WO2021086071A1 - 무선충전 장치 및 이를 포함하는 이동 수단 - Google Patents

무선충전 장치 및 이를 포함하는 이동 수단 Download PDF

Info

Publication number
WO2021086071A1
WO2021086071A1 PCT/KR2020/014939 KR2020014939W WO2021086071A1 WO 2021086071 A1 WO2021086071 A1 WO 2021086071A1 KR 2020014939 W KR2020014939 W KR 2020014939W WO 2021086071 A1 WO2021086071 A1 WO 2021086071A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
wireless charging
charging device
air
coil
Prior art date
Application number
PCT/KR2020/014939
Other languages
English (en)
French (fr)
Inventor
이승환
김태경
최종학
김나영
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190135516A external-priority patent/KR102280255B1/ko
Priority claimed from KR1020190135513A external-priority patent/KR102298109B1/ko
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to EP20881414.5A priority Critical patent/EP4053863A4/en
Priority to CN202080076352.9A priority patent/CN114630762A/zh
Priority to JP2022520631A priority patent/JP7329139B2/ja
Priority to US17/765,819 priority patent/US20220328232A1/en
Publication of WO2021086071A1 publication Critical patent/WO2021086071A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/085Cooling by ambient air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the embodiment relates to a wireless charging device and a moving means including the same. More specifically, the embodiment relates to a wireless charging device with improved charging efficiency by applying a heat dissipation structure and a moving means such as an electric vehicle including the same.
  • the wireless power transmission power is wirelessly transmitted through space using an electromagnetic field resonance structure such as inductive coupling, capacitive coupling, or an antenna without physical contact between a transmitter supplying power and a receiver receiving power.
  • an electromagnetic field resonance structure such as inductive coupling, capacitive coupling, or an antenna without physical contact between a transmitter supplying power and a receiver receiving power.
  • the wireless power transmission is suitable for portable communication devices, electric vehicles, etc. that require a large-capacity battery, and since the contact point is not exposed, there is little risk of a short circuit, and a wired charging failure phenomenon can be prevented.
  • Patent Document 1 Korean Patent Application Publication No. 2011-0042403
  • a magnetic material is disposed adjacent to a coil in order to improve wireless charging efficiency, and a metal plate for shielding is disposed at a predetermined distance from the magnetic material.
  • the wireless charging device generates heat during the wireless charging operation due to the resistance of the coil and the magnetic loss of the magnetic material.
  • the magnetic material in the wireless charging device generates heat near the coil with high electromagnetic wave energy density, and the generated heat changes the magnetic properties of the magnetic material, causing impedance mismatch between the transmitter and the receiver, resulting in lower charging efficiency.
  • intensifying fever There was a problem of intensifying fever.
  • such a wireless charging device is mainly installed under the electric vehicle, it is difficult to implement a heat dissipation structure because it employs a sealed structure for dustproof, waterproof, and shock absorption.
  • the object of the embodiment is to provide a wireless charging device with improved heat dissipation, and a moving means including the same.
  • the coil unit A shield part disposed on the coil part; And a magnetic portion disposed between the coil portion and the shield portion. And a flow path disposed inside or adjacent to the magnetic part, and a fluid for cooling flows into the flow path to contact the magnetic part.
  • the wireless charging device includes a coil unit; A shield part disposed on the coil part; A magnetic portion disposed between the coil portion and the shield portion; And a flow path disposed inside or adjacent to the magnetic portion, and a fluid for cooling flows into the flow passage to contact the magnetic portion.
  • the wireless charging device includes a flow path disposed inside or adjacent to the magnetic part, and a fluid for cooling flows into the flow path to contact the magnetic part, thereby easily discharging heat generated during wireless charging. I can.
  • the wireless charging device may be usefully used in an electric vehicle that requires a large amount of power transmission between a transmitter and a receiver.
  • FIG. 1A is an exploded perspective view of a wireless charging device according to an embodiment.
  • FIG. 1B is a cross-sectional view of a wireless charging device according to an embodiment.
  • FIG. 2 is a cross-sectional view of a wireless charging device according to another embodiment.
  • 3A is a cross-sectional view of a wireless charging device according to another embodiment.
  • 3B is a plan view of an air circulation unit according to an embodiment.
  • FIG. 4A is a cross-sectional view of a wireless charging device according to another embodiment.
  • 4B and 4C are perspective views and plan views of a magnetic part according to an embodiment.
  • 4D is a plan view of a magnetic part according to another embodiment.
  • 4E is a plan view of a magnetic part according to another embodiment.
  • FIG. 5 is a cross-sectional view of a wireless charging device according to another embodiment.
  • FIG. 6 is an exploded perspective view of a wireless charging device according to another embodiment.
  • FIG. 7A is a plan view of a magnetic portion including microchannels therein.
  • FIG. 7B shows a process of forming a magnetic part through a mold.
  • 8A and 8B are cross-sectional views of a wireless charging device according to another embodiment.
  • FIG 9 shows an example in which a wireless charging device is applied to an electric vehicle.
  • FIG. 10 shows an electric vehicle to which a wireless charging device is applied as a receiver.
  • one component is formed above or below another component, in which one component is directly above or below another component, or indirectly through another component. It includes all that are formed by.
  • a wireless charging device includes a coil unit; A shield part disposed on the coil part; And a magnetic portion disposed between the coil portion and the shield portion. And a flow path disposed inside or adjacent to the magnetic part, and a fluid for cooling flows into the flow path to contact the magnetic part.
  • the wireless charging device includes an air circulation part positioned between the magnetic part and the shield part as the flow path, and as the cooling fluid, air is introduced into the air circulation part to directly contact the surface of the magnetic part. can do.
  • the wireless charging device 100 and 100 ′ includes a coil unit 110 and 110 ′ including a conductive wire; Magnetic parts 120 and 120 ′ disposed on one surface of the coil parts 110 and 110 ′; Shield portions 130 and 130' formed to be spaced apart from the magnetic portions 120 and 120'; And an air circulation part 140 and 140 ′ positioned between the magnetic part 120 and 120 ′ and the shield part 130 and 130 ′, and introduced into the air circulation part 140 and 140 ′. Air 145 directly contacts the surfaces of the magnetic parts 120 and 120'. Air introduced into the air circulation units 140 and 140 ′ may be air supplied from an external air conditioning system.
  • the air conditioning system may include a vehicle heating, ventilation, and cooling system, and specifically, a vehicle air conditioner.
  • the wireless charging device includes an air circulation unit through which air introduced from the outside can circulate in direct contact with the surface of the magnetic unit, thereby circulating heat generated from the magnetic unit and discharging it to the outside, heat dissipation characteristics and charging. Efficiency can be improved at the same time.
  • air flowing into the air circulation unit from an external air conditioning system, it is possible to solve the problem of degeneration of the magnetic unit due to moisture.
  • the wireless charging device may further include a support 560 for supporting the coil unit 510 and a housing 501 for accommodating the components, with reference to FIG. 5.
  • the wireless charging device may include, as the flow path, a micro flow path disposed inside the magnetic part.
  • the wireless charging device 600 including a conductive wire; A shield part 630 disposed on the coil part 610; A magnetic part 620 disposed between the coil part 610 and the shield part 630; And a microchannel 695 disposed inside or adjacent to the magnetic portion 620.
  • the wireless charging device can easily discharge heat through the refrigerant by including a microchannel in the inner or adjacent portion of the magnetic portion. Specifically, by forming a microchannel in the magnetic portion and circulating a gaseous or liquid fluid as a refrigerant with an external cooler, heat generated from the magnetic portion can be easily discharged to the outside.
  • the coil unit may include a conductive wire.
  • the conductive wire includes a conductive material.
  • the conductive wire may include a conductive metal.
  • the conductive wire may include at least one metal selected from the group consisting of copper, nickel, gold, silver, zinc, and tin.
  • the conductive wire may have an insulating sheath.
  • the insulating shell may include an insulating polymer resin.
  • the insulating shell may include polyvinyl chloride (PVC) resin, polyethylene (PE) resin, Teflon resin, silicone resin, polyurethane resin, and the like.
  • the diameter of the conductive wire may be, for example, in the range of 1 mm to 10 mm, in the range of 1 mm to 5 mm, or in the range of 1 mm to 3 mm.
  • the conductive wire may be wound in a flat coil shape.
  • the planar coil may include a planar spiral coil.
  • the planar shape of the coil may be a circular shape, an oval shape, a polygonal shape, or a polygonal shape having rounded corners, but is not particularly limited.
  • the outer diameter of the flat coil may be 5 cm to 100 cm, 10 cm to 50 cm, 10 cm to 30 cm, 20 cm to 80 cm, or 50 cm to 100 cm.
  • the planar coil may have an outer diameter of 10 cm to 50 cm.
  • the inner diameter of the flat coil may be 0.5 cm to 30 cm, 1 cm to 20 cm, or 2 cm to 15 cm.
  • the number of windings of the flat coil may be 5 to 50 times, 10 to 30 times, 5 to 30 times, 15 to 50 times, or 20 to 50 times.
  • the planar coil may be formed by winding the conductive wire 10 to 30 times.
  • the spacing between the conductive wires in the planar coil shape may be 0.1 cm to 1 cm, 0.1 cm to 0.5 cm, or 0.5 cm to 1 cm.
  • the coil unit may be disposed to be spaced apart from the magnetic unit by a predetermined distance.
  • the separation distance between the coil part and the magnetic part may be 0.2 mm or more, 0.5 mm or more, 0.2 mm to 3 mm, or 0.5 mm to 1.5 mm.
  • the shield part is disposed on the coil part and the magnetic part.
  • the shield unit suppresses electromagnetic interference (EMI) that may occur due to leakage of electromagnetic waves to the outside through electromagnetic wave shielding.
  • EMI electromagnetic interference
  • the shield part may be disposed to be spaced apart from the coil part by a predetermined distance.
  • the separation distance between the shield part and the coil part may be 10 mm or more or 15 mm or more, and specifically 10 mm to 30 mm, or 10 mm to 20 mm.
  • the shield portion may be disposed to be spaced apart from the magnetic portion by a predetermined interval.
  • a separation distance between the shield part and the magnetic part may be 3 mm or more, 5 mm or more, 3 mm to 10 mm, or 4 mm to 7 mm.
  • the material of the shield part may be, for example, metal, and accordingly, the shield part may be a metal plate, but is not particularly limited.
  • the material of the shield unit may be aluminum, and other metal or alloy material having electromagnetic wave shielding ability may be used.
  • the thickness of the shield portion may be 0.2 mm to 10 mm, 0.5 mm to 5 mm, or 1 mm to 3 mm.
  • an area of the shield part may be 200 cm 2 or more, 400 cm 2 or more, or 600 cm 2 or more.
  • the magnetic part is disposed between the coil part and the shield part.
  • the magnetic part may be disposed to be spaced apart from the coil part by a predetermined distance.
  • the separation distance between the magnetic part and the coil part may be 0.2 mm or more, 0.5 mm or more, 0.2 mm to 3 mm, or 0.5 mm to 1.5 mm.
  • the magnetic part may be a polymer type magnetic material including a binder resin and magnetic powder.
  • the magnetic part may be a ferritic magnetic material, for example, a sintered ferritic magnetic material.
  • the magnetic part may include a metallic magnetic material, for example, a nanocrystalline magnetic material.
  • the magnetic part may be a composite material of two or more of the polymer-type magnetic material, the ferritic magnetic material, and the nanocrystalline magnetic material.
  • the magnetic part may include magnetic powder and a binder resin.
  • the magnetic part may include a binder resin and magnetic powder dispersed in the binder resin. Accordingly, since the magnetic powders are bonded to each other by the binder resin, the magnetic portion may have fewer defects in a large area and less damage due to impact.
  • the magnetic powder may be an oxide-based magnetic powder, a metallic magnetic powder, or a mixed powder thereof.
  • the oxide-based magnetic powder may be a ferrite-based powder, specifically, a Ni-Zn-based, Mg-Zn-based, or Mn-Zn-based ferrite powder.
  • the metallic magnetic powder may be a Fe-Si-Al alloy magnetic powder, or a Ni-Fe alloy magnetic powder, and more specifically, may be a sanddust powder or a permalloy powder.
  • the magnetic powder may have a composition represented by Formula 1 below.
  • X is Al, Cr, Ni, Cu, or a combination thereof
  • Y is Mn, B, Co, Mo, or a combination thereof
  • the magnetic powder may be a nanocrystalline magnetic powder, for example, a Fe-based nanocrystalline magnetic powder, specifically Fe-Si-Al-based nanocrystalline magnetic powder, Fe-Si-Cr It may be a nanocrystalline magnetic powder or Fe-Si-B-Cu-Nb nanocrystalline magnetic powder.
  • the average particle diameter of the magnetic powder may be in the range of about 3 nm to about 1 mm, about 1 ⁇ m to 300 ⁇ m, about 1 ⁇ m to 50 ⁇ m, or about 1 ⁇ m to 10 ⁇ m.
  • the magnetic part may include the magnetic powder in an amount of 10% by weight or more, 50% by weight or more, 70% by weight or more, or 85% by weight or more.
  • the magnetic part contains 10% to 99% by weight of the magnetic powder, 10% to 95% by weight, 50% to 95% by weight, 50% to 92% by weight, 70% to 95% by weight , 80% to 95% by weight, or 80% to 90% by weight may be included in an amount.
  • binder resin polyimide resin, polyamide resin, polycarbonate resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene resin, polyethylene resin, polystyrene resin, polyphenyl sulfide (PSS) resin, polyetheretherketone (PEEK) resin, silicone resin, acrylic resin, polyurethane resin, polyester resin, isocyanate resin, epoxy resin, etc.
  • ABS acrylonitrile-butadiene-styrene
  • PES polyphenyl sulfide
  • PEEK polyetheretherketone
  • the binder resin may be a curable resin.
  • the binder resin may be a photocurable resin and/or a thermosetting resin, and in particular, may be a resin capable of being cured to exhibit adhesiveness.
  • the binder resin includes at least one functional group or moiety capable of curing by heat such as a glycidyl group, an isocyanate group, a hydroxy group, a carboxyl group, or an amide group; Or it contains one or more functional groups or moieties that can be cured by active energy such as an epoxide group, a cyclic ether group, a sulfide group, an acetal group or a lactone group. You can use the resin.
  • Such a functional group or moiety may be, for example, an isocyanate group (-NCO), a hydroxy group (-OH), or a carboxyl group (-COOH).
  • the binder resin may be a thermoplastic resin, and specifically, a high heat-resistant thermoplastic resin.
