WO2021085603A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2021085603A1
WO2021085603A1 PCT/JP2020/040819 JP2020040819W WO2021085603A1 WO 2021085603 A1 WO2021085603 A1 WO 2021085603A1 JP 2020040819 W JP2020040819 W JP 2020040819W WO 2021085603 A1 WO2021085603 A1 WO 2021085603A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure receiving
receiving surface
film member
fluid
actuator
Prior art date
Application number
PCT/JP2020/040819
Other languages
French (fr)
Japanese (ja)
Inventor
和夫 宇塚
大樹 土屋
木村 洋一
Original Assignee
株式会社Tok
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tok filed Critical 株式会社Tok
Priority to JP2021553722A priority Critical patent/JP7281098B2/en
Publication of WO2021085603A1 publication Critical patent/WO2021085603A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • each elastic film member has the above-mentioned uniquely shaped outer ring portion and flat plate portion integrally formed in a container shape, and the inner surface of the flat plate portion faces the fluid outlet of the fluid passage.
  • the outer ring portion presses the pressure receiving surface, and the elastic force of the elastic film member itself causes the flat plate portion to warp to a position closer to the pressure receiving surface than the protruding end of the outer ring portion. Press the pressure receiving surface.
  • the nutation diagonal bevel gear 4 is always circumferential with respect to the fixed diagonal bevel gear 3 by sequentially pressing the pressure receiving surface 4c in this way by the elastic film members 12 constituting the fluid chambers 13 of the three chambers. While engaging in a part of the direction, it swings around and rotates. This rotation of the nutation diagonal bevel gear 4 is transmitted to the output shaft 5 by the input oblique bevel gear 9 and the output oblique bevel gear 8 constituting the constant velocity joint mechanism, and the output shaft 5 rotates.
  • the elastic membrane member becomes a pressure receiving surface. It did not protrude sufficiently to the side, and the pressing force on the pressure receiving surface of one of the oblique umbrella gears decreased. For this reason, the depth of meshing with the teeth of the other diagonal bevel gear to which the teeth of one diagonal bevel gear that moves are fixed becomes shallow, and the teeth of each of these diagonal bevel gears are disengaged and rotate. It had become impossible.
  • the elastic film member 12 no longer acts to prevent the deformation of the elastic film member 12 from protruding toward the pressure receiving surface 4c side due to the elastic force of the elastic film member 12 itself, and conversely, the elastic film member 12
  • the elastic force of the member 12 itself promotes deformation that protrudes toward the pressure receiving surface 4c. Therefore, in order to increase the rotation speed of the output shaft 5, even if the supply time of air sequentially supplied to each fluid chamber 13 at a predetermined pressure is shortened and the expansion and contraction pitch of the elastic membrane member 12 is shortened, The elastic film member 12 sufficiently protrudes toward the pressure receiving surface 4c side, and presses the pressure receiving surface 4c of the nutation oblique bevel gear 4 with a sufficient pressing force.
  • the bevel teeth 4b of one of the bevel gears 4 are fixedly oblique to the other. Deeply mesh with the bevel teeth 3b of the bevel gear 3 so that the meshing of the bevel teeth 3b and 4b of the diagonal bevel gears 3 and 4 does not come off as in the conventional case, and the rotation speed of the output shaft 5 is increased. Becomes possible. Further, since the bevel teeth 3b and 4b of the oblique bevel gears 3 and 4 are surely meshed with each other without tooth skipping, the output torque of the actuator 1 is reduced even if the rotation speed of the output shaft 5 is increased. It becomes possible to maintain the output torque of the actuator 1 without having to do so.
  • FIG. 7 is a graph showing the evaluation test results of the actuator 1 according to the present embodiment.
  • the torque applied to the rotation of the output shaft 5 of the actuator 1 is gradually increased by the powder brake, and the torque value immediately before the engagement of the bevel teeth 3b and 4b of the oblique bevel gears 3 and 4 occurs.
  • the torque value was taken as the maximum torque of the actuator 1.
  • the cushioning material 17 may be provided between the pressure receiving surface 4c and the support 15 constituting the housing as shown in the cross-sectional view of FIG.
  • the cushioning material 17 is made of a material such as rubber, felt, or resin, and has a sheet shape.
  • FIG. 8 the same parts as those in FIG. 3B are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 9 shows the positional relationship between the cushioning material 17 provided on the pressure receiving surface 4c and the support 15. In FIG. 9, the same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the cushioning material 17 is provided on the pressure receiving surface 4c at three positions where the pressure receiving surface 4c is tilted around the center of the swinging motion and approaches the support 15 when the pressure receiving surface 4c is pressed by the pressing force applying means. Be done.
  • each elastic membrane member 42 is shown in FIG. 13 (a), and the cross-sectional view taken along the line FF of FIG. 13 (a) is shown in FIG. 13 (b). It is composed of two layers.
  • the outer layer film member 42b is made of acrylonitrile butadiene (NBR) rubber or the like
  • the inner layer film member 42a is made of chloroprene (CR) rubber or the like. Therefore, the outer layer film member 42b made of NBR rubber or the like is set to a predetermined hardness of about 70 °, which is harder than the hardness of about 50 ° of the inner layer film member 42a made of CR rubber or the like. ..
  • the inner layer film member 42a is set to CR rubber or the like made of a material having a rebound resilience larger than that of NBR rubber or the like which is the material of the outer layer film member 42b.
  • the bevel teeth 4b of one of the bevel gears 4 are the other.
  • the meshing of the bevel teeth 3b of the fixed diagonal bevel gear 3 is deeply meshed, and the meshing of the bevel teeth 3b and 4b of the diagonal bevel gears 3 and 4 is not disengaged as in the conventional case, and the rotation speed of the output shaft 5 is increased. It becomes possible to make it higher.
  • the output torque of the actuator 41 is reduced even if the rotation speed of the output shaft 5 is increased. It becomes possible to maintain the output torque of the actuator 41 without having to do so.
  • the outer layer film member 42b is set to NBR rubber or the like having a hardness of about 70 °, which is harder than the inner layer film member 42a, so that the surface layer of the elastic film member 42 is formed.
  • the strength resistance of the part is improved. Therefore, the elastic membrane member 42 has improved friction resistance against friction with the pressure receiving surface 4c, and is less likely to be damaged even if it receives a larger torsional force from the pressure receiving surface 4c.
  • the actuator 41 according to the other embodiment includes a raised portion 2c1 of the side plate 2c instead of the core 16.
  • the raised portion 2c1 is formed so that a portion of the side plate 2c covered with each elastic film member 42 projects in a shape substantially similar to the space formed between the side plate 2c and the elastic film member 42. Therefore, the volume of the fluid chamber 13 formed between the elastic membrane member 42 and the side plate 2c becomes smaller as in the actuator 1 according to the above embodiment. Therefore, by supplying a small amount of compressed air to the fluid chamber 13 in a short time, the elastic membrane member 42 sufficiently expands, so that the rotation speed of the output shaft 5 can be further increased.
  • the actuators 1 and 41 do not generate sparks, it is suitable to be used as a stepping motor for positioning the device in an environment where fire is disliked.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Actuator (AREA)
  • Retarders (AREA)

Abstract

Provided is an actuator with which the rotational speed of an output shaft can be increased, and with which the output torque can be maintained even if the rotational speed is increased. A pressing force applying means for causing a nutation angular bevel gear (4) to perform a whirling motion is provided on a side plate (2c). The pressing force applying means comprises an elastic membrane member (12), a fluid chamber (13), a passage (14), and a fluid supply means. The elastic membrane member (12) is disposed on an inside surface of the side plate (2c) facing a pressure receiving surface (4c) of a gear main body (4a), and includes an annular outer ring portion (12a) and a flat plate portion (12b) formed integrally in the shape of a container, and the fluid chamber (13) is configured between the side plate (2c) and the elastic membrane member (12). An outer surface of the flat plate portion (12b) faces the pressure receiving surface (4c) in a position farther from the pressure receiving surface (4c) than a protruding end of the outer ring portion (12a), and an inner surface thereof faces a fluid blow-out port of the passage (14). The outer ring portion (12a) of the elastic membrane member (12) presses the pressure receiving surface (4c), and the flat plate portion (12b) warps backwards to a position closer to the pressure receiving surface (4c) than the protruding end of the outer ring portion (12a), and presses the pressure receiving surface (4c).

