WO2021083387A1 - 一种鼓泡塔反应器 - Google Patents
一种鼓泡塔反应器 Download PDFInfo
- Publication number
- WO2021083387A1 WO2021083387A1 PCT/CN2020/130764 CN2020130764W WO2021083387A1 WO 2021083387 A1 WO2021083387 A1 WO 2021083387A1 CN 2020130764 W CN2020130764 W CN 2020130764W WO 2021083387 A1 WO2021083387 A1 WO 2021083387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tower body
- bubble column
- column reactor
- inner diameter
- central hole
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J10/00—Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/32—Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
Definitions
- the invention relates to the technical field of chemical equipment, in particular to a bubble column reactor.
- the synthesis equipment of some chemicals taking alkyl aluminum chloride as an example, mostly uses bubble column reactors instead of intermittent kettles in order to achieve continuous production. Therefore, the bubble column reactors are optimized. The structure is particularly necessary.
- the liquid solvent is first filled into the tower body of the bubble column reactor, and then the gaseous monochloroalkane and the aluminum powder with nitrogen as the carrier are passed into the tower body from the bottom of the tower body ,
- the aluminum powder is quickly dispersed by the liquid solvent in the tower body, and the dispersed aluminum powder and the gaseous monochloroalkane undergo a chemical reaction in the tower body.
- the aluminum powder circulates in the tower under the entrainment of the liquid solvent, resulting in the same concentration of aluminum powder everywhere, thereby reducing the driving force of the reaction.
- the circulating flow of the liquid phase in the tower is a back-mixing phenomenon, which is also a significant feature of the bubble tower.
- the method of adding internal components in the column body is usually adopted.
- the existing internal components are mainly divided into two types: sieve plates and single-hole partitions.
- CN2422041 discloses a full-section bubbling sieve tray.
- the sieve trays set in the synthesis tower can form an orderly arrangement of bubble streams to push the liquid phase upward to effectively overcome the phenomenon of longitudinal liquid phase backmixing.
- the sieve plate has too many openings, although it can eliminate the parabolic velocity distribution of the liquid, it is difficult to form a vortex, which affects the gas-liquid mixing effect.
- related documents disclose a bubble column reactor with a built-in single-hole plate.
- the center of the single-hole plate here is usually provided with a central hole.
- the central hole can greatly reduce the axial backmixing phenomenon, A large amount of gas usually accumulates under the single-well plate, and the gas-liquid mixing effect is still relatively poor.
- the purpose of the present invention is to provide a bubble column reactor.
- the transverse baffles block the circulation of the liquid along the entire inner cavity of the tower body, so that the liquid in each reaction zone reaches a state of vortex motion and prevents the fluid in the tower body from appearing. Short circuit and dead angle limit liquid phase back mixing and have good gas-liquid mixing effect.
- the present invention provides a bubble column reactor, comprising a tower body, the tower body has at least two reaction zones, any two adjacent reaction zones are provided with a transverse partition for separating the two, any transverse partition A central hole is provided in the center of the, and any transverse partition plate is provided with at least one auxiliary hole distributed around the central axis of the central hole to match the central hole to make the liquid in the reaction zone form a vortex state.
- the inner diameter of the center hole is equal to 1/4 to 1/3 of the inner diameter of the tower.
- the inner diameter of any auxiliary hole is equal to 1/10 to 1/8 of the inner diameter of the tower.
- the radial distance from the center of any auxiliary hole to the center of the central hole is equal to 0.6 to 0.8 times the inner diameter of the tower.
- the radial distance from the center of any auxiliary hole to the center of the central hole is specifically equal to 0.7 times the inner diameter of the tower.
- the number of auxiliary holes provided in any transverse partition is between 3 and 6.
- any transverse partition is specifically provided with three auxiliary holes uniformly arranged in a circular ring shape.
- the axial distance between any two adjacent transverse partitions is equal to 1 to 2 times the inner diameter of the tower.
