WO2009081962A1 - Gate rotor and screw compressor - Google Patents

Gate rotor and screw compressor Download PDF

Info

Publication number
WO2009081962A1
WO2009081962A1 PCT/JP2008/073523 JP2008073523W WO2009081962A1 WO 2009081962 A1 WO2009081962 A1 WO 2009081962A1 JP 2008073523 W JP2008073523 W JP 2008073523W WO 2009081962 A1 WO2009081962 A1 WO 2009081962A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
gate rotor
gate
screw
shaft
Prior art date
Application number
PCT/JP2008/073523
Other languages
French (fr)
Japanese (ja)
Inventor
Mohammod Anwar Hossain
Masanori Masuda
Tadashi Okada
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to CN2008801228982A priority Critical patent/CN101918716A/en
Priority to EP08865298.7A priority patent/EP2236832A4/en
Priority to US12/809,159 priority patent/US20110165009A1/en
Publication of WO2009081962A1 publication Critical patent/WO2009081962A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/02Arrangements for drive of co-operating members, e.g. for rotary piston and casing of toothed-gearing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/001Radial sealings for working fluid
    • F04C27/004Radial sealing elements specially adapted for intermeshing-engagement type pumps, e.g. gear pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0078Fixing rotors on shafts, e.g. by clamping together hub and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/52Bearings for assemblies with supports on both sides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/16Wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/17Tolerance; Play; Gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/007Sealings for working fluid between radially and axially moving parts