Description

アクチュエータActuator
 本発明は、相対的に回転自在でかつ歯数が異なる一対の斜交傘歯車から構成され、一方の斜交傘歯車の受圧面が弾性膜部材に押圧されて振れ回り運動することで出力軸が回転するアクチュエータに関するものである。 The present invention is composed of a pair of oblique bevel gears that are relatively rotatable and have different numbers of teeth, and the output shaft is caused by the pressure receiving surface of one oblique bevel gear being pressed by the elastic film member and swinging around. Is about an actuator that rotates.
 従来この種のアクチュエータとしては、例えば、特許文献1の図8に開示されたアクチュエータがある。 Conventionally, as an actuator of this type, for example, there is an actuator disclosed in FIG. 8 of Patent Document 1.
 このアクチュエータは、ケーシングに第1の斜交傘歯車の支持部と、円柱状の支持体の各外周面が固定され、第1の斜交傘歯車の軸受け部に軸状の出力部材が回転自在に支承されている。支持体の一方側にはゴム等からなる弾性膜部材が係合固定され、この弾性膜部材によって支持体の一端面に4室の流体室が形成されている。支持体の他端には蓋体が接着され、蓋体と支持体には、各流体室毎に流体通路が形成されている。第2の斜交傘歯車の、歯が形成された側と反対側の支持部には受圧面が形成され、この受圧面は弾性膜部材の平面状をした表面に対面している。 In this actuator, the support portion of the first diagonal bevel gear and each outer peripheral surface of the columnar support are fixed to the casing, and the shaft-shaped output member is rotatable on the bearing portion of the first diagonal bevel gear. It is supported by. An elastic film member made of rubber or the like is engaged and fixed to one side of the support, and the elastic film member forms four fluid chambers on one end surface of the support. A lid is adhered to the other end of the support, and a fluid passage is formed in each of the fluid chambers in the lid and the support. A pressure receiving surface is formed on the support portion of the second oblique bevel gear on the side opposite to the toothed side, and this pressure receiving surface faces the planar surface of the elastic film member.
 流体圧駆動制御手段が作動すると、流体通路を介して各流体室に圧力流体が順次供給される。流体室を形成する弾性膜部材は圧力流体で加圧されると膨らみ、この膨らんだ部分で、第2の斜交傘歯車の受圧面の偏心部分は、第1の斜交傘歯車に接近する方向に加圧される。この加圧により、第2の斜交傘歯車の歯の一部が第1の斜交傘歯車の歯に深く噛み合い、第2の斜交傘歯車は、4室の流体室によって順次逐次的に弾性膜部材が加圧されることで、振れ回り運動を行い、自転する。 When the fluid pressure drive control means is activated, the pressure fluid is sequentially supplied to each fluid chamber via the fluid passage. The elastic membrane member forming the fluid chamber swells when pressed by a pressure fluid, and at this bulging portion, the eccentric portion of the pressure receiving surface of the second bevel gear approaches the first bevel gear. Pressurized in the direction. Due to this pressurization, a part of the teeth of the second oblique bevel gear meshes deeply with the teeth of the first oblique bevel gear, and the second oblique bevel gear is sequentially sequentially provided by the four fluid chambers. When the elastic film member is pressurized, it swings and rotates.
特開2006-112618号公報Japanese Unexamined Patent Publication No. 2006-112618
 しかしながら、上記従来の構造をしたアクチュエータでは、4室の流体室に順次逐次的に供給する圧力流体の供給時間を短くし、各流体室における弾性膜部材の膨らむ時間を短くして軸状出力部材の回転数を高くしようとすると、第2の斜交傘歯車の歯と第1の斜交傘歯車の歯の噛み合いが浅くなって外れてしまい、回転不能となっていた。 However, in the actuator having the above-mentioned conventional structure, the supply time of the pressure fluid to be sequentially and sequentially supplied to the four fluid chambers is shortened, and the swelling time of the elastic membrane member in each fluid chamber is shortened to shorten the axial output member. When an attempt was made to increase the number of rotations of the fluid, the teeth of the second oblique umbrella gear and the teeth of the first oblique umbrella gear became shallow and disengaged, resulting in impossibility of rotation.
 本発明はこのような課題を解決するためになされたもので、
相対的に回転自在でかつ歯数が異なる一対の斜交傘歯車と、一対の斜交傘歯車のうちの一方を他方に対して振れ回り運動自在に支持する支持手段と、一方の斜交傘歯車を振れ回り運動させる筐体に設けられた押圧力付与手段と、一対の斜交傘歯車のうちのいずれか一方の自転を防止する自転防止手段と、回転自在に支承された出力軸と、自転防止手段によって自転が妨げられない側の斜交傘歯車の回転力を出力軸に伝達する回転伝達手段とを備え、
各斜交傘歯車の交わる2軸間に運動を伝達する基準ピッチ面を構成する円錐面の頂点が振れ回り運動の中心と一致し、押圧力付与手段が、振れ回り運動する一方の斜交傘歯車の傘歯形成面と反対側の受圧面に対峙して筐体に3箇所以上取り付けられた弾性膜部材と、各弾性膜部材をそれぞれ少なくとも一部として周囲が密閉されて3箇所以上設けられた流体室と、各流体室に流体を送り込む通路と、各流体室に順次流体を所定圧をもって供給する流体供給手段とからなるアクチュエータにおいて、
各弾性膜部材が、前記受圧面に向かって突出する環状の外輪部と、外輪部の突出端よりも前記受圧面から遠い位置で外面が前記受圧面に対向し内面が前記通路の流体吹き出し口に対向する外輪部に周囲が囲まれた平板部とが一体に容器状に形成されて筐体との間で各流体室を構成し、流体吹き出し口から所定圧の流体が吹き出されると外輪部が前記受圧面を押圧すると共に、弾性膜部材自身の弾性力によって平板部が外輪部の突出端よりも前記受圧面に近い位置に反り返って前記受圧面を押圧することを特徴とする。
The present invention has been made to solve such a problem.
A pair of oblique umbrella gears that are relatively rotatable and have different numbers of teeth, a support means that swings and freely supports one of the pair of oblique umbrella gears with respect to the other, and one oblique umbrella. A pressing force applying means provided in the housing for swinging the gear, a rotation preventing means for preventing the rotation of one of the pair of oblique gears, and a rotatably supported output shaft. It is equipped with a rotation transmission means that transmits the rotational force of the oblique bevel gear on the side where rotation is not hindered by the rotation prevention means to the output shaft.
The apex of the conical surface that constitutes the reference pitch plane that transmits the motion between the two intersecting axes of each oblique umbrella gear coincides with the center of the swing motion, and the pressing force applying means is one of the diagonal motion that swings. An elastic membrane member attached to the housing at three or more locations facing the pressure receiving surface on the opposite side of the gear from the umbrella tooth forming surface, and three or more elastic membrane members are provided with the periphery sealed at least as a part of each elastic membrane member. In an actuator consisting of a fluid chamber, a passage for feeding fluid into each fluid chamber, and a fluid supply means for sequentially supplying fluid to each fluid chamber with a predetermined pressure.
Each elastic film member has an annular outer ring portion protruding toward the pressure receiving surface, and an outer surface facing the pressure receiving surface at a position farther from the pressure receiving surface than the protruding end of the outer ring portion, and an inner surface is a fluid outlet of the passage. The outer ring portion facing the surface is integrally formed with a flat plate portion surrounded by a container shape to form each fluid chamber with the housing, and when a fluid of a predetermined pressure is blown out from the fluid outlet, the outer ring is formed. The portion presses the pressure receiving surface, and the flat plate portion bends back to a position closer to the pressure receiving surface than the protruding end of the outer ring portion due to the elastic force of the elastic film member itself to press the pressure receiving surface.
 本構成によれば、各弾性膜部材が上記の独自の形状をした外輪部と平板部とが一体に容器状に形成され、平板部の内面が流体通路の流体吹き出し口に対向しているため、流体吹き出し口から所定圧の流体が吹き出されると、外輪部が受圧面を押圧すると共に、弾性膜部材自身の弾性力によって平板部が外輪部の突出端よりも受圧面に近い位置に反り返って受圧面を押圧する。したがって、従来のように、弾性膜部材自身がその弾性力によって受圧面側へ突出する変形を妨げる作用をしなくなり、逆に、弾性膜部材自身がその弾性力によって受圧面側へ突出する変形を促す作用をするようになる。このため、出力軸の回転数を高くするために、各流体室に順次所定圧で供給する流体の供給時間を短くしても、弾性膜部材は受圧面側へ十分に突出し、一方の斜交傘歯車の受圧面を十分な加圧力で押圧するようになる。 According to this configuration, each elastic film member has the above-mentioned uniquely shaped outer ring portion and flat plate portion integrally formed in a container shape, and the inner surface of the flat plate portion faces the fluid outlet of the fluid passage. When a fluid of a predetermined pressure is blown out from the fluid outlet, the outer ring portion presses the pressure receiving surface, and the elastic force of the elastic film member itself causes the flat plate portion to warp to a position closer to the pressure receiving surface than the protruding end of the outer ring portion. Press the pressure receiving surface. Therefore, unlike the conventional case, the elastic film member itself does not prevent the deformation of the elastic film member itself from protruding toward the pressure receiving surface side due to its elastic force, and conversely, the elastic film member itself deforms by its elastic force protruding toward the pressure receiving surface side. It will act as a stimulator. Therefore, even if the supply time of the fluid to be sequentially supplied to each fluid chamber at a predetermined pressure is shortened in order to increase the rotation speed of the output shaft, the elastic membrane member sufficiently protrudes toward the pressure receiving surface side, and one of them is obliquely crossed. The pressure receiving surface of the bevel gear will be pressed with sufficient pressing force.
 このため、各流体室に順次所定圧で供給する流体の供給時間を短くしても、一方の斜交傘歯車の歯が他方の斜交傘歯車の歯と深く噛み合い、各斜交傘歯車の歯の噛み合いが従来のように外れてしまうことがなくなり、出力軸の回転数を高くすることが可能になる。また、各斜交傘歯車の歯が歯飛びすることなく確実に噛み合うようになるため、出力軸の回転数を高くしても、アクチュエータの出力トルクが低下することなく、アクチュエータの出力トルクを維持することが可能になる。 Therefore, even if the supply time of the fluid to be sequentially supplied to each fluid chamber at a predetermined pressure is shortened, the teeth of one oblique bevel gear mesh deeply with the teeth of the other oblique bevel gear, and the teeth of each oblique bevel gear The meshing of the teeth does not come off as in the conventional case, and the rotation speed of the output shaft can be increased. In addition, since the teeth of each diagonal gear are surely meshed without skipping, the output torque of the actuator is maintained without decreasing even if the rotation speed of the output shaft is increased. It becomes possible to do.
 また、本発明は、
相対的に回転自在でかつ歯数が異なる一対の斜交傘歯車と、一対の斜交傘歯車のうちの一方を他方に対して振れ回り運動自在に支持する支持手段と、一方の斜交傘歯車を振れ回り運動させる筐体に設けられた押圧力付与手段と、一対の斜交傘歯車のうちのいずれか一方の自転を防止する自転防止手段と、回転自在に支承された出力軸と、自転防止手段によって自転が妨げられない側の斜交傘歯車の回転力を出力軸に伝達する回転伝達手段とを備え、
各斜交傘歯車の交わる2軸間に運動を伝達する基準ピッチ面を構成する円錐面の頂点が振れ回り運動の中心と一致し、押圧力付与手段が、振れ回り運動する一方の斜交傘歯車の傘歯形成面と反対側の受圧面に対峙して筐体に3箇所以上取り付けられた弾性膜部材と、各弾性膜部材をそれぞれ少なくとも一部として周囲が密閉されて3箇所以上設けられた流体室と、各流体室に流体を送り込む通路と、各流体室に順次流体を所定圧をもって供給する流体供給手段とからなるアクチュエータにおいて、
各弾性膜部材が、前記受圧面の方向を向く面が平らな形状をして前記通路の流体吹き出し口を囲む容器状に形成されて筐体との間で各流体室を構成する内層膜部材と、内層膜部材の平らな前記面の前記受圧面側で前記受圧面に対峙する面が前記受圧面に向かって膨出する形状の容器状に形成されて平らな前記面との間に所定の空間を有して内層膜部材の前記受圧面側の外周を筐体との間で覆う外層膜部材との二層に構成され、内層膜部材は外層膜部材の材質の反発弾性よりも大きい反発弾性を有する材質に設定されることを特徴とする。
In addition, the present invention
A pair of oblique umbrella gears that are relatively rotatable and have different numbers of teeth, a support means that swings and freely supports one of the pair of oblique umbrella gears with respect to the other, and one oblique umbrella. A pressing force applying means provided in the housing for swinging the gear, a rotation preventing means for preventing the rotation of one of the pair of oblique gears, and a rotatably supported output shaft. It is equipped with a rotation transmission means that transmits the rotational force of the oblique bevel gear on the side where rotation is not hindered by the rotation prevention means to the output shaft.
The apex of the conical surface that constitutes the reference pitch plane that transmits the motion between the two intersecting axes of each oblique umbrella gear coincides with the center of the swing motion, and the pressing force applying means is one of the diagonal motion that swings. An elastic membrane member attached to the housing at three or more locations facing the pressure receiving surface on the opposite side of the gear from the umbrella tooth forming surface, and three or more elastic membrane members are provided with the periphery sealed at least as a part of each elastic membrane member. In an actuator consisting of a fluid chamber, a passage for feeding fluid into each fluid chamber, and a fluid supply means for sequentially supplying fluid to each fluid chamber with a predetermined pressure.
Each elastic membrane member has a flat surface facing the pressure receiving surface and is formed in a container shape surrounding the fluid outlet of the passage to form each fluid chamber between the elastic membrane member and the housing. And the flat surface of the inner layer film member, which faces the pressure-receiving surface on the pressure-receiving surface side, is formed in a container shape having a shape that bulges toward the pressure-receiving surface. The inner layer film member is composed of two layers, the outer layer film member that covers the outer periphery of the inner layer film member on the pressure receiving surface side with the housing, and the inner layer film member is larger than the rebound resilience of the material of the outer layer film member. It is characterized in that it is set to a material having impact resilience.
 本構成によれば、流体吹き出し口から所定圧の流体が吹き出されると、各流体室を構成する大きい反発弾性を有する材質の内層膜部材は、所定圧の流体に押されてその平らな面が膨らむ。平らな面のこの膨らみにより、内層膜部材は外層膜部材の内面に当接し、外層膜部材の受圧面に対峙する面を受圧面の方向へ押し出す。内層膜部材の外層膜部材に対するこの押し出しにより、各弾性膜部材は、一方の斜交傘歯車の傘歯形成面と反対側の受圧面を外層膜部材で押圧する。 According to this configuration, when a fluid of a predetermined pressure is blown out from a fluid outlet, the inner layer membrane member made of a material having a large rebound resilience constituting each fluid chamber is pushed by the fluid of a predetermined pressure and its flat surface. Swells. Due to this bulge of the flat surface, the inner layer film member abuts on the inner surface of the outer layer film member and pushes the surface of the outer layer film member facing the pressure receiving surface toward the pressure receiving surface. By this extrusion of the inner layer film member to the outer layer film member, each elastic film member presses the pressure receiving surface on the opposite side of the bevel tooth forming surface of one of the oblique bevel gears with the outer layer film member.
 従来の一層構成の弾性膜部材は、自身の弾性力によって受圧面側へ突出する変形を妨げる作用を抑制するために反発弾性を高めると、伸び特性が向上して膨らみやすくなる。このため、各流体室に順次所定圧で供給する流体の供給時間を短くしても、弾性膜部材は受圧面側へ十分に突出して、一方の斜交傘歯車の受圧面を十分な加圧力で押圧するようになる。しかし、反発弾性を高めた一層構成の弾性膜部材は、膨らみ過ぎることで、長時間アクチュエータを動作させると、受圧面との摩擦や、受圧面からよじれる方向に受ける力などによって、表面に剥離や亀裂が生じたりする損傷を起こし易くなり、耐強度が低下する。 If the rebound resilience is increased in order to suppress the action of hindering the deformation of the conventional single-layer elastic film member that protrudes toward the pressure receiving surface side due to its own elastic force, the elongation characteristics are improved and the elastic film member is likely to swell. Therefore, even if the supply time of the fluid to be sequentially supplied to each fluid chamber at a predetermined pressure is shortened, the elastic film member sufficiently protrudes toward the pressure receiving surface side, and the pressure receiving surface of one of the oblique bevel gears is sufficiently pressed. Will be pressed with. However, the one-layer elastic film member with increased repulsive elasticity swells too much, and when the actuator is operated for a long time, it may peel off on the surface due to friction with the pressure receiving surface or force received in the direction of twisting from the pressure receiving surface. It is prone to cracking and other damage, and its strength resistance is reduced.
