WO2021082965A1 - 阵列透镜、透镜天线和电子设备 - Google Patents

阵列透镜、透镜天线和电子设备 Download PDF

Info

Publication number
WO2021082965A1
WO2021082965A1 PCT/CN2020/121859 CN2020121859W WO2021082965A1 WO 2021082965 A1 WO2021082965 A1 WO 2021082965A1 CN 2020121859 W CN2020121859 W CN 2020121859W WO 2021082965 A1 WO2021082965 A1 WO 2021082965A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
lens
unit
hollow grooves
same
Prior art date
Application number
PCT/CN2020/121859
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021082965A1 publication Critical patent/WO2021082965A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • This application relates to the field of antenna technology, in particular to an array lens, a lens antenna and an electronic device.
  • Lens antenna is an antenna that can convert spherical or cylindrical waves from point sources or line sources into plane waves through electromagnetic waves to obtain pen-shaped, fan-shaped or other shaped beams. By appropriately designing the lens surface shape and refractive index, the phase velocity of the electromagnetic wave is adjusted to obtain the plane wave front on the radiation aperture.
  • the general lens antenna usually has a limited scanning angle, which is not conducive to covering a large area.
  • an array lens a lens antenna, and an electronic device are provided.
  • An array lens including:
  • At least one dielectric layer At least one dielectric layer
  • each layer of the array structure includes a metal body, and a plurality of hollow grooves arranged in an array are opened on the metal body, An array unit isolated from the metal body is built in each of the hollow grooves, and a plurality of the array units of the at least two layers of array structures at the same relative position are coaxially arranged in the first direction;
  • the array units in the plurality of hollow grooves have a relative rotation angle that gradually changes with respect to the array direction in at least one array direction.
  • a lens antenna which includes the above-mentioned array lens and a feed array arranged in parallel with the array lens.
  • an electronic device including the above-mentioned lens antenna.
  • the above-mentioned array lens, lens antenna and electronic device include at least one dielectric layer; at least two layers of array structure, the dielectric layer and the array structure are alternately stacked in a first direction; each layer of the array structure includes a metal body, The metal body is provided with a plurality of hollow grooves arranged in an array, each of the hollow grooves is built with an array unit isolated from the metal body, and the at least two layers of array structures are located at the same relative position.
  • the array units are arranged coaxially in the first direction; wherein, in the same array structure, the array units in the plurality of hollow grooves have at least one array direction with a gradual relative rotation relative to the array direction Angle, can compensate the phase distribution of different frequency bands, can converge electromagnetic waves, can keep the focal plane of the array lens unchanged in a wider frequency range, greatly reduce the gain of the defocused beam, and greatly improve the lens antenna The scanning angle.
  • Figure 1 is a perspective view of an electronic device in an embodiment
  • FIG. 2 is a schematic diagram of the structure of an array lens in an embodiment
  • FIG. 3 is a schematic diagram of the structure of an array lens in an embodiment
  • FIG. 4 is a schematic diagram of the structure of an array lens in an embodiment
  • FIG. 5 is a schematic diagram of the structure of an array lens in an embodiment
  • FIG. 6 is a schematic diagram of the structure of an array lens in an embodiment
  • FIG. 7 is a schematic diagram of the structure of an array lens in an embodiment
  • FIG. 8 is a schematic diagram of the structure of an array lens in an embodiment
  • FIG. 9 is a schematic diagram of the structure of an array lens in an embodiment
  • Fig. 10a is a schematic diagram of the structure of a lens antenna in an embodiment
  • 10b is a schematic diagram of the structure of a lens antenna in an embodiment
  • Figure 11 is a block diagram of an electronic device in an embodiment
  • Figure 12 is a beam scanning pattern in an embodiment
  • Fig. 13 is a schematic diagram of an electronic device including a lens antenna in an embodiment.
  • first, second, etc. used in this application can be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • the antenna device of an embodiment of the present application is applied to an electronic device.
  • the electronic device may include a mobile phone, a tablet computer, a notebook computer, a handheld computer, a mobile Internet device (MID), and a wearable device ( For example, smart watches, smart bracelets, pedometers, etc.) or other communication modules that can be equipped with array antenna devices.
  • MID mobile Internet device
  • wearable device For example, smart watches, smart bracelets, pedometers, etc.
  • other communication modules that can be equipped with array antenna devices.
  • the electronic device 10 may include a housing assembly 110, a middle board 120, a display assembly 130, and a controller.
  • the display screen assembly 130 is fixed on the housing assembly 110 and forms the external structure of the electronic device together with the housing assembly 110.
  • the housing assembly 110 may include a middle frame 111 and a back cover 113.
  • the middle frame 111 may be a frame structure with through holes. Wherein, the middle frame 111 can be accommodated in the accommodating space formed by the display screen assembly and the back cover 113.
  • the back cover 113 is used to form the outer contour of the electronic device.
  • the back cover 113 may be integrally formed.
  • the back cover 113 may be a non-metal back cover 113.
  • the back cover 113 may be a plastic back cover 113, a ceramic back cover 113, a 3D glass back cover 113, or the like.
  • the middle board 120 is fixed inside the housing assembly, and the middle board 120 may be a PCB (Printed Circuit Board, printed circuit board) or FPC (Flexible Printed Circuit, flexible circuit board).
  • An antenna module for transmitting and receiving millimeter wave signals can be integrated on the middle board 120, and a controller that can control the operation of electronic equipment, etc. can also be integrated.
  • the display screen component can be used to display pictures or fonts, and can provide users with an operation interface.
  • an embodiment of the present application provides an array lens.
  • the array lens includes at least two layers of array structure 210 and at least one dielectric layer 220, and the dielectric layer 220 and the array structure 210 are alternately stacked along the first direction.
  • the first to third layers of the array lens in the first direction may include a layer array structure 210, a dielectric layer 220, and a layer array structure 210 in sequence.
  • the array lens includes a top layer and a bottom layer arranged opposite to each other.
  • the array lens includes multiple layers.
  • the top layer of the array lens can be the array structure 210 or the dielectric layer 220
  • the bottom layer of the array lens can also be the array structure 210 or the dielectric layer 220.
  • the first layer to the Mth layer in the first direction may be an array structure 210, a dielectric layer 220, an array structure 210,..., An array structure 210 in sequence.
  • the specific layered structure of the top layer and the bottom layer of the array lens 210 is not further limited.
  • the first direction can be understood as the longitudinal direction (Z-axis direction) of the array lens, and can also be understood as the stacking direction of the array lens.
  • the dielectric layer 220 is a non-metallic functional layer that can be used to support the fixed array structure 210.
  • the interval distribution of the multi-layer array structure 210 can be realized, and at the same time, it can be combined with the array structure 210.
  • 210 together constitute a phase delay unit.
  • the multi-layer array structure 210 is distributed at equal intervals.
  • the material of the dielectric layer 220 is an electrically insulating material, which will not interfere with the electric field of electromagnetic waves.
  • the material of the dielectric layer 220 may be PET (Polyethylene terephthalate) material, ARM synthetic material, which is generally a combination of silica gel, PET, and other specially processed materials.
  • each dielectric layer 220 is the same, for example, thickness, material, etc.
  • the array structure 210 is a conductive functional layer that can be used to transmit electromagnetic waves
  • the multilayer array structure 210 and the multilayer dielectric layer 220 constitute an array lens with phase delay or convergence of electromagnetic waves, which can emit incident electromagnetic waves in parallel, or Converges parallel incident electromagnetic waves to the focal point.
  • Each layer of the array structure 210 includes a metal body, a plurality of hollow grooves 211 arranged in an array are opened on the metal body, and each hollow groove 211 is built with an array unit 212 isolated from the metal body.
  • the array unit 212 located in the hollow groove 211 is arranged coaxially with the hollow groove 211, that is, the center of the hollow groove 211 is arranged coaxially with the center of the array unit 212.
  • the center of the hollow groove 211 can be understood as the centroid of the hollow groove 211.
  • each array unit 212 can rotate around the central axis of the hollow groove 211. That is, the array unit 212 rotates with the center of the hollow groove 211 as the axis.
  • the hollow groove 211 opened in the array structure 210 penetrates the array structure 210, that is, the hollow groove 211 can understand the through holes provided in the array structure 210, wherein the array unit 212 is attached to the dielectric layer 220 ⁇ Settings.
  • the hollow groove 211 may be an elliptical or circular hollow groove, or may be a rectangular or square hollow groove. In the embodiment of the present application, the specific shape of the hollow groove 211 is not further limited.
  • the plurality of hollow grooves 211 included in each layer of the array structure 210 may be in a two-dimensional array, that is, the plurality of array units 212 located in the plurality of hollow grooves 211 may also be in a two-dimensional array.
  • the two-dimensional array may include a row direction and a column direction.
  • the plane where the array structure 210 is located is a plane formed by the X axis and the Y axis, where the X axis direction is the row direction, and the Y axis is the column direction.
  • the material of the array unit 212 may be a conductive material, such as metal materials, alloy materials, conductive silica gel materials, graphite materials, etc., and the material of the array unit 212 may also be a material with a high dielectric constant.
  • a conductive material such as metal materials, alloy materials, conductive silica gel materials, graphite materials, etc.
  • the material of the array unit 212 may also be a material with a high dielectric constant.
  • glass, plastic, ceramics, etc. with high dielectric constant for example, glass, plastic, ceramics, etc. with high dielectric constant.
  • each layer of the array structure 210 may be the same.
  • the shape, number, relative rotation angle gradual change mode, array mode, thickness, material, etc. of the array unit 212 in the array structure 210 are illustrated.
  • a plurality of array units 212 with at least two layers of array structure 210 located at the same relative position are coaxially arranged in the first direction. That is, the multiple array units 212 located at the same relative position in the multi-layer array structure 210 are all located on the same axis.
  • the axis is a straight line passing through any array unit 212 and parallel to the first direction (Z-axis direction). Further, each axis passes through the centroid of the array unit 212.
  • the centroid can be understood as the center of the geometric shape of the array unit 212. If the geometric shape of the array unit 212 is a rectangle, the centroid is the intersection of the diagonals of the rectangle. If the geometric shape of the array unit 212 is a circle, then The centroid is the center of the circle.
  • the same rectangular coordinate system can be constructed on the plane where each layer of the array structure 210 is located, and the origin of the rectangular coordinate system can be at the array center, the array edge, or any other point of the array structure 210.
  • the location of each array unit 212 can be represented by coordinates (x, y).
  • the coordinates of the multiple array units 212 located at the same relative position in the multi-layer array structure 210 are all the same. That is, the same coordinate means the same relative position.
  • array numbers are set for the multiple array units 212 in each layer of the array structure 210 according to the same rule, and the multiple array units 212 are sorted according to the array numbers. That is, the array numbers of the multiple array units 212 located at the same relative position in the multi-layer array structure 210 are the same.
  • the array units 212 in the plurality of hollow grooves 211 have at least one array direction with a gradual relative rotation angle with respect to the array direction.
  • the relative rotation angle can be understood as the rotation angle of the array unit 212 with respect to the row direction (X axis) or the column direction (Y axis).
  • the relative rotation angle is the rotation angle of the array unit 212 with respect to the column direction (Y axis) as an example for description.
  • the array units 212 in the plurality of hollow grooves 211 have a gradual relative rotation angle with respect to the array direction in at least one array direction.
  • the array lens can compensate for the phase distribution of different frequency bands, and can converge electromagnetic waves, which can keep the focal plane of the array lens unchanged in a wider frequency range, greatly reduce the gain of the defocused beam, and greatly improve the lens antenna The scanning angle.
  • the above-mentioned lens antenna can transmit and receive 5G millimeter waves.
