so there are multiple solutions for configuring the first resource and the second resource.
  • the process of configuring the first resource and the second resource will be described in detail below with different QoS rules and distribution rules.
  • the QoS rule includes a first parameter that guarantees flow bandwidth and a second parameter that guarantees the maximum flow bandwidth.
  • the second parameter is greater than the first parameter.
  • the second parameter can also be equal to the first parameter.
  • the network element of the first core network configures the first resource and the second resource for GBR QoS flow according to the policy rules, including:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter
  • the first core network element configures the guaranteed stream bandwidth in the second resource as 0, and configures the maximum stream bandwidth in the second resource as the second parameter.
  • the guaranteed stream bandwidth in the first resource is configured according to the first parameter, so that the transmission of service stream data in the first network can be guaranteed, and the guaranteed stream bandwidth in the second resource is configured If it is 0, the maximum stream bandwidth in the second resource is configured as the second parameter, which can save resources in the second network.
  • the QoS rule includes a first parameter that guarantees flow bandwidth and a third parameter that guarantees the maximum flow bandwidth, where the third parameter is greater than the first parameter.
  • the network element of the first core network configures the first resource and the second resource for GBR QoS flow according to the policy rules, including:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter
  • the first core network element configures the guaranteed stream bandwidth in the second resource as the difference between the third parameter and the first parameter.
  • the guaranteed stream bandwidth in the second resource is configured as the difference between the third parameter and the first parameter.
  • the difference is often smaller than the first parameter, and the The difference is set to be smaller.
  • the QoS rule includes the first parameter and the fourth parameter that guarantee the bandwidth of the flow, the fourth parameter is the maximum data burst flow rate, and the maximum data burst flow rate is greater than The first parameter.
  • the network element of the first core network configures the first resource and the second resource for GBR QoS flow according to the policy rules, including:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter
  • the first core network element configures the guaranteed flow bandwidth in the second resource as (MDBV/PDB-GFBR/AW)*AW, where MDBV represents the maximum data burst flow, PDB represents the GBR QoS flow packet delay budget, and GFBR represents The first parameter, AW represents the average window of GBR QoS flow, and GFBR/AW represents the unit traffic that needs to be guaranteed for the service data flow corresponding to GBR QoS flow.
  • the first core network element configures the guaranteed flow bandwidth in the second resource according to the maximum data burst flow and the first parameter of the guaranteed flow bandwidth, which is especially suitable for service flow data with important delays. ;
  • the guaranteed stream bandwidth in the second resource is often configured to be smaller.
  • the QoS rule includes the first parameter that guarantees the flow bandwidth
  • the network element of the first core network configures the first resource and the second resource for GBR QoS flow according to the policy rules, including:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter
  • the first core network element configures the guaranteed flow bandwidth in the second resource as the fifth parameter according to the preset first local policy.
  • the guaranteed stream bandwidth in the first resource is configured by the first core network element according to the first parameter
  • the guaranteed stream bandwidth in the second resource is configured by the first core network element according to the first local
  • the policy configuration makes the configuration of the guaranteed stream bandwidth in the second resource more flexible; similarly, in order to save resources in the second network, the fifth parameter is often configured to be smaller.
  • the QoS rule includes the first parameter corresponding to the first network to guarantee the flow bandwidth and the sixth parameter corresponding to the second network to guarantee the flow bandwidth.
  • the network element of the first core network configures the first resource and the second resource for GBR QoS flow according to the policy rules, including:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter
  • the first core network element configures the guaranteed stream bandwidth in the second resource as the sixth parameter.
  • the QoS rule specifies the guaranteed stream bandwidth corresponding to the first network and the second network, and the first core network element can complete the configuration of the first resource and the second resource according to the instructions of the QoS rule.
  • the first core network element configured the first resource corresponding to the first network and the second resource corresponding to the second network differently according to the QoS rules, and the first resource can be configured first before the configuration.
  • the first network and the second network are distinguished, and then the first resource and the second resource are configured as described above according to the distinguishing result.
  • the distinction between the first network and the second network can be performed according to the offloading rules, and the different offloading rules will be introduced in detail below.
  • the offload rule includes offload mode information.
  • the offload mode information includes: the offload mode is a priority mode, and the priority of the first network is higher than the priority of the second network;
  • the offload mode information includes: offload mode master-slave mode, the first network is the master network, and the second network is the slave network;
  • the offload mode information includes: the offload mode is the minimum delay mode, and the delay of the first network is smaller than the delay of the second network.
  • the first network and the second network can be distinguished based on the offload mode information in the policy rules, and then the first resource and the second resource can be configured differently according to the methods of the previous embodiments, so as to achieve More reasonable allocation of the first resource and the second resource.
  • the offload mode information is not only used to distinguish the first network from the second network, but also can be used to instruct the terminal device and the third core network element to select the access network device and/or the second network in the first network.
  • the access network equipment in the network transmits service flow data.
  • the offloading mode is the priority mode
  • the terminal device and the third core network element will preferentially select the access network device in the first network for GBR QoS flow
  • the corresponding service flow data is transmitted.
  • part of the service flow data corresponding to GBR QoS flow cannot be transmitted through the access network device in the first network
  • This part of the service flow data is transmitted.
  • all service flow data corresponding to GBR QoS flow cannot be transmitted through the access network device in the first network
  • the offloading mode is the master-slave mode
  • the terminal equipment and the third core network element will select the access network equipment in the first network to correspond to GBR QoS flow
  • the access network device in the first network cannot transmit the service flow data corresponding to GBR QoS flow regardless of the situation, the terminal device and the third core network element will choose the access network in the second network.
  • the network-connected device transmits the service flow data corresponding to the GBR QoS flow, and there is no situation that the first network and the second network simultaneously transmit the service flow data corresponding to the BR QoS flow.
  • the terminal device and the third core network element will select the pair of access network devices in the first network.
  • the service flow data corresponding to the GBR QoS flow is transmitted, and no matter what the situation causes the access network equipment in the first network to be unable to transmit the service flow data corresponding to the GBR QoS flow, the terminal equipment and the third core network element will choose the second
  • the access network equipment in the network transmits the service flow data corresponding to the GBR QoS flow, and there will be no situation where the first network and the second network simultaneously transmit the service flow data corresponding to the BR QoS flow.
  • offloading rules Three types of offloading rules have been introduced above. It is understandable that the offloading rules in the embodiments of this application are not limited to the above-mentioned three offloading rules. The following will take another offloading rule as an example to configure the first core network element. The process of the resource and the second resource will be explained.
  • the QoS rule includes a first parameter that guarantees the flow bandwidth
  • the distribution rule includes the distribution mode information
  • the distribution mode information includes: the distribution mode is a balanced mode, and the first The ratio of the guaranteed stream bandwidth corresponding to the network to the guaranteed stream bandwidth corresponding to the second network.
  • the network element of the first core network configures the first resource and the second resource for GBR QoS flow according to the policy rules, including:
  • the first core network element configures the guaranteed stream bandwidth in the first resource and the guaranteed stream bandwidth in the second resource according to the first parameter and the ratio.
  • the offloading mode is the balanced mode, that is, the terminal device and the third core network element will simultaneously select the access network device in the first network and the access network device in the second network to transmit GBR QoS flow correspondence Therefore, the first parameter can be allocated according to the proportion in the offload mode information, and the guaranteed flow bandwidth in the first resource and the guaranteed flow bandwidth in the second resource can be obtained respectively.
  • the foregoing embodiment is an explanation of an allocation process of the first resource and the second resource when the offload mode is the balanced mode.
  • the following will perform another allocation process of the first resource and the second resource when the offload mode is the balanced mode. Description.
  • the QoS rule includes a first parameter corresponding to the first network to guarantee the flow bandwidth and a seventh parameter corresponding to the second network to guarantee the flow bandwidth
  • the offloading rule includes offloading Mode information
  • the shunt mode information includes: the shunt mode is an equalization mode.
  • the network element of the first core network configures the first resource and the second resource for GBR QoS flow according to the policy rules, including:
  • the first core network element configures the guaranteed stream bandwidth in the first resource as the first parameter
  • the first core network element configures the guaranteed stream bandwidth in the second resource as the seventh parameter.
  • the QoS rules indicate the guaranteed flow bandwidth corresponding to the first network and the guaranteed flow bandwidth corresponding to the second network. Therefore, the first core network element can directly process the first resource and the second resource according to the QoS rules. To ensure the setting of the stream bandwidth, since the split mode is an equalization mode, the relative size of the first parameter and the seventh parameter is not limited.
  • the terminal device when the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow, the terminal device will transmit the service corresponding to GBR QoS flow through the access network device in the second network and the terminal device.
  • Flow data there are differences between the first resource and the second resource. If the second resource is not adjusted, the transmission of service flow data corresponding to GBR QoS flow may be affected. For example, in order to save the resources of the second network, the second resource The guaranteed flow bandwidth is often small, so the transmission of the service flow data corresponding to the GBR QoS flow cannot be well guaranteed. Therefore, the second resource needs to be adjusted. The adjustment process of the second resource will be described in detail below.
  • FIG. 5 is a schematic diagram of an eleventh embodiment of a method for processing a service flow in an embodiment of the present application.
  • an embodiment of the present application provides an eleventh embodiment of a method for processing a service flow, including:
  • the third core network element determines that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow, the third core network element sends first indication information to the first core network element.
  • the first indication information is used to indicate that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow;
  • the first core network element will receive the first indication information from the third core network element.
  • the first core network element adjusts the guaranteed stream bandwidth in the second resource to the first parameter according to the first indication information.
  • the first network in the case that the first network can transmit service flow data corresponding to GBR QoS flow, for any mode, it is used to transmit the service flow corresponding to GBR QoS flow.
  • the guaranteed flow bandwidth of flow data is the first parameter. Therefore, in order to prevent the second resource from affecting the access network device in the second network to transmit service flow data corresponding to GBR QoS flow, the first core network element will The guaranteed stream bandwidth is adjusted to the first parameter, that is, the guaranteed stream bandwidth used to transmit service stream data is maintained unchanged.
  • the first core network element sends the adjusted second resource to the third core network element.
  • the first core network element sends the adjusted second resource to the access network device in the second network.
  • the first core network element sends the adjusted second resource to the terminal device.
  • the manner in which the first core network element sends the adjusted second resource is the same as the manner in which the second resource is sent in the foregoing second embodiment.
  • the second resource sending method in the second embodiment Understand the relevant instructions.
  • the third core network element will receive the adjusted second resource from the first core network element; when the terminal device determines that the access network device in the first network cannot transmit the service flow data corresponding to GBR QoS flow , The terminal device also receives the adjusted second resource from the network element of the first core network.
  • the third core network element sends the service flow data corresponding to the GBR QoS flow to the terminal device through the access network device in the second network according to the adjusted second resource.
  • the terminal device sends the service flow data corresponding to the GBR QoS flow to the third core network element through the access network device in the second network according to the adjusted second resource.
  • the first core network element adjusts the guaranteed flow bandwidth in the second resource to the first parameter, so that the third core network element and terminal equipment use the adjusted second resource to perform service flow data Therefore, it is possible to prevent the insufficient second resource from affecting the transmission of service flow data.
  • the guaranteed flow bandwidth in the second resource is adjusted to the first parameter.
  • the offloading mode is the balanced mode
  • the QoS rules include the first network corresponding The first parameter of guaranteed flow bandwidth and the seventh parameter of guaranteed flow bandwidth corresponding to the second network, so when the first network can transmit the service flow data corresponding to GBR QoS flow, it is used to transmit the service corresponding to GBR QoS flow
  • the guaranteed stream bandwidth of the stream data is the sum of the first parameter and the seventh parameter.
  • the process of reconfiguring the second resource by the first core network element is different.
  • the process of reconfiguring the second resource by the first core network element will be introduced below.
  • FIG. 6 is a schematic diagram of a twelfth embodiment of a method for processing a service flow in an embodiment of the present application.
  • an embodiment of the present application provides a twelfth embodiment of a method for processing a service flow, including:
  • the third core network element determines that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow, the third core network element sends first indication information to the first core network element.
  • the first indication information is used to indicate that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow;
  • the first core network element will receive the first indication information from the third core network element.
  • the first core network element adjusts the guaranteed stream bandwidth in the second resource to the sum of the first parameter and the seventh parameter according to the first indication information.
  • adjusting the guaranteed stream bandwidth in the second resource to the sum of the first parameter and the seventh parameter can maintain the guaranteed stream bandwidth used to transmit service stream data unchanged.
  • the network element of the first core network sends the adjusted second resource to the network element of the third core network.
  • the network element of the first core network sends the adjusted second resource to the access network device in the second network.
  • the first core network element sends the adjusted second resource to the terminal device.
  • the third core network element will receive the adjusted second resource from the first core network element
  • the terminal device When the terminal device determines that the access network device in the first network cannot transmit the service flow data corresponding to the GBR QoS flow, the terminal device will also receive the adjusted second resource from the network element of the first core network.
  • the third core network element sends the service flow data corresponding to the GBR QoS flow to the terminal device through the access network device in the second network according to the adjusted second resource.
  • the terminal device sends the service flow data corresponding to the GBR QoS flow to the third core network network element through the access network device in the second network according to the adjusted second resource.
  • the first core network element adjusts the guaranteed stream bandwidth in the second resource to the sum of the first parameter and the seventh parameter, so that the third core network element and terminal equipment adopt the adjusted second
  • the resource performs the transmission of the service flow data, so as to prevent the insufficient second resource from affecting the transmission of the service flow data.
  • the second core network element will send policy rules to the first core network element to instruct the first core network element to allocate resources on the first network and the second network for GBR QoS flow.
  • a core network element needs to allocate resources for the GBR QoS flow in the first network and the second network, and the method of adding instructions can be used. Therefore, in the twelfth embodiment of a service flow processing method provided in the embodiment of this application Before allocating resources for the first network and the second network before the first network element allocates resources to the first network and the second network, the method further includes:
  • the second core network element sends second indication information to the first core network element, where the second indication is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • the second indication information may be separately sent by the second core network element to the first core network element, and the second indication information may also be carried in a policy rule.
  • the first core network element will obtain the second indication information, and the first core network element will send the second indication information to the third core network element and the terminal device.
  • the third core network element will receive the second indication information from the first core network element, and the terminal device will also receive the second indication information from the first core network element.
  • both the third core network element and the terminal device can obtain the information that the first core network element allocates resources for the first network and the second network for GBR QoS flow, so as to instruct the third core network element and the terminal device to respond to GBR
  • the service flow data corresponding to the QoS flow is switched or moved.
  • the application example uses the establishment of a MA PDU session as a scenario.
  • the first core The network element is an SMF network element
  • the second core network element is a PCF network element
  • the third core network element is a UPF network element.
  • it also includes terminal equipment, AMF network elements, and access network equipment.
  • terminal equipment It is represented by UE
  • the access network equipment in the first network is represented by RAN nodes
  • the machine access network equipment in the second network is represented by AN nodes.
  • FIG. 7 is a schematic diagram of an application example of a method for processing a service flow in an embodiment of this application.
  • the UE sends a non-access stratum (NAS) message to the AMF network element.
  • the NAS message contains a MA PDU session establishment request.
  • the AMF network element will forward the MA PDU session establishment request to the SMF network element, the SMF network element will send the session management policy association establishment request SM policy association establishment request message to the PCF network element, SM policy association establishment request message is used to request the session Established policy rules.
  • NAS non-access stratum
  • the PCF network element sends a session management policy association establishment response SM policy association establishment response message to the SMF network element, and the SM policy association establishment response message contains policy rules.
  • an N4 session is established between the SMF network element and the UPF network element, and the SMF sends the first resource, the second resource, and the offloading rule to the UPF network element through the N4 session.
  • the SMF network element also sends two N1N2MessageTransfer messages to the AMF network element.
  • One of the N1N2MessageTransfer messages to the AMF message contains the first resource and distribution rule, and the other N1N2MessageTransfer message to the AMF message contains the second resource and the distribution rule.
  • the AMF network element will send an N2PDU Session Request message to the RAN node and the AN node.
  • the N2PDU Session Request message received by the RAN node contains the first resource and offloading rule, and the N2PDU Session Request message received by the AN node contains the first resource. 2. Resources and diversion rules.