 しかしながら、本構成では、弾性膜部材を内層膜部材と外層膜部材とからなる二層に構成し、内層膜部材に大きい反発弾性を有する材質を設定することで弾性膜部材の伸び特性を確保しながら、外層膜部材の材質を内層膜部材の反発弾性よりも小さな反発弾性を有する材質に設定することで、内層膜部材の膨らみを抑制し、内層膜部材が膨らみ過ぎないようにしている。このため、弾性膜部材は、各流体室に順次所定圧で供給する流体の供給時間を短くしても、反発弾性の大きい内層膜部材の作用により、受圧面側へ十分に突出して、一方の斜交傘歯車の受圧面を十分な加圧力で押圧するようになると共に、反発弾性の小さな外層膜部材の作用により、膨らみすぎるのが抑制されて、長時間アクチュエータを動作させても、受圧面との接触による摩擦やねじれ力によって損傷し難くなる。 However, in this configuration, the elastic film member is composed of two layers consisting of an inner layer film member and an outer layer film member, and a material having a large repulsive elasticity is set for the inner layer film member to secure the elongation characteristics of the elastic film member. However, by setting the material of the outer layer film member to a material having a repulsive elasticity smaller than the repulsive elasticity of the inner layer film member, the swelling of the inner layer film member is suppressed and the inner layer film member is prevented from swelling too much. Therefore, even if the supply time of the fluid to be sequentially supplied to each fluid chamber at a predetermined pressure is shortened, the elastic membrane member sufficiently protrudes toward the pressure receiving surface side due to the action of the inner layer membrane member having a large rebound resilience, and one of them. The pressure receiving surface of the oblique bevel gear is pressed with sufficient pressure, and the action of the outer layer film member with small rebound resilience suppresses excessive swelling, so even if the actuator is operated for a long time, the pressure receiving surface It is less likely to be damaged by friction and twisting force due to contact with.
 このため、本構成によっても、各流体室に順次所定圧で供給する流体の供給時間を短くしても、一方の斜交傘歯車の歯が他方の斜交傘歯車の歯と深く噛み合い、各斜交傘歯車の歯の噛み合いが従来のように外れてしまうことがなくなり、出力軸の回転数を高くすることが可能になる。また、各斜交傘歯車の歯が歯飛びすることなく確実に噛み合うようになるため、出力軸の回転数を高くしても、アクチュエータの出力トルクが低下することなく、アクチュエータの出力トルクを維持することが可能になる。 Therefore, even with this configuration, even if the supply time of the fluid to be sequentially supplied to each fluid chamber at a predetermined pressure is shortened, the teeth of one oblique bevel gear mesh deeply with the teeth of the other oblique bevel gear, and each of them The meshing of the teeth of the oblique bevel gear does not disengage as in the conventional case, and the rotation speed of the output shaft can be increased. In addition, since the teeth of each diagonal gear are surely meshed without skipping, the output torque of the actuator is maintained without decreasing even if the rotation speed of the output shaft is increased. It becomes possible to do.
 また、本発明は、外層膜部材が前記空間に面する部分に1個以上の孔を有することを特徴とする。 Further, the present invention is characterized in that the outer layer film member has one or more holes in a portion facing the space.
 本構成によれば、内層膜部材は、その平らな面が膨らむ際、外層膜部材との間の空間にある空気を外層膜部材に形成された孔を介して、外層膜部材の外部に排出しながら、膨らむ。したがって、内層膜部材の平らな面は、外層膜部材との間の空間にある空気に阻まれること無く、より小さな力で伸びて外層膜部材の内面を押圧すると共に、外層膜部材との間の空間にある空気の負圧を受けること無く、速やかに縮むようになる。このため、弾性膜部材はより迅速に柔軟に伸縮するようになり、出力軸の回転数をより高くしても、アクチュエータの出力トルクが低下することなく、アクチュエータの出力トルクを維持することが可能になる。 According to this configuration, when the flat surface of the inner layer film member swells, air in the space between the inner layer film member and the outer layer film member is discharged to the outside of the outer layer film member through a hole formed in the outer layer film member. While swelling. Therefore, the flat surface of the inner layer film member extends with a smaller force without being blocked by the air in the space between the inner layer film member and presses the inner surface of the outer layer film member, and is between the outer layer film member and the outer layer film member. It will shrink quickly without receiving the negative pressure of the air in the space. Therefore, the elastic membrane member expands and contracts more quickly and flexibly, and even if the rotation speed of the output shaft is increased, the output torque of the actuator can be maintained without decreasing the output torque of the actuator. become.
 また、本発明は、外層膜部材が内層膜部材の材質の硬度よりも硬い所定の硬度の材質に設定されることを特徴とする。 Further, the present invention is characterized in that the outer layer film member is set to a material having a predetermined hardness that is harder than the hardness of the material of the inner layer film member.
 本構成によれば、外層膜部材が内層膜部材よりも硬い所定の硬度の材質に設定されることで、弾性膜部材の表層部の耐強度が向上する。このため、弾性膜部材は、受圧面との摩擦に対抗する耐摩擦性能が向上すると共に、受圧面からより大きなねじれ力を受けても損傷し難くなる。 According to this configuration, by setting the outer layer film member to a material having a predetermined hardness that is harder than the inner layer film member, the strength resistance of the surface layer portion of the elastic film member is improved. For this reason, the elastic membrane member has improved friction resistance against friction with the pressure receiving surface, and is less likely to be damaged even if it receives a larger torsional force from the pressure receiving surface.
 また、本発明は、上記の内層膜部材が、平らな前記面に薄肉部を有することを特徴とする。 Further, the present invention is characterized in that the above-mentioned inner layer film member has a thin-walled portion on the flat surface.
 本構成によれば、内層膜部材は、平らな前記面に有する薄肉部により、平らな前記面の反発弾性がより大きくなって伸び特性がさらに向上すると共に、伸縮時に部材内部にかかる応力が小さくなって耐久性が向上する。 According to this configuration, the inner layer film member has a thin portion on the flat surface, so that the rebound resilience of the flat surface is further improved to further improve the elongation characteristics, and the stress applied to the inside of the member during expansion and contraction is small. The durability is improved.
 また、本発明は、筐体が、弾性膜部材に覆われる部分が弾性膜部材との間に形成する空間と略相似形状に突出して形成されることを特徴とする。 Further, the present invention is characterized in that the housing is formed so as to project in a shape substantially similar to the space formed between the elastic film member and the portion covered by the elastic film member.
 本構成によれば、筐体の弾性膜部材に覆われる部分が弾性膜部材と筐体との間に形成される空間と略相似形状に突出して形成されることで、弾性膜部材と筐体との間に形成される流体室の容積が小さくなる。したがって、流体供給手段から流体室へ短時間に少ない流体を供給させることによっても、弾性膜部材を一方の斜交傘歯車の受圧面側へ十分に突出させて、弾性膜部材が受圧面を十分に加圧する押圧力を発生させることができる。このため、出力軸の回転数をさらに高くすることが可能になる。 According to this configuration, the portion of the housing covered by the elastic membrane member is formed so as to project in a shape substantially similar to the space formed between the elastic membrane member and the housing, whereby the elastic membrane member and the housing are formed. The volume of the fluid chamber formed between and is reduced. Therefore, even if a small amount of fluid is supplied from the fluid supply means to the fluid chamber in a short time, the elastic film member is sufficiently projected toward the pressure receiving surface side of one of the oblique bevel gears, and the elastic film member sufficiently makes the pressure receiving surface. It is possible to generate a pressing force to pressurize. Therefore, the rotation speed of the output shaft can be further increased.
 また、本発明は、弾性膜部材と筐体との間に形成される空間の少なくとも一部を埋める、前記空間と略相似形状をした中子を備えることを特徴とする。 Further, the present invention is characterized in that it includes a core having a shape substantially similar to that of the space, which fills at least a part of the space formed between the elastic membrane member and the housing.
 本構成によっても、弾性膜部材と筐体との間に形成される流体室の容積が小さくなる。また、その流体室の容積は中子の大きさを調整することで、所望の任意の大きさに容易に調整することができる。したがって、出力軸の回転数をさらに高くすることが可能になると共に、弾性膜部材が受圧面を十分に加圧する押圧力を発生させるのに必要な圧力流体の流体室への供給量を微調整して、アクチュエータの仕様を容易に微調整することができる。 This configuration also reduces the volume of the fluid chamber formed between the elastic membrane member and the housing. Further, the volume of the fluid chamber can be easily adjusted to an arbitrary size desired by adjusting the size of the core. Therefore, the number of rotations of the output shaft can be further increased, and the amount of pressure fluid supplied to the fluid chamber required for the elastic membrane member to generate a pressing force that sufficiently pressurizes the pressure receiving surface is finely adjusted. Therefore, the specifications of the actuator can be easily fine-tuned.
 また、本発明は、押圧力付与手段によって前記受圧面が押圧されたときに振れ回り運動の中心を中心に傾いて筐体に近づく位置の前記受圧面と筐体との間に緩衝材を備えることを特徴とする。 Further, the present invention includes a cushioning material between the pressure receiving surface and the housing at a position where the pressure receiving surface is tilted about the center of the swinging motion and approaches the housing when the pressure receiving surface is pressed by the pressing force applying means. It is characterized by that.
 本構成によれば、押圧力付与手段によって前記受圧面が押圧されたときに振れ回り運動の中心を中心に傾いて前記受圧面が筐体に当たることで生じる衝突音は、前記受圧面と筐体との間に備えられる緩衝材によって低減される。このため、動作時に生じる動作音が抑制されたアクチュエータが提供される。 According to this configuration, when the pressure receiving surface is pressed by the pressing force applying means, the collision sound generated by tilting around the center of the swinging motion and hitting the pressure receiving surface against the housing is generated by the pressure receiving surface and the housing. It is reduced by the cushioning material provided between and. Therefore, an actuator in which the operating noise generated during operation is suppressed is provided.
 本発明によれば、出力軸の回転数を高くすることが可能になると共に、出力軸の回転数を高くしても出力トルクを維持することが可能なアクチュエータを提供することができる。 According to the present invention, it is possible to provide an actuator capable of increasing the rotation speed of the output shaft and maintaining the output torque even if the rotation speed of the output shaft is increased.
本発明の一実施形態によるアクチュエータを一側面側から見たアクチュエータの分解斜視図である。It is an exploded perspective view of the actuator by one Embodiment of this invention seen from one side surface side. 一実施形態によるアクチュエータを反対の側面側から見たアクチュエータの分解斜視図である。It is an exploded perspective view of the actuator which looked at the actuator by one Embodiment from the opposite side surface side. (a)は一実施形態によるアクチュエータの正面図、(b)は(a)のA-A線破断矢視断面図である。(A) is a front view of the actuator according to one embodiment, and (b) is a cross-sectional view taken along the line AA of (a). (a)は一実施形態によるアクチュエータを構成する弾性膜部材の平面図、(b)は(a)のB-B線破断矢視断面図である。(A) is a plan view of an elastic membrane member constituting an actuator according to one embodiment, and (b) is a sectional view taken along line BB of (a). 図3(b)に示す断面図の一部拡大断面図である。It is a partially enlarged sectional view of the sectional view shown in FIG. 3 (b). (a)は一実施形態によるアクチュエータを構成する中子の平面図、(b)は(a)のC-C線破断矢視断面図である。(A) is a plan view of the core constituting the actuator according to one embodiment, and (b) is a sectional view taken along line CC of (a). 一実施形態によるアクチュエータについて行った評価試験結果を従来のアクチュエータと比較して示すグラフである。It is a graph which shows the evaluation test result performed on the actuator by one Embodiment in comparison with the conventional actuator. 一実施形態によるアクチュエータの変形例によるアクチュエータの断面図である。It is sectional drawing of the actuator by the modification of the actuator by one Embodiment. 図8に示す変形例によるアクチュエータに備えられる緩衝材と支持体との相対位置関係を示す支持体の平面図である。FIG. 5 is a plan view of a support showing a relative positional relationship between a cushioning material provided in an actuator according to a modified example shown in FIG. 8 and a support. 本発明の他の実施形態によるアクチュエータを一側面側から見たアクチュエータの分解斜視図である。It is an exploded perspective view of the actuator according to another embodiment of this invention seen from one side surface side. 他の実施形態によるアクチュエータを反対の側面側から見たアクチュエータの分解斜視図である。It is an exploded perspective view of the actuator which looked at the actuator by another embodiment from the opposite side surface side. (a)は他の実施形態によるアクチュエータの正面図、(b)は、(a)のD-D線で破断して得られる側板の部分の矢視断面図、(c)は(b)に示す円Eの部分の一部拡大断面図である。(A) is a front view of the actuator according to another embodiment, (b) is a cross-sectional view of a side plate obtained by breaking along the DD line of (a), and (c) is (b). It is a partially enlarged sectional view of the part of the circle E shown. (a)は他の実施形態によるアクチュエータを構成する弾性膜部材の底面図、(b)は(a)のF-F線破断矢視断面図である。(A) is a bottom view of an elastic membrane member constituting an actuator according to another embodiment, and (b) is a sectional view taken along line FF of (a).
 次に、本発明によるアクチュエータを実施するための形態について説明する。 Next, a mode for carrying out the actuator according to the present invention will be described.
 図1は、本発明の一実施の形態によるアクチュエータ1を一側面側から見たアクチュエータ1の分解斜視図、図2はそのアクチュエータ1を反対の側面側から見たアクチュエータ1の分解斜視図である。また、図3(a)はアクチュエータ1の正面図、図3(b)は図3(a)のA-A線破断矢視断面図である。 FIG. 1 is an exploded perspective view of the actuator 1 when the actuator 1 according to the embodiment of the present invention is viewed from one side surface side, and FIG. 2 is an exploded perspective view of the actuator 1 when the actuator 1 is viewed from the opposite side surface side. .. Further, FIG. 3A is a front view of the actuator 1, and FIG. 3B is a cross-sectional view taken along the line AA of FIG. 3A.
 アクチュエータ1は、外径が直方体状をした、円筒形状の中空部を有するハウジング本体2a内に構成され、両端が一対の側板2b,2cで蓋をされた構造をしている。ハウジング本体2aおよび一対の側板2b,2cはアクチュエータ1の筐体2を構成している。筐体2内には、相対的に回転自在でかつ歯数が異なる一対の斜交傘歯車3,4が収納されている。 The actuator 1 is configured in a housing body 2a having a cylindrical hollow portion having a rectangular parallelepiped outer diameter, and has a structure in which both ends are covered with a pair of side plates 2b and 2c. The housing body 2a and the pair of side plates 2b and 2c form the housing 2 of the actuator 1. A pair of diagonal bevel gears 3 and 4 that are relatively rotatable and have different numbers of teeth are housed in the housing 2.
 本実施形態では、一対の斜交傘歯車3,4のうちの一方の章動斜交傘歯車4は、他方の固定斜交傘歯車3に対して振れ回り運動(章動運動)させられる。他方の固定斜交傘歯車3は、側板2bの内面にその歯車本体3aが円筒状に突出して形成され、その円環状突出端に傘歯3bが形成されている。固定斜交傘歯車3の歯車本体3aが側板2bに一体に形成されるこの構成は、一対の斜交傘歯車3,4のうちのいずれか一方の自転を防止する自転防止手段を構成している。また、章動斜交傘歯車4は、その歯車本体4aが固定斜交傘歯車3の円筒形状と同径の有底円筒形状をしており、その円筒状端部の突出端には、固定斜交傘歯車3の傘歯3bに対向して傘歯4bが形成されている。本実施形態では、章動斜交傘歯車4の傘歯4bの歯数は、固定斜交傘歯車3の傘歯3bよりも1つ多く形成されている。また、各傘歯3b,4bの歯数は、従来のアクチュエータの各歯数の1/3に減らされている。 In the present embodiment, one of the pair of oblique bevel gears 3 and 4 has a nutation oblique bevel gear 4 that is made to swing (nutate) with respect to the other fixed oblique bevel gear 3. The other fixed oblique bevel gear 3 has a gear body 3a projecting cylindrically on the inner surface of the side plate 2b, and an umbrella tooth 3b formed on the annular projecting end thereof. This configuration in which the gear body 3a of the fixed diagonal bevel gear 3 is integrally formed with the side plate 2b constitutes a rotation prevention means for preventing the rotation of any one of the pair of diagonal bevel gears 3 and 4. There is. Further, the chapter dynamic diagonal bevel gear 4 has a bottomed cylindrical shape in which the gear body 4a has the same diameter as the cylindrical shape of the fixed diagonal bevel gear 3, and is fixed to the protruding end of the cylindrical end. The bevel gear 4b is formed so as to face the bevel tooth 3b of the oblique bevel gear 3. In the present embodiment, the number of teeth 4b of the nutation bevel gear 4 is one more than that of the bevel gear 3b of the fixed bevel gear 3. Further, the number of teeth of the umbrella teeth 3b and 4b is reduced to 1/3 of the number of teeth of the conventional actuator.
 一対の側板2b,2cには、図3(b)に示すように、出力軸5が一対のボールベアリング6,7によって回転自在に支承されている。出力軸5は、大径部5aと小径部5bとが同軸に形成された中空の円柱形状に形成されている。ボールベアリング6は、大径部5aの端部を筐体2の外部に露出させて、大径部5aを側板2bに回転自在に支承し、ボールベアリング7は、小径部5bの端部を筐体2の内部に収めて、小径部5bを側板2cに回転自在に支承している。 As shown in FIG. 3B, the output shaft 5 is rotatably supported by the pair of ball bearings 6 and 7 on the pair of side plates 2b and 2c. The output shaft 5 is formed in a hollow cylindrical shape in which the large diameter portion 5a and the small diameter portion 5b are formed coaxially. In the ball bearing 6, the end portion of the large diameter portion 5a is exposed to the outside of the housing 2, and the large diameter portion 5a is rotatably supported by the side plate 2b. It is housed inside the body 2 and the small diameter portion 5b is rotatably supported by the side plate 2c.
