WO2021087779A1 - 无线通信的方法和终端设备 - Google Patents

无线通信的方法和终端设备 Download PDF

Info

Publication number
WO2021087779A1
WO2021087779A1 PCT/CN2019/115818 CN2019115818W WO2021087779A1 WO 2021087779 A1 WO2021087779 A1 WO 2021087779A1 CN 2019115818 W CN2019115818 W CN 2019115818W WO 2021087779 A1 WO2021087779 A1 WO 2021087779A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
terminal device
serving cell
ssb
indicate
Prior art date
Application number
PCT/CN2019/115818
Other languages
English (en)
French (fr)
Inventor
田文强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/115818 priority Critical patent/WO2021087779A1/zh
Priority to CN201980100195.8A priority patent/CN114391289A/zh
Priority to EP19951409.2A priority patent/EP4054256A4/en
Priority to CN202210632061.4A priority patent/CN115038160B/zh
Publication of WO2021087779A1 publication Critical patent/WO2021087779A1/zh
Priority to US17/733,900 priority patent/US20220256489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • This application relates to the field of communications, and in particular to a wireless communication method and terminal equipment.
  • the New Radio (NR) system supports data transmission on the unlicensed spectrum.
  • communication equipment communicates on the unlicensed spectrum, it needs to be based on the principle of Listen Before Talk (LBT), that is, communication equipment Before signal transmission on the unlicensed spectrum channel, channel listening (or called channel detection) needs to be performed first. Only when the channel detection result is that the channel is idle, the communication device can transmit the signal; if the communication device is in the unlicensed The result of channel sensing on the spectrum is that the channel is busy, and signal transmission cannot be performed.
  • LBT Listen Before Talk
  • the terminal device may filter synchronization signal blocks (Synchronization Signal/PBCH Block, SSB or SS/PBCH Block) with a Quasi Co-Located (QCL) relationship. Therefore, how the terminal equipment determines the QCL relationship of the SSB on the unlicensed spectrum to complete operations such as filtering is a problem to be solved urgently.
  • synchronization signal blocks Synchronization Signal/PBCH Block, SSB or SS/PBCH Block
  • the embodiments of the present application provide a wireless communication method and terminal equipment, which can effectively determine the QCL relationship of the SSB.
  • a wireless communication method includes:
  • the terminal device receives first indication information and second indication information from the network device, where the first indication information is used to indicate a first number Q1, and the second indication information is used to indicate a second number Q2;
  • the terminal device determines target indication information in the first indication information and the second indication information, and determines the quasi co-location between the synchronization signal blocks SSB of the serving cell of the terminal device according to the target indication information QCL relationship.
  • a terminal device including:
  • a communication unit configured to receive first indication information and second indication information from a network device, where the first indication information is used to indicate a first number Q1, and the second indication information is used to indicate a second number Q2;
  • the processing unit is configured to determine target indication information in the first indication information and the second indication information, and determine, according to the target indication information, the quasi-shared value between the synchronization signal blocks SSB of the serving cell of the terminal device Address QCL relationship.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a device is provided to implement any one of the foregoing first aspect or the method in each of its implementation manners.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspects or the method in each implementation manner thereof.
  • the device may be a chip.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any aspect of the above-mentioned first aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned aspects of the first aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned aspects of the first aspect or the method in each of its implementation manners.
  • the terminal device when the terminal device obtains two indication information through different methods and processes, and the two indication information is used to determine the number of QCL relationships between the SSBs of the serving cell, the terminal device can determine the target in the two indication information The indication information can thereby effectively determine the number of effective QCL relationships used to determine the SSB, and further determine the QCL relationship between the SSBs.
  • Fig. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the impact of LBT failure on SSB transmission according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a wireless communication method according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the QCL relationship between SSBs according to an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a device according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • UMTS Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • the unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by the country and region.
  • This spectrum can be considered as a shared spectrum, that is, the communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. To use this spectrum, it is not necessary to apply for a proprietary spectrum authorization from the government.
  • the communication device In order for the various communication systems that use the unlicensed spectrum for wireless communication to coexist friendly on the spectrum, it needs to be based on the principle of LBT, that is, the communication device needs to perform channel listening before sending signals on the channels of the unlicensed spectrum ( Or called channel detection), the communication device can only send signals when the channel detection result is that the channel is idle; if the communication device performs channel detection on the unlicensed spectrum and the result is that the channel is busy, the communication device cannot send signals.
  • the duration of signal transmission by a communication device using an unlicensed spectrum channel may not exceed the maximum channel occupation time (Maximum Channel Occupation Time, MCOT).
  • unlicensed spectrum access (NR-Based Access to Unlicensed Spectrum, NR-U) proposes a solution to provide multiple candidate locations for SSB transmission, so that the terminal device still has enough candidate locations for SSB transmission after successful LBT It can be used to send SSB to avoid the impact of LBT failure on SSB reception.
  • 16 candidate locations for SSB transmission are pre-configured. The communication device fails during the first LBT. After that, the communication device performs the second LBT, and the LBT succeeds.
  • the candidate position of the SSB transmission after the second LBT can be used to transmit the SSB, and the candidate position of the SSB transmission between the first LBT and the second LBT cannot be used to transmit the SSB, that is, the transmission of the 16 SSBs Up to 9 SSBs can be transmitted at the candidate position.
  • filtering processing can be performed between SSBs with a QCL relationship. If filtering processing is performed between SSBs without a QCL relationship, the filtered result has no meaning.
  • the terminal device may filter the SSB with the same SSB number as the measurement result of the beam (beam) level. Between SSBs with different numbers, the terminal device considers that they do not have a QCL relationship, so the terminal device can treat the SSBs with different numbers as different beams.
  • the embodiment of the present application proposes a wireless communication method, which can effectively determine the QCL relationship of the SSB.
  • FIG. 3 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the method described in FIG. 3 may be implemented by a terminal device, and the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the method 200 may include at least part of the following content.