  • the magnetic part may contain the binder resin in an amount of 5 wt% to 40 wt%, 5 wt% to 20 wt%, 5 wt% to 15 wt%, or 7 wt% to 15 wt%.
  • the magnetic part based on the weight thereof, as the binder resin, 6% to 12% by weight of a polyurethane-based resin, 0.5% to 2% by weight of an isocyanate-based curing agent, and 0.3% to 1.5% by weight of an epoxy It may contain a resin.
  • the magnetic part may be a magnetic block manufactured by a method such as molding through a mold.
  • the magnetic part may be molded into a three-dimensional structure through a mold.
  • Such a magnetic sheet may be formed into a three-dimensional structure by mixing magnetic powder and a binder resin and injecting it into a mold by injection molding or the like.
  • the molding may be performed by injecting the raw material of the magnetic part into the mold by injection molding.
  • the magnetic part is prepared by mixing magnetic powder and a polymer resin composition to obtain a raw material composition, and then injecting the raw material composition 621 into the mold 3 by an injection molding machine 2 as shown in FIG. 7B. Can be.
  • the inner shape of the mold 3 in a three-dimensional structure, it is possible to easily implement a three-dimensional structure of the magnetic part. Such a process may be difficult when the existing sintered ferrite sheet is used as the magnetic part.
  • the ferritic magnetic material may include, for example , an oxide represented by MOFe 2 O 3 (wherein M is at least one divalent metal element such as Mn, Zn, Cu, or Ni).
  • MOFe 2 O 3 wherein M is at least one divalent metal element such as Mn, Zn, Cu, or Ni.
  • the ferritic magnetic body is advantageous in terms of magnetic properties such as magnetic permeability that are sintered.
  • the sintered ferritic magnetic body may be prepared in the form of a sheet or block by mixing raw material components, calcination, pulverization, mixing with a binder resin, molding, and sintering.
  • the ferritic magnetic material may be Ni-Zn-based, Mg-Zn-based, or Mn-Zn-based ferrite, and in particular, the Mn-Zn-based ferrite is high over a temperature range of room temperature to 100°C or higher at a frequency of 85 kHz. It can exhibit permeability, low investment loss, and high saturation magnetic flux density.
  • the Mn-Zn-based ferrite contains iron oxide Fe 2 O 3 66 mol% to 70 mol%, ZnO 10 mol% to 20 mol%, MnO 8 mol% to 24 mol%, and NiO 0.4 mol% to 2 mol% as main components. And may contain SiO 2 , CaO, Nb 2 O 5 , ZrO 2 , SnO, etc. as other subcomponents.
  • the Mn-Zn-based ferrite is pulverized by adding a minor component after mixing the main component in a predetermined molar ratio and calcining in the air at a temperature of 800° C. to 1100° C.
  • the temperature may be increased to 1200° C. to 1300° C. and then calcined for 2 hours or more to form a sheet or block. Then, if necessary, it is processed using a wire saw or a water jet, and then cut to the required size.
  • a binder such as polyvinyl alcohol (PVA)
  • the magnetic part may include a nanocrystalline magnetic material.
  • the coil's quality factor Q factor: Ls/Rs
  • Ls/Rs the coil's quality factor
  • the magnetic part may be an Fe-based nanocrystalline magnetic material, specifically, Fe-Si-Al-based nanocrystalline magnetic material, Fe-Si-Cr-based nanocrystalline magnetic material, or Fe-Si-B-Cu- It may be an Nb-based nanocrystalline magnetic material.
  • the magnetic part may be a Fe-Si-B-Cu-Nb-based nanocrystalline magnetic material, in which case, Fe is 70% to 85%, and the sum of Si and B is 10% to 29%. %, it is preferable that the sum of Cu and Nb is 1 element% to 5 element% (here, element% means the percentage of the number of specific elements relative to the total number of elements constituting the magnetic part).
  • element% means the percentage of the number of specific elements relative to the total number of elements constituting the magnetic part.
  • the Fe-Si-B-Cu-Nb-based alloy can be easily formed into a nanocrystalline magnetic material by heat treatment.
  • the nanocrystalline magnetic material is prepared by, for example, a rapid cooling solidification method (RSP) by melt spinning of an Fe-based alloy, and no magnetic field for 30 minutes to 2 hours at a temperature range of 300° C. to 700° C. to obtain a desired magnetic permeability. It can be manufactured by performing heat treatment.
  • RSP rapid cooling solidification method
  • the heat treatment temperature is less than 300°C, nanocrystals are not sufficiently formed, so that the desired permeability is not obtained, and the heat treatment time may take a long time, and if the heat treatment temperature exceeds 700°C, the permeability may be significantly lowered by superheat treatment.
  • the heat treatment temperature is low, it takes a long treatment time, and if the heat treatment temperature is high, the treatment time is preferably shortened.
  • the thickness of the nanocrystalline magnetic material may be 15 ⁇ m to 150 ⁇ m. Meanwhile, the nanocrystalline magnetic material is difficult to make a thick thickness in the manufacturing process, and may be formed as a thin film sheet having a thickness of, for example, 15 ⁇ m to 35 ⁇ m. Therefore, it is possible to form a magnetic portion by stacking several such thin-film sheets. In this case, an adhesive layer such as an adhesive tape may be inserted between the thin film sheets.
  • the nanocrystalline magnetic material may be crushed by a pressure roll or the like at a later stage of the manufacturing process to form a plurality of cracks in the thin film sheet, thereby manufacturing a plurality of nanocrystalline fine pieces.
  • the nanocrystalline magnetic material may have a specific range of magnetic properties in the vicinity of a standard frequency for wireless charging of an electric vehicle.
  • the nanocrystalline magnetic material may have a magnetic permeability of 500 to 150,000 and an investment loss of 100 to 50,000 at a frequency of 85 kHz.
  • the magnetic part when the magnetic part includes a crushed nanocrystalline magnetic material, it may have a magnetic permeability of 500 to 3,000 and an investment loss of 100 to 1,000 at a frequency of 85 kHz.
  • the magnetic part when the magnetic part includes a non-crushed nanocrystalline magnetic material, it may have a magnetic permeability of 10,000 to 150,000 and an investment loss of 1,000 to 10,000 at a frequency of 85 kHz.
  • the magnetic portion may have a structure of a magnetic sheet, a magnetic sheet stack, or a magnetic block.
  • the magnetic part may have a large area, and specifically, may have an area of 200 cm 2 or more, 400 cm 2 or more, or 600 cm 2 or more. In addition, the magnetic part may have an area of 10,000 cm 2 or less.
  • the large-area magnetic unit may be configured by combining a plurality of magnetic units, and in this case, the area of the magnetic unit may be 60 cm 2 or more, 90 cm 2 or more, or 95 cm 2 to 900 cm 2 .
  • the thickness of the magnetic sheet may be 15 ⁇ m or more, 50 ⁇ m or more, 80 ⁇ m or more, 15 ⁇ m to 150 ⁇ m, 15 ⁇ m to 35 ⁇ m, or 85 ⁇ m to 150 ⁇ m.
  • Such a magnetic sheet may be manufactured by a method of manufacturing a conventional film or sheet.
  • the stacked body of the magnetic sheet may be a stack of 20 or more magnetic sheets, or 50 or more magnetic sheets.
  • the stacked body of the magnetic sheet may be a stack of 150 or less, or 100 or less magnetic sheets.
  • the thickness of the magnetic block may be 1 mm or more, 2 mm or more, 3 mm or more, or 4 mm or more. In addition, the thickness of the magnetic block may be 6 mm or less.
  • the magnetic block may be manufactured by a method such as injection molding.
  • the magnetic unit may have magnetic properties in a certain range in the vicinity of a standard frequency for wireless charging of an electric vehicle.
  • the standard frequency of wireless charging of the electric vehicle may be less than 100 kHz, for example, 79 kHz to 90 kHz, specifically 81 kHz to 90 kHz, and more specifically about 85 kHz, which may be used in mobile electronic devices such as mobile phones. It is a band that is distinct from the applied frequency.
  • the magnetic permeability at a frequency of 85 kHz may vary depending on the material, but may be 5 or more, for example, 5 to 150,000, and may be 5 to 300, 500 to 3,500, or 10,000 to 150,000, depending on the specific material.
  • the investment loss at the frequency of 85 kHz of the magnetic part may vary depending on the material, but may be 0 or more, for example, 0 to 50,000, and 0 to 1,000, 1 to 100, 100 to 1,000, or 5,000 to Can be 50,000.
  • the magnetic part is a polymer magnetic material including magnetic powder and a binder resin
  • the magnetic permeability at a frequency of 85 kHz may be, for example, 5 to 130, 15 to 80, or 10 to 50
  • the investment loss may be 0 to 20, 0 to 15, or 0 to 5.
  • the magnetic part may be elongated at a certain rate.
  • the elongation rate of the magnetic part may be 0.5% or more.
  • the elongation property is difficult to obtain in a ceramic-based magnetic material to which a polymer is not applied, and damage can be reduced even if a large-area magnetic portion is distorted due to an impact.
  • the elongation rate of the magnetic part may be 0.5% or more, 1% or more, or 2.5% or more.
  • the upper limit of the elongation but when the content of the polymer resin is increased to improve the elongation, since properties such as inductance of the magnetic portion may be deteriorated, the elongation is preferably within 10%.
  • the magnetic portion has a small rate of change in properties before and after impact, and is superior to a general ferrite magnetic sheet.
  • the magnetic unit may have an inductance change rate of less than 5% or less than 3% before and after an impact applied by free fall from a height of 1 m. More specifically, the inductance change rate may be 0% to 3%, 0.001% to 2%, or 0.01% to 1.5%. When within the above range, the rate of change of inductance before and after impact is relatively small, so that the stability of the magnetic portion may be further improved.
  • the magnetic part may have a rate of change of the quality factor (Q factor, Ls/Rs) before and after the impact applied by free falling from a height of 1 m (0% to 5%, 0.001% to 4%, or 0.01% to 2.5%). have. When it is within the above range, there is little change in characteristics before and after impact, so that the stability and impact resistance of the magnetic portion may be more improved.
  • Q factor quality factor
  • the magnetic part may have a resistance change rate before and after the impact applied by free fall from a height of 1 m from 0% to 2.8%, from 0.001% to 1.8%, or from 0.1% to 1.0%.
  • a resistance change rate before and after the impact applied by free fall from a height of 1 m from 0% to 2.8%, from 0.001% to 1.8%, or from 0.1% to 1.0%.
  • the magnetic part may have a rate of change of charging efficiency before and after the impact applied by free falling from a height of 1 m from 0% to 6.8%, from 0.001% to 5.8%, or from 0.01% to 3.4%.
  • a rate of change of charging efficiency before and after the impact applied by free falling from a height of 1 m from 0% to 6.8%, from 0.001% to 5.8%, or from 0.01% to 3.4%.
  • the wireless charging device may include an air circulation part positioned between the magnetic part and the shield part.
  • the shield unit In a general wireless charging device, in order to prevent the problem that the charging efficiency rapidly decreases due to the occurrence of a semi-magnetic field, the shield unit is disposed to be spaced apart from the magnetic unit by a certain distance. Accordingly, the air circulation unit is placed in the empty space between the magnetic unit and the shield unit Can be provided. The air introduced into the air circulation unit from the outside is discharged to the outside after direct contact with the surface of the magnetic unit, thereby circulating heat generated from the magnetic unit to improve heat dissipation characteristics and charging efficiency at the same time. In addition, by receiving air flowing into the air circulation unit from an external air conditioning system, it is possible to solve the problem of degeneration of the magnetic unit due to moisture.
  • Air introduced into the air circulation unit may directly contact the surface of the magnetic unit.
  • the air introduced into the air circulation unit may directly contact the surface of the shield unit.
  • the air introduced into the air circulation unit may directly contact both the surface of the magnetic unit and the surface of the shield unit.
  • the temperature inside the air circulation unit may be 5° C. to 50° C., for example, 10° C. to 40° C., 10° C. to 30° C., 20° C. to 40° C., 10° C. to 25° C., or 15° C. to 30° C. Can be
  • the humidity inside the air circulation unit may be 30% to 80%, for example, 30% to 70%, 50% to 60%, 30% to 60%, or 40% to 65%.
  • the humidity inside the air circulation unit satisfies the above range, heat dissipation characteristics may be improved, and a degeneration problem of the magnetic unit that may occur due to high humidity may be minimized.
  • the wireless charging device includes an air circulation unit through which air supplied from an external air conditioning system is circulated by direct contact with the surface of the magnetic unit, so that the wireless charging device does not include the air circulation unit.
  • the charging efficiency can be improved by 0.1% or more, specifically 0.2% to 10%, and more specifically 0.5% to 5%.
  • FIG 2, 3A, and 4A are cross-sectional views of various wireless charging devices 200, 300, and 400 including the air circulation unit.
  • an inlet pipe 270 disposed on one or both sides of the air circulation unit 240 and connected to allow air to flow into the air circulation unit 240, and air from the air circulation unit It may further include a discharge pipe 280 connected to discharge.
  • the wireless charging device 200 includes a coil unit 210 including a conductive wire; A magnetic part 220 disposed on one surface of the coil part 210; A shield part 230 formed to be spaced apart from the magnetic part 220; And an air circulation part 240 located between the magnetic part 220 and the shield part 230 and in direct air contact with the surface of the magnetic part 220, wherein the air circulation part 240 An inlet pipe 270 disposed on one or both sides and connected to allow air 245 to flow into the air circulation unit 240, and a discharge pipe 280 connected to discharge the air 245 from the air circulation unit can do.
  • the air circulation unit 240 is in contact with one surface of the magnetic unit 220, so that the air 245 supplied from an external air conditioning system is injected through the inlet pipe 270, and the injected As air circulates within the air circulation unit 240, heat generated from the magnetic unit 220 may be discharged to the outside through the discharge pipe 280. In this case, the air injected through the inlet pipe 270 may directly contact the surface of the shield unit 230. In addition, when the air injected through the inlet pipe 270 directly contacts both surfaces of the shield unit 230 and the magnetic unit 220, a heat dissipation effect can be maximized.
  • the size, shape, and material of the inlet pipe 270 and the discharge pipe 280 are not particularly limited as long as the effect of the present invention is not impaired.
  • the inlet pipe is connected to an external air conditioning system, and the air supplied from the air conditioning system is injected into the inlet pipe and then circulates, thereby discharging heat generated from the magnetic part to the outside. Furthermore, since dry air with low humidity from the air conditioning system can be circulated evenly on the surface of the magnetic portion, it is possible to solve the problem of denaturation of the magnetic portion due to the conventional moisture.
  • FIGS. 3A and 3B are cross-sectional views of a wireless charging device according to another example, and a plan view of an air circulation unit included in the wireless charging device.
  • the wireless charging device 300 is located between the magnetic part 320 and the shield part 330, and the air 345 directly contacts the surface of the magnetic part 320.
