WO2021082816A1 - 一种水轮机过流部件平面涡流检测装置及方法 - Google Patents

一种水轮机过流部件平面涡流检测装置及方法 Download PDF

Info

Publication number
WO2021082816A1
WO2021082816A1 PCT/CN2020/117166 CN2020117166W WO2021082816A1 WO 2021082816 A1 WO2021082816 A1 WO 2021082816A1 CN 2020117166 W CN2020117166 W CN 2020117166W WO 2021082816 A1 WO2021082816 A1 WO 2021082816A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
flow
eddy current
detection
plane
Prior art date
Application number
PCT/CN2020/117166
Other languages
English (en)
French (fr)
Inventor
王鹏
朱红波
秦承鹏
李东江
何虎昌
蔡晖
江雄
郎梼
李梁
王强
贾若飞
王志强
王铭辉
王福贵
袁东
刘加将
侯召堂
陈征
Original Assignee
西安热工研究院有限公司
四川华能康定水电有限责任公司
华能集团技术创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司, 四川华能康定水电有限责任公司, 华能集团技术创新中心有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2021082816A1 publication Critical patent/WO2021082816A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Definitions

  • the invention belongs to the field of eddy current detection, and relates to a flat eddy current detection device and method for a flow-through component of a hydraulic turbine.
  • Eddy current flaw detection is an effective non-destructive testing method in the detection of flow parts of hydraulic turbines.
  • plane crack detection of flow-through components is an important part.
  • the over-current component of the turbine is a complicated structure, and it is directly above the human head during the shutdown detection.
  • 1) How to fix the probe on the plane of the flow part of the turbine and realize the movement of the probe on the detection surface is the first problem.
  • 2) During the movement of the probe, how to effectively ensure the distance between the probe and the detection object and obtain a good detection effect is the second problem.
  • Ordinary probes are easily affected by the direction of defects, and the detection accuracy of defects in insensitive directions is low.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a device and method for detecting the plane eddy current of the flow part of a hydraulic turbine.
  • the device and method can realize the fixation of the probe on the plane of the flow part of the turbine while being able to keep moving.
  • the distance between the detection surface and the detection object in the process, and the detection accuracy rate is high.
  • the planar eddy current detection device for the flow-through components of the hydraulic turbine includes a probe, a tooling and an eddy current flaw detector, wherein the lower end of the probe is the detection surface, and the detection surface is staggered with a number of coils arranged in the shape of a product ,
  • the tooling includes a tooling body, a telescopic rod, a bottom cover and a number of rubidium magnetic beads.
  • the middle of the tooling body is provided with a first through hole.
  • Each of the rubidium magnetic beads is fixed on the lower end surface of the tooling body, and the bottom cover is fixed to the The lower end surface of the tooling main body, and the bottom cover plate is provided with a number of second through holes for the rubidium magnetic beads to pass through, the lower end of the probe is inserted and fixed in the first through hole, and the end of the telescopic rod is fixed to On the side of the main body of the tooling, the eddy current flaw detector is connected with the probe;
  • the rubidium magnetic beads are adsorbed on the plane of the flow-through part of the turbine.
  • the probe is provided with an aviation plug and a cable for connecting the eddy current flaw detector.
  • the bolt passes through the side surface of the probe and the side surface of the tool body to fix the probe in the first through hole.
  • the bottom cover plate and the lower end surface of the tool body are connected by flat head bolts.
  • the probe has a T-shaped structure, and the main body of the tooling has an inverted T-shaped structure.
  • the distance between the detection surface and the plane of the flow-through component of the turbine is 2mm.
  • the number of flat head bolts is 8, and the eight flat head bolts are arranged in sequence along the circumferential direction;
  • the number of rubidium magnetic beads is 12, and the 12 rubidium magnetic beads are arranged in sequence along the circumferential direction.
  • the method for detecting in-plane eddy currents of the flow-through components of a hydraulic turbine according to the present invention includes the following steps:
  • Fix the probe and tooling place the fixed probe and tooling on the detection plane of the turbine's flow-through components, use the probe to detect cracks on the detection plane of the turbine's flow-through components, and move them in the left and right directions through the telescopic rod to gradually cover
  • the detection plane of the flow-passing part of the entire hydraulic turbine is saved, and the detection result is saved at the same time. After the detection plane of the flow-passing part of a hydraulic turbine is completed, the detection of the flow-passing part detection plane of the next hydraulic turbine is performed.
  • a number of coils are staggered on the detection surface according to the shape of a product to achieve full coverage of the detection area in all directions, so that the detection is not affected by the damage direction.
