WO2021083047A1 - 燃烧室和燃气设备 - Google Patents

燃烧室和燃气设备 Download PDF

Info

Publication number
WO2021083047A1
WO2021083047A1 PCT/CN2020/123267 CN2020123267W WO2021083047A1 WO 2021083047 A1 WO2021083047 A1 WO 2021083047A1 CN 2020123267 W CN2020123267 W CN 2020123267W WO 2021083047 A1 WO2021083047 A1 WO 2021083047A1
Authority
WO
WIPO (PCT)
Prior art keywords
enclosure
combustion chamber
air
plate
air duct
Prior art date
Application number
PCT/CN2020/123267
Other languages
English (en)
French (fr)
Inventor
薛超雄
勾健
徐国平
尹忠
梁国荣
Original Assignee
芜湖美的厨卫电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921868350.4U external-priority patent/CN212511829U/zh
Priority claimed from CN201911056280.7A external-priority patent/CN112747472A/zh
Priority claimed from CN201911054566.1A external-priority patent/CN112747469A/zh
Priority claimed from CN201911056269.0A external-priority patent/CN112747471A/zh
Priority claimed from CN201921868388.1U external-priority patent/CN211823178U/zh
Priority claimed from CN201921868386.2U external-priority patent/CN211695436U/zh
Priority claimed from CN201921868387.7U external-priority patent/CN211601143U/zh
Application filed by 芜湖美的厨卫电器制造有限公司, 美的集团股份有限公司 filed Critical 芜湖美的厨卫电器制造有限公司
Priority to JP2022525274A priority Critical patent/JP2023501216A/ja
Priority to US17/772,501 priority patent/US20220373178A1/en
Priority to EP20880731.3A priority patent/EP4043812A4/en
Publication of WO2021083047A1 publication Critical patent/WO2021083047A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • F23M5/085Cooling thereof; Tube walls using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/02Baffles or deflectors for air or combustion products; Flame shields in air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0027Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using fluid fuel
    • F24H1/0036Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using fluid fuel of the sealed type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/124Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1832Arrangement or mounting of combustion heating means, e.g. grates or burners
    • F24H9/1836Arrangement or mounting of combustion heating means, e.g. grates or burners using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2214/00Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05003Details of manufacturing specially adapted for combustion chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to the field of water heaters, and more specifically, to a combustion chamber and gas equipment.
  • the existing combustion chamber usually includes the following two types.
  • One uses oxygen-free copper to surround the combustion chamber, and the water pipe is coiled on the outer wall of the oxygen-free copper to cool down.
  • the disadvantage is that the coil welding requires high technology, the manufacturing is difficult, and a large amount of oxygen-free copper materials are used, so the manufacturing cost is high.
  • the wall of the combustion chamber with coils is prone to condensate water at low temperatures in winter, which will affect the life of the heat exchanger.
  • the other is to install heat insulation materials on the inner wall of the combustion chamber. The cost of the heat insulation materials is high. In the case of insufficient thickness and sealing properties of the heat insulation materials, the heat insulation effect is poor.
  • the present invention aims to solve one of the above technical problems at least to a certain extent.
  • the present invention proposes a combustion chamber, which has a simple manufacturing process, low manufacturing cost and high thermal efficiency.
  • the present invention also provides a gas equipment, which has a simple structure, low production cost, long service life and high thermal efficiency.
  • the combustion chamber in some embodiments includes: a first enclosure on the outside and a second enclosure on the inside, the second enclosure structuring a combustion chamber, the first enclosure and The second enclosure is arranged at intervals to configure at least one air duct communicating with the combustion chamber, the air inlet of the air duct is formed on the first enclosure, and the air outlet of the air duct is formed On the second enclosure.
  • an air duct communicating with the combustion chamber is constructed through the first enclosure and the second enclosure, and the air in the air duct is sprayed into the combustion chamber, which not only realizes the The cooling of a hoard prevents heat transfer to the outside, and can also supply secondary air to the burner, which improves the thermal efficiency.
  • At least one of the bottom end and the top end of the air duct is closed.
  • the air inlet holes and the air outlet holes are staggered.
  • the air inlet hole is located above the air outlet hole.
  • first enclosure plate and the second enclosure plate jointly form a pipe groove extending in a horizontal direction.
  • the first enclosure panel includes: a first rear side panel, a first left side panel connected to the left edge of the first rear side panel, and a first rear side panel connected to the first rear side panel The first right side panel of the right side edge and the first front side panel respectively connecting the first left side panel and the front side edge of the first right side panel, wherein the first rear side panel, the The first left side panel and the first right side panel are integrally formed;
  • the second enclosure panel includes: a second rear side panel, a second left side panel connected to the left edge of the second rear side panel, and a second rear side panel connected to the second rear side panel The second right side panel of the right side edge of the second side panel and the second front side panel connecting the second left side panel and the front side edge of the second right side panel respectively, wherein the second rear side panel, the The second left side board and the second right side board are integrally formed.
  • the upper end of the second front side plate forms a bent plate, and the bent plate is at least partially attached to the inner side wall of the first front side plate, thereby closing the air duct Upper side.
  • the upper side of the bent plate and the first front side plate form a heat-insulating air chamber, and the heat-insulating air chamber is not connected with the combustion chamber.
  • a part of the air inlet holes are arranged adjacent to the bent plate.
  • the air inlet hole is elongated.
  • the hole wall of the air outlet hole of the second enclosure forms a wind deflector extending toward the inner wall of the first enclosure.
  • At least one of the first enclosure panel and the second enclosure panel is a steel plate.
  • the second enclosure is configured with a combustion chamber, and the first enclosure and the second enclosure are spaced apart to form at least a first layer of air ducts and The second layer of air ducts, the air inlets of the first layer of air ducts and the second layer of air ducts are formed on the first enclosure, the first layer of air ducts and the second layer of air ducts
  • the air outlet is formed on the second enclosure, in the height direction, the air inlet of the first layer of air duct is located above the air outlet, and the air inlet of the second layer of air duct is located on the outlet Below the wind hole.
  • the second enclosure is configured with a combustion chamber, and the first enclosure and the second enclosure are spaced apart to form at least one air duct communicating with the combustion chamber, and The air inlet of the air duct is formed on the first enclosure, the air outlet of the air duct is formed on the second enclosure, and in the height direction, the air inlet is provided on the air outlet Above the hole.
  • the second enclosure is configured with a combustion chamber, and the first enclosure and the second enclosure are spaced apart to form at least one air duct communicating with the combustion chamber, and The first enclosure board and the second enclosure board jointly form a pipe groove extending in a horizontal direction.
  • the gas chamber includes: a first enclosure on the outer side and a second enclosure on the inner side, the second enclosure defines a combustion chamber, and the first enclosure
  • the plate and the second enclosing plate are arranged at intervals to form an air duct communicating with the combustion chamber and surrounding the combustion chamber.
  • the air duct is divided into a plurality of independent air chambers in the circumferential direction.
  • Each of the air chambers has independent air inlets and air outlets, and when the combustion chamber forms a negative pressure, the air in the air duct is sent into the combustion chamber.
  • the air duct in the circumferential direction is divided into a plurality of independent air chambers, and the cold air distribution condition is improved through the multi-air chamber structure, so that the entire first enclosure is uniformly cooled, thereby Extend the service life of the parts of the gas equipment, and can also deliver air to the combustion chamber from multiple directions at the same time to supply enough secondary air to improve the combustion efficiency.
  • the air cavity is evenly distributed in the circumferential direction of the combustion cavity.
  • the air inlet holes and the air outlet holes are staggered.
  • the air inlet hole is located above the air outlet hole.
  • the upper and lower sides of the air cavity are provided with the air inlet holes, and the air outlet is located between the air inlet holes on the upper and lower sides.
  • the air flow in the air cavity enters from the middle and flows out from the upper and lower sides.
  • the first enclosure and the second enclosure construct a multi-layer air duct distributed in a height direction.
  • the height of the air duct in each layer and the flow direction of the airflow are the same.
  • At least one steel plate of the first enclosure panel and the second enclosure panel is at least one steel plate of the first enclosure panel and the second enclosure panel.
  • the combustion chamber includes: a first enclosure on the outer side and a second enclosure on the inner side, the second enclosure defines a combustion chamber, and the first enclosure The plate and the second enclosure are spaced apart to form a single-cavity air duct communicating with the combustion chamber and surrounding the circumference of the combustion chamber.
  • the single-cavity air duct has an air inlet and an air outlet.
  • the circumferential direction of the first enclosure can be cooled by air of approximately the same temperature, thereby prolonging the service life of the components of the gas equipment , It can also deliver air from the circumferential direction to the combustion chamber at the same time to replenish sufficient secondary air to improve combustion efficiency.
  • the air inlet holes and the air outlet holes are staggered in the height direction.
  • the airflow in the single-cavity air duct flows from top to bottom.
  • the upper and lower sides of the single-cavity air duct are provided with the air inlet holes, and the air outlet is located between the air inlet holes on the upper and lower sides.
  • the airflow in the single-cavity air duct enters from the middle, and flows out from the upper and lower sides.
  • the first enclosure panel and the second enclosure panel form a multi-layered single-cavity air duct distributed in a height direction.
  • the height of the single-cavity air duct in each layer and the flow direction of the airflow are the same.
  • the first enclosure is formed by enclosing a plurality of first plates
  • the second enclosure is formed by enclosing a plurality of second plates
  • each of the second plates includes a plurality of A sealing portion recessed from the inside to the outside
  • the sealing portion includes an upper wing plate, a lower wing plate, and a hook portion connecting the upper wing plate and the lower wing plate, and the hook portion abuts against the first The outer wall of the hoarding.
  • the upper wing plate defines the air outlet
  • the lower wing plate is attached to the inner wall surface of the first enclosure plate
  • the upper wing plate is further provided with a wind deflector, one end of the wind deflector is connected to the hole wall of the air outlet, and the other end extends in the direction of the first enclosure .
  • a plurality of reinforcing ribs recessed from the inside to the outside are formed on the second enclosure plate.
  • first enclosure plate and the second enclosure plate are both steel plates.
  • the gas equipment according to the embodiment of the second aspect of the present invention includes the combustion chamber of the above-mentioned embodiment. Because the combustion chamber according to the embodiment of the present invention has a simple structure, is easy to manufacture, and effectively avoids heat transfer to the outside, the service life of parts is prolonged, And the combustion efficiency is improved. Therefore, the gas equipment according to the embodiment of the present invention has a simple structure, low production cost, long service life and high thermal efficiency.
  • Figure 1 is an exploded view of a combustion chamber according to some embodiments of the present invention.
  • Figure 2 is a cross-sectional view of a combustion chamber according to some embodiments of the present invention.
  • Figure 3 is a cross-sectional view of a combustion chamber according to some embodiments of the present invention.
  • Figure 4 is a cross-sectional view of a combustion chamber according to some embodiments of the present invention.
  • Figure 5 is a perspective view of a combustion chamber according to some embodiments of the present invention.
  • Figure 6 is a schematic structural diagram of a gas appliance according to some embodiments of the present invention.
  • Fig. 7 is a cross-sectional view of a combustion chamber from an angle according to other embodiments of the present invention.
  • Figure 8 is a cross-sectional view of the combustion chamber from another angle according to other embodiments of the present invention.
  • Figure 9 is a cross-sectional view of the combustion chamber from another angle according to other embodiments of the present invention.
  • Figure 10 is a cross-sectional view of the combustion chamber from another angle according to other embodiments of the present invention.
  • Figure 11 is a perspective view of a combustion chamber according to other embodiments of the present invention.
  • Figure 12 is a cross-sectional view of a combustion chamber according to other embodiments of the present invention.
  • FIG. 13 is a schematic diagram of the transverse structure of the combustion chamber in other embodiments according to the present invention.
  • FIG. 14 is a schematic diagram of the longitudinal structure of the combustion chamber in other embodiments according to the present invention.
  • 15 is a schematic view of the longitudinal structure of the combustion chamber in other embodiments according to the present invention.
  • 16 is a schematic diagram of the longitudinal structure of the combustion chamber in other embodiments according to the present invention.
  • Figure 17 is a schematic view of the longitudinal structure of the combustion chamber in other embodiments according to the present invention.
  • Figure 18 is an exploded view of a combustion chamber according to other embodiments of the present invention.
  • Figure 19 is a perspective view of a combustion chamber according to other embodiments of the present invention.
  • Fig. 20 is a perspective view of a combustion chamber in other embodiments according to the present invention.
  • Combustion chamber 100 Combustion chamber 100;
  • Insulated air chamber 50
  • Seal 60 upper wing 61; wind deflector 611; lower wing 62; hook 63;
  • a combustion chamber 100 according to an embodiment of the present invention is described.
  • the combustion chamber 100 is connected to the heat exchanger 200 and the combustor 300, respectively, wherein a part of the heat exchanger 200 and the combustor 300 may be embedded in In the combustion chamber 100, either all are located outside the combustion chamber 100, or one of them is located in the combustion chamber 100 and the other is located outside the combustion chamber 100.
  • the combustion chamber 100 includes a first enclosure plate 10 located on the outer side and a second enclosure plate 20 located on the inner side.
  • the second enclosure 20 configures a combustion chamber 21, that is, the combustion flame of the combustor 300 and the high-temperature flue gas generated are enclosed in the combustion chamber 21.
  • a second enclosure 20 is provided on the outside of the first enclosure 10, and the second enclosure 20 may be at least partially enclosed on the outside of the first enclosure 10.
  • the second enclosure board 20 is enclosed on at least one of the left, right, front and rear sides of the first enclosure board 10.
  • the second enclosure board 20 is enclosed on the first enclosure board 10
  • the left and right sides and the front and rear sides, more preferably, the extension heights of the second enclosure panel 20 and the first enclosure panel 10 in the vertical direction (up and down directions in the figure) are substantially the same. In this way, the outer sides of the second enclosure panel 20 can be made uniform.