  • An air circulation part 340 may be included, and the air circulation part 340 may further include a guide wall 390 formed to allow the air to flow.
  • the guide wall 390 may be disposed corresponding to an area in which the coil part 310 is present. In general, since the coil unit accumulates the most heat due to the high electromagnetic energy density and the temperature may be the highest, the guide wall is arranged corresponding to the region where the coil unit exists, so that air circulates by the guide wall to release heat. I can. In addition, the guide wall 390 may be disposed both in a region in which the coil part 310 exists and in other regions.
  • the guide wall 390 may be fixed by a guide wall fixing part (not shown), and the magnetic part may include a guide wall fixing part in a portion thereof.
  • the guide wall fixing part can fix the guide wall 390, its position, shape, and size are not particularly limited.
  • the guide wall fixing portion may be provided at a desired position without limitation on the side surface or the upper surface of the magnetic portion when forming the magnetic portion.
  • the guide wall is fixed by the guide wall fixing part so that it may be fixed without being detached from the wireless charging device, specifically the magnetic part.
  • the guide wall may be fixed to the magnetic part using an adhesive.
  • the guide wall may be a heat-resistant plastic material, specifically polypropylene, acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate, polyamide, polyimide, polybutylene terephthalate, polyphenyl sulfide, and It may include one or more selected from the group consisting of polyetheretherketone.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • polycarbonate polyamide
  • polyimide polybutylene terephthalate
  • polyphenyl sulfide polyphenyl sulfide
  • the thickness and width of the guide wall are not particularly limited, but, for example, the thickness is 1 mm to 3 mm, 1 mm to 2.5 mm, 1.5 mm to 3 mm, 1.5 mm to 2.5 mm, or 2 mm to 3 mm, The width may be 0.1 mm to 6 mm, 0.1 mm to 5 mm, 0.1 mm to 3 mm, 0.5 mm to 4 mm, or 0.3 mm to 4 mm.
  • the total length of the air movement path by the guide wall may be 25% to 500%, specifically 50% to 400%, more specifically 75% to 300%, based on the circumference of the magnetic part.
  • Figure 4a is a cross-sectional view of a wireless charging device according to another embodiment of the present invention
  • Figure 4b is a perspective view of various types of magnetic parts included in the wireless charging device
  • Figures 4c to 4e are the This is a plan view for explaining the interior of various types of magnetic parts included in the wireless charging device.
  • the wireless charging device 400 includes at least one hole through which the magnetic part 420, 420a, 420b, 420c is introduced into the air from the air circulation part 440. 490, and a cooling channel 495a, 495b, 495c connected to the hole 490 in the magnetic portion 420, 420a, 420b, 420c to circulate the air 445 It may contain more.
  • the magnetic parts 420, 420a, 420b, 420c may be formed in a three-dimensional structure by a mold, the hole 490 and the cooling passages 495a, 495b, 495c are formed in the Can be provided inside.
  • the wireless charging device 400 is disposed on one side of the air circulation unit 440, the inlet pipe 470 connected to allow air to flow into the air circulation unit 440, and the magnetic unit 420 It is disposed on one side and may further include a discharge pipe 480 connected to discharge air from the cooling passages (495a, 495b, 495c).
  • FIG. 4B shows a magnetic portion 420 including a hole 490 in the magnetic portion 420 and a discharge pipe 480 disposed on one side of the magnetic portion 420 and connected to discharge air. It is a diagram shown.
  • the air 445 introduced from the inlet pipe 470 passes through the magnetic portion 420 through the hole 490, thereby maximizing a heat dissipation effect.
  • FIGS. 4C to 4E illustrate various types of cooling channels 495a, 495b, 495c connected to the holes 490 in the magnetic portions 420a, 420b, and 420c to circulate the air.
  • the discharge pipe 480 may be connected to the cooling passages 495a, 495b, and 495c located inside the magnetic part.
  • the shape of the cooling flow path is not limited as long as the effect of the present invention is not impaired, but may include, for example, a curved flow path, a straight flow path, or a meandering flow path.
  • the cooling flow path 495a may be a curved flow path.
  • the cooling flow path 495b may be a linear flow path.
  • the cooling flow path 495c may be a meandering flow path.
  • the hole 490 may have a diameter of 0.5 mm to 4.5 mm, specifically 1 mm to 3 mm, and more specifically 1.5 mm to 2.5 mm.
  • the cooling passages 495a, 495b, 495c may have a diameter of 0.5 mm to 4.5 mm, specifically 1 mm to 3 mm, and more specifically 1.5 mm to 2.5 mm.
  • diameters of the cooling passage and the hole may be the same or different from each other.
  • the cooling passages 495a, 495b, 495c are 1% to 40%, specifically 3% to 30%, more specifically 5% to 20% based on the total volume of the magnetic parts 420a, 420b, 420c. It can have a total internal volume.
  • the cooling passage is disposed corresponding to the region in which the coil part exists, and the heat of the coil part which accumulates a lot of heat due to the high electromagnetic wave energy density by the cooling passage is discharged to the outside, thereby maximizing a heat dissipation effect.
  • the cooling passage may be disposed in a region in which the coil part exists and in other regions.
  • the wireless charging device 600 may include a microchannel 695 disposed inside or adjacent to the magnetic portion 620. Accordingly, heat generated from the magnetic part 620 can be effectively discharged to the outside.
  • the shape of the microchannel is not particularly limited as long as it is a shape for easily transferring heat of the magnetic portion to the outside by a fluid.
  • 7A is a plan view of a magnetic portion including microchannels therein. As shown in FIG. 7A, the microchannel 695 may be designed such that the fluid injected through the inlet 670 circulates through a large area and then exits through the outlet 680.
  • the microchannel since the region in which heat is mainly generated in the magnetic portion is an area corresponding to the coil portion, the microchannel may be disposed corresponding to an area in which the coil portion exists. In other words, the microchannel may be hardly disposed in the central portion of the coil portion where the density of the conductive wire is small.
  • the inner diameter of the microchannel may be 0.1 mm to 5 mm. When within the above range, while maintaining the magnetic properties per volume of the magnetic material, heat dissipation properties may be further improved through a smooth flow of fluid. More specifically, the inner diameter of the microchannel may be 0.5 mm to 3 mm, 0.5 mm to 2 mm, 2 mm to 5 mm.
  • the microchannel 695 may be disposed inside the magnetic portion 620.
  • a structure in which the microchannel is disposed inside the magnetic part may be variously designed.
  • a polymer-type magnetic body may be molded through a mold so as to have microchannels therein.
  • the microchannel may be defined as an empty space inside the magnetic part.
  • the microchannel may be inserted after the polymeric magnetic material is molded through a mold so as to have an inner space into which the microchannel is inserted.
  • the micro-channel may be made of metal or other thermally conductive material in advance and then inserted into the polymer-type magnetic material.
  • a magnetic sheet laminate having microchannels inserted therein may be manufactured.
  • the microchannel may have a total internal volume of 5% to 70% based on the total volume of the magnetic part. When it is within the above range, it may be more advantageous to simultaneously improve the electromagnetic wave shielding performance and heat dissipation characteristics of the magnetic portion. More specifically, the microchannel may have a total internal volume of 5% to 40%, 20% to 50%, or 40% to 70% based on the total volume of the magnetic part.
  • the microchannel 695 may be disposed adjacent to the magnetic portion 620.
  • the microchannel 695 may be disposed between the magnetic portion 620 and the shield portion 630.
  • the microchannel 695 may be formed inside the heat dissipation part 640, and the heat dissipation part 640 may be disposed adjacent to the magnetic part 620.
  • the heat dissipation part 640 may be attached to one surface of the magnetic part 620.
  • the heat dissipation part 640 may be attached to one surface of the magnetic part 620 facing the shield part 630.
  • the heat dissipation unit may be made of a thermally conductive material.
  • the thermally conductive material may include a metal-based, carbon-based, ceramic-based material, and the like.
  • the thermally conductive material may be a composite material in which a metal-based, carbon-based, ceramic-based material, etc. are dispersed in a binder resin.
  • the micro-channel may be disposed between the magnetic portion and the coil portion to simultaneously process heat generated from the magnetic portion and the coil portion.
  • the wireless charging device may further include a cooler connected to the microchannel.
  • the wireless charging device 600 may include a cooler 15 connected to the microchannel 695.
  • the cooler 15 may be disposed outside the housing 601 of the wireless charging device.
  • the cooler may employ a method and structure for effectively cooling the fluid.
  • the cooler may cool the fluid by air cooling or water cooling.
  • the cooler may be connected to the microchannel while having a sealed structure for waterproof and dustproof. As shown in FIGS. 8A and 8B, the cooler 15 may be connected to the inlet and outlet of the micro-channel 695 through a connection passage 16.
  • a cooling facility basically provided in the electric vehicle may be used.
  • the cooler may include an automobile air conditioner.
  • the air conditioner provided inside the moving means 1 is used as the cooler 15, and the connection passage 16 connected to the inlet and outlet of the micro-channel of the wireless charging device 600
  • the air conditioner may be connected. Accordingly, even if a separate cooler is not manufactured, effective heat dissipation may be possible.
  • the wireless charging device may further include a device for generating a fluid flow in the microchannel, for example, a circulation pump.
  • the wireless charging device may further include a fluid for cooling flowing while circulating the microchannel and the cooler.
  • the fluid may transfer heat generated from the magnetic material to the outside. Specifically, the fluid may transfer heat generated from the magnetic material to the cooler.
  • the fluid may be a gas or a liquid, and may be, for example, air, water, or a liquid or gaseous fluid used as a refrigerant.
  • the fluid may be air, water, oil (eg, engine oil), alcohol (eg, ethylene glycol, propylene glycol, antifreeze), or a mixture thereof.
  • oil eg, engine oil
  • alcohol eg, ethylene glycol, propylene glycol, antifreeze
  • the thermal conductivity of the fluid may be 0.022 W/m ⁇ K to 0.69 W/m ⁇ K at 20° C., for example, 0.022 W/m ⁇ K to 0.038 W/m ⁇ K, 0.57 W/m ⁇ K to 0.69 W/m ⁇ K, 0.13 W/m ⁇ K to 0.15 W/m ⁇ K, or 0.24 W/m ⁇ K to 0.69 W/m ⁇ K.
  • the density of the fluid may be 0.75 kg/m 3 to 1100 kg/m 3 at 20° C., for example, 0.75 kg/m 3 to 1.39 kg/m 3 , 840 kg/m 3 to 1000 kg/m 3 , It may be 800 kg/m 3 to 900 kg/m 3 , or 840 kg/m 3 to 1100 kg/m 3 .
  • the heat capacity of the fluid may be 1005 J/kg ⁇ K to 4250 J/kg ⁇ K at 20° C., for example, 1005 J/kg ⁇ K to 1023 J/kg ⁇ K, 4150 J/kg ⁇ K to 4250 J/kg ⁇ K, 1700 J/kg ⁇ K to 2500 J/kg ⁇ K, or 2500 J/kg ⁇ K to 4250 J/kg ⁇ K.
  • the thermal diffusivity of the fluid may be 6 x 10 -8 m 2 /s to 4960 x 10 -8 m 2 /s at 20 °C, for example, 1570 x 10 -8 m 2 /s to 4960 x 10 -8 m 2 / s, 10 x 10 -8 m 2 / s to 20 x 10 -8 m 2 / s , 6 x 10 -8 m 2 / s to 10 x 10 -8 m 2 / s , or 9 x 10 - It may be from 8 m 2 /s to 20 x 10 -8 m 2 /s.
  • the fluid has a thermal conductivity of 0.022 W/m ⁇ K to 0.038 W/m ⁇ K at 1 atmosphere and 20° C., a density of 0.75 kg/m 3 to 1.39 kg/m 3 , 1005 J/kg ⁇ It can have a heat capacity of K to 1023 J/kg ⁇ K, and a heat diffusivity of 1570 x 10 -8 m 2 /s to 4960 x 10 -8 m 2 /s.
  • the fluid has a thermal conductivity of 0.57 W/m ⁇ K to 0.69 W/m ⁇ K at 20° C., a density of 840 kg/m 3 to 1000 kg/m 3 , and 4150 J/kg ⁇ K to It can have a heat capacity of 4250 J/kg ⁇ K and a heat diffusion rate of 10 x 10 -8 m 2 /s to 20 x 10 -8 m 2 /s.
  • the fluid has a thermal conductivity of 0.13 W/m ⁇ K to 0.15 W/m ⁇ K at 20° C., a density of 800 kg/m 3 to 900 kg/m 3 , 1700 J/kg ⁇ K To 2500 J/kg ⁇ K, and a heat diffusivity of 6 x 10 -8 m 2 /s to 10 x 10 -8 m 2 /s.
  • the fluid has a thermal conductivity of 0.24 W/m ⁇ K to 0.69 W/m ⁇ K at 20° C., a density of 840 kg/m 3 to 1100 kg/m 3 , 2500 J/kg ⁇ K To 4250 J/kg ⁇ K, and 9 x 10 -8 m 2 /s to 20 x 10 -8 m 2 /s.
  • the wireless charging device 600 may further include a support part 660 for supporting the coil part 610.
  • the material and structure of the support part may be a material and structure of a conventional support part used in a wireless charging device.
  • the support part may have a flat plate structure or a structure in which grooves are formed along the shape of the coil part to fix the coil part.
  • the wireless charging device 600 may further include a housing 601 accommodating the above-described components.
  • the housing allows constituent elements such as the coil part, the shield part, and the magnetic part to be properly arranged and assembled.
  • the material and structure of the housing may employ a material and structure of a conventional housing used in a wireless charging device, and may be appropriately designed according to the components included therein.
  • the wireless charging device may further include a spacer for securing a space between the shield part and the magnetic part.
  • the material and structure of the spacer may be a material and structure of a conventional housing used in a wireless charging device.
  • the wireless charging device may be usefully used in a mobile means such as an electric vehicle requiring large-capacity power transmission between a transmitter and a receiver.
  • FIG. 10 shows a moving means to which a wireless charging device is applied, specifically an electric vehicle, and may be wirelessly charged in a parking area equipped with a wireless charging system for an electric vehicle by providing a wireless charging device at the bottom.
  • the moving means 1 includes a wireless charging device according to the embodiment as a receiver 21.
  • the wireless charging device serves as a wireless charging receiver 21 of the moving means 1 and can receive power from the wireless charging transmitter 22.
  • the moving means includes a wireless charging device, and the wireless charging device has the configuration as described above.
  • the wireless charging device included in the moving means the coil unit; A shield part disposed on the coil part; A magnetic portion disposed between the coil portion and the shield portion; And a flow path disposed inside or adjacent to the magnetic part, and a cooling fluid is introduced into the flow path to contact the magnetic part.
  • the moving means may further include a battery receiving power from the wireless charging device.
  • the wireless charging device may receive power wirelessly and transmit it to the battery, and the battery may supply power to a drive system of the electric vehicle.
  • the battery may be charged by power delivered from the wireless charging device or other additional wired charging device.
  • the moving means may further include a signal transmitter for transmitting information on charging to a transmitter of the wireless charging system.
  • Information on such charging may include charging efficiency such as charging speed, charging status, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