  • Millimeter waves refer to electromagnetic waves with wavelengths on the order of millimeters, and their frequencies are approximately between 20 GHz and 300 GHz.
  • 3GP has designated a list of frequency bands supported by 5G NR.
  • the 5G NR spectrum range can reach 100 GHz. It has specified two frequency ranges: Frequency range 1 (FR1), which is the frequency band below 6 GHz, and Frequency range 2 (FR2), which is millimeter wave frequency band.
  • FR1 Frequency range 1
  • FR2 Frequency range 2
  • Frequency range 1 frequency range: 450MHz-6.0GHz, of which the maximum channel bandwidth is 100MHz.
  • the frequency range of Frequency range 2 is 24.25GHz-52.6GHz, and the maximum channel bandwidth is 400MHz.
  • Nearly 11GHz spectrum used for 5G mobile broadband includes: 3.85GHz licensed spectrum, for example: 28GHz (24.25-29.5GHz), 37GHz (37.0-38.6GHz), 39GHz (38.6-40GHz) and 14GHz unlicensed spectrum (57-71GHz) .
  • the working frequency band of 5G communication system has three frequency bands: 28GHz, 39GHz and 60GHz.
  • the plurality of hollow grooves 211 in each layer of the array structure 210 are in a two-dimensional array, for example, a N*M (5*11) two-dimensional array.
  • an array unit 212 is provided in each hollow groove 211. That is, the multiple array units 212 in each layer of the array structure 210 are also in a two-dimensional array.
  • the array direction of the two-dimensional array includes a row direction and a column direction.
  • the array units 212 in the plurality of hollow grooves 211 have a gradual relative rotation angle in the row direction.
  • the hollow groove 211 in each layer of the array structure 210 is a circular hollow groove
  • the array unit 212 in the hollow groove 211 is a rectangular conductive sheet
  • the rectangular conductive sheet is the same as the circular hollow groove 211.
  • the axis is set, and the rectangular conductive sheet can rotate with the center of the circular hollow groove 211 as the axis.
  • the hollow grooves 211 in each layer of the array structure 210 are square hollow grooves 211, and the array unit 212 in the hollow grooves 211 is an elliptical conductive sheet, and the elliptical conductive sheet and the square hollow groove 211 It is arranged coaxially, and the elliptical conductive sheet can rotate around the center of the square hollow groove 211 as an axis.
  • the hollow groove 211 may be rectangular, square, elliptical or circular, and the array unit 212 may be rectangular or elliptical.
  • a circular hollow groove and a rectangular conductive sheet are taken as examples for description.
  • the shape of the hollow groove 211 of the array structure 210 and the array unit 212 can be any combination.
  • the relative rotation angle of the array units 212 in the plurality of hollow grooves 211 in the row direction increases symmetrically from the first center line of the two-dimensional array to the edge of the array, and the plurality of hollow grooves
  • the relative rotation angles of the array units 212 in 211 in the column direction are the same.
  • the array centerline in the two-dimensional array includes a first centerline s1 and a second centerline s2, wherein the direction of the first centerline s1 is the same as the column direction, and the direction of the second centerline s2 is the same as the row direction.
  • the array units 212 in each layer of the array structure 210 may be symmetrically arranged about the first center line s1, and may be symmetrically arranged about the second center line s2.
  • the array unit 212 When the array unit 212 is a rectangular conductive sheet, the length direction of the rectangular conductive sheet located on the first center line s1 is the same as the column direction, and the width direction is the same as the row direction, and the length dimension of the rectangular conductive sheet is 1, the rectangular conductive sheet The length dimension is w.
  • the array unit 212 is an elliptical conductive sheet, the long axis direction of the elliptical conductive sheet on the first center line is the same as the column direction, and the short axis direction is the same as the row direction, and the major axis size of the elliptical conductive sheet is 1.
  • the minor axis size of the elliptical conductive sheet is w.
  • the array units 212 in the plurality of hollow grooves 211 have a gradual relative rotation angle in the row direction with respect to the column direction (Y axis), that is, each array unit 212 in the same row can be relative to the Y axis.
  • the relative rotation angle is the relative rotation angle.
  • the relative rotation angle increases symmetrically from the first center line s1 of the two-dimensional array to the edge of the array. It can be understood that the relative rotation angles of all the array units 212 in each column are the same, and the array units 212 in the first column to the eleventh column of each row rotate with respect to the Y axis.
  • the relative rotation angle of the array unit 212 in the sixth column to the eleventh column of the third row can be represented by ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, where 0 ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 ⁇ ⁇ 5 ⁇ 6.
  • the hollow grooves 211 in the array structure 210 are arranged independently of each other, and in the array direction, the center distances of two adjacent hollow grooves 211 are equal. Specifically, in the row direction, the first center distance p1 of two adjacent hollow grooves 211 is equal; in the column direction, the second center distance p2 of two adjacent hollow grooves 211 is equal. Wherein, the first center distance p1 is equal to the second center distance p2.
  • the working frequency band of the array lens can be adjusted by selecting a suitable first center distance p1, a second center distance p2P, and the length and width dimensions of the array unit 212, for example, by designing an appropriate size,
  • the working frequency band of the array lens can be kept in the 5G millimeter wave frequency band and so on.
  • the array structure 210 and the dielectric layer 220 in the array lens together form a phase delay unit.
  • the array unit 212 in the plurality of hollow grooves 211 has a relative to the array in the row direction
  • the relative rotation angle of the direction is gradually changed, it will produce a certain phase shift, and the magnitude of the phase shift is positively related to the relative rotation angle.
  • x is the distance between the center of the array unit 212 and the first centerline s1
  • is the design frequency point (ie the emission frequency of the electromagnetic wave emitted by the feed array 30)
  • f is the distance between the array lens and the feed array (the distance of the array lens focal length).
  • the phase shift distribution in the embodiment of the present application can realize translational symmetrical lens, which can compensate the phase distribution of different frequency bands, so that the electromagnetic waves radiated by the feed source array that deviate from the focus are in the row direction (X axis) of the array lens.
  • Direction can be better converged, greatly reducing the drop in the gain of the defocused beam, and greatly increasing the scanning angle of the lens antenna.
  • the array unit 212 includes two rectangular conductive sheets arranged in parallel, wherein the lengths l of the two rectangular conductive sheets in the parallel direction are different.
  • the parallel direction of the two rectangular conductive sheets is the same as the column direction.
  • the array unit 212 includes three rectangular conductive sheets arranged in parallel, wherein the lengths l of the three rectangular conductive sheets in the parallel direction are all different.
  • the parallel direction of the two rectangular conductive sheets is the same as the column direction.
  • the array unit 212 may include a plurality of (greater than or equal to 2) elliptical conductive sheets arranged in parallel, wherein the major axes of the elliptical conductive sheets are arranged in parallel, and the major axes of the elliptical conductive sheets have different sizes. .
  • the phase distribution of different frequency bands can be compensated, and the focal plane of the array lens can be kept unchanged in a wider frequency range, so that the deviation
  • the electromagnetic waves radiated by the feed source array with a far focus can be better converged in the row direction (X-axis direction) of the array lens, which increases the bandwidth of the lens antenna and greatly increases the scanning angle of the lens antenna.
  • the plurality of hollow grooves 211 in each layer of the array structure 210 are in a two-dimensional array, for example, it may be a two-dimensional array of N*M (5*11), which includes Hollow grooves 211 in N rows and M columns (5 rows and 11 columns).
  • an array unit 212 is provided in each hollow groove 211.
  • the array units 212 in the plurality of hollow grooves 211 have a gradual relative rotation angle in the row direction, and the array units 212 in the plurality of hollow grooves 211 have a gradual relative rotation angle in the column direction.
  • the hollow groove 211 is a circular hollow groove 211
  • the array unit 212 is a rectangular conductive sheet for illustration.
  • the shape and number of the hollow groove 211 and the array unit 212 can be combined arbitrarily, which is not further limited in this application.
  • the array centerline in the two-dimensional array includes a first centerline s1 and a second centerline s2, wherein the direction of the first centerline s1 is the same as the column direction, and the direction of the second centerline s2 is the same as the row direction.
  • the array units 212 in each layer of the array structure 210 may be symmetrically arranged about the first center line s1, and may be symmetrically arranged about the second center line s2.
  • the array units 212 in the plurality of hollow grooves 211 have a gradual relative rotation angle with respect to the column direction (Y axis) in the row direction and the column direction, that is, each array unit in the same row 212 can be rotated relative to the Y axis, and each array unit 212 in the same column can be rotated relative to the Y axis, and the relative rotation angle thereof is the relative rotation angle.
  • the relative rotation angle increases symmetrically from the first center line s1 of the two-dimensional array to the edge of the array.
  • the array units 212 in the first column to the eleventh column of each row rotate with respect to the Y axis, respectively.
  • the relative rotation angle of the array unit 212 in the sixth column to the eleventh column of the third row can be represented by ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, where 0 ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 ⁇ ⁇ 5 ⁇ 6.
  • the relative rotation angle increases symmetrically from the second centerline s2 of the two-dimensional array to the edge of the array.
  • the array units 212 in the first row to the fifth row of each column rotate with respect to the Y axis, respectively.
  • the value of ⁇ 1 or ⁇ 1 is not further limited.
  • the array unit 212 rotates with respect to the X-axis or the Y-axis, its rotation direction may be clockwise or counterclockwise. At the same time, in the same array structure 210, all the array units 212 rotate in the same direction. In the embodiments of the present application, clockwise rotation is taken as an example for description. The difference between two adjacent relative rotation angles can be equal (for example, 15°, 30°, etc.), can be an arithmetic sequence, a geometric sequence, or a random number. In the embodiments of the present application, no Make further restrictions.
  • the hollow grooves 211 in the array structure 210 are arranged independently of each other, and in the array direction, the center distances of two adjacent hollow grooves 211 are equal. Specifically, in the row direction, the first center distance p1 of two adjacent hollow grooves 211 is equal; in the column direction, the second center distance p2 of two adjacent hollow grooves 211 is equal. Wherein, the first center distance p1 is equal to the second center distance p2.
  • the array structure 210 and the dielectric layer 220 in the array lens together form a phase delay unit.
  • at least two array units 212 are located opposite to each other in the array.
  • the centerline array unit 212 has a gradual relative rotation angle in the array direction, it will produce a certain phase shift, and the magnitude of the phase shift is positively correlated with the relative rotation angle.
  • y is the distance between the center of the array unit 212 and the second center line s2
  • is the design frequency point
  • f is the distance between the array lens and the feed array.
  • the phase shift distribution in the embodiment of the present application can realize translational symmetrical lens, which can compensate the phase distribution of different frequency bands, so that the electromagnetic waves radiated by the feed source array that deviate from the focus are in the row direction (X axis) of the array lens.
  • Direction) and column direction (Y-axis direction) can be better converged, greatly reducing the drop in the defocused beam gain, and greatly increasing the scanning angle of the lens antenna.
  • the plurality of hollow grooves 211 in each layer of the array structure 210 are in a two-dimensional array, for example, it may be a two-dimensional array of N*M (5*11), which includes Hollow grooves 211 in N rows and M columns (5 rows and 11 columns).
  • an array unit 212 is provided in each hollow groove 211.
  • the array units in the multiple hollow grooves have a gradual relative rotation angle with respect to the array direction in at least one array direction, and have a gradual array unit size in at least one array direction.
  • the size of the array unit can be understood as the size of the array unit 212 located on the first center line s1 in the row direction, that is, the width size, and can also be understood as the size of the array unit 212 in the column direction, that is, the length size.
  • the array unit 212 is a rectangular conductive sheet and the size of the array unit is a width dimension as an example for description.
  • the width dimension of the rectangular conductive sheets in the plurality of hollow grooves 211 decreases symmetrically from the first center line s1 of the two-dimensional array toward the edge of the array.
