WO2021083163A1 - 一种用于火焰拍摄的高速高精度光谱视频系统及方法 - Google Patents

一种用于火焰拍摄的高速高精度光谱视频系统及方法 Download PDF

Info

Publication number
WO2021083163A1
WO2021083163A1 PCT/CN2020/124191 CN2020124191W WO2021083163A1 WO 2021083163 A1 WO2021083163 A1 WO 2021083163A1 CN 2020124191 W CN2020124191 W CN 2020124191W WO 2021083163 A1 WO2021083163 A1 WO 2021083163A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
spectral
flame
filter
speed
Prior art date
Application number
PCT/CN2020/124191
Other languages
English (en)
French (fr)
Inventor
曹汛
刘征宇
陈林森
蔡李靖
张焱
王琛
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US17/754,882 priority Critical patent/US20230204418A1/en
Publication of WO2021083163A1 publication Critical patent/WO2021083163A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • H04N23/16Optical arrangements associated therewith, e.g. for beam-splitting or for colour correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band
    • G01J2003/1217Indexed discrete filters or choppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/28132D-array
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • G06T2207/20028Bilateral filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • G06T2207/20032Median filtering

Definitions

  • the invention relates to the field of computational imaging and combustion diagnosis, and in particular to a high-speed and high-precision spectral video system and method for flame shooting.
  • the hyperspectral imaging system is dedicated to measuring dozens or even hundreds of spectral samples for each pixel.
  • the obtained hyperspectral image can be regarded as a three-dimensional data cube, in which two dimensions constitute a plane space, and the third dimension is a spectrum.
  • the internal details of high-resolution spectral images can reveal the inherent properties of the subject and ambient light. Such data has important applications in many fields, such as military, agriculture, mineral detection and identification, and criminal investigation.
  • the purpose of the present invention is to solve the above-mentioned technical difficulties in combustion diagnosis, and propose a spectral video system suitable for flame shooting, which can obtain spectral information with time, space and spectral resolution, and can perform broad-spectrum shooting and obtain characteristic peaks. High spectral resolution data nearby.
  • Another object of the present invention is to provide a measurement method using the above-mentioned spectral video system.
  • a high-speed and high-precision spectral video system for flame shooting including a filter module, a light splitting module, a coded aperture module, a dispersion module, a gray information acquisition module, an RGB information acquisition module, a data reconstruction module, and a display module;
  • the optical module filters the light of the flame to obtain the optical signal of the required wavelength band;
  • the optical splitting module divides the optical signal output by the filter module into the same two beams, one enters the encoding aperture module, and the other enters the RGB information collection Module;
  • the coded aperture module sparsely sample and code the light signal of the flame, and then transmit the light signal to the dispersion module;
  • the dispersion module disperses the light signal to obtain spectral information;
  • the gray information collection module collects the dispersion module And transmit the signal to the data reconstruction module;
  • the RGB information acquisition module collects the high spatial resolution RGB video signal output by the spectroscopic module and transmits the signal to the data reconstruction module;
  • the data reconstruction module
  • the filter module includes a rotating filter
  • the rotating filter includes a 400-800nm wide band filter and eight narrow bandwidth filters
  • the wavelength bands of the eight narrow bandwidth filters are: 450nm, 500nm, 550nm, 600nm, 650nm, 700nm, 750nm, 800nm
  • the wide band filter and the narrow bandwidth filter are arranged in a circle on the runner.
  • the spectroscopic module adopts a spectroscope.
  • the coded aperture module includes an objective lens and a wheel mask, the objective lens forms the image of the flame on the plane of the wheel mask, and the light signal of the flame is sparsely sampled and encoded by the wheel mask; the wheel mask Including a low-sampling point mask for wide-band imaging and a high-sampling point mask for narrow-band imaging.
  • the dispersion module includes a relay lens and a grating.
  • the relay lens converts the optical signal output by the coded aperture module into parallel light, and the grating performs linear dispersion to obtain spectral information.
  • the gray-scale information collection module includes an eyepiece and a gray-scale high-speed camera.
  • the RGB information collection module includes an industrial lens and an RGB high-speed camera.
  • the data reconstruction module performs denoising processing on the signal of the gray information acquisition module: using the dark background image taken to remove the dark background noise, and using the median filter algorithm to remove the salt noise.
  • the wide band filter of the filter module and the low sampling point mask of the coded aperture module uses the wide band filter of the filter module and the low sampling point mask of the coded aperture module to collect and process the flame scene data with a wider spectral bandwidth, and use the data reconstruction module to reconstruct the spectral data.
  • the sampling points Less, the reconstruction accuracy is low; then, find the characteristic peaks representing different chemical reactions in the spectrum curve, and then use the narrow bandwidth filter corresponding to the characteristic peak band in the filter module and the high sampling point mask of the coded aperture module.
  • the film is used to collect and process data with a narrow spectral bandwidth for the flame scene, and use the data reconstruction module to reconstruct the spectral data again.
  • the present invention proposes a spectral video system with temporal and spatial spectral resolution, which uses grating as a dispersive element to achieve a high spectral resolution of 1 nm and combines with a scientific research-grade sCMOS high-speed camera design system to complete 200 frames High-speed camera.
  • Existing flame spectrum monitoring has the problem that the entire flame spectrum bandwidth is relatively wide and the characteristic peak bandwidth is relatively narrow.
  • the video spectrometer is required to have both a wide spectrum detection range and high spectral resolution and reconstruction accuracy.
  • the present invention designs a matching wheel filter and a wheel mask. When measuring data, first adjust the wheel filter and the wheel mask to the broadband filter and the low sampling point mask, and perform the flame first The spectral data collection and processing of the broad band and low sampling points are used to obtain the spectral data of the flame broad band; after determining the position of the characteristic peak, adjust the wheel filter and the wheel mask to the corresponding narrow band filter and high sampling point mask.