  • the first enclosure plate 10 is provided to prevent heat transfer to the outside, which reduces the heat sent from the combustion chamber 100 to the outside, and prevents high temperature from damaging the components of the gas equipment 1000.
  • the combustion chamber 100 in some embodiments according to the first aspect of the present invention will be described.
  • the first enclosure plate 10 and the second enclosure plate 20 are spaced apart.
  • An air duct 30 communicating with the combustion chamber 21 is constructed, and the cold air in the air duct 30 takes away at least part of the heat of the first enclosure plate 10. That is to say, the air in the air duct 30 is in a flowing state, and the outside cold air can continuously enter the air duct 30, thereby continuously taking away the heat of the first enclosure 10 and flowing into the combustion chamber 21 to realize the secondary supply to the combustor 300 air.
  • the combustion chamber 100 of the embodiment of the present invention will deliver flowing air to the air duct 30. On the one hand, it realizes cooling of the first enclosure plate 10, reduces heat dissipation, and avoids damage to the components of the gas equipment 1000. On the other hand, it also Improved thermal efficiency.
  • the air flow in the air duct 30 of the combustion chamber 100 in the embodiment of the present invention is adopted
  • the spraying method enters the combustion chamber 21.
  • the air inlet 11 of the air duct 30 is formed on the first enclosure plate 10
  • the air outlet 22 of the air duct 30 is formed on the second enclosure plate 20.
  • the cold air passes through the first enclosure plate 10 and enters the air duct 30, and after shuttles in the air duct 30, it is sprayed out from the air outlet 22 and enters the combustion chamber 21.
  • the combustion chamber 100 of the present invention can be applied to a forced-extraction gas equipment.
  • the forced-extraction gas equipment is provided with a burner 300, a combustion chamber 100, a heat exchanger 200, and a fan 400 in sequence from bottom to top. Under the suction of the fan 400, a negative pressure is formed in the combustion chamber 21, so that the outside air is sucked into the air duct 30, and the temperature reduction effect of the first enclosure plate 10 is realized.
  • the air ducts 30 formed by the first enclosure board 10 and the second enclosure board 20 may be one or more distributed in the circumferential direction, and/or one or more distributed in the height direction of the combustion chamber.
  • Each air duct 30 may have an independent air inlet 11 and an air outlet 22, or a plurality of air ducts 30 share an air inlet 11 and flow out through respective air outlets 22.
  • the multiple air ducts 30 may be connected to each other or not connected to each other.
  • an air duct 30 communicating with the combustion chamber 21 is formed through the first enclosure 10 and the second enclosure 20, and the air in the air duct 30 enters the combustion chamber by spraying.
  • the temperature of the first enclosure plate 10 is reduced to avoid heat transfer to the outside, and secondary air can be supplied to the burner 300, which improves the thermal efficiency.
  • At least one of the bottom end and the top end of the air duct 30 is closed. That is, one of the bottom end and the top end of the air duct is closed, or both the bottom end and the top end of the air duct are closed.
  • the air path leading to the top or bottom end of the air duct 30 is closed, so that the airflow can be forced to spray out through the air outlet 22 in the second enclosure 20.
  • At least one of the first enclosure plate 10 and the second enclosure plate 20 of the combustion chamber 100 of the present invention is a steel plate.
  • the steel plate has The plasticity is strong.
  • the connection process between the first enclosure plate 10 and the second enclosure plate 20 is relatively simple.
  • the first enclosure plate 10 and the second enclosure plate 20 are both steel plates, local welding is adopted to form a whole.
  • the structure of the air duct 30 can be formed by bending the first enclosure board 10 or the second enclosure board 20, and the configuration is easy.
  • the air duct 30 has an air inlet 11 and an air outlet 22 extending in a horizontal direction, and the air inlet 11 and the air outlet 22 are staggered in the height direction. That is, air enters the air duct 30 from one horizontal direction of the first enclosure board 10 and flows out of the air duct 30 from the other horizontal direction of the second enclosure board 20. In this way, the air does not directly pass through the air duct 30 in the same horizontal direction, and the air flow can flow in the height direction, so as to realize the cooling of the first enclosure plate 10 in different height regions.
  • the number of air inlet holes 11 of each air inlet duct 30 can be one or more. Preferably, the air inlet holes 11 are all over the circumference of the first enclosure plate 10 in the horizontal direction. In this way, the first enclosure plate 10 can be enlarged. The circumferential air inlet surface ensures that the first enclosure 10 is sufficiently cooled down.
  • the air inlet hole 11 is elongated. In this way, the distribution length of the air inlet holes 11 can be extended as much as possible, thereby further increasing the air inlet surface of the first enclosure board 10 in the circumferential direction, and ensure that the first enclosure board 10 is sufficiently cooled down.
  • the air inlet hole is located above the air outlet hole, so that the air flow in the air duct 30 flows from top to bottom. In this way, the air flow in the air duct 30 is conveyed to the lower side of the combustion chamber 21. As a result, sufficient secondary air can be supplied to the combustor 300 of the gas appliance 1000, and the combustion efficiency can be improved.
  • the first enclosure board 10 and the second enclosure board 20 jointly form a pipe groove 40 extending in the left-right direction.
  • a part of the water pipes of the heat exchanger 200 can pass through the pipe groove 40, that is, a part of the water pipes are built into the combustion chamber 21 and are directly heated in the combustion chamber 21, thereby improving the heat exchange efficiency between the flue gas and the water pipes.
  • the first enclosure panel 10 includes: a first rear side panel 12, a first left side panel 13 connected to the left edge of the first rear side panel 12, and The first right side panel 14 on the right side edge of the first rear side panel 12 and the first front side panel 15 connecting the front side edges of the first left side panel 13 and the first right side panel 14 respectively, wherein the first The rear side panel 12, the first left side panel 13 and the first right side panel 14 are integrally formed; correspondingly, the second enclosure panel 20 includes: a second rear side panel 23, and a left side edge connected to the second rear side panel 23 The second left side panel 24, the second right side panel connected to the right side edge of the second rear side panel 23, and the second front side connected to the front side edges of the second left side panel 24 and the second right side panel respectively The board 25, wherein the second rear side board 23, the second left side board 24 and the second right side board are integrally formed.
  • the first left side panel 13 is connected to the left side edge of the first rear side panel 12
  • the first right side panel 14 is connected to the right side edge of the first rear side panel 12
  • the first front side panel 15 is connected to the first side panel.
  • the second left side panel 24 is connected to the left side edge of the second rear side panel 23
  • the second right side panel is connected to the right side edge of the second rear side panel 23
  • the second front side panel 25 is connected to the second The left side panel 24 and the front side edge of the second right side panel.
  • the first rear side panel 12, the first left side panel 13 and the first right side panel 14 are integrated into a U-shaped structure
  • the first front side panel 15 is used to close the U-shaped opening
  • the second rear side panel 23 The second left side plate 24 and the second right side plate integrally form a U-shaped structure
  • the second front side plate 25 is used to close the U-shaped opening.
  • the overall structure of the combustion chamber is simple and easy to manufacture.
  • a bent plate 27 is formed at the upper end of the second front side plate 25, and the bent plate 27 is at least partially attached to the inner side wall of the first front side plate 15.
  • the upper side of the air duct 30 is closed. That is, the upward flow of air is restricted by the bending plate 27, so that the air can be deflected and flow downwards into the combustion chamber 21 to supply secondary air to the combustor 300.
  • the upper side of the bent plate 27 and the first front side plate 15 form a heat-insulating air chamber 50, and the heat-insulating air chamber 50 and the combustion chamber 21 are not connected. It can be understood that because the bent plate 27 is partially attached to the inner wall of the first front side plate 15, the temperature of the first front side plate 15 at the junction between the bent plate 27 and the first front side plate 15 is Higher, the heat insulation air chamber 50 can prevent the heat insulation from transferring the first front side plate 15 and can reduce the temperature of the bonding place to a certain extent.
  • a part of the air inlet holes 11 are arranged adjacent to the bent plate 27. That is, the cold air enters the air duct 30 from the side close to the bent plate 27, so that it is helpful for the cold air to continuously take away the temperature where the bent plate 27 and the first front side plate 15 are bonded, and avoid the temperature at the bonding position from being too high. high.
  • the hole wall of the air outlet hole 22 of the second enclosure panel 20 forms a wind deflector 26 extending toward the inner wall of the first enclosure panel 10.
  • the wind deflector 26 can guide the wind direction as far as possible to the inner wall of the first enclosure 10, so that the air flow can flow snugly through the inner wall of the first enclosure 10, thereby allowing the air to fully absorb the first enclosure 10 Heat.
  • the first enclosure plate 10 and the second enclosure plate 20 are spaced apart to form at least the first air duct 30 and the second layer communicating with the combustion chamber 21
  • the air duct 30, the air inlet 11 of the first air duct 30 and the second air duct 30 are formed on the first enclosure plate 10, and the air outlet 22 of the first air duct 30 and the second air duct 30 are formed On the second enclosure 20. That is, driven by the wind pressure, the airflow is sucked in from the outside to the inside. On the one hand, the heat in the combustion chamber 21 is prevented from spreading to the outside, and on the other hand, the heat of the first enclosure plate 10 is taken away to avoid excessive temperature rise.
  • the air in the air duct 30 is in a flowing state, and the outside cold air can continuously enter the second-layer air duct of the first air duct 30, thereby continuously taking away the heat of the first enclosure 10 and flowing into the combustion chamber 21 to achieve Air is supplied to the burner 300 secondary.
  • the combustion chamber 100 of the embodiment of the present invention will deliver flowing air to the air duct 30. On the one hand, it realizes cooling of the first enclosure plate 10, reduces heat dissipation, and avoids damage to the components of the gas equipment 1000. On the other hand, it also Improved thermal efficiency.
  • first layer and the “second layer” are relative to the height direction of the combustion chamber 100, that is, at least two layers of air ducts 30 are distributed in the height direction of the combustion chamber 100.
  • Each layer of air duct 30 may be a chamber independently distributed in the circumferential direction, or multiple independent chambers, and adjacent chambers may or may not be connected.
  • the structure and number of chambers of the air ducts 20 in adjacent layers may be the same or different.
  • the air flow direction in the first layer air duct 30 and the second layer air duct in the embodiment of the present invention adopts a convection method. Specifically, in the height direction, the air inlet 11 of the air duct 30 of the first layer is located above the air outlet 22, and the air inlet 11 of the air duct 30 of the second layer is located below the air outlet 22.
  • At least two layers of air ducts 30 communicating with the combustion chamber 21 are constructed through the first enclosure plate 10 and the second enclosure plate 20.
  • the temperature reduction of 10 can avoid heat transfer to the outside, and can also supply secondary air to the burner 300, which improves the thermal efficiency.
  • the air inlet hole 11 of the air duct 30 is formed on the first enclosure plate 10, and the air outlet hole 22 of the air duct 30 is formed on the second enclosure plate 20. That is, the cold air passes through the first enclosure plate 10 and enters the air duct 30, and after shuttles in the air duct 30, it flows out from the air outlet 22 and enters the combustion chamber 21.
  • the combustion chamber 100 of the present invention is applied to a forced-extraction gas equipment, which is provided with a burner 300, a combustion chamber 100, a heat exchanger 200, and a fan 400 from bottom to top. Under the suction of 400, a negative pressure is formed in the combustion chamber 21, so that the outside air is sucked into the air duct 30, and the effect of cooling the first enclosure 10 is realized.
  • the air inlet 11 is arranged above the air outlet 22 in the height direction, so as to promote cooling in the air duct 30
  • the air can flow in the direction of the combustor 300 to provide sufficient secondary air for the combustion of the gas in the combustor 300 and improve the combustion efficiency.
  • the air ducts 30 formed by the first enclosure board 10 and the second enclosure board 20 may be one or more distributed along the circumferential direction, and/or one or more distributed along the height direction of the combustion chamber 100.
  • Each air duct 30 may have an independent air inlet 11 and an air outlet 22, or a plurality of air ducts 30 share an air inlet 11 and flow out through respective air outlets 22.
  • the multiple air ducts 30 may be connected to each other or not connected to each other.
  • the air duct 30 communicating with the combustion chamber 21 is constructed through the first enclosure 10 and the second enclosure 20, which not only realizes the cooling of the first enclosure 10 , To avoid heat transfer to the outside, and to supply secondary air to the burner 300, which improves the thermal efficiency.
  • the first enclosure board 10 and the second enclosure board 20 jointly form a tube groove 40 extending in a horizontal direction (the left-right direction in FIG. 1 ).
  • a part of the water pipes of the heat exchanger 200 can pass through the pipe groove 40, that is, a part of the water pipes are built into the combustion chamber 21 and are directly heated in the combustion chamber 21, thereby improving the heat exchange efficiency between the flue gas and the water pipes.
  • the pipe groove 40 extending in the horizontal direction the heat exchange efficiency between the flue gas and the water pipe of the heat exchanger 200 is improved, and the temperature of the first enclosure plate 10 is lowered through the air duct 30 to avoid heat transfer to the outside, and to the combustion
  • the device 300 replenishes the secondary air and improves the thermal efficiency.
  • the air inlet holes 11 and the air outlet holes 22 are staggered.
  • air enters the air duct 30 from one direction of the first enclosure 10 and flows out of the air duct 30 from the other direction of the second enclosure 20.
  • the number of air inlet holes 11 of each air inlet duct 30 can be one or more.
  • the air inlet holes 11 are all over the circumference of the first enclosure plate 10 in the horizontal direction. In this way, the first enclosure plate 10 can be enlarged.
  • the circumferential air inlet surface ensures that the first enclosure 10 is sufficiently cooled down.
  • the air inlet 11 of the air duct 30 is formed on the first enclosure 10, and the air outlet 22 of the air duct 30 is formed on the second enclosure 20. In the height direction, the air inlet 11 is provided on the outlet Above the wind hole 22.
  • the air flow in the air duct 30 can be fed into the combustion chamber 21 from top to bottom, supplementing the secondary air in the direction of the combustor 200 to ensure full combustion.
  • the air duct 30 includes at least a first layer of air duct 30 and a second layer of air duct 30. That is, there are more than two layers of air ducts 30 in the height direction of the combustion chamber 100. By providing multiple layers of air ducts 30, the first enclosure plate 10 can be cooled in sections to improve the cooling effect.