 また、大径部5aの外周には、固定斜交傘歯車3より一回り小さな出力斜交傘歯車8が固定されている。この出力斜交傘歯車8は、その歯車本体8aが、固定斜交傘歯車3の円筒形状より一回り小さな有底円筒形状をしており、円筒状端部の突出端には傘歯8bが形成されている。また、歯車本体8aの傘歯8bが形成された面と反対側の面の肩部と、固定斜交傘歯車3の円筒内底面との間には、ボールベアリング11が設けられている。出力斜交傘歯車8は、このボールベアリング11により、出力軸5と共に固定斜交傘歯車3に対して回転自在になっている。 Further, an output bevel gear 8 that is one size smaller than the fixed bevel gear 3 is fixed on the outer circumference of the large diameter portion 5a. The output diagonal bevel gear 8 has a bottomed cylindrical shape in which the gear body 8a is one size smaller than the cylindrical shape of the fixed diagonal bevel gear 3, and the bevel teeth 8b are provided at the protruding ends of the cylindrical ends. It is formed. Further, a ball bearing 11 is provided between the shoulder portion of the surface of the gear body 8a opposite to the surface on which the umbrella tooth 8b is formed and the inner bottom surface of the cylinder of the fixed oblique bevel gear 3. The output diagonal bevel gear 8 is rotatable with respect to the fixed diagonal bevel gear 3 together with the output shaft 5 by the ball bearing 11.
 また、章動斜交傘歯車4の内側には、章動斜交傘歯車4より一回り小さな入力斜交傘歯車9がネジ10で固定されている。この入力斜交傘歯車9は、その歯車本体9aが、章動斜交傘歯車4の円筒形状より一回り小さく、出力斜交傘歯車8の円筒形状と同径の有底円筒形状をしている。歯車本体9aの円筒状端部の突出端には、出力斜交傘歯車8の傘歯8bに対向して傘歯9bが形成されている。出力斜交傘歯車8の傘歯8bの歯数と、入力斜交傘歯車9の傘歯9bの歯数とは、等しく設定されている。 Further, inside the nutation bevel gear 4, an input bevel gear 9 that is one size smaller than the nutation bevel gear 4 is fixed with a screw 10. The input oblique bevel gear 9 has a bottomed cylindrical shape in which the gear body 9a is one size smaller than the cylindrical shape of the chaptering oblique bevel gear 4 and has the same diameter as the cylindrical shape of the output oblique bevel gear 8. There is. At the protruding end of the cylindrical end of the gear body 9a, the umbrella tooth 9b is formed so as to face the umbrella tooth 8b of the output oblique bevel gear 8. The number of teeth of the bevel gear 8b of the output oblique bevel gear 8 and the number of teeth of the umbrella tooth 9b of the input oblique bevel gear 9 are set to be equal.
  また、入力斜交傘歯車9の中央部には球状軸受け9cが形成されている。この球状軸受け9cは、大径部5aと小径部5bとの間の出力軸5の外周に円錐状に形成された円錐状体5cの周囲に当接して、その周囲を摺動する。章動斜交傘歯車4はこの摺動によって振れ回り運動をする。球状軸受け9cおよび円錐状体5cは、一対の斜交傘歯車3,4のうちの一方を他方に対して振れ回り運動自在に支持する支持手段を構成している。この振れ回り運動の中心は、固定斜交傘歯車3と章動斜交傘歯車4の交わる2軸間に運動を伝達する基準ピッチ面を構成する円錐面の頂点、および、出力斜交傘歯車8と入力斜交傘歯車9の交わる2軸間に運動を伝達する基準ピッチ面を構成する円錐面の頂点と一致している。 In addition, a spherical bearing 9c is formed at the center of the input oblique bevel gear 9. The spherical bearing 9c comes into contact with the periphery of the conical body 5c formed in a conical shape on the outer circumference of the output shaft 5 between the large diameter portion 5a and the small diameter portion 5b, and slides around the conical body 5c. The nutation diagonal bevel gear 4 swings around due to this sliding. The spherical bearing 9c and the conical body 5c form a supporting means that swings and movably supports one of the pair of oblique bevel gears 3 and 4 with respect to the other. The center of this swinging motion is the apex of the conical surface that constitutes the reference pitch plane that transmits the motion between the two intersecting axes of the fixed oblique bevel gear 3 and the chasing oblique bevel gear 4, and the output oblique bevel gear. It coincides with the apex of the conical surface that constitutes the reference pitch surface that transmits motion between the two intersecting axes of the 8 and the input oblique bevel gear 9.
 章動斜交傘歯車4が振れ回り運動をすることで、章動斜交傘歯車4は固定斜交傘歯車3との歯数の違いによって固定斜交傘歯車3に対して回転する。入力斜交傘歯車9は、章動斜交傘歯車4のこの回転に伴って回転し、その傘歯9bと出力斜交傘歯車8の傘歯8bとが噛み合うことで、章動斜交傘歯車4の回転が入力斜交傘歯車9を介して出力斜交傘歯車8に伝達され、出力軸5が回転する。入力斜交傘歯車9および出力斜交傘歯車8は、等速ジョイント機構を構成し、自転防止手段によって自転が妨げられない側の章動斜交傘歯車4の回転力を出力軸5に伝達する回転伝達手段を構成する。 As the nutation bevel gear 4 swings around, the nutation bevel gear 4 rotates with respect to the fixed bevel gear 3 due to the difference in the number of teeth from the fixed bevel gear 3. The input bevel gear 9 rotates with this rotation of the bevel gear 4, and the bevel teeth 9b and the bevel teeth 8b of the output bevel gear 8 mesh with each other to cause the bevel gear 8. The rotation of the gear 4 is transmitted to the output oblique bevel gear 8 via the input oblique bevel gear 9, and the output shaft 5 rotates. The input oblique bevel gear 9 and the output oblique bevel gear 8 form a constant velocity joint mechanism, and transmit the rotational force of the chapter motion oblique bevel gear 4 on the side where rotation is not hindered by the rotation preventing means to the output shaft 5. A rotation transmitting means is configured.
 本実施形態では、後述する支持体15を含む筐体2、各斜交傘歯車3,4,8,9および出力軸5は金属製であるが、樹脂等の非金属製とすることも可能である。 In the present embodiment, the housing 2 including the support 15 described later, the diagonal bevel gears 3, 4, 8, 9 and the output shaft 5 are made of metal, but they can also be made of non-metal such as resin. Is.
 筐体2を構成する側板2cには、章動斜交傘歯車4を振れ回り運動させるダイヤフラム機構を構成する押圧力付与手段が設けられている。この押圧力付与手段は、側板2cに3箇所以上、本実施形態では3箇所に取り付けられた3個の弾性膜部材12および3室の流体室13と、各流体室13に流体を送り込む3箇所の通路14と、各流体室13に順次流体を所定圧をもって供給する図示しない流体供給手段とからなる。各弾性膜部材12は、章動斜交傘歯車4における歯車本体4aの、傘歯4aが形成された面と反対側の受圧面4cに対峙して、側板2cの内側面に配置される。この際、3個の弾性膜部材12のいずれか1個は、受圧面4cに近接または接触する。 The side plate 2c constituting the housing 2 is provided with a pressing force applying means for forming a diaphragm mechanism for swinging and moving the nutation diagonal bevel gear 4. The pressing force applying means is provided at three or more locations on the side plate 2c, three elastic membrane members 12 and three fluid chambers 13 attached to the three locations in the present embodiment, and three locations for feeding fluid to each fluid chamber 13. A fluid supply means (not shown) for sequentially supplying fluid to each fluid chamber 13 with a predetermined pressure. Each elastic film member 12 is arranged on the inner surface of the side plate 2c of the gear body 4a of the nutation diagonal bevel gear 4 so as to face the pressure receiving surface 4c opposite to the surface on which the umbrella teeth 4a are formed. At this time, any one of the three elastic membrane members 12 is in close proximity to or in contact with the pressure receiving surface 4c.
 各弾性膜部材12は、図4(a)に平面図、図4(b)に図4(a)のB-B線破断矢視断面図が示され、ゴム、エラストマーその他の同様な弾性を有する材質からなる。同図に示されるように、各弾性膜部材12は、受圧面4cに向かって突出する環状の外輪部12aと、外輪部12aに周囲が囲まれて窪んだ平板部12bとが一体に容器状に形成されて、図5に示す図3(b)の一部拡大断面図のように、側板2cとの間で各流体室13を構成する。平板部12bは、外輪部12aの突出端よりも受圧面4cから遠い位置で外面が受圧面4cに対向し、内面が通路14の流体吹き出し口に対向する。各弾性膜部材12は、筐体2を構成する支持体15が側板2cにネジ等で固定されることで、その外周端部12cの外面側が、支持体15の3箇所に形成された開口部15aの内周縁部によって、側板2cの内側面に押え付けられる。また、外周端部12cの内面側が、側板2cの内側面に形成された突起2dに押え付けられる。これらの押え付けにより、各流体室13は、各弾性膜部材12をそれぞれ少なくとも一部として周囲が密閉される。 Each elastic film member 12 has a plan view shown in FIG. 4 (a) and a cross-sectional view taken along the line BB of FIG. 4 (a) shown in FIG. 4 (b). It is made of the material that it has. As shown in the figure, each elastic film member 12 has an annular outer ring portion 12a protruding toward the pressure receiving surface 4c and a flat plate portion 12b surrounded by the outer ring portion 12a and recessed in an integrally container-like shape. Each fluid chamber 13 is formed between the side plate 2c and the side plate 2c as shown in a partially enlarged cross-sectional view of FIG. 3B shown in FIG. The outer surface of the flat plate portion 12b faces the pressure receiving surface 4c at a position farther from the pressure receiving surface 4c than the protruding end of the outer ring portion 12a, and the inner surface faces the fluid outlet of the passage 14. In each elastic film member 12, the support 15 constituting the housing 2 is fixed to the side plate 2c with screws or the like, so that the outer surface side of the outer peripheral end portion 12c thereof is formed at three positions of the support 15. It is pressed against the inner side surface of the side plate 2c by the inner peripheral edge portion of 15a. Further, the inner surface side of the outer peripheral end portion 12c is pressed against the protrusion 2d formed on the inner surface surface of the side plate 2c. By these pressing, each fluid chamber 13 is sealed around with each elastic membrane member 12 as at least a part.
 本実施形態では、押圧力付与手段は、各弾性膜部材12と側板2cとの間に形成される空間の少なくとも一部を埋める、その空間と略相似形状をした中子16を3個備える。この中子16は、図6(a)に平面図、図6(b)に図6(a)のC-C線破断矢視断面図が示され、半ドーナツ状の形状をしており、樹脂等の材質からなる。中子16の中心部には、通路14からの圧縮空気を弾性部材12の平板部12bに通過させる穴が開口している。 In the present embodiment, the pressing force applying means includes three cores 16 having a shape substantially similar to that space, which fills at least a part of the space formed between each elastic film member 12 and the side plate 2c. The core 16 has a semi-doughnut shape, with a plan view shown in FIG. 6 (a) and a cross-sectional view taken along the line CC of FIG. 6 (a) shown in FIG. 6 (b). It is made of a material such as resin. A hole is opened in the central portion of the core 16 to allow compressed air from the passage 14 to pass through the flat plate portion 12b of the elastic member 12.
 流体供給手段は、エアーコンプレッサと、3個の電磁ソレノイド弁と、各電磁ソレノイド弁と各通路14との間を接続するウレタンチューブと、電磁ソレノイド弁を制御するコントローラとから構成される。エアーコンプレッサで所定圧に圧縮された空気はウレタンチューブを介して通路14に送られ、各流体室13へ供給される。この際、電磁ソレノイド弁の開閉がコントローラによって制御されることで、各流体室13への圧縮空気の供給が所定のシーケンスで断続される。各弾性膜部材12は、各通路14の流体吹き出し口から所定圧の流体、本実施形態では圧縮空気が吹き出されると、外輪部12aが歯車本体4aの受圧面4cを押圧すると共に、弾性膜部材12自身の弾性力によって平板部12bが外輪部12aの突出端よりも受圧面4cに近い位置に反り返って、受圧面4cを押圧する。 The fluid supply means includes an air compressor, three solenoid valves, a urethane tube connecting each solenoid valve and each passage 14, and a controller for controlling the solenoid valve. The air compressed to a predetermined pressure by the air compressor is sent to the passage 14 via the urethane tube and supplied to each fluid chamber 13. At this time, the opening and closing of the solenoid valve is controlled by the controller, so that the supply of compressed air to each fluid chamber 13 is interrupted in a predetermined sequence. When a fluid of a predetermined pressure, compressed air in the present embodiment, is blown out from the fluid outlet of each passage 14, the outer ring portion 12a presses the pressure receiving surface 4c of the gear body 4a, and the elastic film member 12 presses the pressure receiving surface 4c of the gear body 4a. Due to the elastic force of the member 12, the flat plate portion 12b bends back to a position closer to the pressure receiving surface 4c than the protruding end of the outer ring portion 12a, and presses the pressure receiving surface 4c.
 このような構成において、流体供給手段が予め設定されたシーケンスで作動すると、空気パルスが各通路14を経由して各流体室13に順次供給される。各流体室13は、空気パルスが供給されると、弾性膜部材12が出力軸5の軸心と平行に章動斜交傘歯車4の方向に膨らみ、歯車本体4aの受圧面4cを押圧する。この押圧により、章動斜交傘歯車4は出力軸5の円錐状体5cを支点として傾斜し、傾斜して固定斜交傘歯車3に近づく傘歯4bの一部が固定斜交傘歯車3の傘歯3bに深く噛み合う。章動斜交傘歯車4は、3室の流体室13を構成する各弾性膜部材12によって受圧面4cが順次このように押圧されることで、固定斜交傘歯車3に対して常に円周方向の一部分で噛み合いながら、振れ回り運動を行い、自転する。章動斜交傘歯車4のこの自転は、等速ジョイント機構を構成する入力斜交傘歯車9および出力斜交傘歯車8によって出力軸5に伝達され、出力軸5が回転する。 In such a configuration, when the fluid supply means operates in a preset sequence, air pulses are sequentially supplied to each fluid chamber 13 via each passage 14. When an air pulse is supplied to each fluid chamber 13, the elastic film member 12 swells in the direction of the spiral bevel gear 4 in parallel with the axis of the output shaft 5 and presses the pressure receiving surface 4c of the gear body 4a. .. Due to this pressing, the chaptering oblique bevel gear 4 is inclined with the conical body 5c of the output shaft 5 as a fulcrum, and a part of the bevel teeth 4b that is inclined and approaches the fixed oblique bevel gear 3 is the fixed oblique bevel gear 3. Deeply engages with the bevel tooth 3b. The nutation diagonal bevel gear 4 is always circumferential with respect to the fixed diagonal bevel gear 3 by sequentially pressing the pressure receiving surface 4c in this way by the elastic film members 12 constituting the fluid chambers 13 of the three chambers. While engaging in a part of the direction, it swings around and rotates. This rotation of the nutation diagonal bevel gear 4 is transmitted to the output shaft 5 by the input oblique bevel gear 9 and the output oblique bevel gear 8 constituting the constant velocity joint mechanism, and the output shaft 5 rotates.
 本実施形態によるアクチュエータ1では、各弾性膜部材12が、図4に示すように独自の形状をした外輪部12aと平板部12bとが一体に容器状に形成され、平板部12bの内面が通路14の流体吹き出し口に対向している。このため、章動斜交傘歯車4が上記のように自転する際、通路14の流体吹き出し口から所定圧の空気が吹き出されると、外輪部12aが章動傘歯車4の受圧面4cを押圧すると共に、弾性膜部材12自身の弾性力によって平板部12bが外輪部12aの突出端よりも受圧面4cに近い位置に反り返って、受圧面4cを押圧する。 In the actuator 1 according to the present embodiment, each elastic film member 12 is integrally formed with an outer ring portion 12a and a flat plate portion 12b having a unique shape as shown in FIG. 4, and the inner surface of the flat plate portion 12b is a passage. It faces the fluid outlet of 14. Therefore, when the nutation diagonal bevel gear 4 rotates as described above, when air of a predetermined pressure is blown out from the fluid outlet of the passage 14, the outer ring portion 12a presses the pressure receiving surface 4c of the nutation bevel gear 4. At the same time as pressing, the flat plate portion 12b bends back to a position closer to the pressure receiving surface 4c than the protruding end of the outer ring portion 12a due to the elastic force of the elastic film member 12 itself, and presses the pressure receiving surface 4c.
 これに対して、従来のアクチュエータでは、流体室へ圧力流体が供給されることで、表面が平面状をした弾性膜部材が膨らみ、章動する一方の斜交傘歯車の受圧面を弾性膜部材が加圧する際、弾性膜部材は、自身が有する弾性力により、供給される圧力流体の押圧力に抗する力を発揮していた。このため、弾性膜部材は、膨らませようとする圧力流体の押圧力に逆らい、受圧面側へ突出する弾性膜部材の変形を妨げる作用をしていた。したがって、軸状出力部材の回転数を高くするために、各流体室に順次供給する圧力流体の供給時間を短くし、弾性膜部材の膨張と収縮のピッチを短くすると、弾性膜部材が受圧面側へ十分に突出しなくなり、一方の斜交傘歯車の受圧面に対する加圧力が低下していた。このため、章動する一方の斜交傘歯車の歯が固定された他方の斜交傘歯車の歯と噛み合う深さが浅くなり、これら各斜交傘歯車の歯の噛み合いが外れてしまい、回転不能となってしまっていた。 On the other hand, in the conventional actuator, when the pressure fluid is supplied to the fluid chamber, the elastic film member having a flat surface swells, and the pressure receiving surface of one of the diagonally crossed umbrella gears that moves is the elastic film member. When the pressure is applied, the elastic film member exerts a force against the pressing force of the supplied pressure fluid due to its own elastic force. Therefore, the elastic membrane member has an action of resisting the pressing force of the pressure fluid to be inflated and preventing the deformation of the elastic membrane member protruding toward the pressure receiving surface side. Therefore, in order to increase the rotation speed of the shaft-shaped output member, if the supply time of the pressure fluid to be sequentially supplied to each fluid chamber is shortened and the pitch of expansion and contraction of the elastic membrane member is shortened, the elastic membrane member becomes a pressure receiving surface. It did not protrude sufficiently to the side, and the pressing force on the pressure receiving surface of one of the oblique umbrella gears decreased. For this reason, the depth of meshing with the teeth of the other diagonal bevel gear to which the teeth of one diagonal bevel gear that moves are fixed becomes shallow, and the teeth of each of these diagonal bevel gears are disengaged and rotate. It had become impossible.