  • This measurement method can not only detect the entire wide spectral domain of the flame, but also search for characteristic peaks and perform high-precision spectral data collection and reconstruction on the narrow spectral domain near the characteristic peaks of the flame.
  • Figure 1 is a schematic diagram of the structure of the spectrum video system of the present invention.
  • Figure 2 is a schematic diagram of the optical path structure of the spectral video system of the present invention.
  • Fig. 3 is a flow chart of the method for acquiring broadband and narrow-band spectral data according to the present invention
  • Fig. 4 is a flow chart of the method for collecting and processing spectral video data of the present invention.
  • the core idea of the present invention is to aim at flame monitoring and propose a spectral video camera system that can simultaneously obtain temporal, spectral and spatial resolution, which can obtain flame spectral data with a wide band and low spectral accuracy, and a narrow spectrum near the characteristic peak.
  • Flame spectrum data with high spectral accuracy The system first measures the broad-band spectral data of the flame, with fewer sampling points and low spectral accuracy. After determining the position of the characteristic peak, it measures the narrow-band spectral data in the band near the characteristic peak, with more sampling points. , Spectral accuracy is high.
  • the gray channel dilutes the light signal through the mask and then uses the grating dispersion.
  • the RGB channel directly collects the high spatial resolution video signal.
  • the video frames collected by the two cameras are aligned and corrected to obtain the RGB video frame.
  • Some of the evenly spaced sparse pixels have both RGB pixel values and multi-channel spectral response values.
  • the noise is removed by the denoising algorithm, and then the bilateral filtering algorithm is used to reconstruct the video with spectral information, store and display.
  • the flame-based high-speed and high-precision spectroscopic video system as shown in Figure 1, including filter module 1, splitter module 2, coded aperture module 3, dispersion module 4, grayscale information acquisition module 5, RGB information acquisition module 6, data reconstruction Module 7, display module 8.
  • the specific light path structure is shown in Figure 2.
  • the filter module 1 is composed of a rotating filter, and the rotating filter filters out optical signals outside the required wavelength band.
  • the light splitting module 2 is composed of a light splitting mirror, which divides the optical signal output by the filter module into two identical beams, one beam enters the encoding aperture module, and the other beam enters the RGB information acquisition module.
  • the coded aperture module 3 includes an objective lens and a revolver mask. The objective lens forms the image of the flame on the mask plane.
  • the mask performs sparse sampling and coding of the light signal of the flame scene.
  • the revolver mask includes a wide spectrum band.
  • the dispersion module 4 is used to disperse the sparsely sampled optical signal to obtain spectral information, including a relay lens and a grating.
  • the relay lens converts the optical signal output by the coded aperture module into parallel light, and the grating performs linear dispersion to obtain the spectral information.
  • the light signal output from the dispersion module enters the gray information acquisition module 5.
  • the gray information acquisition module 5 includes an eyepiece and a gray high-speed camera. The eyepiece is converged and imaged on the sensor target surface of the gray camera.
  • the card stores the captured video in the host.
  • the RGB information collection module 6 includes an industrial lens and an RGB high-speed camera, which is used to collect the high spatial resolution RGB video signal output by the spectroscopic module and transmit the signal to the data reconstruction module.
  • the data reconstruction module 7 aligns and corrects the received spectral video from the gray information acquisition module 5 and the RGB video from the RGB information acquisition module 6, de-noises, and reconstructs the high-resolution spectral video and provides it to the display module 8.
  • the display module 8 is used to display the spectral video reconstructed by the data reconstruction module 7.
  • the gray-scale high-speed camera in the gray-scale information acquisition module 5 uses the pco.edge.4.2 scientific research-grade sCOMS high-speed camera of PCO, with a maximum resolution of 2048 times 2048 and a pixel size of 6.5 times 6.5 microns;
  • the RGB high-speed camera in the RGB information acquisition module 6 uses the pco.edge.5.5 scientific research-grade sCOMS high-speed camera of PCO, with a maximum resolution of 2560 by 2160 and a pixel size of 6.5 by 6.5 microns. Both cameras can achieve 200 frames of video acquisition.
  • a the opening angle of the required wavelength band beam after passing through the grating dispersion (calculated from the selected grating parameters and grating formula), the sensor pixel size is x, the required number of spectral channels is n, and the eyepiece focal length:
  • the wide band range is 400-800nm
  • the narrow band range is 400-800nm every 50nm, a total of 8 bands.
  • the wheel filter consists of a 400-800nm wide-band filter and a total of 8 narrow-bandwidth filters with a band of 400-800nm every 50nm.
  • the 9 filters are arranged in a circle on the wheel and pass Rotate the wheel to select the desired band filter to complete the spectral data collection of a wide band or a specific narrow band.
  • the focal length of the relay lens is selected to be 50mm
  • the focal length of the eyepiece is selected to be 25mm. According to the wide band bandwidth of 400nm and the narrow band bandwidth of 50nm, a low sampling point mask for wide band imaging and a high sampling point for narrow band imaging are designed respectively. Mask.
  • the front ends of the two cameras are collected and used to filter out the light signals outside the required bands by the rotating filter, and the scene light is divided into the same two beams by the beam splitter: one beam is sampled by the sparse mask and the light wave is expanded by the grating dispersion. Then it is collected by a gray-scale camera to obtain a gray-scale video with high spectral resolution, and the other beam is directly collected by an RGB camera to obtain a high-spatial-resolution RGB video.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种用于火焰拍摄的高速高精度光谱视频系统及方法,由滤光模块(1)滤得所需波段的光信号;分光模块(2)将滤光模块(1)的光信号分为相同的两段光束,分别进入编码光圈模块(3)和RGB信息采集模块(6);编码光圈模块(3)对光信号进行稀疏采样;色散模块(4)将光信号进行色散,并传送给灰度信息采集模块(5);数据重建模块(7)将来自灰度信息采集模块(5)和RGB信息采集模块(6)的两路信号对齐、去噪并利用双边滤波算法重建,然后将结果提供给显示模块(8)存储和显示。视频采集系统针对火焰场景、利用宽、窄谱带滤波片及相应的掩膜,既能进行低采样点数下的光谱重建、获取宽带宽的火焰光谱特征,又能对火焰特征峰附近较窄的光谱带进行高采样点数下的光谱重建,获取高准确度的光谱数据。

