WO2021083386A1 - 一种多区式浆态列管反应器 - Google Patents

一种多区式浆态列管反应器 Download PDF

Info

Publication number
WO2021083386A1
WO2021083386A1 PCT/CN2020/130761 CN2020130761W WO2021083386A1 WO 2021083386 A1 WO2021083386 A1 WO 2021083386A1 CN 2020130761 W CN2020130761 W CN 2020130761W WO 2021083386 A1 WO2021083386 A1 WO 2021083386A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
central hole
zone
reaction
reaction zone
Prior art date
Application number
PCT/CN2020/130761
Other languages
English (en)
French (fr)
Inventor
程振民
姜胜宝
余神銮
周曙光
屠民海
秦龙
金智超
黄子宾
陈美辰
袁佩青
Original Assignee
浙江新安化工集团股份有限公司
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江新安化工集团股份有限公司, 华东理工大学 filed Critical 浙江新安化工集团股份有限公司
Priority to US17/770,645 priority Critical patent/US11918992B2/en
Publication of WO2021083386A1 publication Critical patent/WO2021083386A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/224Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
    • B01J8/226Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement internally, i.e. the particles rotate within the vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles

Definitions

  • the invention relates to the technical field of chemical equipment, in particular to a multi-zone slurry tubular reactor.
  • Slurry bed reactors are generally accompanied by strong exotherm during chemical reactions, so that the slurry bed reactor must be equipped with heat exchangers.
  • the heat exchanger is usually fixed at both ends of the reactor in the form of tubes.
  • the cooling medium flows in from one end of the heat exchanger and flows upward along the tube side, that is, the cooling medium flows in the tubes; the gaseous reactants and the slurry reactants are all from
  • the side of the slurry-bed reactor enters the slurry-bed reactor and flows upward along the shell side, so that the slurry reactant in the entire slurry-bed reactor flows with the gaseous reactant, and chemical reactions occur during the flow.
  • alkyl aluminum chloride Take the continuous production of alkyl aluminum chloride as an example.
  • the metal aluminum powder is introduced from the bottom of the tower body into the tower body filled with liquid solvent, and is dispersed by another raw material gaseous monochloroalkane introduced from another part of the tower bottom, and then the two chemically react in the tower body to form alkane.
  • Base aluminum chloride Since the aluminum powder is extremely fine, it is easy to flow with the solvent, and the separation is very difficult, so the aluminum powder is required to be completely converted in the reactor. At the same time, the reaction between aluminum powder and monochloroalkane generates a large amount of heat, and the heat must be removed quickly.
  • the structure of the existing slurry-bed reactor has a heat transfer function, the interior is a whole, with strong backmixing, which cannot cause the aluminum powder to appear in a cascade distribution in the reactor, and cannot meet the requirement that the export material does not contain aluminum powder. Claim. Therefore, it is necessary to develop a slurry-bed reactor that has the function of heat transfer and can prevent the overall back-mixed flow.
  • the purpose of the present invention is to provide a multi-zone slurry tubular reactor, that is, the entire reactor is divided into a plurality of reaction zones to prevent the overall back-mixed flow.
  • the present invention provides a multi-zone slurry tube reactor, which includes a shell.
  • the shell has at least two reaction zones, and any two adjacent reaction zones are provided with a device for separating the two and passing through the tube.
  • the transverse partition plate is provided with a central hole in the center of any transverse partition plate, and any transverse partition plate is provided with at least one auxiliary hole distributed around the central axis of the central hole to match the central hole to form a vortex state in the reaction zone.
  • the inner diameter of the central hole is equal to 1/5 to 1/3 of the inner diameter of the housing.
  • the inner diameter of any auxiliary hole is equal to 1/10 to 1/8 of the inner diameter of the housing.
  • the radial distance from the center of any auxiliary hole to the center of the central hole is equal to 0.6 to 0.8 times the inner diameter of the housing.
  • the number of auxiliary holes provided in any transverse partition is between 3 and 6.
  • any horizontal partition is specifically provided with 3 to 6 auxiliary holes uniformly arranged in a circular ring shape.
  • the axial distance between any two adjacent transverse partitions is equal to 0.5 to 1 times the inner diameter of the housing.
  • the height of the shell is less than 5 meters, 2 to 4 horizontal partitions are provided in the shell; when the height of the shell is higher than 5 meters, at least 4 horizontal partitions are provided in the shell.