 しかし、本実施形態によるアクチュエータ1では、弾性膜部材12は、従来のように、弾性膜部材12自身の弾性力によって受圧面4c側へ突出する変形を妨げる作用をしなくなり、逆に、弾性膜部材12自身の弾性力によって受圧面4c側へ突出する変形を促す作用をするようになる。このため、出力軸5の回転数を高くするために、各流体室13に順次所定圧で供給する空気の供給時間を短くし、弾性膜部材12の膨張と収縮のピッチを短くしても、弾性膜部材12は受圧面4c側へ十分に突出し、章動斜交傘歯車4の受圧面4cを十分な加圧力で押圧するようになる。 However, in the actuator 1 according to the present embodiment, the elastic film member 12 no longer acts to prevent the deformation of the elastic film member 12 from protruding toward the pressure receiving surface 4c side due to the elastic force of the elastic film member 12 itself, and conversely, the elastic film member 12 The elastic force of the member 12 itself promotes deformation that protrudes toward the pressure receiving surface 4c. Therefore, in order to increase the rotation speed of the output shaft 5, even if the supply time of air sequentially supplied to each fluid chamber 13 at a predetermined pressure is shortened and the expansion and contraction pitch of the elastic membrane member 12 is shortened, The elastic film member 12 sufficiently protrudes toward the pressure receiving surface 4c side, and presses the pressure receiving surface 4c of the nutation oblique bevel gear 4 with a sufficient pressing force.
 このため、本実施形態によるアクチュエータ1では、各流体室13に順次所定圧で供給する空気の供給時間を短くしても、一方の章動斜交傘歯車4の傘歯4bが他方の固定斜交傘歯車3の傘歯3bと深く噛み合い、各斜交傘歯車3,4の傘歯3b,4bの噛み合いが従来のように外れてしまうことがなくなり、出力軸5の回転数を高くすることが可能になる。また、各斜交傘歯車3,4の傘歯3b,4bが歯飛びすることなく確実に噛み合うようになるため、出力軸5の回転数を高くしても、アクチュエータ1の出力トルクが低下することなく、アクチュエータ1の出力トルクを維持することが可能になる。 Therefore, in the actuator 1 according to the present embodiment, even if the supply time of the air supplied to each fluid chamber 13 at a predetermined pressure is shortened, the bevel teeth 4b of one of the bevel gears 4 are fixedly oblique to the other. Deeply mesh with the bevel teeth 3b of the bevel gear 3 so that the meshing of the bevel teeth 3b and 4b of the diagonal bevel gears 3 and 4 does not come off as in the conventional case, and the rotation speed of the output shaft 5 is increased. Becomes possible. Further, since the bevel teeth 3b and 4b of the oblique bevel gears 3 and 4 are surely meshed with each other without tooth skipping, the output torque of the actuator 1 is reduced even if the rotation speed of the output shaft 5 is increased. It becomes possible to maintain the output torque of the actuator 1 without having to do so.
 また、本実施形態によるアクチュエータ1では、各弾性膜部材12と側板2cとの間に形成される空間に図6に示すような中子16を備えるため、弾性膜部材12と側板2cとの間に形成される流体室13の容積が小さくなる。したがって、少量の圧縮空気を流体室13へ短時間に供給することで弾性膜部材12が上記のように十分に膨らむため、出力軸5の回転数をさらに高くすることが可能になる。また、流体室13の容積は中子16の大きさを調整することで、所望の任意の大きさに容易に調整することができる。したがって、出力軸5の回転数をさらに高くすることが可能になると共に、弾性膜部材12が受圧面4cを十分に加圧する押圧力を発生させるのに必要な、圧縮空気の流体室13への供給量を微調整して、アクチュエータ1の仕様を容易に微調整することができる。 Further, in the actuator 1 according to the present embodiment, since the core 16 as shown in FIG. 6 is provided in the space formed between each elastic film member 12 and the side plate 2c, the space between the elastic film member 12 and the side plate 2c is provided. The volume of the fluid chamber 13 formed in is reduced. Therefore, by supplying a small amount of compressed air to the fluid chamber 13 in a short time, the elastic membrane member 12 sufficiently expands as described above, so that the rotation speed of the output shaft 5 can be further increased. Further, the volume of the fluid chamber 13 can be easily adjusted to a desired arbitrary size by adjusting the size of the core 16. Therefore, it becomes possible to further increase the rotation speed of the output shaft 5, and the compressed air to the fluid chamber 13 required for the elastic film member 12 to generate a pressing force that sufficiently pressurizes the pressure receiving surface 4c. The supply amount can be finely adjusted to easily finely adjust the specifications of the actuator 1.
 図7は、本実施形態によるアクチュエータ1の評価試験結果を示すグラフである。この評価試験では、アクチュエータ1の出力軸5の回転にかかるトルクをパウダーブレーキによって徐々に増加させ、各斜交傘歯車3,4の傘歯3b,4bの噛み合いに歯飛びが生じる直前のトルク値を測定し、そのトルク値をアクチュエータ1の最大トルクとした。 FIG. 7 is a graph showing the evaluation test results of the actuator 1 according to the present embodiment. In this evaluation test, the torque applied to the rotation of the output shaft 5 of the actuator 1 is gradually increased by the powder brake, and the torque value immediately before the engagement of the bevel teeth 3b and 4b of the oblique bevel gears 3 and 4 occurs. Was measured, and the torque value was taken as the maximum torque of the actuator 1.
 同グラフの横軸は出力軸5の回転数[r/min]、縦軸はパウダーブレーキの設定トルク[Nm]である。また、○印のプロットで示される測定点に沿って点線で引かれる特性線21は、流体室13へ供給する圧縮空気の圧力が0.4[MPa]のときに従来のアクチュエータについて測定した、歯飛びが生じる直前の最大トルクと出力軸5の回転数との関係を示す。また、×印のプロットで示される測定点に沿って実線で引かれる特性線22は、流体室13へ供給する圧縮空気の圧力が0.4[MPa]のときに本実施形態のアクチュエータ1について測定した、歯飛びが生じる直前の最大トルクと出力軸5の回転数との関係を示す。 The horizontal axis of the graph is the rotation speed [r / min] of the output shaft 5, and the vertical axis is the set torque [Nm] of the powder brake. Further, the characteristic line 21 drawn by a dotted line along the measurement point indicated by the plot of ◯ is measured for the conventional actuator when the pressure of the compressed air supplied to the fluid chamber 13 is 0.4 [MPa]. The relationship between the maximum torque immediately before the tooth skipping occurs and the rotation speed of the output shaft 5 is shown. Further, the characteristic line 22 drawn by a solid line along the measurement point indicated by the plot marked with x is the actuator 1 of the present embodiment when the pressure of the compressed air supplied to the fluid chamber 13 is 0.4 [MPa]. The relationship between the measured maximum torque immediately before the tooth skipping and the rotation speed of the output shaft 5 is shown.
 また、△印のプロットで示される測定点に沿って点線で引かれる特性線31は、流体室13へ供給する圧縮空気の圧力が0.5[MPa]のときに従来のアクチュエータについて測定した、歯飛びが生じる直前の最大トルクと出力軸5の回転数との関係を示す。また、□印のプロットで示される測定点に沿って実線で引かれる特性線32は、流体室13へ供給する圧縮空気の圧力が0.5[MPa]のときに本実施形態のアクチュエータ1について測定した、歯飛びが生じる直前の最大トルクと出力軸5の回転数との関係を示す。 Further, the characteristic line 31 drawn by a dotted line along the measurement point indicated by the plot of Δ is measured for the conventional actuator when the pressure of the compressed air supplied to the fluid chamber 13 is 0.5 [MPa]. The relationship between the maximum torque immediately before the tooth skipping occurs and the rotation speed of the output shaft 5 is shown. Further, the characteristic line 32 drawn by a solid line along the measurement point indicated by the plot marked with □ is the actuator 1 of the present embodiment when the pressure of the compressed air supplied to the fluid chamber 13 is 0.5 [MPa]. The relationship between the measured maximum torque immediately before the tooth skipping and the rotation speed of the output shaft 5 is shown.
 同グラフから、従来のアクチュエータでは、圧縮空気の圧力にかかわらず、回転数の上限が60[r/min]であったのに対して、本実施形態のアクチュエータ1では、圧縮空気の圧力にかかわらず、回転数の上限が160[r/min]程度まで上昇していることが、理解される。また、本実施形態のアクチュエータ1では、回転数にかかわらず最大トルクの出現傾向が変わっていないため、回転数が上昇しても、低速回転時と同等のトルクを維持しつつ、高速回転が可能なことが理解される。この測定結果から、本実施形態のアクチュエータ1によれば、上述した作用効果が奏されることが確認された。 From the same graph, in the conventional actuator, the upper limit of the rotation speed was 60 [r / min] regardless of the pressure of the compressed air, whereas in the actuator 1 of the present embodiment, the pressure of the compressed air is irrelevant. However, it is understood that the upper limit of the number of revolutions has risen to about 160 [r / min]. Further, in the actuator 1 of the present embodiment, since the appearance tendency of the maximum torque does not change regardless of the rotation speed, high-speed rotation is possible while maintaining the same torque as at low-speed rotation even if the rotation speed increases. Is understood. From this measurement result, it was confirmed that the actuator 1 of the present embodiment exerts the above-mentioned action and effect.
 なお、上記の実施形態では、弾性膜部材12と側板2cとの間に形成される空間に中子16を備えることで、各弾性膜部材12と側板2cとの間に形成される各流体室13の容積を小さくした場合について、説明した。しかし、筐体2を構成する側板2cの各弾性膜部材12に覆われる部分が、弾性膜部材12との間に形成する空間と略相似形状に突出して形成されるように構成することで、弾性膜部材12と側板2cとの間に形成される流体室13の容積を小さくするようにしてもよい。 In the above embodiment, by providing the core 16 in the space formed between the elastic membrane member 12 and the side plate 2c, each fluid chamber formed between the elastic membrane member 12 and the side plate 2c is provided. The case where the volume of 13 is reduced has been described. However, the portion of the side plate 2c constituting the housing 2 that is covered with each elastic film member 12 is formed so as to project in a shape substantially similar to the space formed between the elastic film member 12 and the housing 2. The volume of the fluid chamber 13 formed between the elastic membrane member 12 and the side plate 2c may be reduced.
 本構成によっても、流体供給手段から流体室13へ短時間に少ない圧縮空気を供給させることによって、章動斜交傘歯車4の受圧面4c側へ弾性膜部材12を十分に突出させて、弾性膜部材12が受圧面4cを十分に加圧する押圧力を発生させることができ、上記実施形態と同様に出力軸の回転数をさらに高くすることが可能になる。 Even with this configuration, by supplying a small amount of compressed air from the fluid supply means to the fluid chamber 13 in a short time, the elastic film member 12 is sufficiently projected toward the pressure receiving surface 4c side of the nutation oblique umbrella gear 4 to be elastic. The film member 12 can generate a pressing force that sufficiently pressurizes the pressure receiving surface 4c, and the rotation speed of the output shaft can be further increased as in the above embodiment.
 また、上記の実施形態において、受圧面4cと筐体を構成する支持体15との間に、図8の断面図に示すように緩衝材17を備えるように、構成してもよい。緩衝材17はゴムやフェルト、樹脂等の材質からなり、シート状をしている。なお、図8において図3(b)と同一部分には同一符号を付してその説明は省略する。図9は、受圧面4cに設けられる緩衝材17と、支持体15との位置関係を表わしている。なお、図9において図1と同一部分には同一符号を付してその説明は省略する。緩衝材17は、押圧力付与手段によって受圧面4cが押圧されたときに、振れ回り運動の中心を中心に受圧面4cが傾いて支持体15に近づく3箇所の位置の受圧面4cに、設けられる。 Further, in the above embodiment, the cushioning material 17 may be provided between the pressure receiving surface 4c and the support 15 constituting the housing as shown in the cross-sectional view of FIG. The cushioning material 17 is made of a material such as rubber, felt, or resin, and has a sheet shape. In FIG. 8, the same parts as those in FIG. 3B are designated by the same reference numerals, and the description thereof will be omitted. FIG. 9 shows the positional relationship between the cushioning material 17 provided on the pressure receiving surface 4c and the support 15. In FIG. 9, the same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The cushioning material 17 is provided on the pressure receiving surface 4c at three positions where the pressure receiving surface 4c is tilted around the center of the swinging motion and approaches the support 15 when the pressure receiving surface 4c is pressed by the pressing force applying means. Be done.
 本構成によれば、押圧力付与手段によって受圧面4cが押圧されたときに、振れ回り運動の中心を中心に傾いて受圧面4cが支持体15に当たることで生じる衝突音は、受圧面4cと支持体15との間に備えられる緩衝材17によって低減される。このため、本構成によれば、動作時に生じる動作音が抑制されたアクチュエータ1が提供される。 According to this configuration, when the pressure receiving surface 4c is pressed by the pressing force applying means, the collision sound generated by the pressure receiving surface 4c tilting about the center of the swinging motion and hitting the support 15 is the pressure receiving surface 4c. It is reduced by the cushioning material 17 provided between the support 15 and the support 15. Therefore, according to this configuration, the actuator 1 in which the operating noise generated during operation is suppressed is provided.
 図10は、本発明の他の実施の形態によるアクチュエータ41を一側面側から見たアクチュエータ41の分解斜視図、図11はそのアクチュエータ41を反対の側面側から見たアクチュエータ1の分解斜視図である。また、図12(a)はアクチュエータ41の正面図、図12(b)は、図12(a)のD-D線でアクチュエータ41を破断して得られる側板2cの部分の矢視断面図、図12(c)は図12(b)に示す円Eの部分の一部拡大断面図である。なお、図10,図11および図12において、図1,図2および図3と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 10 is an exploded perspective view of the actuator 41 as viewed from one side surface of the actuator 41 according to another embodiment of the present invention, and FIG. 11 is an exploded perspective view of the actuator 1 when the actuator 41 is viewed from the opposite side surface side. is there. 12 (a) is a front view of the actuator 41, and FIG. 12 (b) is a cross-sectional view of a side plate 2c obtained by breaking the actuator 41 along the DD line of FIG. 12 (a). FIG. 12 (c) is a partially enlarged cross-sectional view of the portion of the circle E shown in FIG. 12 (b). In FIGS. 10, 11 and 12, the same or corresponding parts as those in FIGS. 1, 2 and 3 are designated by the same reference numerals and the description thereof will be omitted.
 この他の実施形態によるアクチュエータ41は、上記の一実施形態における各弾性膜部材12に代えて各弾性膜部材42が用いられている点、および、中子16に代えて側板2cの盛り上がり部2c1が用いられている点だけが、上記の一実施形態によるアクチュエータ1の構成と異なり、その他の構成は上記の一実施形態によるアクチュエータ1と同様である。 In the actuator 41 according to the other embodiment, each elastic film member 42 is used instead of each elastic film member 12 in the above one embodiment, and the raised portion 2c1 of the side plate 2c is used instead of the core 16. Is used, which is different from the configuration of the actuator 1 according to the above embodiment, and the other configurations are the same as those of the actuator 1 according to the above embodiment.
 各弾性膜部材42は、図13(a)に底面図、図13(b)に図13(a)のF-F線破断矢視断面図が示され、内層膜部材42aと外層膜部材42bとの二層に構成されている。外層膜部材42bはアクリロニトリル・ブタジエン(NBR)ゴム等、内層膜部材42aはクロロプレン(CR)ゴム等からなる。このため、NBRゴム等を材質とする外層膜部材42bは、CRゴム等を材質とする内層膜部材42aが有する50°程度の硬度よりも硬い、70°程度の所定の硬度に設定されている。また、内層膜部材42aは、外層膜部材42bの材質であるNBRゴム等が有する反発弾性よりも、大きい反発弾性を有する材質のCRゴム等に設定されている。 The bottom view of each elastic membrane member 42 is shown in FIG. 13 (a), and the cross-sectional view taken along the line FF of FIG. 13 (a) is shown in FIG. 13 (b). It is composed of two layers. The outer layer film member 42b is made of acrylonitrile butadiene (NBR) rubber or the like, and the inner layer film member 42a is made of chloroprene (CR) rubber or the like. Therefore, the outer layer film member 42b made of NBR rubber or the like is set to a predetermined hardness of about 70 °, which is harder than the hardness of about 50 ° of the inner layer film member 42a made of CR rubber or the like. .. Further, the inner layer film member 42a is set to CR rubber or the like made of a material having a rebound resilience larger than that of NBR rubber or the like which is the material of the outer layer film member 42b.
 内層膜部材42aは、章動斜交傘歯車4の受圧面4cの方向を向く面42a1が平らな形状をしており、通路14の流体吹き出し口を囲む容器状に形成されて、筐体2を構成する側板2cとの間で各流体室13を構成する。本実施形態では、内層膜部材42aは、平らな面42a1の内面側に段差42a3が形成された部分に、薄肉部42a2を有する。また、外層膜部材42bは、内層膜部材42aの平らな面42a1の受圧面4c側で受圧面4cに対峙する面42b1が、受圧面4cに向かって膨出する略半球状の形状をして、空間43に面する部分にピンホール状の6個の孔42b2を有する。そして、外層膜部材42bは、容器状に形成されて、平らな面42a1との間に所定の空間43を有して、内層膜部材42aの受圧面4c側の外周を側板2cとの間で覆っている。 The inner layer film member 42a has a flat surface 42a1 facing the pressure receiving surface 4c of the nutation diagonal bevel gear 4, and is formed in a container shape surrounding the fluid outlet of the passage 14. Each fluid chamber 13 is formed between the side plate 2c and the side plate 2c. In the present embodiment, the inner layer film member 42a has a thin portion 42a2 at a portion where a step 42a3 is formed on the inner surface side of the flat surface 42a1. Further, the outer layer film member 42b has a substantially hemispherical shape in which the surface 42b1 facing the pressure receiving surface 4c on the pressure receiving surface 4c side of the flat surface 42a1 of the inner layer film member 42a bulges toward the pressure receiving surface 4c. , It has six pinhole-shaped holes 42b2 in a portion facing the space 43. The outer layer film member 42b is formed in a container shape, has a predetermined space 43 between the outer layer film member 42b and the flat surface 42a1, and the outer periphery of the inner layer film member 42a on the pressure receiving surface 4c side is between the side plate 2c. Covering.