Definitions

  • the present invention relates to a gate rotor and a screw compressor using the gate rotor.
  • a screw rotor 202 is accommodated in a cylinder 210 of a casing 201, and a gate rotor 203 is meshed with the screw rotor 202.
  • a gate rotor 203 is meshed with the screw rotor 202.
  • there is one that compresses gas in a compression chamber formed by the mutual engagement of the gate rotor 203 see Japanese Patent No. 3731399: Patent Document 1). That is, the groove portion 221 of the screw rotor 202 and the tooth portion 231 of the gate rotor 203 mesh to form the compression chamber.
  • a low pressure gas is sucked into the compression chamber from one end side in the axis 202a direction of the screw rotor 202, the low pressure gas is compressed in the compression chamber, and then the compressed high pressure gas is supplied to the compression chamber.
  • the screw rotor 202 is discharged from the other end side in the direction of the shaft 202a.
  • the gate rotor 203 has a gate rotor main body 230 having the tooth portion 231 and a shaft portion 240 for fixing the gate rotor main body 230.
  • the shaft portion 240 is supported by the casing 201.
  • the gate rotor chamber L that houses the gate rotor 203 in the casing 201 has a low pressure, and the gas in the gate rotor chamber L has a relatively low temperature. The thermal expansion of the surrounding part becomes small.
  • the portion of the casing 201 around the gate rotor chamber L is a portion that determines the distance between the shaft 202 a of the screw rotor 202 and the shaft 203 a of the gate rotor 203.
  • the gate rotor main body 230 is fixed to the shaft portion 240, the tooth portion 231 of the gate rotor main body 230 bites into the groove portion 221 of the screw rotor 202, and the wear amount of the tooth portion 231 is reduced. It was a lot. As a result, the gap between the tooth portion 231 of the gate rotor body 230 and the groove portion 221 of the screw rotor 202 is increased, and the performance of the compressor is deteriorated.
  • a high pressure chamber is provided around the cylinder 210 in the casing 201 to reduce the temperature difference between the casing 201 and the screw rotor 202.
  • a high pressure chamber is not provided around the gate rotor chamber L, and the bending of the gate rotor 203 cannot be eliminated. Therefore, the object of the present invention is to prevent the gate rotor from biting into the screw rotor with a simple configuration even if the gate rotor is bent due to the temperature difference between the casing and the screw rotor during operation of the compressor.
  • An object of the present invention is to provide a screw compressor that reduces the amount of wear of the gate rotor and prevents a reduction in the capacity of the compressor, and a gate rotor used in the compressor.
  • a gate rotor includes a gate rotor body and a shaft portion to which the gate rotor body is attached.
  • the gate rotor body includes a plurality of teeth and a central hole.
  • the shaft portion includes a base portion that supports the gate rotor main body on one surface, and a shaft portion that is provided on one surface of the base portion and is inserted into the hole portion, and the shaft portion of the shaft portion.
  • an elastic body is arranged between the hole of the gate rotor body.
  • the gate rotor of the present invention since the elastic body is disposed between the shaft portion of the shaft portion and the hole portion of the gate rotor main body, the gate rotor main body is the base of the shaft portion. It becomes possible to slide on the part. For this reason, when this gate rotor is used for a screw compressor, the tooth portion of the gate rotor body is meshed with the screw rotor and the shaft portion is supported by the casing, the heat of the screw rotor during the operation of the compressor. Even if the expansion of the casing increases, the thermal expansion of the casing decreases, and the distance between the axis of the screw rotor and the axis of the gate rotor (that is, the axis of the shaft portion) changes.
  • the main body slides on the base portion of the shaft portion, and the positional relationship between the screw rotor and the gate rotor main body maintains an appropriate distance.
  • the gate rotor body is prevented from biting into the screw rotor, the amount of wear of the gate rotor body is reduced, and the compressor capacity is prevented from being lowered.
  • useless power due to the gate rotor body and the screw rotor pressing strongly against each other is reduced.
  • the elastic body can maintain the pressure contact force between the gate rotor body and the screw rotor to such an extent that gas does not leak.
  • the gate rotor can be prevented from biting into the screw rotor with a simple configuration, and the amount of wear of the gate rotor can be reduced. To reduce the capacity of the compressor.
  • the elastic body is a leaf spring. According to the gate rotor of the second invention, since the elastic body is a leaf spring, the elastic body can be configured simply.
  • the leaf spring is an annular wave spring or spiral spring. According to the gate rotor of the third invention, since the leaf spring is an annular wave spring or spiral spring, the leaf spring can be configured simply.
  • the elastic body is an annular rubber. According to the gate rotor of the fourth invention, since the elastic body is an annular rubber, the elastic body can be configured simply.
  • the screw compressor of the fifth invention includes a casing having a cylinder, a cylindrical screw rotor fitted to the cylinder, and the gate rotor meshing with the screw rotor, and the gate of the gate rotor.
  • the gate rotor since the gate rotor is provided, the thermal expansion of the screw rotor is increased during the operation of the compressor, while the thermal expansion of the casing is decreased, Even if the distance between the shaft and the shaft of the gate rotor (that is, the shaft of the shaft portion) changes, the gate rotor body slides on the base portion of the shaft portion, and the screw rotor The positional relationship with the gate rotor body maintains an appropriate distance. As a result, the gate rotor body is prevented from biting into the screw rotor, the amount of wear of the gate rotor body is reduced, and the compressor capacity is prevented from being lowered. In addition, useless power due to the gate rotor body and the screw rotor pressing strongly against each other is reduced.
  • the elastic body can maintain the pressure contact force between the gate rotor body and the screw rotor to such an extent that gas does not leak. Therefore, even if the gate rotor bends due to the temperature difference between the casing and the screw rotor during operation of the compressor, the gate rotor can be prevented from biting into the screw rotor with a simple configuration, and the amount of wear of the gate rotor can be reduced. To reduce the capacity of the compressor.
  • a screw compressor includes a screw rotor, a gate rotor, a gate rotor shaft, and an elastic body.
  • the screw rotor has a plurality of spiral grooves on the outer peripheral surface and is rotatable.
  • the gate rotor has an opening at the center thereof.
  • a plurality of teeth meshing with the grooves of the screw rotor are arranged radially around the opening of the gate rotor.
  • the gate rotor shaft is inserted with a gap in the opening of the gate rotor.
  • the elastic body is disposed around at least one of the clearance between the opening of the gate rotor and the gate rotor shaft and / or a plurality of detent pins that stop the rotation of the gate rotor around the gate rotor shaft.
  • a gap is formed around the gate rotor shaft, and the elastic body includes a gap around the gate rotor shaft and / or a plurality of detent pins for stopping rotation around the gate rotor shaft. It is possible to absorb the radial extension of the teeth of the gate rotor.
  • the screw compressor of the seventh invention is the screw compressor of the sixth invention, wherein the elastic body arranged in the gap is directed toward one of the plurality of detent pins with respect to the gate rotor. Gives an elastic force in the radial direction.
  • the elastic body arranged in the gap gives the gate rotor an elastic force in the radial direction of the gate rotor toward the anti-rotation pin. For teeth whose movement in the direction is constrained, the radial extension can be effectively absorbed by the elastic body.
  • the screw compressor of the eighth invention is the screw compressor of the sixth invention, and the elastic body arranged in the gap is ring-shaped and fills the entire gap. According to the screw compressor of the eighth invention, since the elastic body arranged in the gap is ring-shaped and fills the entire gap, it is possible to absorb the radial extension of the teeth of the gate rotor. . Moreover, it is possible to further extend the life of the teeth of the gate rotor by filling a ring-shaped elastic body in the entire gap.
  • a screw compressor according to a ninth aspect is the screw compressor according to any one of the sixth to eighth aspects, wherein one of the plurality of detent pins is a floating pin.
  • the floating pin connects between the gate rotor shaft and the gate rotor in a state having more play than the other detent pins.
  • one of the plurality of detent pins is a floating pin that connects between the gate rotor shaft and the gate rotor in a state having more play than the other detent pins. Therefore, the floating pin can be moved larger than the other non-rotating pins, so that the radial expansion of the teeth of the gate rotor can be absorbed.
  • a screw compressor according to a tenth aspect of the present invention is the screw compressor according to the ninth aspect of the present invention, wherein the elastic body has a ring shape and is arranged around a rotation prevention pin that is a floating pin.
  • the elastic body since the elastic body is ring-shaped and is arranged around the non-rotating pin that is a floating pin, it can absorb the radial extension of the teeth of the gate rotor. Is possible.
  • the gate rotor of the first invention since the elastic body is disposed between the shaft portion of the shaft portion and the hole portion of the gate rotor body, the gate rotor is used for a screw compressor. In addition, even if the gate rotor bends due to the temperature difference between the casing and the screw rotor during operation of the compressor, the gate rotor can be prevented from biting into the screw rotor with a simple configuration and the amount of wear of the gate rotor can be reduced. To reduce the capacity of the compressor.
  • the elastic body can be configured simply.
  • the leaf spring can be configured simply.
  • the elastic body can be configured simply.
  • the gate rotor since the gate rotor is provided, even if the gate rotor is bent due to a temperature difference between the casing and the screw rotor during the operation of the compressor, the gate rotor can be configured with a simple configuration. The bite into the screw rotor is prevented, the amount of wear of the gate rotor is reduced, and the compressor capacity is prevented from being lowered.
  • the sixth aspect of the invention it is possible to absorb the radial extension of the teeth of the gate rotor.
  • the tooth tips of the gate rotor are not rubbed and worn by the back wall of the groove of the screw rotor, and wear of the gate rotor can be prevented.
  • the extension in the radial direction can be effectively absorbed by the elastic body with respect to the teeth whose movement in the radial direction is restricted by the detent pin.
  • the radial extension of the teeth of the gate rotor can be absorbed, and the life of the teeth of the gate rotor can be further extended by filling the entire gap with the ring-shaped elastic body.
  • the floating pin can be moved larger than the other non-rotating pins so that the radial extension of the teeth of the gate rotor can be absorbed.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a gate rotor and a screw compressor of the present invention. It is a top view of the gate rotor main body of FIG.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is a top view of the shaft part of FIG.
  • FIG. 5 is a sectional view taken along line BB in FIG. 4.
  • FIG. 7 is a cross-sectional view taken along the line CC of FIG. It is a top view which shows 2nd Embodiment of the gate rotor of this invention.
  • FIG. 10A is a front view
  • FIG. 9B is a rear view in a portion where the gate rotor and the gate rotor support of FIG. 9 are coupled.
  • FIG. 12 is a partially enlarged cross-sectional view around a rotation restricting hole and an O-ring of the gate rotor of FIG. 11. It is an expanded sectional view of the conventional screw compressor.
  • FIG. 1 has shown the cross-sectional view which is 1st Embodiment of the gate rotor and screw compressor of this invention.
  • This screw compressor is a single screw compressor, and includes a casing 1 having a cylinder 10, a cylindrical screw rotor 2 fitted into the cylinder 10, and a gate rotor 3 meshing with the screw rotor 2.
  • the screw rotor 2 has a plurality of spiral grooves 21 on the outer peripheral surface.
  • the gate rotor 3 has a top shape and has a plurality of tooth portions 31 in a gear shape on the outer peripheral surface. The groove portion 21 of the screw rotor 2 and the tooth portion 31 of the gate rotor 3 mesh with each other.
  • a compression chamber C is formed by the mutual engagement of the screw rotor 2 and the gate rotor 3. That is, the compression chamber C is a space defined by the groove portion 21 of the screw rotor 2, the tooth portion 31 of the gate rotor 3, and the inner surface of the cylinder 10 of the casing 1.
  • a pair of the gate rotors 3 are arranged on the left and right sides of the screw rotor 2 with the axis 2a of the screw rotor 2 as point symmetry.
  • the casing 1 is provided with a gate rotor chamber L outside the cylinder 10, and the gate rotor 3 is accommodated in the gate rotor chamber L.
  • the gate rotor chamber L and the cylinder 10 communicate with each other through a through hole 12.
  • the gate rotor 3 enters the cylinder 10 through the through hole 12.
  • the screw rotor 2 rotates about the shaft 2a in the direction of the arrow R, and with the rotation of the screw rotor 2, the gate rotor 3 rotates about the shaft 3a, and the compression chamber Compress the gas in C.
  • the screw rotor 2 is rotated by a motor (not shown) housed in the casing 1. That is, a low-pressure gas is sucked into the compression chamber C from one end side in the axis 2a direction of the screw rotor 2, the low-pressure gas is compressed in the compression chamber C, and then the compressed high-pressure gas is compressed. Gas is discharged from the discharge port 13 on the other end side of the screw rotor 2 in the axis 2a direction.
  • the gate rotor 3 includes a gate rotor main body 30 and a shaft portion 40 to which the gate rotor main body 30 is attached.
  • the gate rotor body 30 meshes with the screw rotor 2.
  • the shaft portion 40 is supported by the casing 1.
  • the gate rotor body 30 is made of, for example, resin, and the shaft portion 40 is made of, for example, metal.
  • the gate rotor main body 30 has a disc shape and includes a plurality of tooth portions 31 on the outer peripheral surface and a central hole portion 32.
  • FIG. 2 is a plan view of the gate rotor body
  • FIG. 3 is a cross-sectional view taken along line AA of FIG.
  • the tooth portion 31 meshes with the groove portion 21 of the screw rotor 2.
  • the center of the hole 32 coincides with the shaft 30 a of the gate rotor body 30.
  • the gate rotor body 30 is provided with a pin hole 33, and a positioning pin (not shown) is inserted into the pin hole 33. As shown in FIGS.
  • the shaft portion 40 includes a base portion 43, a first shaft portion 41 provided on one surface 43 a of the base portion 43, and a first portion provided on the other surface of the base portion 43.
  • 2 shaft portions 42. 4 is a plan view of the shaft portion
  • FIG. 5 is a cross-sectional view taken along the line BB of FIG.
  • the base portion 43 has a plurality of tooth portions 44 on the outer peripheral surface.
  • the tooth portion 44 corresponds to the tooth portion 31 of the gate rotor main body 30.
  • the base portion 43 is provided with a pin hole 45, and a positioning pin (not shown) is inserted into the pin hole 45.
  • the axis of the first shaft portion 41 and the axis of the second shaft portion 42 coincide with the shaft 40 a of the shaft portion 40.
  • the second shaft portion 42 is supported by the casing 1 via a bearing. As shown in FIGS. 6 and 7, in the gate rotor 3, the gate rotor main body 30 is supported on the one surface 43 a of the base portion 43 of the shaft portion 40.
  • the first shaft portion 41 of the shaft portion 40 is inserted into the hole portion 32 of the gate rotor body 30.
  • 6 is a plan view of the gate rotor
  • FIG. 7 is a sectional view taken along the line CC of FIG.
  • the elastic body 5 is disposed in the gap S between the first shaft portion 41 of the shaft portion 40 and the hole portion 32 of the gate rotor main body 30. In FIG. 6, the elastic body 5 is shown in black for easy understanding.
  • the elastic body 5 is a leaf spring.
  • This leaf spring is an annular wave spring.
  • the peak portion of the wave spring is located on the outer peripheral surface, and the valley portion of the wave spring is located on the inner peripheral surface.
  • the peak portion of the wave spring is in contact with the inner peripheral surface of the hole portion 32 of the gate rotor body 30, and the valley portion of the wave spring is on the outer peripheral surface of the first shaft portion 41 of the shaft portion 40. Contact.
  • this leaf spring may be a spiral spring.
  • the elastic body 5 is always biased so that the shaft 30a of the gate rotor main body 30 and the shaft 40a of the shaft portion 40 coincide with each other.
  • the gate rotor body 30 moves on the base portion 43 of the shaft portion 40 against the elastic force of the elastic body 5.
  • the pin hole 33 of the gate rotor body 30 and the pin hole 45 of the shaft portion 40 are overlapped so that their axes coincide with each other, and a positioning pin (not shown) is inserted therethrough.
  • the elastic body 5 is disposed between the shaft portion 41 of the shaft portion 40 and the hole portion 32 of the gate rotor main body 30, and thus the gate rotor main body 30. Is slidable on the base portion 43 of the shaft portion 40. For this reason, when this gate rotor 3 is used for a screw compressor, when the tooth portion 31 of the gate rotor main body 30 is engaged with the screw rotor 2 and the shaft portion 40 is supported by the casing 1, the compressor is in operation.
  • the gate rotor body 30 is prevented from biting into the screw rotor 2, the amount of wear of the gate rotor body 30 is reduced, and the compressor capacity is prevented from being lowered. Further, useless power due to the gate rotor body 30 and the screw rotor 2 being strongly pressed against each other is reduced. Further, the elastic body 5 can maintain the pressure contact force between the gate rotor body 30 and the screw rotor 2 to such an extent that gas does not leak from the compression chamber C.
  • the gate rotor 3 is bent due to a temperature difference between the casing 1 and the screw rotor 2 during the operation of the compressor, the gate rotor 3 is prevented from biting into the screw rotor 2 with a simple configuration, and the gate The amount of wear of the rotor 3 is reduced to prevent the compressor from degrading.
  • FIG. 8 shows a second embodiment of the gate rotor of the present invention. The difference from the first embodiment will be described. In the second embodiment, the configuration of the elastic body is different. Note that the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and thus description thereof is omitted.
  • the elastic body 5A is an annular rubber.
  • the outer peripheral surface of the annular rubber is in contact with the inner peripheral surface of the hole portion 32 of the gate rotor body 30, and the inner peripheral surface of the annular rubber is in contact with the first shaft portion 41 of the shaft portion 40. Contact the outer peripheral surface.
  • the elastic body 5A is always biased so that the axis of the gate rotor main body 30 and the axis of the shaft portion 40 coincide with each other. When a force is applied to the gate rotor body 30 from the outside, the gate rotor body 30 moves on the shaft portion 40 against the elastic force of the elastic body 5A. Therefore, in addition to the function and effect of the first embodiment, since the elastic body 5A is an annular rubber, the elastic body 5A can be configured simply.
  • the shaft portion of the shaft portion of the gate rotor may be one
  • the gate rotor body may be attached to the one shaft portion
  • the one shaft portion may be supported by the casing.
  • the number of gate rotors may be increased or decreased.
  • the screw compressor has a complicated structure and geometrically has limited parts accuracy and assembly accuracy, and the gap between the gate rotor teeth and the screw rotor groove may not be negligible, and the gap variation is further different. May become violent. Even if such a variation in the gap between the teeth of the gate rotor and the groove of the screw rotor occurs, the structure of the screw compressor disclosed in the above literature cannot absorb the variation in the gap.
  • the teeth of the gate rotor teeth are subjected to thermal expansion and load fluctuations, so that the teeth of the resin gate rotor are worn, causing a decrease in performance.
  • the teeth of the gate rotor are generally larger in height than in width, the expansion in the height direction (radial direction) increases when thermally expanded.
  • a single screw compressor 101 shown in FIGS. 9 to 15 includes one screw rotor 102, a casing 103 that houses the screw rotor 102, a shaft 104 that serves as a rotation shaft of the screw rotor 102, and two gate rotors 105. , 106, a thrust bearing 107 that supports the screw rotor 102 from the axial direction, and gate rotor shafts 108, 109 for the two gate rotors 105, 106.
  • the screw rotor 102 is a cylindrical rotor having a plurality of spiral grooves 111 on the outer peripheral surface.
  • the screw rotor 102 is integrated with the shaft 104 and can rotate inside the casing 103.
  • the screw rotor 102 is supported by a thrust bearing 107 in a direction from the discharge side to the suction side along the axial direction (the direction opposite to the gas suction direction F1).
  • One end of the shaft 104 is coupled to the screw rotor 102, and the other end is connected to a drive motor (not shown) outside the casing 103.
  • the casing 103 is a cylindrical member and accommodates the screw rotor 102 and the shaft 104 rotatably.
  • an opening 121 is formed at the center, and a plurality of teeth 112 that engage with the groove 111 of the screw rotor 102 are radially formed around the opening 121. It is possible to rotate around the gate rotor shafts 108 and 109.
  • the gate rotors 105 and 106 of the third embodiment are made of synthetic resin.
  • the gate rotor shafts 108 and 109 are inserted into the respective openings 121 of the two gate rotors 105 and 106, and rotatably support the gate rotors 105 and 106.
  • the gate rotor shafts 108 and 109 have gate rotor supports 127 that support the gate rotors 105 and 106.
  • the gate rotor support 127 is fixed coaxially to the gate rotor shafts 108 and 109.
  • the gate rotor support 127 is substantially similar to the gate rotors 105 and 106 and has a slightly smaller dimension.
  • the gate rotors 105 and 106 are fixed by pins 124 so that they cannot rotate with respect to the gate rotor support 127.
  • the gate rotor shafts 108 and 109 are orthogonal to the shaft 104 of the screw rotor 102.
  • the teeth 112 of the gate rotors 105 and 106 can mesh with the spiral groove 111 of the screw rotor 102 inside the casing 103 through a slit 114 formed in the casing 103.
  • the two gate rotors 105 and 106 are arranged symmetrically with respect to the rotation center of the screw rotor 102. In addition, you may arrange
  • the screw rotor 102 rotates, the plurality of teeth 112 of the first gate rotor 105 and the second gate rotor 106 can sequentially mesh with the plurality of grooves 111.
  • the gate rotor shafts 108 and 109 are inserted into the openings 121 of the gate rotors 105 and 106 with a gap 122.
  • the gate rotor shafts 108 and 109 rotatably support the gate rotors 105 and 106.
  • the gap 122 is preferably in the range of about 0.1 to 0.8 mm. That is, if the gap 122 is less than 0.1 mm, the radial extension of the teeth of the gate rotors 105 and 106 cannot be absorbed, and if it exceeds 0.8 mm, the rotational runout of the gate rotors 105 and 106 increases, and the teeth 112 Since it becomes difficult to normally engage with the groove 111, the above range is set in consideration of these problems.
  • a coil spring 128 that is a first elastic body is disposed in a gap 122 between the opening 121 of the gate rotors 105 and 106 and the gate rotor shafts 108 and 109.
  • the O-ring 129 that is the second elastic body is around the floating pin 124 of at least one of the plurality of detent pins 123 and 124 that stop the rotation of the gate rotors 105 and 106 around the gate rotor shafts 108 and 109. Is arranged.
  • the gap 122 is formed around the gate rotor shafts 108 and 109, and the gate rotor 105 is formed by the coil spring 128 and the O-ring 129 around the floating pin 124 disposed in the gap 122 around the gate rotor shafts 108 and 109.
  • the radial extension of the teeth 112 can be absorbed.
  • the adjustment of the clearance between the tooth tips of the teeth 112 of the gate rotors 105 and 106 and the inner wall of the groove 111 of the screw rotor 102, that is, the clearance between the tips is performed by suction temperature or normal temperature (environmental temperature) during low-load operation.
  • the tooth tips of the teeth 112 of the gate rotors 105 and 106 are adjusted so as to contact the inner wall of the groove 111 of the screw rotor 102.
  • the coil spring 126 disposed in the gap 122 is partly with respect to the gate rotors 105 and 106, and the radius of the gate rotors 105 and 106 is directed toward the guide pin 123 that is one of the plurality of detent pins 123 and 124. An elastic force in the direction is given. Accordingly, the coil spring 126 can effectively absorb the radial extension of the teeth 112 whose movement in the radial direction is restricted by the guide pins 123.
  • the floating pin 124 connects the gate rotor shafts 108 and 109 and the gate rotors 105 and 106 in a state having more play than the other detent pins (guide pins 123).
  • the floating pin 124 is closely fitted to the gate rotors 105 and 106 without any play.
  • the floating pin 124 is free to move (movable) in the rotation direction of the gate rotors 105 and 106 with respect to the gate rotor support 127. In a state having not only a margin of play but also play in the radial direction (movable margin), the connection is loose. Therefore, since one floating pin 124 of the two detent pins can be moved more largely than the other guide pin 123, the radial extension of the teeth 112 of the gate rotors 105 and 106 is absorbed. It is possible.
  • the play (movable) in the radial direction of the gate rotors 105 and 106 of the floating pin 124 is 0.1 to 0 .0 so that the amount of elongation due to thermal expansion in the radial direction of the teeth of the gate rotors 105 and 106 can be absorbed. It is set to about 8 mm. If it is less than 0.1 mm, the extension of the teeth 112 cannot be sufficiently absorbed by the movable margin of the floating pin 124, and if it exceeds 0.8 mm, the smooth rotation of the gate rotors 105 and 106 is affected.
  • the O-ring 129 that is the second elastic body has a ring shape and is arranged around the floating pin 124.
  • the O-ring 129 can absorb the radial extension of the teeth 112 of the gate rotors 105 and 106.
  • the O-ring 129 is a ring-shaped member made of an elastic material that is more flexible than the gate rotor 105 (lower Young's modulus).
  • the O-ring 129 can be manufactured from synthetic rubber, synthetic resin, or other elastic materials.
  • a discharge port 110 for discharging the refrigerant gas compressed inside the casing 103 is opened on the outer peripheral surface of the casing 103 one by one corresponding to the first gate rotor 105 and the second gate rotor 106. ing. These discharge ports 110 are opened at appropriate positions on the outer peripheral surface of the casing 103 so as to be able to communicate with the grooves 111 on the outer peripheral surface of the screw rotor 102 when the screw rotor 102 rotates.
  • the single screw compressor 101 shown in FIGS. 9 to 15 compresses gas as follows.
  • the refrigerant F1 (see FIG. 10) before compression introduced from the suction side opening 115 of the casing 103 is compressed immediately before the groove 111 and the teeth 112 are engaged with each other.
  • the volume of the compression chamber is reduced while the groove 111 and the teeth 112 are engaged with each other and the refrigerant is compressed, and then the compressed refrigerant is immediately after the engagement between the grooves 111 and the teeth 112 is released.
  • F2 (see FIG. 10) is discharged from the discharge port 10 that opens to the front side and the back side of FIG. 10 corresponding to the gate rotors 105 and 106, respectively.
  • a gap 122 is formed around the gate rotor shafts 108 and 109, and the coil springs 128 and the floating pins 124 around the gate rotor shafts 108 and 109 are arranged around the gate spring shafts 108 and 109.
  • the O-ring 129 can absorb the radial extension of the teeth 112 of the gate rotors 105 and 106. As a result, the tooth tips of the teeth 112 of the gate rotors 105 and 106 are not rubbed and worn by the inner wall of the groove 111 of the screw rotor 102, and the wear of the gate rotors 105 and 106 can be prevented.
  • the tip gap is automatically adjusted according to changes in operating conditions. Thereby, it is possible to prevent the performance of the screw compressor 101 from being deteriorated.
  • the degree of freedom of processing accuracy and assembly accuracy of the screw compressor 101 is widened, it is possible to reduce the manufacturing cost.
  • the load applied to the teeth 112 of the gate rotors 105 and 106 may fluctuate. Abnormal wear of the teeth 112 of the rotors 105 and 106 or seizure that occurs between the gate rotors 105 and 106 and the screw rotor 102 can be prevented. Thereby, the reliability of the screw compressor 101 can be improved.
  • the gate rotors 105 and 106 can move in the radial direction, so that even if abnormal liquid compression occurs, the liquid refrigerant can escape to the outside of the screw compressor 101 from the tip clearance.
  • the coil spring 126 disposed in the gap 122 is partially directed toward the guide pin 123 with respect to the gate rotors 105 and 106 in the radial direction of the gate rotors 105 and 106. An elastic force is given. Therefore, for the teeth 112 whose movement in the radial direction is restricted by the guide pins 123, the radial extension can be effectively absorbed by the coil spring 126.
  • one of the plurality of detent pins 123 and 124 has more play than the other detent pins (guide pins 123), and the gate rotor shafts 108 and 109. Since the floating pin 124 is connected to the gate rotors 105 and 106, the floating pin 124 can be moved larger than the guide pin 123, whereby the diameter of the teeth 112 of the gate rotors 105 and 106 can be increased. It is possible to absorb the elongation in the direction.
  • the O-ring 129 that is the second elastic body has a ring shape and is arranged around the floating pin 124, so that the teeth 112 of the gate rotors 105 and 106 It is possible to absorb radial elongation.
  • either one of the elastic bodies that is, one of the coil spring 128 disposed in the gap 133 around the gate rotor shafts 108 and 109 or the O-ring 129 around the floating pin 124 is provided. Even in the configuration, it is possible to absorb the radial extension of the teeth 112 of the gate rotors 105 and 106.
  • the coil spring 126 has been described as an example of the elastic body disposed in the gap 122 in the present invention.
  • the present invention is not limited to this, and the ring-shaped elasticity is not limited thereto.
  • the body may fill the entire gap 122. In this case, it is possible to absorb the radial extension of the teeth 112 of the gate rotors 105 and 106 for the entire circumference of the gate rotors 105 and 106. Moreover, the life of the teeth 112 of the gate rotors 105 and 106 can be further extended by filling the entire gap 122 with a ring-shaped elastic body.
  • the present invention can be widely applied to a screw compressor including a screw rotor and a gate rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A screw compressor which can prevent capacity decrease by a simple arrangement, even when a gate rotor bends during operation due to a temperature difference between a casing and a screw rotor, by preventing the gate rotor from biting into the screw rotor, thereby reducing abrasion of the gate rotor. A gate rotor (3) has a gate rotor main body (30), and a shaft portion (40) for fixing the gate rotor main body (30). A resilient body (5) is arranged in a space (S) between a shaft (41) of the shaft portion (40) and a hole (32) of the gate rotor body (30).