  • the air inlet 11 of the first layer of air duct 30 and the second layer of air duct 30 are both located above the air outlet 22. That is, the airflows in the two layers of air ducts 30 flow in the same direction, so that the airflow can quickly flow toward the combustor 200 to ensure sufficient air for the combustion reaction.
  • the air flow direction in the first layer air duct 30 and the second layer air duct of the embodiment of the present invention adopts a convection method. Specifically, in the height direction, the air inlet 11 of the first layer of air duct 30 is located above the air outlet 22, and the air inlet 11 of the second layer of air duct 30 is located below the air outlet 22.
  • the combustion chamber 100 in some other implementations according to the first aspect of the present invention will be described.
  • the first enclosure plate 10 and the second enclosure plate 20 are spaced apart and configured to communicate with the combustion chamber 21 And surround the air duct 30 in the circumferential direction of the combustion chamber.
  • the air duct 30 is divided into a plurality of independent air chambers 31 in the circumferential direction.
  • Each air chamber 31 has an independent air inlet 11 and an air outlet 22.
  • an independent air flow can be formed in each air cavity 31, and multiple air cavities 31 can be formed in the circumferential direction of the combustion cavity 21, so as to realize simultaneous alignment of the first enclosure plate 10 from the front side, the rear side, the left side and the right side.
  • the temperature is lowered and the air flow is delivered to the combustion chamber 21.
  • the orientation or positional relationship indicated by "front”, “rear”, “left”, “right”, etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating It may also imply that the pointed device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present invention.
  • each air cavity 31 is independent of each other, the air flow rate in each air cavity 31 may be the same or different. It is understandable that the air cavity 31 on the side adjacent to the air inlet of the fan 400, because the airflow velocity is relatively large, the air inlet 11 can be set smaller, so that the air flow in the air cavity 31 can also be appropriately reduced. .
  • the number of air cavities 31 set in each direction can be set according to the air flow field.
  • the air flow field is mainly related to the air flow velocity, the width of the flow channel and whether there is interference during the air stroke, for example, the flow field is unobstructed. In the case of circumstance, only one air cavity 31 can be provided; in the case of unobstructed flow, multiple air cavities 31 can be provided to avoid possible influence caused by obstacles.
  • the combustion chamber 100 divides the air duct 30 in the circumferential direction into a plurality of independent air chambers 31, and improves the distribution of cold air through the multi-air chamber 31 structure, so that the entire first enclosure
  • the temperature of the plate 10 is uniformly lowered, thereby prolonging the service life of the parts of the gas equipment 1000, and it can also deliver air to the combustion chamber 21 from multiple directions at the same time to supply sufficient secondary air to improve the combustion efficiency.
  • the air chambers 31 are evenly distributed in the circumferential direction of the combustion chamber 21.
  • each side of the combustion chamber 21 is provided with an air chamber 31, so that a front air chamber 31 is formed on the front side of the combustion chamber 21, a rear air chamber 31 is formed on the rear side, and a left air chamber 31 and a right side are formed on the left side.
  • the right air cavity 31 is formed.
  • a negative pressure is formed in the combustion chamber 21, and the external air flow can flow into the air chamber 31 from the air inlet 11, and then flow into the combustion chamber 21 from the air outlet 22 respectively, so as to take away the heat of the first enclosure 10 and avoid the heat External diffusion.
  • the air inlet hole 11 is formed on the first enclosure plate 10
  • the air outlet hole 22 is formed on the second enclosure plate 20, so that the cold air can flow from the outside to the inside. Flow, the multiple cold airflows in the circumferential direction can block and blow the heat dissipation airflow to diffuse outward, which is more conducive to lowering the temperature of the first enclosure board 10.
  • the air inlet holes 11 and the air outlet holes 22 are staggered in the height direction. That is, air enters the air cavity 31 from one direction of the first enclosure 10 and flows out of the air cavity 31 from the other direction of the second enclosure 20. In this way, the air does not directly pass through the air cavity 31 in the same height direction, and the air flow can flow in the height direction, so as to achieve cooling of the first enclosure 10 in different height regions.
  • the number of air inlets 11 of each air cavity 31 can be one or more.
  • the air inlets 11 are spread as much as possible in the horizontal direction around the circumference of the first enclosure plate 10, so that the first enclosure can be enlarged.
  • the air inlet surface in the circumferential direction of the board 10 ensures that the first enclosure board 10 is sufficiently cooled down.
  • the air inlet 11 is elongated.
  • the circumferential distribution length of the air inlet holes 11 can be extended, thereby further increasing the circumferential air inlet surface of the first enclosure board 10 to ensure that the first enclosure board 10 is sufficiently cooled.
  • the air inlet hole is located above the air outlet hole.
  • the air flow in the air cavity 31 flows from top to bottom. In this way, the air flow in the air cavity 31 is conveyed to the lower side of the combustion cavity 21. As a result, sufficient secondary air can be supplied to the combustor 300 of the gas appliance 1000, and the combustion efficiency can be improved.
  • the upper and lower sides of the air cavity 31 are provided with air inlet holes 11, and the air outlet holes 22 are located between the air inlet holes 11 on the upper and lower sides. That is, one air cavity 31 simultaneously sends air into the air cavity 31 from the upper and lower directions, and sends air through the air outlet 22 in one direction.
  • the upper and lower sides of the air cavity 31 can be simultaneously conveyed with cold air. This method of arranging holes can solve the problem of air intake on one side (upper or lower side) of the air cavity 31, causing the airflow temperature to be too high when the airflow flows to the other side of the air cavity 31, so that the other side cannot be realized.
  • the airflow in the air cavity 31 enters from the middle, and flows out from the upper and lower sides.
  • the air is taken in from one horizontal direction, and the other two horizontal directions (one is located on the upper side of the air inlet 11 and the other is located on the lower side of the air inlet 11), so that the upper and lower sides of the first enclosure board 10 can be Achieve cooling.
  • This kind of hole arrangement scheme is suitable for situations where the height of the combustion chamber 21 is small.
  • the first enclosure board 10 and the second enclosure board 20 form a multi-layer air duct 30 distributed in a height direction. That is, a plurality of air ducts 30 are arranged around the height direction of the combustion chamber 21, and the first enclosure plate 10 is cooled at different heights through the plurality of air ducts 30, and air is also sent to the combustion chamber 21 from different height directions.
  • the structure of each layer of air ducts 30 can be the same or different, so that the circumference of the combustion chamber 21 can have multiple forms of air duct 30 structures, so as to obtain the best cooling and air supply effects. .
  • the height and the air flow direction of each layer of the air duct 30 are the same. That is, the air supply method and the air supply volume of the air duct 30 of each layer are approximately the same, and the heat that can be taken away by the first enclosure board 10 is approximately the same.
  • the combustion chamber 100 in other embodiments according to the first aspect of the present invention will be described.
  • the first enclosure plate 10 and the second enclosure plate 20 are spaced apart and configured to
  • the combustion chamber 21 communicates with and surrounds the single-chamber air duct 30 in the circumferential direction of the combustion chamber 21.
  • the single-chamber air duct 30 has an air inlet 11 and an air outlet 22.
  • the combustion chamber 21 forms a negative pressure
  • the single-chamber air duct 30 The air in 30 is sent into the combustion chamber 21.
  • the “single-cavity air duct” refers to the construction of one cavity in the same circumferential direction of the combustion cavity 21.
  • each side of the first enclosure plate 10 may be provided with an air inlet 11 and an air outlet 22, so that air can be quickly introduced into the single cavity air duct 30 from all directions.
  • the air flow path in the single-chamber air duct 30 includes a circumferential direction and an up-and-down direction.
  • a negative pressure is formed in the combustion chamber 21, and the air enters the single-chamber air duct 30 from the air inlet 11
  • the temperature of the air in the entire single-cavity air duct 30 can be relatively uniform, and the temperature of the first enclosure 10 can be simultaneously cooled in all directions.
  • the fan 200 may be a DC fan or an AC fan.
  • the single-cavity air duct 30 is constructed in the circumferential direction of the combustion chamber 21, so that the circumferential direction of the first enclosure plate 10 can be cooled by air of approximately the same temperature, thereby prolonging the gas
  • the service life of the parts of the equipment can also deliver air to the combustion chamber 21 from the circumferential direction at the same time, so as to supply sufficient secondary air to improve the combustion efficiency.
  • both the first enclosure plate 10 and the second enclosure plate 20 of the combustion chamber 100 are made of steel plate materials. Compared with the use of oxygen-free copper or heat insulating materials, the steel plate has strong plasticity, so that the first The connection process between the first enclosure board 10 and the second enclosure board 20 is simple, for example, it can be connected by welding.
  • the structure of the single cavity air duct 30 is formed by bending the first enclosure board 10 or the second enclosure board 20, and the configuration is easy .
  • the air inlet hole 11 is formed on the first enclosure plate 10
  • the air outlet hole 22 is formed on the second enclosure plate 20, so that the cold air can be Blowing from the outside to the inside, the cold air flow can block the hot air flow from diffusing to the outside, which is more conducive to reducing the temperature of the first enclosure 10.
  • the air inlet holes 11 and the air outlet holes 22 are staggered in the height direction. That is, the air enters the single-chamber air duct 30 from one direction of the first enclosure 10 and flows out of the single-chamber air duct 30 from the other direction of the second enclosure 20. In this way, the air does not directly pass through the single-cavity air duct 30 from the same height direction, and the air flow can flow in the height direction, so as to realize the cooling of the first enclosure plate 10 in different height areas.
  • the number of the air inlet 11 of the single-cavity air duct 30 can be one or more.
  • the horizontal distribution of the air inlet 11 is as full as possible in the circumferential direction of the first enclosure 10, so that the first enclosure can be enlarged.
  • the 10-circumferential air inlet surface ensures that the first enclosure board 10 is sufficiently cooled down.
  • the air inlet 11 has a long strip shape. In this way, the distribution length of the air inlet holes 11 can be extended as much as possible, thereby further increasing the air inlet surface of the first enclosure board 10 in the circumferential direction, and ensure that the first enclosure board 10 is sufficiently cooled down.
  • the air flow in the single-cavity air duct 30 flows from top to bottom. In this way, the air flow in the single-cavity air duct 30 is conveyed to the lower side of the combustion chamber 21. As a result, sufficient secondary air can be supplied to the combustor 300 of the gas appliance, and the combustion efficiency can be improved.
  • the upper and lower sides of the single cavity air duct 30 are provided with air inlet holes 11, and the air outlet holes 22 are located between the air inlet holes 11 on the upper and lower sides. That is, air is simultaneously supplied into the single-chamber air duct 30 from the upper and lower directions, and air is supplied through the air outlet 22 in the other direction.
  • the upper and lower sides of the single-cavity air duct 30 can be simultaneously conveyed with cold air.
  • This method of arranging holes can solve the problem of air intake on one side (upper side or lower side) of the single-chamber air duct 30, causing the airflow to flow to the other side of the single-chamber air duct 30 when the temperature is already too high, which makes it impossible to achieve The temperature of the first enclosure 10 on the other side is lowered.
  • the air flow in the single-cavity air duct 30 enters from the middle, and flows out from the upper and lower sides.
  • the hole arrangement method in this example is suitable for the case where the height of the combustion chamber 22 is small. Intake in one direction and deliver cold air to both sides, so that the upper and lower sides of the first enclosure plate 10 can be cooled.
  • the first enclosure 10 and the second enclosure 20 form a multi-layer single-cavity air duct 30 distributed in a height direction. That is, a plurality of single-chamber air ducts 30 are arranged around the height of the combustion chamber 22, and the first enclosure plate 10 is cooled at different heights through the plurality of single-chamber air ducts 30, and air is also sent to the combustion chamber 21 from different heights. .
  • the structure of each layer of single-chamber air duct 30 may be the same or different, so that the circumference of the combustion chamber 21 can have multiple forms of single-chamber air duct 30 structures, so as to obtain the best Cooling and aspirating effect.
  • the height and air flow direction of each layer of the single-cavity air duct 30 are the same. That is, the air supply mode and the air supply volume of the single-cavity air duct 30 of each layer are approximately the same, and therefore, the heat that can be taken away by the first enclosure board 10 is approximately the same.
  • the first enclosure board 10 is enclosed by a plurality of first plates 16, and the second enclosure board 20 is enclosed by a plurality of second plates 29.
  • the first enclosure board 10 and the second enclosure board 20 are both formed by connecting a plurality of plates, and the inner and outer plates are arranged at intervals to form a single-cavity air duct 30.
  • each second plate 29 includes a plurality of sealing portions 60 recessed from the inside to the outside.
  • the sealing portion 60 includes an upper wing plate 61, a lower wing plate 62 and connecting the upper wing plate 61 and the lower wing plate.
  • the hook portion 63 of the wing plate 62 abuts against the outer wall of the first enclosure board 10.
  • the second plate 29 is bent to form a sealing part 60, and the sealing parts of different heights are matched with 60 the inner wall surface of the first enclosure plate 10, thereby constructing a multi-layer single-cavity air duct 30.
  • the upper wing plate 61 is configured with an air outlet 22, and the lower wing plate 62 is attached to the inner wall surface of the first enclosure plate 10.
  • the upper wing plate 61 is further provided with a wind deflector 611, one end of the wind deflector 611 is connected to the hole wall of the air outlet 22, and the other end faces the first enclosure plate 10. extend.
  • the wind deflector 611 can guide the wind direction as far as possible to the inner wall of the first enclosure board 10, so that the air flow can flow through the inner wall of the first enclosure board 10 snugly, so that the air can fully absorb the first enclosure board 10 Heat.
  • a plurality of reinforcing ribs 28 recessed from the inside to the outside are formed on the second enclosure plate 20.
  • the plurality of reinforcing ribs 28 improve the structural strength of the second enclosure panel 20 and prevent the second enclosure panel 20 from being deformed.
  • the gas appliance 1000 according to the embodiment of the present invention includes the combustion chamber 100 of the above-mentioned embodiment. Since the combustion chamber 100 according to the embodiment of the present invention effectively avoids heat transfer to the outside, the service life of parts is prolonged, and the combustion efficiency is improved. Therefore, The gas equipment 1000 according to the embodiment of the present invention has a long service life and high thermal efficiency.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Burners (AREA)
  • Housings, Intake/Discharge, And Installation Of Fluid Heaters (AREA)