  • the reaction zone includes a first reaction zone located at the bottom end of the shell.
  • the side of the first reaction zone is provided with a gaseous reactant inlet and a liquid reactant inlet, and the liquid reactant inlet is located above 1/2 of the height of the first reaction zone.
  • the present invention provides a multi-zone slurry tubular reactor, which includes a shell.
  • the shell has at least two reaction zones.
  • a transverse partition is arranged between any two adjacent reaction zones.
  • Each horizontal partition is provided with a central hole and at least one auxiliary hole.
  • Figure 1 is a schematic structural diagram of a multi-zone slurry tubular reactor provided by a specific embodiment of the present invention
  • Figure 2 is a structural diagram of the transverse partition in Figure 1;
  • Figure 3 shows the tracer concentration distribution along the flow direction in a bubble column without segmented partitions
  • Figure 4 shows the tracer concentration distribution along the flow direction in a bubble column with 4 partitions
  • Fig. 5 is a diagram showing the fluid state corresponding to a transverse partition with only a central hole and a transverse partition with both a central hole and an auxiliary hole in different time periods.
  • Reaction zone 11 transverse partition 12, gaseous reactant inlet 13, liquid reactant inlet 14 and reaction product outlet 15;
  • the first reaction zone 111 The first reaction zone 111;
  • FIG. 1 is a schematic structural diagram of a multi-zone slurry tubular reactor provided by a specific embodiment of the present invention
  • FIG. 2 is a structural diagram of the horizontal baffle in FIG.
  • the embodiment of the present invention discloses a multi-zone slurry tubular reactor, the key improvement point of which is to optimize the structure of internal components to achieve the purpose of improving the gas-liquid mixing effect.
  • the present invention includes a shell.
  • the shell is cylindrical
  • a heat exchanger is arranged in the shell, and the heat exchanger is fixed at the two ends of the reactor in the form of tubes, and the bottom end of the heat exchanger is provided with
  • the cooling medium inlet 011 for the inflow of the cooling medium enables the cooling medium to flow upward along the tube side; in addition, the top of the heat exchanger is provided with a cooling medium outlet 012 for the cooling medium to be discharged.
  • transverse partition 12 is arranged between any two adjacent reaction zones 11, so that the transverse partition 12 separates the two, and the transverse partition 12 is provided with a plurality of pipes passing through Of vias.
  • the housing is provided with a plurality of transverse partitions 12, all of which are parallel.
  • the reaction zone 11 includes a first reaction zone 111 at the bottom end of the shell.
  • the side of the first reaction zone 111 is provided with a gaseous reactant inlet 13 and a liquid reactant inlet 14 to make the gaseous reactant react with the liquid All objects can flow upward along the shell side.
  • the gaseous reactant inlet 13 is used to fill the gaseous reactant
  • the gaseous reactant inlet 13 is located at the bottom of the first reaction zone 111 so that the entire shell is in a bubbling fluidized state from the bottom.
  • the liquid reactant inlet 14 is used to fill the slurry reactant.
  • the liquid reactant inlet 14 is located at a position above 1/2 of the height of the first reaction zone 111, so that the solid particles carried by the gaseous reactant have a sufficient sedimentation height, which is conducive to achieving a fully fluidized state.
  • the reaction zone 11 at the top of the shell is provided with a reaction product outlet 15 for discharging the reacted product.
  • the axial distance between any two adjacent transverse partitions 12 is equal to 0.5 to 1 times the inner diameter of the shell, which can effectively avoid dead corners in each reaction zone 11, and the gas-liquid mixing effect is better.
  • the axial distance between any two adjacent transverse partitions 12 is not less than 0.3 times of the inner diameter of the housing, but not more than 1.5 of the inner diameter of the housing.
  • a central hole 121 is provided in the center of any transverse partition 12, and any transverse partition 12 is provided with at least one auxiliary hole 122 distributed around the central axis of the central hole 121.
  • the central hole 121 is a circular through hole provided in the center of the transverse partition 1212, and the central axis of the central hole 121 coincides with the central axis of the transverse partition 12.
  • the number of auxiliary holes 122 provided on any transverse partition plate 12 is between 3 and 6.