  • the AMF network element will also send offloading rules to the UE.
  • the RAN node establishes an air interface resource with the UE according to the first resource.
  • the UE will receive the first resource from the RAN node.
  • the AN node establishes an air interface resource with the UE according to the second resource.
  • the UE will receive the second resource from the AN node.
  • the UE transmits service flow data to the UPF through the RAN node; when the RAN node is unavailable, the UE transmits data to the UPF through the RN node.
  • the UPF network element also sends the first indication information to the SMF, and then the SMF The network element adjusts the second resource according to the first indication information, and sends the adjusted second resource to the UPF through the N4 session, so that the UPF performs data transmission with the UE according to the adjusted second resource.
  • FIG. 8 is a schematic diagram of a first embodiment of a communication device according to an embodiment of the present application.
  • an embodiment of the present application provides an embodiment of a communication device.
  • the communication device may be a session management function network element, and the communication device includes:
  • the receiving unit 501 is configured to receive a policy rule from a network element of the second core network
  • the processing unit 502 is configured to allocate resources in the first network and the second network for the GBR QoS flow that guarantees the bit rate of the stream according to the policy rules.
  • the processing unit 502 is configured to: configure a first resource and a second resource for GBR QoS flow according to policy rules, where the first resource corresponds to the first network, and the second resource corresponds to the first network.
  • the resource corresponds to the second network.
  • the policy rule includes a quality of service QoS rule and an offload rule.
  • the QoS rule includes a first parameter that guarantees the flow bandwidth and a second parameter that guarantees the maximum flow bandwidth, wherein the second parameter is greater than the first parameter;
  • the processing unit 502 is used to:
  • the QoS rule includes a first parameter that guarantees the flow bandwidth and a third parameter that guarantees the maximum flow bandwidth, where the third parameter is greater than the first parameter;
  • the processing unit 502 is used to:
  • the guaranteed stream bandwidth in the second resource is configured as the difference between the third parameter and the first parameter.
  • the QoS rule includes a first parameter and a fourth parameter that guarantee the flow bandwidth, the fourth parameter is the maximum data burst flow, and the maximum data burst flow is greater than the first parameter.
  • the processing unit 502 is used to:
  • MDBV represents the maximum data burst flow
  • PDB represents the packet delay budget of GBR QoS flow
  • GFBR represents the first parameter
  • AW represents The average window of GBR QoS flow.
  • the QoS rule includes a first parameter that guarantees a flow bandwidth
  • the processing unit 502 is used to:
  • the QoS rule includes a first parameter corresponding to the first network that guarantees the flow bandwidth and a sixth parameter corresponding to the second network that guarantees the flow bandwidth;
  • the processing unit 502 is used to:
  • the offload rule includes offload mode information
  • the offload mode information includes: the offload mode is a priority mode, and the priority of the first network is higher than the priority of the second network;
  • the offload mode information includes: offload mode master-slave mode, the first network is the master network, and the second network is the slave network;
  • the offload mode information includes: the offload mode is the minimum delay mode, and the delay of the first network is smaller than the delay of the second network.
  • the QoS rule includes a first parameter that guarantees the bandwidth of the stream
  • the offload rule includes offload mode information
  • the offload mode information includes: the offload mode is the balanced mode, and the first network corresponds to The ratio of the guaranteed stream bandwidth of the second network to the guaranteed stream bandwidth corresponding to the second network;
  • the processing unit 502 is used to:
  • the QoS rule includes a first parameter corresponding to the first network to guarantee the flow bandwidth and a seventh parameter corresponding to the second network to guarantee the flow bandwidth
  • the offloading rule includes offloading.
  • Mode information the shunt mode information includes: the shunt mode is a balanced mode;
  • the processing unit 502 is used to:
  • the receiving unit 501 is configured to receive first indication information from a third core network element, and the first indication information is used to indicate the connection in the first network.
  • the networked device cannot transmit the service flow data corresponding to GBR QoS flow;
  • the processing unit 502 is configured to adjust the guaranteed stream bandwidth in the second resource to the first parameter according to the first indication information
  • the communication device further includes: a sending unit 503, configured to send the adjusted second resource to the third core network network element, the access network device in the second network, and the terminal device.
  • the receiving unit 501 is configured to receive first indication information from a third core network element, and the first indication information is used to indicate the connection in the first network.
  • the networked device cannot transmit the service flow data corresponding to GBR QoS flow;
  • the processing unit 502 is configured to adjust the guaranteed stream bandwidth in the second resource to the sum of the first parameter and the seventh parameter according to the first indication information
  • the communication device further includes: a sending unit 503, configured to send the adjusted second resource to the third core network network element, the access network device in the second network, and the terminal device.
  • the sending unit 503 is configured to send the first resource, the second resource and the offloading rule corresponding to the GBR QoS flow to the terminal device;
  • the receiving unit 501 is further configured to obtain second indication information, and the second indication information is used to indicate that the first core network element is GBR QoS flow in the first The network and the second network allocate resources.
  • the second indication information is carried in a policy rule.
  • each unit and module in the communication device is similar to the process of the method described in the foregoing embodiment shown in FIG. 3 to FIG. 6, wherein the processing unit 502 is used to perform signal processing operations, and the receiving unit 501 The operation used to perform receiving, and the operation used to perform sending by the sending unit 503 will not be repeated here.
  • FIG. 9 is a schematic diagram of a second embodiment of a communication device according to an embodiment of the present application.
  • an embodiment of the present application provides an embodiment of a communication device.
  • the communication device may be a policy control function network element, including:
  • the processing unit 601 is configured to determine that it is necessary to allocate resources in the first network and the second network for the GBR QoS flow that guarantees the bit rate of the stream;
  • the sending unit 602 is configured to send a policy rule to the first core network element, where the policy rule is used to instruct the first core network element to allocate resources for the GBR QoS flow in the first network and the second network.
  • the policy rule includes a quality of service QoS rule and an offload rule.
  • the QoS rule includes a first parameter that guarantees the flow bandwidth and a second parameter that guarantees the maximum flow bandwidth, wherein the second parameter is greater than the first parameter.
  • the QoS rule includes a first parameter that guarantees the flow bandwidth and a third parameter that guarantees the maximum flow bandwidth, wherein the third parameter is greater than the first parameter.
  • the QoS rule includes a first parameter and a fourth parameter that guarantee the flow bandwidth, the fourth parameter is the maximum data burst flow, and the maximum data burst flow is greater than the first parameter.
  • the fourth parameter is the maximum data burst flow, and the maximum data burst flow is greater than the first parameter.
  • the QoS rule includes a first parameter that guarantees a flow bandwidth.
  • the QoS rule includes a first parameter corresponding to the first network to guarantee a stream bandwidth and a sixth parameter corresponding to the second network to guarantee a stream bandwidth.
  • the offload rule includes offload mode information; the offload mode information includes: the offload mode is a priority mode, and the priority of the first network is higher than the priority of the second network Or the offload mode information includes: offload mode master-slave mode, the first network is the master network, and the second network is the slave network; or offload mode information includes: the offload mode is the minimum delay mode, and the delay of the first network is longer than that of the second The network delay is small.
  • the QoS rule includes a first parameter that guarantees the bandwidth of the stream
  • the offload rule includes offload mode information
  • the offload mode information includes: the offload mode is a balanced mode, and the first network corresponds to The ratio of the guaranteed stream bandwidth to the guaranteed stream bandwidth corresponding to the second network.
  • the QoS rule includes a first parameter corresponding to the first network to guarantee the flow bandwidth and a seventh parameter corresponding to the second network to guarantee the flow bandwidth
  • the offloading rule includes offloading.
  • Mode information, the shunt mode information includes: the shunt mode is an equalization mode.
  • the sending unit 602 is further configured to send second indication information to the first core network element, and the second indication is used to indicate that the first core network element is GBR QoS flow allocates resources on the first network and the second network.
  • the second indication information is carried in a policy rule.
  • each unit and module in the communication device is similar to the process of the method described in the foregoing embodiment shown in FIG. 3, and will not be repeated here.
  • FIG. 10 is a schematic diagram of a third embodiment of a communication device according to an embodiment of the present application.
  • the communication device may be a user plane function network element, including:
  • the receiving unit 701 is configured to receive the first resource, the second resource, and the offloading rule corresponding to the GBR QoS flow from the first core network element, where the first resource corresponds to the first network, and the second resource Corresponding to the second network;
  • the sending unit 702 is configured to send service flow data corresponding to GBR QoS flow to the terminal device through the access network device in the first network according to the offloading rule and the first resource;
  • the sending unit 702 is further configured to send GBR QoS to the terminal device through the access network device in the second network according to the second resource when it is determined that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow The business flow data corresponding to the flow.
  • the sending unit 702 when it is determined that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow, the sending unit 702 is further configured to:
  • the receiving unit 701 is further configured to receive the adjusted second resource from the network element of the first core network
  • the sending unit 702 is further configured to send service flow data corresponding to the GBR QoS flow to the terminal device through the access network device in the second network according to the adjusted second resource.
  • the receiving unit 701 is further configured to: receive second indication information from the first core network element, and the second indication information is used to indicate the first core network element.
  • the core network element allocates resources for the GBR QoS flow in the first network and the second network.
  • each unit and module in the communication device is similar to the process of the method described in the foregoing embodiment shown in FIG. 4 to FIG. 6, and will not be repeated here.
  • FIG. 11 is a schematic diagram of an embodiment of a terminal device provided in an embodiment of the present application.
  • an embodiment of the present application provides an embodiment of a terminal device, including:
  • the receiving unit 801 is configured to receive the first resource, the second resource and the offloading rule corresponding to the GBR QoS flow from the first core network element, the first resource corresponds to the first network, and the second resource Corresponding to the second network;
  • the sending unit 802 is configured to send service flow data corresponding to GBR QoS flow to the third core network element through the access network device in the first network according to the offloading rule and the first resource;
  • the sending unit 802 is further configured to, when it is determined that the access network device in the first network cannot transmit the service flow data corresponding to GBR QoS flow, to the third core network network through the access network device in the second network according to the second resource Yuan sends service flow data corresponding to GBR QoS flow.
  • the receiving unit 801 when it is determined that the access network device in the first network cannot transmit service flow data corresponding to GBR QoS flow, the receiving unit 801 is configured to: The adjusted second resource of the core network network element;
  • the sending unit 802 is further configured to send service flow data corresponding to the GBR QoS flow to the third core network element through the access network device in the second network according to the adjusted second resource.
  • the receiving unit 801 is further configured to:
  • each unit and module in the terminal device is similar to the process of the method described in the foregoing embodiment shown in FIG. 4 to FIG. 6, and will not be repeated here.
  • an embodiment of the session management function network element in the embodiment of the present application may include one or more processors 1201, a memory 1202, and a communication interface 1203.
  • the memory 1202 may be short-term storage or persistent storage. Further, the processor 1201 may be configured to communicate with the memory 1202, and execute a series of instruction operations in the memory 1202 on the network element of the session management function.
  • the processor 1201 may execute the operations performed by the first core network element in the embodiments shown in FIG. 3 to FIG. 6, and details are not described herein again.
  • the specific functional module division in the processor 1201 may be similar to the functional module division of the receiving unit, the processing unit, the sending unit and other units described in FIG. 8, and will not be repeated here.
  • an embodiment of the policy control function network element in the embodiment of the present application may include one or more processors 1301, a memory 1302, and a communication interface 1303.
  • the memory 1302 may be short-term storage or persistent storage. Furthermore, the processor 1301 may be configured to communicate with the memory 1302, and execute a series of instruction operations in the memory 1302 on the policy control function network element.
  • the processor 1301 may perform the operations performed by the second core network element in the embodiment shown in FIG. 3, and details are not described herein again.
  • the specific functional module division in the processor 1301 may be similar to the functional module division of the processing unit, the sending unit, and other units described in FIG. 9, and will not be repeated here.
  • an embodiment of a user plane function network element in the embodiment of the present application may include one or more processors 1401, a memory 1402, and a communication interface 1403.
  • the memory 1402 may be short-term storage or persistent storage. Furthermore, the processor 1401 may be configured to communicate with the memory 1402, and execute a series of instruction operations in the memory 1402 on the user plane function network element.
  • the processor 1401 may execute the operations performed by the third core network element in the foregoing embodiments shown in FIG. 4 to FIG. 6, and details are not described herein again.
  • the specific functional module division in the processor 1401 may be similar to the functional module division of the processing unit, the sending unit, and other units described in FIG. 10, and will not be repeated here.
  • the attribute information display device can be any terminal equipment including mobile phones, tablet computers, personal digital assistants (PDAs), point of sales (POS), on-board computers, etc. Take the attribute information display device as a mobile phone as an example :
  • FIG. 15 shows a block diagram of a part of the structure of a mobile phone related to the attribute information display device provided by an embodiment of the present invention.
  • the mobile phone includes: a radio frequency (RF) circuit 1510, a memory 1520, an input unit 1530, a display unit 1540, a sensor 1550, an audio circuit 1560, a wireless fidelity (WiFi) module 1570, and a processor 1580 , And power supply 1590 and other components.
  • RF radio frequency
  • the RF circuit 1510 can be used for receiving and sending signals during the process of sending and receiving information or talking. In particular, after receiving the downlink information of the base station, it is processed by the processor 1580; in addition, the designed uplink data is sent to the base station.
  • the RF circuit 1510 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 1510 can also communicate with the network and other devices through wireless communication.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), Email, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Email Short Messaging Service
  • the memory 1520 may be used to store software programs and modules.
  • the processor 1580 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 1520.
  • the memory 1520 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 1520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 1530 can be used to receive inputted digital or character information, and generate key signal input related to user settings and function control of the mobile phone.
  • the input unit 1530 may include a touch panel 1531 and other input devices 1515.
  • the touch panel 1531 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1531 or near the touch panel 1531. Operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 1531 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1580, and can receive and execute the commands sent by the processor 1580.
  • the touch panel 1531 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 1530 may also include other input devices 1515.
  • other input devices 1515 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick.
  • the display unit 1540 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 1540 may include a display panel 1541.
  • the display panel 1541 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • the touch panel 1531 can cover the display panel 1541. When the touch panel 1531 detects a touch operation on or near it, it is transmitted to the processor 1580 to determine the type of the touch event, and then the processor 1580 responds according to the touch event. The type provides corresponding visual output on the display panel 1541.
  • the touch panel 1531 and the display panel 1541 are used as two independent components to implement the input and input functions of the mobile phone, in some embodiments, the touch panel 1531 and the display panel 1541 can be integrated. Realize the input and output functions of the mobile phone.
  • the mobile phone may also include at least one sensor 1550, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1541 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1541 and/or when the mobile phone is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary.
  • the audio circuit 1560, the speaker 1561, and the microphone 1562 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 1560 can transmit the electrical signal converted from the received audio data to the speaker 1561, which is converted into a sound signal for output by the speaker 1561; on the other hand, the microphone 1562 converts the collected sound signal into an electrical signal, and the audio circuit 1560 After being received, it is converted into audio data, and then processed by the audio data output processor 1580, and sent to, for example, another mobile phone via the RF circuit 1510, or the audio data is output to the memory 1520 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users send and receive emails, browse web pages, and access streaming media through the WiFi module 1570. It provides users with wireless broadband Internet access.
  • FIG. 15 shows the WiFi module 1570, it is understandable that it is not a necessary component of the mobile phone and can be omitted as needed without changing the essence of the invention.
  • the processor 1580 is the control center of the mobile phone. It uses various interfaces and lines to connect various parts of the entire mobile phone. It executes by running or executing software programs and/or modules stored in the memory 1520, and calling data stored in the memory 1520. Various functions and processing data of the mobile phone can be used to monitor the mobile phone as a whole.
  • the processor 1580 may include one or more processing units; optionally, the processor 1580 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs. And so on, the modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 1580.
  • the mobile phone also includes a power source 1590 (such as a battery) for supplying power to various components.
  • a power source 1590 such as a battery
  • the power source may be logically connected to the processor 1580 through a power management system, so that functions such as charging, discharging, and power management are realized through the power management system.
  • the mobile phone may also include a camera module, a Bluetooth module, etc., which will not be repeated here.
  • the processor 1580 may be configured to communicate with the memory 1520, and execute a series of instruction operations in the memory 1520 on the terminal device.