  • the width dimension of each rectangular conductive sheet in the third row is w
  • the width dimension of each rectangular conductive sheet in the second and fourth rows is w1; each rectangular conductive sheet in the first row N1 and the fifth row N5
  • the width dimension of is w2, where w>w1>w2.
  • At least two array units 212 in the array lens have the same relative rotation angle in the column direction and have a gradual array unit size, which can compensate for the phase distribution of different frequency bands, and at the same time, it can also be implemented in X
  • the axis direction and the convergence of the electromagnetic wave beam on the Y axis increase the bandwidth of the lens antenna and greatly increase the scanning angle of the lens antenna.
  • the width dimension of the rectangular conductive sheets in the plurality of hollow grooves 211 is symmetrically reduced from the second center line s2 of the two-dimensional array to the edge of the array.
  • the width dimension of the rectangular conductive sheets in the plurality of hollow grooves 211 decreases symmetrically from the first center line s1 of the two-dimensional array toward the edge of the array, and the plurality of hollow grooves 211 The width dimension of the rectangular conductive sheet of the two-dimensional array decreases symmetrically from the second center line s2 of the two-dimensional array toward the edge of the array.
  • the array unit 212 in the plurality of hollow grooves 211 may have a gradual array unit size in at least one array direction and the array unit 212 in the plurality of hollow grooves 211
  • the embodiments that have a gradual relative rotation angle with respect to the array direction in at least one array direction can be combined arbitrarily, and the combined embodiments will not be repeated in this application.
  • the array units 212 in the plurality of hollow grooves 211 have at least one array direction with a gradual relative rotation angle with respect to the array direction.
  • the at least two array units 212 coaxially arranged in the multi-layer array structure 210 have a gradual array unit size in the first direction.
  • the at least two array units 212 arranged coaxially have a gradual array unit size in the first direction.
  • the hollow groove 211 in each layer of the array structure 210 is circular, and the array unit 212 in the hollow groove 211 is a rectangular conductive sheet.
  • the size of the array unit can be understood as the width of the rectangular array unit 212 or the length of the rectangular array unit 212. If the array unit 212 in the hollow groove 211 is an elliptical conductive sheet, the size of the array unit can be understood as the short axis size of the elliptical array unit 212 or the long axis size of the elliptical array unit 212.
  • the description will be made by taking the dimension of the array unit being the width dimension of the rectangular array unit 212 as an example.
  • the width dimensions of the rectangular conductive sheets in the same layer of the array structure 210 are the same, and the array unit size of the multiple array units 212 arranged coaxially decreases from the bottom layer to the top layer of the array lens.
  • the array lens 210 includes a 3-layer array structure P1-P3 and a 2-layer dielectric layer 220.
  • the width dimension w1 of the array unit 212 in the array structure P1 is the largest, the width dimension w2 of the array unit 212 in the array structure P2 and the width dimension w3 of the array unit 212 in the array structure P3 decrease in order, and w1>w2>w3.
  • the width dimensions of the rectangular conductive sheets in the same layer of the array structure 210 are the same, and the array unit dimensions of the multiple array units 212 arranged coaxially are from the middle layer of the array lens to the top and bottom layers of the array lens. Symmetrically decreasing.
  • the array lens 210 includes a 3-layer array structure P1-P3 and a 2-layer dielectric layer 220.
  • the width dimension w2 of the array unit 212 in the array structure P2 is the largest.
  • the width dimensions of the rectangular conductive sheets in the same layer of the array structure 210 are the same, and the array unit size of the multiple array units 212 arranged coaxially decreases from the top layer to the bottom layer of the array lens.
  • the array lens 210 includes a 3-layer array structure P1-P3 and a 2-layer dielectric layer 220.
  • the width dimension w3 of the array unit 212 in the array structure P3 is the largest, the width dimension w2 of the array unit 212 in the array structure P2, and the width dimension w1 of the array unit 212 in the array structure P1 decrease sequentially, and w3>w2>w1.
  • At least two array units 212 coaxially arranged in the multilayer array structure 210 have a gradual array unit size in the first direction, and at the same time can be combined with array units in a plurality of hollow grooves 211.
  • the embodiment in which 212 has a gradual array unit size in at least one array direction, and the embodiment in which the array unit 212 in the plurality of hollow grooves 211 has a gradual relative rotation angle with respect to the array direction in at least one array direction can be combined arbitrarily, The combined embodiments will not be repeated in this application.
  • At least two array units 212 coaxially arranged in the multilayer array structure 210 in the array lens have a gradual array unit size in the first direction, which can compensate the phase distribution of different frequency bands, and at the same time, it can also realize the electromagnetic wave
  • the converging effect of the beam increases the bandwidth of the lens antenna and greatly increases the scanning angle of the lens antenna.
  • the plurality of hollow grooves 211 have gradual hollow groove sizes in at least one array direction.
  • the size of the hollow groove can be defined according to the shape of the hollow groove 211.
  • the corresponding hollow groove size is the diameter or radius of the circular hollow groove; the hollow groove 211 is In the case of a square hollow groove, the corresponding hollow groove size is the side length of the square hollow groove.
  • the hollow groove sizes of the multiple hollow grooves 211 decrease symmetrically from the first center line s1 of the two-dimensional array to the edge of the array in the row direction, or/and in the same array structure, the multiple hollow grooves 211
  • the size of the hollow grooves in the column direction decreases symmetrically from the second center line s2 of the two-dimensional array to the edge of the array.
  • the array lens in this embodiment can compensate the phase distribution of different frequency bands, and at the same time, can also realize the converging effect of the electromagnetic wave beam, increase the bandwidth of the lens antenna, and greatly increase the scanning angle of the lens antenna.
  • the embodiment of the present application also provides a lens antenna.
  • the lens antenna includes: any of the array lenses 20 in the above-mentioned embodiments, and a feed array 30 arranged in parallel with the array lenses 20.
  • the feed array 30 includes a plurality of feed units 310.
  • electromagnetic waves can be incident on the lens array lens 20 along the first direction.
  • the lens antenna will radiate high-gain beams with different directions to obtain different beam directions, thereby realizing beam scanning.
  • the feed source array 30 may have a center symmetric structure, and the center of the feed source array 30 may be placed at the focal point of the lens array lens 20.
  • the lens antenna further includes a first isolation plate 410 and a second isolation plate 420 arranged in parallel, and the feed array 30 and the array lens 20 are arranged on the first isolation plate 410 and the second isolation plate 410 and the second isolation plate 420. Between the isolation plates 420, it is used to reduce the leakage of electromagnetic waves radiated by the feed array 30.
  • the plane where the feed source array 30 is located is perpendicular to the plane where the first isolation plate 410 is located, and the array direction of the feed source array 30 is parallel to an array direction of the array unit 211.
  • the multiple feed units 310 in the feed array 30 are linearly arranged along the second direction.
  • the second direction can be understood as a direction parallel to the X axis, that is, the array direction of the feed array 30 It is arranged in parallel with the row direction of the array unit 211.
  • both the first isolation plate 410 and the second isolation plate 420 may be flat metal plates.
  • the array lens 20 and the feed array 30 are placed between the first isolation plate 410 and the second isolation plate 420, which can reduce the leakage of electromagnetic waves radiated by the feed, thereby improving the antenna efficiency and the structure of the antenna. strength.
  • the lens antenna further includes a protective layer (not shown in the figure), and the protective layer is respectively attached to the side of the lens furthest away from the feed array 30 and attached to the side of the lens closest to the feed array 30 .
  • An embodiment of the present application also provides an electronic device, including the lens antenna in any of the foregoing embodiments.
  • the electronic device with the lens antenna of any of the above embodiments can be suitable for the transmission and reception of 5G communication millimeter wave signals.
  • the lens antenna has a short focal length, a small size, and is easy to integrate into electronic equipment.
  • the lens antenna can be reduced in electronic equipment. The space occupied within the device.
  • the electronic device can include mobile phones, tablets, laptops, palmtop computers, mobile Internet devices (MID), wearable devices (such as smart watches, smart bracelets, pedometers, etc.) or other antennas that can be set Communication module.
  • MID mobile Internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, etc.
  • other antennas that can be set Communication module.
  • the electronic device further includes a detection module 1110, a switch module 1120, and a control module 1130.
  • the control module 1130 is connected to the detection module 1110 and the switch module 1120 respectively.
  • the detection module 1110 can obtain the beam signal strength of the electromagnetic wave radiated by the lens antenna when each feed unit 310 is in the working state.
  • the detection module 1110 can also be used to detect and obtain the electromagnetic wave power, electromagnetic wave absorption ratio or specific absorption rate (SAR) and other parameters of the lens antenna when each feed unit 310 is in the working state.
  • SAR specific absorption rate
  • the switch module 1120 is connected to the feed array 30 and is used to select a connection path to be conducted with any feed unit 310.
  • the switch module 1120 may include an input terminal and a plurality of output terminals, wherein the input terminal is connected to the control module 1130, and the plurality of output terminals are respectively connected to the plurality of feed units 310 in a one-to-one correspondence.
  • the switch module 1120 can be used to receive a switching instruction issued by the control module 1130 to control the conduction and disconnection of each switch in the switch module 1120, and control the conduction and connection between the switch module 1120 and any antenna feeder unit 310. Make any antenna feed unit 310 in a working (conducting) state.
  • the control module 1130 can control the switch module 1120 according to a preset strategy to make each feeder unit work separately to perform electromagnetic wave transmission and reception to obtain different beam directions, thereby realizing beam scanning.
  • the detection module 1110 can correspondingly obtain the current beam signal intensity of the electromagnetic wave radiated by the lens antenna.
  • the beam scanning pattern is obtained by simulation. For example, when five feeder units 310 are included in the feeder array 30, the detection module 1110 can obtain the signal strength of five beams correspondingly, and filter out the strongest beam signal strength from them, and then calculate the strength of the strongest beam signal.
  • the corresponding feed unit 310 serves as the target feed unit 310.
  • the switching instruction issued by the control module 1130 controls the conduction connection between the switch module 1120 and the target feed unit 310, so that the target feed unit 310 is in a working (conducting) state.
  • each feed unit 310 of the feed array 30 can be operated individually by switching the switch, and different beam directions can be obtained, thereby realizing beam scanning without the need for shifters and attenuation. The cost is greatly reduced.
  • the electronic device 10 includes a plurality of lens antennas 20, and the plurality of lens antennas 20 are distributed on different sides of the frame of the electronic device.
  • the electronic device includes multiple lens antennas
  • the middle frame includes a first side 101 and a third side 103 arranged opposite to each other, and a second side 102 and a fourth side 104 arranged opposite to each other.
  • the second side 102 is connected to one end of the first side 101 and the third side 103
  • the fourth side 104 is connected to the other end of the first side 101 and the third side 103.
  • At least two of the first side, the second side, the third side and the fourth side are respectively provided with millimeter wave modules.
  • the two lens antennas are respectively arranged on the two long sides of the mobile phone, which can cover the space on both sides of the mobile phone, and realize 5G mobile phone millimeter wave high-efficiency, high-gain, and low-cost beam scanning.
  • the four lens antennas are located on the first side 101, the second side 102, the third side 103, and the fourth side 104, respectively.
  • the four lens antennas are located on the first side 101, the second side 102, the third side 103, and the fourth side 104, respectively.
  • the lens antenna is blocked and the signal is poor.
  • Multiple lens antennas are arranged on different sides.
  • the user holds the electronic device 10 horizontally or vertically there is a lens antenna that is not blocked. , So that the electronic device 10 can transmit and receive signals normally.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