  • the number of auxiliary holes 122 provided in any transverse partition plate 12 is specifically three, the three auxiliary holes 122 are all circular through holes, and the three auxiliary holes 122 are uniformly arranged in a circular ring shape. So that the liquid forms a good vortex state, which helps to improve the gas-liquid mixing effect.
  • Figure 3 shows the tracer concentration distribution along the flow direction in a bubble column without segmented partitions
  • Figure 4 shows the tracer concentration distribution along the flow direction in a bubble column with four partitions. Tracer concentration distribution.
  • Figure 3 shows the tracer concentration distribution along the flow direction in a bubble column without segmented partitions
  • Figure 4 shows the tracer concentration distribution along the flow direction in a bubble column with four partitions. Tracer concentration distribution.
  • the shell of the plate 12 can be easily seen in this figure that the tracer fills the entire cavity of the shell; the right side view represents the shell provided with the transverse partition 12, in this figure it can be easily seen that the tracer is in the shell There is a gradient distribution in the body, and the concentration difference between the reaction zones 11 is obvious, so that the horizontal partition 12 can be easily pushed out to prevent the liquid phase from backmixing.
  • FIG. 5 is a diagram showing the fluid state corresponding to the transverse partition 12 with only the central hole 121 and the transverse partition 12 with both the central hole 121 and the auxiliary hole 122 in different time periods.
  • the different time periods specifically refer to the four time periods of 0s, 2s, 5s and 10s.
  • the first column represents 0s
  • the reactants are injected at the same time.
  • the second column and the third column respectively represent the 2s and 5s states.
  • the horizontal partition 12 with only the central hole 121 can only allow the reactants to flow upwards through the central hole 121 into the next reaction zone 11, and some of them fail to leave the reaction zone 11.
  • the liquid reactant After colliding with the horizontal partition 12, the liquid reactant turns back downwards, and there is agglomeration in the reaction zone 11, and it is difficult for the gas and liquid to mix fully; and the horizontal partition 12 with the central hole 121 and the auxiliary hole 122 can make the reactant in The central hole 121 and the auxiliary hole 122 form a vortex state under the combined action of the reaction zone 11, and there is almost no static zone inside the reaction zone 11, and the gas and liquid can be fully mixed.
  • the fourth column represents 10s, the gas-liquid mixture in the reaction zone 11 where only the horizontal partition 12 with the central hole 121 is located is insufficient, while the reaction zone 11 where the horizontal partition 12 with both the central hole 121 and the auxiliary hole 122 is located is sufficient mixing.
  • the number of stages in series of the full mixing kettle of the shell without the transverse partition 12 is 3, and the shell with 4 transverse partitions 12, regardless of whether the transverse partition 12 is provided with auxiliary holes 122 and regardless of the inner diameter of the central hole 121 Similarly, the number of serial stages of the full mixing kettle can reach 6 stages; further, the number of serial stages of the full mixing kettle with a shell with 9 transverse partitions 12 can reach 24 stages, which is very close to the flat push flow.
  • the gas-liquid mixed reactant in the reaction zone 11 rises through the central hole 121 due to its low density, while the liquid reactant descends through the auxiliary hole 122 due to the high density, thereby forming a riser in the reaction zone 11
  • the declining circulation phenomenon can block the circulation of the liquid reactant along the entire inner cavity of the shell, so that the liquid in each reaction zone 11 reaches the state of vortex motion, preventing short circuits and dead angles of the fluid in the shell, thereby preventing the overall back-mixing flow.
  • the inner diameter of the central hole 121 is equal to 1/5 to 1/3 of the inner diameter of the housing, which provides sufficient space for the rising of the gas-liquid mixed fluid.
  • any auxiliary hole 122 is equal to 1/10 to 1/8 of the inner diameter of the housing, which provides enough space for the liquid phase fluid to drop, and helps to improve the gas-liquid mixing effect.
  • the radial distance from the center of any auxiliary hole 122 to the center of the central hole 121 is equal to 0.6-0.8 times the inner diameter of the housing, so that the liquid can achieve the best vortex motion state and the gas-liquid mixing effect can be optimized.
  • the radial distance from the center of any auxiliary hole 122 to the center of the central hole 121 is specifically equal to 0.7 times the inner diameter of the housing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