일 구현예에 따른 무선충전 장치는 자성부의 내부 또는 인접부에 배치되는 유로를 포함하고, 냉각을 위한 유체가 상기 유로에 유입되어 상기 자성부와 접촉함으로서, 무선충전 중에 발생하는 열을 쉽게 배출할 수 있다. 따라서 상기 무선충전 장치는, 송신기와 수신기 간의 대용량의 전력 전송을 요구하는 전기 자동차와 같은 이동 수단에 유용하게 사용될 수 있다.

Description

무선충전 장치 및 이를 포함하는 이동 수단
구현예는 무선충전 장치 및 이를 포함하는 이동 수단에 관한 것이다. 보다 구체적으로, 구현예는 방열 구조를 적용하여 충전 효율이 향상된 무선충전 장치 및 이를 포함하는 전기 자동차와 같은 이동 수단에 관한 것이다.
오늘날 정보통신 분야는 매우 빠른 속도로 발전하고 있으며, 전기, 전자, 통신, 반도체 등이 종합적으로 조합된 다양한 기술들이 지속적으로 개발되고 있다. 또한, 전자기기의 모바일화 경향이 증대함에 따라 통신분야에서도 무선 통신 및 무선 전력 전송 기술에 대한 연구가 활발히 진행되고 있다. 특히, 전자기기 등에 무선으로 전력을 전송하는 방안에 관한 연구가 활발히 진행되고 있다.
상기 무선 전력 전송은 전력을 공급하는 송신기와 전력을 공급받는 수신기 간에 물리적인 접촉 없이 자기 결합(inductive coupling), 용량 결합(capacitive coupling) 또는 안테나 등의 전자기장 공진 구조를 이용하여 공간을 통해 전력을 무선으로 전송하는 것이다. 상기 무선 전력 전송은 대용량의 배터리가 요구되는 휴대용 통신기기, 전기 자동차 등에 적합하며 접점이 노출되지 않아 누전 등의 위험이 거의 없으며 유선 방식의 충전 불량 현상을 막을 수 있다.
한편, 최근 들어 전기 자동차에 대한 관심이 급증하면서 충전 인프라 구축에 대한 관심이 증대되고 있다. 이미 가정용 충전기를 이용한 전기 자동차 충전을 비롯하여 배터리 교체, 급속 충전 장치, 무선충전 장치 등 다양한 충전 방식이 등장하였고, 새로운 충전 사업 비즈니스 모델도 나타나기 시작했다(대한민국 공개특허 제 2011-0042403 호 참조). 또한, 유럽에서는 시험 운행중인 전기차와 충전소가 눈에 띄기 시작했고, 일본에서는 자동차 제조 업체와 전력 회사들이 주도하여 전기 자동차 및 충전소를 시범적으로 운영하고 있다.
[선행기술문헌]
(특허문헌 1) 한국 공개특허공보 제2011-0042403호
전기 자동차 등에 사용되는 종래의 무선충전 장치는, 무선충전 효율 향상을 위해 코일에 인접하여 자성체가 배치되고, 차폐를 위한 금속판이 자성체와 일정 간격 이격하여 배치된다.
무선충전 장치는 무선충전 동작 중에 코일의 저항과 자성체의 자기 손실에 의해 열을 발생한다. 특히 무선충전 장치 내의 자성체는 전자기파 에너지 밀도가 높은 코일과 가까운 부분에서 열을 발생하고, 발생한 열은 자성체의 자기 특성을 변화시켜 송신기와 수신기 간의 임피던스 불일치를 유발하여, 충전 효율이 저하되고 이로 인해 다시 발열이 심화되는 문제가 있었다. 그러나 이러한 무선충전 장치는 주로 전기 자동차의 하부에 설치되기 때문에, 방진 및 방수와 충격 흡수를 위해 밀폐 구조를 채용하므로 방열 구조를 구현하는데 어려움이 있었다.
이에 본 발명자들이 연구한 결과, 무선충전 장치에 사용되는 자성부의 내부 또는 인접부에 유로를 배치하여 냉매를 통해 열을 쉽게 배출할 수 있음을 발견하였다.
따라서 구현예의 과제는, 방열이 향상된 무선충전 장치, 및 이를 포함하는 이동 수단을 제공하는 것이다.
일 구현예에 따르면, 코일부; 상기 코일부 상에 배치되는 쉴드부; 및 상기 코일부와 상기 쉴드부 사이에 배치되는 자성부; 및 상기 자성부의 내부 또는 인접부에 배치되는 유로를 포함하고, 냉각을 위한 유체가 상기 유로에 유입되어 상기 자성부와 접촉하는, 무선충전 장치가 제공된다.
다른 구현예에 따르면, 무선충전 장치를 포함하는 이동 수단으로서, 상기 무선충전 장치가 코일부; 상기 코일부 상에 배치되는 쉴드부; 상기 코일부와 상기 쉴드부 사이에 배치되는 자성부; 및 상기 자성부의 내부 또는 인접부에 배치되는 유로를 포함하고, 상기 유로에 냉각을 위한 유체가 유입되어 상기 자성부와 접촉하는, 이동 수단이 제공된다.
상기 구현예에 따른 무선충전 장치는 자성부의 내부 또는 인접부에 배치되는 유로를 포함하고, 냉각을 위한 유체가 상기 유로에 유입되어 상기 자성부와 접촉함으로서, 무선충전 중에 발생하는 열을 쉽게 배출할 수 있다.
따라서 상기 무선충전 장치는, 송신기와 수신기 간의 대용량의 전력 전송을 요구하는 전기 자동차 등에 유용하게 사용될 수 있다.
도 1a는 일 구현예에 따른 무선충전 장치의 분해 사시도를 나타낸다.
도 1b는 일 구현예에 따른 무선충전 장치의 단면도를 나타낸다.
도 2는 다른 구현예에 따른 무선충전 장치의 단면도를 나타낸다.
도 3a는 또 다른 구현예에 따른 무선충전 장치의 단면도를 나타낸다.
도 3b는 일 구현예에 따른 공기 순환부의 평면도를 나타낸다.
도 4a는 또 다른 구현예에 따른 무선충전 장치의 단면도를 나타낸다.
도 4b 및 4c는 일 구현예에 따른 자성부의 사시도 및 평면도를 나타낸다.
도 4d는 다른 구현예에 따른 자성부의 평면도를 나타낸다.
도 4e는 또 다른 구현예에 따른 자성부의 평면도를 나타낸다.
도 5는 또 다른 구현예에 따른 무선충전 장치의 단면도를 나타낸다.
도 6은 또 다른 구현예에 따른 무선충전 장치의 분해 사시도를 나타낸다.
도 7a는 내부에 미세유로를 포함하는 자성부의 평면도를 나타낸다.
도 7b는 몰드를 통해 자성부를 성형하는 공정을 나타낸다.
도 8a 및 8b는 또 다른 구현예에 따른 무선충전 장치의 단면도를 나타낸다.
도 9는 무선충전 장치를 전기 자동차에 적용한 예를 도시한다.
도 10은 무선충전 장치가 수신기로 적용된 전기 자동차를 나타낸다.
<부호의 설명>
1: 이동 수단(전기 자동차),
2: 사출 성형기, 3: 몰드,
15: 냉각기, 16: 연결유로,
21: 수신기, 22: 송신기,
100, 100', 200, 300, 400, 500, 600: 무선충전 장치,
110, 110', 210, 310, 410, 510, 610: 코일부,
120, 120', 220, 320, 420, 420a, 420b, 420c, 520, 620: 자성부,
130, 130', 230, 330, 430, 530, 630: 쉴드부,
140, 140', 240, 340, 440, 540: 공기 순환부,
145, 245, 345, 445, 555: 공기(유체),
160, 560, 660: 지지부,
270, 370, 470: 유입배관, 280, 380, 480: 배출배관,
390: 가이드 벽(guide wall),
490: 홀, 495a, 495b, 495c: 냉각 유로,
501, 601: 하우징, 621: 원료 조성물,
640: 방열부, 695: 미세유로,
670: 유입구, 680: 배출구.
이하의 구현예의 설명에 있어서, 하나의 구성요소가 다른 구성요소의 상 또는 하에 형성되는 것으로 기재되는 것은, 하나의 구성요소가 다른 구성요소의 상 또는 하에 직접, 또는 또 다른 구성요소를 개재하여 간접적으로 형성되는 것을 모두 포함한다.
또한 각 구성요소의 상/하에 대한 기준은 도면을 기준으로 설명한다. 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기와 다를 수 있다.
본 명세서에서 어떤 구성요소를 "포함"한다는 것은, 특별히 반대되는 기재가 없는 한, 그 외 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있음을 의미한다.
또한, 본 명세서에 기재된 구성요소의 물성 값, 치수 등을 나타내는 모든 수치 범위는 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로 수식되는 것으로 이해하여야 한다.
본 명세서에서 단수 표현은 특별한 설명이 없으면 문맥상 해석되는 단수 또는 복수를 포함하는 의미로 해석되어야 한다.
무선충전 장치
일 구현예에 따른 무선충전 장치는 코일부; 상기 코일부 상에 배치되는 쉴드부; 및 상기 코일부와 상기 쉴드부 사이에 배치되는 자성부; 및 상기 자성부의 내부 또는 인접부에 배치되는 유로를 포함하고, 냉각을 위한 유체가 상기 유로에 유입되어 상기 자성부와 접촉한다.
일례로서, 상기 무선충전 장치는, 상기 유로로서, 상기 자성부 및 상기 쉴드부 사이에 위치하는 공기 순환부를 포함하고, 상기 냉각 유체로서, 상기 공기 순환부로 공기가 유입되어 상기 자성부의 표면과 직접 접촉할 수 있다.
도 1a 및 1b를 참조하여, 상기 구현예에 따른 무선충전 장치(100, 100')는, 전도성 와이어를 포함하는 코일부(110, 110'); 상기 코일부(110, 110')의 일면 상에 배치된 자성부(120, 120'); 상기 자성부(120, 120')와 이격되어 형성된 쉴드부(130, 130'); 및 상기 자성부(120, 120') 및 상기 쉴드부(130, 130') 사이에 위치하는 공기 순환부(140, 140')를 포함하며, 상기 공기 순환부(140, 140')로 유입된 공기(145)가 상기 자성부(120, 120')의 표면과 직접 접촉한다. 상기 공기 순환부(140, 140')로 유입되는 공기는 외부의 공조 시스템으로부터 공급된 공기일 수 있다.
상기 공조 시스템은 차량의 난방, 환기 및 냉방 시스템을 포함할 수 있으며, 구체적으로 자동차 에어컨을 포함할 수 있다.
상기 구현예에 따른 무선충전 장치는 외부로부터 유입된 공기가 자성부의 표면과 직접 접촉하여 순환할 수 있는 공기 순환부를 포함함으로써, 자성부에서 발생하는 열을 순환시켜 외부로 방출시키며, 방열 특성 및 충전 효율을 동시에 향상시킬 수 있다. 또한, 공기 순환부로 유입되는 공기를 외부의 공조 시스템으로부터 공급 받음으로써, 습기로 인한 자성부의 변성 문제까지 해결할 수 있다.
또한 상기 무선충전 장치는, 도 5를 참조하여, 상기 코일부(510)를 지지하는 지지부(560), 및 상기 구성 요소들을 수용하는 하우징(501)을 더 포함할 수 있다.
다른 예로서, 상기 무선충전 장치는, 상기 유로로서, 상기 자성부의 내부에 배치되는 미세유로를 포함할 수 있다.
도 6을 참조하여, 상기 구현예에 따른 무선충전 장치(600)는, 전도성 와이어를 포함하는 코일부(610); 상기 코일부(610) 상에 배치된 쉴드부(630); 상기 코일부(610)와 상기 쉴드부(630) 사이에 배치된 자성부(620); 및 상기 자성부(620)의 내부 또는 인접부에 배치된 미세유로(695)를 포함한다.
상기 구현예에 따른 무선충전 장치는 상기 자성부의 내부 또는 인접부에 미세유로를 포함하여 냉매를 통해 열을 쉽게 배출할 수 있다. 구체적으로, 상기 자성부의 내부에 미세유로를 형성하고 냉매로서 기상 또는 액상의 유체를 외부의 냉각기와 연결하여 순환시킴으로써, 자성부에서 발생하는 열을 외부로 쉽게 방출할 수 있다.
이하 상기 무선충전 장치의 각 구성 요소별로 구체적으로 설명한다.
코일부
상기 코일부는 전도성 와이어를 포함할 수 있다.
상기 전도성 와이어는 전도성 물질을 포함한다. 예를 들어, 상기 전도성 와이어는 전도성 금속을 포함할 수 있다. 구체적으로, 상기 전도성 와이어는 구리, 니켈, 금, 은, 아연 및 주석으로 이루어진 군으로부터 선택되는 1종 이상의 금속을 포함할 수 있다.
또한, 상기 전도성 와이어는 절연성 외피를 구비할 수 있다. 예를 들어, 상기 절연성 외피는 절연성 고분자 수지를 포함할 수 있다. 구체적으로, 상기 절연성 외피는 폴리염화비닐(PVC) 수지, 폴리에틸렌(PE) 수지, 테프론 수지, 실리콘 수지, 폴리우레탄 수지 등을 포함할 수 있다.
상기 전도성 와이어의 직경은 예를 들어 1 mm 내지 10 mm 범위, 1 mm 내지 5 mm 범위, 또는 1 mm 내지 3 mm 범위일 수 있다.
상기 전도성 와이어는 평면 코일 형태로 감길 수 있다. 구체적으로 상기 평면 코일은 평면 나선 코일(planar spiral coil)을 포함할 수 있다. 또한 상기 코일의 평면 형태는 원형, 타원형, 다각형, 또는 모서리가 둥근 다각형의 형태일 수 있으나, 특별히 한정되지 않는다.
상기 평면 코일의 외경은 5 cm 내지 100 cm, 10 cm 내지 50 cm, 10 cm 내지 30 cm, 20 cm 내지 80 cm, 또는 50 cm 내지 100 cm일 수 있다. 구체적인 일례로서, 상기 평면 코일은 10 cm 내지 50 cm의 외경을 가질 수 있다.
또한, 상기 평면 코일의 내경은 0.5 cm 내지 30 cm, 1 cm 내지 20 cm, 또는, 2 cm 내지 15 cm일 수 있다.
상기 평면 코일의 감긴 횟수는 5회 내지 50회, 10회 내지 30회, 5회 내지 30회, 15회 내지 50회, 또는 20회 내지 50회일 수 있다. 구체적인 일례로서, 상기 평면 코일은 상기 전도성 와이어를 10회 내지 30회 감아 형성된 것일 수 있다.
또한 상기 평면 코일 형태 내에서 상기 전도성 와이어 간의 간격은 0.1 cm 내지 1 cm, 0.1 cm 내지 0.5 cm, 또는 0.5 cm 내지 1 cm일 수 있다.
상기와 같은 바람직한 평면 코일 치수 및 규격 범위 내일 때, 전기 자동차와 같은 대용량 전력 전송을 요구하는 분야에 적합할 수 있다.
상기 코일부는 상기 자성부와 일정 간격 이격되어 배치될 수 있다. 예를 들어, 코일부와 상기 자성부의 이격 거리는 0.2 mm 이상, 0.5 mm 이상, 0.2 mm 내지 3 mm, 또는 0.5 mm 내지 1.5 mm일 수 있다.
쉴드부
상기 쉴드부는 상기 코일부 및 상기 자성부 상에 배치된다.
상기 쉴드부는 전자파 차폐를 통해 외부로 전자파가 누설되어 발생될 수 있는 전자기 간섭(EMI, electromagnetic interference)을 억제한다.