一种阵列透镜包括:至少一介质层(220);至少两层阵列结构(210),介质层(220)与阵列结构(210)沿第一方向交替层叠设置;每一层阵列结构(210)包括金属本体,金属本体上开设有多个呈阵列设置的镂空槽(211),每个镂空槽(211)中内置有与金属本体隔离的阵列单元(212),至少两层阵列结构(210)位于同一相对位置的多个阵列单元(212)在第一方向上同轴设置;其中,同一阵列结构(210)中,多个镂空槽(211)中的阵列单元(212)在至少一个阵列方向上具有相对于阵列方向渐变的相对旋转角度。

Description

阵列透镜、透镜天线和电子设备
相关申请的交叉引用
本申请要求于2019年10月29日提交中国专利局、申请号为2019110400573、发明名称为“阵列透镜、透镜天线和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种阵列透镜、透镜天线和电子设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
透镜天线,一种能够通过电磁波,将点源或线源的球面波或柱面波转换为平面波从而获得笔形、扇形或其他形状波束的天线。通过合适设计透镜表面形状和折射率,调节电磁波的相速以获得辐射口径上的平面波前。一般的透镜天线通常扫描角度有限,不利于覆盖较大范围。
发明内容
根据本申请的各种实施例,提供一种阵列透镜、透镜天线和电子设备。
一种阵列透镜,包括:
至少一介质层;
至少两层阵列结构,所述介质层与所述阵列结构沿第一方向交替层叠设置;每一层所述阵列结构包括金属本体,所述金属本体上开设有多个呈阵列设置的镂空槽,每个所述镂空槽中内置有与所述金属本体隔离的阵列单元,所述至少两层阵列结构位于同一相对位置的多个所述阵列单元在所述第一方向上同轴设置;
其中,同一所述阵列结构中,所述多个镂空槽中的阵列单元在至少一个阵列方向上具有相对于所述阵列方向渐变的相对旋转角度。
此外,还提供一种透镜天线,包括上述的阵列透镜和与所述阵列透镜平行设置的馈源阵列。
此外,还提供一种电子设备,包括上述的透镜天线。
上述阵列透镜、透镜天线和电子设备,包括至少一介质层;至少两层阵列结构,所述介质层与所述阵列结构沿第一方向交替层叠设置;每一层所述阵列结构包括金属本体,所述金属本体上开设有多个呈阵列设置的镂空槽,每个所述镂空槽中内置有与所述金属本体隔离的阵列单元,所述至少两层阵列结构位于同一相对位置的多个所述阵列单元在所述第一方向上同轴设置;其中,同一所述阵列结构中,所述多个镂空槽中的阵列单元在至少一个阵列方向上具有相对于所述阵列方向渐变的相对旋转角度,可对不同频段的相位分布进行补偿,能对电磁波进行汇聚,可使得该阵列透镜在更宽的频率范围内焦平面保持不变,大大减小偏焦波束增益的降幅,大幅提高透镜天线的扫描角度。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中电子设备的立体图;
图2为一实施例中阵列透镜的结构示意图;
图3为一实施例中阵列透镜的结构示意图;
图4为一实施例中阵列透镜的结构示意图;
图5为一实施例中阵列透镜的结构示意图;
图6为一实施例中阵列透镜的结构示意图;
图7为一实施例中阵列透镜的结构示意图;
图8为一实施例中阵列透镜的结构示意图;
图9为一实施例中阵列透镜的结构示意图;
图10a为一实施例中透镜天线的结构示意图;
图10b为一实施例中透镜天线的结构示意图;
图11为一实施例中电子设备的框图;
图12为一实施例中波束扫描方向图;
图13为一个实施例中包括透镜天线的电子设备的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
需要说明的是,当元件被称为“贴合于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
本申请一实施例的天线装置应用于电子设备,在一个实施例中,电子设备可以为包括手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等)或其他可设置阵列天线装置的通信模块。
如图1所示,在本申请实施例中,电子设备10可包括壳体组件110、中板120、显示屏组件130和控制器。显示屏组件130固定于壳体组件110上,与壳体组件110一起形成电子设备的外部结构。壳体组件110可以包括中框111和后盖113。中框111可以为具有通孔的框体结构。其中,中框111可以收容在显示屏组件与后盖113形成的收容空间中。后盖113用于形成电子设备的外部轮廓。后盖113可以一体成型。在后盖113的成型过程中,可以在后盖113上形成后置摄像头孔、指纹识别模组、天线装置安装孔等结构。其中,后盖113可以为非金属后盖113,例如,后盖113可以为塑胶后盖113、陶瓷后盖113、3D玻璃后盖113等。中板120固定在壳体组件内部,中板120可以为PCB(Printed Circuit Board,印刷电路板)或FPC(Flexible Printed Circuit,柔性电路板)。在该中板120上可集成用于收发毫米波信号的天线模组,还可以集成能够控制电子设备的运行的控制器等。显示屏组件可用来显示画面或字体,并能够为用户提供操作界面。
如图2所示,本申请实施例提供一种阵列透镜。在其中一实施例中,阵列透镜包括至 少两层阵列结构210和至少一介质层220,介质层220与阵列结构210沿第一方向交替层叠设置。例如,阵列透镜沿第一方向的第一层至第三层依次可为可包括层阵列结构210、介质层220、层阵列结构210。
在其中一个实施例中,阵列透镜包括相背设置的顶层和底层。阵列透镜包括多层当介质层220和多层阵列结构210时,阵列透镜的顶层可以阵列结构210或介质层220,阵列透镜的底层也可以为阵列结构210或介质层220,例如,阵列透镜沿第一方向的第一层至第M层依次可为阵列结构210、介质层220、阵列结构210、…、阵列结构210。在本申请实施例中,对阵列透镜210顶层和底层的具体层状结构不做进一步的限定。
需要说明的是,第一方向可以理解为该阵列透镜的纵向方向(Z轴方向),也可以理解为阵列透镜的堆叠方向。
其中,介质层220是能用于支撑固定阵列结构210的非金属功能层,通过介质层220与阵列结构210的交替叠层,可以实现多层阵列结构210的间隔分布,同时还能与阵列结构210共同构成相位延迟单元。可选地,当多层介质层220在第一方向上的厚度相等时,多层阵列结构210等间距分布。
在其中一个实施例中,介质层220的材料为电绝缘性材料,不会对电磁波的电场产生干扰。例如,介质层220的材质可以为PET(Polyethylene terephthalate)材质,ARM合成材质,其一般是硅胶、PET和其他的经过特殊处理的材质合成等。可选地,每层介质层220相同,例如,厚度、材质等。
其中,阵列结构210是能用于传输电磁波的导电功能层,多层阵列结构210和多层介质层220构成了具有相位延迟或实现对电磁波汇聚的阵列透镜,可以将入射的电磁波平行出射,或者将平行入射的电磁波汇聚到焦点处。
每一层阵列结构210包括金属本体,金属本体上开设有多个呈阵列设置的镂空槽211,每个镂空槽211中内置有与金属本体隔离的阵列单元212。
在一个实施例中,位于镂空槽211内的阵列单元212与该镂空槽211同轴设置,也即,该镂空槽211的中心与该阵列单元212的中心同轴设置。其中,镂空槽211的中心可以理解为该镂空槽211的形心。其中,每个阵列单元212均可绕镂空槽211的中轴线进行旋转。也即,阵列单元212以所在镂空槽211的中心为轴旋转。
在一个实施例中,阵列结构210中开设的镂空槽211贯穿该阵列结构210,也即该镂空槽211可理解设置在该阵列结构210中的通孔,其中,阵列单元212与介质层220贴合设置。
在一个实施例中,镂空槽211可以为椭圆、圆形镂空槽,也可以为矩形、正方形镂空槽,在本申请实施例中,对镂空槽211的具体形状不做进一步的限定。
在一个实施例中,每一层阵列结构210包括的多个镂空槽211可呈二维阵列,即位于多个镂空槽211内的多个阵列单元212也呈二维阵列。二维阵列可包括行方向和列方向。阵列结构210所在平面为X轴、Y轴所构成的平面,其中,X轴方向为行方向,Y轴为列方向。
在其中一个实施例中,该阵列单元212的材料可以为导电材料,例如金属材料、合金材料、导电硅胶材料、石墨材料等,该阵列单元212的材料还可以为具有高介电常数的材料,例如具有高介电常数的玻璃、塑料、陶瓷等。
在其中一个实施例中,每层阵列结构210可都相同。举例说明,阵列结构210中阵列单元212的形状、数量、相对旋转角度渐变方式、阵列方式、厚度、材质等。
至少两层阵列结构210位于同一相对位置的多个阵列单元212在第一方向上同轴设置。也即,多层阵列结构210中位于同一相对位置的多个阵列单元212均位于同一轴线上。轴线为穿过任意阵列单元212且平行于第一方向(Z轴方向)的直线。进一步的每条轴线均穿过该阵列单元212的形心。形心可以理解为该阵列单元212几何形状的中心,若阵列 单元212的几何形状为矩形,则该形心为该矩形对角线的交点,若阵列单元212的几何形状为圆形,则个形心为该圆形的圆心。
在本申请中,每层阵列结构210所在平面可构建相同的直角坐标系,其该直角坐标系的原点可均在阵列结构210的阵列中心、阵列边缘或其他任意点。在该直角坐标系中每个阵列单元212所在位置可以用坐标(x,y)进行表示。多层阵列结构210中位于同一相对位置的多个阵列单元212的坐标均相同。也即,坐标相同则为同一相对位置。
在本申请中,针对每层阵列结构210中的多个阵列单元212按照相同的规则设置阵列序号,其多个阵列单元212按照阵列序号进行排序。也即,多层阵列结构210中位于同一相对位置的多个阵列单元212的阵列序号相同。
其中,同一阵列结构210中,多个镂空槽211中的阵列单元212在至少一个阵列方向上具有相对于阵列方向渐变的相对旋转角度。相对旋转角度可以理解为阵列单元212相对于行方向(X轴)或列方向(Y轴)所发生的旋转角度。在本申请实施例中,以相对旋转角度为阵列单元212相对于列方向(Y轴)所发生的旋转角度为例进行说明。
上述阵列透镜中,同一阵列结构210中,多个镂空槽211中的阵列单元212在至少一个阵列方向上具有相对于阵列方向渐变的相对旋转角度,当电磁波沿第一方向入射至阵列透镜时,阵列透镜可对不同频段的相位分布进行补偿,能对电磁波进行汇聚,可使得该阵列透镜在更宽的频率范围内焦平面保持不变,大大减小偏焦波束增益的降幅,大幅提高透镜天线的扫描角度。