  • the terminal device receives first indication information from the network device, where the first indication is used to indicate a first number Q1, and the second indication information is used to indicate a second number Q2.
  • the terminal device determines the target indication information in the first indication information and the second indication information, and determines the QCL relationship between the SSBs of the serving cell of the terminal device according to the target indication information.
  • Q1 and Q2 can be used to determine the QCL relationship between the SSBs of the serving cell.
  • Q1 and Q2 can also be used to determine the QCL relationship between other synchronization signals of the serving cell.
  • Q1 and Q2 can be used to determine the channel state information reference Signal (Channel State Information-Reference Signal, CSI-RS).
  • CSI-RS Channel State Information-Reference Signal
  • Q1 may be equal to Q2.
  • Q1 may not be equal to Q2.
  • the network device can indicate Q to the terminal device in a variety of ways.
  • the network device can indicate the Q (cell level) that the serving cell can use to the terminal device through a master information block (MIB).
  • MIB master information block
  • the network device may indicate the Q (cell level) that the serving cell can use through the System Information Block (SIB) 1.
  • SIB System Information Block
  • the network device can indicate the Q (frequency level) used by the frequency point where the serving cell is located through SIB1.
  • the network device may indicate the Q (cell level) that the serving cell can use through SIB2.
  • the network device can indicate the Q (frequency level) used by the frequency point where the serving cell is located through SIB2.
  • the network device can indicate the Q (cell level) that the serving cell can use when the terminal device performs intra-frequency cell reselection through SIB3.
  • the network device can instruct the terminal device to perform the same-frequency cell reselection through the SIB3 to indicate the Q (frequency level) used by the frequency point where the serving cell is located.
  • the network device can indicate the Q (cell level) that the serving cell can use through a radio resource control (Radio Resource Control, RRC) reconfiguration message.
  • RRC Radio Resource Control
  • the network device may indicate the available Q (frequency level) of the frequency point where the serving cell is located through the RRC reconfiguration message.
  • the network device may determine Q first. It should be understood that the embodiment of the present application does not limit the specific implementation manner of determining Q by the network device. Exemplarily, Q may be preset on the network device according to the protocol.
  • the terminal device when the terminal device obtains the available number (cell level) of the indicated serving cell through the above-mentioned multiple methods, the terminal device expects to obtain the same number of available indicated serving cell in different ways. In other words, the terminal device does not expect to obtain different numbers Q indicating that the serving cell can be used in different ways. Similarly, when the terminal device obtains the available number (frequency level) of the frequency point indicating the serving cell through the above-mentioned multiple methods, the terminal device expects the same number of available frequency points indicating the serving cell to be obtained in different ways. .
  • the terminal device may determine Q1 or Q2 as Q.
  • the levels of Q1 or Q2 may be different.
  • Q1 is the number that can be used by the serving cell
  • Q2 is the number that can be used by the frequency point where the serving cell is located.
  • the terminal device may determine the target indication information in the first indication information and the second indication information according to the first rule.
  • the following four embodiments describe in detail how the terminal device determines the target indication information in the first indication information and the second indication information according to the first rule.
  • the first rule may be: when the network device indicates to the terminal device the first number Q1 that can be used by the serving cell through MIB or SIB1, and indicates to the terminal device the second number Q2 that can be used by the frequency of the serving cell through SIB2 or SIB3, the target
  • the first rule can be used for co-frequency cell reselection.
  • the first rule can be used to make QCL assumptions for the SSB of the serving cell according to Q1 when reselecting cells on the same frequency.
  • the technical solution of embodiment 1 is equivalent to that the terminal device obtains the first number Q1 of the cell level through MIB or SIB1.
  • the terminal device needs to perform intra-frequency cell reselection, the terminal device obtains intra-frequency cell reselection from SIB2 or SIB3.
  • the parameters related to the same-frequency cell reselection may include, but are not limited to, the second number Q2 used for the same-frequency cell reselection at the frequency point level.
  • the network equipment considers the characteristics of other cells on the same frequency, it indicates to the terminal equipment a Q2 that can be used by each cell. Since Q1 is the actual number that can be used by the current serving cell, Q2 considers the frequency level Therefore, Q2 may not be equal to Q1. In this case, Q1 is a more accurate number for the serving cell. Therefore, the terminal device can use Q1 as the effective number of serving cells.
  • the first rule may be: when the network device indicates to the terminal device the first number Q1 that can be used by the serving cell through MIB or SIB1, and indicates to the terminal device the second number Q2 that can be used by the frequency of the serving cell through SIB2 or SIB3, the target
  • the first rule can be used for co-frequency cell reselection.
  • the first rule can be used to make QCL assumptions for the SSB of the serving cell in accordance with Q2 when reselecting cells on the same frequency.
  • Embodiment 2 The technical solution of Embodiment 2 is equivalent to that the terminal device first obtains the first number Q1 of the cell level through MIB or SIB1.
  • the terminal device When the terminal device needs to perform the same frequency cell reselection, the terminal device obtains the same frequency cell weight from SIB2 or SIB3.
  • Selection-related parameters, the parameters related to the same-frequency cell reselection may include, but are not limited to, the second number Q2 used for the same-frequency cell reselection at the frequency point level.
  • the terminal equipment can perform the same frequency cell reselection.
  • use Q2 as the effective number that the serving cell can use.
  • the terminal device may use Q1 in other processes of the serving cell, for example, the terminal device may use Q1 in the radio link management process.
  • the first rule may be: when the network device indicates to the terminal device the first number Q1 that can be used by the serving cell through MIB or SIB1, and indicates to the terminal device the second number Q2 that can be used by the frequency of the serving cell through the RRC reconfiguration message,
  • the network device may configure the information through the measurement object, or the RRC reconfiguration message may report the configuration information for the measurement.
  • the first rule can be used for intra-frequency cell measurement.
  • the first rule can be used to make QCL assumptions for the SSB of the serving cell in accordance with Q1 when measuring cells on the same frequency.
  • Embodiment 3 is equivalent to that the terminal device obtains the first number Q1 of the cell level through MIB or SIB1.
  • the terminal device needs to perform intra-frequency cell measurement, the terminal device obtains the intra-frequency cell measurement correlation from the RRC reconfiguration message.