  • the detection accuracy is high.
  • the lower end of the tooling body is equipped with a number of rubidium magnetic beads. During the detection process, the rubidium magnetic beads are automatically adsorbed on the plane of the flow-through component of the turbine, so that the probe can be fixed on the plane of the flow-through component of the turbine. .
  • the telescopic rod is used to realize the left and right movement of the probe on the detection plane.
  • the distance between the probe and the flow-through component plane of the turbine is fixed and does not change with the movement of the tooling to keep the detection surface and
  • the distance between the inspection objects is simple in structure and convenient to use, which can realize the crack detection on the plane of the flow parts of the turbine, and has good engineering practical value.
  • Figure 1 is a diagram of the equipment composition of the planar eddy current detection device for the overcurrent component
  • Figure 2 is a top view of the probe 1
  • Figure 3 is a side view of the probe 1
  • Figure 4 is a layout diagram of the coil 14
  • Figure 5 is a schematic diagram of the structure of tooling 2;
  • Figure 6 is a position diagram of the tool body 21 and the rubidium magnetic beads 24;
  • FIG. 7 is a schematic diagram of the structure of the bottom cover 23.
  • Figure 8 is an assembly diagram of probe 1 and tooling 2;
  • Figure 9 is a flow chart of the present invention when detecting the plane of the overcurrent component
  • Figure 10 is the eddy current detection impedance diagram of the plane of the overcurrent component.
  • 1 is the probe
  • 2 is the tooling
  • 3 is the eddy current flaw detector
  • 11 is the aviation plug
  • 12 is the threaded through hole
  • 13 is the detection surface
  • 14 is the coil
  • 21 is the main body of the tooling
  • 22 is the telescopic rod
  • 23 is the bottom cover Plate
  • 24 are rubidium magnetic beads
  • 25 are flat head bolts.
  • the planar eddy current detection device for the flow-through components of the hydraulic turbine according to the present invention includes a probe 1, a tooling 2 and an eddy current flaw detector 3.
  • the lower end of the probe 1 is a detection surface 13, and the detection surface 13 is A number of coils 14 are alternately arranged in a zigzag shape.
  • the tooling 2 includes a tooling body 21, a telescopic rod 22, a bottom cover 23 and a number of rubidium magnetic beads 24.
  • the middle of the tooling body 21 is provided with a first through hole, and each of the rubidium magnetic beads 24 are fixed on the lower end surface of the tool body 21, the bottom cover plate 23 is fixed on the lower end surface of the tool body 21, and the bottom cover plate 23 is provided with a number of second through holes for the rubidium magnetic beads 24 to pass through ,
  • the lower end of the probe 1 is inserted and fixed in the first through hole, the end of the telescopic rod 22 is fixed on the side of the tool body 21, the eddy current flaw detector 3 is connected with the probe 1; in the detection process, the rubidium magnetic beads 24 Adsorbed on the plane of the flow part of the turbine.
  • the bolt passes through the side of the probe 1 and the side of the tool body 21 to fix the probe 1 in the first through hole; the bottom cover 23 and the lower end surface of the tool body 21 are connected by flat bolts 25; the probe 1 has a T-shaped structure , The tool body 21 is in an inverted T-shaped structure; the probe 1 is provided with an aviation plug 11 for connecting the eddy current flaw detector 3 and a cable.
  • the distance between the detection surface 13 and the plane of the flow-through component of the turbine is 2mm; the number of flat-head bolts 25 is 8, and the eight flat-head bolts 25 are arranged in sequence along the circumferential direction; the number of rubidium magnetic beads 24 is Twelve and twelve rubidium magnetic beads 24 are arranged in sequence along the circumferential direction.
  • the side surface of the probe 1 is provided with a threaded through hole 12 for bolts to pass through.
  • the method for detecting in-plane eddy currents of the flow-through components of a hydraulic turbine according to the present invention includes the following steps:
  • Fix probe 1 and tooling 2 with bolts place the fixed probe 1 and tooling 2 on the detection plane of the turbine's flow-through components, use probe 1 to detect cracks on the detection plane of the turbine's flow-through components, and proceed through the telescopic rod 22 in turn Move left and right, forward and backward directions to gradually cover the entire inspection plane of the turbine's flow-through components, while saving the detection results.
  • the detection plane of one hydraulic turbine's flow-through components is completed, the detection of the next hydraulic turbine's flow-through component detection plane is performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种水轮机过流部件平面涡流检测装置及方法,探头(1)的下端面为检测面(13),检测面(13)上呈品字形交错布置有若干线圈(14),工装(2)包括工装主体(21)、伸缩杆(22)、底盖板(23)及若干铷磁磁力珠(24),工装主体(21)的中部设置有第一通孔,各铷磁磁力珠(24)均固定于工装主体(21)的下端面上,底盖板(23)固定于工装主体(21)的下端面上,且底盖板(23)上设置有用于供各铷磁磁力珠(24)穿过的若干第二通孔,探头(1)的下端插入并固定于第一通孔内,伸缩杆(22)的端部固定于工装主体(21)的侧面上,涡流探伤仪(3)与探头(1)相连接,采用水轮机过流部件平面涡流检测装置及方法能够实现探头(1)在水轮机过流部件平面上的固定,同时能够保持在移动过程中检测面与检测对象之间的距离,且检测准确率较高。