Description

ゲートロータおよびスクリュー圧縮機Gate rotor and screw compressor
 この発明は、ゲートロータ、および、このゲートロータを用いたスクリュー圧縮機に関する。 The present invention relates to a gate rotor and a screw compressor using the gate rotor.
 従来、スクリュー圧縮機としては、図16の拡大断面図に示すように、ケーシング201のシリンダ210内に、スクリューロータ202が収納され、このスクリューロータ202にゲートロータ203が噛合され、上記スクリューロータ202および上記ゲートロータ203の相互の噛合によって形成される圧縮室にて、ガスを圧縮するものがある(特許第3731399号公報:特許文献1参照)。
 つまり、上記スクリューロータ202の溝部221と、上記ゲートロータ203の歯部231とが、噛合して、上記圧縮室を形成する。そして、上記圧縮室に、上記スクリューロータ202の軸202a方向の一端側から、低圧のガスを吸入し、この低圧のガスを上記圧縮室にて圧縮してから、この圧縮された高圧のガスを、上記スクリューロータ202の軸202a方向の他端側から、吐出する。
Conventionally, as a screw compressor, as shown in an enlarged cross-sectional view of FIG. 16, a screw rotor 202 is accommodated in a cylinder 210 of a casing 201, and a gate rotor 203 is meshed with the screw rotor 202. In addition, there is one that compresses gas in a compression chamber formed by the mutual engagement of the gate rotor 203 (see Japanese Patent No. 3731399: Patent Document 1).
That is, the groove portion 221 of the screw rotor 202 and the tooth portion 231 of the gate rotor 203 mesh to form the compression chamber. Then, a low pressure gas is sucked into the compression chamber from one end side in the axis 202a direction of the screw rotor 202, the low pressure gas is compressed in the compression chamber, and then the compressed high pressure gas is supplied to the compression chamber. The screw rotor 202 is discharged from the other end side in the direction of the shaft 202a.
 上記ゲートロータ203は、上記歯部231を有するゲートロータ本体230と、このゲートロータ本体230を固定するシャフト部240とを有する。上記シャフト部240は、上記ケーシング201に支持されている。
 ここで、圧縮機の運転中、上記圧縮室にてガスを圧縮しているので、上記スクリューロータ202は、高温になって、上記スクリューロータ202の熱膨張は、大きくなる。一方、上記ケーシング201における上記ゲートロータ203を収納するゲートロータ室Lは、低圧であり、このゲートロータ室Lにあるガスは、相対的に低温であるため、上記ケーシング201における上記ゲートロータ室L周りの部分の熱膨張は、小さくなる。このケーシング201のゲートロータ室L周りの部分は、上記スクリューロータ202の軸202aと上記ゲートロータ203の軸203aとの間の距離を決定する部分である。
特許第3731399号公報
The gate rotor 203 has a gate rotor main body 230 having the tooth portion 231 and a shaft portion 240 for fixing the gate rotor main body 230. The shaft portion 240 is supported by the casing 201.
Here, since the gas is compressed in the compression chamber during the operation of the compressor, the screw rotor 202 becomes high temperature, and the thermal expansion of the screw rotor 202 increases. On the other hand, the gate rotor chamber L that houses the gate rotor 203 in the casing 201 has a low pressure, and the gas in the gate rotor chamber L has a relatively low temperature. The thermal expansion of the surrounding part becomes small. The portion of the casing 201 around the gate rotor chamber L is a portion that determines the distance between the shaft 202 a of the screw rotor 202 and the shaft 203 a of the gate rotor 203.
Japanese Patent No. 3731399
 しかしながら、上記従来のスクリュー圧縮機では、上記ゲートロータ203は、上記ケーシング201に支持されているので、圧縮機の運転中に、上記スクリューロータ202の熱膨張が大きくなる一方、上記ケーシング201の熱膨張が小さくなって、上記スクリューロータ202の軸202aと上記ゲートロータ203の軸203aとの間の距離が変化する問題があった。つまり、圧縮機の運転中に、上記ケーシング201と上記スクリューロータ202との温度差により、上記ゲートロータ203が撓む問題があった。
 このとき、上記ゲートロータ本体230は、上記シャフト部240に固定されているため、上記ゲートロータ本体230の歯部231が上記スクリューロータ202の溝部221に食い込んで、上記歯部231の磨耗量が多くなっていた。
 この結果、上記ゲートロータ本体230の歯部231と上記スクリューロータ202の溝部221との隙間が大きくなって、圧縮機の性能が低下していた。
However, in the conventional screw compressor, since the gate rotor 203 is supported by the casing 201, the thermal expansion of the screw rotor 202 is increased during the operation of the compressor, while the heat of the casing 201 is increased. There is a problem that the expansion is reduced, and the distance between the shaft 202a of the screw rotor 202 and the shaft 203a of the gate rotor 203 changes. That is, there is a problem that the gate rotor 203 is bent due to a temperature difference between the casing 201 and the screw rotor 202 during operation of the compressor.
At this time, since the gate rotor main body 230 is fixed to the shaft portion 240, the tooth portion 231 of the gate rotor main body 230 bites into the groove portion 221 of the screw rotor 202, and the wear amount of the tooth portion 231 is reduced. It was a lot.
As a result, the gap between the tooth portion 231 of the gate rotor body 230 and the groove portion 221 of the screw rotor 202 is increased, and the performance of the compressor is deteriorated.
 なお、上記従来のスクリュー圧縮機では、上記ケーシング201における上記シリンダ210周りの部分に高圧室を設けて、上記ケーシング201と上記スクリューロータ202との温度差を小さくしているが、上記ケーシング201の上記ゲートロータ室L周りの部分に高圧室を設けておらず、上記ゲートロータ203の撓みは、解消できない。
 そこで、この発明の課題は、圧縮機の運転中に、ケーシングとスクリューロータとの温度差により、ゲートロータが撓んでも、簡単な構成で、ゲートロータのスクリューロータへの食い込みを防止して、ゲートロータの磨耗量を低減させて、圧縮機の能力低下を防止するスクリュー圧縮機、および、この圧縮機に用いられるゲートロータを提供することにある。
In the conventional screw compressor, a high pressure chamber is provided around the cylinder 210 in the casing 201 to reduce the temperature difference between the casing 201 and the screw rotor 202. A high pressure chamber is not provided around the gate rotor chamber L, and the bending of the gate rotor 203 cannot be eliminated.
Therefore, the object of the present invention is to prevent the gate rotor from biting into the screw rotor with a simple configuration even if the gate rotor is bent due to the temperature difference between the casing and the screw rotor during operation of the compressor. An object of the present invention is to provide a screw compressor that reduces the amount of wear of the gate rotor and prevents a reduction in the capacity of the compressor, and a gate rotor used in the compressor.
 上記課題を解決するため、第1発明のゲートロータは、ゲートロータ本体と、このゲートロータ本体を取り付けるシャフト部とを備え、上記ゲートロータ本体は、複数の歯部と、中央の孔部とを有し、上記シャフト部は、上記ゲートロータ本体を一面に支持する台部と、この台部の一面に設けられると共に上記孔部に挿入される軸部とを有し、上記シャフト部の軸部と上記ゲートロータ本体の孔部との間には、弾性体が配置されていることを特徴としている。
 この発明のゲートロータによれば、上記シャフト部の軸部と上記ゲートロータ本体の孔部との間には、弾性体が配置されているので、上記ゲートロータ本体は、上記シャフト部の上記台部上でスライド可能となる。
 このため、このゲートロータをスクリュー圧縮機に用い、上記ゲートロータ本体の歯部をスクリューロータに噛合すると共に上記シャフト部をケーシングに支持した場合に、圧縮機の運転中に、上記スクリューロータの熱膨張が大きくなる一方、上記ケーシングの熱膨張が小さくなって、上記スクリューロータの軸と上記ゲートロータの軸(つまり、上記シャフト部の軸)との間の距離が変化しても、上記ゲートロータ本体は、上記シャフト部の上記台部上でスライドして、上記スクリューロータと上記ゲートロータ本体との位置関係は、適切な距離を維持する。
 この結果、上記ゲートロータ本体の上記スクリューロータへの食い込みを防止して、上記ゲートロータ本体の磨耗量を低減させて、圧縮機の能力低下を防止する。また、上記ゲートロータ本体と上記スクリューロータとが互いに強く押し付けあうことによる無駄な動力を低減する。また、上記弾性体により、上記ゲートロータ本体と上記スクリューロータとの圧接力を、ガスが漏れない程度に保持できる。
 したがって、圧縮機の運転中に、ケーシングとスクリューロータとの温度差により、ゲートロータが撓んでも、簡単な構成で、ゲートロータのスクリューロータへの食い込みを防止して、ゲートロータの磨耗量を低減させて、圧縮機の能力低下を防止する。
In order to solve the above problems, a gate rotor according to a first aspect of the present invention includes a gate rotor body and a shaft portion to which the gate rotor body is attached. The gate rotor body includes a plurality of teeth and a central hole. The shaft portion includes a base portion that supports the gate rotor main body on one surface, and a shaft portion that is provided on one surface of the base portion and is inserted into the hole portion, and the shaft portion of the shaft portion. And an elastic body is arranged between the hole of the gate rotor body.
According to the gate rotor of the present invention, since the elastic body is disposed between the shaft portion of the shaft portion and the hole portion of the gate rotor main body, the gate rotor main body is the base of the shaft portion. It becomes possible to slide on the part.
For this reason, when this gate rotor is used for a screw compressor, the tooth portion of the gate rotor body is meshed with the screw rotor and the shaft portion is supported by the casing, the heat of the screw rotor during the operation of the compressor. Even if the expansion of the casing increases, the thermal expansion of the casing decreases, and the distance between the axis of the screw rotor and the axis of the gate rotor (that is, the axis of the shaft portion) changes. The main body slides on the base portion of the shaft portion, and the positional relationship between the screw rotor and the gate rotor main body maintains an appropriate distance.
As a result, the gate rotor body is prevented from biting into the screw rotor, the amount of wear of the gate rotor body is reduced, and the compressor capacity is prevented from being lowered. In addition, useless power due to the gate rotor body and the screw rotor pressing strongly against each other is reduced. Further, the elastic body can maintain the pressure contact force between the gate rotor body and the screw rotor to such an extent that gas does not leak.
Therefore, even if the gate rotor bends due to the temperature difference between the casing and the screw rotor during operation of the compressor, the gate rotor can be prevented from biting into the screw rotor with a simple configuration, and the amount of wear of the gate rotor can be reduced. To reduce the capacity of the compressor.
 また、第2発明のゲートロータでは、上記弾性体は、板バネである。
 第2発明のゲートロータによれば、上記弾性体は、板バネであるので、上記弾性体を簡単な構成にできる。
In the gate rotor of the second invention, the elastic body is a leaf spring.
According to the gate rotor of the second invention, since the elastic body is a leaf spring, the elastic body can be configured simply.
 また、第3発明のゲートロータでは、上記板バネは、環状の波形バネまたは渦巻きバネである。
 第3発明のゲートロータによれば、上記板バネは、環状の波形バネまたは渦巻きバネであるので、上記板バネを簡単な構成にできる。
In the gate rotor of the third invention, the leaf spring is an annular wave spring or spiral spring.
According to the gate rotor of the third invention, since the leaf spring is an annular wave spring or spiral spring, the leaf spring can be configured simply.
 また、第4発明のゲートロータでは、上記弾性体は、環状のゴムである。
 第4発明のゲートロータによれば、上記弾性体は、環状のゴムであるので、上記弾性体を簡単な構成にできる。
In the gate rotor of the fourth invention, the elastic body is an annular rubber.
According to the gate rotor of the fourth invention, since the elastic body is an annular rubber, the elastic body can be configured simply.
 また、第5発明のスクリュー圧縮機は、シリンダを有するケーシングと、このシリンダに嵌合される円筒状のスクリューロータと、このスクリューロータに噛合する上記ゲートロータとを備え、上記ゲートロータの上記ゲートロータ本体の歯部は、上記スクリューロータに噛合し、上記ゲートロータの上記シャフト部は、上記ケーシングに支持されていることを特徴としている。
 第5発明のスクリュー圧縮機によれば、上記ゲートロータを備えるので、圧縮機の運転中に、上記スクリューロータの熱膨張が大きくなる一方、上記ケーシングの熱膨張が小さくなって、上記スクリューロータの軸と上記ゲートロータの軸(つまり、上記シャフト部の軸)との間の距離が変化しても、上記ゲートロータ本体は、上記シャフト部の上記台部上でスライドして、上記スクリューロータと上記ゲートロータ本体との位置関係は、適切な距離を維持する。
 この結果、上記ゲートロータ本体の上記スクリューロータへの食い込みを防止して、上記ゲートロータ本体の磨耗量を低減させて、圧縮機の能力低下を防止する。また、上記ゲートロータ本体と上記スクリューロータとが互いに強く押し付けあうことによる無駄な動力を低減する。また、上記弾性体により、上記ゲートロータ本体と上記スクリューロータとの圧接力を、ガスが漏れない程度に保持できる。
 したがって、圧縮機の運転中に、ケーシングとスクリューロータとの温度差により、ゲートロータが撓んでも、簡単な構成で、ゲートロータのスクリューロータへの食い込みを防止して、ゲートロータの磨耗量を低減させて、圧縮機の能力低下を防止する。
The screw compressor of the fifth invention includes a casing having a cylinder, a cylindrical screw rotor fitted to the cylinder, and the gate rotor meshing with the screw rotor, and the gate of the gate rotor. A tooth portion of the rotor body meshes with the screw rotor, and the shaft portion of the gate rotor is supported by the casing.
According to the screw compressor of the fifth invention, since the gate rotor is provided, the thermal expansion of the screw rotor is increased during the operation of the compressor, while the thermal expansion of the casing is decreased, Even if the distance between the shaft and the shaft of the gate rotor (that is, the shaft of the shaft portion) changes, the gate rotor body slides on the base portion of the shaft portion, and the screw rotor The positional relationship with the gate rotor body maintains an appropriate distance.
As a result, the gate rotor body is prevented from biting into the screw rotor, the amount of wear of the gate rotor body is reduced, and the compressor capacity is prevented from being lowered. In addition, useless power due to the gate rotor body and the screw rotor pressing strongly against each other is reduced. Further, the elastic body can maintain the pressure contact force between the gate rotor body and the screw rotor to such an extent that gas does not leak.
Therefore, even if the gate rotor bends due to the temperature difference between the casing and the screw rotor during operation of the compressor, the gate rotor can be prevented from biting into the screw rotor with a simple configuration, and the amount of wear of the gate rotor can be reduced. To reduce the capacity of the compressor.
 第6発明のスクリュー圧縮機は、スクリューロータと、ゲートロータと、ゲートロータシャフトと、弾性体とを備えている。スクリューロータは、外周面に複数本の螺旋状の溝を有し、回転自在である。ゲートロータは、その中央に開口が形成されている。ゲートロータの開口の周囲には、スクリューロータの溝に噛み合う複数の歯が放射状に配置されている。ゲートロータシャフトは、ゲートロータの開口に隙間を有する状態で挿入されている。弾性体は、ゲートロータの開口とゲートロータシャフトとの隙間、および/またはゲートロータのゲートロータシャフト回りの回転を止める複数の回り止めピンのうちの少なくとも1つの周囲に配置されている。
 第6発明のスクリュー圧縮機によれば、ゲートロータシャフトの周囲に隙間が形成され、弾性体がゲートロータシャフトの周囲の隙間および/またはゲートロータシャフト回りの回転を止める複数の回り止めピンのうちの少なくとも1つの周囲に配置されているので、ゲートロータの歯の径方向の伸びを吸収することが可能である。
A screw compressor according to a sixth aspect of the present invention includes a screw rotor, a gate rotor, a gate rotor shaft, and an elastic body. The screw rotor has a plurality of spiral grooves on the outer peripheral surface and is rotatable. The gate rotor has an opening at the center thereof. A plurality of teeth meshing with the grooves of the screw rotor are arranged radially around the opening of the gate rotor. The gate rotor shaft is inserted with a gap in the opening of the gate rotor. The elastic body is disposed around at least one of the clearance between the opening of the gate rotor and the gate rotor shaft and / or a plurality of detent pins that stop the rotation of the gate rotor around the gate rotor shaft.
According to the screw compressor of the sixth invention, a gap is formed around the gate rotor shaft, and the elastic body includes a gap around the gate rotor shaft and / or a plurality of detent pins for stopping rotation around the gate rotor shaft. It is possible to absorb the radial extension of the teeth of the gate rotor.
 第7発明のスクリュー圧縮機は、第6発明のスクリュー圧縮機であって、隙間に配置された弾性体は、ゲートロータに対して、複数の回り止めピンのうちの1本に向けてゲートロータの半径方向への弾性力を与える。
 第7発明のスクリュー圧縮機によれば、隙間に配置された弾性体がゲートロータに対して回り止めピンに向けてゲートロータの半径方向への弾性力を与えているので、回り止めピンによって半径方向への移動が拘束されている歯について、半径方向の伸びを弾性体によって効果的に吸収することが可能である。
The screw compressor of the seventh invention is the screw compressor of the sixth invention, wherein the elastic body arranged in the gap is directed toward one of the plurality of detent pins with respect to the gate rotor. Gives an elastic force in the radial direction.
According to the screw compressor of the seventh aspect of the invention, the elastic body arranged in the gap gives the gate rotor an elastic force in the radial direction of the gate rotor toward the anti-rotation pin. For teeth whose movement in the direction is constrained, the radial extension can be effectively absorbed by the elastic body.
 第8発明のスクリュー圧縮機は、第6発明のスクリュー圧縮機であって、隙間に配置された弾性体は、リング状であり、隙間全体を埋める。
 第8発明のスクリュー圧縮機によれば、隙間に配置された弾性体が、リング状であり、かつ、隙間全体を埋めるので、ゲートロータの歯の径方向の伸びを吸収することが可能である。また、リング状の弾性体を隙間全体に埋めることにより、ゲートロータの歯の寿命をさらに延ばすことが可能である。
The screw compressor of the eighth invention is the screw compressor of the sixth invention, and the elastic body arranged in the gap is ring-shaped and fills the entire gap.
According to the screw compressor of the eighth invention, since the elastic body arranged in the gap is ring-shaped and fills the entire gap, it is possible to absorb the radial extension of the teeth of the gate rotor. . Moreover, it is possible to further extend the life of the teeth of the gate rotor by filling a ring-shaped elastic body in the entire gap.