- the height of the tower body is lower than 5 meters, 2 to 4 transverse partitions are arranged in the tower body; when the height of the tower body is higher than 5 meters, at least 4 transverse partitions are arranged in the tower body.
- the present invention provides a bubble column reactor, including a tower body, the tower body has at least two reaction zones, and any two adjacent reaction zones are provided with a transverse partition between each transverse partition.
- a central hole and at least one auxiliary hole are provided.
- the invention uses the transverse partition to block the circulation of liquid along the entire inner cavity of the tower body, and makes the liquid in each reaction zone reach a vortex motion state, prevents short circuit and dead angle of the fluid in the tower body, and achieves a good gas-liquid mixing effect. Therefore, the bubble column reactor provided by the present invention can limit the liquid phase backmixing and at the same time have a good gas-liquid mixing effect.
- Figure 1 is a schematic diagram of a bubble column reactor provided by a specific embodiment of the present invention.
- Figure 2 is a structural diagram of the transverse partition in Figure 1;
- Figure 3 is a diagram of the tracer concentration distribution along the flow direction in a bubble column without segmented partitions
- Figure 4 is a diagram of the tracer concentration distribution along the flow direction in a bubble column with four partitions
- Figure 5 is a diagram of the fluid state corresponding to a transverse partition with only a central hole and a transverse partition with both a central hole and an auxiliary hole;
- Fig. 6 is a columnar comparison diagram of the series stages of full mixing tanks corresponding to a bubble column with a diameter of 50 cm without a transverse partition and a 50 cm diameter bubbling column provided with a transverse partition.
- FIG. 1 is a schematic diagram of a bubble column reactor provided by a specific embodiment of the present invention
- FIG. 2 is a structural diagram of a horizontal baffle in FIG. 1.
- the embodiment of the present invention discloses a bubble column reactor, the key improvement point of which is to optimize the structure of internal components to achieve the purpose of improving the gas-liquid mixing effect.
- the present invention includes a tower body 1.
- the tower body 1 is columnar.
- the bottom of the tower body 1 is provided with a liquid reactant inlet and a gaseous reactant inlet, and the top of the tower body 1 is provided with a gas outlet and a liquid outlet.
- the specific types and installation methods of the inlet and outlet of the tower body 1 can refer to the prior art, which will not be described in detail here.
- reaction zones 11 There are at least two reaction zones 11 in the tower body 1, and a transverse partition 12 is arranged between any two adjacent reaction zones 11 to separate the two adjacent reaction zones 11.
- the axial distance between any two adjacent transverse partitions 12 is equal to 1 to 2 times the inner diameter of the tower body 1, which can effectively avoid dead corners in each reaction zone 11, and the gas-liquid mixing effect is better.
- the axial distance between any two adjacent transverse partitions 12 is not less than 0.3 times the inner diameter of the tower body 1, but not more than 2 times the inner diameter of the tower body 1.
- the inner diameter of the tower body 1 is 50 cm, and the height is 550 cm.
- the tower body 1 is provided with 4 transverse partitions 12, and the 4 transverse partitions 12 are parallel to each other.
- the central cavity of 1 is divided into five reaction zones 11, and the heights of the five reaction zones 11 from bottom to top are 150cm, 100cm, 100cm, 100cm, 100cm, which can be easily pushed out. Any two adjacent transverse partitions
- the axial distance of 12 is 100 cm.
- the distribution of the lateral partitions 12 is not limited to this.
- a central hole 121 is provided in the center of any transverse partition 12, and any transverse partition 12 is provided with at least one auxiliary hole 122 distributed around the central axis of the central hole 121.
- the central hole 121 is a circular through hole provided in the center of the transverse partition plate 12, and the central axis of the central hole 121 coincides with the central axis of the transverse partition plate 12.
- the number of auxiliary holes 122 provided on any transverse partition plate 12 is between 3 and 6.