Description

一种水轮机过流部件平面涡流检测装置及方法 技术领域
本发明属于涡流检测领域,涉及一种水轮机过流部件平面涡流检测装置及方法。
背景技术
水轮机的磨损破坏是水力发电行业亟需解决的重大难题之一。由于气蚀和泥沙冲击的双重作用,水轮机导叶、转轮等过流部件常常产生损伤,严重时导致机组产生强烈振动、噪音和负荷波动,直接影响水轮机的安全稳定性和服役寿命。同时,水轮机维修和维修又十分昂贵。以225KW的机组为例,大修时间通常要持续110天,维修费用加上停止发电带来的直接经济损失超过亿元。因此,对过流部件的及时检测显得尤为重要。
在水轮机的过流部件的检测中,涡流探伤是一种有效的无损检测手段。在过流部件的损伤检测过程中,过流部件平面裂纹检测是一个重要部分。但在过流部件平面裂纹检测过程中,存在以下难题:水轮机过流部件是一个复杂的结构,停机检测时在人头部正上方。1)如何将探头固定在水轮机过流部件平面上,并实现探头在检测面上的移动是第一个难题。2)在探头移动过程中,如何有效保证探头与检测对象之间的距离,获得良好的检测效果是第二个难题。3)普通探头容易受缺陷方向的影响,对不敏感方向的缺陷检测准确率偏低。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种水轮机过流部件平面涡流检测装置及方法,该装置及方法能够实现探头在水轮机过流部件平面上的固定,同时能够保持在移动过程中检测面与检测对象之间的距离,且检测准确率较高。
为达到上述目的,本发明所述的水轮机过流部件平面涡流检测装置包括探头、工装及涡流探伤仪,其中,探头的下端面为检测面,其中,检测面上呈品字形交错布置有若干线圈,工装包括工装主体、伸缩杆、底盖板及若干铷磁磁力珠,工装主体的中部设置有第一通孔,各铷磁磁力珠均固定于工装主体的下端面上,底盖板固定于工装主体的下端面上,且底盖板上设置有用于供各铷磁磁力珠穿过的若干第二通孔,探头的下端插入并固定于第一通孔内,伸缩杆的端部固定于工装主体的侧面上,涡流探伤仪与探头相连接;
在检测过程中,铷磁磁力珠吸附于水轮机过流部件平面上。
探头上设置有用于连接涡流探伤仪的航空插头及电缆线。
螺栓穿过探头的侧面及工装主体的侧面将探头固定于第一通孔内。
底盖板与工装主体的下端面之间通过平头螺栓相连接。
探头呈T型结构,工装主体呈倒T型结构。
在检测过程中,检测面与水轮机过流部件平面之间的距离为2mm。
平头螺栓的数目为8个,且8个平头螺栓沿周向依次布置;
铷磁磁力珠的数目为12颗,且12颗铷磁磁力珠沿周向依次布置。
本发明所述的水轮机过流部件平面涡流检测方法包括以下步骤:
将探头与涡流探伤仪相连接,再将探头放置到校准试块上,再进行 激发频率设置、增益设置、高通滤波、低通滤波设置,对校准试块的裂纹进行检测,自动匹配激发准则参数,并保存设置;
将探头和工装固定,将固定好的探头和工装放置在水轮机过流部件检测平面上,利用探头检测水轮机过流部件检测平面上的裂纹,并通过伸缩杆进行左右、前后方向移动,以逐步覆盖整个水轮机过流部件检测平面,同时保存检测结果,当一个水轮机过流部件检测平面完成后,再进行下一个水轮机过流部件检测平面的检测。
本发明具有以下有益效果:
本发明所述的水轮机过流部件平面涡流检测装置及方法在具体操时,在检测面上按照品字形交错布置若干线圈,实现检测区域各个方向的全覆盖,使得检测不受损伤方向的影响,检测准确率较高,工装主体的下端面上配备有若干铷磁磁力珠,在检测过程中,铷磁磁力珠自动吸附在水轮机过流部件平面上,实现探头在水轮机过流部件平面上的固定。通过伸缩杆实现探头在检测平面的左右、前后移动,当探头与工装连接完成后,探头与水轮机过流部件平面之间的距离固定,不随工装运动而改变,以保持在移动过程中检测面与检测对象之间的距离,结构简单、使用方便,可实现对水轮机过流部件平面的裂纹检测,具有良好的工程实用价值。