  • the processor 1580 may perform operations performed by the terminal device in the foregoing embodiments shown in FIG. 4 to FIG. 6, and details are not described herein again.
  • the specific functional module division in the processor 1580 may be similar to the functional module division of the receiving unit, the sending unit, and other units described in FIG. 11, and will not be repeated here.
  • the embodiment of the present application also provides a computer storage medium for storing computer software instructions used for the above-mentioned session management function network element, policy control function network element, user plane function network element or terminal device, which includes Used to execute programs designed for session management function network elements, policy control function network elements, user plane function network elements, or terminal devices.
  • the session management function network element may be the session management function network element described in the foregoing FIG. 8.
  • the policy control function network element may be the policy control function network element described in the foregoing FIG. 9.
  • the user plane function network element may be the user plane function network element described in FIG. 10.
  • the terminal device may be the terminal device described in FIG. 11 above.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes computer software instructions that can be loaded by a processor to implement the service flow processing method of any one of FIGS. 3 to 7 above. In the process.
  • the embodiments of the present application also provide a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions to The operations performed by the network element of the first core network in the foregoing embodiments shown in FIG. 3 to FIG. 6 are performed, and details are not described herein again.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the embodiment of the present application also provides a first implementation of the chip or the chip system.
  • the chip or the chip system described above in the present application further includes at least one memory, and the at least one memory stores instructions.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • the embodiments of the present application also provide a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions to The operations performed by the network element of the second core network in the embodiment shown in FIG. 3 are performed, and the details are not repeated here.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the embodiment of the present application also provides a first implementation of the chip or the chip system.
  • the chip or the chip system described above in the present application further includes at least one memory, and the at least one memory stores instructions.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • the embodiments of the present application also provide a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions to The operations performed by the network element of the third core network in the foregoing embodiments shown in FIG. 4 to FIG. 6 are performed, and details are not described herein again.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the embodiment of the present application also provides a first implementation of the chip or the chip system.
  • the chip or the chip system described above in the present application further includes at least one memory, and the at least one memory stores instructions.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • the embodiments of the present application also provide a chip or chip system.
  • the chip or chip system includes at least one processor and a communication interface.
  • the communication interface and the at least one processor are interconnected by wires, and the at least one processor is used to run computer programs or instructions to The operations performed by the terminal device in the embodiments shown in FIG. 4 to FIG. 6 are performed, and the details are not repeated here.
  • the communication interface in the chip can be an input/output interface, a pin, or a circuit.
  • the embodiment of the present application also provides a first implementation of the chip or the chip system.
  • the chip or the chip system described above in the present application further includes at least one memory, and the at least one memory stores instructions.
  • the memory may be a storage unit inside the chip, for example, a register, a cache, etc., or a storage unit of the chip (for example, a read-only memory, a random access memory, etc.).
  • An embodiment of the present application also provides a communication system, which includes any two of a session management function network element, a policy control function network element, a user plane function network element, and a terminal device;
  • the session management function network element is used to perform operations performed by the first core network element in the embodiment shown in FIG. 3 to FIG. 6;
  • the policy control function network element is configured to perform operations performed by the second core network network element in the embodiment shown in FIG. 3;
  • the user plane function network element is configured to perform operations performed by the third core network network element in the embodiments shown in FIG. 4 to FIG. 6;
  • the communication device is used to perform operations performed by the terminal device in the embodiments shown in FIG. 4 to FIG. 6.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请实施例公开了一种业务流的处理方法及设备。本申请实施例可以应用5G通信网络架构中,方法包括:第一核心网网元先接收第二核心网网元发送的策略规则,然后根据策略规则为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源,所以GBR QoS flow对应的业务流数据既可以从第一网络进行传输,也可以从第二网络进行传输,当业务流数据在第一网络和第二网络间移动时,不需要重新为GBR QoS flow分配资源,可以直接对业务流数据进行移动,所以时延较小。

Description

一种业务流的处理方法及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种业务流的处理方法及设备。
背景技术
随着通信技术的发展,第五代移动(5th generation,5G)通信技术问世,5G通信技术是新一代蜂窝移动通信技术,也是第四代(forth Generation,4G)通信技术之后的延伸。
第三代合作伙伴计划(third generation partnership project,3GPP)标准,定义了5G通信网络的架构,在该架构中,用户设备(user equipment,UE)可以通过3GPP接入网接入到5G核心网,也可以通过非3GPP接入网接入到5G核心网,也可以同时通过3GPP接入网和非3GPP接入网接入到5G核心网。
另外,3GPP标准还定义了,UE与5G核心网之间交互的业务数据流分为保障流比特速率(guaranteed bit rate,GBR)服务质量流(quality of service flow,QoS flow)和非保障流比特速率(non-guaranteed bit rate,non-GBR flow)QoS flow两种。
现有技术中,GBR QoS flow只能在3GPP接入网侧或者非3GPP接入网侧中的一侧建立,当业务流数据需要从一侧移动到另一侧时,需要在另一侧重新建立GBR QoS flow,导致了时延的增加。
发明内容
本申请实施例提供了一种业务流的处理方法及设备,用于降低业务流数据从一侧移动到另一侧时的时延。
本申请实施例的第一方面提供一种业务流的处理方法:
在会话建立和会话修改过程中,第一核心网网元会接收到来自第二核心网网元的策略规则,由于该策略规则用于指示第一核心网网元分别在两个网络中为保障流比特速率服务质量流GBR QoS flow分配资源。
因此,第一核心网网元会根据策略规则为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源,其中第一网络和第二网络的网络类型可以相同,也可以不同。
由于第一核心网网元在第一网络和第二网络分别为GBR QoS flow分配了资源,所以GBR QoS flow对应的业务流数据既可以从第一网络进行传输,也可以从第二网络进行传输;当由于某种原因,需要对业务流数据进行移动时,不需要重新为GBR QoS flow分配资源,可以直接将业务流数据从第一网络移动到第二网络,也可以直接将业务流数据从第二网络移动到第一网络,所以时延较小。
基于第一方面,本申请实施例还提供了第一方面的第一种实施方式:
第一核心网网元根据策略规则为GBR QoS flow在第一网络和第二网络分配资源包括:
第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源,其中第一资 源对应第一网络,第二资源对应第二网络。
第一核心网网元为第一网络配置了第一资源,并为第二网络配置了第二资源,因此可以根据第一资源在第一网络中传输业务流数据,也可以根据第二资源在第二网络中传输业务流数据。
基于第一方面的第一种实施方式,本申请实施例还提供了第一方面的第二种实施方式:
策略规则包含服务质量QoS规则和分流规则,其中Qos规则中可以包含Qos参数,分流规则中可以包含分流模式信息。
这样,第一核心网网元则可以根据QoS规则和分流规则配置第一资源和第二资源。
基于第一方面的第二种实施方式,本申请实施例还提供了第一方面的第三种实施方式:
当QoS规则包括保证流带宽的第一参数和最大流带宽的第二参数时,其中第二参数大于第一参数,第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数,第一核心网网元将第二资源中的保证流带宽配置为0,并将第二资源中的最大流带宽配置为第二参数。
本申请实施例提供了配置第一资源和配置第二资源的一种可行方案,在该方案中,分别对第一资源中的保证流带宽和第二资源中的最大流带宽进行了配置,使得业务流数据在第一网络中的带宽能够得到保证。
基于第一方面的第二种实施方式,本申请实施例还提供了第一方面的第四种实施方式:
当QoS规则包括保证流带宽的第一参数和最大流带宽的第三参数时,其中第三参数大于第一参数,第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数,第一核心网网元将第二资源中的保证流带宽配置为第三参数与第一参数的差值。
本申请实施例提供了配置第一资源和配置第二资源的一种可行方案,在该方案中,分别对第一资源中的保证流带宽和第二资源中的保证流带宽进行了配置,使得业务流数据在第一网络和第二网络中的带宽均能够得到保证。
基于第一方面的第二种实施方式,本申请实施例还提供了第一方面的第五种实施方式:
当QoS规则包括保证流带宽的第一参数和第四参数时,其中第四参数为最大数据突发流量,最大数据突发流量大于第一参数时,第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数,第一核心网网元将第二资源中的保证流带宽配置为(MDBV/PDB-GFBR/AW)*AW,其中MDBV表示最大数据突发流量,PDB表示GBR QoS flow的包延迟预算,GFBR表示第一参数,AW表示GBR QoS flow的平均窗口。
本申请实施例提供了配置第一资源和配置第二资源的一种可行方案,在该方案中,分别对第一资源中的保证流带宽和第二资源中的保证流带宽进行了配置,使得业务流数据在第一网络和第二网络中的带宽均能够得到保证,其中第二资源中的保证流带宽是根据MDBV配置的,适用于时延重要的业务流数据。
基于第一方面的第二种实施方式,本申请实施例还提供了第一方面的第六种实施方式:
当QoS规则包括保证流带宽的第一参数时,第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数,第一核心网网元根据预置的第一本地策略将第二资源中的保证流带宽配置为第五参数。
本申请实施例提供了配置第一资源和配置第二资源的一种可行方案,在该方案中,分别对第一资源中的保证流带宽和第二资源中的保证流带宽进行了配置,使得业务流数据在第一网络和第二网络中的带宽均能够得到保证,其中第二资源中的保证流带宽是根据第一本地策略配置的,因此第二资源中保证流带宽的配置方法比较灵活。
基于第一方面的第二种实施方式,本申请实施例还提供了第一方面的第七种实施方式:
当QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第六参数时,第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数,第一核心网网元将第二资源中的保证流带宽配置为第六参数。
本申请实施例提供了配置第一资源和配置第二资源的一种可行方案,在该方案中,QoS规则直接指定了第一网络和第二网络各自对应的保证流带宽的参数,这样,第一核心网网元可以直接根据指定的参数对第一资源中的保证流带宽和第二资源中的保证流带宽进行配置,使得业务流数据在第一网络和第二网络中的带宽均能够得到保证。
基于第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,本申请实施例还提供了第一方面的第八种实施方式:
分流规则包括分流模式信息;分流模式信息可以包括:分流模式为优先级模式,第一网络的优先级高于第二网络的优先级。
或者,分流模式信息也可以包括:分流模式主从模式,第一网络为主网络,第二网络为从网络。
或者,分流模式信息也可以包括:分流模式为最小时延模式,第一网络的时延比第二网络的时延小。
在本申请实施例中,根据分流规则对第一网络和第二网络进行区分,使得第一核心网网元可以根据区别结果分别对第一资源和第二资源进行不同的配置,从而实现对第一资源和第二资源更合理的配置。
基于第一方面的第二种实施方式,本申请实施例还提供了第一方面的第九种实施方式:
当QoS规则包括保证流带宽的第一参数,分流规则包括分流模式信息,分流模式信息包括:分流模式为均衡模式,第一网络对应的保证流带宽与第二网络对应的保证流带宽的比例时,第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元根据第一参数和比例配置第一资源中的保证流带宽和第二资源中的保证流带宽。
由于分流模式为均衡模式,所以业务流数据会同时在第一网络和第二网络中进行传输, 因此可以直接在QoS规则设定第一网络和第二网络的保证流带宽的比例,这样,第一核心网网元根据比例对第一参数进行分配,便可以确定第一资源中的保证流带宽和第二资源中的保证流带宽,使得业务流数据在第一网络和第二网络中的带宽均能够得到保证。
基于第一方面的第二种实施方式,本申请实施例还提供了第一方面的第十种实施方式:
QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第七参数,分流规则包括分流模式信息,分流模式信息包括:分流模式为均衡模式时,第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数,第一核心网网元将第二资源中的保证流带宽配置为第七参数。
本申请实施例提供了配置第一资源和配置第二资源的一种可行方案,在该方案中,QoS规则也直接指定了第一网络和第二网络各自对应的保证流带宽的参数,这样,第一核心网网元可以直接根据指定的参数对第一资源中的保证流带宽和第二资源中的保证流带宽进行配置,使得业务流数据在第一网络和第二网络中的带宽均能够得到保证;与第一方面的第七种实施方式不同的是,本申请实施例中的分流模式为均衡模式。
基于第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,或第一方面的第八种实施方式,或第一方面的第九种实施方式,本申请实施例还提供了第一方面的第十一种实施方式:
当第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,第一核心网网元会接收来自第三核心网网元的第一指示信息,第一指示信息用于指示第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据。
然后第一核心网网元会根据第一指示信息将第二资源中的保证流带宽调整为第一参数。
最后,第一核心网网元会向第三核心网网元、第二网络中的接入网设备和终端设备发送调整后的第二资源。
由于第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据,将第二资源中的保证流带宽调整为第一参数,能够保证第二网络中传输GBR QoS flow对应的业务流数据的带宽。
基于第一方面的第十种实施方式,本申请实施例还提供了第一方面的第十二种实施方式:
同样地,当第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,第一核心网网元会接收来自第三核心网网元的第一指示信息,第一指示信息用于指示第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据。
然后第一核心网网元会根据第一指示信息将第二资源中的保证流带宽调整为第一参数与第七参数的和。
最后第一核心网网元向第三核心网网元、第二网络中的接入网设备和终端设备发送调整后的第二资源。
由于第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据,将第二资源中的保证流带宽调整为第一参数和第七参数的和,能够保证第二网络中传输GBR QoS flow对应的业务流数据的带宽。
基于第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,或第一方面的第八种实施方式,或第一方面的第九种实施方式,或第一方面的第十种实施方式,或第一方面的第十一种实施方式,或第一方面的第十二种实施方式,本申请实施例还提供了第一方面的第十三种实施方式:
在第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源之后,方法还包括:
第一核心网网元向终端设备发送GBR QoS flow对应的第一资源、第二资源和分流规则。
和/或,第一核心网网元向第三核心网网元发送GBR QoS flow对应的第一资源、第二资源和分流规则。
和/或,第一核心网网元向第一网络中的接入网设备发送第一资源和分流规则,并向第二网络中的接入网设备发送第二资源和分流规则。
本申请实施例分别向第三核心网网元、终端设备、第一网络中的接入网设备和第二网络中的接入网设备发送对应的资源和分流规则,使得终端设备能够通过第一网络中的接入网设备和/或第二网络中的接入网设备,与第三核心网网元传输GBR QoS flow对应业务流数据。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,或第一方面的第八种实施方式,或第一方面的第九种实施方式,或第一方面的第十种实施方式,或第一方面的第十一种实施方式,或第一方面的第十二种实施方式,或第一方面的第十三种实施方式,本申请实施例还提供了第一方面的第十四种实施方式:
第一网络为采用3GPP接入技术建立的网络或者采用非3GPP接入技术建立的网络;第二网络为采用3GPP接入技术建立的网络或者采用非3GPP接入技术建立的网络。
第一网络和第二网络可以灵活选择,均可以为采用3GPP接入技术建立的网络和采用非3GPP接入技术建立的网络中的任意一种。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,或第一方面的第八种实施方式,或第一方面的第九种实施方式,或第一方面的第十种实施方式,或第一方面的第十一种实施方式,或第一方面的第十二种实施方式,或第一方面的第十三种实施方式,或第一方面的第十四种实施方式,本申请实施例还提供了第一方面的第十五种实施方式:
在第一核心网网元根据策略规则为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源之前,方法还包括:
第一核心网网元获取第二指示信息,第二指示用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
通过第二指示可以让第一核心网网元能够明确需要为GBR QoS flow在第一网络和第二网络分配资源。
基于第一方面的第十五种实施方式,本申请实施例还提供了第一方面的第十六种实施方式:
第二指示信息携带在策略规则中,除此之外,也可以单独发送第二指示信息。
本申请第二方面提供了一种业务流的处理方法:
第二核心网网元先确定需要为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源。
然后第二核心网网元向第一核心网网元发送策略规则,策略规则用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
第一核心网网元根据策略规则在第一网络和第二网络分别为GBR QoS flow分配了资源后,GBR QoS flow对应的业务流数据既可以从第一网络进行传输,也可以从第二网络进行传输;当由于某种原因,需要对业务流数据进行移动时,不需要重新为GBR QoS flow分配资源,可以直接将业务流数据从第一网络移动到第二网络,也可以直接将业务流数据从第二网络移动到第一网络,所以时延较小。
基于第二方面,本申请实施例还提供了第二方面的第一种实施方式:
策略规则包含服务质量QoS规则和分流规则,其中Qos规则中可以包含Qos参数,分流规则中可以包含分流模式信息。
这样,第一核心网网元则可以根据QoS规则和分流规则配置第一资源和第二资源。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第二种实施方式:
QoS规则包括保证流带宽的第一参数和最大流带宽的第二参数,其中第二参数大于第一参数。
本申请实施例提供了QoS规则的一种配置方案,使得第一核心网网元根据第一参数和第二参数配置第一资源和第二资源。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第三种实施方式:
QoS规则包括保证流带宽的第一参数和最大流带宽的第三参数,其中第三参数大于第一参数。
本申请实施例提供了QoS规则的一种配置方案,使得第一核心网网元根据第一参数和第三参数配置第一资源和第二资源。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第四种实施方式:
QoS规则包括保证流带宽的第一参数和第四参数,第四参数为最大数据突发流量,且最大数据突发流量大于第一参数。
本申请实施例提供了QoS规则的一种配置方案,使得第一核心网网元根据第一参数和第二参数配置第一资源和第四资源。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第五种实施方式:
QoS规则包括保证流带宽的第一参数。
本申请实施例提供了QoS规则的一种配置方案,使得第一核心网网元根据第一参数配置第一资源和第二资源。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第六种实施方式:
QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第六参数。
本申请实施例提供了QoS规则的一种配置方案,使得第一核心网网元根据第一参数和第六参数配置第一资源和第二资源。
基于第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,本申请实施例还提供了第一方面的第七种实施方式:
分流规则包括分流模式信息;分流模式信息可以包括:分流模式为优先级模式,第一网络的优先级高于第二网络的优先级。
或者,分流模式信息也可以包括:分流模式主从模式,第一网络为主网络,第二网络为从网络。
或者,分流模式信息还可以包括:分流模式为最小时延模式,第一网络的时延比第二网络的时延小。
分流规则中包括分流模式信息,使得第一核心网网元可以根据分流模式信息配置为第一网络和第二网络分别配置第一资源和第二资源。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第八种实施方式:
QoS规则包括保证流带宽的第一参数,分流规则包括分流模式信息;分流模式信息包括:分流模式为均衡模式,第一网络对应的保证流带宽与第二网络对应的保证流带宽的比例。
基于第二方面的第一种实施方式,本申请实施例还提供了第二方面的第九种实施方式:
QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第七参数,分流规则包括分流模式信息,分流模式信息包括:分流模式为均衡模式。
本申请实施例提供了QoS规则的一种配置方案,在该配置方案中,分流模式为均衡模式,第一核心网网元根据第一参数和第七参数能够为第一网络和第二网络分别配置第一资源和第二资源。
基于第二方面,或第二方面的第一种实施方式,或第二方面的第二种实施方式,或第二方面的第三种实施方式,或第二方面的第四种实施方式,或第二方面的第五种实施方式,或第二方面的第六种实施方式,或第二方面的第七种实施方式,或第二方面的第八种实施方式,或第二方面的第九种实施方式,本申请实施例还提供了第二方面的第十种实施方式:
在第二核心网网元确定需要为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源之后,方法还包括:
第二核心网网元向第一核心网网元发送第二指示信息,第二指示用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
通过第二指示可以让第一核心网网元能够明确需要为GBR QoS flow在第一网络和第二网络分配资源。
基于第二方面的第十种实施方式,本申请实施例还提供了第二方面的第十一种实施方式:
第二指示信息携带在策略规则中,除此之外,也可以单独发送第二指示信息。
本申请实施例的第三方面提供一种业务流的处理方法,包括:
第三核心网网元会接收来自第一核心网网元的与保障流比特速率服务质量流GBR QoS flow对应的第一资源、第二资源和分流规则,第一资源对应第一网络,第二资源对应第二网络。
第三核心网网元根据分流规则和第一资源通过第一网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据,除此之外,第三核心网网元也可以同时根据第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据,具体可以根据分流规则确定。
当第三核心网网元确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,第三核心网网元会根据第二资源通过第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据,实现将业务流数据从第一网络切换到第二网络。
由于第一核心网网元在第一网络和第二网络分别为GBR QoS flow分配了资源,所以当第三核心网网元确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,不需要重新为GBR QoS flow在第二网络分配资源,可以直接将业务流数据从第一网络切换到第二网络,所以时延较小。
基于第三方面,本申请实施例还提供了第三方面的第一种实施方式:
当第三核心网网元确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,第三核心网网元会向第一核心网网元发送第一指示信息,第一指示信息用于指示第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据。
这样,第一网络中的接入网设备则会对第二资源进行调整,然后第三核心网网元会接收来自第一核心网网元的调整后的第二资源。
在接收到调整后的第二资源后,第三核心网网元根据第二资源通过第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据则包括:
第三核心网网元根据调整后的第二资源通过第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据。
由于第一入网设备不能传输GBR QoS flow对应的业务流数据,所以需要将第一网络中的业务流数据切换到第二网络进行传输,由于第二网络对应的第二资源不足,所以对第二资源进行调整,并利用调整后的第二资源传输业务流数据,可以为业务流数据的传输提供较充足的带宽。
基于第三方面,或第三方面的第一种实施方式,本申请实施例还提供了第三方面的第二种实施方式:
在第三核心网网元根据分流规则和第一资源通过第一网络中的接入网设备向终端设备 发送GBR QoS flow对应的业务流数据之前,方法还包括:
第三核心网网元接收来自第一核心网网元的第二指示信息,第二指示信息用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
根据第二指示信息,第三核心网网元可以明确第一核心网网元为GBR QoS flow在第一网络和第二网络分配了资源,当第一网络中的接入网设备不可用时,可以直接将业务流数据从第一网络中的接入网设备切换到第二网络的接入网设备。
本申请实施例的第四方面提供一种业务流的处理方法,包括:
终端设备接收来自第一核心网网元的与保障流比特速率服务质量流GBR QoS flow对应的第一资源、第二资源和分流规则,第一资源对应第一网络,第二资源对应第二网络。
终端设备根据分流规则和第一资源通过第一网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据,除此之外终端设备也可以同时根据第二网络中的第一网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据,具体可以根据分流规则确定。
当终端设备确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,终端设备根据第二资源通过第二网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据,实现将业务流数据从第一网络切换到第二网络。
由于第一核心网网元在第一网络和第二网络分别为GBR QoS flow分配了资源,所以当第三核心网网元确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,不需要重新为GBR QoS flow在第二网络分配资源,可以直接将业务流数据从第一网络切换到第二网络,所以时延较小。
基于第四方面,本申请实施例还提供了第四方面的第一种实施方式:
当终端设备确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,终端设备会接收来自第一核心网网元的调整后的第二资源。
终端设备根据第二资源通过第二网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据包括:
终端设备根据调整后的第二资源通过第二网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据。
由于第一入网设备不能传输GBR QoS flow对应的业务流数据,所以需要将第一网络中的业务流数据切换到第二网络进行传输,由于第二网络对应的第二资源不足,所以对第二资源进行调整,并利用调整后的第二资源传输业务流数据,可以为业务流数据的传输提供较充足的带宽。
基于第四方面,或第四方面的第一种实施方式,本申请实施例还提供了第四方面的第二种实施方式:
在终端设备根据分流规则和第一资源通过第一网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据之前,方法还包括:
终端设备接收来自第一核心网网元的第二指示信息,第二指示信息用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
根据第二指示信息,终端设备可以明确第一核心网网元为GBR QoS flow在第一网络和第二网络分配了资源,当第一网络中的接入网设备不可用时,可以直接将业务流数据从第一网络中的接入网设备切换到第二网络中的接入网设备。
本申请实施例第五方面提供一种通信装置,包括:
接收单元,用于接收来自第二核心网网元的策略规则。
处理单元,用于根据策略规则为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源。
本申请实施例第六方面提供一种通信装置,包括:
处理单元,用于确定需要为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源。
发送单元,用于向第一核心网网元发送策略规则,策略规则用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
基于第六方面,本申请实施例还提供了第六方面的第一种实施方式:策略规则包含服务质量QoS规则和分流规则。
基于第六方面的第一种实施方式,本申请实施例还提供了第六方面的第二种实施方式:
QoS规则包括保证流带宽的第一参数和最大流带宽的第二参数,其中第二参数大于第一参数。
基于第六方面的第一种实施方式,本申请实施例还提供了第六方面的第三种实施方式:
QoS规则包括保证流带宽的第一参数和最大流带宽的第三参数,其中第三参数大于第一参数。
基于第六方面的第一种实施方式,本申请实施例还提供了第六方面的第四种实施方式:
QoS规则包括保证流带宽的第一参数和第四参数,第四参数为最大数据突发流量,且最大数据突发流量大于第一参数。
基于第六方面的第一种实施方式,本申请实施例还提供了第六方面的第五种实施方式:
QoS规则包括保证流带宽的第一参数。
基于第六方面的第一种实施方式,本申请实施例还提供了第六方面的第六种实施方式:
QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第六参数。
基于第六方面的第二种实施方式,或第六方面的第三种实施方式,或第六方面的第四种实施方式,或第六方面的第五种实施方式,或第六方面的第六种实施方式,本申请实施例还提供了第六方面的第七种实施方式:
分流规则包括分流模式信息;分流模式信息包括:分流模式为优先级模式,第一网络的优先级高于第二网络的优先级;或分流模式信息包括:分流模式主从模式,第一网络为主网络,第二网络为从网络;或分流模式信息包括:分流模式为最小时延模式,第一网络的时延比第二网络的时延小。
基于第六方面的第一种实施方式,本申请实施例还提供了第六方面的第八种实施方式:
QoS规则包括保证流带宽的第一参数,分流规则包括分流模式信息;分流模式信息包 括:分流模式为均衡模式,第一网络对应的保证流带宽与第二网络对应的保证流带宽的比例。
基于第六方面的第一种实施方式,本申请实施例还提供了第六方面的第九种实施方式:
QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第七参数,分流规则包括分流模式信息,分流模式信息包括:分流模式为均衡模式。
基于第六方面,或第六方面的第一种实施方式,或第六方面的第二种实施方式,或第六方面的第三种实施方式,或第六方面的第四种实施方式,或第六方面的第五种实施方式,或第六方面的第六种实施方式,或第六方面的第七种实施方式,或第六方面的第八种实施方式,或第六方面的第九种实施方式,本申请实施例还提供了第六方面的第十种实施方式:
发送单元,还用于向第一核心网网元发送第二指示信息,第二指示用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
基于第六方面的第十种实施方式,本申请实施例还提供了第六方面的第十一种实施方式:第二指示信息携带在策略规则中。
本申请实施例第七方面提供一种通信装置,包括:
接收单元,用于接收来自第一核心网网元的与保障流比特速率服务质量流GBR QoS flow对应的第一资源、第二资源和分流规则,第一资源对应第一网络,第二资源对应第二网络。
发送单元,用于根据分流规则和第一资源通过第一网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据。
发送单元,还用于当确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,根据第二资源通过第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据。
基于第七方面,本申请实施例还提供了第七方面的第一种实施方式:
当确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,发送单元,还用于向第一核心网网元发送第一指示信息,第一指示信息用于指示第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据;
接收单元,还用于接收来自第一核心网网元的调整后的第二资源;
发送单元,还用于根据调整后的第二资源通过第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据。
基于第七方面,或第七方面的第一种实施方式,本申请实施例还提供了第七方面的第二种实施方式:
接收单元,还用于接收来自第一核心网网元的第二指示信息,第二指示信息用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
本申请实施例第八方面提供一种终端设备,包括:
接收单元,用于接收来自第一核心网网元的与保障流比特速率服务质量流GBR QoS flow对应的第一资源、第二资源和分流规则,第一资源对应第一网络,第二资源对应第二网络。
发送单元,用于根据分流规则和第一资源通过第一网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据。
发送单元,还用于当确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,根据第二资源通过第二网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据。
基于第八方面,本申请实施例还提供了第八方面的第一种实施方式:
当确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,接收单元,还用于接收来自第一核心网网元的调整后的第二资源;
发送单元,还用于根据调整后的第二资源通过第二网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据。
基于第八方面,或第八方面的第一种实施方式,本申请实施例还提供了第八方面的第二种实施方式:
接收单元,还用于接收来自第一核心网网元的第二指示信息,第二指示信息用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
本申请第九方面提供一种会话管理功能网元,包括:至少一个处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述会话管理功能网元执行如上述第一方面或第一方面任意一种可能的实现方式所述的方法。
本申请第十方面提供一种策略控制功能网元,包括:至少一个处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述策略控制功能网元执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请第十一方面提供一种用户面功能网元,包括:至少一个处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述用户面功能网元执行如上述第三方面或第三方面任意一种可能的实现方式所述的方法。
本申请第十二方面提供一种终端设备,包括:至少一个处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述终端设备执行如上述第四方面或第四方面任意一种可能的实现方式所述的方法。
本申请实施例第十三方面提供了一种计算机存储介质,该计算机存储介质用于储存为上述会话管理功能网元、策略控制功能网元、用户面功能网元或终端设备所用的计算机软件指令,其包括用于执行为会话管理功能网元、策略控制功能网元、用户面功能网元或终端设备所设计的程序。
该会话管理功能网元可以如前述第五方面所描述的通信装置。
该策略控制功能网元可以如前述第六方面所描述的通信装置。
该用户面功能网元可以如前述第七方面所描述的通信装置。
该终端设备可以如前述第八方面所描述的终端设备。
本申请实施例第十四方面提供了一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述第一方面至第四方面中任 意一项的业务流的处理方法中的流程。
本申请实施例第十五方面提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行第一方面至第一方面的任一种实施方式中任一项所描述的业务流的处理方法。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
基于第十五方面,本申请实施例还提供了第十五方面的第一种实施方式,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例第十六方面提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行第二方面至第二方面的任一种实施方式中任一项所描述的业务流的处理方法。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
基于第十六方面,本申请实施例还提供了第十六方面的第一种实施方式,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例第十七方面提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行第三方面至第三方面的任一种实施方式中任一项所描述的业务流的处理方法。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
基于第十七方面,本申请实施例还提供了第十七方面的第一种实施方式,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例第十八方面提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行第四方面至第四方面的任一种实施方式中任一项所描述的业务流的处理方法。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
基于第十八方面,本申请实施例还提供了第十八方面的第一种实施方式,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例第十九方面提供一种通信系统,该通信系统包括:会话管理功能网元、策略控制功能网元、用户面功能网元和终端设备中的任意两种;
其中,会话管理功能网元,用于执行上述第一方面或第一方面任意一种可能实现方式的方法;
策略控制功能网元,用于执行上述第二方面或第二方面任意一种可能实现方式的方法;
用户面功能网元,用于执行上述第三方面或第三方面任意一种可能实现方式的方法;
通信设备,用于执行上述第四方面或第四方面任意一种可能实现方式的方法。
附图说明
图1为本申请实施例中终端设备接入到5G核心网的一个架构示意图;
图2为本申请实施例中终端设备接入到5G核心网的另一个架构示意图;
图3为本申请实施例中业务流的处理方法的第一实施例示意图;
图4为本申请实施例中分配资源的一个实施例示意图;
图5为本申请实施例中业务流的处理方法的第十一实施例示意图;
图6为本申请实施例中业务流的处理方法的第十二实施例示意图;
图7为本申请实施例中业务流的处理方法的应用例示意图;
图8为本申请实施例提供的一种会话管理功能网元的一个实施例示意图;
图9为本申请实施例提供的一种策略控制功能网元的一个实施例示意图;
图10为本申请实施例提供的一种用户面功能网元的一个实施例示意图;
图11为本申请实施例提供的一种用终端设备的一个实施例示意图;
图12为本申请实施例提供的一种通信装置的第一实施例示意图;
图13为本申请实施例提供的一种通信装置的第二实施例示意图;
图14为本申请实施例提供的一种通信装置的第三实施例示意图;
图15为本申请实施例提供的一种终端设备的另一个实施例示意图。
具体实施方式
下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参阅图1,本申请实施例中终端设备接入到5G核心网的一个架构示意图。如图1所示,在该架构中,主要包含终端设备、接入网和5G核心网三大部分。其中接入网包括3GPP 接入网Access Network和非可信非3GPP接入网Untrusted Non-3GPP Access Network,5G核心网包括接入和移动性管理功能(Core Access and Mobility Management Function,AMF)网元、策略控制功能(Policy Control Function,PCF)网元、会话管理功能(Session Management Function,SMF)网元、用户面功能(User Plane Function,UPF)网元和非3GPP互通功能(Non-3GPP Interworking Function,N3IWF)网元。
其中,AMF网元,移动性管理功能,负责用户的移动性管理,包括移动状态管理,分配用户临时身份标识,认证和授权用户。
SMF网元,会话管理功能,负责UPF选择,UPF重选,IP地址分配,负责承载的建立、修改和释放,QoS控制。
UPF网元,支持以下全部或者部分功能:将协议数据单元(protocol data unit,PDU)会话与数据网络互连;分组路由和转发(例如,支持对流量进行Uplink classifier后转发到数据网络,支持Branching point以支持multi-homed PDU会话);数据包检测。
PCF网元,包含策略控制决策和基于流计费控制的功能,包含用户签约数据管理功能,策略控制功能,计费策略控制功能,QoS控制等。
终端设备(terminal device),也可以称为用户设备(user equipment,UE),是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。为便于说明,图1用UE代替终端设备。
图1中的N1、N2、N3、N4、N6、N11、Y1、Y2和NWu分别表示接口序列号。这些接口序列号的含义可参见第三代合作伙伴计划(third generation partnership project,3GPP)标准协议中定义的含义,在此不做限制。
从图1中可以看出,终端设备可以通过3GPP接入网接入5G核心网,具体地,终端设备可以与3GPP接入网连接,终端设备也可以通过N1接口直接与AMF网元连接,3GPP接入网可以通过N2接口与AMF网元连接,3GPP接入网可以通过N3接口与UPF网元连接。
终端设备也可以通过非可信非3GPP接入网接入5G核心网,具体地,终端设备可以通过Y1接口与非可信非3GPP接入网连接,终端设备也可以通过N1接口直接与AMF网元连接,并且在该方式下,引入了N3IWF网元,与非可信非3GPP接入网可以通过Y2接口与N3IWF网元连接,N3IWF网元可以通过N2接口与AMF网元连接,N3IWF网元可以通过N3接口与UPF网元连接,因此N3IWF网元对于5G核心网来说相当于无线接入网(Radio Access Network,RAN)节点。
请参阅图2,本申请实施例中终端设备接入到5G核心网的另一个架构示意图。如图2所示,在该架构中,也主要包含终端设备、接入网和5G核心网三大部分。其中接入网包括 3GPP接入网和可信非3GPP接入网Trusted Non-3GPP Access Network,可信非3GPP接入网Trusted Non-3GPP Access Network包含可信非3GPP网关功能(Trusted Non-3GPP Gateway Function,TNGF)网元和可信非3GPP接入点Trusted Non-3GPP Access Point,5G核心网包括接入和AMF网元、PCF网元、SMF网元和UPF网元。
由于前面已经对AMF网元、SMF网元、UPF网元、PCF网元和终端设备进行了介绍,故在此不做赘述,其中为了便于说明,图2用UE代替终端设备。
图2中的N1、N2、N3、N4、N6、N11、Yt、Ta、Tn和NWt分别表示接口序列号。这些接口序列号的含义可参见第三代合作伙伴计划(third generation partnership project,3GPP)标准协议中定义的含义,在此不做限制。
从图2中可以看出,终端设备可以通过3GPP接入网接入5G核心网,具体地,终端设备可以与3GPP接入网连接,终端设备也可以通过N1接口直接与AMF网元连接,3GPP接入网可以通过N2接口与AMF网元连接,3GPP接入网可以通过N3接口与UPF网元连接。
终端设备也可以通过可信非3GPP接入网接入5G核心网,具体地,终端设备可以通过Yt接口与可信非3GPP接入网中的可信非3GPP接入点连接,终端设备也可以通过N1接口直接与AMF网元连接,并且在该方式下,在可信非3GPP接入网中引入了TNGF网元,可信非3GPP接入点可以通过Ta接口与N3IWF网元连接,N3IWF网元可以通过N2接口与AMF网元连接,N3IWF网元可以通过N3接口与UPF网元连接,因此N3IWF网元对于5G核心网来说也相当于RAN节点。
基于上述分析可以看出,终端设备可以通过两个接入网分别接入5G核心网,其中这两个接入网包括但不限于图1所示的两个接入网和图2所示的两个接入网。当终端设备通过两个接入网分别接入5G核心网时,终端设备与5G核心网之间的业务流数据可以从两个接入网中的一个接入网进行传输,也可以从两个接入网中的另一个接入网进行传输。但由于只在一个接入网中建立GBR QoS flow,即预先只在一个接入网中分配资源,所以当GBR QoS flow对应的业务流数据需要从一个接入网移动到另一个接入网时,需要在另一个接入网重新建立GBR QoS flow,存在时延的问题。其中,在本申请实施例中,业务流数据从一个接入网移动到另一个接入网,包括将业务流数据从一个接入网切换到另一个接入网的情况。
为了解决这个问题,本申请实施例提供了业务流的处理方法,分别在两个接入网预先分配资源,以降低业务流数据从一侧移动到另一侧时的时延。
下面将对业务流的处理方法进行具体介绍,在对业务流的处理方法进行介绍的过程中,涉及到第一核心网网元、第二核心网网元和第三核心网网元,需要说明的是,第一核心网网元可以为5G核心网中的SMF网元,第二核心网网元可以为5G核心网中的PCF网元,第三核心网网元可以为5G核心网中的UPF网元。第一核心网网元、第二核心网网元和第三核心网网元也可以是未来通信如第六代(6th generation,6G)网络中具有上述AMF、SMF、PCF、AF、RAN、NEF、UPF的功能的网元,本申请实施例对此不限定。另外,为了能够在两个接入网为GBR QoS flow配置资源,需要保证终端设备预先通过这两个接入网注册到5G核心网。
具体地,请参阅图3,本申请实施例中业务流的处理方法的第一实施例示意图。如图3 所示,本申请实施例提供了一种业务流的处理方法的第一实施例,包括:
101,第二核心网网元确定需要为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源。
第一网络可以理解为包含终端设备、接入网设备以及5G核心网的网络,在该第一网络中,终端设备和5G核心网之间可以通过接入网设备形成第一传输路径;第二网络也可以理解为包含终端设备、接入网设备以及5G核心网的网络,在该第二网络中,终端设备和5G核心网之间可以通过接入网设备形成第二传输路径。
其中,第一网络可以为采用3GPP接入技术建立的网络或者采用非3GPP接入技术建立的网络;第二网络可以为采用3GPP接入技术建立的网络或者采用非3GPP接入技术建立的网络。当第一网络为采用3GPP接入技术建立的网络时,第一网络中的接入网设备则为3GPP接入网设备,当第一网络为采用非3GPP接入技术建立的网络时,第一网络中的接入网设备则为非3GPP接入网设备或非3GPP接入网网关;同理,当第二网络为采用3GPP接入技术建立的网络时,第二网络中的接入网设备则为3GPP接入网设备,当第二网络为采用非3GPP接入技术建立的网络时,第二网络中的接入网设备则为非3GPP接入网设备或非3GPP接入网网关。
确定需要为GBR QoS flow在第一网络和第二网络分配资源有多种方式,其中一种方式是根据终端设备的业务信息和本地运营商策略确定,其中业务信息包括但不限于终端设备的应用标识、应用类型、IP五元组、源MAC地址和目的MAC地址。例如,每个应用类型都对应一个本地运营商策略,当应用类型为delay critical类型时,对应的本地运营商策略指示需要为GBR QoS flow在第一网络和第二网络分配资源,以保证应用类型对应的业务流数据传递的时延需求,那么第二核心网网元便可以根据应用类型确定需要为GBR QoS flow在第一网络和第二网络分配资源。再例如,若特定的IP五元组对应的本地运营商策略指示需要为GBR QoS flow在第一网络和第二网络分配资源,那么第二核心网网元可以根据IP五元组确定需要为GBR QoS flow在第一网络和第二网络分配资源。
需要说明的是,操作101的执行存在多种场景,下面对该多种场景一一进行介绍。
第一,操作101的执行可以发生在多接入协议数据单元(Multi-Access Protocol Data Unit,MA PDU)会话建立过程中。例如,当需要建立MA PDU会话时,终端设备可以首先向AMF网元发送非接入层(Non-access stratum,NAS)消息,该NAS消息中包含MA PDU会话建立请求。然后AMF网元会将该MA PDU会话建立请求转发至SMF网元,SMF网元会发送会话管理策略关联建立请求消息至PCF网元,会话管理策略关联建立请求消息用于请求会话建立的策略规则,PCF网元在接收到会话管理策略关联建立请求消息后,则会先执行操作101。
第二,操作101的执行也可以发生在MA PDU会话修改过程中。例如,在当前MA PDU会话中,AMF网元直接向PCF网元发送重新建立GBR QoS flow的请求,PCF网元在接收到该重新建立GBR QoS flow的请求后,也会执行操作101。
第三,操作101的执行还可以发生在本地运营商策略修改的场景中。例如,假设当前的本地运营商策略指示仅在第一网络中建立GBR QoS flow,当本地运营商策略发生修改时, 本地运营商策略指示需要为GBR QoS flow在第一网络和第二网络分配资源,则PCF网元也可以执行操作101。
在上述多种场景下,PCF网元为GBR QoS flow在第一网络和第二网络分配资源,终端设备与5G核心网之间对应地存在MA PDU会话,因此终端设备需要具备多接入的能力,具体可以通过标识指示终端设备具备多接入的能力,例如,该标识可以存在会话管理策略关联建立请求消息中,使得PCF网元根据该标识可以确定终端设备具备多接入的能力。
102,第二核心网网元向第一核心网网元发送策略规则。
第二核心网网元在确定需要为GBR QoS flow在第一网络和第二网络分配资源后,则会根据本地运营商策略等配置具体的策略规则,其中本申请实施例对配置策略规则的方法不做具体限定,该策略规则用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源,然后会将策略规则发送至第一核心网网元,该策略规则可以携带在第二核心网网元发送给第一核心网网元的会话管理策略关联建立响应消息中,相应地,第一核心网网元则会来自第二核心网网元的策略规则。
103,第一核心网网元根据策略规则为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源。
第一核心网网元在接收到策略规则后,则会根据策略规则为GBR QoS flow在第一网络和第二网络分配资源,其中分配资源的方法有多种,可以由策略规则决定,本申请实施例对此不做具体限定。
在本申请实施例中,由于第一核心网网元在第一网络和第二网络分别为GBR QoS flow分配了资源,所以GBR QoS flow对应的业务流数据既可以从第一网络进行传输,也可以从第二网络进行传输;当由于某种原因,需要对业务流数据进行移动时,不需要重新为GBR QoS flow分配资源,可以直接将业务流数据从第一网络移动到第二网络,也可以直接将业务流数据从第二网络移动到第一网络,所以时延较小。
在上述第一实施例中,第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源,下面将对第一核心网网元分配资源的过程进行具体说明。
请参阅图4,本申请实施例中分配资源的一个实施例示意图。如图4所示,在本申请实施例提供的业务流的处理方法的第二实施例中,第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源包括:
201,第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源。
其中策略规则可以包含服务质量QoS规则和分流规则,QoS规则中可以包含QoS flow的相关参数,例如保证流带宽、最大流带宽和最大数据突发流量等,分流规则则可以包含分流模式信息,例如分流模式信息可以包含具体的分流模式,分流模式可以为优先级模式、主从模式、最小时延模式和均衡模式,除此之外,还可以是其他模式,本申请实施例对此不做限定。
第一资源对应第一网络,第二资源对应第二网络,本申请实施例对第一资源和第二资源的内容不做具体限定,具体可以根据策略规则进行确定。
202,第一核心网网元向第一网络中的接入网设备发送第一资源和分流规则。
203,第一核心网网元向第二网络中的接入网设备发送第二资源和分流规则。
可以理解的是,第一核心网网元可以通过AMF网元向第一网络中的接入网设备和第二网络中的接入网设备发送相关资源和分流规则;具体地,第一核心网网元可以向AMF网元发送包含第一资源、第二资源和分流规则的N1N2接口消息传递N1N2MessageTransfer消息,然后AMF网元向第一网络中的接入网设备发送包含第一资源和分流规则的N2接口PDU会话请求N2PDU Session Request消息,AMF网元向第二网络中的接入网设备发送包含第二资源和分流规则的N2PDU Session Request消息。
通过上述过程可以实现第一核心网网元将第一资源和分流规则发送至第一网络中的接入网设备,将第二资源和分流规则发送至第二网络中的接入网设备。
204,第一核心网网元向终端设备发送GBR QoS flow对应的第一资源、第二资源和分流规则。
可以理解的是,AMF网元在接收到来自第一核心网网元的第一资源、第二资源和分流规则后,可以直接向终端设备发送分流规则,而第一资源和第二资源可以分别通过第一网络中的接入网设备和第二网络中的接入网设备发送至终端设备;具体地,第一网络中的接入网设备在接收到第一资源后,会根据第一资源与终端设备建立空口资源,在建立空口资源的过程中,终端设备会接收到第一资源,同样地,第二机入网在接收到第二资源后,会根据第二资源与终端设备建立空口资源,在建立空口资源的过程中,终端设备会接收到第二资源。通过上述过程,可以实现第一核心网网元将第一资源、第二资源和分流规则发送至终端设备。
相应地,终端设备会接收来自第一核心网网元的与保障流比特速率服务质量流GBR QoS flow对应的第一资源、第二资源和分流规则,第一资源对应第一网络,第二资源对应第二网络。