- the number of auxiliary holes 122 provided in any transverse partition plate 12 is specifically three, the three auxiliary holes 122 are all circular through holes, and the three auxiliary holes 122 are uniformly arranged in a circular ring shape. So that the liquid forms a good vortex state, which helps to improve the gas-liquid mixing effect.
- FIG. 3 is a diagram of the flow state corresponding to the transverse partition 12 and the transverse partition 12 are not provided in the tower body.
- the left side view represents the The tower body 1 with the transverse partition 12 can be easily seen in the figure that the tracer fills the entire cavity of the tower body 1; the right side view represents the tower body 1 with the transverse partition 12, which can be easily seen in this figure.
- the tracer has a gradient distribution in the tower body 1, and the concentration difference between the reaction zones 11 is obvious, so that the horizontal partition 12 can be easily pushed out to prevent the liquid phase from backmixing.
- FIG. 5 is a diagram of the fluid state corresponding to the lateral partition 12 with only the central hole 121 and the lateral partition 12 with both the central hole 121 and the auxiliary hole 122.
- Fig. 4 can fully show the flow state of the liquid in the tower 1, wherein the left side view of Fig. 4 represents the flow state of the liquid on both sides of the transverse partition plate with only the central hole. It can be seen that the liquid in each reaction zone The liquid flows upward along the central hole, and part of the fluid that fails to leave the reaction zone collides with the lateral partition and turns back down. The middle area between the outside of the columnar structure formed by the central hole and the tower wall is static, and it is difficult for the gas and liquid to mix fully.
- FIG. 6 is a columnar comparison diagram of the serial stages of the full mixing tank corresponding to a bubble column with a diameter of 50 cm without a transverse partition and a 50 cm diameter bubbling tower with a transverse partition.
- Figure 5 can further fully illustrate the limiting effect of the fluid backmixing of the transverse partition 12.
- the horizontal axis of Figure 5 represents different types of transverse partitions 12, and the 1 in the horizontal axis represents the tower body 1 without the transverse partition 12.
- the 2, 3, and 4 in the horizontal axis all represent the tower body 1 provided with the transverse partition 12, where 2 represents the transverse partition 12 with the central hole 121 having an inner diameter of 10 cm and the auxiliary hole 122 with an inner diameter of 5 cm, and 3 represents only the center
- 4 represents the transverse partition 12 with the inner diameter of the central hole 121 of 15 cm and the inner diameter of the auxiliary hole 122 of 5 cm.
- the vertical axis of FIG. 5 represents the number of series of full mixing tanks. Through comparison, it can be seen that the number of series of full mixing tanks in the tower body 1 without transverse partitions 12 is 3, and the number of series in the tower body 1 with 4 transverse partitions 12 is 3.
- the transverse partition 12 is provided with an auxiliary hole 122 and whether the inner diameter of the central hole 121 is the same, the number of stages in series of the full mixing tank can reach 6, which means that the degree of backmixing is reduced by 50%, and the series of full mixing tanks The level of the number has nothing to do with whether the lateral partition 12 is provided with auxiliary holes 122 or not.
- the gas-liquid mixed fluid in the reaction zone 11 rises through the central hole 121 due to its low density, while the liquid phase fluid declines through the auxiliary hole 122 due to its high density, thereby forming a rise and fall in the reaction zone 11
- the circulation phenomenon uses transverse partitions to block the circulation of liquid along the entire inner cavity of the tower body, and makes the liquid in each reaction zone 11 reach a vortex motion state, prevents short circuits and dead angles of the fluid in the tower body 1, and achieves a good gas-liquid flow. Blending effect. Therefore, the bubble column reactor provided by the present invention can limit the liquid phase backmixing and at the same time have a good gas-liquid mixing effect.
- the inner diameter of the central hole 121 is equal to 1/4 to 1/3 of the inner diameter of the tower body 1 to provide sufficient space for the rising of the gas-liquid mixed fluid.
- any auxiliary hole 122 is equal to 1/10 to 1/8 of the inner diameter of the tower body 1, which provides enough space for the liquid phase fluid to fall, and helps to improve the gas-liquid mixing effect.