附图说明
图1为过流部件平面涡流检测装置设备组成图;
图2为探头1的顶部视图;
图3为探头1的侧视图;
图4为线圈14布置图;
图5为工装2的结构示意图;
图6为工装主体21及铷磁磁力珠24的位置图;
图7为底盖板23的结构示意图;
图8为探头1与工装2的装配图;
图9为本发明检测过流部件平面时的流程图;
图10为过流部件平面的涡流检测阻抗图。
其中,1为探头、2为工装、3为涡流探伤仪、11为航空插头、12为螺纹通孔、13为检测面、14为线圈、21为工装主体、22为伸缩杆、23为底盖板、24为铷磁磁力珠、25为平头螺栓。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1至图8,本发明所述的水轮机过流部件平面涡流检测装置包括探头1、工装2及涡流探伤仪3,其中,探头1的下端面为检测面13,其中,检测面13上呈品字形交错布置有若干线圈14,工装2包括工装主体21、伸缩杆22、底盖板23及若干铷磁磁力珠24,工装主体21的中部设置有第一通孔,各铷磁磁力珠24均固定于工装主体21的下端面上,底盖板23固定于工装主体21的下端面上,且底盖板23上设置有用于供各铷磁磁力珠24穿过的若干第二通孔,探头1的下端插入并固定于第一通孔内,伸缩杆22的端部固定于工装主体21的侧面上,涡流探伤仪3与探头1相连接;在检测过程中,铷磁磁力珠24吸附于水轮机过流部件平面上。
螺栓穿过探头1的侧面及工装主体21的侧面将探头1固定于第一通孔内;底盖板23与工装主体21的下端面之间通过平头螺栓25相连接;探头1呈T型结构,工装主体21呈倒T型结构;探头1上设置有用于连接涡流探伤仪3的航空插头11及电缆线。
在检测过程中,检测面13与水轮机过流部件平面之间的距离为2mm;平头螺栓25的数目为8个,且8个平头螺栓25沿周向依次布置;铷磁磁力珠24的数目为12颗,且12颗铷磁磁力珠24沿周向依次布置。
探头1的侧面上设置有用于供螺栓穿过的螺纹通孔12。
本发明所述的水轮机过流部件平面涡流检测方法包括以下步骤:
参考图9,将探头1与涡流探伤仪3通过电缆线及航空插头11相连接,再将探头1放置到校准试块上,再进行激发频率设置、增益设置、高通滤波、低通滤波设置,对校准试块的裂纹进行检测,自动匹配激发准则参数,并保存设置;
将探头1和工装2通过螺栓固定,将固定好的探头1和工装2放置在水轮机过流部件检测平面上,利用探头1检测水轮机过流部件检测平面上的裂纹,并通过伸缩杆22依次进行左右、前后方向移动,以逐步覆盖整个水轮机过流部件检测平面,同时保存检测结果,当一个水轮机过流部件检测平面完成后,再进行下一个水轮机过流部件检测平面的检测。
实施例一
根据水轮机过流部件实际情况制作专用试件,在试件上切割长度为5mm、宽度为0.17mm、深度为2mm的人工缺陷,利用U型开口可调节 探头1对试件边缘裂纹进行检测,检测阻抗如图10所示,出现8字波,通过该阻抗图可知,裂纹显示直观、清晰,很容易识别。
尽管以上结合附图对本发明的实施方案进行了描述,但本发明并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本发明权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本发明保护之列。