 第9発明のスクリュー圧縮機は、第6発明から第8発明のいずれかのスクリュー圧縮機であって、複数の回り止めピンのうちの1つは、フローティングピンである。フローティングピンは、他の回り止めピンよりも遊びを有する状態でゲートロータシャフトとゲートロータとの間を連結する。
 第9発明のスクリュー圧縮機によれば、複数の回り止めピンのうちの1つは、他の回り止めピンよりも遊びを有する状態でゲートロータシャフトとゲートロータとの間を連結するフローティングピンであるので、フローティングピンについて他の回り止めピンよりも可動しろを大きく取ることができるので、ゲートロータの歯の径方向の伸びを吸収することが可能である。
A screw compressor according to a ninth aspect is the screw compressor according to any one of the sixth to eighth aspects, wherein one of the plurality of detent pins is a floating pin. The floating pin connects between the gate rotor shaft and the gate rotor in a state having more play than the other detent pins.
According to the screw compressor of the ninth invention, one of the plurality of detent pins is a floating pin that connects between the gate rotor shaft and the gate rotor in a state having more play than the other detent pins. Therefore, the floating pin can be moved larger than the other non-rotating pins, so that the radial expansion of the teeth of the gate rotor can be absorbed.
 第10発明のスクリュー圧縮機は、第9発明のスクリュー圧縮機であって、弾性体は、リング状であり、フローティングピンである回り止めピンの周囲に配置されている。
 第10発明のスクリュー圧縮機によれば、弾性体が、リング状であり、フローティングピンである回り止めピンの周囲に配置されているので、ゲートロータの歯の径方向の伸びを吸収することが可能である。
A screw compressor according to a tenth aspect of the present invention is the screw compressor according to the ninth aspect of the present invention, wherein the elastic body has a ring shape and is arranged around a rotation prevention pin that is a floating pin.
According to the screw compressor of the tenth aspect of the invention, since the elastic body is ring-shaped and is arranged around the non-rotating pin that is a floating pin, it can absorb the radial extension of the teeth of the gate rotor. Is possible.
 第1発明のゲートロータによれば、上記シャフト部の軸部と上記ゲートロータ本体の孔部との間には、弾性体が配置されているので、このゲートロータをスクリュー圧縮機に用いた場合に、圧縮機の運転中に、ケーシングとスクリューロータとの温度差により、ゲートロータが撓んでも、簡単な構成で、ゲートロータのスクリューロータへの食い込みを防止して、ゲートロータの磨耗量を低減させて、圧縮機の能力低下を防止する。
 第2発明によれば、弾性体を簡単な構成にできる。
 第3発明によれば、板バネを簡単な構成にできる。
 第4発明によれば、弾性体を簡単な構成にできる。
 第5発明のスクリュー圧縮機によれば、上記ゲートロータを備えるので、圧縮機の運転中に、ケーシングとスクリューロータとの温度差により、ゲートロータが撓んでも、簡単な構成で、ゲートロータのスクリューロータへの食い込みを防止して、ゲートロータの磨耗量を低減させて、圧縮機の能力低下を防止する。
According to the gate rotor of the first invention, since the elastic body is disposed between the shaft portion of the shaft portion and the hole portion of the gate rotor body, the gate rotor is used for a screw compressor. In addition, even if the gate rotor bends due to the temperature difference between the casing and the screw rotor during operation of the compressor, the gate rotor can be prevented from biting into the screw rotor with a simple configuration and the amount of wear of the gate rotor can be reduced. To reduce the capacity of the compressor.
According to the second invention, the elastic body can be configured simply.
According to the third invention, the leaf spring can be configured simply.
According to the fourth invention, the elastic body can be configured simply.
According to the screw compressor of the fifth invention, since the gate rotor is provided, even if the gate rotor is bent due to a temperature difference between the casing and the screw rotor during the operation of the compressor, the gate rotor can be configured with a simple configuration. The bite into the screw rotor is prevented, the amount of wear of the gate rotor is reduced, and the compressor capacity is prevented from being lowered.
 第6発明によれば、ゲートロータの歯の径方向の伸びを吸収することができる。これにより、ゲートロータの歯の歯先がスクリューロータの溝の奥壁でこすれて摩耗することがなくなり、ゲートロータの磨耗を防止することができる。
 第7発明によれば、回り止めピンによって半径方向への移動が拘束されている歯について、半径方向の伸びを弾性体によって効果的に吸収することができる。
 第8発明によれば、ゲートロータの歯の径方向の伸びを吸収することができ、かつ、リング状の弾性体を隙間全体に埋めることにより、ゲートロータの歯の寿命をさらに延ばすことができる。
 第9発明によれば、フローティングピンについて他の回り止めピンよりも可動しろを大きく取ることができるので、ゲートロータの歯の径方向の伸びを吸収することができる。
According to the sixth aspect of the invention, it is possible to absorb the radial extension of the teeth of the gate rotor. As a result, the tooth tips of the gate rotor are not rubbed and worn by the back wall of the groove of the screw rotor, and wear of the gate rotor can be prevented.
According to the seventh aspect of the present invention, the extension in the radial direction can be effectively absorbed by the elastic body with respect to the teeth whose movement in the radial direction is restricted by the detent pin.
According to the eighth aspect of the invention, the radial extension of the teeth of the gate rotor can be absorbed, and the life of the teeth of the gate rotor can be further extended by filling the entire gap with the ring-shaped elastic body. .
According to the ninth aspect of the present invention, the floating pin can be moved larger than the other non-rotating pins so that the radial extension of the teeth of the gate rotor can be absorbed.
 第10発明によれば、ゲートロータの歯の径方向の伸びを吸収することができる。 According to the tenth invention, it is possible to absorb the radial extension of the teeth of the gate rotor.
本発明のゲートロータおよびスクリュー圧縮機の第1の実施形態を示す横断面図である。1 is a cross-sectional view showing a first embodiment of a gate rotor and a screw compressor of the present invention. 図1のゲートロータ本体の平面図である。It is a top view of the gate rotor main body of FIG. 図2のA-A断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図1のシャフト部の平面図である。It is a top view of the shaft part of FIG. 図4のB-B断面図である。FIG. 5 is a sectional view taken along line BB in FIG. 4. 図1のゲートロータの平面図である。It is a top view of the gate rotor of FIG. 図6のC-C断面図である。FIG. 7 is a cross-sectional view taken along the line CC of FIG. 本発明のゲートロータの第2の実施形態を示す平面図である。It is a top view which shows 2nd Embodiment of the gate rotor of this invention. 本発明の第3の実施形態に係わるシングルスクリュー圧縮機の主要部分の構成図。The block diagram of the principal part of the single screw compressor concerning the 3rd Embodiment of this invention. 図9のシングルスクリュー圧縮機の正面図。The front view of the single screw compressor of FIG. 図9のスクリューロータおよびゲートロータの配置を示す構成図。The block diagram which shows arrangement | positioning of the screw rotor of FIG. 9, and a gate rotor. 図9のゲートロータおよびゲートロータサポートが結合された部分における、(a)は正面図、および(b)は背面図。FIG. 10A is a front view and FIG. 9B is a rear view in a portion where the gate rotor and the gate rotor support of FIG. 9 are coupled. 図9のゲートロータシャフトの周囲の隙間に配置されたコイルバネ周辺部分の拡大図。The enlarged view of the coil spring periphery part arrange | positioned in the clearance gap around the gate rotor shaft of FIG. 図9のゲートロータ、ゲートロータサポート、およびゲートロータシャフトの切欠正面図。The notch front view of the gate rotor of FIG. 9, a gate rotor support, and a gate rotor shaft. 図11のゲートロータの回転拘束用の孔およびOリング周辺の部分拡大断面図。FIG. 12 is a partially enlarged cross-sectional view around a rotation restricting hole and an O-ring of the gate rotor of FIG. 11. 従来のスクリュー圧縮機の拡大断面図である。It is an expanded sectional view of the conventional screw compressor.
符号の説明Explanation of symbols
 1 ケーシング
 10 シリンダ
 11 シール面
 12 貫通孔
 13 吐出口
 2 スクリューロータ
 2a 軸
 21 溝部
 3,3A ゲートロータ
 3a 軸
 30 ゲートロータ本体
 30a 軸
 31 歯部
 32 孔部
 33 ピン穴
 40 シャフト部
 40a 軸
 41 第1の軸部
 42 第2の軸部
 43 台部
 43a 一面
 44 歯部
 45 ピン穴
 5 弾性体(板バネ)
 5A 弾性体(ゴム)
 C 圧縮室
 L ゲートロータ室
 S 隙間101 スクリュー圧縮機
102 スクリューロータ
103 ケーシング
104 シャフト
105 第1ゲートロータ
106 第2ゲートロータ
108、109 ゲートロータシャフト
111 溝
112 歯
121 開口
122 隙間
123 ガイドピン
124 フローティングピン
127 ゲートロータサポート
128 コイルバネ(第1の弾性体)
129 Oリング(第2の弾性体)
DESCRIPTION OF SYMBOLS 1 Casing 10 Cylinder 11 Seal surface 12 Through-hole 13 Discharge port 2 Screw rotor 2a Shaft 21 Groove part 3, 3A Gate rotor 3a Shaft 30 Gate rotor main body 30a Shaft 31 Teeth part 32 Hole part 33 Pin hole 40 Shaft part 40a Shaft 41 1st Shaft part 42 second shaft part 43 base part 43a one surface 44 tooth part 45 pin hole 5 elastic body (leaf spring)
5A Elastic body (rubber)
C compression chamber L gate rotor chamber S gap 101 screw compressor 102 screw rotor 103 casing 104 shaft 105 first gate rotor 106 second gate rotor 108, 109 gate rotor shaft 111 groove 112 tooth 121 opening 122 gap 123 guide pin 124 floating pin 127 Gate rotor support 128 Coil spring (first elastic body)
129 O-ring (second elastic body)
 以下、この発明を図示の実施の形態により詳細に説明する。
 (第1の実施形態)
 図1は、この発明のゲートロータおよびスクリュー圧縮機の第1の実施形態である横断面図を示している。このスクリュー圧縮機は、シングルスクリュー圧縮機であり、シリンダ10を有するケーシング1と、このシリンダ10に嵌合される円筒状のスクリューロータ2と、このスクリューロータ2に噛合するゲートロータ3とを備える。
 上記スクリューロータ2は、外周面に、複数の螺旋状の溝部21を有する。上記ゲートロータ3は、こま状であり、外周面に、歯車状に複数の歯部31を有する。上記スクリューロータ2の上記溝部21と、上記ゲートロータ3の上記歯部31とは、互いに、噛合する。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
(First embodiment)
FIG. 1: has shown the cross-sectional view which is 1st Embodiment of the gate rotor and screw compressor of this invention. This screw compressor is a single screw compressor, and includes a casing 1 having a cylinder 10, a cylindrical screw rotor 2 fitted into the cylinder 10, and a gate rotor 3 meshing with the screw rotor 2. .
The screw rotor 2 has a plurality of spiral grooves 21 on the outer peripheral surface. The gate rotor 3 has a top shape and has a plurality of tooth portions 31 in a gear shape on the outer peripheral surface. The groove portion 21 of the screw rotor 2 and the tooth portion 31 of the gate rotor 3 mesh with each other.
 上記スクリューロータ2および上記ゲートロータ3の相互の噛合によって、圧縮室Cが、形成される。つまり、この圧縮室Cは、上記スクリューロータ2の上記溝部21と、上記ゲートロータ3の上記歯部31と、上記ケーシング1の上記シリンダ10の内面とによって、区画された空間である。
 上記ゲートロータ3は、上記スクリューロータ2の軸2aを点対称として、上記スクリューロータ2の左右に一対配置されている。上記ケーシング1には、上記シリンダ10の外側に、ゲートロータ室Lが設けられ、このゲートロータ室Lに、上記ゲートロータ3を収納している。上記ゲートロータ室Lと上記シリンダ10とは、貫通孔12により連通している。上記ゲートロータ3は、この貫通孔12から、上記シリンダ10内に進入している。
A compression chamber C is formed by the mutual engagement of the screw rotor 2 and the gate rotor 3. That is, the compression chamber C is a space defined by the groove portion 21 of the screw rotor 2, the tooth portion 31 of the gate rotor 3, and the inner surface of the cylinder 10 of the casing 1.
A pair of the gate rotors 3 are arranged on the left and right sides of the screw rotor 2 with the axis 2a of the screw rotor 2 as point symmetry. The casing 1 is provided with a gate rotor chamber L outside the cylinder 10, and the gate rotor 3 is accommodated in the gate rotor chamber L. The gate rotor chamber L and the cylinder 10 communicate with each other through a through hole 12. The gate rotor 3 enters the cylinder 10 through the through hole 12.
 上記スクリューロータ2は、上記軸2aを中心として、矢印R方向に、回転し、このスクリューロータ2の回転に伴って、上記ゲートロータ3が、軸3aを中心として、回転して、上記圧縮室C内のガスを圧縮する。上記スクリューロータ2は、上記ケーシング1に収納された(図示しない)モータにより、回転される。
 つまり、上記圧縮室Cに、上記スクリューロータ2の軸2a方向の一端側から、低圧のガスを吸入し、この低圧のガスを上記圧縮室Cにて圧縮してから、この圧縮された高圧のガスを、上記スクリューロータ2の軸2a方向の他端側にある吐出口13から、吐出する。
 上記ゲートロータ3は、ゲートロータ本体30と、このゲートロータ本体30を取り付けるシャフト部40とを有する。上記ゲートロータ本体30は、上記スクリューロータ2に噛合する。上記シャフト部40は、上記ケーシング1に支持されている。上記ゲートロータ本体30は、例えば、樹脂からなり、上記シャフト部40は、例えば、金属からなる。
The screw rotor 2 rotates about the shaft 2a in the direction of the arrow R, and with the rotation of the screw rotor 2, the gate rotor 3 rotates about the shaft 3a, and the compression chamber Compress the gas in C. The screw rotor 2 is rotated by a motor (not shown) housed in the casing 1.
That is, a low-pressure gas is sucked into the compression chamber C from one end side in the axis 2a direction of the screw rotor 2, the low-pressure gas is compressed in the compression chamber C, and then the compressed high-pressure gas is compressed. Gas is discharged from the discharge port 13 on the other end side of the screw rotor 2 in the axis 2a direction.
The gate rotor 3 includes a gate rotor main body 30 and a shaft portion 40 to which the gate rotor main body 30 is attached. The gate rotor body 30 meshes with the screw rotor 2. The shaft portion 40 is supported by the casing 1. The gate rotor body 30 is made of, for example, resin, and the shaft portion 40 is made of, for example, metal.
 図2と図3に示すように、上記ゲートロータ本体30は、円盤状であり、外周面の複数の歯部31と、中央の孔部32とを有する。図2は、ゲートロータ本体の平面図であり、図3は、図2のA-A断面図である。
 上記歯部31は、上記スクリューロータ2の溝部21に噛合する。上記孔部32の中心は、上記ゲートロータ本体30の軸30aと一致している。また、上記ゲートロータ本体30には、ピン穴33が設けられ、このピン穴33に、図示しない位置決めピンが挿通される。
 図4と図5に示すように、上記シャフト部40は、台部43と、この台部43の一面43aに設けられる第1の軸部41と、この台部43の他面に設けられる第2の軸部42とを有する。図4は、シャフト部の平面図であり、図5は、図4のB-B断面図である。
As shown in FIGS. 2 and 3, the gate rotor main body 30 has a disc shape and includes a plurality of tooth portions 31 on the outer peripheral surface and a central hole portion 32. FIG. 2 is a plan view of the gate rotor body, and FIG. 3 is a cross-sectional view taken along line AA of FIG.
The tooth portion 31 meshes with the groove portion 21 of the screw rotor 2. The center of the hole 32 coincides with the shaft 30 a of the gate rotor body 30. The gate rotor body 30 is provided with a pin hole 33, and a positioning pin (not shown) is inserted into the pin hole 33.
As shown in FIGS. 4 and 5, the shaft portion 40 includes a base portion 43, a first shaft portion 41 provided on one surface 43 a of the base portion 43, and a first portion provided on the other surface of the base portion 43. 2 shaft portions 42. 4 is a plan view of the shaft portion, and FIG. 5 is a cross-sectional view taken along the line BB of FIG.
 上記台部43は、外周面に、複数の歯部44を有する。この歯部44は、上記ゲートロータ本体30の歯部31に対応している。また、上記台部43には、ピン穴45が設けられ、このピン穴45に、図示しない位置決めピンが挿通される。上記第1の軸部41の軸および上記第2の軸部42の軸は、上記シャフト部40の軸40aと一致している。上記第2の軸部42は、軸受けを介して、上記ケーシング1に支持される。
 図6と図7に示すように、上記ゲートロータ3では、上記ゲートロータ本体30は、上記シャフト部40の上記台部43の上記一面43aに支持される。上記シャフト部40の上記第1の軸部41は、上記ゲートロータ本体30の上記孔部32に挿入される。図6は、ゲートロータの平面図であり、図7は、図6のC-C断面図である。
 上記シャフト部40の上記第1の軸部41と上記ゲートロータ本体30の上記孔部32との間の隙間Sには、弾性体5が配置されている。図6では、分かりやすくするために、上記弾性体5を黒塗りで示している。
The base portion 43 has a plurality of tooth portions 44 on the outer peripheral surface. The tooth portion 44 corresponds to the tooth portion 31 of the gate rotor main body 30. The base portion 43 is provided with a pin hole 45, and a positioning pin (not shown) is inserted into the pin hole 45. The axis of the first shaft portion 41 and the axis of the second shaft portion 42 coincide with the shaft 40 a of the shaft portion 40. The second shaft portion 42 is supported by the casing 1 via a bearing.
As shown in FIGS. 6 and 7, in the gate rotor 3, the gate rotor main body 30 is supported on the one surface 43 a of the base portion 43 of the shaft portion 40. The first shaft portion 41 of the shaft portion 40 is inserted into the hole portion 32 of the gate rotor body 30. 6 is a plan view of the gate rotor, and FIG. 7 is a sectional view taken along the line CC of FIG.
The elastic body 5 is disposed in the gap S between the first shaft portion 41 of the shaft portion 40 and the hole portion 32 of the gate rotor main body 30. In FIG. 6, the elastic body 5 is shown in black for easy understanding.
 上記弾性体5は、板バネである。この板バネは、環状の波形バネである。この波形バネの山部は、外周面に位置し、この波形バネの谷部は、内周面に位置する。この波形バネの山部が、上記ゲートロータ本体30の上記孔部32の内周面に接触し、この波形バネの谷部が、上記シャフト部40の上記第1の軸部41の外周面に接触する。なお、図示しないが、この板バネを渦巻きバネとしてもよい。
 上記弾性体5は、常に、上記ゲートロータ本体30の軸30aと上記シャフト部40の軸40aとが一致するように、付勢している。そして、上記ゲートロータ本体30に外部から力が働くと、上記ゲートロータ本体30は、上記弾性体5の弾発力に対抗して、上記シャフト部40の上記台部43上を移動する。
 上記ゲートロータ本体30のピン穴33と、上記シャフト部40のピン穴45とは、互いに軸が一致するように、重なっており、図示しない位置決めピンが挿通される。