Description

一种用于火焰拍摄的高速高精度光谱视频系统及方法 技术领域
本发明涉及计算摄像学和燃烧诊断领域,尤其涉及一种用于火焰拍摄的高速高精度光谱视频系统及方法。
背景技术
传统的照相机仿照人眼,利用贝尔滤色镜来在传感器上记录测量结果,但是这种做法丢失了大量的光谱细节。而高光谱成像系统致力于对每个像素都会测量数十甚至上百的光谱样本,获得的高光谱图片可被视为一个三维数据立方体,其中两维构成平面空间,第三维则是光谱。高分辨率的光谱图片的内部细节能够揭示拍摄对象和环境光的固有性状。这样的数据在很多领域有着重要的应用,例如军事,农业,矿物探测和识别,刑事侦查。
在燃烧领域,火焰监测一直是研究热点,气体燃烧作为燃料的应用过程是一个复杂的物理化学过程,该过程能量和热量的传递耦合了流动、传热传质及化学反应等之间的相互作用。研究火焰光谱,可以帮助测量火焰燃烧状态,判断反应产物,重建温度场浓度场等。
对于气体燃烧火焰的光谱数据测量,由于火焰是一个不断变化的非稳态过程,其中的化学反应、温度、产物在不断变化。而传统的火焰光谱测量,利用单点式或扫描式光谱仪等,无法同时获得动态的具有二维空间分辨率的光谱数据。同时由于火焰光谱信号覆盖的谱带范围较宽,而特征峰又较窄,因此需要光谱仪既能进行宽谱拍摄又有较高的光谱分辨率。
发明内容
本发明的目的是针对上述燃烧诊断的技术难点,提出了一种适用于火焰拍摄的光谱视频系统,可以获得拥有时间空间和光谱分辨率的光谱信息,既能进行宽谱拍摄又能获得特征峰附近的高光谱分辨率的数据。本发明的另外一个目的是提供一种利用上述光谱视频系统的测量方法。
本发明系统采用的技术方案为:
一种用于火焰拍摄的高速高精度光谱视频系统,包括滤光模块、分光模块、编码光圈模块、色散模块、灰度信息采集模块、RGB信息采集模块、数据重建模块和显示模块;所述滤光模块将火焰的光线进行滤波滤得所需波段的光信号; 所述分光模块将滤光模块输出的光信号分为相同的两段光束,一束进入编码光圈模块,一束进入RGB信息采集模块;所述编码光圈模块对火焰的光信号进行稀疏采样和编码,然后将光信号传送给色散模块;所述色散模块将光信号进行色散得到光谱信息;所述灰度信息采集模块采集色散模块的光谱信息,并将信号传输给数据重建模块;所述RGB信息采集模块采集分光模块输出的高空间分辨率RGB视频信号并将信号传输给数据重建模块;所述数据重建模块将来自灰度信息采集模块和RGB信息采集模块的两路信号进行对齐,去噪处理并利用双边滤波算法进行重建,然后将重建结果提供给显示模块;所述显示模块存储和显示重建出的高分辨率光谱视频。
进一步地,所述滤光模块包括转轮滤波片,转轮滤波片包括一个400-800nm的宽谱带滤波片和八个窄带宽滤波片,八个窄带宽滤波片的波段分别为:450nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm;所述宽谱带滤波片和窄带宽滤波片围成一圈安装在转轮上。
进一步地,所述分光模块采用分光镜。
进一步地,所述编码光圈模块包括物镜和转轮掩膜,物镜将火焰的像成在转轮掩膜平面上,由转轮掩膜对火焰的光信号进行稀疏采样和编码;转轮掩膜包括用于宽谱带成像的低采样点数掩膜和用于窄谱带的成像的高采样点数掩膜。
进一步地,所述色散模块包括中继镜和光栅,中继镜将由编码光圈模块输出的光信号变成平行光,由光栅进行线性色散得到光谱信息。
进一步地,所述灰度信息采集模块包括目镜和灰度高速相机。
进一步地,所述RGB信息采集模块包括工业镜头和RGB高速相机。
进一步地,所述数据重建模块对灰度信息采集模块的信号进行去噪处理:利用拍摄的暗底图片去除暗底噪声,并利用中值滤波算法去除盐粒噪声。