一种多区式浆态列管反应器,包括壳体,壳体内具有至少两个反应区(11),任意相邻两个反应区(11)之间设有用于隔开二者并穿过列管的横向隔板(12),任意横向隔板(12)的中心设有中心孔(121),任意横向隔板(12)设有至少一个绕中心孔(121)的中心轴线分布以配合中心孔(121)使反应区(11)形成涡流状态的辅助孔(122)。进行化学反应时,反应区(11)内的气液混合反应物因密度较低而通过中心孔(121)上升,同时液态反应物因密度过高而通过辅助孔(122)下降,从而在反应区(11)内形成上升和下降的环流现象,进而实现阻断液态反应物沿壳体整个内腔循环流动,使每个反应区(11)内的液体达到涡流运动状态,防止壳体内的流体出现短路和死角,从而阻止整体返混流动。

Description

一种多区式浆态列管反应器
本申请要求于2019年10月29日提交中国专利局、申请号为201911039163.X、发明名称为“一种多区式浆态列管反应器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及化工设备技术领域,特别涉及一种多区式浆态列管反应器。
背景技术
浆态床反应器,尤其是多区式浆态列管反应器,进行化学反应的过程中一般都伴随有强放热,使得浆态床反应器必须增设换热器。换热器通常以列管方式固定在反应器两端,冷却介质从换热器的一端流入,沿管程向上流动,也即冷却介质在列管内流动;气态反应物及浆态反应物均从浆态床反应器的侧面进入浆态床反应器,沿壳程向上流动,从而使整个浆态床反应器内浆态反应物随气态反应物流动,并在流动的过程中发生化学反应。
以烷基氯化铝连续化生产为例。金属铝粉末从塔体的底部通入充满液态溶剂的塔体内,被从塔底另一部位通入的另一原料气态一氯烷烃鼓泡分散,随后两者在塔体内发生化学反应,生成烷基氯化铝。由于铝粉极细,极易随溶剂流动,分离十分困难,因此要求铝粉在反应器内完全转化。同时,铝粉与一氯烷烃的反应放热量很大,必须迅速移热。而现有浆态床反应器的结构虽有移热功能,但内部是一个整体,有强烈的返混,无法使铝粉在反应器内出现梯级分布,满足不了出口物料中不含铝粉的要求。因此,应开发一种具有移热功能且可阻止整体返混流动的浆态床反应器。
发明内容
本发明的目的在于提供一种多区式浆态列管反应器,即整个反应器被分隔成多个反应区,以阻止整体的返混流动。
其具体方案如下:
本发明提供一种多区式浆态列管反应器,包括壳体,壳体内具有至少 两个反应区,任意相邻两个反应区之间设有用于隔开二者并穿过列管的横向隔板,任意横向隔板的中心设有中心孔,任意横向隔板设有至少一个绕中心孔的中心轴线分布以配合中心孔使反应区形成涡流状态的辅助孔。
优选地,中心孔的内径等于壳体内径的1/5~1/3。
优选地,任一辅助孔内径等于壳体内径的1/10~1/8。
优选地,任一辅助孔的中心到中心孔中心之间的径向距离等于壳体内径的0.6~0.8倍。
优选地,任意横向隔板所设置的辅助孔的数量介于3个到6个之间。
优选地,任意横向隔板具体设有3~6个呈圆环状均匀排列的辅助孔。
优选地,任意相邻两个横向隔板之间的轴向距离等于壳体内径的0.5~1倍。
优选地,壳体的高度低于5米时,壳体内设有2~4块横向隔板;壳体的高度高于5米时,壳体内设有至少4块横向隔板。
优选地,反应区包括位于壳体底端的第一反应区,第一反应区侧面设有气态反应物入口和液态反应物入口,液态反应物入口位于第一反应区高度的1/2位置以上。