The elastic body 5 is a leaf spring. This leaf spring is an annular wave spring. The peak portion of the wave spring is located on the outer peripheral surface, and the valley portion of the wave spring is located on the inner peripheral surface. The peak portion of the wave spring is in contact with the inner peripheral surface of the hole portion 32 of the gate rotor body 30, and the valley portion of the wave spring is on the outer peripheral surface of the first shaft portion 41 of the shaft portion 40. Contact. Although not shown, this leaf spring may be a spiral spring.
The elastic body 5 is always biased so that the shaft 30a of the gate rotor main body 30 and the shaft 40a of the shaft portion 40 coincide with each other. When a force is applied to the gate rotor body 30 from the outside, the gate rotor body 30 moves on the base portion 43 of the shaft portion 40 against the elastic force of the elastic body 5.
The pin hole 33 of the gate rotor body 30 and the pin hole 45 of the shaft portion 40 are overlapped so that their axes coincide with each other, and a positioning pin (not shown) is inserted therethrough.
 上記構成のゲートロータ3によれば、上記シャフト部40の軸部41と上記ゲートロータ本体30の孔部32との間には、上記弾性体5が配置されているので、上記ゲートロータ本体30は、上記シャフト部40の上記台部43上でスライド可能となる。
 このため、このゲートロータ3をスクリュー圧縮機に用い、上記ゲートロータ本体30の歯部31をスクリューロータ2に噛合すると共に上記シャフト部40をケーシング1に支持した場合に、圧縮機の運転中に、上記スクリューロータ2の熱膨張が大きくなる一方、上記ケーシング1の熱膨張が小さくなって、上記スクリューロータ2の軸2aと上記ゲートロータ3の軸3a(つまり、上記シャフト部40の軸40a)との間の距離が変化しても、上記ゲートロータ本体30は、上記シャフト部40の上記台部43上でスライドして、上記スクリューロータ2と上記ゲートロータ本体30との位置関係は、適切な距離を維持する。
According to the gate rotor 3 having the above configuration, the elastic body 5 is disposed between the shaft portion 41 of the shaft portion 40 and the hole portion 32 of the gate rotor main body 30, and thus the gate rotor main body 30. Is slidable on the base portion 43 of the shaft portion 40.
For this reason, when this gate rotor 3 is used for a screw compressor, when the tooth portion 31 of the gate rotor main body 30 is engaged with the screw rotor 2 and the shaft portion 40 is supported by the casing 1, the compressor is in operation. While the thermal expansion of the screw rotor 2 increases, the thermal expansion of the casing 1 decreases, and the shaft 2a of the screw rotor 2 and the shaft 3a of the gate rotor 3 (that is, the shaft 40a of the shaft portion 40). The gate rotor body 30 slides on the base portion 43 of the shaft portion 40 even if the distance between the screw rotor 2 and the gate rotor body 30 is appropriately determined. Keep a good distance.
 この結果、上記ゲートロータ本体30の上記スクリューロータ2への食い込みを防止して、上記ゲートロータ本体30の磨耗量を低減させて、圧縮機の能力低下を防止する。また、上記ゲートロータ本体30と上記スクリューロータ2とが互いに強く押し付けあうことによる無駄な動力を低減する。また、上記弾性体5により、上記ゲートロータ本体30と上記スクリューロータ2との圧接力を、上記圧縮室Cからガスが漏れない程度に保持できる。
 したがって、圧縮機の運転中に、ケーシング1とスクリューロータ2との温度差により、ゲートロータ3が撓んでも、簡単な構成で、ゲートロータ3のスクリューロータ2への食い込みを防止して、ゲートロータ3の磨耗量を低減させて、圧縮機の能力低下を防止する。
As a result, the gate rotor body 30 is prevented from biting into the screw rotor 2, the amount of wear of the gate rotor body 30 is reduced, and the compressor capacity is prevented from being lowered. Further, useless power due to the gate rotor body 30 and the screw rotor 2 being strongly pressed against each other is reduced. Further, the elastic body 5 can maintain the pressure contact force between the gate rotor body 30 and the screw rotor 2 to such an extent that gas does not leak from the compression chamber C.
Therefore, even if the gate rotor 3 is bent due to a temperature difference between the casing 1 and the screw rotor 2 during the operation of the compressor, the gate rotor 3 is prevented from biting into the screw rotor 2 with a simple configuration, and the gate The amount of wear of the rotor 3 is reduced to prevent the compressor from degrading.
 また、上記弾性体5は、板バネであるので、上記弾性体5を簡単な構成にできる。また、上記板バネは、環状の波形バネまたは渦巻きバネであるので、上記板バネを簡単な構成にできる。
 上記構成のスクリュー圧縮機によれば、上記ゲートロータ3を備えるので、圧縮機の運転中に、ケーシング1とスクリューロータ2との温度差により、ゲートロータ3が撓んでも、簡単な構成で、ゲートロータ3のスクリューロータ2への食い込みを防止して、ゲートロータ3の磨耗量を低減させて、圧縮機の能力低下を防止する。
 (第2の実施形態)
 図8は、この発明のゲートロータの第2の実施形態を示している。上記第1の実施形態と相違する点を説明すると、この第2の実施形態では、弾性体の構成が相違する。なお、上記第1の実施形態と同一の符号は、上記第1の実施形態と同じ構成であるため、その説明を省略する。
Further, since the elastic body 5 is a leaf spring, the elastic body 5 can be configured simply. Further, since the leaf spring is an annular wave spring or spiral spring, the leaf spring can be configured simply.
According to the screw compressor of the above configuration, since the gate rotor 3 is provided, even if the gate rotor 3 is bent due to a temperature difference between the casing 1 and the screw rotor 2 during the operation of the compressor, Biting of the gate rotor 3 into the screw rotor 2 is prevented, the amount of wear of the gate rotor 3 is reduced, and deterioration of the compressor capacity is prevented.
(Second Embodiment)
FIG. 8 shows a second embodiment of the gate rotor of the present invention. The difference from the first embodiment will be described. In the second embodiment, the configuration of the elastic body is different. Note that the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and thus description thereof is omitted.
 この第2の実施形態のゲートロータ3Aでは、弾性体5Aは、環状のゴムである。この環状のゴムの外周面が、上記ゲートロータ本体30の上記孔部32の内周面に接触し、この環状のゴムの内周面が、上記シャフト部40の上記第1の軸部41の外周面に接触する。
 上記弾性体5Aは、常に、上記ゲートロータ本体30の軸と上記シャフト部40の軸とが一致するように、付勢している。そして、上記ゲートロータ本体30に外部から力が働くと、上記ゲートロータ本体30は、上記弾性体5Aの弾発力に対抗して、上記シャフト部40上を移動する。
 したがって、上記第1の実施形態の作用効果に加えて、上記弾性体5Aは、環状のゴムであるので、上記弾性体5Aを簡単な構成にできる。
In the gate rotor 3A of the second embodiment, the elastic body 5A is an annular rubber. The outer peripheral surface of the annular rubber is in contact with the inner peripheral surface of the hole portion 32 of the gate rotor body 30, and the inner peripheral surface of the annular rubber is in contact with the first shaft portion 41 of the shaft portion 40. Contact the outer peripheral surface.
The elastic body 5A is always biased so that the axis of the gate rotor main body 30 and the axis of the shaft portion 40 coincide with each other. When a force is applied to the gate rotor body 30 from the outside, the gate rotor body 30 moves on the shaft portion 40 against the elastic force of the elastic body 5A.
Therefore, in addition to the function and effect of the first embodiment, since the elastic body 5A is an annular rubber, the elastic body 5A can be configured simply.
 なお、この発明は上述の実施形態に限定されない。例えば、ゲートロータのシャフト部の軸部を一つとし、この一つの軸部にゲートロータ本体を取り付けると共に、この一つの軸部をケーシングに支持してもよい。また、ゲートロータの数量を、増減してもよい。
 (第3の実施形態)
 つぎに本発明のスクリュー圧縮機の第3の実施形態を図面を参照しながら説明する。
 従来より、螺旋状の溝を有するスクリューロータと、その螺旋状の溝に噛み合う複数の歯を有するゲートロータとを備えたスクリュー圧縮機がある。このゲートロータは、合成樹脂で製造される場合が多く、ゲートロータの歯の摩耗を低減することが課題になっている。
 そこで、米国特許第4890989号公報のスクリュー圧縮機のように、ゲートロータを支持するゲートロータサポート上で回転方向についての自由度を与えるために、フローテイングピン周りにばねを使い、ゲートロータサポートに対してゲートロータの相対的な回転方向への動きを動きやすくするための構造が提案されている。
In addition, this invention is not limited to the above-mentioned embodiment. For example, the shaft portion of the shaft portion of the gate rotor may be one, the gate rotor body may be attached to the one shaft portion, and the one shaft portion may be supported by the casing. Further, the number of gate rotors may be increased or decreased.
(Third embodiment)
Next, a third embodiment of the screw compressor of the present invention will be described with reference to the drawings.
Conventionally, there is a screw compressor including a screw rotor having a spiral groove and a gate rotor having a plurality of teeth meshing with the spiral groove. This gate rotor is often manufactured from a synthetic resin, and reducing the wear of the teeth of the gate rotor is a problem.
Therefore, in order to give a degree of freedom in the rotation direction on the gate rotor support that supports the gate rotor, as in the screw compressor of US Pat. No. 4,890,989, a spring is used around the floating pin, On the other hand, a structure for facilitating movement of the gate rotor in the relative rotational direction has been proposed.
 しかし、スクリュー圧縮機は、構造が複雑であり、幾何学的に部品精度および組立精度に限界があり、ゲートロータの歯とスクリューロータの溝との隙間が無視できない場合があり、さらに隙間のバラツキが激しくなるおそれがある。このようなゲートロータの歯とスクリューロータの溝との隙間のバラツキが生じても、上記文献のスクリュー圧縮機の構造では、隙間のバラツキを吸収することができなかった。
 また、運転中にゲートロータの歯の熱膨張および負荷変動により、樹脂製のゲートロータの歯が磨耗してしまい、性能低下の原因となる。とくに、ゲートロータの歯は、一般的に幅よりも高さの方が大きいので、熱膨張した際に高さ方向(半径方向)への伸びが大きくなる。ゲートロータの歯が半径方向へ伸びることによって、ゲートロータの歯先はスクリューロータの溝の奥壁でこすれて摩耗しやすくなる。このような熱膨張によるゲートロータの歯の伸びが生じても、上記文献のスクリュー圧縮機の構造では、歯の伸び分を吸収することができなかった。
However, the screw compressor has a complicated structure and geometrically has limited parts accuracy and assembly accuracy, and the gap between the gate rotor teeth and the screw rotor groove may not be negligible, and the gap variation is further different. May become violent. Even if such a variation in the gap between the teeth of the gate rotor and the groove of the screw rotor occurs, the structure of the screw compressor disclosed in the above literature cannot absorb the variation in the gap.
In addition, during operation, the teeth of the gate rotor teeth are subjected to thermal expansion and load fluctuations, so that the teeth of the resin gate rotor are worn, causing a decrease in performance. In particular, since the teeth of the gate rotor are generally larger in height than in width, the expansion in the height direction (radial direction) increases when thermally expanded. When the teeth of the gate rotor extend in the radial direction, the tooth tip of the gate rotor is easily rubbed against the back wall of the groove of the screw rotor. Even if the gate rotor teeth are elongated due to such thermal expansion, the structure of the screw compressor disclosed in the above literature cannot absorb the tooth elongation.
 そこで、以下に述べる第3の実施形態では、ゲートロータの摩耗および摩耗による性能低下を抑えることができるスクリュー圧縮機を提供している。
 <シングルスクリュー圧縮機101の構成>
 図9~15に示されるシングルスクリュー圧縮機101は、1本のスクリューロータ102と、スクリューロータ102を収納するケーシング103と、スクリューロータ102の回転軸となるシャフト104と、2個のゲートロータ105、106と、スクリューロータ102の軸方向から支持するスラスト軸受107と、2つのゲートロータ105、106のためのゲートロータシャフト108、109とを備えている。
 スクリューロータ102は、外周面に複数本の螺旋状の溝111を有している円柱状のロータである。スクリューロータ102は、シャフト104と一体になって、ケーシング103の内部で回転することが可能である。スクリューロータ102は、スラスト軸受107によって、軸方向に沿って吐出側から吸入側へ向かう方向(ガスの吸入方向F1の反対方向)から支持されている。シャフト104は、一端がスクリューロータ102と結合され、他端がケーシング103外部の駆動用モータ(図示せず)に連結されている。
Therefore, in a third embodiment described below, a screw compressor is provided that can suppress wear of the gate rotor and performance degradation due to wear.
<Configuration of single screw compressor 101>
A single screw compressor 101 shown in FIGS. 9 to 15 includes one screw rotor 102, a casing 103 that houses the screw rotor 102, a shaft 104 that serves as a rotation shaft of the screw rotor 102, and two gate rotors 105. , 106, a thrust bearing 107 that supports the screw rotor 102 from the axial direction, and gate rotor shafts 108, 109 for the two gate rotors 105, 106.
The screw rotor 102 is a cylindrical rotor having a plurality of spiral grooves 111 on the outer peripheral surface. The screw rotor 102 is integrated with the shaft 104 and can rotate inside the casing 103. The screw rotor 102 is supported by a thrust bearing 107 in a direction from the discharge side to the suction side along the axial direction (the direction opposite to the gas suction direction F1). One end of the shaft 104 is coupled to the screw rotor 102, and the other end is connected to a drive motor (not shown) outside the casing 103.
 ケーシング103は、円筒形状の部材であり、スクリューロータ102およびシャフト104を回転自在に収納する。
 2つのゲートロータ、すなわち、第1ゲートロータ105および第2ゲートロータ106は、いずれも、中央に開口121が形成され、開口121の周囲にスクリューロータ102の溝111に噛み合う複数の歯112が放射状に配置された回転体であり、ゲートロータシャフト108、109の回りに回転することが可能である。
 第3の実施形態のゲートロータ105、106は、合成樹脂で製造されている。ここで、スクリュー圧縮機101に使用される関係上、耐圧性、耐摩耗性の高い合成樹脂でゲートロータ105、106を製造するのが好ましい。
 ゲートロータシャフト108、109は、2つのゲートロータ105、106のそれぞれの開口121に挿入され、ゲートロータ105、106を回転自在に支持する。具体的には、ゲートロータシャフト108、109は、ゲートロータ105、106を支持するゲートロータサポート127を有している。ゲートロータサポート127は、ゲートロータシャフト108、109に対して同軸上に固定されている。ゲートロータサポート127は、ゲートロータ105、106とほぼ相似形であって少し小さい寸法を有している。ゲートロータ105、106は、ゲートロータサポート127に対して回転できないようにピン124で固定されている。ゲートロータシャフト108、109は、スクリューロータ102のシャフト104に対して直交している。
The casing 103 is a cylindrical member and accommodates the screw rotor 102 and the shaft 104 rotatably.
In each of the two gate rotors, that is, the first gate rotor 105 and the second gate rotor 106, an opening 121 is formed at the center, and a plurality of teeth 112 that engage with the groove 111 of the screw rotor 102 are radially formed around the opening 121. It is possible to rotate around the gate rotor shafts 108 and 109.
The gate rotors 105 and 106 of the third embodiment are made of synthetic resin. Here, it is preferable to manufacture the gate rotors 105 and 106 with a synthetic resin having high pressure resistance and wear resistance because of being used for the screw compressor 101.
The gate rotor shafts 108 and 109 are inserted into the respective openings 121 of the two gate rotors 105 and 106, and rotatably support the gate rotors 105 and 106. Specifically, the gate rotor shafts 108 and 109 have gate rotor supports 127 that support the gate rotors 105 and 106. The gate rotor support 127 is fixed coaxially to the gate rotor shafts 108 and 109. The gate rotor support 127 is substantially similar to the gate rotors 105 and 106 and has a slightly smaller dimension. The gate rotors 105 and 106 are fixed by pins 124 so that they cannot rotate with respect to the gate rotor support 127. The gate rotor shafts 108 and 109 are orthogonal to the shaft 104 of the screw rotor 102.
 ゲートロータ105、106の歯112は、ケーシング103に形成されたスリット114を通して、ケーシング103内部のスクリューロータ102の螺旋状の溝111と噛み合うことが可能である。2枚のゲートロータ105、106は、スクリューロータ102の回転中心に対して左右対称に配置されている。なお、ゲートロータ105、106を上下対称に配置してもよい。
 スクリューロータ102が回転すれば、第1ゲートロータ105および第2ゲートロータ106の複数の歯112は、順次複数の溝111に噛み合うことができる。
 ゲートロータシャフト108、109は、ゲートロータ105、106の開口121に隙間122を有する状態で挿入されている。ゲートロータシャフト108、109は、ゲートロータ105、106を回転自在に支持する。
The teeth 112 of the gate rotors 105 and 106 can mesh with the spiral groove 111 of the screw rotor 102 inside the casing 103 through a slit 114 formed in the casing 103. The two gate rotors 105 and 106 are arranged symmetrically with respect to the rotation center of the screw rotor 102. In addition, you may arrange | position the gate rotors 105 and 106 symmetrically up and down.
When the screw rotor 102 rotates, the plurality of teeth 112 of the first gate rotor 105 and the second gate rotor 106 can sequentially mesh with the plurality of grooves 111.
The gate rotor shafts 108 and 109 are inserted into the openings 121 of the gate rotors 105 and 106 with a gap 122. The gate rotor shafts 108 and 109 rotatably support the gate rotors 105 and 106.
 隙間122は、0.1~0.8mm程度の範囲が好ましい。すなわち、隙間122が0.1mm未満だとゲートロータ105、106の歯の径方向の伸びを吸収できず、また、0.8mmを超えるとゲートロータ105、106の回転振れが大きくなり、歯112が正常に溝111に噛み合うことが困難になるので、これらの不具合を考慮して、上記範囲内に設定されている。
 第1の弾性体であるコイルバネ128は、ゲートロータ105、106の開口121とゲートロータシャフト108、109との隙間122に配置されている。
 しかも、第2の弾性体であるOリング129は、ゲートロータ105、106のゲートロータシャフト108、109回りの回転を止める複数の回り止めピン123、124のうちの少なくとも1つのフローティングピン124の周囲に配置されている。
The gap 122 is preferably in the range of about 0.1 to 0.8 mm. That is, if the gap 122 is less than 0.1 mm, the radial extension of the teeth of the gate rotors 105 and 106 cannot be absorbed, and if it exceeds 0.8 mm, the rotational runout of the gate rotors 105 and 106 increases, and the teeth 112 Since it becomes difficult to normally engage with the groove 111, the above range is set in consideration of these problems.
A coil spring 128 that is a first elastic body is disposed in a gap 122 between the opening 121 of the gate rotors 105 and 106 and the gate rotor shafts 108 and 109.