 各弾性膜部材42を構成する内層膜部材42aおよび外層膜部材42bは、筐体2を構成する支持体15が、貫通孔2e,15c(図12(b)参照)にネジ等が挿入されて側板2cにネジ等で固定されることで、弾性膜部材42の外周端部42cの外面側が、支持体15の3箇所に形成された開口部15aの内周縁部によって、側板2cの内側面に押え付けられる。また、内層膜部材42aの内面側が側板2cの内側面に形成された突起2dに押え付けられ、外層膜部材42bの外面側が支持体15の開口部15aの内周縁部に形成された突起15b(図12(c)参照)に押え付けられる。これらの押え付けにより、各流体室13は、各弾性膜部材42をそれぞれ少なくとも一部として周囲が密閉される。 In the inner layer film member 42a and the outer layer film member 42b constituting each elastic film member 42, the support 15 constituting the housing 2 has screws or the like inserted into the through holes 2e and 15c (see FIG. 12B). By being fixed to the side plate 2c with screws or the like, the outer surface side of the outer peripheral end portion 42c of the elastic membrane member 42 is attached to the inner side surface of the side plate 2c by the inner peripheral edge portion of the opening 15a formed at three positions of the support 15. It is pressed down. Further, the inner surface side of the inner layer film member 42a is pressed against the protrusion 2d formed on the inner side surface of the side plate 2c, and the outer surface side of the outer layer film member 42b is formed on the inner peripheral edge of the opening 15a of the support 15 ( It is pressed against (see FIG. 12 (c)). By these pressing, each fluid chamber 13 is hermetically sealed with each elastic membrane member 42 as at least a part thereof.
 このような構成をした他の実施形態によるアクチュエータ41によれば、通路14の流体吹き出し口から所定圧の流体が吹き出されると、各流体室13を構成する大きい反発弾性を有する材質の内層膜部材42aは、所定圧の流体に押されてその平らな面42a1が膨らむ。平らな面42a1のこの膨らみにより、内層膜部材42aは外層膜部材42bの内面に当接し、外層膜部材42bの受圧面4cに対峙する面42b1を受圧面4cの方向へ押し出す。内層膜部材42aの、膨らむ容量が大きくなって膨張力が増した平らな面42a1による外層膜部材42bに対するこの押し出しにより、各弾性膜部材42は、章動斜交傘歯車4の傘歯4b形成面と反対側の受圧面4cを外層膜部材42bで押圧する。 According to the actuator 41 according to another embodiment having such a configuration, when a fluid of a predetermined pressure is blown out from the fluid outlet of the passage 14, an inner layer film made of a material having a large rebound resilience constituting each fluid chamber 13 is formed. The flat surface 42a1 of the member 42a is expanded by being pushed by a fluid having a predetermined pressure. Due to this bulge of the flat surface 42a1, the inner layer film member 42a abuts on the inner surface of the outer layer film member 42b and pushes the surface 42b1 facing the pressure receiving surface 4c of the outer layer film member 42b toward the pressure receiving surface 4c. By extruding the inner layer film member 42a against the outer layer film member 42b by the flat surface 42a1 having a larger swelling capacity and an increased expansion force, each elastic film member 42 forms the cap teeth 4b of the nutation oblique bevel gear 4. The pressure receiving surface 4c on the opposite side to the surface is pressed by the outer layer film member 42b.
 従来の一層構成の弾性膜部材は、自身の弾性力によって受圧面4c側へ突出する変形を妨げる作用を抑制するために反発弾性を高めると、伸び特性が向上して膨らみやすくなる。このため、各流体室13に順次所定圧で供給する流体の供給時間を短くしても、弾性膜部材は受圧面4c側へ十分に突出して、章動斜交傘歯車4の受圧面4cを十分な加圧力で押圧するようになる。しかし、反発弾性を高めた一層構成の弾性膜部材は、膨らみ過ぎることで、受圧面4cとの摩擦や、受圧面4cからよじれる方向に受ける力などによって損傷し易くなり、耐強度が低下する。 The conventional one-layer elastic film member has improved elongation characteristics and is liable to swell when the rebound resilience is increased in order to suppress the action of hindering the deformation of the pressure receiving surface 4c side by its own elastic force. Therefore, even if the supply time of the fluid to be sequentially supplied to each fluid chamber 13 at a predetermined pressure is shortened, the elastic film member sufficiently protrudes toward the pressure receiving surface 4c side, and the pressure receiving surface 4c of the nutation oblique bevel gear 4 is formed. It comes to press with sufficient pressure. However, the one-layered elastic membrane member having increased repulsive elasticity is liable to be damaged by friction with the pressure receiving surface 4c or a force received from the pressure receiving surface 4c in the direction of twisting due to excessive swelling, and the strength resistance is lowered.
 しかしながら、この他の実施形態によるアクチュエータ41では、上記のように、弾性膜部材42を内層膜部材42aと外層膜部材42bとからなる二層に構成し、内層膜部材42aの材質に大きい反発弾性を有するCRゴム等を設定することで、弾性膜部材42の伸び特性を確保しながら、外層膜部材42bの材質を内層膜部材42aの反発弾性よりも小さな反発弾性を有する材質のNBRゴム等に設定することで、内層膜部材42aの膨らみを抑制し、内層膜部材42aが膨らみ過ぎないようにしている。このため、弾性膜部材42は、各流体室13に順次所定圧で供給する流体の供給時間を短くしても、反発弾性の大きい内層膜部材42aの作用により、受圧面4c側へ十分に突出して、章動斜交傘歯車4の受圧面4cを十分な加圧力で押圧するようになる。しかも、これと共に、弾性膜部材42は、反発弾性の小さな外層膜部材42bの作用により、膨らみすぎるのが抑制されて、長時間アクチュエータ41を動作させても、受圧面4cとの接触による摩擦やねじれ力によって損傷し難くなる。 However, in the actuator 41 according to the other embodiment, as described above, the elastic membrane member 42 is composed of two layers composed of the inner layer membrane member 42a and the outer layer membrane member 42b, and has a large rebound resilience with respect to the material of the inner layer membrane member 42a. By setting the CR rubber or the like having the above, the material of the outer layer film member 42b is changed to the NBR rubber or the like having a rebound resilience smaller than the repulsive elasticity of the inner layer film member 42a while ensuring the elongation characteristics of the elastic film member 42. By setting, the swelling of the inner layer film member 42a is suppressed, and the inner layer film member 42a is prevented from swelling too much. Therefore, even if the supply time of the fluid to be sequentially supplied to each fluid chamber 13 at a predetermined pressure is shortened, the elastic membrane member 42 sufficiently protrudes toward the pressure receiving surface 4c due to the action of the inner layer membrane member 42a having a large rebound resilience. As a result, the pressure receiving surface 4c of the nutation oblique bevel gear 4 is pressed with a sufficient pressing force. Moreover, at the same time, the elastic membrane member 42 is prevented from bulging too much due to the action of the outer layer membrane member 42b having a small rebound resilience, and even if the actuator 41 is operated for a long time, friction due to contact with the pressure receiving surface 4c and the like. It is less likely to be damaged by the twisting force.
 このため、この他の実施形態によるアクチュエータ41によっても、各流体室13に順次所定圧で供給する流体の供給時間を短くしても、一方の章動斜交傘歯車4の傘歯4bが他方の固定斜交傘歯車3の傘歯3bと深く噛み合い、各斜交傘歯車3,4の傘歯3b,4bの噛み合いが従来のように外れてしまうことがなくなり、出力軸5の回転数を高くすることが可能になる。また、各斜交傘歯車3,4の傘歯3b,4bが歯飛びすることなく確実に噛み合うようになるため、出力軸5の回転数を高くしても、アクチュエータ41の出力トルクが低下することなく、アクチュエータ41の出力トルクを維持することが可能になる。 Therefore, even if the supply time of the fluid to be sequentially supplied to each fluid chamber 13 at a predetermined pressure is shortened by the actuator 41 according to the other embodiment, the bevel teeth 4b of one of the bevel gears 4 are the other. The meshing of the bevel teeth 3b of the fixed diagonal bevel gear 3 is deeply meshed, and the meshing of the bevel teeth 3b and 4b of the diagonal bevel gears 3 and 4 is not disengaged as in the conventional case, and the rotation speed of the output shaft 5 is increased. It becomes possible to make it higher. Further, since the bevel teeth 3b and 4b of the oblique bevel gears 3 and 4 are surely meshed with each other without tooth skipping, the output torque of the actuator 41 is reduced even if the rotation speed of the output shaft 5 is increased. It becomes possible to maintain the output torque of the actuator 41 without having to do so.
 また、この他の実施形態によるアクチュエータ41によれば、外層膜部材42bが空間43に面する部分に1個以上の孔42b2を有するので、内層膜部材42aは、その平らな面42a1が膨らむ際、外層膜部材42bとの間の空間43にある空気を孔42b2を介して、外層膜部材42bの外部に排出しながら、膨らむ。したがって、内層膜部材42aの平らな面42a1は、外層膜部材42bとの間の空間43にある空気に阻まれること無く、より小さな力で伸びて外層膜部材42bの内面を押圧すると共に、外層膜部材42bとの間の空間43にある空気の負圧を受けること無く、速やかに縮むようになる。このため、弾性膜部材42はより迅速に柔軟に伸縮するようになり、出力軸5の回転数をより高くしても、アクチュエータ41の出力トルクが低下することなく、アクチュエータ41の出力トルクを維持することが可能になる。 Further, according to the actuator 41 according to the other embodiment, since the outer layer film member 42b has one or more holes 42b2 in the portion facing the space 43, the inner layer film member 42a has a flat surface 42a1 when the flat surface 42a1 swells. , The air in the space 43 between the outer layer film member 42b is discharged to the outside of the outer layer film member 42b through the hole 42b2 and swells. Therefore, the flat surface 42a1 of the inner layer film member 42a extends with a smaller force without being blocked by the air in the space 43 between the inner layer film member 42a and presses the inner surface of the outer layer film member 42b, and also presses the inner surface of the outer layer film member 42b. It quickly shrinks without being subjected to the negative pressure of air in the space 43 between the membrane member 42b. Therefore, the elastic membrane member 42 expands and contracts more quickly and flexibly, and even if the rotation speed of the output shaft 5 is increased, the output torque of the actuator 41 does not decrease and the output torque of the actuator 41 is maintained. It becomes possible to do.
 また、この他の実施形態によるアクチュエータ41によれば、外層膜部材42bが内層膜部材42aよりも硬い70°程度の硬度の材質のNBRゴム等に設定されることで、弾性膜部材42の表層部の耐強度が向上する。このため、弾性膜部材42は、受圧面4cとの摩擦に対抗する耐摩擦性能が向上すると共に、受圧面4cからより大きなねじれ力を受けても損傷し難くなる。 Further, according to the actuator 41 according to the other embodiment, the outer layer film member 42b is set to NBR rubber or the like having a hardness of about 70 °, which is harder than the inner layer film member 42a, so that the surface layer of the elastic film member 42 is formed. The strength resistance of the part is improved. Therefore, the elastic membrane member 42 has improved friction resistance against friction with the pressure receiving surface 4c, and is less likely to be damaged even if it receives a larger torsional force from the pressure receiving surface 4c.
 また、この他の実施形態によるアクチュエータ41によれば、内層膜部材42aは、平らな面42a1に有する薄肉部42a2により、平らな面42a1の反発弾性がより大きくなって伸び特性がさらに向上すると共に、伸縮時に部材内部にかかる応力が小さくなって耐久性が向上する。実験したところ、この他の実施形態によるアクチュエータ41は、その回転数を上げても、上記の一実施形態によるアクチュエータ1に比べて寿命が10倍になった。 Further, according to the actuator 41 according to the other embodiment, the inner layer film member 42a has a thin portion 42a2 on the flat surface 42a1, so that the rebound resilience of the flat surface 42a1 is further increased and the elongation characteristics are further improved. , The stress applied to the inside of the member during expansion and contraction is reduced, and the durability is improved. As a result of an experiment, the life of the actuator 41 according to the other embodiment was 10 times longer than that of the actuator 1 according to the above one embodiment even if the rotation speed was increased.
 なお、この他の実施形態によるアクチュエータ41においては、中子16の代わりに側板2cの盛り上がり部2c1を備える。盛り上がり部2c1は、側板2cの各弾性膜部材42に覆われる部分が、弾性膜部材42との間に形成する空間と略相似形状に突出して形成されている。このため、上記の一実施形態によるアクチュエータ1と同様に、弾性膜部材42と側板2cとの間に形成される流体室13の容積が小さくなる。したがって、少量の圧縮空気を流体室13へ短時間に供給することで弾性膜部材42が十分に膨らむため、出力軸5の回転数をさらに高くすることが可能になる。また、側板2cの盛り上がり部2c1を無くして平坦にし、側板2cの各弾性膜部材42に覆われる部分に、中子16のような、弾性膜部材42との間に形成する空間と略相似形状をした中子を備えることで、流体室13の容積はその中子の大きさを調整することで、所望の任意の大きさに容易に調整することができる。したがって、この他の実施形態においても、出力軸5の回転数をさらに高くすることが可能になると共に、弾性膜部材42が受圧面4cを十分に加圧する押圧力を発生させるのに必要な、圧縮空気の流体室13への供給量を微調整して、アクチュエータ41の仕様を容易に微調整することができる。 Note that the actuator 41 according to the other embodiment includes a raised portion 2c1 of the side plate 2c instead of the core 16. The raised portion 2c1 is formed so that a portion of the side plate 2c covered with each elastic film member 42 projects in a shape substantially similar to the space formed between the side plate 2c and the elastic film member 42. Therefore, the volume of the fluid chamber 13 formed between the elastic membrane member 42 and the side plate 2c becomes smaller as in the actuator 1 according to the above embodiment. Therefore, by supplying a small amount of compressed air to the fluid chamber 13 in a short time, the elastic membrane member 42 sufficiently expands, so that the rotation speed of the output shaft 5 can be further increased. Further, the raised portion 2c1 of the side plate 2c is eliminated and flattened, and the portion of the side plate 2c covered by each elastic film member 42 has a shape substantially similar to the space formed between the side plate 2c and the elastic film member 42 such as the core 16. The volume of the fluid chamber 13 can be easily adjusted to any desired size by adjusting the size of the core. Therefore, also in other embodiments, it is possible to further increase the rotation speed of the output shaft 5, and it is necessary for the elastic film member 42 to generate a pressing force that sufficiently pressurizes the pressure receiving surface 4c. The specifications of the actuator 41 can be easily fine-tuned by fine-tuning the amount of compressed air supplied to the fluid chamber 13.
 また、この他の実施形態によるアクチュエータ41においても、上記の一実施形態によるアクチュエータ1と同様に、受圧面4cと筐体を構成する支持体15との間に、図8の断面図に示すように緩衝材17を備えることで、動作時に生じる動作音が抑制されるようになる。 Further, also in the actuator 41 according to the other embodiment, as shown in the cross-sectional view of FIG. 8, between the pressure receiving surface 4c and the support 15 constituting the housing, as in the actuator 1 according to the above one embodiment. By providing the cushioning material 17, the operating noise generated during the operation can be suppressed.
 上記の各実施形態によるアクチュエータ1,41は、火花を発生することがないので、火気を嫌う環境において、装置の位置決めなどを行うステッピングモータとして利用されると、好適である。 Since the actuators 1 and 41 according to the above embodiments do not generate sparks, it is suitable to be used as a stepping motor for positioning the device in an environment where fire is disliked.
 1,41…アクチュエータ、2…筐体、2a…ハウジング本体、2b,2c…側板、2c1…盛り上がり部、2d,15b…突起、2e,15c…貫通孔、3…固定斜交傘歯車(他方の斜交傘歯車)、3a,4a,8a,9a…歯車本体、3b,4b,8b,9b…傘歯、4…章動斜交傘歯車(一方の斜交傘歯車)、4c…受圧面、5…出力軸、5a…大径部、5b…小径部、5c…円錐状体、6,7,11…ボールベアリング、8…出力斜交傘歯車、9…入力斜交傘歯車、9c…球状軸受け、10…ネジ、12,42…弾性膜部材、12a…外輪部、12b…平板部、12c,42c…外周端部、13…流体室、14…通路、15…支持体(筐体)、15a…開口部、16…中子、17…緩衝材、42a…内層膜部材、42a1…平らな面、42a2…薄肉部、42a3…段差、42b…外層膜部材、42b1…受圧面4cに対峙する面、42b2…小孔、43…空間 1,41 ... actuator, 2 ... housing, 2a ... housing body, 2b, 2c ... side plate, 2c1 ... raised part, 2d, 15b ... protrusion, 2e, 15c ... through hole, 3 ... fixed oblique bevel gear (other Diagonal bevel gears), 3a, 4a, 8a, 9a ... Gear body, 3b, 4b, 8b, 9b ... Bevel teeth, 4 ... Bevel gears (one oblique bevel gear), 4c ... Pressure receiving surface, 5 ... Output shaft, 5a ... Large diameter part, 5b ... Small diameter part, 5c ... Conical body, 6, 7, 11 ... Ball bearing, 8 ... Output diagonal bevel gear, 9 ... Input diagonal bevel gear, 9c ... Spherical Bearings, 10 ... Screws, 12, 42 ... Elastic film members, 12a ... Outer ring parts, 12b ... Flat plate parts, 12c, 42c ... Outer peripheral ends, 13 ... Fluid chambers, 14 ... Passages, 15 ... Supports (housings), 15a ... opening, 16 ... core, 17 ... cushioning material, 42a ... inner layer film member, 42a1 ... flat surface, 42a2 ... thin wall part, 42a3 ... step, 42b ... outer layer film member, 42b1 ... facing pressure receiving surface 4c Surface, 42b2 ... Small hole, 43 ... Space