- the radial distance from the center of any auxiliary hole 122 to the center of the central hole 121 is equal to 0.6-0.8 times the inner diameter of the tower body 1, so that the liquid can achieve the best vortex motion state and the gas-liquid mixing effect can be optimized.
- the radial distance from the center of any auxiliary hole 122 to the center of the center hole 121 is specifically equal to 0.7 times the inner diameter of the tower body 1, that is, the center to the center hole of any auxiliary hole 122
- the radial distance between the centers of 121 is 35 cm.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
一种鼓泡塔反应器,包括塔体(1),塔体(1)内具有至少两个反应区(11),任意相邻两个反应区(11)之间设有用于隔开二者的横向隔板(12),任一横向隔板(12)的中心设有中心孔(121),任一横向隔板(12)设有至少一个绕中心孔(121)的中心轴线分布以配合中心孔(121)使反应区(11)内的液体形成涡流状态的辅助孔(122)。
Description
本申请要求于2019年10月29日提交中国专利局、申请号为201911039128.8、发明名称为“一种鼓泡塔反应器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及化工设备技术领域,特别涉及一种鼓泡塔反应器。
为提升生产效率及安全性,以烷基氯化铝为例的部分化学品的合成设备多选择采用鼓泡塔反应器,取代间歇釜,以便实现连续化生产,因此优化鼓泡塔反应器的结构显得尤为必要。
以烷基氯化铝连续化生产为例,先将液态溶剂充入鼓泡塔反应器的塔体内,再将气态一氯烷烃及以氮气为载体的铝粉从塔体的底部通入塔体内,铝粉在塔体内迅速被液态溶剂分散,分散后的铝粉与气态一氯烷烃在塔体内发生化学反应。与此同时,铝粉在液体溶剂夹带下在塔内发生循环流动,造成各处铝粉浓度相等,从而降低了反应推动力。
液相的塔内循环流动是一种返混现象,也是鼓泡塔的显著特征。为限制鼓泡塔反应器内出现液相返混现象,通常采用在塔体内增设内构件的方法。现有的内构件主要分为筛板和单孔隔板两类。例如,CN2422041公开一种全截面鼓泡筛板塔盘,合成塔内所设置的筛板能够形成有序排列的气泡流,推动液相向上流动,有效克服纵向液相返混现象。但是,筛板的开孔数量过多,尽管能够消除液体的抛物线型速度分布,但难以形成涡流,影响气液混合效果。再例如,相关文献公开了一种内置有单孔板的鼓泡塔反应器,此处的单孔板的中心通常开设有中心孔,中心孔尽管能够使轴向返混现象大幅度降低,但单孔板的下方通常聚集有大量气体,气液混合效果仍相对较差。
因此,如何改进现有鼓泡塔反应器的结构以限制液相返混并同时提升气液混合效果是本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的在于提供一种鼓泡塔反应器,横向隔板阻断液体沿塔体整个内腔循环流动,使每个反应区内的内的液体达到涡流运动状态,防止塔体内的流体出现短路和死角,限制液相返混,具有良好的气液混合效果。
其具体方案如下:
本发明提供一种鼓泡塔反应器,包括塔体,塔体内具有至少两个反应区,任意相邻两个反应区之间设有用于隔开二者的横向隔板,任一横向隔板的中心设有中心孔,任一横向隔板设有至少一个绕中心孔的中心轴线分布以配合中心孔使反应区内的液体形成涡流状态的辅助孔。
优选地,中心孔内径等于塔体内径的1/4~1/3。
优选地,任一辅助孔内径等于塔体内径的1/10~1/8。
优选地,任一辅助孔的中心到中心孔中心之间的径向距离等于塔体内径的0.6~0.8倍。
优选地,任一辅助孔的中心到中心孔中心之间的径向距离具体等于塔体内径的0.7倍。
优选地,任意横向隔板所设置的辅助孔的数量介于3个到6个之间。
优选地,任意横向隔板具体设有三个呈圆环状均匀排列的辅助孔。
优选地,任意相邻两个横向隔板之间的轴向距离等于塔体内径的1~2倍。