上述透镜天线可实现对5G毫米波的收发,毫米波是指波长在毫米数量级的电磁波,其频率大约在20GHz~300GHz之间。3GP已指定5G NR支持的频段列表,5G NR频谱范围可达100GHz,指定了两大频率范围:Frequency range 1(FR1),即6GHz以下频段和Frequency range 2(FR2),即毫米波频段。Frequency range 1的频率范围:450MHz-6.0GHz,其中,最大信道带宽100MHz。Frequency range 2的频率范围为24.25GHz-52.6GHz,最大信道带宽400MHz。用于5G移动宽带的近11GHz频谱包括:3.85GHz许可频谱,例如:28GHz(24.25-29.5GHz)、37GHz(37.0-38.6GHz)、39GHz(38.6-40GHz)和14GHz未许可频谱(57-71GHz)。5G通信系统的工作频段有28GHz,39GHz,60GHz三个频段。
在其中一个实施例中,如图3-4所示,每一层阵列结构210中的多个镂空槽211呈二维阵列,例如,可呈N*M(5*11)的二维阵列。其中,在每个镂空槽211中均设有一个阵列单元212。也即,每一层阵列结构210中的多个阵列单元212也呈二维阵列。其中,二维阵列的阵列方向包括行方向和列方向,同一阵列结构210中,多个镂空槽211中的阵列单元212在行方向上具有渐变的相对旋转角度。
如图3所示,每一层阵列结构210中的镂空槽211均为圆形镂空槽,其位于镂空槽211中的阵列单元212为矩形导电片,矩形导电片与该圆形镂空槽211同轴设置,且矩形导电片可以该圆形镂空槽211的中心为轴进行旋转。
如图4所示,每一层阵列结构210中的镂空槽211均为正方形镂空槽211,其位于镂空槽211中的阵列单元212为椭圆形导电片,椭圆形导电片与该正方形镂空槽211同轴设置,且椭圆形导电片可以该正方形镂空槽211的中心为轴进行旋转。
可选的,镂空槽211可以为矩形、正方形、椭圆形或圆形,阵列单元212可为矩形或椭圆形。在本实施例中,以圆形镂空槽,矩形导电片为例进行说明。在其他实施例中,阵列结构210的镂空槽211与阵列单元212的形状可为任一组合形式。
在其中一个实施例中,同一阵列结构210中,多个镂空槽211中的阵列单元212在行方向的相对旋转角度由二维阵列的第一中心线向阵列边缘对称增加,且多个镂空槽211中的阵列单元212在列方向的相对旋转角度相同。
具体地,二维阵列中的阵列中心线包括第一中心线s1和第二中心线s2,其中第一中 心线s1的方向与列方向相同,第二中心线s2的方向与行方向相同。其中,每一层阵列结构210中的阵列单元212可关于第一中心线s1对称设置,且可关于第二中心线s2对称设置。
当阵列单元212为矩形导电片时,其位于第一中线上s1的矩形导电片的长度方向与列方向相同,其宽度方向与行方向相同,且矩形导电片的长度尺寸为l,矩形导电片的长度尺寸为w。当阵列单元212为椭圆形导电片时,其位于第一中线上的椭圆形导电片的长轴方向与列方向相同,其短轴方向与行方向相同,且椭圆形导电片的长轴尺寸为l,椭圆形导电片的短轴尺寸为w。
每一层阵列结构210中多个镂空槽211中阵列单元212在行方向上具有相对于列方向(Y轴)渐变的相对旋转角度,也即,同一行的每个阵列单元212均可相对于Y轴发生旋转,其相对旋转的角度为相对旋转角度。在行方向上,相对旋转角度由二维阵列的第一中心线s1向阵列边缘对称增加。可以理解为,每一列的所有阵列单元212的相对旋转角度均相同,且每一行的第一列至第十一列的阵列单元212分别相对于Y轴发生旋转。例如,第三行的第六列至第十一列的阵列单元212的相对旋转角度可分别用θ1、θ2、θ3、θ4、θ5、θ6表示,其中,0≤θ1<θ2<θ3<θ4<θ5<θ6。在本申请实施例中,以θ1=0为例进行说明,在其他实施例中,对θ1的取值不做进一步的限定。
在其中一个实施例中,阵列结构210中的镂空槽211均彼此独立设置,且在阵列方向上,相邻两个镂空槽211的中心距离相等。具体的,在行方向,相邻两个镂空槽211的第一中心距离p1相等;在列方向,相邻两个镂空槽211的第二中心距离p2相等。其中,第一中心距离p1与第二中心距离p2相等。
在本申请实施例中,可以通过选取合适的第一中心距离p1、第二中心距离p2P、阵列单元212的长度尺寸和宽度尺寸,可以调整阵列透镜的工作频段,例如,通过设计合适的尺寸,可以使该阵列透镜的工作频段保持在5G毫米波频段等。
当该阵列透镜应用到包括馈源阵列的透镜天线时,阵列透镜中阵列结构210和介质层220共同构成了相位延迟单元,当多个镂空槽211中的阵列单元212在行方向上具有相对于阵列方向渐变的相对旋转角度时,其会产生一定的相移,其相移大小与相对旋转角度正相关。其中,每一纵列的阵列单元212可实现的相移量满足Φ(x)=πx2/λf。其中,x为阵列单元212中心与第一中心线s1的距离,λ为设计频点(即馈源阵列30所发射电磁波的发射频率),f为阵列透镜与馈源阵列的距离(阵列透镜的焦距)。
本申请实施例中的这种相移分布可以实现平移对称的透镜,即可对不同频段的相位分布进行补偿,使得偏离焦点较远的馈源阵列辐射的电磁波在阵列透镜的行方向(X轴方向)能被较好地汇聚,大大减小偏焦波束增益的降幅,大幅提高透镜天线的扫描角度。
在其中一个实施例中,如图5所示,阵列单元212包括两个平行设置的矩形导电片,其中,两个矩形导电片在平行方向上的长度尺寸l不同。例如,位于该第一中心线的阵列单元212中,两个矩形导电片的平行方向与列方向相同。
其中一个实施例中,如图6所示,阵列单元212包括三个平行设置的矩形导电片,其中,三个矩形导电片在平行方向上的长度尺寸l均不同。例如,位于该第一中心线的阵列单元212中,两个矩形导电片的平行方向与列方向相同。
其中一个实施例中,阵列单元212可包括多个(大于或等于2个)平行设置的椭圆形导电片,其中,椭圆形导电片的长轴平行设置,且椭圆形导电片的长轴尺寸不同。
当阵列单元212采用不同尺寸的多个矩形导电片或椭圆形导电片时,可以对不同频段的相位分布进行补偿,可使得该阵列透镜在更宽的频率范围内焦平面保持不变,使得偏离焦点较远的馈源阵列辐射的电磁波在阵列透镜的行方向(X轴方向)能被较好地汇聚,提高透镜天线的带宽,大幅提高透镜天线的扫描角度。
在其中一个实施例中,如图7所示,每一层阵列结构210中的多个镂空槽211呈二维 阵列,例如,可呈N*M(5*11)的二维阵列,即包括N行M列(5行11列)的镂空槽211。其中,在每个镂空槽211中均设有一个阵列单元212。同一阵列结构210中,多个镂空槽211中的阵列单元212在行方向上具有渐变的相对旋转角度,且多个镂空槽211中的阵列单元212在列方向具有渐变的相对旋转角度。
本实施例中以镂空槽211为圆形镂空槽211,阵列单元212为一个矩形导电片进行举例说明。在其他实施例中,镂空槽211与阵列单元212的形状与数量可以任意组合,在本申请中不做进一步的限定。
具体地,二维阵列中的阵列中心线包括第一中心线s1和第二中心线s2,其中第一中心线s1的方向与列方向相同,第二中心线s2的方向与行方向相同。其中,每一层阵列结构210中的阵列单元212可关于第一中心线s1对称设置,且可关于第二中心线s2对称设置。
每一层阵列结构210,多个镂空槽211中的阵列单元212在行方向和列方向上均具有相对于列方向(Y轴)渐变的相对旋转角度,也即,同一行的每个阵列单元212均可相对于Y轴发生旋转,同一列的每个阵列单元212均可相对于Y轴发生旋转,其相对旋转的角度为相对旋转角度。
在行方向上,相对旋转角度由二维阵列的第一中心线s1向阵列边缘对称增加。可以理解为,每一行的第一列至第十一列的阵列单元212分别相对于Y轴发生旋转。例如,第三行的第六列至第十一列的阵列单元212的相对旋转角度可分别用θ1、θ2、θ3、θ4、θ5、θ6表示,其中,0≤θ1<θ2<θ3<θ4<θ5<θ6。在列方向上,相对旋转角度由二维阵列的第二中心线s2向阵列边缘对称增加。可以理解为,每一列的第一行至第五行的阵列单元212分别相对于Y轴发生旋转。例如,第六列的第一行至第五行的阵列单元212的相对旋转角度可分别用β1、β2、β3表示,其中,θ1=β1,且0≤β1<β2<β3。在本申请实施例中,以θ1=β1=0为例进行说明,在其他实施例中,对θ1或β1的取值不做进一步的限定。
需要说明的是,阵列单元212相对于X轴或Y轴发生旋转时,其旋转方向可为顺时针旋转,也可以逆时针旋转。同时,同一阵列结构210中,所有阵列单元212的旋转方向相同。本申请实施例中,以顺时针旋转为例进行说明。两个相邻的相对旋转角度之间的差值可以相等(例如,15°、30°等),可以为等差数列、可以为等比数列或为随机数,在本申请实施例中,不做进一步的限定。
在其中一个实施例中,阵列结构210中的镂空槽211均彼此独立设置,且在阵列方向上,相邻两个镂空槽211的中心距离相等。具体的,在行方向,相邻两个镂空槽211的第一中心距离p1相等;在列方向,相邻两个镂空槽211的第二中心距离p2相等。其中,第一中心距离p1与第二中心距离p2相等。
当该阵列透镜应用到包括馈源阵列的透镜天线时,阵列透镜中阵列结构210和介质层220共同构成了相位延迟单元,当同一阵列结构210中,至少两个阵列单元212分别相对于位于阵列中心线的阵列单元212在阵列方向上具有渐变的相对旋转角度时,其会产生一定的相移,其相移大小与相对旋转角度正相关。其中,每一纵列(每列)的阵列单元212可实现的相移量满足Φ(x)=πx2/λf。每一横列(每行)的阵列单元212可实现的相移量满足Φ(x)=πy2/λf。其中,y为阵列单元212中心与第二中心线s2的距离,λ为设计频点,f为阵列透镜与馈源阵列的距离。
本申请实施例中的这种相移分布可以实现平移对称的透镜,即可对不同频段的相位分布进行补偿,使得偏离焦点较远的馈源阵列辐射的电磁波在阵列透镜的行方向(X轴方向)和列方向(Y轴方向)能被较好地汇聚,大大减小偏焦波束增益的降幅,大幅提高透镜天线的扫描角度。
在其中一个实施例中,如图8所示,每一层阵列结构210中的多个镂空槽211呈二维阵列,例如,可呈N*M(5*11)的二维阵列,即包括N行M列(5行11列)的镂空槽 211。其中,在每个镂空槽211中均设有一个阵列单元212。同一阵列结构中,多个镂空槽中的阵列单元在至少一个阵列方向上具有相对于阵列方向渐变的相对旋转角度,且在至少一个阵列方向上具有渐变的阵列单元尺寸。