Claims (8)

  1.  相対的に回転自在でかつ歯数が異なる一対の斜交傘歯車と、前記一対の斜交傘歯車のうちの一方を他方に対して振れ回り運動自在に支持する支持手段と、一方の前記斜交傘歯車を振れ回り運動させる筐体に設けられた押圧力付与手段と、前記一対の斜交傘歯車のうちのいずれか一方の自転を防止する自転防止手段と、回転自在に支承された出力軸と、前記自転防止手段によって自転が妨げられない側の前記斜交傘歯車の回転力を前記出力軸に伝達する回転伝達手段とを備え、
     各前記斜交傘歯車の交わる2軸間に運動を伝達する基準ピッチ面を構成する円錐面の頂点が前記振れ回り運動の中心と一致し、前記押圧力付与手段が、前記振れ回り運動する一方の前記斜交傘歯車の傘歯形成面と反対側の受圧面に対峙して前記筐体に3箇所以上取り付けられた弾性膜部材と、各前記弾性膜部材をそれぞれ少なくとも一部として周囲が密閉されて3箇所以上設けられた流体室と、各前記流体室に流体を送り込む通路と、各前記流体室に順次流体を所定圧をもって供給する流体供給手段とからなるアクチュエータにおいて、
     各前記弾性膜部材は、前記受圧面に向かって突出する環状の外輪部と、前記外輪部の突出端よりも前記受圧面から遠い位置で外面が前記受圧面に対向し内面が前記通路の流体吹き出し口に対向する前記外輪部に周囲が囲まれた平板部とが一体に容器状に形成されて前記筐体との間で各前記流体室を構成し、前記流体吹き出し口から所定圧の流体が吹き出されると前記外輪部が前記受圧面を押圧すると共に、前記弾性膜部材自身の弾性力によって前記平板部が前記外輪部の突出端よりも前記受圧面に近い位置に反り返って前記受圧面を押圧することを特徴とするアクチュエータ。
    A pair of oblique gears that are relatively rotatable and have different numbers of teeth, a support means that swings and freely supports one of the pair of oblique gears with respect to the other, and one of the oblique gears. An output that is rotatably supported by a pressing force applying means provided in a housing that swings and moves the gears, and a rotation prevention means that prevents the rotation of one of the pair of diagonal gears. The shaft and the rotation transmitting means for transmitting the rotational force of the oblique bevel gear on the side where the rotation is not hindered by the rotation preventing means to the output shaft are provided.
    The apex of the conical surface forming the reference pitch surface for transmitting the motion between the two intersecting axes of the oblique umbrella gear coincides with the center of the swinging motion, and the pressing force applying means makes the swinging motion. The elastic membrane member attached to the housing at three or more locations facing the pressure receiving surface opposite to the pressure receiving surface of the oblique umbrella gear, and each of the elastic membrane members is sealed at least as a part. In an actuator consisting of three or more fluid chambers, a passage for feeding fluid into each of the fluid chambers, and a fluid supply means for sequentially supplying fluid to each of the fluid chambers with a predetermined pressure.
    Each of the elastic film members has an annular outer ring portion protruding toward the pressure receiving surface and a fluid whose outer surface faces the pressure receiving surface and whose inner surface faces the pressure receiving surface at a position farther from the pressure receiving surface than the protruding end of the outer ring portion. A flat plate portion surrounded by the outer ring portion facing the outlet is integrally formed in a container shape to form each of the fluid chambers with the housing, and a fluid having a predetermined pressure is formed from the fluid outlet. Is blown out, the outer ring portion presses the pressure receiving surface, and the elastic force of the elastic film member itself causes the flat plate portion to warp at a position closer to the pressure receiving surface than the protruding end of the outer ring portion. An actuator characterized by pressing.
  2.  相対的に回転自在でかつ歯数が異なる一対の斜交傘歯車と、前記一対の斜交傘歯車のうちの一方を他方に対して振れ回り運動自在に支持する支持手段と、一方の前記斜交傘歯車を振れ回り運動させる筐体に設けられた押圧力付与手段と、前記一対の斜交傘歯車のうちのいずれか一方の自転を防止する自転防止手段と、回転自在に支承された出力軸と、前記自転防止手段によって自転が妨げられない側の前記斜交傘歯車の回転力を前記出力軸に伝達する回転伝達手段とを備え、
     各前記斜交傘歯車の交わる2軸間に運動を伝達する基準ピッチ面を構成する円錐面の頂点が前記振れ回り運動の中心と一致し、前記押圧力付与手段が、前記振れ回り運動する一方の前記斜交傘歯車の傘歯形成面と反対側の受圧面に対峙して前記筐体に3箇所以上取り付けられた弾性膜部材と、各前記弾性膜部材をそれぞれ少なくとも一部として周囲が密閉されて3箇所以上設けられた流体室と、各前記流体室に流体を送り込む通路と、各前記流体室に順次流体を所定圧をもって供給する流体供給手段とからなるアクチュエータにおいて、
     各前記弾性膜部材は、前記受圧面の方向を向く面が平らな形状をして前記通路の流体吹き出し口を囲む容器状に形成されて前記筐体との間で各前記流体室を構成する内層膜部材と、前記内層膜部材の平らな前記面の前記受圧面側で前記受圧面に対峙する面が前記受圧面に向かって膨出する形状の容器状に形成されて平らな前記面との間に所定の空間を有して前記内層膜部材の前記受圧面側の外周を前記筐体との間で覆う外層膜部材との二層に構成され、前記内層膜部材は前記外層膜部材の材質の反発弾性よりも大きい反発弾性を有する材質に設定されることを特徴とするアクチュエータ。
    A pair of oblique gears that are relatively rotatable and have different numbers of teeth, a support means that swings and freely supports one of the pair of oblique gears with respect to the other, and one of the oblique gears. An output that is rotatably supported by a pressing force applying means provided in a housing that swings and moves the gears, and a rotation prevention means that prevents the rotation of one of the pair of diagonal gears. The shaft and the rotation transmitting means for transmitting the rotational force of the oblique bevel gear on the side where the rotation is not hindered by the rotation preventing means to the output shaft are provided.
    The apex of the conical surface forming the reference pitch surface for transmitting the motion between the two intersecting axes of the oblique umbrella gear coincides with the center of the swinging motion, and the pressing force applying means makes the swinging motion. The elastic membrane member attached to the housing at three or more locations facing the pressure receiving surface opposite to the pressure receiving surface of the oblique umbrella gear, and each of the elastic membrane members is sealed at least as a part. In an actuator consisting of three or more fluid chambers, a passage for feeding fluid into each of the fluid chambers, and a fluid supply means for sequentially supplying fluid to each of the fluid chambers with a predetermined pressure.
    Each of the elastic membrane members has a flat surface facing the pressure receiving surface and is formed in a container shape surrounding the fluid outlet of the passage to form each of the fluid chambers with the housing. The inner layer film member and the flat surface of the inner layer film member formed in a container shape in which the surface facing the pressure receiving surface on the pressure receiving surface side bulges toward the pressure receiving surface. The inner layer film member is composed of two layers, that is, an outer layer film member that has a predetermined space between the two layers and covers the outer periphery of the inner layer film member on the pressure receiving surface side between the inner layer film member and the housing. An actuator characterized in that it is set to a material having a rebound resilience larger than that of the material of.
  3.  前記外層膜部材は前記空間に面する部分に1個以上の孔を有することを特徴とする請求項2に記載のアクチュエータ。 The actuator according to claim 2, wherein the outer layer film member has one or more holes in a portion facing the space.
  4.  前記外層膜部材は前記内層膜部材の材質の硬度よりも硬い所定の硬度の材質に設定されることを特徴とする請求項2または請求項3に記載のアクチュエータ。 The actuator according to claim 2 or 3, wherein the outer layer film member is set to a material having a predetermined hardness that is harder than the hardness of the material of the inner layer film member.
  5.  前記内層膜部材は、平らな前記面に薄肉部を有することを特徴とする請求項2から請求項4のいずれか1項に記載のアクチュエータ。 The actuator according to any one of claims 2 to 4, wherein the inner layer film member has a thin-walled portion on the flat surface.
  6.  前記筐体は、前記弾性膜部材に覆われる部分が前記弾性膜部材との間に形成する空間と略相似形状に突出して形成されることを特徴とする請求項1から請求項5のいずれか1項に記載のアクチュエータ。 Any one of claims 1 to 5, wherein the housing is formed so that a portion covered with the elastic film member projects in a shape substantially similar to a space formed between the elastic film member and the housing. The actuator according to item 1.
  7.  前記弾性膜部材と前記筐体との間に形成される空間の少なくとも一部を埋める、前記空間と略相似形状をした中子を備えることを特徴とする請求項1から請求項5のいずれか1項に記載のアクチュエータ。 Any of claims 1 to 5, characterized in that a core having a shape substantially similar to that of the space is provided, which fills at least a part of the space formed between the elastic film member and the housing. The actuator according to item 1.
  8.  前記押圧力付与手段によって前記受圧面が押圧されたときに前記振れ回り運動の中心を中心に傾いて前記筐体に近づく位置の前記受圧面と前記筐体との間に緩衝材を備えることを特徴とする請求項1から請求項7のいずれか1項に記載のアクチュエータ。 When the pressure receiving surface is pressed by the pressing force applying means, a cushioning material is provided between the pressure receiving surface and the housing at a position where the pressure receiving surface is tilted about the center of the swinging motion and approaches the housing. The actuator according to any one of claims 1 to 7, wherein the actuator is characterized.
PCT/JP2020/040819 2019-11-01 2020-10-30 Actuator WO2021085603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021553722A JP7281098B2 (en) 2019-11-01 2020-10-30 actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-200016 2019-11-01
JP2019200016 2019-11-01