205,第一核心网网元向第三核心网网元发送GBR QoS flow对应的第一资源、第二资源和分流规则。
可以理解的是,第一核心网网元可以与第三核心网网元建立N4会话,通过N4会话将第一资源、第二资源和分流规则发送至第三核心网网元。
相应地,第三核心网网元会接收来自第一核心网网元的与保障流比特速率服务质量流GBR QoS flow对应的第一资源、第二资源和分流规则,第一资源对应第一网络,第二资源对应第二网络。
206,第三核心网网元根据分流规则和第一资源通过第一网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据。
需要说明的是,第三核心网网元根据分流规则可以确定传输业务流数据的具体方案。由于第一网络和第二网络均可以为采用3GPP接入技术建立的网络或者采用非3GPP接入技术建立的网络,所以本申请实施例可以假设第三核心网网元选择第一网络中的接入网设备进行业务流数据的传输。
207,当第三核心网网元确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,第三核心网网元根据第二资源通过第二网络中的接入网设备向终端设备发 送GBR QoS flow对应的业务流数据。
在本申请实施例中,第三核心网网元可以根据多种情况确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据,例如若第一网络中的接入网设备故障,则可以确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据;再例如,若第一网络中的接入网设备发生堵塞,在这种情况下,存在两种可能,第一种可能是GBR QoS flow对应的一部分业务流数据仍可以通过第一网络中的接入网设备进行传输,但由于堵塞,GBR QoS flow对应的另一部分业务流数据不能通过第一网络中的接入网设备进行传输,第二种可能是GBR QoS flow对应的业务流数据全部不能通过第一网络中的接入网设备进行传输,在本申请实施例中,将这两种可能均作为第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据的情况。
基于上述说明可知,当确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,第三核心网网元根据第二资源通过第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据,同时,可以选择不通过第一网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据,也可以选择通过第一网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据,具体可以根据不能传输的实际情况以及分流规则来确定。
208,终端设备根据分流规则和第一资源通过第一网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据。
同样地,终端设备根据分流规则可以确定传输业务流数据的具体方案。由于第一网络和第二网络均可以为采用3GPP接入技术建立的网络或者采用非3GPP接入技术建立的网络,所以本申请实施例可以假设终端设备选择第一网络中的接入网设备进行业务流数据的传输。
209,当终端设备确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,终端设备根据第二资源通过第二网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据。
同样地,终端设备也可以根据多种情况确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据,该多种情况与操作206中提及的多种情况类似,具体可参照操作206中的多种情况进行理解。
当确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,终端设备也会选择第二网络中的接入网设备,或者选择第一网络中的接入网设备以及第二网络中的接入网设备传输GBR QoS flow对应的业务流数据,具体可参照操作206的说明进行理解。
在本申请实施例中,第三核心网网元和终端设备之间可以先通过第一网络中的接入网设备传输业务流数据,当第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,可以直接采用第二网络中的接入网设备传输GBR QoS flow对应的业务流数据,不需重新为GBR QoS flow在第二网络中配置资源,所以时延小。
基于前述说明可知,第一核心网网元可以根据策略规则为GBR QoS flow配置第一资源和第二资源,其中策略规则可以包括QoS规则和分流规则,但QoS规则和分流规则的内容 有多种可能,所以配置第一资源和第二资源也相应地存在多种方案。下面将以不同的QoS规则和分流规则,对配置第一资源和第二资源的过程进行具体说明。
本申请实施例提供的业务流的处理方法的第三实施例中,QoS规则包括保证流带宽的第一参数和最大流带宽的第二参数,其中第二参数大于第一参数,除此之外,第二参数也可以等于第一参数。
第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数;
第一核心网网元将第二资源中的保证流带宽配置为0,并将第二资源中的最大流带宽配置为第二参数。
在本申请实施例中,根据第一参数对第一资源中的保证流带宽进行了配置,使得业务流数据在第一网络中的传输能够得到保证,而将第二资源中的保证流带宽配置为0,将第二资源中的最大流带宽配置为第二参数,能够节约第二网络中的资源。
本申请实施例提供的业务流的处理方法的第四实施例中,QoS规则包括保证流带宽的第一参数和最大流带宽的第三参数,其中第三参数大于第一参数。
第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数;
第一核心网网元将第二资源中的保证流带宽配置为第三参数与第一参数的差值。
在本申请实施例中,将第二资源中的保证流带宽配置为第三参数和第一参数的差值,为了节约第二网络中的资源,该差值往往小于第一参数,并且可以将该差值设置地更小。
本申请实施例提供的业务流的处理方法的第五实施例中,QoS规则包括保证流带宽的第一参数和第四参数,第四参数为最大数据突发流量,且最大数据突发流量大于第一参数。
第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数;
第一核心网网元将第二资源中的保证流带宽配置为(MDBV/PDB-GFBR/AW)*AW,其中MDBV表示最大数据突发流量,PDB表示GBR QoS flow的包延迟预算,GFBR表示第一参数,AW表示GBR QoS flow的平均窗口,GFBR/AW表示GBR QoS flow对应的业务数据流所需要保证的单位流量。
在本申请实施例中,第一核心网网元根据最大数据突发流量和保证流带宽的第一参数对第二资源中的保证流带宽进行了配置,尤其适用于时延重要的业务流数据;同样地,为了节约第二网络中的资源,往往将第二资源中的保证流带宽配置地较小。
在本申请实施例提供的业务流的处理方法的第六实施例中,QoS规则包括保证流带宽的第一参数;
第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数;
第一核心网网元根据预置的第一本地策略将第二资源中的保证流带宽配置为第五参数。
在本申请实施例中,第一资源中的保证流带宽是第一核心网网元根据第一参数进行配 置的,而第二资源中的保证流带宽是第一核心网网元根据第一本地策略配置的,使得第二资源中的保证流带宽的配置更加灵活;同样地,为了节约第二网络中的资源,往往将第五参数配置地较小。
本申请实施例提供的业务流的处理方法的第七实施例中,QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第六参数。
第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数;
第一核心网网元将第二资源中的保证流带宽配置为第六参数。
在本申请实施例中,QoS规则指定了第一网络和第二网络各自对应的保证流带宽,第一核心网网元根据QoS规则的指示即可完成第一资源和第二资源的配置。
在前述几个实施例中,第一核心网网元根据QoS规则分别对第一网络对应的第一资源和第二网络对应的第二资源进行了不同的配置,而在配置前可以先对第一网络和第二网路进行区分,然后根据区分结果对第一资源和第二资源进行前述的配置。而区分第一网络和第二网络可以根据分流规则进行,下面将对不同的分流规则进行具体介绍。
本申请实施例提供的业务流的处理方法的第八实施例中,分流规则包括分流模式信息。
分流模式信息包括:分流模式为优先级模式,第一网络的优先级高于第二网络的优先级;
分流模式信息包括:分流模式主从模式,第一网络为主网络,第二网络为从网络;
分流模式信息包括:分流模式为最小时延模式,第一网络的时延比第二网络的时延小。
在本申请实施例中,可以根据策略规则中的分流模式信息区分第一网络和第二网络,然后按照前述几个实施例的方法分别对第一资源和第二资源进行不同配置,从而可以实现对第一资源和第二资源更合理的配置。
另外需要说明的是,分流模式信息不仅用于区分第一网络和第二网络,还可以用于指示终端设备和第三核心网网元选择第一网络中的接入网设备和/或第二网络中的接入网设备进行业务流数据的传输。
当分流模式为优先级模式时,若第一网络的优先级高于第二网络的优先级,终端设备和第三核心网网元将优先选择第一网络中的接入网设备对GBR QoS flow对应的业务流数据进行传输,当GBR QoS flow对应的部分业务流数据不能通过第一网络中的接入网设备进行传输时,可以选择第二网络中的接入网设备对GBR QoS flow对应的该部分业务流数据进行传输,当GBR QoS flow对应的全部业务流数据不能通过第一网络中的接入网设备进行传输时,可以选择第二网络中的接入网设备对GBR QoS flow对应的全部业务流数据进行传输。
而当分流模式为主从模式时,若第一网络为主网络,第二网络为从网络,终端设备和第三核心网网元将选择第一网络中的接入网设备对GBR QoS flow对应的业务流数据进行传输,而不论何种情况导致第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据,终端设备和第三核心网网元都会选择第二网络中的接入网设备对GBR QoS flow对应的 业务流数据进行传输,不会存在第一网络和第二网络同时传输BR QoS flow对应的业务流数据的情况。
类似地,当分流模式为最小时延模式时,若第一网络的时延比第二网络的时延小,终端设备和第三核心网网元将选择第一网络中的接入网设备对GBR QoS flow对应的业务流数据进行传输,而不论何种情况导致第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据,终端设备和第三核心网网元都会选择第二网络中的接入网设备对GBR QoS flow对应的业务流数据进行传输,不会存在第一网络和第二网络同时传输BR QoS flow对应的业务流数据的情况。
上面介绍了三种分流规则,可以理解的是,本申请实施例中的分流规则不限于上述三种分流规则,下面将以另一种分流规则为例,对第一核心网网元配置第一资源和第二资源的过程进行说明。
在本申请实施例提供的业务流的处理方法的第九实施例中,QoS规则包括保证流带宽的第一参数,分流规则包括分流模式信息,分流模式信息包括:分流模式为均衡模式,第一网络对应的保证流带宽与第二网络对应的保证流带宽的比例。
第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元根据第一参数和比例配置第一资源中的保证流带宽和第二资源中的保证流带宽。
在本申请实施例中,分流模式为均衡模式,即终端设备和第三核心网网元将同时选择第一网络中的接入网设备和第二网络中的接入网设备传输GBR QoS flow对应的业务流数据,因此可以根据分流模式信息中的比例对第一参数进行分配,分别得到第一资源中的保证流带宽和第二资源中的保证流带宽。
上述实施例是对分流模式为均衡模式时,第一资源和第二资源的一个分配过程进行的说明,下面将对分流模式为均衡模式时,第一资源和第二资源的另一个分配过程进行说明。
本申请实施例提供的业务流的处理方法的第十实施例,QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第七参数,分流规则包括分流模式信息,分流模式信息包括:分流模式为均衡模式。
第一核心网网元根据策略规则为GBR QoS flow配置第一资源和第二资源包括:
第一核心网网元将第一资源中的保证流带宽配置为第一参数;
第一核心网网元将第二资源中的保证流带宽配置为第七参数。
在本申请实施例中,QoS规则指示了第一网络对应的保证流带宽和第二网络对应的保证流带宽,所以第一核心网网元可以直接根据QoS规则进行第一资源和第二资源中保证流带宽的设定,由于分流模式为均衡模式,所以不对第一参数和第七参数的相对大小进行限定。
根据前述内容可知,当第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,终端设备会通过第二网络中的接入网设备与终端设备传输GBR QoS flow对应的业务流数据,然而第一资源和第二资源存在差异,若不对第二资源进行调整,可能会影响GBR QoS flow对应的业务流数据的传输,例如,为了节约第二网络的资源,第二资源中的保证 流带宽往往较小,所以不能很好地保证GBR QoS flow对应的业务流数据的传输,因此需要对第二资源进行调整。下面将对第二资源的调整过程进行具体说明。
具体地,请参阅图5,本申请实施例中业务流的处理方法的第十一实施例示意图。如图5所示,本申请实施例提供了一种业务流的处理方法的第十一实施例,包括:
301,当第三核心网网元确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,第三核心网网元向第一核心网网元发送第一指示信息。
其中,第一指示信息用于指示第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据;
相应地,第一核心网网元会接收来自第三核心网网元的第一指示信息。
302,第一核心网网元根据第一指示信息将第二资源中的保证流带宽调整为第一参数。
可以理解的是,在前述的第三实施例至第八实施例中,在第一网络能够传输GBR QoS flow对应的业务流数据的情况下,对于任意模式,用于传输GBR QoS flow对应的业务流数据的保证流带宽均为第一参数,所以为了避免第二资源影响第二网络中的接入网设备传输GBR QoS flow对应的业务流数据,第一核心网网元将第二资源中的保证流带宽调整为第一参数,即维持用于传输业务流数据的保证流带宽不变。
303,第一核心网网元向第三核心网网元发送调整后的第二资源。
304、第一核心网网元向第二网络中的接入网设备发送调整后的第二资源。
305、第一核心网网元向终端设备发送调整后的第二资源。
在本申请实施例中,第一核心网网元发送调整后的第二资源的方式与前述第二实施例中发送第二资源的方式相同,具体可参照第二实施例中发送第二资源的相关说明进行理解。
相应地,第三核心网网元会接收来自第一核心网网元的调整后的第二资源;当终端设备确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,终端设备也接收来自第一核心网网元的调整后的第二资源。
306,第三核心网网元根据调整后的第二资源通过第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据。
307,终端设备根据调整后的第二资源通过第二网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据。
在本申请实施例中,第一核心网网元将第二资源中的保证流带宽调整为第一参数,使得第三核心网网元和终端设备采用调整后的第二资源进行业务流数据的传输,从而可以避免第二资源不足而影响业务流数据的传输。
在上述实施例中,是将第第二资源中的保证流带宽调整为第一参数,然而在前述的第九实施例中,由于分流模式为均衡模式,并且QoS规则中包含了第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第七参数,所以在第一网络能够传输GBR QoS flow对应的业务流数据的情况下,用于传输GBR QoS flow对应的业务流数据的保证流带宽为第一参数和第七参数的和。这种情况下,第一核心网网元重新配置第二资源的过程则有不同。下面将对该情况下,第一核心网网元重新配置第二资源的过程进行介绍。
具体地,请参阅图6,本申请实施例中业务流的处理方法的第十二实施例示意图。如 图6所示,本申请实施例提供了一种业务流的处理方法的第十二实施例,包括:
401,当第三核心网网元确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,第三核心网网元向第一核心网网元发送第一指示信息。
其中,第一指示信息用于指示第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据;
相应地,第一核心网网元会接收来自第三核心网网元的第一指示信息。
402,第一核心网网元根据第一指示信息将第二资源中的保证流带宽调整为第一参数与第七参数的和。
可以理解的是,将第二资源中的保证流带宽调整为第一参数与第七参数的和,可以维持用于传输业务流数据的保证流带宽不变。
403,第一核心网网元向第三核心网网元发送调整后的第二资源。
404,第一核心网网元向第二网络中的接入网设备发送调整后的第二资源。
405,第一核心网网元向终端设备发送调整后的第二资源。
相应地,第三核心网网元会接收来自第一核心网网元的调整后的第二资源;
当终端设备确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,终端设备也会接收来自第一核心网网元的调整后的第二资源。
406,第三核心网网元根据调整后的第二资源通过第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据。
407,终端设备根据调整后的第二资源通过第二网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据。
需要说明的是,在本申请实施例中,除了操作402外,其余操作与第十实施例中的操作相同,具体可参照第十实施例中的操作进行理解。
在本申请实施例中,第一核心网网元将第二资源中的保证流带宽调整为第一参数和第七参数的和,使得第三核心网网元和终端设备采用调整后的第二资源进行业务流数据的传输,从而可以避免第二资源不足而影响业务流数据的传输。
基于上述分析可知,第二核心网网元会向第一核心网网元发送策略规则,以指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源,而为了使第一核心网网元需要为GBR QoS flow在第一网络和第二网络分配资源,可以采用添加指示的方法,因此,在本申请实施例提供的一种业务流的处理方法的第十二实施例中,在第一核心网网元根据策略规则为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源之前,方法还包括:
第二核心网网元向第一核心网网元发送第二指示信息,第二指示用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
需要说明的是,该第二指示信息可以由第二核心网网元单独向第一核心网网元发送,第二指示信息也可以携带在策略规则中。
相应地,第一核心网网元会获取该第二指示信息,而且,第一核心网网元会将该第二指示信息发送给第三核心网网元和终端设备。
所以,第三核心网网元会接收来自第一核心网网元的第二指示信息,终端设备也会接收来自第一核心网网元的第二指示信息。
这样,第三核心网网元和终端设备均能获得第一核心网网元为第一网络和第二网络为GBR QoS flow分配资源的信息,以指示第三核心网网元和终端设备对GBR QoS flow对应的业务流数据进行切换或移动。
为了更好地理解本申请实施例中业务流的处理方法,下面将以一应用例对该处理方法进行具体介绍,该应用例以建立MA PDU会话为场景,在该应用例中,第一核心网网元为SMF网元,第二核心网网元为PCF网元,第三核心网网元为UPF网元,此外,还包括终端设备、AMF网元和接入网设备,其中,终端设备用UE表示,第一网络中的接入网设备用RAN节点表示,第二网络中的机入网设备用AN节点表示。
请参阅图7,本申请实施例中业务流的处理方法的应用例示意图。如图7所示,在该应用例中,当需要建立MA PDU会话时,UE向AMF网元发送非接入层(Non-access stratum,NAS)消息,该NAS消息中包含MA PDU会话建立请求。然后AMF网元会将该MA PDU会话建立请求转发至SMF网元,SMF网元会发送会话管理策略关联建立请求SM policy association establishment request消息至PCF网元,SM policy association establishment request消息用于请求会话建立的策略规则。
然后,PCF网元会向SMF网元发送会话管理策略关联建立响应SM policy association establishment response消息,该SM policy association establishment response消息中包含策略规则。
此后,SMF网元与UPF网元之间建立N4会话,SMF通过N4会话向UPF网元发送第一资源、第二资源和分流规则。SMF网元还会发送两个N1N2MessageTransfer消息到AMF网元,其中一个N1N2MessageTransfer消息到AMF消息包含第一资源和分流规则,另一个N1N2MessageTransfer消息到AMF消息中包含第二资源和分流规则。
接着,AMF网元会向RAN节点和AN节点各发送一个N2PDU Session Request消息,RAN节点接收到的N2PDU Session Request消息中包含第一资源和分流规则,AN节点接收到的N2PDU Session Request消息中包含第二资源和分流规则。另外,AMF网元还会向UE发送分流规则。