阵列单元尺寸可以理解为位于第一中心线s1上的阵列单元212在行方向上的尺寸也即宽度尺寸,还可以理解为阵列单元212在列方向上的尺寸也即长度尺寸。在本申请实施例中,以阵列单元212为矩形导电片,阵列单元尺寸为宽度尺寸为例进行说明。
同一阵列结构210中,多个镂空槽211中的矩形导电片的宽度尺寸由二维阵列的第一中心线s1向阵列边缘对称减小。例如,第三行中每个矩形导电片的宽度尺寸为w,第二行和第四行中每个矩形导电片的宽度尺寸为w1;第一行N1和第五行N5中每个矩形导电片的宽度尺寸为w2,其中,w>w1>w2。
在本实施例中,阵列透镜中的至少两个阵列单元212在列方向的相对旋转角度相同且具有渐变的阵列单元尺寸,即可对不同频段的相位分布进行补偿,同时,也能实现在X轴方向和在Y轴对电磁波波束的汇聚作用,提高透镜天线的带宽,大幅提高透镜天线的扫描角度。
在其中一个实施例中,同一阵列结构210中,多个镂空槽211中的矩形导电片的宽度尺寸由二维阵列的第二中心线s2向阵列边缘对称减小。
在其中一个实施例中,同一阵列结构210中,多个镂空槽211中的矩形导电片的宽度尺寸由二维阵列的第一中心线s1向阵列边缘对称减小,且多个镂空槽211中的矩形导电片的宽度尺寸由二维阵列的第二中心线s2向阵列边缘对称减小。
需要说明的是,在本申请实施例中,可以将多个镂空槽211中的阵列单元212在至少一个阵列方向上具有渐变的阵列单元尺寸的实施例与多个镂空槽211中的阵列单元212在至少一个阵列方向上具有相对于阵列方向渐变的相对旋转角度的实施例进行任意组合,其组合后的实施例在本申请中不在一一赘述。
在其中一个实施例中,如图9所示,同一阵列结构210中,多个镂空槽211中的阵列单元212在至少一个阵列方向上具有相对于阵列方向渐变的相对旋转角度。同时,多层阵列结构210中同轴设置的至少两个阵列单元212在第一方向上具有渐变的阵列单元尺寸。
在其中一个实施例中,同轴设置的至少两个阵列单元212在第一方向上具有渐变的阵列单元尺寸。例如,每一层阵列结构210中的镂空槽211均为圆形,其位于镂空槽211中的阵列单元212为矩形导电片。其中,阵列单元尺寸可以理解为该矩形阵列单元212的宽度尺寸,或该矩形阵列单元212的长度尺寸。若,位于镂空槽211中的阵列单元212为椭圆形导电片,阵列单元尺寸可以理解为该椭圆形阵列单元212的短轴尺寸,或该椭圆形阵列单元212的长轴尺寸。
本实施例中,以阵列单元尺寸为矩形阵列单元212的宽度尺寸为例进行说说明。
参考图9,在其中一个实施例中,同一层阵列结构210中的矩形导电片的宽度尺寸相同,且同轴设置的多个阵列单元212的阵列单元尺寸由该阵列透镜的底层向顶层递减。例如,阵列透镜210包括3层阵列结构P1-P3和2层介质层220。阵列结构P1中的阵列单元212的宽度尺寸w1最大,阵列结构P2中的阵列单元212的宽度尺寸w2、阵列结构P3中的阵列单元212的宽度尺寸w3依次递减,且w1>w2>w3。
在其中一个实施例中,同一层阵列结构210中的矩形导电片的宽度尺寸相同,且同轴设置的多个阵列单元212的阵列单元尺寸由该阵列透镜的中间层向阵列透镜的顶层和底层对称递减。例如,阵列透镜210包括3层阵列结构P1-P3和2层介质层220。阵列结构P2中的阵列单元212的宽度尺寸w2最大,阵列结构P1、P3中的阵列单元212的宽度尺寸w1、w3相对于阵列结构P2中的阵列单元212的宽度尺寸w2减小,且w2>w3=w1。
在其中一个实施例中,同一层阵列结构210中的矩形导电片的宽度尺寸相同,且同轴设置的多个阵列单元212的阵列单元尺寸由该阵列透镜的顶层向底层递减。例如,阵列透 镜210包括3层阵列结构P1-P3和2层介质层220。阵列结构P3中的阵列单元212的宽度尺寸w3最大,阵列结构P2中的阵列单元212的宽度尺寸w2、阵列结构P1中的阵列单元212的宽度尺寸w1依次递减,且w3>w2>w1。
需要说明的是,阵列透镜中,多层阵列结构210中同轴设置的至少两个阵列单元212在第一方向上具有渐变的阵列单元尺寸,同时还可以与多个镂空槽211中的阵列单元212在至少一个阵列方向上具有渐变的阵列单元尺寸的实施例、多个镂空槽211中的阵列单元212在至少一个阵列方向上具有相对于阵列方向渐变的相对旋转角度的实施例进行任意组合,其组合后的实施例在本申请中不在一一赘述。
阵列透镜中多层阵列结构210中同轴设置的至少两个阵列单元212在第一方向上具有渐变的阵列单元尺寸,即可对不同频段的相位分布进行补偿,同时,也能实现在对电磁波波束的汇聚作用,提高透镜天线的带宽,大幅提高透镜天线的扫描角度。
在其中一个实施例中,同一阵列结构中,多个镂空槽211在至少一个阵列方向上具有渐变的镂空槽尺寸。其中,镂空槽尺寸可以根据镂空槽211的形状来定义,例如,镂空槽211的为圆形镂空槽时,其对应的镂空槽尺寸为该圆形镂空槽的直径或半径;镂空槽211的为方形镂空槽时,其对应的镂空槽尺寸为该方形镂空槽的边长。
具体的,同一阵列结构中,多个镂空槽211的镂空槽尺寸在行方向上由二维阵列的第一中心线s1向阵列边缘对称减小,或/和同一阵列结构中,多个镂空槽211的镂空槽尺寸在列方向上由二维阵列的第二中心线s2向阵列边缘对称减小。
本实施例中的阵列透镜即可对不同频段的相位分布进行补偿,同时,也能实现在对电磁波波束的汇聚作用,提高透镜天线的带宽,大幅提高透镜天线的扫描角度。
本申请实施例还提供一种透镜天线。如图10a所示,透镜天线包括:上述实施例中任一阵列透镜20,与阵列透镜20平行设置的馈源阵列30。
在其中一实施例中,馈源阵列30包括多个馈源单元310,当对馈源阵列30中不同馈源单元310进行馈电时,电磁波可沿第一方向入射至透镜阵列透镜20,该透镜天线将辐射不同指向的高增益波束,即可获取不同的波束指向,从而实现波束扫描。
进一步的,该馈源阵列30可为中心对称式结构,馈源阵列30的中心可放置在透镜阵列透镜20的焦点处。
如图10b所示,在其中一实施例中,透镜天线还包括平行设置的第一隔离板410和第二隔离板420,馈源阵列30和阵列透镜20设置在第一隔离板410和第二隔离板420之间,用于减少馈源阵列30辐射电磁波的泄露。
进一步的,馈源阵列30所在平面与第一隔离板410所在平面垂直,且馈源阵列30的阵列方向与阵列单元211的一个阵列方向平行设置。例如,馈源阵列30中的多个馈源单元310沿着第二方向线性排布,参考图10a,第二方向可以理解为与X轴平行的方向,也即,馈源阵列30的阵列方向与阵列单元211的行方向平行设置。
在其中一实施例中,第一隔离板410和第二隔离板420均可以为金属平板。
在本实施例中,将阵列透镜20和馈源阵列30置于第一隔离板410和第二隔离板420之间,可以减少馈源辐射电磁波的泄露,从而提高天线效率,同时提高天线的结构强度。
在其中一实施例中,透镜天线还包括保护层(图中未示),保护层分别贴合于最远离馈源阵列30的透镜一侧和贴合于最靠近馈源阵列30的透镜一侧。
本申请实施例还提供一种电子设备,包括上述任一实施例中的透镜天线。具有上述任一实施例的透镜天线的电子设备,可以适用于5G通信毫米波信号的收发,同时,该透镜天线的焦距短,尺寸小,易于集成于电子设备中,同时可以缩小透镜天线在电子设备内的占用空间。
该电子设备可以为包括手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等) 或其他可设置天线的通信模块。
在其中一实施例中,如图11所示,电子设备还包括检测模块1110、开关模块1120和控制模块1130。其中,控制模块1130分别与检测模块1110、开关模块1120连接。
在其中一实施例中,检测模块1110可获取每个馈源单元310处于工作状态时透镜天线辐射电磁波的波束信号强度。检测模块1110还可用于检测获取每个馈源单元310处于工作状态时透镜天线的接收电磁波的功率、电磁波吸收比值或比吸收率(Specific Absorption Rate,SAR)等参数。
在其中一实施例中,开关模块1120与馈源阵列30连接,用于选择导通与任一馈源单元310的连接通路。在其中一实施例中,开关模块1120可包括输入端和多个输出端,其中,输入端与控制模块1130连接,多个输出端分别与多个馈源单元310一一对应连接。开关模块1120可以用于接收控制模块1130发出的切换指令,以控制开关模块1120中各开关自身的导通与断开,控制该开关模块1120与任意一个天馈源单元310的导通连接,以使任意一个天馈源单元310处于工作(导通)状态。
在其中一实施例中,控制模块1130可以按照预设策略控制开关模块1120分别使每一个馈电单元分别处于工作状态,进行电磁波的收发,即可获取不同的波束指向,从而实现波束扫描。当任一馈源单元310处于工作状态时,检测模块1110可以对应获取当前透镜天线辐射电磁波的波束信号强度。参考图12,以7单元馈源阵列30为例,仿真得到波束扫描方向图。例如,当馈源阵列30中包括五个馈源单元310时,则检测模块1110可以对应获取五个波束信号强度,并从中筛选出最强的波束信号强度,并将该最强的波束信号强度对应的馈源单元310作为目标馈源单元310。控制模块1130发出的切换指令以控制该开关模块1120与目标馈源单元310的导通连接,以使目标馈源单元310处于工作(导通)状态。
本实施例中的电子设备,可以通过切换开关以使馈源阵列30的各馈源单元310单独处于工作状态,即可可获取不同的波束指向,从而实现波束扫描,而不需要移向器和衰减器,大大降低了成本。
如图13所示,在其中一实施例中,电子设备10包括多个透镜天线20,多个透镜天线20分布于电子设备中框的不同侧边。比如,电子设备包括多个透镜天线,中框包括相背设置的第一侧边101、第三侧边103,以及相背设置的第二侧边102和第四侧边104,第二侧边102连接第一侧边101、第三侧边103的一端,第四侧边104连接第一侧边101、第三侧边103的另一端。第一侧边、第二侧边、第三侧边和第四侧边中的至少两个分别设有毫米波模组。
在其中一实施例中,将两个透镜天线分别设置在手机两个长边,即可覆盖手机两侧的空间,实现5G手机毫米波高效率、高增益、低成本波束扫描。
在其中一实施例中,当透镜天线的数量为4个时,4个透镜天线分别位于第一侧边101、第二侧边102、第三侧边103和第四侧边104。用户手持电子设备10时,会存在透镜天线被遮挡而造成信号差的情况,多个透镜天线设置在不同的侧边,用户横握或竖握电子设备10时,均存在不被遮挡的透镜天线,使得电子设备10可以正常发射和接收信号。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (24)