상기 쉴드부는 상기 코일부와 일정 간격 이격되어 배치될 수 있다. 예를 들어, 상기 쉴드부와 상기 코일부의 이격 거리는 10 mm 이상 또는 15 mm 이상일 수 있고, 구체적으로 10 mm 내지 30 mm, 또는 10 mm 내지 20 mm일 수 있다.
또한 쉴드부는 상기 자성부와 일정 간격 이격되어 배치될 수 있다. 예를 들어, 상기 쉴드부과 상기 자성부의 이격 거리는 3 mm 이상, 5 mm 이상, 3 mm 내지 10 mm, 또는 4 mm 내지 7 mm일 수 있다.
상기 쉴드부의 소재는 예를 들어 금속일 수 있고, 이에 따라 상기 쉴드부는 금속판일 수 있으나 특별히 한정되지 않는다. 구체적인 일례로서 상기 쉴드부의 소재는 알루미늄일 수 있으며, 그 외 전자파 차폐능을 갖는 금속 또는 합금 소재가 사용될 수 있다.
상기 쉴드부의 두께는 0.2 mm 내지 10 mm, 0.5 mm 내지 5 mm, 또는 1 mm 내지 3 mm일 수 있다. 또한 상기 쉴드부의 면적은 200 cm2 이상, 400 cm2 이상, 또는 600 cm2 이상일 수 있다.
자성부
상기 자성부는 상기 코일부와 상기 쉴드부 사이에 배치된다.
상기 자성부는 상기 코일부와 일정 간격 이격되어 배치될 수 있다. 예를 들어, 상기 자성부와 상기 코일부의 이격 거리는 0.2 mm 이상, 0.5 mm 이상, 0.2 mm 내지 3 mm, 또는 0.5 mm 내지 1.5 mm일 수 있다.
상기 자성부는 바인더 수지 및 자성 분말을 포함하는 고분자형 자성체일 수 있다. 또는 상기 자성부는 페라이트계 자성체, 예를 들어 소결 페라이트계 자성체일 수 있다. 또는 상기 자성부는 금속계 자성체, 예를 들어 나노결정성(nanocrystalline) 자성체를 포함할 수 있다. 또는 상기 자성부는 상기 고분자형 자성체, 상기 페라이트계 자성체, 및 상기 나노결정성 자성체 중 2종 이상의 복합 소재일 수 있다.
고분자형 자성체
상기 자성부는 자성 분말 및 바인더 수지를 포함할 수 있다.
구체적으로 상기 자성부는 바인더 수지 및 상기 바인더 수지 내에 분산된 자성 분말을 포함할 수 있다. 이에 따라, 상기 자성부는 바인더 수지에 의해 자성 분말들이 서로 결합됨으로써, 넓은 면적에서 전체적으로 결함이 적으면서 충격에 의해 손상이 적을 수 있다.
상기 자성 분말은 산화물계 자성 분말, 금속계 자성 분말, 또는 이들의 혼합 분말일 수 있다. 예를 들어, 상기 산화물계 자성 분말은 페라이트계 분말, 구체적으로 Ni-Zn계, Mg-Zn계, Mn-Zn계 페라이트 분말일 수 있다. 또한 상기 금속계 자성 분말은 Fe-Si-Al 합금 자성 분말, 또는 Ni-Fe 합금 자성 분말일 수 있고, 보다 구체적으로 샌더스트(sendust) 분말, 또는 퍼말로이(permalloy) 분말일 수 있다.
일례로서, 상기 자성 분말은 하기 화학식 1의 조성을 가질 수 있다.
[화학식 1]
Fe1-a-b-c Sia Xb Yc
상기 식에서, X는 Al, Cr, Ni, Cu, 또는 이들의 조합이고; Y는 Mn, B, Co, Mo, 또는 이들의 조합이고; 0.01 ≤ a ≤ 0.2, 0.01 ≤ b ≤ 0.1, 및 0 ≤ c ≤ 0.05 이다.
또한 상기 자성 분말은 나노결정성(nanocrystalline) 자성 분말일 수 있고, 예를 들어 Fe계 나노결정성 자성 분말일 수 있으며, 구체적으로 Fe-Si-Al계 나노결정성 자성 분말, Fe-Si-Cr계 나노결정성 자성 분말, 또는 Fe-Si-B-Cu-Nb계 나노결정성 자성 분말일 수 있다.
상기 자성 분말의 평균 입경은 약 3 nm 내지 약 1 mm, 약 1 ㎛ 내지 300 ㎛, 약 1 ㎛ 내지 50 ㎛, 또는 약 1 ㎛ 내지 10 ㎛의 범위일 수 있다.
상기 자성부는 상기 자성 분말을 10 중량% 이상, 50 중량% 이상, 70 중량% 이상, 또는 85 중량% 이상의 양으로 포함할 수 있다.
예를 들어, 상기 자성부는 상기 자성 분말을 10 중량% 내지 99 중량%, 10 중량% 내지 95 중량%, 50 중량% 내지 95 중량%, 50 중량% 내지 92 중량%, 70 중량% 내지 95 중량%, 80 중량% 내지 95 중량%, 또는 80 중량% 내지 90 중량%의 양으로 포함할 수 있다.
상기 바인더 수지로서 폴리이미드 수지, 폴리아미드 수지, 폴리카보네이트 수지, 아크릴로니트릴-부타디엔-스티렌(ABS) 수지, 폴리프로필렌 수지, 폴리에틸렌 수지, 폴리스티렌 수지, 폴리페닐설파이드(PSS) 수지, 폴리에테르에테르케톤(PEEK) 수지, 실리콘 수지, 아크릴 수지, 폴리우레탄 수지, 폴리에스테르 수지, 이소시아네이트 수지, 에폭시 수지 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
예를 들어, 상기 바인더 수지는 경화성 수지일 수 있다. 구체적으로, 상기 바인더 수지는 광경화성 수지 및/또는 열경화성 수지일 수 있으며, 특히 경화되어 접착성을 나타낼 수 있는 수지일 수 있다. 보다 구체적으로, 상기 바인더 수지는 글리시딜기, 이소시아네이트기, 히드록시기, 카복실기 또는 아미드기 등과 같은 열에 의한 경화가 가능한 관능기 또는 부위를 하나 이상 포함하거나; 또는 에폭시드(epoxide)기, 고리형 에테르(cyclic ether)기, 설파이드(sulfide)기, 아세탈(acetal)기 또는 락톤(lactone)기 등과 같은 활성 에너지에 의해 경화가 가능한 관능기 또는 부위를 하나 이상 포함하는 수지를 사용할 수 있다. 이와 같은 관능기 또는 부위는 예를 들어 이소시아네이트기(-NCO), 히드록시기(-OH), 또는 카복실기(-COOH)일 수 있다.
또는 상기 바인더 수지는 열가소성 수지일 수 있고, 구체적으로 고내열 열가소성 수지일 수 있다.
상기 자성부는 상기 바인더 수지를 5 중량% 내지 40 중량%, 5 중량% 내지 20 중량%, 5 중량% 내지 15 중량%, 또는 7 중량% 내지 15 중량%의 양으로 함유할 수 있다.
또한, 상기 자성부는 이의 중량을 기준으로, 상기 바인더 수지로서, 6 중량% 내지 12 중량%의 폴리우레탄계 수지, 0.5 중량% 내지 2 중량%의 이소시아네이트계 경화제, 및 0.3 중량% 내지 1.5 중량%의 에폭시계 수지를 포함할 수 있다.
상기 자성부는 몰드를 통한 성형 등의 방법으로 제조된 자성 블록일 수 있다. 예를 들어, 상기 자성부는 몰드를 통해 입체 구조로 성형된 것일 수 있다. 이러한 자성 시트는 자성 분말과 바인더 수지를 혼합하고 사출 성형 등에 의해 몰드로 주입하여 입체 구조로 성형될 수 있다.
구체적으로, 상기 성형은 사출성형에 의해 자성부의 원료를 몰드에 주입하여 수행될 수 있다. 보다 구체적으로, 상기 자성부는 자성 분말과 고분자 수지 조성물을 혼합하여 원료 조성물을 얻은 뒤, 도 7b에서 보듯이, 상기 원료 조성물(621)을 사출성형기(2)에 의해 몰드(3)에 주입하여 제조될 수 있다. 이때 몰드(3)의 내부 형태를 입체 구조로 설계하여, 자성부의 입체 구조를 쉽게 구현할 수 있다. 이와 같은 공정은 기존의 소결 페라이트 시트를 자성부로 사용하는 경우에는 어려울 수 있다.
페라이트계 자성체
상기 페라이트계 자성체는 예를 들어 MOFe2O3(여기서 M은 Mn, Zn, Cu, Ni 등의 1종 이상의 2가 금속 원소이다)로 표시되는 산화물을 포함할 수 있다. 상기 페라이트계 자성체는 소결된 것이 투자율과 같은 자성 특성 면에서 유리하다. 이러한 소결 페라이트계 자성체는 원료 성분들을 혼합하고 하소 후 분쇄하고, 이를 바인더 수지와 혼합하여 성형하고 소성하여 시트 또는 블록 형태로 제조될 수 있다.
보다 구체적으로 상기 페라이트계 자성체는 Ni-Zn계, Mg-Zn계, 또는 Mn-Zn계 페라이트일 수 있고, 특히 Mn-Zn계 페라이트는 85 kHz의 주파수에서 실온 내지 100 ℃ 이상의 온도 범위에 걸쳐 높은 투자율, 낮은 투자손실, 및 높은 포화자속밀도를 나타낼 수 있다.
상기 Mn-Zn계 페라이트는 주성분으로 산화철 Fe2O3 66 mol% 내지 70 mol%, ZnO 10 mol% 내지 20 mol%, MnO 8 mol% 내지 24 mol%, 및 NiO 0.4 mol% 내지 2 mol%를 포함하고, 그 외 부성분으로 SiO2, CaO, Nb2O5, ZrO2, SnO 등을 함유할 수 있다. 상기 Mn-Zn계 페라이트는 주성분을 소정의 몰비로 혼합하여 공기 중에서 800 ℃ 내지 1100 ℃의 온도로 1 시간 내지 3 시간 동안 하소 후 부성분을 첨가하여 분쇄하고, 이에 폴리비닐알코올(PVA) 등의 바인더 수지를 적당량 혼합하고 프레스를 이용하여 가압 성형한 후, 1200 ℃ 내지 1300 ℃까지 승온하여 2시간 이상 소성함으로써 시트 또는 블록 형태로 제조될 수 있다. 이후, 필요에 따라 와이어 톱(wire saw) 또는 워터젯(water jet) 등을 이용해 가공하여 요구되는 크기로 절단된다.
나노결정성 자성체
상기 자성부는 나노결정성(nanocrystalline) 자성체를 포함할 수 있다. 상기 자성부로 나노결정성 자성체를 적용 시에, 코일부와 거리가 멀어질수록 코일의 인덕턴스(Ls)가 낮아지더라도 저항(Rs)이 더욱 낮아짐으로써 코일의 품질계수(Q factor: Ls/Rs)가 높아져서 충전 효율이 향상되고 발열이 줄어들 수 있다.
예를 들어, 상기 자성부는 Fe계 나노결정성 자성체일 수 있고, 구체적으로 Fe-Si-Al계 나노결정성 자성체, Fe-Si-Cr계 나노결정성 자성체, 또는 Fe-Si-B-Cu-Nb계 나노결정성 자성체일 수 있다.
보다 구체적으로, 상기 자성부는 Fe-Si-B-Cu-Nb계 나노결정성 자성체일 수 있고, 이 경우, Fe가 70 원소% 내지 85 원소%, Si 및 B의 합이 10 원소% 내지 29 원소%, Cu와 Nb의 합이 1 원소% 내지 5 원소%인 것이 바람직하다(여기서 원소%란 자성부를 이루는 총 원소의 갯수에 대한 특정 원소의 갯수의 백분율을 의미한다). 상기 조성 범위에서 Fe-Si-B-Cu-Nb계 합금이 열처리에 의해 나노결정성 자성체로 쉽게 형성될 수 있다.
상기 나노결정성 자성체는, 예를 들어 Fe계 합금을 멜트 스피닝에 의한 급냉응고법(RSP)으로 제조하며, 원하는 투자율을 얻을 수 있도록 300℃ 내지 700℃의 온도 범위에서 30분 내지 2시간 동안 무자장 열처리를 행하여 제조될 수 있다.
만약 열처리 온도가 300℃ 미만인 경우 나노결정이 충분히 생성되지 않아 원하는 투자율이 얻어지지 않으며 열처리 시간이 길게 소요될 수 있고, 700℃를 초과하는 경우는 과열처리에 의해 투자율이 현저하게 낮아질 수 있다. 또한, 열처리 온도가 낮으면 처리시간이 길게 소요되고, 반대로 열처리 온도가 높으면 처리시간은 단축되는 것이 바람직하다.
상기 나노결정성 자성체의 두께는 15 ㎛ 내지 150 ㎛일 수 있다. 한편 나노결정성 자성체는 제조 공정상 두꺼운 두께를 만들기 어려우며 예를 들어 15 ㎛ 내지 35 ㎛의 두께의 박막 시트로 형성될 수 있다. 따라서 이러한 박막 시트를 여러 장 적층하여 자성부를 형성할 수 있다. 이때 상기 박막 시트 사이에는 접착 테이프와 같은 접착제층이 삽입될 수 있다.
또한 상기 나노결정성 자성체는 제조 공정 후단에 가압 롤 등에 의해 파쇄하여 박막 시트에 다수의 크랙을 형성함으로써, 복수 개의 나노결정성 미세 조각들을 포함하도록 제조할 수 있다.
상기 나노결정성 자성체는 전기 자동차의 무선충전 표준 주파수 근방에서 특정 범위의 자성 특성을 가질 수 있다.
예를 들어 상기 나노결정성 자성체는 85 kHz의 주파수에서 500 내지 150,000의 투자율 및 100 내지 50,000의 투자손실을 가질 수 있다. 일례로서, 상기 자성부가 파쇄형의 나노결정성 자성체를 포함할 경우 85 kHz의 주파수에서 500 내지 3,000의 투자율 및 100 내지 1,000의 투자손실을 가질 수 있다. 다른 예로서, 상기 자성부가 비파쇄형의 나노결정성 자성체를 포함할 경우 85 kHz의 주파수에서 10,000 내지 150,000의 투자율 및 1,000 내지 10,000의 투자손실을 가질 수 있다.
자성부의 면적 및 두께
상기 자성부는 자성 시트, 자성 시트 적층체, 또는 자성 블록의 구조를 가질 수 있다.
상기 자성부는 대면적을 가질 수 있고, 구체적으로 200 cm2 이상, 400 cm2 이상, 또는 600 cm2 이상의 면적을 가질 수 있다. 또한, 상기 자성부는 10,000 cm2 이하의 면적을 가질 수 있다.
상기 대면적의 자성부는 다수의 자성 단위체가 조합되어 구성될 수 있으며, 이때, 상기 자성 단위체의 면적은 60 cm2 이상, 90 cm2 이상, 또는 95 cm2 내지 900 cm2일 수 있다.
상기 자성 시트의 두께는 15 ㎛ 이상, 50 ㎛ 이상, 80 ㎛ 이상, 15 ㎛ 내지 150 ㎛, 15 ㎛ 내지 35 ㎛, 또는 85 ㎛ 내지 150 ㎛일 수 있다. 이러한 자성 시트는 통상의 필름 또는 시트를 제조하는 방법으로 제조될 수 있다.
상기 자성 시트의 적층체는 상기 자성 시트가 20장 이상, 또는 50장 이상 적층된 것일 수 있다. 또한 상기 자성 시트의 적층체는 상기 자성 시트가 150장 이하, 또는 100장 이하로 적층된 것일 수 있다.
상기 자성 블록의 두께는 1 mm 이상, 2 mm 이상, 3 mm 이상, 또는 4 mm 이상일 수 있다. 또한, 상기 자성 블록의 두께는 6 mm 이하일 수 있다.
상기 자성 블록은 사출 성형 등의 방법으로 제조될 수 있다.
자성부의 자성 특성
상기 자성부는 전기 자동차의 무선충전 표준 주파수 근방에서 일정 범위의 자성 특성을 가질 수 있다.
상기 전기 자동차의 무선충전 표준 주파수는 100 kHz 미만일 수 있고, 예를 들어 79 kHz 내지 90 kHz, 구체적으로 81 kHz 내지 90 kHz, 보다 구체적으로 약 85 kHz일 수 있으며, 이는 휴대폰과 같은 모바일 전자기기에 적용하는 주파수와 구별되는 대역이다.