优选地,塔体的高度低于5米时,塔体内设有2~4块横向隔板;塔体的高度高于5米时,塔体内设有至少4块横向隔板。
相对于背景技术,本发明提供一种鼓泡塔反应器,包括塔体,塔体内具有至少两个反应区,任意相邻两个反应区之间设有一个横向隔板,每个横向隔板设有一个中心孔和至少一个辅助孔。在连续生产时,反应区内的气液混合流体因密度较低而通过中心孔上升,同时液相流体因密度较高而通过辅助孔下降,从而在反应区内形成上升和下降的环流现象。
本发明利用横向隔板阻断液体沿塔体整个内腔循环流动,又使每个反应区内的液体达到涡流运动状态,防止塔体内的流体出现短路和死角,达 到良好的气液混合效果。因此,本发明所提供的鼓泡塔反应器能够限制液相返混并同时具有良好的气液混合效果。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明一种具体实施例所提供的鼓泡塔反应器示意图;
图2为图1中横向隔板的结构图;
图3为不加分段隔板的鼓泡塔内沿流动方向的示踪剂浓度分布图;
图4为带有4段隔板的鼓泡塔内沿流动方向的示踪剂浓度分布图;
图5为仅具有中心孔的横向隔板和兼具中心孔及辅助孔的横向隔板所对应的流体状态图;
图6为未设置横向隔板和设置有横向隔板的直径50cm鼓泡塔所对应的全混釜串联级数柱状对比图。
附图标记如下:
塔体1;
反应区11和横向隔板12;
中心孔121和辅助孔122。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具 体实施例对本发明作进一步的详细说明。
请参考图1和图2,图1为本发明一种具体实施例所提供的鼓泡塔反应器示意图;图2为图1中横向隔板的结构图。
本发明实施例公开了一种鼓泡塔反应器,其关键改进点在于优化内构件的结构,以达到提升气液混合效果的目的。
本发明包括塔体1,在该具体实施例中,塔体1呈柱状,塔体1的底部设有液态反应物进口、气态反应物进口,塔体1的顶部设有气体出口和液体出口,塔体1的进出口的种类及设置方式具体可参照现有技术,在此不再详述。
塔体1内具有至少两个反应区11,任意相邻两个反应区11之间设有一个横向隔板12,以便隔开相邻两个反应区11。
为保证塔体1具有良好的气液混合效果,当塔体1的高度低于5米时,塔体1内设有2~4块横向隔板12;当塔体1的高度高于5米时,塔体1内设有至少4块横向隔板12。
进一步地,任意相邻两个横向隔板12之间的轴向距离等于塔体1内径的1~2倍,能够有效避免各反应区11内出现死角,气液混合效果较好。当然,任意相邻两个横向隔板12之间轴向距离不低于塔体1内径的0.3倍,但不超过塔体1内径的2倍。
具体地,在该具体实施例中,塔体1的内径为50cm,高度为550cm,相应地,塔体1内设有4块横向隔板12,4块横向隔板12相互平行,将塔体1的中心型腔分割成五个反应区11,五个反应区11由下而上的高度依次为150cm、100cm、100cm、100cm、100cm,由此可轻易推出,任意相邻两个横向隔板12的轴向距离为100cm。当然,横向隔板12的分布方式不限于此。
任意横向隔板12的中心设有中心孔121,且任意横向隔板12设有至少一个绕中心孔121的中心轴线分布的辅助孔122。在该具体实施例中,中心孔121为设于横向隔板12的中心的圆形通孔,且中心孔121的中心轴线与横向隔板12的中心轴线重合。
为进一步提升气液混合效果,任意横向隔板12所设置的辅助孔122的数量介于3个到6个之间。在该具体实施例中,任意横向隔板12所设置的辅助 孔122的数量具体为3个,3个辅助孔122均为圆形通孔,且3个辅助孔122呈圆环状均匀排列,以便液体形成良好的涡流状态,有助于提升气液混合效果。
请参考图3,图3为塔体内未设置横向隔板12和设置有横向隔板12所对应的流动状态图。为了说明横向隔板12对塔体1内流体返混的限制作用,当塔体1的底部注入一股示踪剂后,对比附图3中的左右两幅视图,其中,左侧视图代表未设置横向隔板12的塔体1,在该图中可以轻易看出示踪剂充满塔体1的整个型腔;右侧视图代表设置有横向隔板12的塔体1,在该图中可以轻易看出示踪剂在塔体1内出现梯度分布,各反应区11之间的浓度差异明显,从而可轻易推出横向隔板12能够起到阻止液相返混作用。
请参考图5,图5为仅具有中心孔121的横向隔板12和兼具中心孔121和辅助孔122的横向隔板12所对应的流体状态图。附图4能够充分显示塔体1内液体的流动状态,其中,附图4的左侧视图代表仅设置有中心孔的横向隔板两侧的液体流动状态,可以看出每个反应区内的液体沿中心孔向上流动,部分未能离开该反应区的流体与横向隔板碰撞后折返向下,在中心孔形成的柱状结构外侧与塔壁之间的中间区域静止,气液难以充分混合。附图4的右侧视图代表兼具中心孔121和辅助孔122的横向隔板12两侧的液体流动状态,可以看出每个反应区11内的液体处于涡流状态,反应区内部几乎无静止区,气液能够充分混合。