  • the parameters related to intra-frequency cell measurement may include, but are not limited to, the second number Q2 used for intra-frequency cell measurement at the frequency point level.
  • the network equipment considers the characteristics of other cells on the same frequency, it indicates to the terminal equipment a Q2 that can be used by each cell. Since Q1 is the actual number that can be used by the current serving cell, Q2 considers the frequency level Q2 may not be equal to Q1. In this case, Q1 is a more accurate number for the serving cell. Therefore, the terminal device can use Q1 as the effective number of serving cells.
  • the first rule may be: when the network device indicates to the terminal device the first number Q1 that can be used by the serving cell through MIB or SIB1, and indicates to the terminal device the second number Q2 that can be used by the frequency of the serving cell through the RRC reconfiguration message,
  • the first rule can be used for intra-frequency cell measurement.
  • the first rule can be used to make QCL assumptions for the SSB of the serving cell in accordance with Q2 when measuring cells on the same frequency.
  • Embodiment 2 The technical solution of Embodiment 2 is equivalent to that the terminal device obtains the first number Q1 of the cell level through MIB or SIB1.
  • the terminal device obtains the same-frequency cell reselection related information from the RRC reconfiguration message.
  • the parameters related to the same-frequency cell measurement may include, but are not limited to, the second number Q2 used for the same-frequency cell measurement at the frequency point level.
  • the terminal equipment can be used when doing the same frequency cell measurement Q2 is an effective number that can be used as a serving cell.
  • Q1 can be used in other processes of the serving cell, for example, the terminal device can use Q1 in the radio link management process.
  • the terminal device After the terminal device determines the target indication information, that is, after the Q is determined, the terminal device can determine the QCL relationship between the multiple SSBs of the serving cell based on the Q.
  • FIG. 4 Take Figure 4 as an example.
  • SSB numbered 0, SSB numbered 8, and SSB numbered 16 have a QCL relationship.
  • SSB numbered 1, SSB numbered 9, and SSB numbered 17 have a QCL relationship.
  • the number of the SSB may be the order of the SSB in a SSB set in the time domain.
  • the SSB set may include SSBs of the same serving cell or SSBs of multiple serving cells.
  • the number of the SSB may be the order of the SSB in the time domain in the SSBs belonging to the same serving cell.
  • the embodiment of the present application only shows that the network device indicates the number of QCL relationships between SSBs to the terminal device in two ways, but the present application is not limited.
  • the network device can indicate the number of QCL relationships between SSBs to the terminal device in three or more ways.
  • the terminal device can determine the target indication information from the multiple indication information according to the first rule. That is, the number of QCL relationships finally used to determine the SSBs is determined among the multiple numbers used to determine the QCL relationships between the SSBs.
  • the terminal device when the terminal device receives two indication information indicating the number of QCL relationships between the SSBs of the serving cell, the terminal device may determine the target indication information in the two indication information based on the first rule, thereby The number of effective QCL relationships used to determine the SSB can be effectively determined. Only when the number of effective QCL relationships between SSBs is determined, the terminal equipment can perform measurement operations such as filtering on the unlicensed spectrum, thereby ensuring the accuracy of cell reselection and cell measurement.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • FIG. 5 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application. As shown in FIG. 5, the terminal device 300 includes:
  • the communication unit 310 is configured to receive first indication information and second indication information from a network device, where the first indication information is used to indicate a first number Q1, and the second indication information is used to indicate a second number Q2.
  • the processing unit 320 is configured to determine target indication information in the first indication information and the second indication information, and determine the alignment between the synchronization signal blocks SSB of the serving cell of the terminal device according to the target indication information. Co-location QCL relationship.
  • the Q1 is used to indicate the usable number of the serving cell
  • the Q2 is used to indicate the usable number of the frequency point where the serving cell is located.
  • the processing unit 320 is specifically configured to: determine the target indication information by the first indication information.
  • the processing unit 320 is specifically configured to determine the target indication information by the second indication information.
  • the first indication information is carried in the main information block MIB or the system information block SIB1
  • the second indication information is carried in the SIB2 or SIB3.
  • the first indication information is carried in MIB or SIB1
  • the second indication information is carried in a radio resource control RRC reconfiguration message.
  • the processing unit 320 is specifically configured to: when the SSB of the serving cell satisfies the following formula, determine that the SSB of the serving cell has a QCL relationship:
  • M1 and M2 are the numbers of different SSBs of the serving cell respectively, and Q is the number indicated by the target indication information.
  • terminal device 300 may correspond to the terminal device in the method 200, and can implement the corresponding operations of the terminal device in the method 200. For the sake of brevity, details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a terminal device 400 provided by an embodiment of the present application.
  • the terminal device 400 shown in FIG. 6 includes a processor 410, and the processor 410 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the terminal device 400 may further include a memory 420.
  • the processor 410 may call and run a computer program from the memory 420 to implement the method in the embodiment of the present application.
  • the memory 420 may be a separate device independent of the processor 410, or may be integrated in the processor 410.
  • the terminal device 400 may further include a transceiver 430, and the processor 410 may control the transceiver 430 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include an antenna, and the number of antennas may be one or more.
  • the terminal device 400 may specifically be a terminal device of an embodiment of the present application, and the terminal device 400 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the foregoing functions of the communication unit 310 may be implemented by a communication interface or a transceiver, and the foregoing functions of the processing unit 320 may be implemented by a processor.
  • Fig. 7 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 500 shown in FIG. 7 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the device 500 may further include an input interface 530.
  • the processor 510 can control the input interface 530 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 500 may further include an output interface 540.
  • the processor 510 can control the output interface 540 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device 500 may be a chip. It should be understood that the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. Go into details again.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I will not repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请实施例涉及一种无线通信的方法和终端设备,可以有效确定SSB的QCL关系。该无线通信的方法包括:终端设备从网络设备接收第一指示信息和第二指示信息,所述第一指示信息用于指示第一数目Q1,所述第二指示信息用于指示第二数目Q2;所述终端设备在所述第一指示信息和所述第二指示信息中确定目标指示信息,并根据所述目标指示信息确定所述终端设备的服务小区的同步信号块SSB之间的准共址QCL关系。