상기 자성부의 85 kHz의 주파수에서 투자율은 소재에 따라 달라질 수 있으나 5 이상, 예를 들어 5 내지 150,000일 수 있으며, 구체적인 소재에 따라 5 내지 300, 500 내지 3,500, 또는 10,000 내지 150,000일 수 있다. 또한 상기 자성부의 85 kHz의 주파수에서 투자손실은 소재에 따라 달라질 수 있으나 0 이상, 예를 들어 0 내지 50,000일 수 있으며, 구체적인 소재에 따라 0 내지 1,000, 1 내지 100, 100 내지 1,000, 또는 5,000 내지 50,000일 수 있다.
구체적인 일례로서, 상기 자성부가 자성 분말 및 바인더 수지를 포함하는 고분자형 자성체일 경우, 상기 자성부의 85 kHz의 주파수에서 투자율은, 예를 들어 5 내지 130, 15 내지 80, 또는 10 내지 50일 수 있고, 투자손실은 0 내지 20, 0 내지 15, 또는 0 내지 5일 수 있다.
자성부의 물리적 특성
상기 자성부는 일정 비율로 신장될 수 있다. 예를 들어 상기 자성부의 신장율은 0.5% 이상일 수 있다. 상기 신장 특성은 고분자를 적용하지 않는 세라믹계 자성체에서는 얻기 어려운 것으로, 대면적의 자성부가 충격에 의해 뒤틀림 등이 발생하더라도 손상을 줄여줄 수 있다. 구체적으로, 상기 자성부의 신장율은 0.5% 이상, 1% 이상, 또는 2.5% 이상일 수 있다. 상기 신장율의 상한에는 특별한 제한이 없으나, 신장율 향상을 위해 고분자 수지의 함량이 많아지는 경우, 자성부의 인턱턴스 등의 특성이 떨어질 수 있으므로, 상기 신장율은 10% 이내인 것이 좋다.
상기 자성부는 충격 전후의 특성 변화율이 적으며, 일반적인 페라이트 자성시트와 비교하여 월등하게 우수하다. 본 명세서에서 어떤 특성의 충격 전후의 특성 변화율(%)은 다음 식으로 계산될 수 있다. 특성 변화율(%) = | 충격 전 특성 값 - 충격 후 특성 값 | / 충격 전 특성 값 x 100
예를 들어, 상기 자성부는 1 m의 높이에서 자유 낙하시켜 인가한 충격 전과 후의 인덕턴스 변화율이 5% 미만, 또는 3% 이하일 수 있다. 보다 구체적으로, 상기 인덕턴스 변화율은 0% 내지 3%, 0.001% 내지 2%, 또는 0.01% 내지 1.5%일 수 있다. 상기 범위 내일 때, 충격 전후의 인덕턴스 변화율이 상대적으로 적어서 자성부의 안정성이 보다 향상될 수 있다.
또한, 상기 자성부는 1 m의 높이에서 자유 낙하시켜 인가한 충격 전과 후의 품질계수(Q factor, Ls/Rs) 변화율이 0% 내지 5%, 0.001% 내지 4%, 또는 0.01% 내지 2.5%일 수 있다. 상기 범위 내일 때, 충격 전후의 특성 변화가 적어서 자성부의 안정성과 내충격성이 보다 향상될 수 있다.
또한, 상기 자성부는 1 m의 높이에서 자유 낙하시켜 인가한 충격 전과 후의 저항 변화율이 0% 내지 2.8%, 0.001% 내지 1.8%, 또는 0.1% 내지 1.0%일 수 있다. 상기 범위 내일 때, 실제 충격과 진동이 가해지는 환경에서 반복하여 적용하더라도 저항값이 일정 수준 이하로 잘 유지될 수 있다.
또한, 상기 자성부는 1 m의 높이에서 자유 낙하시켜 인가한 충격 전과 후의 충전효율 변화율이 0% 내지 6.8%, 0.001% 내지 5.8%, 또는 0.01% 내지 3.4%일 수 있다. 상기 범위 내일 때, 대면적의 자성부가 충격이나 뒤틀림이 반복적으로 발생하더라도 특성을 보다 안정적으로 유지할 수 있다.
공기 순환부
상기 무선충전 장치는 상기 자성부 및 상기 쉴드부 사이에 위치하는 공기 순환부를 포함할 수 있다.
일반적인 무선충전 장치에서, 반자기장 발생으로 인해 충전 효율이 급격히 떨어지는 문제를 방지하기 위해, 쉴드부가 자성부와 일정 거리만큼 이격하여 배치되는데, 이에 따라 자성부와 쉴드부 사이의 빈 공간에 공기 순환부가 마련될 수 있다. 외부로부터 상기 공기 순환부에 유입된 공기는 자성부의 표면과 직접 접촉한 뒤 외부로 방출됨으로써, 자성부에서 발생하는 열을 순환시켜 방열 특성 및 충전 효율을 동시에 향상시킬 수 있다. 또한, 상기 공기 순환부로 유입되는 공기를 외부의 공조 시스템으로부터 공급 받음으로써, 습기로 인한 자성부의 변성 문제까지 해결할 수 있다.
상기 공기 순환부로 유입된 공기는 상기 자성부의 표면과 직접 접촉할 수 있다. 또한, 상기 공기 순환부로 유입된 공기는 상기 쉴드부의 표면과 직접 접촉할 수 있다. 또한, 상기 공기 순환부로 유입된 공기는 상기 자성부의 표면과 상기 쉴드부의 표면 모두와 직접 접촉할 수 있다.
상기 공기 순환부 내부의 온도는 5 ℃ 내지 50 ℃일 수 있고, 예를 들어 10 ℃ 내지 40 ℃, 10 ℃ 내지 30 ℃, 20 ℃ 내지 40 ℃, 10 ℃ 내지 25 ℃, 또는 15 ℃ 내지 30 ℃일 수 있다.
또한, 상기 공기 순환부 내부의 습도는 30 % 내지 80 %일 수 있고, 예를 들어 30 % 내지 70 %, 50 % 내지 60 %, 30 % 내지 60 %, 또는 40 % 내지 65 %일 수 있다. 상기 공기 순환부 내부의 습도가 상기 범위를 만족하는 경우, 방열 특성을 향상시킬 뿐만 아니라, 높은 습도로 인해 발생할 수 있는 자성부의 변성 문제를 최소화할 수 있다.
본 발명의 일 구현예에 따르면, 상기 무선충전 장치는 외부의 공조 시스템으로부터 공급되는 공기가 상기 자성부의 표면과 직접 접촉하여 순환할 수 있는 공기 순환부를 포함함으로써, 상기 공기 순환부를 포함하지 않은 무선충전 장치에 비해 충전 효율을 0.1 % 이상, 구체적으로 0.2 % 내지 10 %, 더욱 구체적으로 0.5 % 내지 5 %까지 향상시킬 수 있다. 뿐만 아니라, 자성부 및 코일부에서 발생하는 열로 인하여 인접하는 회로에 발생 할 수 있는 기기적인 손상을 방지할 수 있다.
공기 순환부의 적용
도 2, 도 3a 및 도 4a는 상기 공기 순환부를 포함하는 다양한 무선충전 장치(200, 300, 400)의 단면도이다.
일례에 따르면, 도 2와 같이, 상기 공기 순환부(240)의 일측 또는 양측에 배치되고, 공기가 상기 공기 순환부(240)로 유입되도록 연결된 유입배관(270), 및 상기 공기 순환부로부터 공기를 배출하도록 연결된 배출배관(280)을 더 포함할 수 있다.
구체적으로, 상기 무선충전 장치(200)는 전도성 와이어를 포함하는 코일부(210); 상기 코일부(210)의 일면 상에 배치된 자성부(220); 상기 자성부(220)와 이격되어 형성된 쉴드부(230); 및 상기 자성부(220) 및 상기 쉴드부(230) 사이에 위치하고, 상기 자성부(220)의 표면과 직접 공기가 접촉하는 공기 순환부(240)를 포함하며, 상기 공기 순환부(240)의 일측 또는 양측에 배치되고, 공기(245)가 상기 공기 순환부(240)로 유입되도록 연결된 유입배관(270), 및 상기 공기 순환부로부터 공기(245)를 배출하도록 연결된 배출배관(280)을 포함할 수 있다.
더욱 구체적으로, 상기 공기 순환부(240)는 상기 자성부(220)의 일면에 접촉되어, 외부의 공조 시스템으로부터 공급되는 공기(245)가 상기 유입배관(270)을 통해 주입되고, 상기 주입된 공기가 상기 공기 순환부(240) 내에서 순환하면서, 상기 자성부(220)에서 발생하는 열을 상기 배출배관(280)을 통해 외부로 방출시킬 수 있다. 이때, 상기 유입배관(270)을 통해 주입된 공기는 상기 쉴드부(230)의 표면과 직접 접촉할 수 있다. 또한, 상기 유입배관(270)을 통해 주입된 공기가 상기 쉴드부(230) 및 상기 자성부(220)의 표면 모두에 직접 접촉하는 경우, 방열 효과를 극대화할 수 있다. 상기 유입배관(270) 및 배출배관(280)의 크기, 형태 및 재질은 본 발명의 효과를 저해하지 않는 범위에서, 특별히 한정하지 않는다.
일반적인 무선충전 장치는 습한 공기 또는 먼지 등의 유입을 막기 위해 밀폐된 구조를 가지므로 무선충전 시에 발생되는 열을 방출하는데 불리하며, 특히 습한 공기 또는 먼지 등이 주입될 경우 자성부의 변성을 야기할 수 있다.
그러나 앞서 설명한 바와 같이 유입배관이 외부의 공조 시스템과 연결되어, 상기 공조 시스템으로부터 공급된 공기가 상기 유입배관으로 주입된 후 순환함으로써, 상기 자성부에서 발생하는 열을 외부로 방출할 수 있다. 나아가, 공조 시스템으로부터의 습도가 낮은 건조한 공기를 상기 자성부 표면에 골고루 순환시킬 수 있으므로 종래의 습기로 인한 자성부의 변성 문제를 해결할 수 있다.
한편, 도 3a 및 3b는 각각 다른 예에 따른 무선충전 장치의 단면도, 및 상기 무선충전 장치에 포함된 공기 순환부의 평면도를 나타낸 것이다.
도 3a 및 3b를 참조하여, 상기 무선충전 장치(300)는 상기 자성부(320) 및 상기 쉴드부(330) 사이에 위치하고, 상기 자성부(320)의 표면과 직접 공기(345)가 접촉하는 공기 순환부(340)를 포함하며, 상기 공기 순환부(340)는 상기 공기가 유동하도록 형성된 가이드 벽(guide wall)(390)을 더 포함할 수 있다.
상기 가이드 벽(390)이 상기 자성부(320)의 표면과 접촉되어 위치할 경우, 공기가 상기 자성부(320)의 표면을 고루 접촉하도록 유도할 수 있다.
또한, 상기 가이드 벽(390)은 상기 코일부(310)가 존재하는 영역에 대응하여 배치될 수 있다. 일반적으로 코일부는 전자기파 에너지 밀도가 높아 열이 가장 많이 축적되어 온도가 가장 높을 수 있기 때문에, 상기 코일부가 존재하는 영역에 대응하여 가이드 벽이 배치됨으로써, 가이드 벽에 의해 공기가 순환하여 열을 방출시킬 수 있다. 또한, 상기 가이드 벽(390)은 상기 코일부(310)가 존재하는 영역, 및 그 외 영역에 모두 배치될 수 있다.
또한, 상기 가이드 벽(390)은 가이드 벽 고정부(미도시)에 의해 고정될 수 있으며, 상기 자성부는 그 일부분에 가이드 벽 고정부를 포함할 수 있다. 상기 가이드 벽 고정부는 가이드 벽(390)을 고정할 수 있는 한, 그 위치, 형태, 크기는 특별히 제한하지 않는다.
상기 자성부는 몰드에 의해 원하는 입체구조로 성형이 가능하므로, 상기 가이드 벽 고정부는 상기 자성부의 성형시, 측면, 또는 그 상부 표면에 제한 없이 원하는 위치에 마련될 수 있다. 상기 가이드 벽은 상기 가이드 벽 고정부에 의해 고정됨으로써 무선충전 장치 내, 구체적으로 상기 자성부로부터 탈락되지 않고 고정될 수 있다. 또는 상기 가이드 벽은 접착제를 이용하여 자성부에 고정할 수 있다.
또한, 상기 가이드 벽은 내열 플라스틱 소재일 수 있으며, 구체적으로 폴리프로필렌, 아크릴로니트릴-부타디엔-스티렌 공중합체(ABS), 폴리카보네이트, 폴리 아마이드, 폴리이미드, 폴리부틸렌테레프탈레이트, 폴리페닐설파이드 및 폴리에테르에테르케톤으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 상기 가이드 벽의 두께 및 폭은 특별히 한정하지 않으나, 예를 들어 두께가 1 mm 내지 3 mm, 1 mm 내지 2.5 mm, 1.5 mm 내지 3 mm, 1.5 mm 내지 2.5 mm, 또는 2 mm 내지 3 mm이고, 폭이 0.1 mm 내지 6 mm, 0.1 mm 내지 5 mm, 0.1 mm 내지 3 mm, 0.5 mm 내지 4 mm, 또는 0.3 mm 내지 4 mm일 수 있다.
상기 가이드 벽에 의한 공기의 이동 경로의 총 길이는 상기 자성부의 둘레를 기준으로 25 % 내지 500 %, 구체적으로 50 % 내지 400 %, 더욱 구체적으로 75 % 내지 300 %일 수 있다. 상기 공기의 이동 경로의 총 길이가 상기 범위를 만족하는 경우, 공기가 상기 자성부의 표면에 골고루 순환할 수 있으므로, 방열 특성을 더욱 향상시킬 수 있다.
한편, 도 4a는 본 발명의 또 다른 구현예에 따른 무선충전 장치의 단면도를 나타낸 것이고, 도 4b는 상기 무선충전 장치에 포함된 다양한 형태의 자성부의 사시도를 나타낸 것이며, 상기 도 4c 내지 4e는 상기 무선충전 장치에 포함된 다양한 형태의 자성부의 내부를 설명하기 위한 평면도를 나타낸 것이다
도 4a 내지 도 4e를 참조하여, 상기 무선충전 장치(400)는 상기 자성부(420, 420a, 420b, 420c)가 상기 공기 순환부(440)로부터의 공기가 유입되는 적어도 하나의 홀(hole)(490), 및 상기 자성부(420, 420a, 420b, 420c) 내부에 상기 홀(490)과 연결되어 상기 공기(445)가 순환되도록 형성된 냉각 유로(cooling channel)(495a, 495b, 495c)를 더 포함할 수 있다.
상기 자성부(420, 420a, 420b, 420c)는 몰드에 의해 입체구조로 형성될 수 있으므로, 상기 자성부 성형시, 상기 홀(490) 및 상기 냉각 유로(495a, 495b, 495c)를 상기 자성부 내부에 마련할 수 있다. 또한, 상기 무선충전 장치(400)는 상기 공기 순환부(440)의 일측에 배치되고, 공기가 상기 공기 순환부(440)로 유입되도록 연결된 유입배관(470), 및 상기 자성부(420)의 일측에 배치되고, 상기 냉각 유로(495a, 495b, 495c)로부터 공기를 배출하도록 연결된 배출배관(480)을 더 포함할 수 있다.
도 4b는 상기 자성부(420) 내부에 존재하는 홀(490), 및 상기 자성부(420)의 일측에 배치되고, 공기를 배출하도록 연결된 배출배관(480)을 포함하는 자성부(420)를 나타낸 도이다. 상기 유입배관(470)으로부터 유입된 공기(445)가 상기 홀(490)에 의해 상기 자성부(420) 내부를 통과함으로써 방열 효과를 극대화할 수 있다.
또한, 도 4c 내지 4e는 상기 자성부(420a, 420b, 420c) 내부에 상기 홀(490)과 연결되어 상기 공기가 순환되도록 형성된 냉각 유로(495a, 495b, 495c)의 다양한 형태를 나타낸 것이다. 또한, 상기 배출배관(480)은 상기 자성부 내부에 위치한 냉각 유로(495a, 495b, 495c)와 연결될 수 있다.