Publications (1)

Publication Number Publication Date
WO2021085603A1 true WO2021085603A1 (en) 2021-05-06

Family

ID=75715029

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/033182 WO2021084894A1 (en) 2019-11-01 2020-09-02 Actuator
PCT/JP2020/040819 WO2021085603A1 (en) 2019-11-01 2020-10-30 Actuator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033182 WO2021084894A1 (en) 2019-11-01 2020-09-02 Actuator

Country Status (2)

Country Link
JP (1) JP7281098B2 (en)
WO (2) WO2021084894A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317858A (en) * 2001-04-18 2002-10-31 Tok Bearing Co Ltd Actuator
JP2006112618A (en) * 2004-09-17 2006-04-27 Tok Bearing Co Ltd Actuator
JP2014047797A (en) * 2012-08-29 2014-03-17 Mitsubishi Heavy Ind Ltd Actuator
JP2015169594A (en) * 2014-03-10 2015-09-28 横河電機株式会社 diaphragm

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846748A (en) * 1971-10-15 1973-07-03
JPS60136642A (en) * 1983-12-23 1985-07-20 Sanwa Tekki Corp Uniform motion type reduction gear
JPH01118238A (en) * 1987-10-30 1989-05-10 Mitsubishi Kasei Corp Production of magneto-optical recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317858A (en) * 2001-04-18 2002-10-31 Tok Bearing Co Ltd Actuator
JP2006112618A (en) * 2004-09-17 2006-04-27 Tok Bearing Co Ltd Actuator
JP2014047797A (en) * 2012-08-29 2014-03-17 Mitsubishi Heavy Ind Ltd Actuator
JP2015169594A (en) * 2014-03-10 2015-09-28 横河電機株式会社 diaphragm

Also Published As

Publication number Publication date
WO2021084894A1 (en) 2021-05-06
JPWO2021085603A1 (en) 2021-05-06
JP7281098B2 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
JP2011516763A (en) Separable hinge device with return function
JP2007532894A (en) Clock crown with detaching device
EP2418406B1 (en) Pressure-operated control valve
WO2021085603A1 (en) Actuator
US20110229352A1 (en) High Pressure Double Membrane Pump and Membrane Element for Such a Pump
JP4768572B2 (en) Motor actuator
WO2018183819A2 (en) Servo-pneumatic control systems for soft robotic actuators
US20060117886A1 (en) Geared transmission apparatus
JP7535826B2 (en) Motorized valves and actuators
WO2016136427A1 (en) Fluid controller
EP3632621B1 (en) Striking torque adjustment device of hydraulic torque wrench
WO2009081962A1 (en) Gate rotor and screw compressor
JPWO2006092891A1 (en) Rotary damper and console box
KR102228823B1 (en) Actuator with elastic restoring function using reel spring
US7678007B2 (en) Reclining device incorporation by reference
WO2017061381A1 (en) Gear transmission device
JP5702668B2 (en) Door closer
KR100522862B1 (en) A motor with clutch
JP2001280364A (en) Power transmission mechanism
JP6765279B2 (en) Diaphragm pump
JP7523182B2 (en) Rotary damper and manufacturing method thereof
JP2010203129A (en) Opening/closing device for automatic door and torque limiter
JP2018071480A (en) Scroll Type Fluid Machine
JP2018112200A (en) Gear box, weight reduction method thereof, and robot
WO2023074647A1 (en) Damper device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883225

Country of ref document: EP

Kind code of ref document: A1