相对于背景技术,本发明提供一种多区式浆态列管反应器,包括壳体,壳体内具有至少两个反应区,任意相邻两个反应区之间设有一个横向隔板,每个横向隔板设有一个中心孔和至少一个辅助孔。进行化学反应时,反应区内的气液混合反应物因密度较低而通过中心孔上升,同时液态反应物因密度过高而通过辅助孔下降,从而在反应区内形成上升和下降的环流现象,进而实现阻断液态反应物沿壳体整个内腔循环流动,使每个反应区内的液体达到涡流运动状态,防止壳体内的流体出现短路和死角,从而阻止整体返混流动。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明一种具体实施例所提供的多区式浆态列管反应器的结构示意图;
图2为图1中横向隔板的结构图;
图3为不加分段隔板的鼓泡塔内沿流动方向的示踪剂浓度分布;
图4为带有4段隔板的鼓泡塔内沿流动方向的示踪剂浓度分布;
图5为仅具有中心孔的横向隔板和兼具中心孔和辅助孔的横向隔板在不同时间段内所对应的流体状态图。
附图标记如下:
冷却介质入口011和冷却介质出口012;
反应区11、横向隔板12、气态反应物入口13、液态反应物入口14和反应产物出口15;
第一反应区111;
中心孔121和辅助孔122。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
请参考图1和图2,图1为本发明一种具体实施例所提供的多区式浆态列管反应器的结构示意图;图2为图1中横向隔板的结构图。
本发明实施例公开了一种多区式浆态列管反应器,其关键改进点在于优化内构件的结构,以达到提升气液混合效果的目的。
本发明包括壳体,在该具体实施例中,壳体呈柱状,壳体内设有换热器,换热器以列管的方式固定在反应器的两端,换热器的底端设有供冷却 介质流入的冷却介质入口011,使冷却介质能够沿管程向上流动;此外,换热器的顶部设有供冷却介质排出的冷却介质出口012。
壳体内具有至少两个反应区11,任意相邻两个反应区11之间设有横向隔板12,以便横向隔板12隔开二者,同时横向隔板12设有若干供列管穿过的过孔。在该具体实施例中,壳体设有若干横向隔板12,全部横向隔板12相平行。
反应区11包括位于壳体底端的第一反应区111,考虑到反应物的成分不同,第一反应区111侧面设有气态反应物入口13和液态反应物入口14,使气态反应物和液态反应物均能够沿壳程向上流动。其中,气态反应物入口13用于充入气态反应物,气态反应物入口13位于第一反应区111的底部,以便整个壳体从底部便处于鼓泡流化状态。液态反应物入口14用于充入浆料反应物。为提升混合效果,液态反应物入口14位于第一反应区111高度的1/2位置以上,使气态反应物所携带的固体颗粒具有足够的沉降高度,有利于达到充分流化状态。此外,位于壳体顶部的反应区11设有供反应后的产物排出的反应产物出口15。
为保证壳体具有良好的气液混合效果,当壳体的高度低于5米时,壳体内设有2~4块横向隔板12;当壳体的高度高于5米时,壳体内设有至少4块横向隔板12。
进一步地,任意相邻两个横向隔板12之间的轴向距离等于壳体内径的0.5~1倍,能够有效避免各反应区11内出现死角,气液混合效果较好。当然,任意相邻两个横向隔板12之间轴向距离不低于壳体内径的0.3倍,但不超过壳体内径的1.5。