Abstract

本发明公开了一种燃烧室(100)和燃气设备(1000),燃烧室(100)包括:位于外侧的第一围板(10)和位于内侧的第二围板(20),所述第二围板(20)构设出燃烧腔(21),所述第一围板(10)和所述第二围板(20)间隔设置构设出与所述燃烧腔(21)连通的至少一个风道(30),所述风道(30)的进风孔(11)形成于所述第一围板(10)上,所述风道(30)的出风孔(22)形成于所述第二围板(20)上。

Description

燃烧室和燃气设备
相关申请的交叉引用
本申请基于申请号为201921868388.1、201911054566.1、201911056269.0、201921868350.4、201921868386.2、201921868387.7和201911056280.7,申请日为2019年10月31日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及热水器领域,更具体地,涉及一种燃烧室和燃气设备。
背景技术
为避免高温热能向外传递而损害燃气设备其他零部件的寿命,现有的燃烧室通常包括以下两种,一种利用无氧铜围成燃烧室,在无氧铜的外壁面盘绕水管来降温,以延长零部件的使用寿命。其缺点是盘管焊接对工艺要求高,制造难度大,而且使用了大量的无氧铜材料,所以制造成本高。同时,有盘管的燃烧室壁面在冬季低温时容易产生冷凝水,会影响热交换器寿命。另一种是在燃烧室的内壁设置隔热材料,隔热材料成本高,在隔热材料厚度及密封性不足的情况,隔热效果较差。
基于上述,有必要对燃烧室的结构进行优化,设计一种成本低廉、工艺简单且隔热效果佳的结构。
发明内容
本发明旨在至少在一定程度上解决上述技术问题之一。
为此,本发明提出一种燃烧室,该燃烧室的制造工艺简单、制造成本低和热效率高。
本发明还提出一种燃气设备,该燃气设备的结构简单、生产成本低,使用寿命长和热效率高。
根据发明第一方面一些实施例中的燃烧室,包括:位于外侧的第一围板和位于内侧的第二围板,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通的至少一个风道,所述风道的进风孔形成于所述第一围板上,所述风道的出风孔形成于所述第二围板上。
由此,根据本发明上述实施例的燃烧室,通过第一围板和第二围板构设出与燃烧腔连通的风道,风道内空气采用喷洒方式进入燃烧腔内,既实现了对第一围板的降温,避免热量对外传递,又可以向燃烧器补给二次空气,提高了热效率。
可选实施例中,所述风道的底端和顶端的至少之一封闭。
可选实施例中,在高度方向上,所述进风孔和所述出风孔错开设置。
进一步,可选示例中,在高度方向上,所述进风孔位于所述出风孔的上方。
可选实施例中,所述第一围板和所述第二围板共同构设出沿水平方向延伸的管槽。
可选实施例中,所述第一围板包括:第一后侧板、连接于所述第一后侧板的左侧沿的第一左侧板、连接于所述第一后侧板的右侧沿的第一右侧板及分别连接所述第一左侧板和所述第一右侧板的前侧沿的第一前侧板,其中,所述第一后侧板、所述第一左侧板和第一右侧板一体形成;
进一步,可选示例中,所述第二围板包括:第二后侧板、连接于所述第二后侧板的左侧沿的第二左侧板、连接于所述第二后侧板的右侧沿的第二右侧板及分别连接所述第二左侧板和所述第二右侧板的前侧沿的第二前侧板,其中,所述第二后侧板、所述第二左侧板和第二右侧板一体形成。
进一步,可选示例中,所述第二前侧板的上端形成一弯折板,所述弯折板至少部分贴合于所述第一前侧板的内侧壁,从而封闭所述风道的上侧。
进一步,可选示例中,所述弯折板的上侧与所述第一前侧板构设出隔热气室,所述隔热气室与所述燃烧腔不连通。
进一步,可选示例中,一部分所述进风孔邻近所述弯折板设置。
可选实施例中,所述进风孔为长条形。
可选实施例中,所述第二围板出风孔的孔壁形成向所述第一围板内壁延伸的挡风板。
可选实施例中,所述第一围板和所述第二围板的至少之一为钢板。
可选实施例中,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通的至少第一层风道和第二层风道,所述第一层风道和所述第二层风道的进风孔形成于所述第一围板上,所述第一层风道和所述第二层风道的出风孔形成于所述第二围板上,在高度方向上,所述第一层风道的进风孔位于出风孔的上方,所述第二层风道的进风孔位于出风孔的下方。
可选实施例中,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通的至少一个风道,所述风道的进风孔形成于所述第一围板上,所述风道的出风孔形成于所述第二围板上,在高度方向上,所述进风孔设置于所述出风孔的上方。
可选实施例中,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通的至少一个风道,所述第一围板和所述第二围板共同构设出沿水平方向延伸的管槽。
根据本发明第一方面的另一些实施例中的燃气室包括:位于外侧的第一围板和位于内侧的第二围板,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通且环绕在所述燃烧腔周向的风道,所述风道在周向上被分隔成多个独立的气腔,每个所述气腔具有独立的进风孔和出风孔,在所述燃烧腔形成负压的情况下,所述风道内的空气被送进所述燃烧腔内。
根据本发明上述实施例的燃烧室,通过将周向方向的风道分隔成多个独立气腔,通过多 气腔结构来改善冷空气分布状况,使得整个第一围板被均匀地降温,从而延长燃气设备的零部件的使用寿命,也可以从多个方向同时向燃烧腔输送空气,补给足够的二次空气,提高燃烧效率。
可选实施例中,所述气腔均匀分布于所述燃烧腔的周向。
可选实施例中,在高度方向上,所述进风孔和所述出风孔错开设置。
进一步,可选示例中,在高度方向上,所述进风孔位于所述出风孔的上方。
可选实施例中,所述气腔的上下侧均设有所述进风孔,所述出风孔位于上下侧的所述进风孔之间。
可选实施例中,所述气腔内气流从中间进,上下两侧流出。
可选实施例中,所述第一围板和所述第二围板构设出高度方向分布的多层风道。
进一步,可选示例中,每一层所述风道的高度和气流流动方向相同。
可选实施中,所述第一围板和所述第二围板的至少之一钢板。
根据本发明第一方面的另一些实施例中的燃烧室包括:位于外侧的第一围板和位于内侧的第二围板,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通且环绕所述燃烧腔周向的单腔风道,所述单腔风道具有进风孔和出风孔,在所述燃烧腔形成负压的情况下,所述单腔风道内的空气被送进所述燃烧腔内。
根据本发明上述实施例的燃烧室,通过在燃烧腔的周向构设单腔风道,使得第一围板的周向可以被大致相同温度的空气进行降温,从而延长燃气设备的零部件的使用寿命,也可以从周向同时向燃烧腔输送空气,补给足够的二次空气,提高燃烧效率。
可选实施例中,所述进风孔和所述出风孔在在高度方向上错开设置。
可选实施例中,所述单腔风道内气流自上向下流动。
可选实施例中,所述单腔风道的上下侧均设有所述进风孔,所述出风孔位于上下侧的所述进风孔之间。
可选实施例中,所述单腔风道内气流从中间进,上下两侧流出。
可选实施例中,所述第一围板和所述第二围板构设出高度方向分布的多层所述单腔风道。
进一步,可选示例中,每一层所述单腔风道的高度和气流流动方向相同。
可选实施例中,所述第一围板由多个第一板材围合而成,所述第二围板由多个第二板材围合而成,每个所述第二板材包括多个由内向外凹陷的密封部,所述密封部包括上翼板、下翼板和连接所述上翼板和所述下翼板的弯勾部,所述弯勾部抵接在所述第一围板的外壁。
在发明一个具体实施例中,所述上翼板限定出所述出风孔,所述下翼板贴合于所述第一围板的内壁面。
在发明一个具体实施例中,所述上翼板还设有挡风板,所述挡风板的一端连接于所述出风孔的孔壁上,另一端向所述第一围板方向延伸。
优选地,所述第二围板上形成多个由内向外凹陷的加强筋。
可选实施例中,所述第一围板和所述第二围板均为钢板。
根据本发明第二方面实施例的燃气设备包括上述实施例的燃烧室,由于根据本发明实施例的燃烧室结构简单,易于生产制造,且有效避免热量对外传递,延长了零部件的使用寿命,且提高了燃烧效率,因此,根据本发明实施例的燃气设备的结构简单、生产成本低,使用寿命长和热效率高。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明一些实施例的燃烧室的分解图;
图2为根据本发明一些实施例的燃烧室的剖视图;
图3为根据本发明一些实施例的燃烧室的剖视图;
图4为根据本发明一些实施例的燃烧室的剖视图;
图5为根据本发明一些实施例的燃烧室的立体图;
图6为根据本发明一些实施例的燃气设备的结构示意图;
图7为根据本发明另一些实施例中的燃烧室一个角度的剖视图;
图8为根据本发明另一些实施例中的燃烧室另一个角度的剖视图;
图9为根据本发明另一些实施例中的燃烧室另一个角度的剖视图;
图10为根据本发明另一些实施例中的燃烧室另一个角度的剖视图;
图11为根据本发明另一些实施例中的燃烧室的立体图;
图12为根据本发明另一些实施例的燃烧室的剖视图;
图13为根据本发明另一些实施例中的燃烧室横向结构示意图;
图14为根据本发明另一些实施例中的燃烧室纵向结构示意图;
图15为根据本发明另一些实施例中的燃烧室纵向结构示意图;
图16为根据本发明另一些实施例中的燃烧室纵向结构示意图;
图17为根据本发明另一些实施例中的燃烧室纵向结构示意图;
图18为根据本发明另一些实施例中的燃烧室的分解图;
图19为根据本发明另一些实施例中的燃烧室的立体图;
图20为根据本发明另一些实施例中的燃烧室的立体图。
附图标记:
燃气设备1000;
燃烧室100;
第一围板10;进风孔11;第一后侧板12;第一左侧板13;第一右侧板14;第一 前侧板15;第一板材16;
第二围板20;燃烧腔21;出风孔22;第二后侧板23;第二左侧板24;第二前侧板25;挡风板26;弯折板27;加强筋28;第二板材29;
风道30;气腔31;
管槽40;
隔热气室50;
密封部60;上翼板61;挡风板611;下翼板62;弯勾部63;
换热器200;
燃烧器300;
风机400。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
参照图1-图20,描述根据本发明实施例的燃烧室100,该燃烧室100分别连接于换热器200和燃烧器300,其中,换热器200和燃烧器300的一部分可以内嵌于燃烧室100内,或者均位于燃烧室100外,或者其中一个位于燃烧室100内,另一个位于燃烧室100外。
具体地,该燃烧室100包括位于外侧的第一围板10和位于内侧的第二围板20。其中,第二围板20构设出燃烧腔21,即燃烧器300的燃烧火焰及产生的高温烟气被围设在燃烧腔21内。
第一围板10的外侧设有第二围板20,第二围板20可以至少一部分围设在第一围板10的外侧。例如,第二围板20围设在第一围板10的左侧、右侧、前侧和后侧的至少一侧上,优选地,第二围板20围设在第一围板10的左右侧和前后侧,更优选地,第二围板20和第一围板10在竖直方向(如图中上下方向)的延伸高度大体一致,如此,可以使得第二围板20的外侧均设有阻隔热量对外传递的第一围板10,减少从燃烧室100对外送出热量,避免高温对燃气设备1000的零部件受到损害。