In addition, the O-ring 129 that is the second elastic body is around the floating pin 124 of at least one of the plurality of detent pins 123 and 124 that stop the rotation of the gate rotors 105 and 106 around the gate rotor shafts 108 and 109. Is arranged.
 このように、ゲートロータシャフト108、109の周囲に隙間122が形成され、ゲートロータシャフト108、109の周囲の隙間122に配置されたコイルバネ128およびフローティングピン124周囲のOリング129により、ゲートロータ105、106の歯112の径方向の伸びを吸収することが可能である。
 ここで、ゲートロータ105、106の歯112の歯先とスクリューロータ102の溝111の奥壁との間の隙間、すなわち先端隙間の調整は、低負荷運転時の吸入温度または常温(環境温度)において、ゲートロータ105、106の歯112の歯先がスクリューロータ102の溝111の奥壁に当たるように調整される。
 隙間122に配置されたコイルバネ126は、ゲートロータ105、106に対して部分的に、複数の回り止めピン123、124のうちの1本であるガイドピン123に向けてゲートロータ105、106の半径方向への弾性力を与えている。これにより、ガイドピン123によって半径方向への移動が拘束されている歯112について、半径方向の伸びをコイルバネ126によって効果的に吸収することが可能である。
Thus, the gap 122 is formed around the gate rotor shafts 108 and 109, and the gate rotor 105 is formed by the coil spring 128 and the O-ring 129 around the floating pin 124 disposed in the gap 122 around the gate rotor shafts 108 and 109. 106, the radial extension of the teeth 112 can be absorbed.
Here, the adjustment of the clearance between the tooth tips of the teeth 112 of the gate rotors 105 and 106 and the inner wall of the groove 111 of the screw rotor 102, that is, the clearance between the tips, is performed by suction temperature or normal temperature (environmental temperature) during low-load operation. , The tooth tips of the teeth 112 of the gate rotors 105 and 106 are adjusted so as to contact the inner wall of the groove 111 of the screw rotor 102.
The coil spring 126 disposed in the gap 122 is partly with respect to the gate rotors 105 and 106, and the radius of the gate rotors 105 and 106 is directed toward the guide pin 123 that is one of the plurality of detent pins 123 and 124. An elastic force in the direction is given. Accordingly, the coil spring 126 can effectively absorb the radial extension of the teeth 112 whose movement in the radial direction is restricted by the guide pins 123.
 フローティングピン124は、他の回り止めピン(ガイドピン123)よりも遊びを有する状態でゲートロータシャフト108、109とゲートロータ105、106との間を連結している。
 フローティングピン124は、ゲートロータ105、106に対しては遊びがない状態で密に嵌合されているが、ゲートロータサポート127に対しては、ゲートロータ105、106の回転方向についての遊び(可動しろ)だけでなく半径方向についての遊び(可動しろ)を有する状態で、緩い連結状態になっている。
 したがって、2本の回り止めピンのうちの一方のフローティングピン124を他方のガイドピン123よりも可動しろを大きく取ることができるので、ゲートロータ105、106の歯112の径方向の伸びを吸収することが可能である。
The floating pin 124 connects the gate rotor shafts 108 and 109 and the gate rotors 105 and 106 in a state having more play than the other detent pins (guide pins 123).
The floating pin 124 is closely fitted to the gate rotors 105 and 106 without any play. However, the floating pin 124 is free to move (movable) in the rotation direction of the gate rotors 105 and 106 with respect to the gate rotor support 127. In a state having not only a margin of play but also play in the radial direction (movable margin), the connection is loose.
Therefore, since one floating pin 124 of the two detent pins can be moved more largely than the other guide pin 123, the radial extension of the teeth 112 of the gate rotors 105 and 106 is absorbed. It is possible.
 フローティングピン124のゲートロータ105、106の半径方向についての遊び(可動しろ)は、ゲートロータ105、106の歯の半径方向への熱膨張による伸び量を吸収できるように、0.1~0.8mm程度に設定されている。0.1mm未満だと歯112の伸びをフローティングピン124の可動しろで十分に吸収できず、0.8mmを超えるとゲートロータ105、106の円滑な回転に影響が出るなどの問題がある。
 第2の弾性体であるOリング129は、リング状であり、フローティングピン124の周囲に配置されている。このOリング129により、ゲートロータ105、106の歯112の径方向の伸びを吸収することが可能である。
 Oリング129は、ゲートロータ105よりもたわみやすい(ヤング率の低い)弾性材料で製造されたリング状の部材である。例えば、Oリング129は、合成ゴム、合成樹脂その他の弾性材料で製造することが可能である。
The play (movable) in the radial direction of the gate rotors 105 and 106 of the floating pin 124 is 0.1 to 0 .0 so that the amount of elongation due to thermal expansion in the radial direction of the teeth of the gate rotors 105 and 106 can be absorbed. It is set to about 8 mm. If it is less than 0.1 mm, the extension of the teeth 112 cannot be sufficiently absorbed by the movable margin of the floating pin 124, and if it exceeds 0.8 mm, the smooth rotation of the gate rotors 105 and 106 is affected.
The O-ring 129 that is the second elastic body has a ring shape and is arranged around the floating pin 124. The O-ring 129 can absorb the radial extension of the teeth 112 of the gate rotors 105 and 106.
The O-ring 129 is a ring-shaped member made of an elastic material that is more flexible than the gate rotor 105 (lower Young's modulus). For example, the O-ring 129 can be manufactured from synthetic rubber, synthetic resin, or other elastic materials.
 また、ケーシング103の外周面には、ケーシング103内部で圧縮された冷媒ガスを吐出するための吐出ポート110が、第1ゲートロータ105および第2ゲートロータ106に対応してそれぞれ1個ずつ開口されている。
 これらの吐出ポート110は、スクリューロータ102の回転時において、スクリューロータ102外周面における溝111に連通することが可能になるように、ケーシング103の外周面の適宜の位置に開口されている。
 <シングルスクリュー圧縮機101の動作説明>
 図9~15に示されるシングルスクリュー圧縮機101は、以下のようにしてガスを圧縮する。
 まず、シャフト104がケーシング103外部のモータ(図示せず)から回転駆動力を受けると、スクリューロータ102が矢印R1(図9参照)の方向に回転する。このとき、スクリューロータ102の螺旋状の溝111に噛み合う2枚のゲートロータ105、106は、その歯112が螺旋状の溝111の内壁に押されることによって、矢印R2の方向へ回転する。このとき、図9~10のスクリューロータ102の紙面手前側では、ケーシング103の内面と、スクリューロータ102の溝111と、ゲートロータ105の歯112とで仕切られて形成された紙面手前側の圧縮室の容積が減少する。それとともに、スクリューロータ102の紙面奥側では、ケーシング103の内面と、スクリューロータ102の溝111と、ゲートロータ106の歯112とで仕切られて形成された紙面奥側の圧縮室の容積が減少する。
A discharge port 110 for discharging the refrigerant gas compressed inside the casing 103 is opened on the outer peripheral surface of the casing 103 one by one corresponding to the first gate rotor 105 and the second gate rotor 106. ing.
These discharge ports 110 are opened at appropriate positions on the outer peripheral surface of the casing 103 so as to be able to communicate with the grooves 111 on the outer peripheral surface of the screw rotor 102 when the screw rotor 102 rotates.
<Description of Operation of Single Screw Compressor 101>
The single screw compressor 101 shown in FIGS. 9 to 15 compresses gas as follows.
First, when the shaft 104 receives a rotational driving force from a motor (not shown) outside the casing 103, the screw rotor 102 rotates in the direction of arrow R1 (see FIG. 9). At this time, the two gate rotors 105 and 106 meshing with the spiral groove 111 of the screw rotor 102 rotate in the direction of the arrow R <b> 2 when the teeth 112 are pushed against the inner wall of the spiral groove 111. At this time, on the front side of the paper surface of the screw rotor 102 in FIGS. 9 to 10, the compression on the front side of the paper surface formed by being partitioned by the inner surface of the casing 103, the groove 111 of the screw rotor 102, and the teeth 112 of the gate rotor 105. The chamber volume is reduced. At the same time, on the back side of the paper surface of the screw rotor 102, the volume of the compression chamber on the back side of the paper surface formed by the inner surface of the casing 103, the groove 111 of the screw rotor 102, and the teeth 112 of the gate rotor 106 is reduced. To do.
 これらの2つの圧縮室の容積の減少を利用することによって、ケーシング103の吸入側開口115から導入される圧縮前の冷媒F1(図10参照)は、溝111と歯112とが噛み合う直前に圧縮室に導かれ、溝111と歯112とが噛み合っている間に圧縮室の容積が減少して冷媒が圧縮され、その後、溝111と歯112との噛み合いが外れた直後に、圧縮された冷媒F2(図10参照)が、ゲートロータ105、106にそれぞれ対応する図10の紙面手前側および紙面奥側に開口する吐出ポート10から吐出される。
 <第3の実施形態の特徴>
 (1)
 第3の実施形態のスクリュー圧縮機101では、ゲートロータシャフト108、109の周囲に隙間122が形成され、ゲートロータシャフト108、109の周囲の隙間122に配置されたコイルバネ128およびフローティングピン124周囲のOリング129により、ゲートロータ105、106の歯112の径方向の伸びを吸収することが可能である。これにより、ゲートロータ105、106の歯112の歯先がスクリューロータ102の溝111の奥壁でこすれて摩耗することがなくなり、ゲートロータ105、106の磨耗を防止することが可能となる。
By utilizing the reduction in volume of these two compression chambers, the refrigerant F1 (see FIG. 10) before compression introduced from the suction side opening 115 of the casing 103 is compressed immediately before the groove 111 and the teeth 112 are engaged with each other. The volume of the compression chamber is reduced while the groove 111 and the teeth 112 are engaged with each other and the refrigerant is compressed, and then the compressed refrigerant is immediately after the engagement between the grooves 111 and the teeth 112 is released. F2 (see FIG. 10) is discharged from the discharge port 10 that opens to the front side and the back side of FIG. 10 corresponding to the gate rotors 105 and 106, respectively.
<Characteristics of Third Embodiment>
(1)
In the screw compressor 101 of the third embodiment, a gap 122 is formed around the gate rotor shafts 108 and 109, and the coil springs 128 and the floating pins 124 around the gate rotor shafts 108 and 109 are arranged around the gate spring shafts 108 and 109. The O-ring 129 can absorb the radial extension of the teeth 112 of the gate rotors 105 and 106. As a result, the tooth tips of the teeth 112 of the gate rotors 105 and 106 are not rubbed and worn by the inner wall of the groove 111 of the screw rotor 102, and the wear of the gate rotors 105 and 106 can be prevented.
 (2)
 また、ゲートロータ105、106の歯112の歯先とスクリューロータ102の溝111の奥壁との間の隙間、すなわち先端隙間を管理することが可能になる。例えば、運転条件が変化に応じて、先端隙間も自動的に調整される。これにより、スクリュー圧縮機101の性能の低下を防止することが可能である。
 (3)
 しかも、スクリュー圧縮機101の加工精度および組立精度の自由度が広がるので、製造コストを低減させることが可能である。
 (4)
 しかも、圧縮媒体である冷媒ガスなどが液体状態でスクリュー圧縮機101に導入されるいわゆる液圧縮の状態になり、ゲートロータ105、106の歯112にかかる負荷が変動する場合があっても、ゲートロータ105、106の歯112の異常磨耗、またはゲートロータ105、106とスクリューロータ102との間で生じる焼付きを防止できる。これにより、スクリュー圧縮機101の信頼性を向上することが可能になる。
(2)
Further, it is possible to manage the gap between the tooth tips of the teeth 112 of the gate rotors 105 and 106 and the back wall of the groove 111 of the screw rotor 102, that is, the tip gap. For example, the tip clearance is automatically adjusted according to changes in operating conditions. Thereby, it is possible to prevent the performance of the screw compressor 101 from being deteriorated.
(3)
In addition, since the degree of freedom of processing accuracy and assembly accuracy of the screw compressor 101 is widened, it is possible to reduce the manufacturing cost.
(4)
Moreover, even if the refrigerant gas, which is a compression medium, is in a so-called liquid compression state that is introduced into the screw compressor 101 in a liquid state, the load applied to the teeth 112 of the gate rotors 105 and 106 may fluctuate. Abnormal wear of the teeth 112 of the rotors 105 and 106 or seizure that occurs between the gate rotors 105 and 106 and the screw rotor 102 can be prevented. Thereby, the reliability of the screw compressor 101 can be improved.
 例えば、ゲートロータ105、106の開口121とゲートロータシャフト108、109との隙間122、その隙間122に配置されたコイルバネ128、およびフローティングピン124周囲に配置されたOリング129を備えているので、ゲートロータ105、106が半径方向に移動可能であり、それによって、異常な液圧縮が生じても先端隙間から液状態の冷媒をスクリュー圧縮機101の外部へ逃がすことが可能である。
 (5)
 さらに、第3の実施形態のスクリュー圧縮機101では、隙間122に配置されたコイルバネ126がゲートロータ105、106に対して部分的にガイドピン123に向けてゲートロータ105、106の半径方向への弾性力を与えている。したがって、ガイドピン123によって半径方向への移動が拘束されている歯112について、半径方向の伸びをコイルバネ126によって効果的に吸収することが可能である。
For example, it includes a gap 122 between the opening 121 of the gate rotors 105 and 106 and the gate rotor shafts 108 and 109, a coil spring 128 arranged in the gap 122, and an O-ring 129 arranged around the floating pin 124. The gate rotors 105 and 106 can move in the radial direction, so that even if abnormal liquid compression occurs, the liquid refrigerant can escape to the outside of the screw compressor 101 from the tip clearance.
(5)
Furthermore, in the screw compressor 101 of the third embodiment, the coil spring 126 disposed in the gap 122 is partially directed toward the guide pin 123 with respect to the gate rotors 105 and 106 in the radial direction of the gate rotors 105 and 106. An elastic force is given. Therefore, for the teeth 112 whose movement in the radial direction is restricted by the guide pins 123, the radial extension can be effectively absorbed by the coil spring 126.
 (6)
 第3の実施形態のスクリュー圧縮機101では、複数の回り止めピン123、124のうちの一本は、他の回り止めピン(ガイドピン123)よりも遊びを有する状態でゲートロータシャフト108、109とゲートロータ105、106との間を連結するフローティングピン124であるので、フローティングピン124をガイドピン123よりも可動しろを大きく取ることができ、これにより、ゲートロータ105、106の歯112の径方向の伸びを吸収することが可能である。
 (7)
 第3の実施形態のスクリュー圧縮機101では、第2の弾性体であるOリング129は、リング状であり、フローティングピン124の周囲に配置されているので、ゲートロータ105、106の歯112の径方向の伸びを吸収することが可能である。
(6)
In the screw compressor 101 of the third embodiment, one of the plurality of detent pins 123 and 124 has more play than the other detent pins (guide pins 123), and the gate rotor shafts 108 and 109. Since the floating pin 124 is connected to the gate rotors 105 and 106, the floating pin 124 can be moved larger than the guide pin 123, whereby the diameter of the teeth 112 of the gate rotors 105 and 106 can be increased. It is possible to absorb the elongation in the direction.
(7)
In the screw compressor 101 of the third embodiment, the O-ring 129 that is the second elastic body has a ring shape and is arranged around the floating pin 124, so that the teeth 112 of the gate rotors 105 and 106 It is possible to absorb radial elongation.
 また、ゲートロータ105、106の歯112の径方向の伸びや歯先の摩耗状況等に対応して、Oリング129の寸法および材質を適宜変更すれば、ゲートロータ105、106の寿命を延ばすことも可能になる。
 <第3の実施形態の変形例>
 (A)
上記第3の実施形態では、2種類の弾性体、すなわち、ゲートロータシャフト108、109の周囲の隙間122に配置されたコイルバネ128と、フローティングピン124周囲のOリング129とを両方備えた構成をあげて説明しているが、本発明はこれに限定されるものではない。
 本発明の変形例として、いずれか一方の弾性体、すなわち、ゲートロータシャフト108、109の周囲の隙間133に配置されたコイルバネ128、またはフローティングピン124周囲のOリング129のいずれか一方を備えた構成であっても、ゲートロータ105、106の歯112の径方向の伸びを吸収することが可能である。
Further, if the dimensions and material of the O-ring 129 are appropriately changed in accordance with the radial extension of the teeth 112 of the gate rotors 105 and 106, the wear state of the tooth tips, etc., the life of the gate rotors 105 and 106 is extended. Is also possible.
<Modification of Third Embodiment>
(A)
In the third embodiment, there is provided a configuration including both two types of elastic bodies, that is, a coil spring 128 disposed in the gap 122 around the gate rotor shafts 108 and 109 and an O-ring 129 around the floating pin 124. However, the present invention is not limited to this.
As a modification of the present invention, either one of the elastic bodies, that is, one of the coil spring 128 disposed in the gap 133 around the gate rotor shafts 108 and 109 or the O-ring 129 around the floating pin 124 is provided. Even in the configuration, it is possible to absorb the radial extension of the teeth 112 of the gate rotors 105 and 106.
 (B)
 上記第3の実施形態では、本発明における隙間122に配置された弾性体の例として、コイルバネ126をあげて説明しているが、本発明はこれに限定されるものではなく、リング状の弾性体を隙間122全体を埋めてもよい。この場合、ゲートロータ105、106の全周について、ゲートロータ105、106の歯112の径方向の伸びを吸収することが可能である。
 また、リング状の弾性体を隙間122全体に埋めることにより、ゲートロータ105、106の歯112の寿命をさらに延ばすことが可能である。
(B)
In the third embodiment, the coil spring 126 has been described as an example of the elastic body disposed in the gap 122 in the present invention. However, the present invention is not limited to this, and the ring-shaped elasticity is not limited thereto. The body may fill the entire gap 122. In this case, it is possible to absorb the radial extension of the teeth 112 of the gate rotors 105 and 106 for the entire circumference of the gate rotors 105 and 106.
Moreover, the life of the teeth 112 of the gate rotors 105 and 106 can be further extended by filling the entire gap 122 with a ring-shaped elastic body.
 本発明は、スクリューロータおよびゲートロータを備えたスクリュー圧縮機について広く適用することが可能である。 The present invention can be widely applied to a screw compressor including a screw rotor and a gate rotor.