请参考图6,未设置横向隔板和设置有横向隔板的直径50cm鼓泡塔所对应的全混釜串联级数柱状对比图。附图5能够进一步充分说明横向隔板12流体返混的限制作用,附图5的横轴代表不同类型的横向隔板12,横轴中的1代表未设置横向隔板12的塔体1,横轴中的2、3、4均代表设置有横向隔板12的塔体1,其中,2代表中心孔121内径为10cm且辅助孔122内径为5cm的横向隔板12,3代表仅具有中心孔121且中心孔121内径为10cm的横向隔板12,4代表中心孔121内径为15cm且辅助孔122内径为5cm的横向隔板12。附图5的纵轴代表全混釜串联级数,经比较可知,未设置横向隔板12的塔体1的全混釜串联级数为3,而具有4块横向隔板12的塔体1,不论横向隔板12是否设置有辅助孔122且不论中心孔121的内径是否相同,其全混釜串联级 数均能够达到6级,意味着返混程度降低50%,且全混釜串联级数的高低与横向隔板12是否开设有辅助孔122无关。
在连续生产时,反应区11内的气液混合流体因密度较低而通过中心孔121上升,同时液相流体因密度较高而通过辅助孔122下降,从而在反应区11内形成上升和下降的环流现象。本发明利用横向隔板阻断液体沿塔体整个内腔循环流动,又使每个反应区11内的液体达到涡流运动状态,防止塔体1内的流体出现短路和死角,达到良好的气液混合效果。因此,本发明所提供的鼓泡塔反应器能够限制液相返混并同时具有良好的气液混合效果。
优选地,中心孔121内径等于塔体1内径的1/4~1/3,为气液混合流体的上升提供足够的空间。
进一步地,任一辅助孔122内径等于塔体1内径的1/10~1/8,为液相流体的下降提供足够的空间,有助于提升气液混合效果。
任一辅助孔122的中心到中心孔121中心之间的径向距离等于塔体1内径的0.6~0.8倍,使液体达到最佳涡流运动状态,使气液混合效果达到最佳。在该具体实施例中,优选地,任一辅助孔122的中心到中心孔121中心之间的径向距离具体等于塔体1内径的0.7倍,也即任一辅助孔122的中心到中心孔121中心之间的径向距离为35cm。
[根据细则91更正 24.12.2020]
以上对本发明所提供的鼓泡塔反应器进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
以上对本发明所提供的鼓泡塔反应器进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (9)
- 一种鼓泡塔反应器,其特征在于,包括塔体(1),所述塔体(1)内具有至少两个反应区(11),任意相邻两个所述反应区(11)之间设有用于隔开二者的横向隔板(12),任一所述横向隔板(12)的中心设有中心孔(121),任一所述横向隔板(12)设有至少一个绕所述中心孔(121)的中心轴线分布以配合所述中心孔(121)使所述反应区(11)内的液体形成涡流状态的辅助孔(122)。
- 根据权利要求1所述的鼓泡塔反应器,其特征在于,所述中心孔(121)内径等于所述塔体(1)内径的1/4~1/3。
- 根据权利要求2所述的鼓泡塔反应器,其特征在于,任一所述辅助孔(122)内径等于所述塔体(1)内径的1/10~1/8。
- 根据权利要求2所述的鼓泡塔反应器,其特征在于,任一所述辅助孔(122)的中心到所述中心孔(121)中心之间的径向距离等于所述塔体(1)内径的0.6~0.8倍。
- 根据权利要求4所述的鼓泡塔反应器,其特征在于,任一所述辅助孔(122)的中心到所述中心孔(121)中心之间的径向距离具体等于所述塔体(1)内径的0.7倍。
- 根据权利要求1至5任一项所述的鼓泡塔反应器,其特征在于,任意所述横向隔板(12)所设置的所述辅助孔(122)的数量介于3个到6个之间。
- 根据权利要求6所述的鼓泡塔反应器,其特征在于,任意所述横向隔板(12)具体设有三个呈圆环状均匀排列的辅助孔(122)。
- 根据权利要求6所述的鼓泡塔反应器,其特征在于,任意相邻两个所述横向隔板(12)之间的轴向距离等于所述塔体(1)内径的1~2倍。
- 根据权利要求6所述的鼓泡塔反应器,其特征在于,所述塔体(1)的高度低于5米时,所述塔体(1)内设有2~4块所述横向隔板(12);所述塔体(1)的高度高于5米时,所述塔体(1)内设有至少4块所述横向隔板(12)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911039128.8 | 2019-10-29 | ||