本发明测量方法采用的具体步骤如下:
首先,利用滤光模块的宽谱带滤波片以及编码光圈模块的低采样点数掩膜,对火焰场景进行较宽光谱带宽的数据采集与处理,利用数据重建模块重建出光谱数据,此时采样点较少,重建准确度较低;然后,寻找出光谱曲线中代表着不同化学反应的特征峰,再利用滤光模块中与特征峰波段对应的窄带宽滤波片以及编码光圈模块的高采样点数掩膜,对火焰场景进行窄光谱带宽的数据采集与处理, 利用数据重建模块再次重建出光谱数据。
本发明针对火焰监测遇到的问题,提出的一种具有时间空间光谱分辨率的光谱视频系统,利用光栅作为色散元件实现1nm的高光谱分辨率以及结合科研级sCMOS高速相机设计系统完成200帧的高速摄像。
现有火焰光谱监测中存在着,整个火焰光谱带宽较宽,特征峰带宽较窄的问题,需要视频光谱仪既有较宽的光谱探测范围又有较高的光谱分辨率和重建准确度。本发明针对该问题,设计配套的转轮滤波片和转轮掩膜,在测量数据时,首先调整转轮滤波片和转轮掩膜至宽带滤波片和低采样点数掩膜,对火焰先进行宽谱带低采样点数的光谱数据采集与处理,获得火焰宽谱带的光谱数据;确定特征峰的位置后,再调整转轮滤波片和转轮掩膜至相应窄带滤波片和高采样点数掩膜,对特征峰附近波段进行窄谱带高采样点数的光谱数据测量,得到光谱准确度较高的特征峰附近的光谱数据。该测量方法既能够对火焰整个较宽的光谱域进行检测,同时寻找特征峰又能对火焰特征峰附近的较窄的光谱域进行高精确度的光谱数据采集与重建。
附图说明
图1为本发明光谱视频系统结构示意图;
图2为本发明光谱视频系统的光路结构示意图;
图3为本发明宽谱带与窄谱带光谱数据采集方法的流程图;
图4为本发明光谱视频数据采集和处理方法的流程图。
具体实施方式
本发明的核心思想是针对火焰监测,提出一种能够同时获得时间光谱空间分辨率的光谱视频相机系统,既能够获得宽谱带低光谱准确度的火焰光谱数据,又能获得特征峰附近窄谱带高光谱准确度的火焰光谱数据。该系统首先对火焰进行宽谱带的光谱数据测量,采样点较少,光谱准确度较低,确定特征峰的位置后,对特征峰附近波段进行窄谱带的光谱数据测量,采样点较多,光谱准确度较高。系统中灰度通道将光信号通过掩膜稀采样后利用光栅色散,RGB通道直接采集高空间分辨率的视频信号,将两路相机采集的视频帧经过同步对齐校正后得到RGB视频帧,其上面的一些均匀间隔的稀疏像素点既具有RGB像素值又具有多通道光谱响应值,利用去噪算法去除噪声,然后利用双边滤波算法重建出具有光谱信息 的视频,存储并显示。
如图1所示的基于火焰的高速高精度光谱视频系统,包括滤光模块1、分光模块2、编码光圈模块3、色散模块4、灰度信息采集模块5、RGB信息采集模块6、数据重建模块7、显示模块8。具体的光路结构如图2所示。具体地,滤光模块1由转轮滤波片组成,由转轮滤波片滤除所需波段以外的光信号。分光模块2由分光镜组成,将滤光模块输出的光信号分为相同的两段光束,一束进入编码光圈模块,一束进入RGB信息采集模块。编码光圈模块3包括物镜和转轮掩膜,物镜将火焰的像成在掩膜平面上,由掩膜对火焰场景的光信号进行稀疏采样和编码,其中转轮掩膜包括用于宽谱带成像的低采样点数掩膜和用于窄谱带的成像高采样点数掩膜。色散模块4用于将稀疏采样的光信号进行色散得到光谱信息,包括中继镜和光栅,中继镜将由编码光圈模块输出的光信号变成平行光,由光栅进行线性色散得到光谱信息。从色散模块输出的光信号,进入灰度信息采集模块5,灰度信息采集模块5包括目镜和灰度高速相机,由目镜汇聚成像在灰度相机的传感器靶面上,由连接着相机的视频卡将采集的视频存储到主机中。RGB信息采集模块6包括工业镜头和RGB高速相机,用于采集分光模块输出的高空间分辨率的RGB视频信号,并将信号传输给数据重建模块。数据重建模块7将接收到的来自灰度信息采集模块5的光谱视频和RGB信息采集模块6的RGB视频进行对齐校正,去噪,和重建出高分辨率的光谱视频并提供给显示模块8。显示模块8用于显示数据重建模块7重建出的光谱视频。