Description

无线通信的方法和终端设备 技术领域
本申请涉及通信领域,具体涉及一种无线通信的方法和终端设备。
背景技术
新无线(New Radio,NR)系统中支持免授权频谱上的数据传输,通信设备在免授权频谱上进行通信时,需要基于先听后说(Listen Before Talk,LBT)的原则,即,通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听(或称为信道检测),只有当信道侦听结果为信道空闲时,通信设备才能进行信号发送;如果通信设备在免授权频谱的上进行信道侦听的结果为信道忙,则不能进行信号发送。
在进行小区测量时,终端设备可以将具有准共址(Quasi Co-Located,QCL)关系的同步信号块(Synchronization Signal/PBCH Block,SSB或SS/PBCH Block)做滤波处理。因此,终端设备如何在免授权频谱上确定SSB的QCL关系,以完成滤波等操作,是一项亟待解决的问题。
发明内容
本申请实施例提供一种无线通信的方法和终端设备,可以有效确定SSB的QCL关系。
第一方面,提供了一种无线通信的方法,所述方法包括:
终端设备从网络设备接收第一指示信息和第二指示信息,所述第一指示信息用于指示第一数目Q1,所述第二指示信息用于指示第二数目Q2;
所述终端设备在所述第一指示信息和所述第二指示信息中确定目标指示信息,并根据所述目标指示信息确定所述终端设备的服务小区的同步信号块SSB之间的准共址QCL关系。
第二方面,提供了一种终端设备,包括:
通信单元,用于从网络设备接收第一指示信息和第二指示信息,所述第一指示信息用于指示第一数目Q1,所述第二指示信息用于指示第二数目Q2;
处理单元,用于在所述第一指示信息和所述第二指示信息中确定目标指示信息,并根据所述目标指示信息确定所述终端设备的服务小区的同步信号块SSB之间的准共址QCL关系。
第三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种装置,用于实现上述第一方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面中的任一方面或其各实现方式中的方法。
可选地,该装置可以为芯片。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面中的任一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面中的任一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面中的任一方面或其各实现方式中的方法。
上述技术方案,当终端设备通过不同方式、流程获得两个指示信息,该两个指示信 息用于确定服务小区的SSB之间的QCL关系的数目时,终端设备可以在两个指示信息中确定目标指示信息,从而可以有效确定有效的用于确定SSB的QCL关系的数目,进一步可以确定SSB之间的QCL关系。
附图说明
图1是根据本申请实施例的一种通信系统架构的示意性图。
图2是根据本申请实施例的LBT失败对SSB的传输影响的示意性图。
图3是根据本申请实施例的无线通信方法的示意性图。
图4是根据本申请实施例的SSB之间的QCL关系的示意图。
图5是根据本申请实施例的终端设备的示意性框图。
图6是根据本申请实施例的终端设备的示意性框图。
图7是根据本申请实施例的装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发 送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱可以被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,可以不向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,需要基于LBT的原则,即,通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听(或称为信道检测),只有当信道侦听结果为信道空闲时,通信设备才能进行信号发送;如果通信设备在免授权频谱的上进行信道侦听的结果为信道忙,则不能进行信号发送。且为了保证公平性,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长可以不超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。
可以看到,由于免授权频谱上的信道资源是共享的,而通信设备使用这些共享资源时需要先侦听到空闲信道才能对侦听到的空闲信道加以利用。这种情况下,由于通信设备LBT成功的位置是不可预期的,如果LBT失败,则会造成SSB的发送失败或接收失败,因此,很难保证SSB周期性发送及接收的固定位置。
鉴于此,免授权频谱接入(NR-Based Access to Unlicensed Spectrum,NR-U)中提出了提供多个SSB发送的候选位置的方案,以便终端设备LBT成功后仍然有足够的SSB发送的候选位置可以用来发送SSB,从而避免LBT失败对SSB的接收造成的影响。如图2所示,预配置了16个SSB传输的候选位置,通信设备在进行第一次LBT时失败,之后,通信设备进行第二次LBT,LBT成功。因此,第二次LBT之后的SSB传输的候选位置可以用于传输SSB,第一次LBT和第二次LBT之间的SSB传输的候选位置不能用于传输SSB,即在这16个SSB传输的候选位置上最多可以传输9个SSB。
在终端设备进行小区测量时,具有QCL关系的SSB之间可以做滤波处理,不具有 QCL关系的SSB之间如果做滤波处理,则滤波出来的结果没有任何意义。
目前,在授权频谱上,相同SSB编号的SSB之间具有QCL关系。也就是说,在进行小区测量,终端设备可以将具有相同SSB编号的SSB做滤波处理,以作为波束(beam)级别的测量结果。而编号不同的SSB之间,终端设备认为它们之间不具有QCL关系,所以终端设备可以将编号不同的SSB作为不同的beam处理。
为了进行滤波等测量操作,以保证小区测量的准确性,因此,终端设备如何在免授权频谱上确定SSB的QCL关系,是一项亟待解决的问题。
鉴于此,本申请实施例提出了一种无线通信的方法,可以效确定SSB的QCL关系。
图3是根据本申请实施例的无线通信的方法200的示意性流程图。图3所述的方法可以由终端设备,该终端设备例如可以为图1中所示的终端设备120。如图3所示,该方法200可以包括以下内容中的至少部分内容。