  1. 一种阵列透镜,包括:
    至少一介质层;
    至少两层阵列结构,所述介质层与所述阵列结构沿第一方向交替层叠设置;每一层所述阵列结构包括金属本体,所述金属本体上开设有多个呈阵列设置的镂空槽,每个所述镂空槽中内置有与所述金属本体隔离的阵列单元,所述至少两层阵列结构位于同一相对位置的多个所述阵列单元在所述第一方向上同轴设置;
    其中,同一所述阵列结构中,多个所述镂空槽中的阵列单元在至少一个阵列方向上具有相对于所述阵列方向渐变的相对旋转角度。
  2. 根据权利要求1所述的阵列透镜,其特征在于,每一层所述阵列结构中的多个所述镂空槽呈二维阵列,所述二维阵列的阵列方向包括行方向和列方向,同一所述阵列结构中,所述多个镂空槽中的所述阵列单元在所述行方向上具有渐变的相对旋转角度。
  3. 根据权利要求2所述的阵列透镜,其特征在于,同一所述阵列结构中,所述多个镂空槽中的阵列单元在所述行方向的相对旋转角度由所述二维阵列的第一中心线向阵列边缘对称增加,且在所述列方向的相对旋转角度相同。
  4. 根据权利要求2所述的阵列透镜,其特征在于,同一所述阵列结构中,所述多个镂空槽中的阵列单元在所述列方向上具有渐变的相对旋转角度。
  5. 根据权利要求4所述的阵列透镜,其特征在于,同一所述阵列结构中,多个所述镂空槽中的所述阵列单元在所述行方向的所述相对旋转角度由所述二维阵列的第一中心线向阵列边缘对称增加,在所述列方向的所述相对旋转角度由所述二维阵列的第二中心线向阵列边缘对称增加。
  6. 根据权利要求2-5任一项所述的阵列透镜,其特征在于,同一所述阵列结构中,所述多个镂空槽中的所述阵列单元在至少一个阵列方向上具有渐变的阵列单元尺寸。
  7. 根据权利要求6所述的阵列透镜,其特征在于,同一所述阵列结构中,所述多个镂空槽中的所述阵列单元的所述阵列单元尺寸在所述行方向上由所述二维阵列的第一中心线向阵列边缘对称减小。
  8. 根据权利要求6所述的阵列透镜,其特征在于,同一所述阵列结构中,所述多个镂空槽中的阵列单元的所述阵列单元尺寸在所述列方向上由所述二维阵列的第二中心线向阵列边缘对称减小。
  9. 根据权利要求6所述的阵列透镜,其特征在于,同一所述阵列结构中,所述多个镂空槽中的所述阵列单元的所述阵列单元尺寸在所述行方向上由所述二维阵列的第一中心线向阵列边缘对称减小,在所述列方向上由所述二维阵列的第二中心线向阵列边缘对称减小。
  10. 根据权利要求1所述的阵列透镜,其特征在于,多层所述阵列结构中同轴设置的所述多个镂空槽中的所述阵列单元在第一方向上具有渐变的阵列单元尺寸。
  11. 根据权利要求10所述的阵列透镜,其特征在于,同轴设置的多个所述阵列单元的阵列单元尺寸由所述阵列透镜的底层向顶层递减。
  12. 根据权利要求10所述的阵列透镜,其特征在于,同轴设置的多个所述阵列单元的阵列单元尺寸由所述阵列透镜的中间层向所述阵列透镜的顶层和底层对称递减。
  13. 根据权利要求10所述的阵列透镜,其特征在于,同轴设置的多个所述阵列单元的阵列单元尺寸由所述阵列透镜的顶层向底层递减。
  14. 根据权利要求1所述的阵列透镜,其特征在于,同一所述阵列结构中,多个所述镂空槽在至少一个阵列方向上具有渐变的镂空槽尺寸。
  15. 根据权利要求1所述的阵列透镜,其特征在于,在所述阵列方向上,相邻两个所述镂空槽的中心距离相等。
  16. 根据权利要求1所述的阵列透镜,其特征在于,所述阵列单元包括至少一矩形导电片,多个所述矩形导电片平行设置,且所述矩形导电片在平行方向上的长度尺寸不同。
  17. 根据权利要求16所述的阵列透镜,其特征在于,所述阵列单元包括至少一椭圆形导电片,多个所述椭圆形导电片的长轴平行设置,且所述椭圆形导电片的长轴尺寸不同。
  18. 根据权利要求1所述的阵列透镜,其特征在于,所述镂空槽为圆形镂空槽或矩形镂空槽。
  19. 一种透镜天线,包括:
    馈源阵列,所述馈源阵列包括多个馈源单元;
    与所述馈源阵列平行设置的如权利要求1-18任一所述的阵列透镜。
  20. 根据权利要求19所述的透镜天线,其特征在于,所述透镜天线还包括平行设置的第一隔离板和第二隔离板,所述馈源阵列和所述阵列透镜设置在所述第一隔离板和第二隔离板之间。
  21. 根据权利要求20所述的透镜天线,其特征在于,所述馈源阵列所在平面与所述第一隔离板所在平面垂直,且所述馈源阵列的阵列方向与所述阵列单元的一个阵列方向平行设置。
  22. 一种电子设备,包括如权利要求19~21任一项所述的透镜天线。
  23. 根据权利要求22所述的电子设备,其特征在于,所述电子设备还包括:
    检测模块,用于获取每个所述馈源单元处于工作状态时所述透镜天线的波束信号强度;
    开关模块,与所述馈源阵列连接,用于选择导通与任一所述馈源单元的连接通路;
    控制模块,分别与所述检测模块、所述开关模块连接,用于根据所述波束信号强度控制所述开关模块,使最强波束信号强度对应的所述馈源单元处于工作状态。
  24. 根据权利要求22所述的电子设备,其特征在于,所述透镜天线的数量为多个,所述电子设备还包括中框,所述中框包括相背设置的第一侧边、第三侧边,以及相背设置的第二侧边和第四侧边,所述第二侧边连接所述第一侧边、所述第三侧边的一端,所述第四侧边连接所述第一侧边、所述第三侧边的另一端;所述第一侧边、所述第二侧边、所述第三侧边和所述第四侧边中的至少两个分别设有所述透镜天线。
PCT/CN2020/121859 2019-10-29 2020-10-19 阵列透镜、透镜天线和电子设备 WO2021082965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911040057.3 2019-10-29
CN201911040057.3A CN110943278B (zh) 2019-10-29 2019-10-29 阵列透镜、透镜天线和电子设备