优选地,本发明的实施例中,灰度信息采集模块5中的灰度高速相机选用PCO公司的pco.edge.4.2科研级sCOMS高速相机,最大分辨率为2048乘2048,像元大小6.5乘6.5微米;RGB信息采集模块6中的RGB高速相机选用PCO公司的pco.edge.5.5科研级sCOMS高速相机,最大分辨率为2560乘2160,像元大小6.5乘6.5微米。两个相机均可以实现200帧的视频获取。
本系统的主要工作流程如图3所示,可以描述为:
根据燃烧诊断所提出的对于监测波段和光谱分辨率的要求进行光栅与镜头的参数计算以及掩膜的设计。设a为所需波段光束通过光栅色散后的张角(可由选取的光栅参数与光栅公式计算得到),传感器像元大小为x,所需光谱通道数为n,目镜焦距:
F=nx/a
在设计掩时,主要是要确定掩膜每行狭缝的间距:
D=nrx
其中,r表示中继镜与目镜的焦距比,本实例中选取r=2。
由上式可知,若所需测量的光谱带宽较宽时,光谱分辨率仍为1nm,光谱通道数则较多,掩膜每行狭缝间距较大,狭缝数目则会较少,致使采样点数目较少,重建出的光谱数据的准确度也会较低;而当光谱带宽较窄时,采样点数目则较多,重建出的光谱数据的准确度也会较高。
本系统中选取宽谱带范围为400-800nm,窄谱带范围为400-800nm每隔50nm一个波段共计8个波段。由此转轮滤波片由一个400-800nm的宽谱带滤波片和400-800nm每隔50nm一个波段共计8个窄带宽滤波片组成,9个滤波片围成一圈安装在转轮上,通过旋转转轮选择所需波段滤波片,从而完成对宽谱带或特定窄谱带的光谱数据采集。中继镜焦距选取为50mm,目镜焦距选取为25mm,根据宽谱带带宽400nm,窄谱带带宽50nm设计出分别用以宽谱带成像的低采样点数掩膜和窄谱带成像的高采样点数掩膜。
利用设计好的系统,首先将转轮调整到宽谱带滤波片和低采样点数掩膜,对火焰场景进行较宽光谱带宽的数据采集与处理,重建出光谱数据,此时采样点较少,重建准确度较低。寻找出光谱曲线中代表着不同化学反应的特征峰,再调整转轮滤波片到相应特征峰波段附近,将掩模调整到高采样点数掩膜,进行窄光谱带宽的数据采集与处理,重建出光谱数据,此时采样点较多,重建准确度较高。本系统进行宽谱带或窄谱带的光谱视频数据采集和处理的方法都按照流程图4中进行。图4的具体流程为:
在两路相机前端采集利用转轮滤波片滤除所需波段以外的光信号,由分光镜将场景光线分为相同的两束:一束通过稀疏掩膜板采样并经过光栅色散使光波展开,再通过灰度相机采集,得到到高光谱分辨率的灰度视频,另一束通过RGB相机直接采集得到高空间分辨率的RGB视频。
利用角点对齐的方法对齐两路视频帧。利用双相机同时拍摄一个矩形的四个角点,从而计算出转移矩阵,利用转移矩阵将灰度通道和RGB通道的采样点进行对齐。
对灰度通道获取的信号进行去噪处理。部分拍摄对象光学信号较弱(例如预混火焰,呈半透明状,亮度较低),噪声影响较大,需要进行去噪处理。在火焰信息采集完毕后,拍摄一张暗室中的全黑图像(系统参数与之前完全相同),作为暗底噪声。在原始视频帧的基础上减去暗底噪声,并利用中值滤波的方法去除随机的盐粒噪声。
得到去噪后的视频后,利用主成分分析方法降低像素点的光谱信息维度简化计算量,然后再利用双边滤波的光谱传播算法得到所有像素点在波长为400-450nm的高分辨率光谱信息,再通过主成分分析方法反变换回复高分辨率的光谱信息。
最后将重建出的数据在主机上存储并显示。