在210中,终端设备从网络设备接收第一指示信息,该第一指示用于指示第一数目Q1,第二指示信息用于指示第二数目Q2。
在220中,终端设备在第一指示信息和第二指示信息中确定目标指示信息,并根据目标指示信息确定终端设备的服务小区的SSB之间的QCL关系。
其中,Q1和Q2可以用于确定服务小区的SSB之间的QCL关系。Q1和Q2除了可以用于确定服务小区的SSB之间的QCL关系之外,还可以用于确定服务小区的其他同步信号之间的QCL关系,比如,Q1和Q2可以用于确定信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)。
可选地,在本申请实施例中,Q1可以等于Q2。
可选地,在本申请实施例中,Q1可以不等于Q2。
为了描述方便,将目标指示信息指示的数目称为Q,即Q为用于最终确定服务小区的SSB之间的QCL关系的有效数目。例如,若终端设备确定的目标指示信息为Q1,则Q=Q1。
网络设备可以通过多种方式向终端设备指示Q,例如,网络设备可以通过主信息块(Master Information Block,MIB)向终端设备指示服务小区可以使用的Q(小区级别)。
再例如,网络设备可以通过系统信息块(System Information Block,SIB)1指示服务小区可以使用的Q(小区级别)。
再例如,网络设备可以通过SIB1指示服务小区所在频点使用的Q(频点级别)。
再例如,网络设备可以通过SIB2指示服务小区可以使用的Q(小区级别)。
再例如,网络设备可以通过SIB2指示服务小区所在频点使用的Q(频点级别)。
再例如,网络设备可以通过SIB3指示终端设备进行同频小区重选时服务小区可以使用的Q(小区级别)。
再例如,网络设备可以通过SIB3指示终端设备进行同频小区重选时指示服务小区所在频点使用的Q(频点级别)。
再例如,网络设备可以通过无限资源控制(Radio Resource Control,RRC)重配置消息指示服务小区可以使用的Q(小区级别)。
再例如,网络设备可以通过RRC重配置消息指示服务小区所在频点可以使用的Q(频点级别)。
网络设备在向终端设备指示Q之前,网络设备可以先确定Q。应理解,本申请实施例对网络设备确定Q的具体实现方式不作限定。示例性地,Q可以是协议规定预设在网络设备上的。
需要说明的是,当终端设备通过上述多种方式获得指示服务小区可以使用的数目(小区级别)时,终端设备期望以不同方式获得的指示服务小区可以使用的数目是相同的。也就是说,终端设备不期望通过不同的方式获得不同的指示服务小区可以使用的数目Q。类似地,当终端设备通过上述多种方式获得指示服务小区所在频点可以使用的数目(频 点级别)时,终端设备期望以不同方式获得的指示服务小区所在频点可以使用的数目是相同的。
在一种可能的实施例中,若Q1和Q2的级别相同,即Q1和Q2都为频点级别或小区级别的,且Q1=Q2,则终端设备可以将Q1或Q2确定为Q。
在另一种可能的实施例中,Q1或Q2的级别可以不同,比如,Q1为服务小区可以使用的数目,Q2为服务小区所在频点可以使用的数目。在这种情况下,终端设备可以根据第一规则在第一指示信息和第二指示信息中确定目标指示信息。
下面通过四个实施例详细描述终端设备根据第一规则,在第一指示信息和第二指示信息中确定目标指示信息的实现方式。
实施例1
第一规则可以为:网络设备通过MIB或者SIB1向终端设备指示服务小区可以使用的第一数目Q1,且通过SIB2或SIB3向终端设备指示服务小区所在频点可以使用的第二数目Q2时,目标指示信息可以为承载于MIB或者SIB1的第一指示信息,Q=Q1。
可选地,第一规则可以用于同频小区重选。例如,第一规则可以用于同频小区重选时对服务小区的SSB按照Q1做QCL假设。
实施例1的技术方案相当于终端设备通过MIB或SIB1获得了小区级别的第一数目Q1,当终端设备需要做同频小区重选时,终端设备又从SIB2或SIB3获得了同频小区重选相关的参数,该同频小区重选相关的参数可以包括但不限于频点级别的用于同频小区重选的第二数目Q2。此时,当网络设备考虑了同频的其他小区特征后,向终端设备指示了个各个小区都可以使用的Q2,由于Q1是实际的当前服务小区可以使用的数目,Q2是考虑了频点级别的数目,因此Q2可以不等于Q1。在这种情况下,对于服务小区来说,Q1是更加准确的数目。所以,终端设备可以将Q1作为有效的服务小区数目。
实施例2
第一规则可以为:网络设备通过MIB或者SIB1向终端设备指示服务小区可以使用的第一数目Q1,且通过SIB2或SIB3向终端设备指示服务小区所在频点可以使用的第二数目Q2时,目标指示信息可以为承载于SIB2或SIB3的第二指示信息,Q=Q2。
可选地,第一规则可以用于同频小区重选。例如,第一规则可以用于同频小区重选时对服务小区的SSB按照Q2做QCL假设。
实施例2的技术方案相当于终端设备先通过MIB或SIB1获得了小区级别的第一数目Q1,当终端设备需要做同频小区重选时,终端设备又从SIB2或SIB3获得了同频小区重选相关的参数,该同频小区重选相关的参数可以包括但不限于频点级别的用于同频小区重选的第二数目Q2。在这种情况下,为了保证同频小区重选时各个小区采用相同的数目,以保证各个小区做同频小区重选的公平性,对于服务小区来说,终端设备可以在做同频小区重选时使用Q2作为服务小区可以使用的有效数目。
可选地,终端设备可以在服务小区的其他过程中使用Q1,例如终端设备可以在无线链路管理过程中使用Q1。
实施例3
第一规则可以为:网络设备通过MIB或者SIB1向终端设备指示服务小区可以使用的第一数目Q1,且通过RRC重配置消息向终端设备指示服务小区所在频点可以使用的第二数目Q2时,目标指示信息可以为承载于MIB或者SIB1的第一指示信息,Q=Q1。
可选地,网络设备可以通过测量对象配置信息,或者,RRC重配置消息可以为测量上报配置信息。
可选地,第一规则可以用于同频小区测量。例如,第一规则可以用于同频小区测量时对服务小区的SSB按照Q1做QCL假设。
实施例3的技术方案相当于终端设备通过MIB或SIB1获得了小区级别的第一数目Q1,当终端设备需要做同频小区测量时,终端设备又从RRC重配置消息获得了同频小区 测量相关的参数,该同频小区测量相关的参数可以包括但不限于频点级别的用于同频小区测量的第二数目Q2。此时,当网络设备考虑了同频的其他小区特征后,向终端设备指示了个各个小区都可以使用的Q2,由于Q1是实际的当前服务小区可以使用的数目,Q2是考虑了频点级别的数目,Q2可以不等于Q1。在这种情况下,对于服务小区来说,Q1是更加准确的数目。所以,终端设备可以将Q1作为有效的服务小区数目。
实施例4
第一规则可以为:网络设备通过MIB或者SIB1向终端设备指示服务小区可以使用的第一数目Q1,且通过RRC重配置消息向终端设备指示服务小区所在频点可以使用的第二数目Q2时,目标指示信息可以为承载于RRC重配置消息中的第二指示信息,Q=Q2。