下面参照图1-图6及图12,描述根据本发明第一方面的一些实施例中的燃烧室100,如图1和图2所示,第一围板10和第二围板20间隔设置构设出与燃烧腔21连通的风道30,风道30的冷空气至少带走第一围板10的一部分热量。即风道30内空气呈流动状态,外界冷空气可以连续地进入风道30内,从而将第一围板10的热量连续不断地带走,流入燃烧腔21内,实现对燃烧器300二次供应空气。本发明实施例的燃烧室100将向风道30输送流动空气,一方面实现了对第一围板10的降温,减少了热量对外扩散,避免了燃气设备1000零部件的损害,另一方面也提高了热效率。
为提高风道30内空气与燃烧腔21内高温气体的混合率,使得燃烧反应更加充分且流向换热,200的烟气温度更加均匀,本发明实施例燃烧室100的风道30内气流采用喷洒方式进入燃烧腔21,具体地,风道30的进风孔11形成于第一围板10上,风道30的出风孔22形成于第二围板20上。如此,冷空气穿过第一围板10进入风道30内,在风道30内穿梭之后,从出风孔22喷洒出,进入燃烧腔21内。
本发明的燃烧室100可以应用于强抽型燃气设备,如图6所示,强抽型燃气设备自下而上依次设有燃烧器300、燃烧室100、换热器200和风机400,在风机400的抽吸下,燃烧腔21内形成负压,使得外界空气被吸入风道30内,实现对第一围板10的降温作用。
需要说明的是,第一围板10和第二围板20构设的风道30可以为沿周向上分布的一个或多个,和/或者沿燃烧室高度方向分布的一个或多个。每一个风道30可以具有独立的进风孔11和出风孔22,或者多个风道30共用一个进风孔11,通过各自的出风孔22流出。多个风道30可以相互连通,也可以相互不连通。
简言之,根据本发明实施例的燃烧室100,通过第一围板10和第二围板20构设出与燃烧腔21连通的风道30,风道30内空气采用喷洒方式进入燃烧腔21内,既实现了对第一围板10的降温,避免热量对外传递,又可以向燃烧器300补给二次空气,提高了热效率。
可选实施例中,如图2所示,所述风道30的底端和顶端的至少之一封闭。即风道的底端和顶端的其中之一封闭,或者风道的底端和顶端的均封闭。也就是说,气流进入风道30内之后,通向风道30的顶端或底端的气路被封闭,从而可以迫使气流通过第二围板20内的出气孔22喷洒而出。
可选实施例中,本发明燃烧室100的第一围板10和第二围板20至少之一为钢板,相比于现有的燃烧室使用无氧铜或隔热材料而言,钢板的可塑性强,这样,第一围板10和第二围板20之间的连接工艺较为简单,例如,第一围板10和第二围板20均为钢板的情况下,采用局部焊接形成一体,风道30的结构可以通过第一围板10或第二围板20折弯形成,构型容易。
可选实施例中,如图1和图5所示,风道30具有沿水平方向延伸的进风孔11和出风孔22,进风孔11和出风孔22在高度方向上错开设置。即空气从第一围板10的一个水平方向进入风道30内,并从第二围板20的另一个水平方向流出风道30。这样,空气不会直接从同一水平方向上穿过风道30,空气流可以在高度方向流动,实现对第一围板10不同高度区域的降温。每个进风道30的进风孔11数量可以为一个或多个,优选地,进风孔11在水平 方向布满第一围板10的周向,如此,可以增大第一围板10周向的进风面,保证第一围板10被充分降温。
可选实施例中,如图1和图5所示,进风孔11为长条形。由此,可以尽量延长进风孔11的分布长度,由此,进一步增大第一围板10周向的进风面,保证第一围板10被充分降温。
可选实施中,如图2所示,在高度方向上,所述进风孔位于所述出风孔的上方,这样,风道30内的空气流自上向下流动。这样,风道30内的气流往燃烧腔21的下侧输送。由此,可以向燃气设备1000的燃烧器300补给充足的二次空气,提高燃烧效率。
可选实施中,如图2所示,第一围板10和第二围板20共同构设出沿左右方向延伸的管槽40。换热器200的一部分水管可以穿过该管槽40,即一部分水管内置于燃烧腔21内,直接在燃烧腔21内受热,由此,提高烟气与水管的热交换效率。
可选实施例中,如图1和图5所示,第一围板10包括:第一后侧板12、连接于第一后侧板12的左侧沿的第一左侧板13、连接于第一后侧板12的右侧沿的第一右侧板14及分别连接第一左侧板13和第一右侧板14的前侧沿的第一前侧板15,其中,第一后侧板12、第一左侧板13和第一右侧板14一体形成;对应地,第二围板20包括:第二后侧板23、连接于第二后侧板23的左侧沿的第二左侧板24、连接于第二后侧板23的右侧沿的第二右侧板及分别连接第二左侧板24和第二右侧板的前侧沿的第二前侧板25,其中,第二后侧板23、第二左侧板24和第二右侧板一体形成。
具体地,第一左侧板13连接于第一后侧板12的左侧沿、第一右侧板14连接于第一后侧板12的右侧沿及第一前侧板15分别连接第一左侧板13和第一右侧板14的前侧沿。对应地,第二左侧板24连接于第二后侧板23的左侧沿、第二右侧板连接于第二后侧板23的右侧沿及第二前侧板25分别连接第二左侧板24和第二右侧板的前侧沿。
也就是说,第一后侧板12、第一左侧板13和第一右侧板14一体形成U型结构,第一前侧板15用于封闭U型开口,第二后侧板23、第二左侧板24和第二右侧板一体形成U型结构,第二前侧板25用于封闭U型开口。该燃烧室的整体结构造型简单,易于生产制造。
进一步,可选示例中,如图1结合图2所示,第二前侧板25的上端形成一弯折板27,弯折板27至少部分贴合于第一前侧板15的内侧壁,从而封闭风道30的上侧。即通过弯折板27来限制空气流向上流动,这样,空气可以折流向下流至燃烧腔21内,向燃烧器300补给二次空气。
进一步,可选示例中,如图5所示,弯折板27的上侧与第一前侧板15构设出隔热气室50,隔热气室50与燃烧腔21不连通。可以理解的是,由于弯折板27部分贴设于第一前侧板15的内壁,因此,在弯折板27与第一前侧板15的贴合处,第一前侧板15的温度较高,隔热气室50可以阻隔热量将第一前侧板15传递,且可以在一定程度上降低该贴合处的温度。
进一步可选示例中,一部分进风孔11邻近弯折板27设置。即冷空气从靠近弯折板27的一侧进入风道30,这样,有利于冷空气不断地带走弯折板27与第一前侧板15贴合处的 温度,避免贴合处的温度过高。
可选实施例中,第二围板20出风孔22的孔壁形成向第一围板10内壁延伸的挡风板26。该挡风板26可以将风向尽可能引导至第一围板10的内壁,使得空气流可以贴服地流过第一围板10的内壁,由此,使得空气可以充分吸收第一围板10的热量。
可选实施例中,如图1-图6结合图12所示,第一围板10和第二围板20间隔设置构设出与燃烧腔21连通的至少第一风道30和第二层风道30,第一层风道30和第二层风道30的进风孔11形成于第一围板10上,第一层风道30和第二层风道30的出风孔22形成于第二围板20上。即在风压的驱动下,气流从外侧向内侧吸入,一方面阻止燃烧腔21内的热量对外扩散,另一方面带走第一围板10的热量,避免其温升过高。
换言之,风道30内空气呈流动状态,外界冷空气可以连续地进入第一风道30第二层风道内,从而将第一围板10的热量连续不断地带走,流入燃烧腔21内,实现对燃烧器300二次供应空气。本发明实施例的燃烧室100将向风道30输送流动空气,一方面实现了对第一围板10的降温,减少了热量对外扩散,避免了燃气设备1000零部件的损害,另一方面也提高了热效率。
需要说明的是,“第一层”和“第二层”是相对燃烧室100高度方向上,即燃烧室100的高度方向上分布有至少两层风道30。每一层风道30可以为沿周向上独立分布的一个腔室,或者独立的多个腔室,相邻的腔室可以连通,也可以不连通。相邻层的风道20的腔室构造及数量可以相同,也可以不同。
为达到较佳的降温效果,可以向燃烧腔21补给足够的二次空气,如图13所示,本发明实施例的第一层风道30和第二层风道内气流流动方向采用对流方式,具体地,在高度方向上,第一层风道30的进风孔11位于出风孔22的上方,第二层风道30的进风孔11位于出风孔22的下方。
简言之,根据本发明实施例的燃烧室100,通过第一围板10和第二围板20构设出与燃烧腔21连通的至少两层风道30,既实现了对第一围板10的降温,避免热量对外传递,又可以向燃烧器300补给二次空气,提高了热效率。
可选实施例中,如图2-图4所示,风道30的进风孔11形成于第一围板10上,风道30的出风孔22形成于第二围板20上。即冷空气穿过第一围板10进入风道30内,在风道30内穿梭之后,从出风孔22流出,进入燃烧腔21内。在该种情况下,本发明的燃烧室100应用于强抽型燃气设备,强抽型燃气设备自下而上依次设有燃烧器300、燃烧室100、换热器200和风机400,在风机400的抽吸下,燃烧腔21内形成负压,使得外界空气被吸入风道30内,实现对第一围板10的降温作用。
为保证空气和燃气的混合气体燃烧过程中可以获得足够的二次空气,在高度方向上,所述进风孔11设置于所述出风孔22的上方,从而可以促使风道30内的冷空气可以向燃烧器300方向流动,为燃烧器300内燃气燃烧提供充足的二次空气,提高燃烧效率。
需要说明的是,第一围板10和第二围板20构设的风道30可以为沿周向上分布的一个或多个,和/或者沿燃烧室100高度方向分布的一个或多个。每一个风道30可以具有独立的 进风孔11和出风孔22,或者多个风道30共用一个进风孔11,通过各自的出风孔22流出。多个风道30可以相互连通,也可以相互不连通。
简言之,根据本发明实施例的燃烧室100,通过第一围板10和第二围板20构设出与燃烧腔21连通的风道30,既实现了对第一围板10的降温,避免热量对外传递,又可以向燃烧器300补给二次空气,提高了热效率。
可选实施例中,第一围板10和第二围板20共同构设出沿水平方向(如图1中的左右方向)延伸的管槽40。换热器200的一部分水管可以穿过该管槽40,即一部分水管内置于燃烧腔21内,直接在燃烧腔21内受热,由此,提高烟气与水管的热交换效率。通过构设沿水平方向延伸的管槽40,提高烟气与换热器200的水管的热交换效率,并通过风道30对第一围板10的降温,避免热量对外传递,又可以向燃烧器300补给二次空气,提高了热效率。
可选实施例中,如图1和图5所示,在高度方向上,进风孔11和出风孔22错开设置。例如,空气从第一围板10的一个方向进入风道30内,并从第二围板20的另一个方向流出风道30。这样,空气不会直接从同一方向上穿过风道30,气流可以在高度方向流动,实现对第一围板10不同高度区域的降温。每个进风道30的进风孔11数量可以为一个或多个,优选地,进风孔11在水平方向布满第一围板10的周向,如此,可以增大第一围板10周向的进风面,保证第一围板10被充分降温。
可选地,风道30的进风孔11形成于第一围板10上,风道30的出风孔22形成于第二围板20上,在高度方向上,进风孔11设置于出风孔22的上方。由此,风道30内气流可以自上向下送进燃烧腔21内,向燃烧器200方向补充二次空气,保证充分燃烧。