Claims (9)

  1. 一种用于火焰拍摄的高速高精度光谱视频系统,其特征在于,该系统包括滤光模块、分光模块、编码光圈模块、色散模块、灰度信息采集模块、RGB信息采集模块、数据重建模块和显示模块;所述滤光模块将火焰的光线进行滤波滤得所需波段的光信号;所述分光模块将滤光模块输出的光信号分为相同的两段光束,一束进入编码光圈模块,一束进入RGB信息采集模块;所述编码光圈模块对火焰的光信号进行稀疏采样和编码,然后将光信号传送给色散模块;所述色散模块将光信号进行色散得到光谱信息;所述灰度信息采集模块采集色散模块的光谱信息,并将信号传输给数据重建模块;所述RGB信息采集模块采集分光模块输出的高空间分辨率RGB视频信号并将信号传输给数据重建模块;所述数据重建模块将来自灰度信息采集模块和RGB信息采集模块的两路信号进行对齐,去噪处理并利用双边滤波算法进行重建,然后将重建结果提供给显示模块;所述显示模块存储和显示重建出的高分辨率光谱视频。
  2. 根据权利要求1所述的一种用于火焰拍摄的高速高精度光谱视频系统,其特征在于,所述滤光模块包括转轮滤波片,转轮滤波片包括一个400-800nm的宽谱带滤波片和八个窄带宽滤波片,八个窄带宽滤波片的波段分别为:450nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm;所述宽谱带滤波片和窄带宽滤波片围成一圈安装在转轮上。
  3. 根据权利要求1所述的一种用于火焰拍摄的高速高精度光谱视频系统,其特征在于,所述分光模块采用分光镜。
  4. 根据权利要求1所述的一种用于火焰拍摄的高速高精度光谱视频系统,其特征在于,所述编码光圈模块包括物镜和转轮掩膜,物镜将火焰的像成在转轮掩膜平面上,由转轮掩膜对火焰的光信号进行稀疏采样和编码;转轮掩膜包括用于宽谱带成像的低采样点数掩膜和用于窄谱带的成像的高采样点数掩膜。
  5. 根据权利要求1所述的一种用于火焰拍摄的高速高精度光谱视频系统,其特征在于,所述色散模块包括中继镜和光栅,中继镜将由编码光圈模块输出的光信号变成平行光,由光栅进行线性色散得到光谱信息。
  6. 根据权利要求1所述的一种用于火焰拍摄的高速高精度光谱视频系统,其特征在于,所述灰度信息采集模块包括目镜和灰度高速相机。
  7. 根据权利要求1所述的一种用于火焰拍摄的高速高精度光谱视频系统,其特征在于,所述RGB信息采集模块包括工业镜头和RGB高速相机。
  8. 根据权利要求1所述的一种用于火焰拍摄的高速高精度光谱视频系统,其特征在于,所述数据重建模块对灰度信息采集模块的信号进行去噪处理:利用拍摄的暗底图片去除暗底噪声,并利用中值滤波算法去除盐粒噪声。
  9. 利用如权利要求1所述一种用于火焰拍摄的高速高精度光谱视频系统的测量方法,其特征在于,具体步骤如下:
    首先,利用滤光模块的宽谱带滤波片以及编码光圈模块的低采样点数掩膜,对火焰场景进行较宽光谱带宽的数据采集与处理,利用数据重建模块重建出光谱数据,此时采样点较少,重建准确度较低;
    然后,寻找出光谱曲线中代表着不同化学反应的特征峰,再利用滤光模块中与特征峰波段对应的窄带宽滤波片以及编码光圈模块的高采样点数掩膜,对火焰场景进行窄光谱带宽的数据采集与处理,利用数据重建模块再次重建出高准确度的光谱数据。
PCT/CN2020/124191 2019-10-30 2020-10-28 一种用于火焰拍摄的高速高精度光谱视频系统及方法 WO2021083163A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/754,882 US20230204418A1 (en) 2019-10-30 2020-10-28 High-speed and high-precision spectral video system and method for flame shooting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911044312.1A CN110793632B (zh) 2019-10-30 2019-10-30 一种用于火焰拍摄的高速高精度光谱视频系统及方法
CN201911044312.1 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021083163A1 true WO2021083163A1 (zh) 2021-05-06