最后,RAN节点根据第一资源与UE建立空口资源,在空口资源的建立过程中,UE会接收到来自RAN节点的第一资源。
同样地,AN节点根据第二资源与UE建立空口资源,在空口资源的建立过程中,UE会接收到来自AN节点的第二资源。
经过上述过程,GBR QoS flow建立完成。
之后,UE通过RAN节点与UPF进行业务流数据的传输;当RAN节点不可用时,UE会通过RN节点与UPF进行数据的传输,此外,UPF网元还会向SMF发送第一指示信息,然后SMF网元根据第一指示信息对第二资源进行调整,并通过N4会话将调整后的第二资源发送给UPF,使得UPF根据调整后的第二资源与UE进行数据的传输。
请参阅图8,本申请实施例提供的一种通信装置的第一实施例示意图。如图8所示, 本申请实施例提供一种通信装置的一个实施例,作为一种可实现的方式,该通信装置可以为会话管理功能网元,通信装置包括:
接收单元501,用于接收来自第二核心网网元的策略规则;
处理单元502,用于根据策略规则为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源。
在本申请实施例提供一种通信装置的另一个实施例中,处理单元502用于:根据策略规则为GBR QoS flow配置第一资源和第二资源,其中第一资源对应第一网络,第二资源对应第二网络。
在本申请实施例提供一种通信装置的另一个实施例中,策略规则包含服务质量QoS规则和分流规则。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括保证流带宽的第一参数和最大流带宽的第二参数,其中第二参数大于第一参数;
处理单元502用于:
将第一资源中的保证流带宽配置为第一参数;
将第二资源中的保证流带宽配置为0,并将第二资源中的最大流带宽配置为第二参数。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括保证流带宽的第一参数和最大流带宽的第三参数,其中第三参数大于第一参数;
处理单元502用于:
将第一资源中的保证流带宽配置为第一参数;
将第二资源中的保证流带宽配置为第三参数与第一参数的差值。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括保证流带宽的第一参数和第四参数,第四参数为最大数据突发流量,且最大数据突发流量大于第一参数;
处理单元502用于:
将第一资源中的保证流带宽配置为第一参数;
将第二资源中的保证流带宽配置为(MDBV/PDB-GFBR/AW)*AW,其中MDBV表示最大数据突发流量,PDB表示GBR QoS flow的包延迟预算,GFBR表示第一参数,AW表示GBR QoS flow的平均窗口。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括保证流带宽的第一参数;
处理单元502用于:
将第一资源中的保证流带宽配置为第一参数;
根据预置的第一本地策略将第二资源中的保证流带宽配置为第五参数。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第六参数;
处理单元502用于:
将第一资源中的保证流带宽配置为第一参数;
将第二资源中的保证流带宽配置为第六参数。
在本申请实施例提供一种通信装置的另一个实施例中,分流规则包括分流模式信息;
分流模式信息包括:分流模式为优先级模式,第一网络的优先级高于第二网络的优先级;
分流模式信息包括:分流模式主从模式,第一网络为主网络,第二网络为从网络;
分流模式信息包括:分流模式为最小时延模式,第一网络的时延比第二网络的时延小。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括保证流带宽的第一参数,分流规则包括分流模式信息,分流模式信息包括:分流模式为均衡模式,第一网络对应的保证流带宽与第二网络对应的保证流带宽的比例;
处理单元502用于:
根据第一参数和比例配置第一资源中的保证流带宽和第二资源中的保证流带宽。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第七参数,分流规则包括分流模式信息,分流模式信息包括:分流模式为均衡模式;
处理单元502用于:
将第一资源中的保证流带宽配置为第一参数;
将第二资源中的保证流带宽配置为第七参数。
在本申请实施例提供一种通信装置的另一个实施例中,接收单元501,用于接收来自第三核心网网元的第一指示信息,第一指示信息用于指示第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据;
处理单元502,用于根据第一指示信息将第二资源中的保证流带宽调整为第一参数;
通信装置还包括:发送单元503,用于向第三核心网网元、第二网络中的接入网设备和终端设备发送调整后的第二资源。
在本申请实施例提供一种通信装置的另一个实施例中,接收单元501,用于接收来自第三核心网网元的第一指示信息,第一指示信息用于指示第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据;
处理单元502,用于根据第一指示信息将第二资源中的保证流带宽调整为第一参数与第七参数的和;
通信装置还包括:发送单元503,用于向第三核心网网元、第二网络中的接入网设备和终端设备发送调整后的第二资源。
在本申请实施例提供一种通信装置的另一个实施例中,发送单元503,用于向终端设备发送GBR QoS flow对应的第一资源、第二资源和分流规则;和/或
向第三核心网网元发送GBR QoS flow对应的第一资源、第二资源和分流规则;和/或
向第一网络中的接入网设备发送第一资源和分流规则,并向第二网络中的接入网设备发送第二资源和分流规则。
在本申请实施例提供一种通信装置的另一个实施例中,接收单元501,还用于获取第 二指示信息,第二指示信息用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
在本申请实施例提供一种通信装置的另一个实施例中,第二指示信息携带在策略规则中。
本实施例中,通信装置中各单元以及模块所执行的流程与前述图3至图6所示的实施例中描述的方法流程类似,其中处理单元502用于执行信号处理的操作,接收单元501用于执行接收的操作,发送单元503用于执行发送的操作此处不再赘述。
请参阅图9,本申请实施例提供的一种通信装置的第二实施例示意图。如图9所示,本申请实施例提供一种通信装置的一个实施例,作为一种可实现的方式,该通信装置可以为策略控制功能网元,包括:
处理单元601,用于确定需要为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源;
发送单元602,用于向第一核心网网元发送策略规则,策略规则用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
在本申请实施例提供一种通信装置的另一个实施例中,策略规则包含服务质量QoS规则和分流规则。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括保证流带宽的第一参数和最大流带宽的第二参数,其中第二参数大于第一参数。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括保证流带宽的第一参数和最大流带宽的第三参数,其中第三参数大于第一参数。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括保证流带宽的第一参数和第四参数,第四参数为最大数据突发流量,且最大数据突发流量大于第一参数。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括保证流带宽的第一参数。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第六参数。
在本申请实施例提供一种通信装置的另一个实施例中,分流规则包括分流模式信息;分流模式信息包括:分流模式为优先级模式,第一网络的优先级高于第二网络的优先级;或分流模式信息包括:分流模式主从模式,第一网络为主网络,第二网络为从网络;或分流模式信息包括:分流模式为最小时延模式,第一网络的时延比第二网络的时延小。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括保证流带宽的第一参数,分流规则包括分流模式信息;分流模式信息包括:分流模式为均衡模式,第一网络对应的保证流带宽与第二网络对应的保证流带宽的比例。
在本申请实施例提供一种通信装置的另一个实施例中,QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第七参数,分流规则包括分流模式信息,分流模式信息包括:分流模式为均衡模式。
在本申请实施例提供一种通信装置的另一个实施例中,发送单元602,还用于向第一 核心网网元发送第二指示信息,第二指示用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
在本申请实施例提供一种通信装置的另一个实施例中,第二指示信息携带在策略规则中。
本实施例中,通信装置中各单元以及模块所执行的流程与前述图3所示的实施例中描述的方法流程类似,此处不再赘述。
请参阅图10,本申请实施例提供的一种通信装置的第三实施例示意图。如图10所示,本申请实施例提供一种通信装置的一个实施例,作为一种可实现的方式,该通信装置可以为用户面功能网元,包括:
接收单元701,用于接收来自第一核心网网元的与保障流比特速率服务质量流GBR QoS flow对应的第一资源、第二资源和分流规则,第一资源对应第一网络,第二资源对应第二网络;
发送单元702,用于根据分流规则和第一资源通过第一网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据;
发送单元702,还用于当确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,根据第二资源通过第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据。
在本申请实施例提供一种通信装置的另一个实施例中,当确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,发送单元702还用于:
向第一核心网网元发送第一指示信息,第一指示信息用于指示第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据;
接收单元701,还用于接收来自第一核心网网元的调整后的第二资源;
发送单元702,还用于根据调整后的第二资源通过第二网络中的接入网设备向终端设备发送GBR QoS flow对应的业务流数据。
在本申请实施例提供一种用户面功能网元的另一个实施例中,接收单元701还用于:接收来自第一核心网网元的第二指示信息,第二指示信息用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
本实施例中,通信装置中各单元以及模块所执行的流程与前述图4至图6所示的实施例中描述的方法流程类似,此处不再赘述。
请参阅图11,本申请实施例提供的一种终端设备的一个实施例示意图。如图11所示,本申请实施例提供一种终端设备的一个实施例,包括:
接收单元801,用于接收来自第一核心网网元的与保障流比特速率服务质量流GBR QoS flow对应的第一资源、第二资源和分流规则,第一资源对应第一网络,第二资源对应第二网络;
发送单元802,用于根据分流规则和第一资源通过第一网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据;
发送单元802,还用于当确定第一网络中的接入网设备不能传输GBR QoS flow对应的 业务流数据时,根据第二资源通过第二网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据。
在本申请实施例提供一种终端设备的另一个实施例中,当确定第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据时,接收单元801用于:接收来自第一核心网网元的调整后的第二资源;
发送单元802,还用于根据调整后的第二资源通过第二网络中的接入网设备向第三核心网网元发送GBR QoS flow对应的业务流数据。
在本申请实施例提供一种终端设备的另一个实施例中,接收单元801还用于:
接收来自第一核心网网元的第二指示信息,第二指示信息用于指示第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
本实施例中,终端设备中各单元以及模块所执行的流程与前述图4至图6所示的实施例中描述的方法流程类似,此处不再赘述。
请参阅图12,本申请实施例中会话管理功能网元一个实施例可以包括一个或一个以上处理器1201,存储器1202,通信接口1203。
存储器1202可以是短暂存储或持久存储。更进一步地,处理器1201可以配置为与存储器1202通信,在会话管理功能网元上执行存储器1202中的一系列指令操作。
本实施例中,处理器1201可以执行前述图3至图6所示实施例中第一核心网网元所执行的操作,具体此处不再赘述。
本实施例中,处理器1201中的具体功能模块划分可以与前述图8中所描述的接收单元、处理单元、发送单元等单元的功能模块划分方式类似,此处不再赘述。
请参阅图13,本申请实施例中策略控制功能网元一个实施例可以包括一个或一个以上处理器1301,存储器1302,通信接口1303。
存储器1302可以是短暂存储或持久存储。更进一步地,处理器1301可以配置为与存储器1302通信,在策略控制功能网元上执行存储器1302中的一系列指令操作。
本实施例中,处理器1301可以执行前述图3所示实施例中第二核心网网元所执行的操作,具体此处不再赘述。
本实施例中,处理器1301中的具体功能模块划分可以与前述图9中所描述的处理单元、发送单元等单元的功能模块划分方式类似,此处不再赘述。
请参阅图14,本申请实施例中用户面功能网元一个实施例可以包括一个或一个以上处理器1401,存储器1402,通信接口1403。
存储器1402可以是短暂存储或持久存储。更进一步地,处理器1401可以配置为与存储器1402通信,在用户面功能网元上执行存储器1402中的一系列指令操作。
本实施例中,处理器1401可以执行前述图4至图6所示实施例中第三核心网网元所执行的操作,具体此处不再赘述。
本实施例中,处理器1401中的具体功能模块划分可以与前述图10中所描述的处理单元、发送单元等单元的功能模块划分方式类似,此处不再赘述。
接下来,本申请实施例还提供了一种终端设备,如图15所示,为了便于说明,仅示出 了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该属性信息展示装置可以为包括手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、销售终端(Point of Sales,POS)、车载电脑等任意终端设备,以属性信息展示装置为手机为例:
图15示出的是与本发明实施例提供的属性信息展示装置相关的手机的部分结构的框图。参考图15,手机包括:射频(Radio Frequency,RF)电路1510、存储器1520、输入单元1530、显示单元1540、传感器1550、音频电路1560、无线保真(wireless fidelity,WiFi)模块1570、处理器1580、以及电源1590等部件。本领域技术人员可以理解,图15中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图15对手机的各个构成部件进行具体地介绍:
RF电路1510可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器1580处理;另外,将设计上行的数据发送给基站。通常,RF电路1510包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1510还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1520可用于存储软件程序以及模块,处理器1580通过运行存储在存储器1520的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1520可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1530可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1530可包括触控面板1531以及其他输入设备1515。触控面板1531,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1531上或在触控面板1531附近的操作),并根据预先设定的程式驱动相应的连接装置。可选地,触控面板1531可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1580,并能接收处理器1580发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1531。除了触控面板1531,输入单元1530还可以包括其他输入设备1515。具体地,其他输入设 备1515可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1540可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1540可包括显示面板1541,可选地,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1541。进一步地,触控面板1531可覆盖显示面板1541,当触控面板1531检测到在其上或附近的触摸操作后,传送给处理器1580以确定触摸事件的类型,随后处理器1580根据触摸事件的类型在显示面板1541上提供相应的视觉输出。虽然在图15中,触控面板1531与显示面板1541是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1531与显示面板1541集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1550,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1541的亮度,接近传感器可在手机移动到耳边时,关闭显示面板1541和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1560、扬声器1561,传声器1562可提供用户与手机之间的音频接口。音频电路1560可将接收到的音频数据转换后的电信号,传输到扬声器1561,由扬声器1561转换为声音信号输出;另一方面,传声器1562将收集的声音信号转换为电信号,由音频电路1560接收后转换为音频数据,再将音频数据输出处理器1580处理后,经RF电路1510以发送给比如另一手机,或者将音频数据输出至存储器1520以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1570可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图15示出了WiFi模块1570,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器1580是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1520内的软件程序和/或模块,以及调用存储在存储器1520内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选地,处理器1580可包括一个或多个处理单元;可选地,处理器1580可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1580中。
手机还包括给各个部件供电的电源1590(比如电池),可选地,电源可以通过电源管理系统与处理器1580逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像模块、蓝牙模块等,在此不再赘述。
在本申请实施例中,处理器1580可以配置为与存储器1520通信,在终端设备上执行存储器1520中的一系列指令操作。
本实施例中,处理器1580可以执行前述图4至图6所示实施例中终端设备所执行的操作,具体此处不再赘述。
本实施例中,处理器1580中的具体功能模块划分可以与前述图11中所描述的接收单元、发送单元等单元的功能模块划分方式类似,此处不再赘述。
本申请实施例还提供了一种计算机存储介质,该计算机存储介质用于储存为上述会话管理功能网元、策略控制功能网元、用户面功能网元或终端设备所用的计算机软件指令,其包括用于执行为会话管理功能网元、策略控制功能网元、用户面功能网元或终端设备所设计的程序。
该会话管理功能网元可以如前述图8所描述的会话管理功能网元。
该策略控制功能网元可以如前述图9所描述的策略控制功能网元。
该用户面功能网元可以如前述图10所描述的用户面功能网元。
该终端设备可以如前述图11所描述的终端设备。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述图3至图7中任意一项的业务流的处理方法中的流程。
本申请实施例还提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行前述图3至图6所示实施例中第一核心网网元所执行的操作,具体此处不再赘述。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
本申请实施例还提供了芯片或者芯片系统的第一种实施方式,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例还提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行前述图3所示实施例中第二核心网网元所执行的操作,具体此处不再赘述。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