在本发明的一些实施例中,风道30至少包括第一层风道30和第二层风道30。即在燃烧室100的高度方向上包括两层以上的风道30,通过设置多层风道30从而可以分段对第一围板10进行降温,提高降温效果。
可选地,所述第一层风道30和所述第二层风道30的进风孔11均位于出风孔22的上方。即两层风道30内气流同向流动,由此,使得气流可以快速朝燃烧器200方向流动,保证燃烧反应具有充足的空气。
为达到较佳的降温效果,又可以向燃烧腔21补给足够的二次空气,如图2所示,本发明实施例的第一层风道30和第二层风道内气流流动方向采用对流方式,具体地,在高度方向上,第一层风道30的进风孔11位于出风孔22的上方,第二层风道30的进风孔11位于出风孔22的下方。
参照图7-图12,描述根据本发明第一方面另一些实施中的燃烧室100,如图7所示,第一围板10和第二围板20间隔设置构设出与燃烧腔21连通且环绕在燃烧腔周向的风道30,风道30在周向上被分隔成多个独立的气腔31,每个气腔31具有独立的进风孔11和出风孔22,在燃烧腔21形成负压的情况下,风道30内的空气被送进燃烧腔21内。
换言之,每个气腔31内可以形成一股独立空气流,通过在燃烧腔21周向上分别多个气 腔31,从而实现从前侧、后侧、左侧和右侧同时对第一围板10进行降温并向燃烧腔21输送空气流。其中,“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
由于每个气腔31是相互独立的,因此,每个气腔31内的空气流量,可以相同,也可以不相同。可以理解的是,邻近风机400进风口一侧的气腔31,由于气流流速较大,其进风孔11可以设定小些,如此该气腔31内的空气流量也可以适当地减小些。
此外,每一个方向设定的气腔31数量可以依据空气流场来设定,空气流场主要与气流流速大小,流道宽窄及气流行程过程中是否有干涉物有关,例如,在流场通畅的情况,可以仅设置一个气腔31;在流畅不通畅的情况,可以设置多个气腔31,以避开障碍物可能带来的影响。
简言之,根据本发明实施例的燃烧室100,通过将周向方向的风道30分隔成多个独立气腔31,通过多气腔31结构来改善冷空气分布状况,使得整个第一围板10被均匀地降温,从而延长燃气设备1000的零部件的使用寿命,也可以从多个方向同时向燃烧腔21输送空气,补给足够的二次空气,提高燃烧效率。
可选实施例中,如图7所示,气腔31均匀分布于燃烧腔21的周向。例如,燃烧腔21的每个侧向均设有一个气腔31,从而在燃烧腔21的前侧形成前气腔31、后侧形成后气腔31、左侧形成左气腔31和右侧形成右气腔31。在燃烧腔21内形成负压情况,外界气流可以从进风孔11流入气腔31内,再从出风孔22分别流向燃烧腔21内,从而带走第一围板10的热量,避免热量对外扩散。
可选实施例中,如图8结合图7所示,进风孔11形成第一围板10上,出风孔22形成于第二围板20上,这样,冷空气可以由外侧向内侧方向流动,周向上的多股冷气流可以阻挡并吹散热气流向外扩散,更加有利于降低第一围板10的温度。
可选实施例中,如图8所示,进风孔11和出风孔22在高度方向上错开设置。即空气从第一围板10的一个方向进入气腔31内,并从第二围板20的另一个方向流出气腔31。这样,空气不会直接从同一高度方向上穿过气腔31,空气流可以在高度方向的流动,实现对第一围板10不同高度区域的降温。每个气腔31的进风孔11数量可以为一个或多个,优选地,进风孔11在水平方向尽可能地布满第一围板10的周向,如此,可以增大第一围板10周向的进风面,保证第一围板10被充分降温。
可选实施例中,如图11和图12所示,进风孔11为长条形。由此,可以延长进风孔11的周向分布长度,由此,进一步增大第一围板10周向的进风面,保证第一围板10被充分降温。
可选实施例中,如图8所示,在高度方向上,进风孔位于出风孔的上方。气腔31内气流自上向下流动。这样,气腔31内的气流往燃烧腔21的下侧输送。由此,可以向燃气设备1000的燃烧器300补给充足的二次空气,提高燃烧效率。
可选实施例中,如图9所示,气腔31的上下侧均设有进风孔11,出风孔22位于上下 侧的进风孔11之间。即一个气腔31从上下两个方向同时将气腔31内送气,并通过一个方向的出风孔22送气。在该示例中,气腔31的上下侧可以同时被输送冷空气。此种布孔方式可以很好解决气流在气腔31一侧(上侧或下侧)进气,导致气流流至气腔31另一侧时气流温度已经过高,从而无法实现对另一侧的第一围板10进行降温的问题。
可选实施例中,如图10所示,气腔31内气流从中间进,上下两侧流出。该示例中,从一个水平方向进气,另外两个水平方向(一个位于进风孔11上侧,另一个位于进风孔11下侧)出气,从而对第一围板10的上下侧均能实现降温。该种布孔方案适用于燃烧腔21高度较小的情况。
可选实施例中,如图8所示,第一围板10和第二围板20构设出高度方向分布的多层风道30。即在燃烧腔21高度方向上绕设有多个风道30,通过多个风道30对第一围板10不同高度进行降温,也从不同高度方向上向燃烧腔21输送空气。该实施例中,每一层风道30的结构形式可以相同,也可以不相同,从而可以使得燃烧腔21的周向具有多种形式的风道30结构,从而获得最佳的降温和送气效果。
进一步,可选示例中,每一层风道30的高度和气流流动方向均相同。即每一层的风道30的送气方式和送气量大致相同,可以带走第一围板10的热量大致相同。
参照图13-图20及图6,描述根据本发明第一方面另一些实施例中的燃烧室100,如图13所示,第一围板10和第二围板20间隔设置构设出与燃烧腔21连通且环绕在燃烧腔21周向的单腔风道30,单腔风道30具有进风孔11和出风孔22,在燃烧腔21形成负压的情况下,单腔风道30内的空气被送进燃烧腔21内。其中,“单腔风道”指的是在燃烧腔21的同一周向方向构设一个腔室。此外,第一围板10的每一侧均可以设置进风孔11和出风孔22,从而可以从各个方向快速将空气引入单腔风道30内。
换言之,空气在单腔风道30的流动路径包括周向方向和上下方向,这样,在风机200的抽吸下,燃烧腔21内形成负压,空气从进风孔11进入单腔风道30内,从出风孔22流出过程中,整个单腔风道30内的空气温度可以比较均匀,可以对第一围板10的各个方向同时降温。其中,风机200可以为直流风机或交流风机。
简言之,根据本发明实施例的燃烧室100,通过在燃烧腔21的周向构设单腔风道30,使得第一围板10的周向可以被大致相同温度的空气进行降温,从而延长燃气设备的零部件的使用寿命,也可以从周向同时向燃烧腔21输送空气,补给足够的二次空气,提高燃烧效率。
一些可选实施例中,燃烧室100的第一围板10和第二围板20均由钢板材料制成,相比于使用无氧铜或隔热材料而言,钢板的可塑性强,使得第一围板10和第二围板20之间的连接工艺简单,例如,可以通过焊接方式连接,单腔风道30结构通过第一围板10或第二围板20折弯形成,构型容易。
可选实施例中,如图13-图20结合图6所示,进风孔11形成于第一围板10上,出风孔22形成于第二围板20上,这样,冷空气可以由外向内方向吹散,冷气流可以阻挡热气流对外扩散,更加有利于降低第一围板10的温度。
可选实施例中,如图13-图20结合图6所示,进风孔11和出风孔22在高度方向上错开设置。即空气从第一围板10的一个方向进入单腔风道30内,并从第二围板20的另一个方向流出单腔风道30。这样,空气不会直接从同一高度方向上穿过单腔风道30,空气流可以在高度方向流动,实现对第一围板10不同高度区域的降温。单腔风道30的进风孔11数量可以为一个或多个,有利地,进风孔11的水平分布尽可能布满第一围板10的周向,如此,可以增大第一围板10周向的进风面,保证第一围板10被充分降温。
可选实施例中,如图20和图6所示,进风孔11为长条形。由此,可以尽量延长进风孔11的分布长度,由此,进一步增大第一围板10周向的进风面,保证第一围板10被充分降温。
可选实施例中,如图14所示,单腔风道30内气流自上向下流动。这样,单腔风道30内的气流往燃烧腔21的下侧输送。由此,可以向燃气设备的燃烧器300补给充足的二次空气,提高燃烧效率。
可选实施例中,如图15所示,单腔风道30的上下侧均设有进风孔11,出风孔22位于上下侧的进风孔11之间。即从上下两个方向同时向单腔风道30内送气,并通过另一个方向的出风孔22送气。在该示例中,单腔风道30的上下侧可以同时被输送冷空气。此种布孔方式可以很好解决气流在单腔风道30一侧(上侧或下侧)进气,导致气流流至单腔风道30另一侧时温度已经过高,从而无法实现对另一侧的第一围板10进行降温的问题。
可选实施例中,如图16所示,单腔风道30内气流从中间进,上下两侧流出。该示例的布孔方式,适用于燃烧腔22高度较小的情况,在一个方向进气,向两侧输送冷空气,从而对第一围板10的上下侧均能实现降温。
可选实施例中,如图17所示,第一围板10和第二围板20构设出高度方向分布的多层单腔风道30。即在燃烧腔22高度方向上绕设有多个单腔风道30,通过多个单腔风道30对第一围板10不同高度进行降温,也从不同高度方向上向燃烧腔21输送空气。该实施例中,每一层单腔风道30的结构形式可以相同,也可以不相同,从而可以使得燃烧腔21的周向具有多种形式的单腔风道30结构,从而获得最佳的降温和送气效果。
可选示例中,每一层单腔风道30的高度和气流流动方向均相同。即每一层的单腔风道30的送气方式和送气量大致相同,因此,可以带走第一围板10的热量大致相同。
在本发明的一些可选实施例中,如图20结合图18所示,第一围板10由多个第一板材16围合而成,第二围板20由多个第二板材29围合而成。即第一围板10和第二围板20均通过多个板材相互连接形成,内外侧的板材间隔设置从而构成出单腔风道30。
其中,如图18结合图19所示,每个第二板材29包括多个由内向外凹陷的密封部60,密封部60包括上翼板61、下翼板62和连接上翼板61和下翼板62的弯勾部63,弯勾部63抵接在第一围板10的外壁。换言之,第二板材29被折弯形成密封部60,通过不同高度的密封部与60第一围板10的内壁面配合,从而构设出多层单腔风道30。
可选实施例中,如图17结合图19所示,上翼板61构设出出风孔22,下翼板62贴合于第一围板10的内壁面。
可选实施例中,如图17所示,上翼板61还设有挡风板611,挡风板611的一端连接于出风孔22的孔壁上,另一端向第一围板10方向延伸。该挡风板611可以将风向尽可能引导至第一围板10的内壁,使得空气流可以贴服地流过第一围板10的内壁,由此,从而空气可以充分吸收第一围板10的热量。
可选示例中,第二围板20上形成多个由内向外凹陷的加强筋28。通过多个加强筋28来提高第二围板20的结构强度,防止第二围板20发生形变。
根据本发明实施例的燃气设备1000包括上述实施例的燃烧室100,由于根据本发明实施例的燃烧室100有效避免热量对外传递,延长了零部件的使用寿命,且提高了燃烧效率,因此,根据本发明实施例的燃气设备1000使用寿命长和热效率高。
在本发明的描述中,需要理解的是,术语“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (38)