Claims (10)

  1.  ゲートロータ本体(30)と、
     このゲートロータ本体(30)を取り付けるシャフト部(40)と
    を備え、
     上記ゲートロータ本体(30)は、複数の歯部(31)と、中央の孔部(32)とを有し、
     上記シャフト部(40)は、上記ゲートロータ本体(30)を一面(43a)に支持する台部(43)と、この台部(43)の一面(43a)に設けられると共に上記孔部(32)に挿入される軸部(41)とを有し、
     上記シャフト部(40)の軸部(41)と上記ゲートロータ本体(30)の孔部(32)との間には、弾性体(5,5A)が配置されていることを特徴とするゲートロータ。
    A gate rotor body (30);
    A shaft portion (40) for attaching the gate rotor body (30),
    The gate rotor body (30) has a plurality of teeth (31) and a central hole (32),
    The shaft portion (40) is provided on a base portion (43) for supporting the gate rotor body (30) on one surface (43a), and on one surface (43a) of the base portion (43), and the hole portion (32). And a shaft portion (41) inserted into
    An elastic body (5, 5A) is disposed between the shaft portion (41) of the shaft portion (40) and the hole portion (32) of the gate rotor body (30). Rotor.
  2.  請求項1に記載のゲートロータにおいて、
     上記弾性体(5)は、板バネであることを特徴とするゲートロータ。
    The gate rotor according to claim 1,
    The gate rotor, wherein the elastic body (5) is a leaf spring.
  3.  請求項2に記載のゲートロータにおいて、
     上記板バネは、環状の波形バネまたは渦巻きバネであることを特徴とするゲートロータ。
    The gate rotor according to claim 2,
    The gate rotor, wherein the leaf spring is an annular wave spring or spiral spring.
  4.  請求項1に記載のゲートロータにおいて、
     上記弾性体(5A)は、環状のゴムであることを特徴とするゲートロータ。
    The gate rotor according to claim 1,
    The gate rotor, wherein the elastic body (5A) is an annular rubber.
  5.  シリンダ(10)を有するケーシング(1)と、
     このシリンダ(10)に嵌合される円筒状のスクリューロータ(2)と、
     このスクリューロータ(2)に噛合する請求項1から4の何れか一つに記載のゲートロータ(3,3A)と
    を備え、
     上記ゲートロータ(3,3A)の上記ゲートロータ本体(30)の歯部(31)は、上記スクリューロータ(2)に噛合し、
     上記ゲートロータ(3,3A)の上記シャフト部(40)は、上記ケーシング(1)に支持されていることを特徴とするスクリュー圧縮機。
    A casing (1) having a cylinder (10);
    A cylindrical screw rotor (2) fitted to the cylinder (10);
    The gate rotor (3, 3A) according to any one of claims 1 to 4, which meshes with the screw rotor (2).
    The tooth portion (31) of the gate rotor body (30) of the gate rotor (3, 3A) meshes with the screw rotor (2),
    The screw compressor, wherein the shaft portion (40) of the gate rotor (3, 3A) is supported by the casing (1).
  6.  外周面に複数本の螺旋状の溝(111)を有する回転自在のスクリューロータ(102)と、
     中央に開口(121)が形成され、前記開口(121)の周囲に前記スクリューロータ(102)の溝(111)に噛み合う複数の歯(112)が放射状に配置されたゲートロータ(105、106)と、
     前記ゲートロータ(105、106)の開口(121)に隙間(122)を有する状態で挿入されたゲートロータシャフト(108、109)と、
     前記ゲートロータ(105、106)の開口(121)と前記ゲートロータシャフト(108、109)との隙間(122)および/または前記ゲートロータ(105、106)の前記ゲートロータシャフト(108、109)回りの回転を止める複数の回り止めピンのうちの少なくとも1つの周囲に、配置された弾性体(128、129)と
    を備えている、
    スクリュー圧縮機(101)。
    A rotatable screw rotor (102) having a plurality of spiral grooves (111) on the outer peripheral surface;
    An opening (121) is formed in the center, and a plurality of teeth (112) that mesh with the grooves (111) of the screw rotor (102) are radially arranged around the opening (121). When,
    A gate rotor shaft (108, 109) inserted in a state having a gap (122) in the opening (121) of the gate rotor (105, 106);
    A gap (122) between the opening (121) of the gate rotor (105, 106) and the gate rotor shaft (108, 109) and / or the gate rotor shaft (108, 109) of the gate rotor (105, 106) An elastic body (128, 129) disposed around at least one of the plurality of detent pins for stopping rotation of the rotation;
    Screw compressor (101).
  7.  前記隙間(122)に配置された弾性体(128)は、前記ゲートロータ(105、106)に対して、複数の前記回り止めピンのうちの1本に向けて前記ゲートロータ(105、106)の半径方向への弾性力を与える、
    請求項6に記載のスクリュー圧縮機(101)。
    The elastic body (128) disposed in the gap (122) is directed toward one of the plurality of detent pins with respect to the gate rotor (105, 106). Gives the elastic force in the radial direction of
    The screw compressor (101) according to claim 6.
  8.  前記隙間(122)に配置された弾性体は、リング状であり、前記隙間(122)全体を埋める、
    請求項6に記載のスクリュー圧縮機(101)。
    The elastic body disposed in the gap (122) is ring-shaped and fills the entire gap (122).
    The screw compressor (101) according to claim 6.
  9.  複数の前記回り止めピンのうちの1つは、他の回り止めピンよりも遊びを有する状態で前記ゲートロータシャフトと前記ゲートロータとの間を連結するフローティングピンである、
    請求項6から8のいずれかに記載のスクリュー圧縮機(101)。
    One of the plurality of detent pins is a floating pin that connects between the gate rotor shaft and the gate rotor in a state having play more than other detent pins.
    Screw compressor (101) according to any of claims 6 to 8.
  10.  前記弾性体(129)は、リング状であり、前記フローティングピンである前記回り止めピンの周囲に配置されている、
    請求項9に記載のスクリュー圧縮機(101)。
                                                                                    