本申请实施例还提供了芯片或者芯片系统的第一种实施方式,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例还提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算 机程序或指令,以执行前述图4至图6所示实施例中第三核心网网元所执行的操作,具体此处不再赘述。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
本申请实施例还提供了芯片或者芯片系统的第一种实施方式,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例还提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行前述图4至图6所示实施例中终端设备所执行的操作,具体此处不再赘述。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
本申请实施例还提供了芯片或者芯片系统的第一种实施方式,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例还提供一种通信系统,该通信系统包括:会话管理功能网元、策略控制功能网元、用户面功能网元和终端设备中的任意两种;
其中,会话管理功能网元,用于执行前述图3至图6所示实施例中第一核心网网元所执行的操作;
策略控制功能网元,用于执行前述图3所示实施例中第二核心网网元所执行的操作;
用户面功能网元,用于执行前述图4至图6所示实施例中第三核心网网元所执行的操作;
通信设备,用于执行前述图4至图6所示实施例中终端设备所执行的操作。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (38)

  1. 一种业务流的处理方法,其特征在于,包括:
    第一核心网网元来自第二核心网网元的策略规则;
    所述第一核心网网元根据所述策略规则为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一核心网网元根据所述策略规则为GBR QoS flow在第一网络和第二网络分配资源包括:
    所述第一核心网网元根据所述策略规则为GBR QoS flow配置第一资源和第二资源,其中所述第一资源对应所述第一网络,所述第二资源对应所述第二网络。
  3. 根据权利要求2所述的方法,其特征在于,所述策略规则包含服务质量QoS规则和分流规则。
  4. 根据权利要求3所述的方法,其特征在于,所述QoS规则包括保证流带宽的第一参数和最大流带宽的第二参数,其中所述第二参数大于所述第一参数;
    所述第一核心网网元根据所述策略规则为GBR QoS flow配置第一资源和第二资源包括:
    所述第一核心网网元将所述第一资源中的保证流带宽配置为所述第一参数;
    所述第一核心网网元将第二资源中的保证流带宽配置为0,并将所述第二资源中的最大流带宽配置为所述第二参数。
  5. 根据权利要求3所述的方法,其特征在于,所述QoS规则包括保证流带宽的第一参数和最大流带宽的第三参数,其中所述第三参数大于所述第一参数;
    所述第一核心网网元根据所述策略规则为GBR QoS flow配置第一资源和第二资源包括:
    所述第一核心网网元将第一资源中的保证流带宽配置为所述第一参数;
    所述第一核心网网元将第二资源中的保证流带宽配置为所述第三参数与所述第一参数的差值。
  6. 根据权利要求3所述的方法,其特征在于,所述QoS规则包括保证流带宽的第一参数和第四参数,所述第四参数为最大数据突发流量,且所述最大数据突发流量大于所述第一参数;
    所述第一核心网网元根据所述策略规则为GBR QoS flow配置第一资源和第二资源包括:
    所述第一核心网网元将第一资源中的保证流带宽配置为所述第一参数;
    所述第一核心网网元将第二资源中的保证流带宽配置为(MDBV/PDB-GFBR/AW)*AW,其中MDBV表示所述最大数据突发流量,PDB表示GBR QoS flow的包延迟预算,GFBR表示所述第一参数,AW表示GBR QoS flow的平均窗口。
  7. 根据权利要求3所述的方法,其特征在于,所述QoS规则包括保证流带宽的第一参数;
    所述第一核心网网元根据所述策略规则为GBR QoS flow配置第一资源和第二资源包 括:
    所述第一核心网网元将第一资源中的保证流带宽配置为所述第一参数;
    所述第一核心网网元根据预置的第一本地策略将第二资源中的保证流带宽配置为第五参数。
  8. 根据权利要求3所述的方法,其特征在于,所述QoS规则包括所述第一网络对应的保证流带宽的第一参数和所述第二网络对应的保证流带宽的第六参数;
    所述第一核心网网元根据所述策略规则为GBR QoS flow配置第一资源和第二资源包括:
    所述第一核心网网元将第一资源中的保证流带宽配置为所述第一参数;
    所述第一核心网网元将第二资源中的保证流带宽配置为所述第六参数。
  9. 根据权利要求4至8中任意一项所述的方法,其特征在于,所述分流规则包括分流模式信息;
    所述分流模式信息包括:分流模式为优先级模式,所述第一网络的优先级高于所述第二网络的优先级;
    所述分流模式信息包括:分流模式主从模式,所述第一网络为主网络,所述第二网络为从网络;
    所述分流模式信息包括:分流模式为最小时延模式,所述第一网络的时延比所述第二网络的时延小。
  10. 根据权利要求3所述的方法,其特征在于,所述QoS规则包括保证流带宽的第一参数,所述分流规则包括分流模式信息;
    所述分流模式信息包括:分流模式为均衡模式,所述第一网络对应的保证流带宽与所述第二网络对应的保证流带宽的比例;
    所述第一核心网网元根据所述策略规则为GBR QoS flow配置第一资源和第二资源包括:
    所述第一核心网网元根据所述第一参数和所述比例配置第一资源中的保证流带宽和第二资源中的保证流带宽。
  11. 根据权利要求3所述的方法,其特征在于,所述QoS规则包括第一网络对应的保证流带宽的第一参数和第二网络对应的保证流带宽的第七参数,所述分流规则包括分流模式信息,所述分流模式信息包括:分流模式为均衡模式;
    所述第一核心网网元根据所述策略规则为GBR QoS flow配置第一资源和第二资源包括:
    所述第一核心网网元将第一资源中的保证流带宽配置为所述第一参数;
    所述第一核心网网元将第二资源中的保证流带宽配置为所述第七参数。
  12. 根据权利要求4至10中任意一项所述的方法,其特征在于,所述方法还包括:
    所述第一核心网网元接收来自第三核心网网元的第一指示信息,所述第一指示信息用 于指示所述第一网络中的接入网设备不能传输所述GBR QoS flow对应的业务流数据;
    所述第一核心网网元根据所述第一指示信息将所述第二资源中的保证流带宽调整为所述第一参数;
    所述第一核心网网元向第三核心网网元、第二网络中的接入网设备和终端设备发送调整后的第二资源。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第一核心网网元接收来自第三核心网网元的第一指示信息,所述第一指示信息用于指示所述第一网络中的接入网设备不能传输所述GBR QoS flow对应的业务流数据;
    所述第一核心网网元根据所述第一指示信息将所述第二资源中的保证流带宽调整为所述第一参数与所述第七参数的和;
    所述第一核心网网元向所述第三核心网网元、第二网络中的接入网设备和终端设备发送调整后的第二资源。
  14. 根据权利要求3至13中任意一项所述的方法,其特征在于,在所述第一核心网网元根据所述策略规则为GBR QoS flow配置第一资源和第二资源之后,所述方法还包括:
    所述第一核心网网元向终端设备发送所述GBR QoS flow对应的所述第一资源、所述第二资源和所述分流规则;和/或
    所述第一核心网网元向第三核心网网元发送所述GBR QoS flow对应的所述第一资源、所述第二资源和分流规则;和/或
    所述第一核心网网元向所述第一网络中的接入网设备发送所述第一资源和所述分流规则,并向所述第二网络中的接入网设备发送所述第二资源和所述分流规则。
  15. 根据权利要求1至14中任意一项所述的方法,其特征在于,所述第一网络为采用3GPP接入技术建立的网络或者采用非3GPP接入技术建立的网络;所述第二网络为采用3GPP接入技术建立的网络或者采用非3GPP接入技术建立的网络。
  16. 根据权利要求1至15中任意一项所述的方法,其特征在于,在所述第一核心网网元根据所述策略规则为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源之前,所述方法还包括:
    所述第一核心网网元获取第二指示信息,所述第二指示用于指示所述第一核心网网元为GBR QoS flow在第一网络和第二网络分配资源。
  17. 根据权利要求16所述的方法,其特征在于,所述第二指示信息携带在所述策略规则中。
  18. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自第二核心网网元的策略规则;
    处理单元,用于根据所述策略规则为保障流比特速率服务质量流GBR QoS flow在第一网络和第二网络分配资源。
  19. 根据权利要求18所述的通信装置,其特征在于,所述处理单元:用于根据所述策略规则为GBR QoS flow配置第一资源和第二资源,其中所述第一资源对应所述第一网络,所述第二资源对应所述第二网络。
  20. 根据权利要求19所述的通信装置,其特征在于,所述策略规则包含服务质量QoS规则和分流规则。
  21. 根据权利要求20所述的通信装置,其特征在于,所述QoS规则包括保证流带宽的第一参数和最大流带宽的第二参数,其中所述第二参数大于所述第一参数;
    所述处理单元用于:
    将所述第一资源中的保证流带宽配置为所述第一参数;
    将所述第二资源中的保证流带宽配置为0,并将所述第二资源中的最大流带宽配置为所述第二参数。
  22. 根据权利要求20所述的通信装置,其特征在于,所述QoS规则包括保证流带宽的第一参数和最大流带宽的第三参数,其中所述第三参数大于所述第一参数;
    所述处理单元用于:
    将所述第一资源中的保证流带宽配置为所述第一参数;
    将所述第二资源中的保证流带宽配置为所述第三参数与所述第一参数的差值。
  23. 根据权利要求20所述的通信装置,其特征在于,所述QoS规则包括保证流带宽的第一参数和第四参数,所述第四参数为最大数据突发流量,且最大数据突发流量大于所述第一参数;
    所述处理单元用于:
    将所述第一资源中的保证流带宽配置为所述第一参数;
    将所述第二资源中的保证流带宽配置为(MDBV/PDB-GFBR/AW)*AW,其中MDBV表示最大数据突发流量,PDB表示GBR QoS flow的包延迟预算,GFBR表示所述第一参数,AW表示GBR QoS flow的平均窗口。
  24. 根据权利要求20所述的通信装置,其特征在于,所述QoS规则包括保证流带宽的第一参数,所述处理单元用于:
    将所述第一资源中的保证流带宽配置为所述第一参数;
    根据预置的第一本地策略将第二资源中的保证流带宽配置为第五参数。
  25. 根据权利要求20所述的通信装置,其特征在于,所述QoS规则包括所述第一网络对应的保证流带宽的第一参数和所述第二网络对应的保证流带宽的第六参数;
    所述处理单元用于:
    将所述第一资源中的保证流带宽配置为所述第一参数;
    将所述第二资源中的保证流带宽配置为所述第六参数。
  26. 根据权利要求21至25中任意一项所述的通信装置,其特征在于,所述分流规则包括分流模式信息;
    所述分流模式信息包括:分流模式为优先级模式,所述第一网络的优先级高于所述第二网络的优先级;
    所述分流模式信息包括:分流模式主从模式,所述第一网络为主网络,所述第二网络为从网络;
    所述分流模式信息包括:分流模式为最小时延模式,所述第一网络的时延比所述第二网络的时延小。
  27. 根据权利要求20所述的通信装置,其特征在于,其特征在于,所述QoS规则包括保证流带宽的第一参数,所述分流规则包括分流模式信息;
    所述分流模式信息包括:分流模式为均衡模式,所述第一网络对应的保证流带宽与所述二网络对应的保证流带宽的比例;
    所述处理单元用于:
    根据所述第一参数和所述比例配置所述第一资源中的保证流带宽和所述第二资源中的保证流带宽。
  28. 根据权利要求20所述的通信装置,其特征在于,所述QoS规则包括所述第一网络对应的保证流带宽的第一参数和所述第二网络对应的保证流带宽的第七参数,所述分流规则包括分流模式信息,所述分流模式信息包括:分流模式为均衡模式;
    所述处理单元用于:
    将所述第一资源中的保证流带宽配置为所述第一参数;
    将所述第二资源中的保证流带宽配置为所述第七参数。
  29. 根据权利要求21至27中任意一项所述的通信装置,其特征在于,
    所述接收单元,用于接收来自第三核心网网元的第一指示信息,所述第一指示信息用于指示所述第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据;
    所述处理单元,用于根据所述第一指示信息将所述第二资源中的保证流带宽调整为所述第一参数;
    所述通信装置还包括:发送单元,用于向第三核心网网元、所述第二网络中的接入网设备和终端设备发送调整后的第二资源。
  30. 根据权利要求27所述的通信装置,其特征在于,
    所述接收单元,用于接收来自第三核心网网元的第一指示信息,所述第一指示信息用于指示所述第一网络中的接入网设备不能传输GBR QoS flow对应的业务流数据;
    所述处理单元,用于根据所述第一指示信息将所述第二资源中的保证流带宽调整为所述第一参数与所述第七参数的和;
    所述通信装置还包括:发送单元,用于向第三核心网网元、所述第二网络中的接入网设备和终端设备发送调整后的第二资源。
  31. 根据权利要求20至30中任意一项所述的通信装置,其特征在于,
    所述发送单元,用于向终端设备发送GBR QoS flow对应的第一资源、第二资源和分流规则;
    和/或,向第三核心网网元发送GBR QoS flow对应的所述第一资源、所述第二资源和所述分流规则;
    和/或,向所述第一网络中的接入网设备发送所述第一资源和所述分流规则,并向所述第二网络中的接入网设备发送所述第二资源和所述分流规则。
  32. 根据权利要求18至31中任意一项所述的通信装置,其特征在于,
    所述第一网络为采用3GPP接入技术建立的网络或者采用非3GPP接入技术建立的网络;所述第二网络为采用3GPP接入技术建立的网络或者采用非3GPP接入技术建立的网络。
  33. 根据权利要求18至32中任意一项所述的通信装置,其特征在于,
    所述接收单元,还用于获取第二指示信息,所述第二指示信息用于指示所述第一核心网网元为GBR QoS flow在所述第一网络和所述第二网络分配资源。
  34. 根据权利要求33所述的通信装置,其特征在于,所述第二指示信息携带在所述策略规则中。
  35. 一种会话管理功能网元,其特征在于,包括:至少一个处理器和存储器,存储器存储有可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述会话管理功能网元执行如上述权利要求1-17中任意一项所述的方法。
  36. 一种通信系统,其特征在于,所述通信系统包括:
    第一核心网网元,用于执行如权利要求1-17中任意一项所述的方法;以及
    第二核心网网元,用于向所述第一核心网网元发送策略规则。
  37. 一种存储一个或多个计算机执行指令的计算机可读存储介质,其特征在于,当所述计算机执行指令被处理器执行时,所述处理器执行如上述权利要求1-17任一所述的方法。
  38. 一种存储一个或多个计算机执行指令的计算机程序产品,其特征在于,当所述计算机执行指令被所述处理器执行时,所述处理器执行如上述权利要求1-17任一所述的方法。
PCT/CN2019/116212 2019-11-07 2019-11-07 一种业务流的处理方法及设备 WO2021087854A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/116212 WO2021087854A1 (zh) 2019-11-07 2019-11-07 一种业务流的处理方法及设备
CN201980102060.5A CN114946215A (zh) 2019-11-07 2019-11-07 一种业务流的处理方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116212 WO2021087854A1 (zh) 2019-11-07 2019-11-07 一种业务流的处理方法及设备

Publications (1)

Publication Number Publication Date
WO2021087854A1 true WO2021087854A1 (zh) 2021-05-14

Family

ID=75849482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116212 WO2021087854A1 (zh) 2019-11-07 2019-11-07 一种业务流的处理方法及设备

Country Status (2)

Country Link
CN (1) CN114946215A (zh)
WO (1) WO2021087854A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101139A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 策略控制处理方法、装置及系统
WO2019061265A1 (en) * 2017-09-29 2019-04-04 Qualcomm Incorporated TECHNIQUES AND APPARATUS FOR FIXING VOICE CALL FROM 5G / NR TO 4G / LTE
WO2019198960A1 (ko) * 2018-04-09 2019-10-17 엘지전자 주식회사 Qos를 지원하는 방법 및 smf

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101139A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 策略控制处理方法、装置及系统
WO2019061265A1 (en) * 2017-09-29 2019-04-04 Qualcomm Incorporated TECHNIQUES AND APPARATUS FOR FIXING VOICE CALL FROM 5G / NR TO 4G / LTE
WO2019198960A1 (ko) * 2018-04-09 2019-10-17 엘지전자 주식회사 Qos를 지원하는 방법 및 smf

Also Published As

Publication number Publication date
CN114946215A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
JP7247344B2 (ja) データ伝送の保証方法及び通信機器
JP7106580B2 (ja) 通信処理方法および通信装置
KR102570017B1 (ko) 세션 관리 방법 및 장치
CN110049519B (zh) 会话建立方法、会话转移方法、设备和存储介质
WO2021204003A1 (zh) 一种临近服务的业务处理方法、设备及系统
CN110167201A (zh) 一种数据传输的方法、相关装置以及系统
EP3672319B1 (en) Data sending methods, apparatus, and system
WO2019137125A1 (zh) 会话管理方法、设备及系统
WO2021197269A1 (zh) 一种临近服务的数据传输方法、设备及系统
CN112119673A (zh) 支持多种无线通信协议的电子装置及其方法
JP2021521739A (ja) Rrc接続再確立のベアラ設定方法、端末及びネットワーク機器
JP2020512734A (ja) 通信方法及び通信機器
JP7317236B2 (ja) データ処理方法、データ処理装置、通信機器及び記憶媒体
WO2019223405A1 (zh) 报文传输方法和装置
RU2690756C1 (ru) Способ передачи данных и связанные с ним устройство и система
WO2022183550A1 (zh) 网络切换方法、存储介质及网关设备
KR102430861B1 (ko) 네트워크 접속을 위한 제어 방법 및 통신 장치
WO2024055642A1 (zh) 确定调度信息类型的方法、装置、网络设备及存储介质
CN111194085B (zh) 一种通道资源的控制方法、终端和通信网元
WO2021087854A1 (zh) 一种业务流的处理方法及设备
WO2020142884A1 (zh) 切换传输路径的方法及装置
US20230093193A1 (en) Systems and methods for indicating the presence of a multi-access edge computing application
WO2023216117A1 (zh) 一种中继通信方法、装置、设备及存储介质
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2023071866A1 (zh) 指示信息的传输方法、消息传输方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952066

Country of ref document: EP

Kind code of ref document: A1