  1. 一种燃烧室,其特征在于,包括:位于外侧的第一围板和位于内侧的第二围板,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通的至少一个风道,所述风道的进风孔形成于所述第一围板上,所述风道的出风孔形成于所述第二围板上。
  2. 根据权利要求1所述的燃烧室,其特征在于,所述风道的底端和顶端的至少之一封闭。
  3. 根据权利要求2所述的燃烧室,其特征在于,在高度方向上,所述进风孔和所述出风孔错开设置。
  4. 根据权利要求1所述的燃烧室,其特征在于,在高度方向上,所述进风孔位于所述出风孔的上方。
  5. 根据权利要求2所述的燃烧室,其特征在于,所述第一围板和所述第二围板共同构设出沿水平方向延伸的管槽。
  6. 根据权利要求1-5中任一项所述的燃烧室,其特征在于,所述第一围板包括:第一后侧板、连接于所述第一后侧板的左侧沿的第一左侧板、连接于所述第一后侧板的右侧沿的第一右侧板及分别连接所述第一左侧板和所述第一右侧板的前侧沿的第一前侧板,其中,所述第一后侧板、所述第一左侧板和第一右侧板一体形成。
  7. 根据权利要求6所述的燃烧室,其特征在于,所述第二围板包括:第二后侧板、连接于所述第二后侧板的左侧沿的第二左侧板、连接于所述第二后侧板的右侧沿的第二右侧板及分别连接所述第二左侧板和所述第二右侧板的前侧沿的第二前侧板,其中,所述第二后侧板、所述第二左侧板和第二右侧板一体形成。
  8. 根据权利要求7所述的燃烧室,其特征在于,所述第二前侧板的上端形成一弯折板,所述弯折板至少部分贴合于所述第一前侧板的内侧壁,从而封闭所述风道的上侧。
  9. 根据权利要求8所述的燃烧室,其特征在于,所述弯折板的上侧与所述第一前侧板构设出隔热气室,所述隔热气室与所述燃烧腔不连通。
  10. 根据权利要求8所述的燃烧室,其特征在于,一部分所述进风孔邻近所述弯折板设置。
  11. 根据权利要求1所述的燃烧室,其特征在于,所述进风孔为长条形。
  12. 根据权利要求1所述的燃烧室,其特征在于,所述第二围板出风孔的孔壁形成向所 述第一围板内壁延伸的挡风板。
  13. 根据权利要求1所述的燃烧室,其特征在于,所述第一围板和所述第二围板的至少之一为钢板。
  14. 根据权利要求1所述的燃烧室,其特征在于,位于外侧的第一围板和位于内侧的第二围板,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通的至少第一层风道和第二层风道,所述第一层风道和所述第二层风道的进风孔形成于所述第一围板上,所述第一层风道和所述第二层风道的出风孔形成于所述第二围板上,在高度方向上,所述第一层风道的进风孔位于出风孔的上方,所述第二层风道的进风孔位于出风孔的下方。
  15. 根据权利要求1所述的燃烧室,其特征在于,位于外侧的第一围板和位于内侧的第二围板,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通的至少一个风道,所述风道的进风孔形成于所述第一围板上,所述风道的出风孔形成于所述第二围板上,在高度方向上,所述进风孔设置于所述出风孔的上方。
  16. 根据权利要求1所述的燃烧室,其特征在于,位于外侧的第一围板和位于内侧的第二围板,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通的至少一个风道,所述第一围板和所述第二围板共同构设出沿水平方向延伸的管槽。
  17. 一种燃烧室,其特征在于,包括:位于外侧的第一围板和位于内侧的第二围板,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通且环绕在所述燃烧腔周向的风道,所述风道在周向上被分隔成多个独立的气腔,每个所述气腔具有独立的进风孔和出风孔,在所述燃烧腔形成负压的情况下,所述风道内的空气被送进所述燃烧腔内。
  18. 根据权利要求17所述的燃烧室,其特征在于,所述气腔均匀分布于所述燃烧腔的周向。
  19. 根据权利要求17所述的燃烧室,其特征在于,在高度方向上,所述进风孔和所述出风孔错开设置。
  20. 根据权利要求19所述的燃烧室,其特征在于,在高度方向上,所述进风孔位于所述出风孔的上方。
  21. 根据权利要求19所述的燃烧室,其特征在于,所述气腔的上下侧均设有所述进风孔,所述出风孔位于上下侧的所述进风孔之间。
  22. 根据权利要求19所述的燃烧室,其特征在于,所述气腔内气流从中间进,上下两侧流出。
  23. 根据权利要求17所述的燃烧室,其特征在于,所述第一围板和所述第二围板构设出高度方向分布的多层风道。
  24. 根据权利要求23所述的燃烧室,其特征在于,每一层所述风道的高度和气流流动方向相同。
  25. 根据权利要求17所述的燃烧室,其特征在于,所述第一围板和所述第二围板的至少之一为钢板。
  26. 一种燃烧室,其特征在于,包括:位于外侧的第一围板和位于内侧的第二围板,所述第二围板构设出燃烧腔,所述第一围板和所述第二围板间隔设置构设出与所述燃烧腔连通且环绕所述燃烧腔周向的单腔风道,所述单腔风道具有进风孔和出风孔,在所述燃烧腔形成负压的情况下,所述单腔风道内的空气被送进所述燃烧腔内。
  27. 根据权利要求26所述的燃烧室,其特征在于,所述进风孔和所述出风孔在在高度方向上错开设置。
  28. 根据权利要求27所述的燃烧室,其特征在于,所述单腔风道内气流自上向下流动。
  29. 根据权利要求27所述的燃烧室,其特征在于,所述单腔风道的上下侧均设有所述进风孔,所述出风孔位于上下侧的所述进风孔之间。
  30. 根据权利要求27所述的燃烧室,其特征在于,所述单腔风道内气流从中间进,上下两侧流出。
  31. 根据权利要求27所述的燃烧室,其特征在于,所述第一围板和所述第二围板构设出高度方向分布的多层所述单腔风道。
  32. 根据权利要求31所述的燃烧室,其特征在于,每一层所述单腔风道的高度和气流流动方向相同。
  33. 根据权利要求31所述的燃烧室,其特征在于,所述第一围板由多个第一板材围合而成,所述第二围板由多个第二板材围合而成,每个所述第二板材包括多个由内向外凹陷的密封部,所述密封部包括上翼板、下翼板和连接所述上翼板和所述下翼板的弯勾部,所述 弯勾部抵接在所述第一围板的外壁。
  34. 根据权利要求33所述的燃烧室,其特征在于,所述上翼板限定出所述出风孔,所述下翼板贴合于所述第一围板的内壁面。
  35. 根据权利要求33所述的燃烧室,其特征在于,所述上翼板还设有挡风板,所述挡风板的一端连接于所述出风孔的孔壁上,另一端向所述第一围板方向延伸。
  36. 根据权利要求31所述的燃烧室,其特征在于,所述第二围板上形成多个由内向外凹陷的加强筋。
  37. 根据权利要求26-36中任一项所述的燃烧室,其特征在于,所述第一围板和所述第二围板均为至少之一为钢板。
  38. 一种燃烧设备,其特征在于,包括权利要求1或权利要求17或权利要求26中所述的燃烧室。
PCT/CN2020/123267 2019-10-31 2020-10-23 燃烧室和燃气设备 WO2021083047A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022525274A JP2023501216A (ja) 2019-10-31 2020-10-23 燃焼室及びガス装置
US17/772,501 US20220373178A1 (en) 2019-10-31 2020-10-23 Combustion chamber and gas apparatus
EP20880731.3A EP4043812A4 (en) 2019-10-31 2020-10-23 COMBUSTION CHAMBER AND GAS UNIT