Claims (8)

  1. 一种水轮机过流部件平面涡流检测装置,其特征在于,包括探头(1)、工装(2)及涡流探伤仪(3),其中,探头(1)的下端面为检测面(13),其中,检测面(13)上呈品字形交错布置有若干线圈(14),工装(2)包括工装主体(21)、伸缩杆(22)、底盖板(23)及若干铷磁磁力珠(24),工装主体(21)的中部设置有第一通孔,各铷磁磁力珠(24)均固定于工装主体(21)的下端面上,底盖板(23)固定于工装主体(21)的下端面上,且底盖板(23)上设置有用于供各铷磁磁力珠(24)穿过的若干第二通孔,探头(1)的下端插入并固定于第一通孔内,伸缩杆(22)的端部固定于工装主体(21)的侧面上,涡流探伤仪(3)与探头(1)相连接;
    在检测过程中,铷磁磁力珠(24)吸附于水轮机过流部件平面上。
  2. 根据权利要求1所述的水轮机过流部件平面涡流检测装置,其特征在于,探头(1)上设置有用于连接涡流探伤仪(3)的航空插头(11)及电缆线。
  3. 根据权利要求1所述的水轮机过流部件平面涡流检测装置,其特征在于,螺栓穿过探头(1)的侧面及工装主体(21)的侧面将探头(1)固定于第一通孔内。
  4. 根据权利要求1所述的水轮机过流部件平面涡流检测装置,其特征在于,底盖板(23)与工装主体(21)的下端面之间通过平头螺栓(25)相连接。
  5. 根据权利要求1所述的水轮机过流部件平面涡流检测装置,其特征在于,探头(1)呈T型结构,工装主体(21)呈倒T型结构。
  6. 根据权利要求1所述的水轮机过流部件平面涡流检测装置,其特 征在于,在检测过程中,检测面(13)与水轮机过流部件平面之间的距离为2mm。
  7. 根据权利要求1所述的水轮机过流部件平面涡流检测装置,其特征在于,平头螺栓(25)的数目为8个,且8个平头螺栓(25)沿周向依次布置;
    铷磁磁力珠(24)的数目为12颗,且12颗铷磁磁力珠(24)沿周向依次布置。
  8. 一种水轮机过流部件平面涡流检测方法,其特征在于,基于权利要求1所述的水轮机过流部件平面涡流检测装置,包括以下步骤:
    将探头(1)与涡流探伤仪(3)相连接,再将探头(1)放置到校准试块上,再进行激发频率设置、增益设置、高通滤波、低通滤波设置,对校准试块的裂纹进行检测,自动匹配激发准则参数,并保存设置;
    将探头(1)和工装(2)固定,将固定好的探头(1)和工装(2)放置在水轮机过流部件检测平面上,利用探头(1)检测水轮机过流部件检测平面上的裂纹,并通过伸缩杆(22)进行左右、前后方向移动,以逐步覆盖整个水轮机过流部件检测平面,同时保存检测结果,当一个水轮机过流部件检测平面完成后,再进行下一个水轮机过流部件检测平面的检测。
PCT/CN2020/117166 2019-10-29 2020-09-23 一种水轮机过流部件平面涡流检测装置及方法 WO2021082816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911039052.9A CN110687194A (zh) 2019-10-29 2019-10-29 一种水轮机过流部件平面涡流检测装置及方法
CN201911039052.9 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021082816A1 true WO2021082816A1 (zh) 2021-05-06

Family

ID=69114623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117166 WO2021082816A1 (zh) 2019-10-29 2020-09-23 一种水轮机过流部件平面涡流检测装置及方法

Country Status (2)