Family

ID=69442165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124191 WO2021083163A1 (zh) 2019-10-30 2020-10-28 一种用于火焰拍摄的高速高精度光谱视频系统及方法

Country Status (3)

Country Link
US (1) US20230204418A1 (zh)
CN (1) CN110793632B (zh)
WO (1) WO2021083163A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793632B (zh) * 2019-10-30 2021-06-22 南京大学 一种用于火焰拍摄的高速高精度光谱视频系统及方法
CN111965140B (zh) * 2020-08-24 2022-03-01 四川长虹电器股份有限公司 基于特征峰的波长点重组方法
CN112229827B (zh) * 2020-09-07 2022-02-08 南京大学 一种实时的多光谱层析拍摄方法和装置
CN117288692B (zh) * 2023-11-23 2024-04-02 四川轻化工大学 一种酿酒粮食中单宁含量的检测方法
CN117664342B (zh) * 2024-01-02 2024-05-17 中国矿业大学 同轴层流扩散火焰温度和碳烟浓度三维分布的重建方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201293684Y (zh) * 2008-09-28 2009-08-19 上海德运光电技术有限公司 三通道实时测温热像仪
CN101609052A (zh) * 2009-07-15 2009-12-23 北京航空航天大学 一种燃烧中间产物二维分布在线监测系统
CN103609102A (zh) * 2011-06-15 2014-02-26 微软公司 高分辨率多光谱图像捕捉
CN103940511A (zh) * 2014-04-03 2014-07-23 清华大学 高光谱采集系统的光谱谱线定标方法及装置
WO2018176493A1 (en) * 2017-04-01 2018-10-04 SZ DJI Technology Co., Ltd. Low-profile multi-band hyperspectral imaging for machine vision
CN208171443U (zh) * 2018-05-16 2018-11-30 德州尧鼎光电科技有限公司 一种波长可调的高光谱成像仪装置
CN109682475A (zh) * 2018-12-29 2019-04-26 南京林业大学 一种基于钾元素的木质粉尘火焰检测装置及方法
EP3508828A1 (en) * 2017-12-28 2019-07-10 Havelsan Teknoloji Radar San. Tic. A.S. A device for acqusition of hyperspectral and multi-spectral images with sliding linear optical filter
CN110017897A (zh) * 2019-04-18 2019-07-16 长春精仪光电技术有限公司 一种紧凑型单目多通道可组合式多光谱成像系统
CN110793632A (zh) * 2019-10-30 2020-02-14 南京大学 一种用于火焰拍摄的高速高精度光谱视频系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046433A (ja) * 1983-07-21 1985-03-13 Asahi Glass Co Ltd 炎検出装置
WO2002070953A1 (de) * 2001-03-02 2002-09-12 Powitec Intelligent Technologies Gmbh MEssVORRICHTUNG, INSBESONDERE ZUR FLAMMENBEOBACHTUNG WÄHREND EINES VERBRENNUNGSPROZESSES
CN102279050B (zh) * 2011-07-28 2013-09-04 清华大学 一种多光谱计算重构方法及系统
KR101227598B1 (ko) * 2011-09-19 2013-01-29 박석진 버너 화염 모니터링 시스템
CN102706450B (zh) * 2012-06-13 2014-03-12 西安电子科技大学 基于压缩感知的双通道多光谱视频成像仪及成像方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201293684Y (zh) * 2008-09-28 2009-08-19 上海德运光电技术有限公司 三通道实时测温热像仪
CN101609052A (zh) * 2009-07-15 2009-12-23 北京航空航天大学 一种燃烧中间产物二维分布在线监测系统
CN103609102A (zh) * 2011-06-15 2014-02-26 微软公司 高分辨率多光谱图像捕捉
CN103940511A (zh) * 2014-04-03 2014-07-23 清华大学 高光谱采集系统的光谱谱线定标方法及装置
WO2018176493A1 (en) * 2017-04-01 2018-10-04 SZ DJI Technology Co., Ltd. Low-profile multi-band hyperspectral imaging for machine vision
EP3508828A1 (en) * 2017-12-28 2019-07-10 Havelsan Teknoloji Radar San. Tic. A.S. A device for acqusition of hyperspectral and multi-spectral images with sliding linear optical filter
CN208171443U (zh) * 2018-05-16 2018-11-30 德州尧鼎光电科技有限公司 一种波长可调的高光谱成像仪装置
CN109682475A (zh) * 2018-12-29 2019-04-26 南京林业大学 一种基于钾元素的木质粉尘火焰检测装置及方法
CN110017897A (zh) * 2019-04-18 2019-07-16 长春精仪光电技术有限公司 一种紧凑型单目多通道可组合式多光谱成像系统
CN110793632A (zh) * 2019-10-30 2020-02-14 南京大学 一种用于火焰拍摄的高速高精度光谱视频系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENGUANG MA ET AL.: "Content-adaptive high-resolution hyperspectral video acquisition with a hybrid camera system", OPTICS LETTERS, vol. 39, no. 4, 15 February 2014 (2014-02-15), XP001587902, DOI: 10.1364/OL.39.000937 *
方晓静 (FANG, XIAOJING): "基于空间光调制器的高光谱成像系统的研究 (Research of Hyperspectral Imaging System Based on Spatial Light Modulator)", 中国优秀硕士论文全文数据库 信息科技辑 (ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE, CHINA MASTER’S THESES FULL-TEXT DATABASE), no. 2, 15 February 2017 (2017-02-15) *