可选地,第一规则可以用于同频小区测量。例如,第一规则可以用于同频小区测量时对服务小区的SSB按照Q2做QCL假设。
实施例2的技术方案相当于终端设备通过MIB或SIB1获得了小区级别的第一数目Q1,当终端设备需要做小区测量时,终端设备又从RRC重配置消息获得了同频小区重选相关的参数,该同频小区测量相关的参数可以包括但不限于频点级别的用于同频小区测量的第二数目Q2。在这种情况下,为了保证同频小区测量时各个小区采用相同的数目,以保证各个小区做同频小区测量的公平性,对于服务小区来说,终端设备可以在做同频小区测量时使用Q2作为服务小区可以使用的有效数目。
可选地,Q1可以在服务小区的其他过程中使用,例如终端设备可以在无线链路管理过程中使用Q1。
在终端设备确定了目标指示信息,也即确定了Q之后,终端设备可以基于Q,确定服务小区的多个SSB之间的QCL关系。
具体而言,当终端设备检测到两个SSB,这两个SSB的编号分别为M1和M2,如果M1 mod Q=M2 mod Q,则终端设备可以确认这两个SSB之间具有QCL关系。
结合图4举例说明。图4中有20个SSB,编号分别为0、1、2……19,Q=8。在此情况下,编号为0的SSB、编号为8的SSB以及编号为16的SSB之间具有QCL关系。编号为1的SSB、编号为9的SSB和编号为17的SSB之间具有QCL关系。
可选地,SSB的编号可以为该SSB在一个SSB集合中,在时域上的排序。该SSB集合可以包括同一个服务小区的SSB或者多个服务小区的SSB。
可选地,SSB的编号可以为该SSB在属于同一个服务小区的SSB中的时域上的排序。
应理解,在本申请实施例中,“第一”和“第二”仅仅为了区分不同的对象,但并不对本申请实施例的范围构成限制。
还应理解,本申请实施例仅示出了网络设备通过两种方式向终端设备指示用于确定SSB之间的QCL关系的数目,但本申请并不限于。网络设备可以通过三种以及三种以上的方式向终端设备指示用于确定SSB之间的QCL关系的数目,此时,终端设备可以根据第一规则,在多个指示信息中确定目标指示信息,即在多个用于确定SSB之间的QCL关系的数目中确定最终用于定SSB之间的QCL关系的数目。
本申请实施例,当终端设备接收到指示确定服务小区的SSB之间的QCL关系的数目的两个指示信息时,终端设备可以基于第一规则,在两个指示信息中确定目标指示信息,从而可以有效确定有效的用于确定SSB的QCL关系的数目。只有当有效的用于确定SSB之间的QCL关系的数目确定后,终端设备在免授权频谱上才能完成滤波等测量操作,从而保证小区重选和小区测量的准确性。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方 式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的传输上行控制信息的方法,下面将结合图5和图6,描述根据本申请实施例的通信装置,方法实施例所描述的技术特征适用于以下装置实施例。
图5示出了本申请实施例的终端设备300的示意性框图。如图5所示,该终端设备300包括:
通信单元310,用于从网络设备接收第一指示信息和第二指示信息,所述第一指示信息用于指示第一数目Q1,所述第二指示信息用于指示第二数目Q2。
处理单元320,用于在所述第一指示信息和所述第二指示信息中确定目标指示信息,并根据所述目标指示信息确定所述终端设备的服务小区的同步信号块SSB之间的准共址QCL关系。
可选地,在本申请实施例中,所述Q1用于指示所述服务小区可使用的数目,所述Q2用于指示所述服务小区所在的频点可使用的数目。
可选地,在本申请实施例中,所述处理单元320具体用于:将所述第一指示信息确定所述目标指示信息。
可选地,在本申请实施例中,所述处理单元320具体用于:将所述第二指示信息确定所述目标指示信息。
可选地,在本申请实施例中,所述第一指示信息承载于主信息块MIB或系统信息块SIB1中,所述第二指示信息承载于SIB2或SIB3中。
可选地,在本申请实施例中,所述第一指示信息承载于MIB或SIB1中,所述第二指示信息承载于无线资源控制RRC重配置消息中。
可选地,在本申请实施例中,所述处理单元320具体用于:当所述服务小区的SSB满足以下公式时,确定所述服务小区的SSB之间具有QCL关系:
M1 mod(Q)=M2 mod(Q)
其中,M1和M2分别为所述服务小区的不同SSB的编号,Q为所述目标指示信息指示的数目。
应理解,该终端设备300可对应于方法200中的终端设备,可以实现该方法200中的终端设备的相应操作,为了简洁,在此不再赘述。
图6是本申请实施例提供的一种终端设备400示意性结构图。图6所示的终端设备400包括处理器410,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,终端设备400还可以包括存储器420。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
可选地,如图6所示,终端设备400还可以包括收发器430,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该终端设备400具体可为本申请实施例的终端设备,并且该终端设备400 可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,通信单元310的上述功能可以通过通信接口或收发器实现,处理单元320的上述功能可以通过处理器实现。
图7是本申请实施例的装置的示意性结构图。图7所示的装置500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,装置500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,该装置500还可以包括输入接口530。其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置500还可以包括输出接口540。其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置500可以为芯片。应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic  RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何 熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (21)