상기 냉각 유로의 형태는 본 발명의 효과를 저해하지 않는 한, 제한하지 않으나, 예를 들면 곡선형 유로, 직선형 유로 또는 사행(蛇行) 형상 유로를 포함할 수 있다.
구체적으로, 도 4c에 나타낸 바와 같이, 상기 냉각 유로(495a)는 곡선형 유로일 수 있다. 또한, 도 4d에 나타낸 바와 같이, 상기 냉각 유로(495b)는 직선형 유로일 수 있다. 또한, 도 4e에 나타낸 바와 같이, 상기 냉각 유로(495c)는 사행(蛇行) 형상 유로일 수 있다.
상기 홀(490)은 직경이 0.5 mm 내지 4.5 mm, 구체적으로 1 mm 내지 3 mm, 더욱 구체적으로 1.5 mm 내지 2.5 mm 일 수 있다.
또한, 상기 냉각 유로(495a, 495b, 495c)는 직경이 0.5 mm 내지 4.5 mm, 구체적으로 1 mm 내지 3 mm, 더욱 구체적으로 1.5 mm 내지 2.5 mm 일 수 있다. 또한, 상기 냉각 유로 및 홀의 직경은 서로 동일하거나 다를 수 있다. 상기 냉각 유로의 직경이 상기 범위를 초과하는 경우 충전 효율이 감소될 수 있으며, 상기 냉각 유로의 직경이 상기 범위 미만인 경우, 외부로부터 유입된 공기가 상기 냉각 유로를 통해 순환하는 영역이 좁아질 수 있기 때문에 방열 특성이 감소될 수 있다.
상기 냉각 유로(495a, 495b, 495c)는 상기 자성부(420a, 420b, 420c)의 총 부피를 기준으로 1 % 내지 40 %, 구체적으로 3 % 내지 30 %, 더욱 구체적으로 5 % 내지 20 %의 총 내부 부피를 가질 수 있다.
상기 냉각 유로는 상기 코일부가 존재하는 영역에 대응하여 배치되어 상기 냉각 유로에 의해 전자기파 에너지 밀도가 높아 열이 많이 축적되는 코일부의 열을 외부로 방출시킴으로써 방열 효과를 극대화할 수 있다. 또한, 상기 냉각 유로는 상기 코일부가 존재하는 영역, 및 그 외 영역에 배치될 수 있다.
미세유로
도 6에서 보듯이, 상기 구현예에 따른 무선충전 장치(600)는 상기 자성부(620)의 내부 또는 인접부에 배치된 미세유로(695)를 포함할 수 있다. 이에 따라, 상기 자성부(620)에서 발생하는 열을 효과적으로 외부로 배출할 수 있다.
상기 미세유로의 형상은 상기 자성부의 열을 유체에 의해 외부로 쉽게 전달하기 위한 형상이라면 특별히 한정되지 않는다. 도 7a는 내부에 미세유로를 포함하는 자성부의 평면도를 나타낸 것이다. 도 7a에서 보듯이, 상기 미세유로(695)는 유입구(670)로 주입된 유체가 넓은 면적을 순환한 뒤 배출구(680)로 빠져나올 수 있도록 설계될 수 있다.
한편, 상기 자성부에서 열이 주로 발생하는 영역은 코일부에 대응하는 영역이므로, 상기 미세유로는 코일부가 존재하는 영역에 대응하여 배치될 수 있다. 다시 말해, 상기 미세유로는 코일부 내에서 전도성 와이어의 밀도가 적은 중앙부에는 거의 배치되지 않을 수 있다.
상기 미세유로의 내경은 0.1 mm 내지 5 mm일 수 있다. 상기 범위 내일 때, 자성소재의 체적당 자기 특성을 유지하면서, 원활한 유체의 흐름을 통해 방열특성을 보다 높일 수 있다. 보다 구체적으로 상기 미세유로의 내경은 0.5 mm 내지 3 mm, 0.5 mm 내지 2 mm, 2 mm 내지 5 mm일 수 있다.
도 7에서 보듯이, 상기 미세유로(695)는 자성부(620)의 내부에 배치될 수 있다. 이 경우, 자성부의 내부에서 발생하는 열을 효과적으로 처리할 수 있는 장점이 있다. 상기 미세유로가 상기 자성부의 내부에 배치되는 구조는 다양하게 설계될 수 있다.
일례로서, 내부에 미세유로를 갖도록 몰드를 통해 고분자형 자성체를 성형할 수 있다. 이 경우 미세유로는 자성부의 내부 빈 공간으로 정의될 수 있다.
다른 예로서, 미세유로가 삽입될 내부 공간을 갖도록 몰드를 통해 고분자형 자성체를 성형한 뒤 미세유로를 삽입할 수 있다. 이 경우 미세유로는 금속 또는 기타 열전도성 소재로 미리 제작한 뒤 고분자형 자성체 내에 삽입될 수 있다.
또 다른 예로서, 복수의 자성 시트 사이에 미세유로를 삽입하여 적층함으로써, 미세유로가 삽입된 자성 시트 적층체를 제조할 수 있다.
상기 미세유로는 상기 자성부의 총 부피를 기준으로 5 % 내지 70 %의 총 내부 부피를 가질 수 있다. 상기 범위 내일 때, 자성부의 전자파 차폐 성능과 방열 특성을 동시에 향상시키는데 보다 유리할 수 있다. 보다 구체적으로, 상기 미세유로는 상기 자성부의 총 부피를 기준으로 5 % 내지 40 %, 20 % 내지 50 %, 또는 40 % 내지 70 %의 총 내부 부피를 가질 수 있다.
또는, 도 8b에서 보듯이, 상기 미세유로(695)는 자성부(620)의 인접부에 배치될 수 있다. 일례로서, 상기 미세유로(695)는 자성부(620)와 상기 쉴드부(630) 사이에 배치될 수 있다. 구체적으로, 상기 미세유로(695)는 방열부(640)의 내부에 형성되고, 상기 방열부(640)가 상기 자성부(620)의 인접부에 배치될 수 있다. 예를 들어, 상기 방열부(640)가 상기 자성부(620)의 일면에 부착될 수 있다. 구체적으로, 상기 방열부(640)가 상기 자성부(620)의 상기 쉴드부(630)을 향하는 일면에 부착될 수 있다.
상기 방열부는 열전도성 소재로 구성될 수 있다. 상기 열전도성 소재는 금속계, 카본계, 세라믹계 소재 등을 포함할 수 있다. 또한, 상기 열전도성 소재는 금속계, 카본계, 세라믹계 소재 등이 바인더 수지에 분산된 복합 소재일 수 있다.
또는, 상기 미세유로는 자성부와 상기 코일부 사이에 배치되어, 자성부와 코일부에서 발생하는 열을 동시에 처리할 수 있다.
냉각기 및 순환펌프
상기 무선충전 장치는 상기 미세유로와 연결되는 냉각기를 더 포함할 수 있다. 도 8a 및 8b를 참조하여, 일 구현예에 따른 무선충전 장치(600)는 상기 미세유로(695)와 연결되는 냉각기(15)를 포함할 수 있다.
상기 냉각기(15)는 상기 무선충전 장치의 하우징(601)의 외부에 배치될 수 있다. 상기 냉각기는 상기 유체를 효과적으로 냉각시키기 위한 방식 및 구조를 채용할 수 있다. 예를 들어, 상기 냉각기는 공냉식 또는 수냉식으로 상기 유체를 냉각시킬 수 있다.
상기 냉각기는 방수 및 방진을 위해 밀폐된 구조를 가지면서 상기 미세유로와 연결될 수 있다. 도 8a 및 8b에서 보듯이, 상기 미세유로(695)의 유입구 및 배출구에 연결유로(16)를 통해 상기 냉각기(15)와 연결될 수 있다.
상기 무선충전 장치의 냉각기로서 상기 전기 자동차에 기본적으로 구비되는 냉각 설비를 이용할 수 있다.
예를 들어, 상기 냉각기는 자동차 에어컨을 포함할 수 있다. 구체적으로, 도 9에서 보듯이, 이동 수단(1)의 내부에 구비된 에어컨이 냉각기(15)로서 이용되고, 무선충전 장치(600)의 미세유로의 유입구 및 배출구와 연결된 연결유로(16)와 상기 에어컨이 연결될 수 있다. 이에 따라, 별도의 냉각기를 제작하지 않더라도, 효과적인 방열이 가능할 수 있다.
또한 상기 무선충전 장치는, 상기 미세유로 내의 유체의 흐름을 발생시키기 위한 장치, 예를 들어 순환펌프를 더 구비할 수 있다.
유체
상기 무선충전 장치는, 상기 미세유로와 상기 냉각기를 순환하며 흐르는 냉각을 위한 유체를 더 포함할 수 있다. 상기 유체는 상기 자성 소재에서 발생하는 열을 외부로 전달할 수 있다. 구체적으로, 상기 유체는 상기 자성 소재에서 발생하는 열을 상기 냉각기로 전달할 수 있다.
상기 유체는 기체 또는 액체일 수 있으며, 예를 들어, 공기, 물, 또는 그 외 냉매로 사용되는 액상 또는 기상의 유체일 수 있다.
구체적으로, 상기 유체는 공기, 물, 오일(예: 엔진오일), 알콜(예: 에틸렌글리콜, 프로필렌글리콜, 부동액), 또는 이들의 혼합물일 수 있다.
상기 유체의 열전도도는 20 ℃에서 0.022 W/m·K 내지 0.69 W/m·K일 수 있고, 예를 들어 0.022 W/m·K 내지 0.038 W/m·K, 0.57 W/m·K 내지 0.69 W/m·K, 0.13 W/m·K 내지 0.15 W/m·K, 또는 0.24 W/m·K 내지 0.69 W/m·K일 수 있다.
상기 유체의 밀도는 20 ℃에서 0.75 kg/m3 내지 1100 kg/m3일 수 있고, 예를 들어 0.75 kg/m3 내지 1.39 kg/m3, 840 kg/m3 내지 1000 kg/m3, 800 kg/m3 내지 900 kg/m3, 또는 840 kg/m3 내지 1100 kg/m3일 수 있다.
상기 유체의 열용량은 20 ℃에서 1005 J/kg·K 내지 4250 J/kg·K일 수 있고, 예를 들어 1005 J/kg·K 내지 1023 J/kg·K, 4150 J/kg·K 내지 4250 J/kg·K, 1700 J/kg·K 내지 2500 J/kg·K, 또는 2500 J/kg·K 내지 4250 J/kg·K일 수 있다.
상기 유체의 열확산율은 20 ℃에서 6 x 10-8 m2/s 내지 4960 x 10-8 m2/s일 수 있고, 예를 들어 1570 x 10-8 m2/s 내지 4960 x 10-8 m2/s, 10 x 10-8 m2/s 내지 20 x 10-8 m2/s, 6 x 10-8 m2/s 내지 10 x 10-8 m2/s, 또는 9 x 10-8 m2/s 내지 20 x 10-8 m2/s일 수 있다.
일 구체예에 따르면, 상기 유체는 1 기압 및 20 ℃에서 0.022 W/m·K 내지 0.038 W/m·K의 열전도도, 0.75 kg/m3 내지 1.39 kg/m3의 밀도, 1005 J/kg·K 내지 1023 J/kg·K의 열용량, 1570 x 10-8 m2/s 내지 4960 x 10-8 m2/s의 열확산율을 가질 수 있다.
다른 구체예에 따르면, 상기 유체는 20 ℃에서 0.57 W/m·K 내지 0.69 W/m·K의 열전도도, 840 kg/m3 내지 1000 kg/m3의 밀도, 4150 J/kg·K 내지 4250 J/kg·K의 열용량, 10 x 10-8 m2/s 내지 20 x 10-8 m2/s의 열확산율을 가질 수 있다.
또 다른 구체예에 따르면, 상기 유체는 20 ℃에서 0.13 W/m·K 내지 0.15 W/m·K의 열전도도, 800 kg/m3 내지 900 kg/m3의 밀도, 1700 J/kg·K 내지 2500 J/kg·K의 열용량, 6 x 10-8 m2/s 내지 10 x 10-8 m2/s의 열확산율을 가질 수 있다.
또 다른 구체예에 따르면, 상기 유체는 20 ℃에서 0.24 W/m·K 내지 0.69 W/m·K의 열전도도, 840 kg/m3 내지 1100 kg/m3의 밀도, 2500 J/kg·K 내지 4250 J/kg·K의 열용량, 9 x 10-8 m2/s 내지 20 x 10-8 m2/s의 열확산율을 가질 수 있다.
지지부
도 6에서 보듯이, 상기 무선충전 장치(600)는 상기 코일부(610)를 지지하는 지지부(660)을 더 포함할 수 있다. 상기 지지부의 재질 및 구조는 무선충전 장치에 사용되는 통상적인 지지부의 재질 및 구조를 채용할 수 있다. 상기 지지부는 평판 구조 또는 코일부를 고정시킬 수 있도록 코일부 형태를 따라 홈이 파여진 구조를 가질 수 있다.
하우징
도 8a 및 8b에서 보듯이, 상기 구현예에 따른 무선충전 장치(600)는 전술한 구성 요소들을 수용하는 하우징(601)을 더 포함할 수 있다.
상기 하우징은 상기 코일부, 쉴드부, 자성부 등의 구성 요소가 적절하게 배치되어 조립될 수 있게 한다. 상기 하우징의 재질 및 구조는 무선충전 장치에 사용되는 통상적인 하우징의 재질 및 구조를 채용할 수 있으며, 그 내부에 포함되는 구성 요소에 따라 적절히 설계될 수 있다.
스페이서
또한 상기 구현예에 따른 무선충전 장치는, 상기 쉴드부와 자성부 간의 공간을 확보하기 위한 스페이서를 더 포함할 수 있다. 상기 스페이서의 재질 및 구조는 무선충전 장치에 사용되는 통상적인 하우징의 재질 및 구조를 채용할 수 있다.
이동 수단
상기 무선충전 장치는, 송신기와 수신기 간의 대용량의 전력 전송을 요구하는 전기 자동차와 같은 이동 수단 등에 유용하게 사용될 수 있다.
도 10은 무선충전 장치가 적용된 이동 수단, 구체적으로 전기 자동차를 나타낸 것으로서, 하부에 무선충전 장치를 구비하여 전기 자동차용 무선 충전 시스템이 구비된 주차 구역에서 무선으로 충전될 수 있다.
도 10을 참조하여, 일 구현예에 따른 이동 수단(1)은 상기 구현예에 따른 무선충전 장치를 수신기(21)로 포함한다. 상기 무선충전 장치는 이동 수단(1)의 무선충전의 수신기(21)로 역할하고 무선충전의 송신기(22)로부터 전력을 공급받을 수 있다.
이와 같이 상기 이동 수단은 무선충전 장치를 포함하고, 상기 무선충전 장치는 앞서 설명한 바와 같은 구성을 가진다.
구체적으로, 상기 이동 수단에 포함되는 무선충전 장치는, 코일부; 상기 코일부 상에 배치되는 쉴드부; 상기 코일부와 상기 쉴드부 사이에 배치되는 자성부; 및 상기 자성부의 내부 또는 인접부에 배치되는 유로를 포함하고, 상기 유로에 냉각 유체가 유입되어 상기 자성부와 접촉한다.
상기 이동 수단에 포함되는 무선충전 장치의 각 구성요소들의 구성 및 특징은 앞서 설명한 바와 같다.
상기 이동 수단은 상기 무선충전 장치로부터 전력을 전달받는 배터리를 더 포함할 수 있다. 상기 무선충전 장치는 무선으로 전력을 전송받아 상기 배터리에 전달하고, 상기 배터리는 상기 전기 자동차의 구동계에 전력을 공급할 수 있다. 상기 배터리는 상기 무선충전 장치 또는 그 외 추가적인 유선충전 장치로부터 전달되는 전력에 의해 충전될 수 있다.
또한 상기 이동 수단은 충전에 대한 정보를 무선 충전 시스템의 송신기에 전달하는 신호 전송기를 더 포함할 수 있다. 이러한 충전에 대한 정보는 충전 속도와 같은 충전 효율, 충전 상태 등일 수 있다.