任意横向隔板12的中心设有中心孔121,且任意横向隔板12设有至少一个绕中心孔121的中心轴线分布的辅助孔122。在该具体实施例中,中心孔121为设于横向隔板1212的中心的圆形通孔,且中心孔121的中心轴线与横向隔板12的中心轴线重合。
为进一步提升气液混合效果,任意横向隔板12所设置的辅助孔122的数量介于3个到6个之间。在该具体实施例中,任意横向隔板12所设置的辅助孔122的数量具体为3个,3个辅助孔122均为圆形通孔,且3个辅助孔122呈 圆环状均匀排列,以便液体形成良好的涡流状态,有助于提升气液混合效果。
请参考图3和图4,图3为不加分段隔板的鼓泡塔内沿流动方向的示踪剂浓度分布;图4为带有4段隔板的鼓泡塔内沿流动方向的示踪剂浓度分布。为了说明横向隔板12对壳体内流体返混的限制作用,当壳体的底部注入一股示踪剂后,对比附图3中的左右两幅视图,其中,左侧视图代表未设置横向隔板12的壳体,在该图中可以轻易看出示踪剂充满壳体的整个型腔;右侧视图代表设置有横向隔板12的壳体,在该图中可以轻易看出示踪剂在壳体内出现梯度分布,各反应区11之间的浓度差异明显,从而可轻易推出横向隔板12能够起到阻止液相返混作用。
请参考图5,图5为仅具有中心孔121的横向隔板12和兼具中心孔121和辅助孔122的横向隔板12在不同时间段内所对应的流体状态图。其中不同时间段具体是指0s、2s、5s及10s四个时间段。其中,第一列代表0s时,同时注入反应物。第二列和第三列分别代表2s及5s状态下,仅具有中心孔121的横向隔板12仅能够使反应物通过中心孔121向上流入下一个反应区11,部分未能离开该反应区11的液态反应物与横向隔板12碰撞后折返向下,在反应区11内存在团聚现象,气液难以充分混合;而兼具中心孔121和辅助孔122的横向隔板12能够使反应物在中心孔121和辅助孔122的共同作用下形成涡流状态,反应区11内部几乎无静止区,气液能够充分混合。第四列代表10s时,仅具有中心孔121的横向隔板12所在的反应区11气液混合不充分,而兼具中心孔121和辅助孔122的横向隔板12所在的反应区11能够充分混合。
未设置横向隔板12的壳体的全混釜串联级数为3,而具有4块横向隔板12的壳体,不论横向隔板12是否设置有辅助孔122且不论中心孔121的内径是否相同,其全混釜串联级数均能够达到6级;进一步地,具有9块横向隔板12的壳体的全混釜串联级数能够达到24级,十分接近平推流。
进行化学反应时,反应区11内的气液混合反应物因密度较低而通过中心孔121上升,同时液态反应物因密度过高而通过辅助孔122下降,从而在反应区11内形成上升和下降的环流现象,进而实现阻断液态反应物沿壳体整个内腔循环流动,使每个反应区11内的液体达到涡流运动状态,防止壳 体内的流体出现短路和死角,从而阻止整体返混流动。
优选地,中心孔121的内径等于壳体内径的1/5~1/3,为气液混合流体的上升提供足够的空间。
进一步地,任一辅助孔122内径等于壳体内径的1/10~1/8,为液相流体的下降提供足够的空间,有助于提升气液混合效果。
任一辅助孔122的中心到中心孔121中心之间的径向距离等于壳体内径的0.6~0.8倍,使液体达到最佳涡流运动状态,使气液混合效果达到最佳。在该具体实施例中,优选地,任一辅助孔122的中心到中心孔121中心之间的径向距离具体等于壳体内径的0.7倍。