Also Published As

Publication number Publication date
CN110793632B (zh) 2021-06-22
US20230204418A1 (en) 2023-06-29
CN110793632A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2021083163A1 (zh) 一种用于火焰拍摄的高速高精度光谱视频系统及方法
Cao et al. A prism-mask system for multispectral video acquisition
CN110274877B (zh) 一种基于散射介质的3d光谱成像系统及方法
EP3830551B1 (en) A hybrid spectral imager
CA2782326C (en) Fabry-perot fourier transform spectrometer
Du et al. A prism-based system for multispectral video acquisition
US8446458B2 (en) Miniaturized all-reflective holographic fourier transform imaging spectrometer based on a new all-reflective interferometer
Mu et al. Snapshot hyperspectral imaging polarimetry with full spectropolarimetric resolution
Cai et al. The design and implementation of portable rotational scanning imaging spectrometer
Zhang et al. Snapshot imaging spectrometer based on a microlens array
US11092489B2 (en) Wide-angle computational imaging spectroscopy method and apparatus
Harvey et al. High-throughput snapshot spectral imaging in two dimensions
Qi et al. A super-resolution fusion video imaging spectrometer based on single-pixel camera
AU2019204993A1 (en) Fabry-Perot Fourier transform spectrometer
CN115165096A (zh) 一种微型高光谱相机及测量方法
Quintana et al. Blur-specific no-reference image quality assesment for microscopic hyperspectral image focus quantification
Sun et al. Simulation of proposed eight-band camera for capturing multispectral images
Yang et al. Compressive hyperspectral microscopic imaging using spectral-coded illumination
Wong et al. A novel snapshot polarimetric imager
CN114485942B (zh) 一种高光谱配准方法及其成像系统
Fernandez et al. Fluorescence microscopy with a coded aperture snapshot spectral imager
Huang et al. High-Efficiency Multispectral-Polarization Imaging System using Polarization Camera Array with Notch Filters
CN111323123B (zh) 一种基于渐变薄膜滤光片的高光谱相机及其镀膜方法
US11867615B2 (en) Field calibration for near real-time Fabry Perot spectral measurements
Lu et al. Hyperspectral Microscope with Tunable Light Source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881178

Country of ref document: EP

Kind code of ref document: A1