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201911054566.1 2019-10-31
CN201921868387.7 2019-10-31
CN201921868350.4U CN212511829U (zh) 2019-10-31 2019-10-31 燃烧室和燃气设备
CN201911056280.7A CN112747472A (zh) 2019-10-31 2019-10-31 燃烧室和燃气设备
CN201911054566.1A CN112747469A (zh) 2019-10-31 2019-10-31 燃烧室和燃气设备
CN201911056269.0A CN112747471A (zh) 2019-10-31 2019-10-31 燃烧室和燃气设备
CN201911056269.0 2019-10-31
CN201921868388.1U CN211823178U (zh) 2019-10-31 2019-10-31 燃烧室和燃气设备
CN201921868386.2U CN211695436U (zh) 2019-10-31 2019-10-31 燃烧室和燃气设备
CN201921868350.4 2019-10-31
CN201921868388.1 2019-10-31
CN201911056280.7 2019-10-31
CN201921868386.2 2019-10-31
CN201921868387.7U CN211601143U (zh) 2019-10-31 2019-10-31 燃烧室和燃气设备

Publications (1)

Publication Number Publication Date
WO2021083047A1 true WO2021083047A1 (zh) 2021-05-06

Family

ID=75715699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123267 WO2021083047A1 (zh) 2019-10-31 2020-10-23 燃烧室和燃气设备

Country Status (4)

Country Link
US (1) US20220373178A1 (zh)
EP (1) EP4043812A4 (zh)
JP (1) JP2023501216A (zh)
WO (1) WO2021083047A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2926852Y (zh) * 2006-04-18 2007-07-25 刘鹏 一种燃烧灶具
CN204665366U (zh) * 2015-04-20 2015-09-23 湖北新农佳科技有限公司 一种柴火灶燃烧室
US20160025374A1 (en) * 2014-07-28 2016-01-28 Clearsign Combustion Corporation Water heater with perforated flame holder, and method of operation
CN106765324A (zh) * 2017-01-05 2017-05-31 湖北新农佳科技有限公司 空气夹套式炉灶膛
CN110173897A (zh) * 2019-07-04 2019-08-27 广东省众骋热能科技有限公司 一种具有多级绝热结构的燃烧换热装置
CN110296536A (zh) * 2019-07-04 2019-10-01 广东省众骋热能科技有限公司 一种具有多级降温结构的燃烧换热装置
CN211084459U (zh) * 2019-10-31 2020-07-24 芜湖美的厨卫电器制造有限公司 燃烧室及燃气设备
CN211601143U (zh) * 2019-10-31 2020-09-29 芜湖美的厨卫电器制造有限公司 燃烧室和燃气设备
CN211695436U (zh) * 2019-10-31 2020-10-16 芜湖美的厨卫电器制造有限公司 燃烧室和燃气设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004056A (en) * 1975-07-24 1977-01-18 General Motors Corporation Porous laminated sheet
JPS5238646A (en) * 1975-08-07 1977-03-25 Mitsui Eng & Shipbuild Co Ltd Cooling structure of metallic burner throat
JPS6060537U (ja) * 1983-09-30 1985-04-26 株式会社ノーリツ 給湯器
JPH0641092Y2 (ja) * 1987-01-24 1994-10-26 株式会社アタゴ製作所 強制排気式風呂釜
JP2658740B2 (ja) * 1992-06-24 1997-09-30 株式会社新潟鉄工所 燃焼器の冷却構造と燃焼器の壁部の製造方法
JP2583539Y2 (ja) * 1993-02-01 1998-10-22 パロマ工業株式会社 熱交換器室
AT512575A1 (de) * 2012-01-23 2013-09-15 Wegscheider Alois Kleinfeuerstätte
JP7035477B2 (ja) * 2017-11-21 2022-03-15 株式会社ノーリツ 熱交換器および温水装置
JP7032120B2 (ja) * 2017-12-19 2022-03-08 リンナイ株式会社 燃焼装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2926852Y (zh) * 2006-04-18 2007-07-25 刘鹏 一种燃烧灶具
US20160025374A1 (en) * 2014-07-28 2016-01-28 Clearsign Combustion Corporation Water heater with perforated flame holder, and method of operation
CN204665366U (zh) * 2015-04-20 2015-09-23 湖北新农佳科技有限公司 一种柴火灶燃烧室
CN106765324A (zh) * 2017-01-05 2017-05-31 湖北新农佳科技有限公司 空气夹套式炉灶膛
CN110173897A (zh) * 2019-07-04 2019-08-27 广东省众骋热能科技有限公司 一种具有多级绝热结构的燃烧换热装置
CN110296536A (zh) * 2019-07-04 2019-10-01 广东省众骋热能科技有限公司 一种具有多级降温结构的燃烧换热装置
CN211084459U (zh) * 2019-10-31 2020-07-24 芜湖美的厨卫电器制造有限公司 燃烧室及燃气设备
CN211601143U (zh) * 2019-10-31 2020-09-29 芜湖美的厨卫电器制造有限公司 燃烧室和燃气设备
CN211695436U (zh) * 2019-10-31 2020-10-16 芜湖美的厨卫电器制造有限公司 燃烧室和燃气设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4043812A4 *

Also Published As

Publication number Publication date
EP4043812A4 (en) 2022-12-14
US20220373178A1 (en) 2022-11-24
EP4043812A1 (en) 2022-08-17
JP2023501216A (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
CN105082543B (zh) 3d打印设备及3d打印设备的效应器
WO2021083338A1 (zh) 燃气设备
WO2018076544A1 (zh) 油汀取暖器
WO2021083047A1 (zh) 燃烧室和燃气设备
WO2021103967A1 (zh) 换热器组件和具有其的空调室内机
CN211823178U (zh) 燃烧室和燃气设备
CN211695436U (zh) 燃烧室和燃气设备
CN109114845A (zh) 空调器及热交换装置
WO2017206305A1 (zh) 燃气热水器和用于燃气热水器的热交换器
CN211876377U (zh) 燃气设备
WO2017097209A1 (zh) 烤箱
CN211601143U (zh) 燃烧室和燃气设备
WO2022152277A1 (zh) 燃气设备和燃气热水器
CN212511829U (zh) 燃烧室和燃气设备
CN212565972U (zh) 电热元件、电热装置及电暖器
WO2022068949A1 (zh) 换热器翅片及换热器
WO2022127746A1 (zh) 机柜组件及换热器
CN209960681U (zh) 对流辐射空调末端以及空调系统
WO2021110144A1 (zh) 换热装置和冷媒循环系统
CN212482219U (zh) 组合式换热器
CN112747472A (zh) 燃烧室和燃气设备
CN112747469A (zh) 燃烧室和燃气设备
CN220353763U (zh) 一种具有散热功能的烹饪设备的门体结构及烹饪设备
CN204853608U (zh) 油烟机及其调温送风系统
WO2022152278A1 (zh) 燃气设备和燃气热水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525274

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020880731

Country of ref document: EP

Effective date: 20220429

NENP Non-entry into the national phase

Ref country code: DE