[根据细则91更正 24.12.2020] 
以上对本发明所提供的多区式浆态列管反应器进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种多区式浆态列管反应器,其特征在于,包括壳体,所述壳体内具有至少两个反应区(11),任意相邻两个所述反应区(11)之间设有用于隔开二者并穿过列管的横向隔板(12),任意所述横向隔板(12)的中心设有中心孔(121),任意所述横向隔板(12)设有至少一个绕所述中心孔(121)的中心轴线分布以配合所述中心孔(121)使所述反应区(11)形成涡流状态的辅助孔(122)。
  2. 根据权利要求1所述的多区式浆态列管反应器,其特征在于,所述中心孔(121)的内径等于所述壳体内径的1/5~1/3。
  3. 根据权利要求2所述的多区式浆态列管反应器,其特征在于,任一所述辅助孔(122)内径等于所述壳体内径的1/10~1/8。
  4. 根据权利要求2所述的多区式浆态列管反应器,其特征在于,任一所述辅助孔(122)的中心到所述中心孔(121)中心之间的径向距离等于所述壳体内径的0.6~0.8倍。
  5. 根据权利要求1至5任一项所述的多区式浆态列管反应器,其特征在于,任意所述横向隔板(12)所设置的所述辅助孔(122)的数量介于3个到6个之间。
  6. 根据权利要求6所述的多区式浆态列管反应器,其特征在于,任意所述横向隔板(12)具体设有3~6个呈圆环状均匀排列的辅助孔(122)。
  7. 根据权利要求6所述的多区式浆态列管反应器,其特征在于,任意相邻两个所述横向隔板(12)之间的轴向距离等于所述壳体内径的0.5~1倍。
  8. 根据权利要求6所述的多区式浆态列管反应器,其特征在于,所述壳体的高度低于5米时,所述壳体内设有2~4块所述横向隔板(12);所述壳体的高度高于5米时,所述壳体内设有至少4块所述横向隔板(12)。
  9. 根据权利要求6所述的多区式浆态列管反应器,其特征在于,所述反应区(11)的底部设有第一反应区(111),所述反应区(11)包括位于所述壳体底端的第一反应区(111),所述第一反应区(111)侧面设有气态反应物入口(13)和液态反应物入口(14),所述液态反应物入口(14)位 于所述第一反应区(111)高度的1/2位置以上。
PCT/CN2020/130761 2019-10-29 2020-11-23 一种多区式浆态列管反应器 WO2021083386A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/770,645 US11918992B2 (en) 2019-10-29 2020-11-23 Multi-region slurry shell-and-tube reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911039163.XA CN110694558B (zh) 2019-10-29 2019-10-29 一种多区式浆态列管反应器
CN201911039163.X 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021083386A1 true WO2021083386A1 (zh) 2021-05-06