    The elastic body (129) has a ring shape, and is disposed around the rotation prevention pin that is the floating pin.
    The screw compressor (101) according to claim 9.
PCT/JP2008/073523 2007-12-26 2008-12-25 Gate rotor and screw compressor WO2009081962A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008801228982A CN101918716A (en) 2007-12-26 2008-12-25 Gate rotor and screw compressor
EP08865298.7A EP2236832A4 (en) 2007-12-26 2008-12-25 Gate rotor and screw compressor
US12/809,159 US20110165009A1 (en) 2007-12-26 2008-12-25 Gate rotor and screw compressor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007-334921 2007-12-26
JP2007334921 2007-12-26
JP2007336124 2007-12-27
JP2007-336124 2007-12-27
JP2008-319642 2008-12-16
JP2008319642A JP2009174520A (en) 2007-12-26 2008-12-16 Gate rotor and screw compressor

Publications (1)

Publication Number Publication Date
WO2009081962A1 true WO2009081962A1 (en) 2009-07-02

Family

ID=40801262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073523 WO2009081962A1 (en) 2007-12-26 2008-12-25 Gate rotor and screw compressor

Country Status (5)

Country Link
US (1) US20110165009A1 (en)
EP (1) EP2236832A4 (en)
JP (1) JP2009174520A (en)
CN (1) CN101918716A (en)
WO (1) WO2009081962A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832267A (en) * 2010-04-28 2010-09-15 北京力通高科技发展有限公司 Energy-saving single-screw compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057373B2 (en) 2011-11-22 2015-06-16 Vilter Manufacturing Llc Single screw compressor with high output
JP6121000B2 (en) * 2014-01-29 2017-04-26 三菱電機株式会社 Screw compressor
CN210265126U (en) * 2016-12-19 2020-04-07 三菱电机株式会社 Single screw compressor and refrigeration air conditioner provided with same
CN107654380B (en) * 2017-11-14 2019-01-29 江西红海力能源科技有限公司 A kind of single screw compressor spider piece
CN107701441B (en) * 2017-11-14 2019-04-23 江西风石压缩机有限公司 Single screw compressor spider piece
WO2023190048A1 (en) * 2022-03-28 2023-10-05 ダイキン工業株式会社 Screw compressor and freezer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827303A (en) * 1971-07-30 1973-04-11
JPS5063516A (en) * 1973-10-09 1975-05-30
JPS50131113A (en) * 1974-04-03 1975-10-17
JPS50134208A (en) * 1974-04-15 1975-10-24
JPS6473103A (en) * 1987-02-12 1989-03-17 Tsuimumerun Berunaaru Positive displacement type machine
JP3731399B2 (en) 1999-08-30 2006-01-05 ダイキン工業株式会社 Screw compressor
JP2007129843A (en) * 2005-11-04 2007-05-24 Denso Corp Motor actuator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611770U (en) * 1984-06-12 1986-01-08 トヨタ自動車株式会社 Backless gear device
JPH01500208A (en) * 1986-07-11 1989-01-26 ウイリムチック・ウオルフハート displacement machine
US5111712A (en) * 1988-10-06 1992-05-12 Carrier Corporation Rolling element radial compliancy mechanism
FR2733549A1 (en) * 1995-04-28 1996-10-31 Zimmern Bernard SCREW COMPRESSOR WITH LIQUID IMPACT PROTECTION
US8328202B2 (en) * 2007-12-07 2012-12-11 Bal Seal Engineering, Inc. Seal assembly for high pressure dynamic and static services

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827303A (en) * 1971-07-30 1973-04-11
JPS5063516A (en) * 1973-10-09 1975-05-30
JPS50131113A (en) * 1974-04-03 1975-10-17
JPS50134208A (en) * 1974-04-15 1975-10-24
JPS6473103A (en) * 1987-02-12 1989-03-17 Tsuimumerun Berunaaru Positive displacement type machine
US4890989A (en) 1987-02-12 1990-01-02 Bernard Zimmern Positive displacement machine with a plastic gate pinton
JP3731399B2 (en) 1999-08-30 2006-01-05 ダイキン工業株式会社 Screw compressor
JP2007129843A (en) * 2005-11-04 2007-05-24 Denso Corp Motor actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832267A (en) * 2010-04-28 2010-09-15 北京力通高科技发展有限公司 Energy-saving single-screw compressor

Also Published As

Publication number Publication date
EP2236832A1 (en) 2010-10-06
US20110165009A1 (en) 2011-07-07
JP2009174520A (en) 2009-08-06
CN101918716A (en) 2010-12-15
EP2236832A4 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
WO2009081962A1 (en) Gate rotor and screw compressor
JP3337831B2 (en) Scroll compressor
WO2012005150A1 (en) Scroll compressor
JP4518206B2 (en) Single screw compressor
JP5150206B2 (en) Scroll type fluid machine
JP4884904B2 (en) Fluid machinery
JP2010150963A (en) Scroll type compressor
JP5232450B2 (en) Scroll compressor
JP5526760B2 (en) Single screw compressor
CN212928179U (en) Scroll compressor having a plurality of scroll members
JP2010144685A (en) Screw compressor
JP4821660B2 (en) Single screw compressor
JP5115842B2 (en) Scroll fluid machinery
US6273692B1 (en) Scroll-type compressor
US8403655B2 (en) Scroll compressor having an allowable angle of rotation
JP5247333B2 (en) Scroll compressor
JP2008057465A (en) Scroll type fluid machine
WO2011077657A1 (en) Screw compressor
CN110206728B (en) Scroll compressor and air conditioner
JP4302851B2 (en) Scroll type fluid machine
JP4917424B2 (en) Scroll type fluid machine
JP2010106692A (en) Scroll compressor
JPS60175793A (en) Rotary fluid machine
JP2009180198A (en) Scroll type fluid machine
JP2002180977A (en) Scroll fluid machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122898.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008865298

Country of ref document: EP