  1. 一种无线通信的方法,其特征在于,所述方法包括:
    终端设备从网络设备接收第一指示信息和第二指示信息,所述第一指示信息用于指示第一数目Q1,所述第二指示信息用于指示第二数目Q2;
    所述终端设备在所述第一指示信息和所述第二指示信息中确定目标指示信息,并根据所述目标指示信息确定所述终端设备的服务小区的同步信号块SSB之间的准共址QCL关系。
  2. 根据权利要求1所述的方法,其特征在于,所述Q1用于指示所述服务小区可使用的数目,所述Q2用于指示所述服务小区所在的频点可使用的数目。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备在所述第一指示信息和所述第二指示信息中确定目标指示信息包括:
    所述终端设备将所述第一指示信息确定为所述目标指示信息。
  4. 根据权利要求2所述的方法,其特征在于,所述终端设备在所述第一指示信息和所述第二指示信息中确定目标指示信息包括:
    所述终端设备将所述第二指示信息确定为所述目标指示信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一指示信息承载于主信息块MIB或系统信息块SIB1中,所述第二指示信息承载于SIB2或SIB3中。
  6. 根据权利要求5所述的方法,其特征在于,所述方法用于同频小区重选。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一指示信息承载于MIB或SIB1中,所述第二指示信息承载于无线资源控制RRC重配置消息中。
  8. 根据权利要求7所述的方法,其特征在于,所述方法用于同频小区测量。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述终端设备根据目标指示信息确定所述终端设备的服务小区的同步信号块SSB之间的准共址QCL关系,包括:
    当所述服务小区的SSB满足以下公式时,所述终端设备确定所述服务小区的SSB之间具有QCL关系:
    M1 mod(Q)=M2 mod(Q)
    其中,M1和M2分别为所述服务小区的不同SSB的编号,Q为所述目标指示信息指示的数目。
  10. 一种终端设备,其特征在于,包括:
    通信单元,用于从网络设备接收第一指示信息和第二指示信息,所述第一指示信息用于指示第一数目Q1,所述第二指示信息用于指示第二数目Q2;
    处理单元,用于在所述第一指示信息和所述第二指示信息中确定目标指示信息,并根据所述目标指示信息确定所述终端设备的服务小区的同步信号块SSB之间的准共址QCL关系。
  11. 根据权利要求10所述的终端设备,其特征在于,所述Q1用于指示所述服务小区可使用的数目,所述Q2用于指示所述服务小区所在的频点可使用的数目。
  12. 根据权利要求11所述的终端设备,其特征在于,所述处理单元具体用于:
    将所述第一指示信息确定所述目标指示信息。
  13. 根据权利要求11所述的终端设备,其特征在于,所述处理单元具体用于:
    将所述第二指示信息确定所述目标指示信息。
  14. 根据权利要求10至13中任一项所述的终端设备,其特征在于,所述第一指示信息承载于主信息块MIB或系统信息块SIB1中,所述第二指示信息承载于SIB2或SIB3中。
  15. 根据权利要求10至13中任一项所述的终端设备,其特征在于,所述第一指示信息承载于MIB或SIB1中,所述第二指示信息承载于无线资源控制RRC重配置消息中。
  16. 根据权利要求10至15中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    当所述服务小区的SSB满足以下公式时,确定所述服务小区的SSB之间具有QCL关系:
    M1 mod(Q)=M2 mod(Q)
    其中,M1和M2分别为所述服务小区的不同SSB的编号,Q为所述目标指示信息指示的数目。
  17. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至9中任一项所述的方法。
  18. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至9中任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至9中任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至9中任一项所述的方法。
  21. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至9中任一项所述的方法。
PCT/CN2019/115818 2019-11-05 2019-11-05 无线通信的方法和终端设备 WO2021087779A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/115818 WO2021087779A1 (zh) 2019-11-05 2019-11-05 无线通信的方法和终端设备
CN201980100195.8A CN114391289A (zh) 2019-11-05 2019-11-05 无线通信的方法和终端设备
EP19951409.2A EP4054256A4 (en) 2019-11-05 2019-11-05 WIRELESS COMMUNICATION METHOD AND TERMINAL DEVICE
CN202210632061.4A CN115038160B (zh) 2019-11-05 2019-11-05 无线通信的方法和终端设备
US17/733,900 US20220256489A1 (en) 2019-11-05 2022-04-29 Wireless communication method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115818 WO2021087779A1 (zh) 2019-11-05 2019-11-05 无线通信的方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/733,900 Continuation US20220256489A1 (en) 2019-11-05 2022-04-29 Wireless communication method and terminal device