Publications (1)

Publication Number Publication Date
WO2021082965A1 true WO2021082965A1 (zh) 2021-05-06

Family

ID=69906288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121859 WO2021082965A1 (zh) 2019-10-29 2020-10-19 阵列透镜、透镜天线和电子设备

Country Status (2)

Country Link
CN (1) CN110943278B (zh)
WO (1) WO2021082965A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943278B (zh) * 2019-10-29 2021-06-25 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备
CN114545406B (zh) * 2022-04-25 2022-07-15 广东福顺天际通信有限公司 一种可编程的反射器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522105B1 (en) * 2006-07-17 2009-04-21 The United States Of America As Represented By The Secretary Of The Navy Antenna using a photonic bandgap structure
US20150009080A1 (en) * 2013-07-08 2015-01-08 Samsung Electronics Co., Ltd. Lens with spatial mixed-order bandpass filter
CN108736171A (zh) * 2018-05-18 2018-11-02 成都泰格微波技术股份有限公司 一种大角度扫描多波束透镜天线
CN109994813A (zh) * 2019-04-03 2019-07-09 浙江大学 圆极化变容管有源超表面带孔介质透镜天线
CN110943278A (zh) * 2019-10-29 2020-03-31 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822622B2 (en) * 2002-07-29 2004-11-23 Ball Aerospace & Technologies Corp Electronically reconfigurable microwave lens and shutter using cascaded frequency selective surfaces and polyimide macro-electro-mechanical systems
US20090040132A1 (en) * 2007-07-24 2009-02-12 Northeastern University Anisotropic metal-dielectric metamaterials for broadband all-angle negative refraction and superlens imaging
CN102751586B (zh) * 2012-07-10 2015-03-11 大连理工大学 一种基于相变材料的可调谐左手超材料
US10359513B2 (en) * 2017-05-03 2019-07-23 Elwha Llc Dynamic-metamaterial coded-aperture imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522105B1 (en) * 2006-07-17 2009-04-21 The United States Of America As Represented By The Secretary Of The Navy Antenna using a photonic bandgap structure
US20150009080A1 (en) * 2013-07-08 2015-01-08 Samsung Electronics Co., Ltd. Lens with spatial mixed-order bandpass filter
CN108736171A (zh) * 2018-05-18 2018-11-02 成都泰格微波技术股份有限公司 一种大角度扫描多波束透镜天线
CN109994813A (zh) * 2019-04-03 2019-07-09 浙江大学 圆极化变容管有源超表面带孔介质透镜天线
CN110943278A (zh) * 2019-10-29 2020-03-31 Oppo广东移动通信有限公司 阵列透镜、透镜天线和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARTINI E., MENCAGLI M., MACI S.: "Metasurface transformation for surface wave control", ROYAL SOCIETY OF LONDON. PHILOSOPHICAL TRANSACTIONS.MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES, THE ROYAL SOCIETY, LONDON, GB, vol. 373, no. 2049, 28 August 2015 (2015-08-28), GB, pages 20140355, XP055808609, ISSN: 1364-503X, DOI: 10.1098/rsta.2014.0355 *

Also Published As

Publication number Publication date
CN110943278B (zh) 2021-06-25
CN110943278A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
EP3726648B1 (en) Antenna module and electronic device
EP3716403B1 (en) Antenna module and electronic device
US11901637B2 (en) Millimeter wave module and electronic device
CN111180906B (zh) 多频带天线阵列及其无线设备
CN110739551B (zh) 阵列透镜、透镜天线和电子设备
WO2021082965A1 (zh) 阵列透镜、透镜天线和电子设备
US20220109245A1 (en) Lens antenna module and electronic device
EP4156411A1 (en) Millimeter wave antenna module and electronic device
WO2020253555A1 (zh) 透镜天线阵列及电子设备
US11289804B2 (en) Plasma radome with flexible density control
CN113363720A (zh) 一种融合罗德曼透镜与有源超表面的涡旋波二维扫描系统
CN110943303B (zh) 阵列透镜、透镜天线和电子设备
CN110729565B (zh) 阵列透镜、透镜天线和电子设备
KR20150088447A (ko) 고체 플라즈마 안테나
CN110752447B (zh) 阵列透镜、透镜天线和电子设备
US20210384615A1 (en) Antenna packaging module and electronic device
WO2021063182A1 (zh) 阵列透镜、透镜天线和电子设备
CN110943302B (zh) 阵列透镜、透镜天线和电子设备
CN112582803B (zh) 阵列透镜、透镜天线和电子设备
CN110739549B (zh) 阵列透镜、透镜天线和电子设备
CN111180903A (zh) 天线组件和电子设备
US20130120203A1 (en) Antenna Unit, Antenna Array and Antenna Module Used in a Portable Device
CN110729566B (zh) 透镜、透镜天线及电子设备
CN110739550B (zh) 透镜、透镜天线及电子设备
CN112582804A (zh) 阵列透镜、透镜天线和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881049

Country of ref document: EP

Kind code of ref document: A1