CN201911039128.8A CN110652943B (zh) | 2019-10-29 | 2019-10-29 | 一种鼓泡塔反应器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021083387A1 true WO2021083387A1 (zh) | 2021-05-06 |
Family
ID=69042137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/130764 WO2021083387A1 (zh) | 2019-10-29 | 2020-11-23 | 一种鼓泡塔反应器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110652943B (zh) |
WO (1) | WO2021083387A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110652943B (zh) * | 2019-10-29 | 2020-09-22 | 浙江新安化工集团股份有限公司 | 一种鼓泡塔反应器 |
CN110694558B (zh) | 2019-10-29 | 2021-01-22 | 浙江新安化工集团股份有限公司 | 一种多区式浆态列管反应器 |
KR102690910B1 (ko) * | 2020-09-17 | 2024-08-02 | 주식회사 엘지화학 | 스파저 및 이를 포함하는 반응기 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101028586A (zh) * | 2007-01-29 | 2007-09-05 | 煤炭科学研究总院 | 鼓泡式多相反应器 |
CN101432394A (zh) * | 2006-03-30 | 2009-05-13 | 新日铁工程技术株式会社 | 气泡塔型碳氢化合物合成反应器 |
US20190009186A1 (en) * | 2017-07-10 | 2019-01-10 | Corson Distilling Systems, Inc. | Bubble caps for distillation plates in a fractionating column |
US20190299117A1 (en) * | 2018-03-28 | 2019-10-03 | Uop Llc | Apparatus for gas-liquid contacting |
CN110354523A (zh) * | 2019-07-14 | 2019-10-22 | 河北龙亿环境工程有限公司 | 一种具有多微孔气泡罩的新型塔板 |
CN110652943A (zh) * | 2019-10-29 | 2020-01-07 | 浙江新安化工集团股份有限公司 | 一种鼓泡塔反应器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2157737C3 (de) * | 1971-11-22 | 1981-10-29 | Schering Ag Berlin Und Bergkamen, 1000 Berlin | Kontinuierliche Verfahren in einem Blasensäulenreaktor |
JP3214320B2 (ja) * | 1995-11-15 | 2001-10-02 | 住友化学工業株式会社 | 化学反応方法 |
CN101607187B (zh) * | 2009-07-08 | 2011-11-16 | 华东理工大学 | 一种塔径收缩结构及具有该结构的鼓泡塔 |
-
2019
- 2019-10-29 CN CN201911039128.8A patent/CN110652943B/zh active Active
-
2020
- 2020-11-23 WO PCT/CN2020/130764 patent/WO2021083387A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101432394A (zh) * | 2006-03-30 | 2009-05-13 | 新日铁工程技术株式会社 | 气泡塔型碳氢化合物合成反应器 |
CN101028586A (zh) * | 2007-01-29 | 2007-09-05 | 煤炭科学研究总院 | 鼓泡式多相反应器 |
US20190009186A1 (en) * | 2017-07-10 | 2019-01-10 | Corson Distilling Systems, Inc. | Bubble caps for distillation plates in a fractionating column |