Publications (1)

Publication Number Publication Date
WO2021087779A1 true WO2021087779A1 (zh) 2021-05-14

Family

ID=75849390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115818 WO2021087779A1 (zh) 2019-11-05 2019-11-05 无线通信的方法和终端设备

Country Status (4)

Country Link
US (1) US20220256489A1 (zh)
EP (1) EP4054256A4 (zh)
CN (2) CN115038160B (zh)
WO (1) WO2021087779A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160331A1 (en) * 2018-02-13 2019-08-22 Samsung Electronics Co., Ltd. Method and device for communicating synchronization signal
CN110249582A (zh) * 2019-04-29 2019-09-17 北京小米移动软件有限公司 信息传输方法、装置及计算机可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565432B (zh) * 2017-01-06 2021-12-03 Lg 电子株式会社 无线通信系统中接收参考信号的方法及其装置
CN110034853B (zh) * 2018-01-12 2021-09-21 华为技术有限公司 信号传输方法、相关设备及系统
CN110299978B (zh) * 2018-03-23 2020-10-02 维沃移动通信有限公司 信息传输方法、终端及网络设备
WO2019194725A1 (en) * 2018-04-04 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Performing cell measurements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160331A1 (en) * 2018-02-13 2019-08-22 Samsung Electronics Co., Ltd. Method and device for communicating synchronization signal
CN110249582A (zh) * 2019-04-29 2019-09-17 北京小米移动软件有限公司 信息传输方法、装置及计算机可读存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TSG RAN WG1: "Discussion on initial access procedure for NR-U", MEETING #98BIS, R1-1910205, 20 October 2019 (2019-10-20), XP051789010 *
3GPP TSG-RAN WG1: "Enhancements to initial access procedure", MEETING #98BIS, R1-1910948, 20 October 2019 (2019-10-20), XP051789728 *
See also references of EP4054256A4 *

Also Published As

Publication number Publication date
EP4054256A1 (en) 2022-09-07
CN115038160B (zh) 2023-11-24
EP4054256A4 (en) 2022-11-30
CN114391289A (zh) 2022-04-22
CN115038160A (zh) 2022-09-09
US20220256489A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
WO2019242154A1 (zh) 信息测量方法、终端设备和网络设备
WO2019237241A1 (zh) 一种下行信号的传输方法及终端设备
US11943172B2 (en) Signal transmission method and apparatus, terminal and network device
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
TW202025838A (zh) 通訊方法、終端設備和網路設備
US20220368454A1 (en) Method for Determining Transmission Mode in Sidelink, Terminal Apparatus, and Network Apparatus
CN111787554A (zh) 一种邻区关系的维护方法及装置、网络设备
US20210367825A1 (en) Wireless communication method, terminal device and network device
WO2019241969A1 (zh) 配置测量信息的方法、终端设备和网络设备
WO2021088262A1 (zh) 确定时隙格式的方法及装置
CN114467326B (zh) 一种测量配置方法及装置、终端设备、网络设备
WO2023020297A1 (zh) 中继选择方法和装置
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
US20210153084A1 (en) Wireless communication method, terminal device, and network device
US20210235423A1 (en) Access control method, terminal, and storage medium
WO2021087779A1 (zh) 无线通信的方法和终端设备
WO2021026842A1 (zh) 无线通信方法、网络设备和终端设备
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
US20220077987A1 (en) Method and apparatus for indicating reference signal, terminal, and network device
EP3902350B1 (en) Resource pool configuration method, device, and storage medium
US20220104157A1 (en) Wireless communication method, network device, and terminal device
WO2023123477A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019951409

Country of ref document: EP

Effective date: 20220531