Country Link
CN (1) CN110687194A (zh)
WO (1) WO2021082816A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687194A (zh) * 2019-10-29 2020-01-14 西安热工研究院有限公司 一种水轮机过流部件平面涡流检测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311714A (zh) * 2007-05-21 2008-11-26 中国科学金属研究所 一种高灵敏度涡流点式探头
KR20120036512A (ko) * 2010-10-08 2012-04-18 한전케이피에스 주식회사 블레이드의 에어포일 검사용 와전류 프로브 고정장치
CN104698077A (zh) * 2015-03-16 2015-06-10 中国人民解放军海军航空工程学院青岛校区 一种用于旋翼桨叶腹板螺栓孔的涡流原位探伤方法
CN206788110U (zh) * 2017-05-31 2017-12-22 苏州九尚久电磁设备有限公司 一种平面探头
CN209148828U (zh) * 2018-11-28 2019-07-23 三泰电力技术(南京)有限公司 一种用于局部放电检测的可吸附安装式超声波探头结构
CN110687194A (zh) * 2019-10-29 2020-01-14 西安热工研究院有限公司 一种水轮机过流部件平面涡流检测装置及方法
CN210923572U (zh) * 2019-10-29 2020-07-03 西安热工研究院有限公司 一种水轮机过流部件平面涡流检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311714A (zh) * 2007-05-21 2008-11-26 中国科学金属研究所 一种高灵敏度涡流点式探头
KR20120036512A (ko) * 2010-10-08 2012-04-18 한전케이피에스 주식회사 블레이드의 에어포일 검사용 와전류 프로브 고정장치
CN104698077A (zh) * 2015-03-16 2015-06-10 中国人民解放军海军航空工程学院青岛校区 一种用于旋翼桨叶腹板螺栓孔的涡流原位探伤方法
CN206788110U (zh) * 2017-05-31 2017-12-22 苏州九尚久电磁设备有限公司 一种平面探头
CN209148828U (zh) * 2018-11-28 2019-07-23 三泰电力技术(南京)有限公司 一种用于局部放电检测的可吸附安装式超声波探头结构
CN110687194A (zh) * 2019-10-29 2020-01-14 西安热工研究院有限公司 一种水轮机过流部件平面涡流检测装置及方法
CN210923572U (zh) * 2019-10-29 2020-07-03 西安热工研究院有限公司 一种水轮机过流部件平面涡流检测装置

Also Published As

Publication number Publication date
CN110687194A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
CN103487502B (zh) 检测复杂导电结构表面缺陷的涡流阵列探头及系统
WO2021082816A1 (zh) 一种水轮机过流部件平面涡流检测装置及方法
CN102841135A (zh) 基于金属磁记忆检测技术的焊接裂纹扩展过程的表征方法
CN105259248A (zh) 航空发动机叶片表面损伤涡流扫查系统
CN103063742B (zh) 一种带涂层转子叶片的表面波原位探伤方法
CN210923572U (zh) 一种水轮机过流部件平面涡流检测装置
CN106771820B (zh) 同步发电机定子铁心与穿心螺杆短路故障的监测方法
CN101710079B (zh) 检测在役水轮机转轮裂纹的判定方法
CN205982173U (zh) 一种能够有效抑制提离效应的涡流检测探头
Tian et al. Non-destructive testing techniques based on failure analysis of steam turbine blade
CN104316596A (zh) 一种航空发动机压气机二、三级盘检测裂纹的方法
CN103706996B (zh) 避免混流式水轮机转轮叶片出现裂纹的方法
CN210953917U (zh) 一种u型开口可调节的涡流探头
CN110082493A (zh) 一种高温导汽管的蠕变寿命现场快速无损评估方法
CN104458894B (zh) 高速水轮发电机转子磁极磁轭t尾槽的检测方法及其装置
CN214278000U (zh) 一种适用于阀杆表面缺陷磁粉探伤装置
Martinos et al. A benchmark problem for eddy current nondestructive evaluation
KR101479905B1 (ko) 터빈 블레이드 루트부 검사장치
CN206740018U (zh) 一种曲轴螺纹孔组位置度检验量具
KR101174211B1 (ko) 블레이드 에지부 검사용 와전류 프로브 가이드 고정장치
CN212904672U (zh) 一种四爪结构的涡流探头
Li et al. An electromagnetic Helmholtz-coil probe for arbitrary orientation crack detection on the surface of pipeline
CN219830946U (zh) 一种表面裂纹缺陷检测装置
CN213986310U (zh) 一种汽轮机叶片超声检测试块
Faria et al. Acoustic emission tests in the monitoring of cavitation erosion in hydraulic turbines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880397

Country of ref document: EP

Kind code of ref document: A1