US20190299117A1 (en) * | 2018-03-28 | 2019-10-03 | Uop Llc | Apparatus for gas-liquid contacting |
CN110354523A (zh) * | 2019-07-14 | 2019-10-22 | 河北龙亿环境工程有限公司 | 一种具有多微孔气泡罩的新型塔板 |
CN110652943A (zh) * | 2019-10-29 | 2020-01-07 | 浙江新安化工集团股份有限公司 | 一种鼓泡塔反应器 |
Also Published As
Publication number | Publication date |
---|---|
CN110652943A (zh) | 2020-01-07 |
CN110652943B (zh) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021083387A1 (zh) | 一种鼓泡塔反应器 | |
CN100528322C (zh) | 鼓泡式多相反应器 | |
JP5559966B2 (ja) | 三相スラリー反応器を動作させる方法 | |
CN106732308A (zh) | 一种微鼓泡气液反应器 | |
KR970704509A (ko) | 다중층 하향흐름 촉매 반응기용 분배 어셈블리(distributor assembly for multi-bed down-flow catalytic reactors) | |
RU2008131950A (ru) | Система окисления, использующая внутреннюю конструкцию для улучшения гидродинамики | |
US12076702B2 (en) | Device and method for oxidizing organic substance | |
US3642452A (en) | Multistage reactors | |
CN106916727A (zh) | 装配折流筛板的气升式反应器 | |
WO2021083386A1 (zh) | 一种多区式浆态列管反应器 | |
TW201438801A (zh) | 液相-液相萃取系統及使用彼之方法 | |
WO2014102581A1 (en) | Apparatus and method for separation of oil from oil-containing produced water | |
US2851396A (en) | Liquid-liquid extraction | |
CN103962068A (zh) | 浆态床反应器 | |
CN203874716U (zh) | 一种气流搅拌装置 | |
US11154830B2 (en) | Device for limiting entrainment of solid particles at the outlet from a three-phase fluidized bed | |
JPWO2007114271A1 (ja) | 気泡塔型炭化水素合成反応器 | |
US11219877B2 (en) | Reactor for a metallocene catalyst-based solution polymerization process for preparing polyolefin polymers | |
CN206535555U (zh) | 一种立式烷基化反应器 | |
CN1192383A (zh) | 在物质的化学和物理转化中减少或避免泡沫产生的方法及实现该方法的装置 | |
CN108744895B (zh) | 一种旋流管塔 | |
JPH02111433A (ja) | 多相接触装置及び複数相の接触の改良方法 | |
CN208583196U (zh) | 溶氢器 | |
CN105664820A (zh) | 卧式反应器 | |
CN102695931A (zh) | 用于反应器的急冷装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20880751 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20880751 Country of ref document: EP Kind code of ref document: A1 |