Family

ID=69202725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130761 WO2021083386A1 (zh) 2019-10-29 2020-11-23 一种多区式浆态列管反应器

Country Status (3)

Country Link
US (1) US11918992B2 (zh)
CN (1) CN110694558B (zh)
WO (1) WO2021083386A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694558B (zh) * 2019-10-29 2021-01-22 浙江新安化工集团股份有限公司 一种多区式浆态列管反应器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200457A (zh) * 1997-05-23 1998-12-02 日本石油株式会社 用于流化床反应器的多孔气体分配器
WO2005092488A1 (de) * 2004-03-25 2005-10-06 Basf Aktiengesellschaft Wirbelschichtverfahren und reaktor zur durchführung exothermer chemischer gleichgewichtsreaktionen
CN101396647A (zh) * 2007-09-29 2009-04-01 中科合成油技术有限公司 用于费-托合成的气-液-固三相悬浮床反应器及其应用
CN101417220A (zh) * 2008-11-14 2009-04-29 浙江大学 改善带列管浆态鼓泡塔流动特性的方法及其装置
EP2210661A2 (en) * 2009-01-20 2010-07-28 Mitsubishi Materials Corporation Apparatus for producing trichlorosilane and method for producing trichlorosilane
CN102557134A (zh) * 2011-12-23 2012-07-11 中国科学院过程工程研究所 一种生产高纯三氧化二钒的流态化还原炉及生产方法
CN103998866A (zh) * 2011-12-20 2014-08-20 埃克森美孚化学专利公司 混合器/流动分布器
CN110652943A (zh) * 2019-10-29 2020-01-07 浙江新安化工集团股份有限公司 一种鼓泡塔反应器
CN110694558A (zh) * 2019-10-29 2020-01-17 浙江新安化工集团股份有限公司 一种多区式浆态列管反应器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980344B2 (ja) * 2006-03-30 2012-07-18 新日鉄エンジニアリング株式会社 気泡塔型炭化水素合成反応器
CN103962069B (zh) * 2013-01-31 2017-03-08 中国科学院上海高等研究院 一种浆态床反应器
CN106824019A (zh) * 2017-01-19 2017-06-13 北京神雾环境能源科技集团股份有限公司 列管式浆态床反应器及反应系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200457A (zh) * 1997-05-23 1998-12-02 日本石油株式会社 用于流化床反应器的多孔气体分配器
WO2005092488A1 (de) * 2004-03-25 2005-10-06 Basf Aktiengesellschaft Wirbelschichtverfahren und reaktor zur durchführung exothermer chemischer gleichgewichtsreaktionen
CN101396647A (zh) * 2007-09-29 2009-04-01 中科合成油技术有限公司 用于费-托合成的气-液-固三相悬浮床反应器及其应用
CN101417220A (zh) * 2008-11-14 2009-04-29 浙江大学 改善带列管浆态鼓泡塔流动特性的方法及其装置
EP2210661A2 (en) * 2009-01-20 2010-07-28 Mitsubishi Materials Corporation Apparatus for producing trichlorosilane and method for producing trichlorosilane
CN103998866A (zh) * 2011-12-20 2014-08-20 埃克森美孚化学专利公司 混合器/流动分布器
CN102557134A (zh) * 2011-12-23 2012-07-11 中国科学院过程工程研究所 一种生产高纯三氧化二钒的流态化还原炉及生产方法
CN110652943A (zh) * 2019-10-29 2020-01-07 浙江新安化工集团股份有限公司 一种鼓泡塔反应器
CN110694558A (zh) * 2019-10-29 2020-01-17 浙江新安化工集团股份有限公司 一种多区式浆态列管反应器

Also Published As

Publication number Publication date
US11918992B2 (en) 2024-03-05
CN110694558A (zh) 2020-01-17
CN110694558B (zh) 2021-01-22
US20220410108A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2021083387A1 (zh) 一种鼓泡塔反应器
JP2002532246A (ja) 分配器アセンブリー
WO2021083386A1 (zh) 一种多区式浆态列管反应器
US20190209991A1 (en) Internal loop airlift reactor for process intensification integrating reaction and separation
JP2008532758A (ja) 流動床反応器を動作させる方法
CN109847658B (zh) 浆态床反应器及反应方法
CN105983377A (zh) 气升式内环流浆态床反应器
US4457896A (en) Apparatus and process for fluidized solids systems
CN105921078A (zh) 旋流碎流式冷氢箱
RU2505524C2 (ru) Реактор окисления параксилола для получения терефталевой кислоты
JP2004533315A (ja) 気体/液体反応用又は気体/液体/固体反応用の反応器
CN101721961A (zh) 一种沸腾床反应器
CN105859502A (zh) 一种制备乙烯的反应系统及方法
CN104549063A (zh) 一种沸腾床反应器
US11738318B2 (en) External loop slurry reactor
EP2174706A1 (en) Apparatus and process for gas phase fluidised bed polymerisation
CN101092350B (zh) 一种生产芳香酸的内循环鼓泡塔氧化反应器
CN114950173B (zh) 微气泡冷氢传质机构和催化加氢反应器
CN205761058U (zh) 旋流碎流式冷氢箱
JP2013512103A (ja) 反応器用急冷装置
CN111659320B (zh) 加氢反应器用冷氢箱
CN201855587U (zh) 一种催化精馏塔构件
US20060182673A1 (en) Apparatus for heterogeneous catalysed reactions
CN111040798B (zh) 一种煤制油低温费托反应器
CN204111619U (zh) 直接氯化生产1,2-二氯乙烷的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881514

Country of ref document: EP

Kind code of ref document: A1