Claims (15)

  1. 코일부;
    상기 코일부 상에 배치되는 쉴드부; 및
    상기 코일부와 상기 쉴드부 사이에 배치되는 자성부; 및
    상기 자성부의 내부 또는 인접부에 배치되는 유로를 포함하고,
    냉각을 위한 유체가 상기 유로에 유입되어 상기 자성부와 접촉하는, 무선충전 장치.
     
  2. 제 1 항에 있어서,
    상기 무선충전 장치가,
    상기 유로로서, 상기 자성부 및 상기 쉴드부 사이에 위치하는 공기 순환부를 포함하고,
    상기 냉각 유체로서, 상기 공기 순환부로 공기가 유입되어 상기 자성부의 표면과 직접 접촉하는, 무선충전 장치.
     
  3. 제 2 항에 있어서,
    상기 공기 순환부로 유입되는 공기가 외부의 공조 시스템으로부터 공급되는, 무선충전 장치.
     
  4. 제 2 항에 있어서,
    상기 공기 순환부의 일측 또는 양측에 배치되고, 공기가 상기 공기 순환부로 유입되도록 연결된 유입배관, 및 상기 공기 순환부로부터 공기를 배출하도록 연결된 배출배관을 더 포함하는, 무선충전 장치.
     
  5. 제 2 항에 있어서,
    상기 공기 순환부로 유입된 공기가 상기 쉴드부의 표면과 직접 접촉하는, 무선충전 장치.
     
  6. 제 2 항에 있어서,
    상기 공기 순환부는 상기 공기가 유동하도록 형성된 가이드 벽(guide wall)을 더 포함하는, 무선충전 장치.
     
  7. 제 2 항에 있어서,
    상기 자성부가,
    상기 공기 순환부로부터의 공기가 유입되는 적어도 하나의 홀(hole), 및
    상기 자성부의 내부에 상기 홀과 연결되어 공기가 순환되도록 형성된 냉각 유로(cooling channel)를 더 포함하는, 무선충전 장치.
     
  8. 제 2 항에 있어서,
    상기 공기 순환부 내부의 온도가 5 ℃ 내지 50 ℃이고, 내부의 습도가 30 % 내지 80 %인, 무선충전 장치.
     
  9. 제 1 항에 있어서,
    상기 무선충전 장치가,
    상기 유로로서, 상기 자성부의 내부에 배치되는 미세유로를 포함하는, 무선충전 장치.
     
  10. 제 9 항에 있어서,
    상기 미세유로가 상기 자성부의 총 부피를 기준으로 5 % 내지 70 %의 총 내부 부피를 갖는, 무선충전 장치.
     
  11. 제 9 항에 있어서,
    상기 미세유로가 0.1 mm 내지 5 mm의 내경을 갖는, 무선충전 장치.
     
  12. 제 9 항에 있어서,
    상기 미세유로가 상기 코일부가 존재하는 영역에 대응하여 배치되는, 무선충전 장치.
     
  13. 제 9 항에 있어서,
    상기 자성부가 바인더 수지 및 상기 바인더 수지 내에 분산된 자성 분말을 포함하는, 무선충전 장치.
     
  14. 제 9 항에 있어서,
    상기 무선충전 장치가 상기 미세유로와 연결되는 냉각기를 더 포함하고,
    냉각을 위한 유체가 상기 미세유로 및 상기 냉각기를 순환하며 흐르고,
    상기 냉각기가 공냉식 또는 수냉식으로 상기 유체를 냉각시키는, 무선충전 장치.
     
  15. 무선충전 장치를 포함하는 이동 수단으로서,
    상기 무선충전 장치가
    코일부;
    상기 코일부 상에 배치되는 쉴드부;
    상기 코일부와 상기 쉴드부 사이에 배치되는 자성부; 및
    상기 자성부의 내부 또는 인접부에 배치되는 유로를 포함하고,
    상기 유로에 냉각을 위한 유체가 유입되어 상기 자성부와 접촉하는, 이동 수단.
PCT/KR2020/014939 2019-10-29 2020-10-29 무선충전 장치 및 이를 포함하는 이동 수단 WO2021086071A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20881414.5A EP4053863A4 (en) 2019-10-29 2020-10-29 WIRELESS CHARGING DEVICE AND MEANS OF TRAVEL COMPRISING SAME
CN202080076352.9A CN114630762A (zh) 2019-10-29 2020-10-29 无线充电装置及包括其的移动工具
JP2022520631A JP7329139B2 (ja) 2019-10-29 2020-10-29 無線充電装置およびそれを含む移動手段
US17/765,819 US20220328232A1 (en) 2019-10-29 2020-10-29 Wireless charging device and moving means including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0135513 2019-10-29
KR1020190135516A KR102280255B1 (ko) 2019-10-29 2019-10-29 무선충전 패드, 무선충전 장치, 및 이를 포함하는 전기 자동차
KR10-2019-0135516 2019-10-29
KR1020190135513A KR102298109B1 (ko) 2019-10-29 2019-10-29 무선충전 패드, 무선충전 장치, 및 이를 포함하는 전기 자동차

Publications (1)

Publication Number Publication Date
WO2021086071A1 true WO2021086071A1 (ko) 2021-05-06

Family

ID=75716076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014939 WO2021086071A1 (ko) 2019-10-29 2020-10-29 무선충전 장치 및 이를 포함하는 이동 수단

Country Status (5)

Country Link
US (1) US20220328232A1 (ko)
EP (1) EP4053863A4 (ko)
JP (1) JP7329139B2 (ko)
CN (1) CN114630762A (ko)
WO (1) WO2021086071A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110042403A (ko) 2009-10-19 2011-04-27 김현민 전기자동차용 무선충전 시스템 및 그충전방법
US20170274778A1 (en) * 2016-03-25 2017-09-28 Qualcomm Incorporated Systems and methods for thermal management in wireless power transfer
US20170338023A1 (en) * 2016-05-20 2017-11-23 Lear Corporation Wireless Charging Pad Having Coolant Assembly
EP3195335B1 (en) * 2014-08-26 2018-04-25 Bombardier Primove GmbH A receiving device for receiving a magnetic field and for producing electric energy by magnetic induction, in particular for use by a vehicle
US20180254136A1 (en) * 2015-08-25 2018-09-06 Ihi Corporation Coil device and coil system
KR101971884B1 (ko) * 2018-11-14 2019-04-25 (주)그린파워 냉각패드 및 이를 이용한 전기자동차

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229611A (ja) * 1997-02-17 1998-08-25 Sumitomo Wiring Syst Ltd 電気自動車充電用磁気結合装置
JPH10261534A (ja) * 1997-03-21 1998-09-29 Sumitomo Wiring Syst Ltd 電気自動車用充電システム
IL155022A0 (en) * 2000-09-27 2003-10-31 Idalex Technologies Inc Method and plate apparatus for dew point evaporative cooler
US7184265B2 (en) * 2003-05-29 2007-02-27 Lg Electronics Inc. Cooling system for a portable computer
WO2010026805A1 (ja) * 2008-09-03 2010-03-11 株式会社村田製作所 ワイヤレス電力伝送装置
JP5768465B2 (ja) * 2011-04-21 2015-08-26 日産自動車株式会社 非接触給電装置
KR101338271B1 (ko) * 2011-12-14 2014-01-03 (주)피앤에스 비접촉 자기유도식 급전 방식의 전기차량의 집전장치 설치구조
JP2013150393A (ja) * 2012-01-17 2013-08-01 Sanyo Electric Co Ltd 無接点給電ユニット及び無接点給電ユニットを備える電気機器
KR101535800B1 (ko) * 2012-03-08 2015-07-10 주식회사 엘지화학 신규한 공냉식 구조의 전지팩
KR101984790B1 (ko) * 2012-04-30 2019-05-31 엘지이노텍 주식회사 무선충전 라디에이터 기능을 갖는 자성 시트, 그 제조방법 및 이를 이용한 무선충전 디바이스
US9524820B2 (en) * 2012-11-13 2016-12-20 Raytheon Company Apparatus and method for thermal management of magnetic devices
JP2015103722A (ja) * 2013-11-27 2015-06-04 パナソニックIpマネジメント株式会社 非接触伝送装置
JP6501148B2 (ja) * 2015-03-12 2019-04-17 日立化成株式会社 圧粉成形体を用いた磁気シート材およびその製造方法
CN107615414B (zh) * 2015-05-29 2020-08-11 Ntn株式会社 磁性元件
JP2017045792A (ja) * 2015-08-25 2017-03-02 株式会社Ihi コイル装置
JP6665454B2 (ja) * 2015-09-08 2020-03-13 株式会社Ihi コイル装置及びコイルシステム
JP6881083B2 (ja) * 2017-06-26 2021-06-02 株式会社Ihi コイル装置
JP7063002B2 (ja) * 2018-02-23 2022-05-09 株式会社Ihi コイル装置
CN109278572B (zh) * 2018-10-15 2021-05-14 许继电源有限公司 一种无线充电器和无线充电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110042403A (ko) 2009-10-19 2011-04-27 김현민 전기자동차용 무선충전 시스템 및 그충전방법
EP3195335B1 (en) * 2014-08-26 2018-04-25 Bombardier Primove GmbH A receiving device for receiving a magnetic field and for producing electric energy by magnetic induction, in particular for use by a vehicle
US20180254136A1 (en) * 2015-08-25 2018-09-06 Ihi Corporation Coil device and coil system
US20170274778A1 (en) * 2016-03-25 2017-09-28 Qualcomm Incorporated Systems and methods for thermal management in wireless power transfer
US20170338023A1 (en) * 2016-05-20 2017-11-23 Lear Corporation Wireless Charging Pad Having Coolant Assembly
KR101971884B1 (ko) * 2018-11-14 2019-04-25 (주)그린파워 냉각패드 및 이를 이용한 전기자동차

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053863A4

Also Published As

Publication number Publication date
CN114630762A (zh) 2022-06-14
US20220328232A1 (en) 2022-10-13
EP4053863A1 (en) 2022-09-07
JP2022551278A (ja) 2022-12-08
EP4053863A4 (en) 2023-12-06
JP7329139B2 (ja) 2023-08-17

Similar Documents

Publication Publication Date Title
WO2013095036A1 (ko) 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
WO2017014430A1 (ko) 무선전력 송신모듈
KR101197684B1 (ko) 자성시트, 자성시트와 일체화된 방사체 패턴을 구비한 무선 식별 안테나 및 그 제조방법
WO2017007196A1 (ko) 방열시트 및 이를 포함하는 무선전력 전송모듈
WO2017014493A1 (ko) 자기장 차폐유닛
WO2017061773A1 (ko) 자성시트, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
WO2017200310A1 (ko) 차량용 무선 전력 송신장치
WO2019054747A2 (ko) 무선전력 송신장치
WO2021086125A1 (ko) 무선충전 장치 및 이를 포함하는 이동 수단
WO2017061772A1 (ko) 다기능 복합모듈 및 이를 포함하는 휴대용 기기
US11108276B2 (en) High-performance shielding sheet and preparation method thereof and coil module comprising the same
WO2017039420A1 (ko) 자기공진방식 무선전력 전송용 자기장 차폐유닛, 이를 포함하는 무선전력 전송모듈 및 전자장치
WO2015147449A1 (ko) 전자기파 차폐시트, 및 이의 제조방법
WO2017069581A1 (ko) 차량용 안테나 모듈
WO2017014467A1 (ko) 콤보 안테나모듈 및 이를 포함하는 휴대용 전자장치
WO2017057972A1 (ko) 마그네틱 보안전송용 자기장 차폐유닛, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
WO2016052887A1 (ko) 수신 안테나 및 이를 포함하는 무선 전력 수신 장치
WO2018048281A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
WO2019124929A1 (ko) 무선 충전용 복합기판
WO2021086071A1 (ko) 무선충전 장치 및 이를 포함하는 이동 수단
WO2018117431A1 (ko) 안테나 모듈
WO2021085955A1 (ko) 무선 충전 장치 및 이를 포함하는 이동 수단
WO2022164087A1 (ko) 무선충전 장치 및 이를 포함하는 이동 수단
WO2021071212A1 (ko) 무선 충전 장치 및 이를 포함하는 이동 수단
WO2019231142A1 (ko) 자성시트 및 이를 포함하는 무선전력모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020881414

Country of ref document: EP

Effective date: 20220530