CN110082493A - 一种高温导汽管的蠕变寿命现场快速无损评估方法 - Google Patents

一种高温导汽管的蠕变寿命现场快速无损评估方法 Download PDF

Info

Publication number
CN110082493A
CN110082493A CN201910349926.4A CN201910349926A CN110082493A CN 110082493 A CN110082493 A CN 110082493A CN 201910349926 A CN201910349926 A CN 201910349926A CN 110082493 A CN110082493 A CN 110082493A
Authority
CN
China
Prior art keywords
guiding tube
steam guiding
steam
creep life
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910349926.4A
Other languages
English (en)
Inventor
郑坊平
张红军
殷尊
吕一楠
林琳
孟永乐
高磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Thermal Power Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermal Power Research Institute filed Critical Thermal Power Research Institute
Priority to CN201910349926.4A priority Critical patent/CN110082493A/zh
Publication of CN110082493A publication Critical patent/CN110082493A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • G01B17/025Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness for measuring thickness of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/84Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields by applying magnetic powder or magnetic ink
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/208Coatings, e.g. platings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0071Creep
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Abstract

本发明公开了一种高温导汽管的蠕变寿命现场快速无损评估方法,包括以下步骤:1)获取导汽管的设计参数及服役时间;2)确认导汽管的理化性能是否符合标准要求;3)确认导汽管是否存在表面缺陷及内部缺陷;4)当导汽管的理化性能符合标准要求且导汽管不存在表面缺陷、内部缺陷时,则转至步骤5);当导汽管的理化性能不符合标准要求或导汽管存在表面缺陷、内部缺陷时,则需更换导汽管或消缺合格后再转至5);5)采用内壁氧化层厚度超声测量设备测量导汽管的内壁氧化层及金属层的厚度,计算高温导汽管的蠕变寿命tr,该方法能够实现导汽管的蠕变寿命现场快速无损评估。

Description

一种高温导汽管的蠕变寿命现场快速无损评估方法
技术领域
本发明属于蠕变寿命评估技术领域,涉及一种高温导汽管的蠕变寿命现场快速无损评估方法。
背景技术
高温导汽管由于承受着一定的压力且服役温度在蠕变温度范围内,其损伤的主要形式是高温蠕变。在原始状态一定的情况下,影响导汽管蠕变寿命的主要因素为温度、应力和已服役时间,其中温度为导汽管服役的当量温度,应力为导汽管的实际周向应力,时间为已累计服役时间。
累计服役时间超过20年(约15万小时)的12Cr1MoV、P22等材料的导汽管均面临着组织性能衰退、蠕变寿命损耗等问题;高温高压导汽管在长期服役中因材质蠕变损伤造成开裂、爆管的非停事故时有发生;如果能够正确预测导汽管的蠕变寿命,就可以有效防止因导汽管材质蠕变损伤导致的非停事故发生。
传统的高温高压导汽管蠕变寿命评估方法,无论是等温线外推法还是θ函数法,均需要通过割取管样、蠕变持久试验进行,这除了会占用机组正常检修的宝贵工期,还会产生检修费、高温长时试验费,更不利的是试验需耗时长达2年之久才能出来评估结果。
因此,有必要开发一种导汽管蠕变寿命现场快速无损评估方法,在机组停机检修期间,现场通过无损的检验评估手段快速得到导汽管的蠕变寿命,为电厂决策是否需要更换导汽管或采取运行措施提供技术依据。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种高温导汽管的蠕变寿命现场快速无损评估方法,该方法能够实现导汽管的蠕变寿命现场快速无损评估。
为达到上述目的,本发明所述的高温导汽管的蠕变寿命现场快速无损评估方法包括以下步骤:
1)获取导汽管的设计参数及服役时间;
2)通过对导汽管进行光谱成分分析、硬度试验及金相检验,确认导汽管的理化性能是否符合标准要求;
3)通过对导汽管进行外观检查、磁粉检测及超声检测,确认导汽管是否存在表面缺陷及内部缺陷;
4)当导汽管的理化性能符合标准要求且导汽管不存在表面缺陷、内部缺陷时,则转至步骤5);当导汽管的理化性能不符合标准要求或导汽管存在表面缺陷、内部缺陷时,则需更换导汽管或消缺合格后再转至5);
5)采用内壁氧化层厚度超声测量设备测量导汽管的内壁氧化层及金属层的厚度,计算高温导汽管的蠕变寿命tr,其中,
其中,x为导汽管的内壁氧化层厚度,t为导汽管的累计服役时间,a、b、C0、C1、C2、C3及C4为与导汽管材料相关的参数,δ为导汽管金属层的厚度,Dw为导汽管的外径,P为导汽管的蒸汽压力,σ为导汽管的内压应力,T为导汽管的当量温度。
内壁氧化层厚度超声测量设备包括超声脉冲发生接收器、示波器及高频探头。
本发明具有以下有益效果:
本发明所述的高温导汽管的蠕变寿命现场快速无损评估方法在具体操作时,通过对导汽管进行光谱成分分析、硬度试验及金相检验,确认导汽管的理化性能是否符合标准要求;通过对导汽管进行外观检查、磁粉检测及超声检测,确认导汽管是否存在表面缺陷及内部缺陷,以确定导汽管是否存在超标缺陷,当导汽管无超标缺陷时,则利用内壁氧化层厚度超声测量设备测量导汽管的内壁氧化层及金属层的厚度,并以此计算高温导汽管的蠕变寿命,需要说明的是,本发明无需进行割管取样,节省割管及焊接恢复导汽管的工期,且无需进行高温长时间试验,评估效率较高。
附图说明
图1为本发明的流程图;
图2为本发明中内壁氧化层厚度超声测量设备的结构示意图;
图3为实施例一中锅炉导汽管的显微组织图;
图4为实施例二中汽轮机高压导汽管的显微组织图。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1,本发明所述的高温导汽管的蠕变寿命现场快速无损评估方法包括以下步骤:
1)获取导汽管的设计参数及服役时间;
2)通过对导汽管进行光谱成分分析、硬度试验及金相检验,确认导汽管的理化性能是否符合标准要求;
3)通过对导汽管进行外观检查、磁粉检测及超声检测,确认导汽管是否存在表面缺陷及内部缺陷;
4)当导汽管的理化性能符合标准要求且导汽管不存在表面缺陷、内部缺陷时,则转至步骤5);当导汽管的理化性能不符合标准要求或导汽管存在表面缺陷、内部缺陷时,则需更换导汽管或消缺合格后再转至5);
5)采用内壁氧化层厚度超声测量设备测量导汽管的内壁氧化层及金属层的厚度,计算高温导汽管的蠕变寿命tr,其中,
其中,x为导汽管的内壁氧化层厚度,t为导汽管的累计服役时间,a、b、C0、C1、C2、C3及C4为与导汽管材料相关的参数,δ为导汽管金属层的厚度,Dw为导汽管的外径,P为导汽管的蒸汽压力,σ为导汽管的内压应力,T为导汽管的当量温度。
参考图2,内壁氧化层厚度超声测量设备包括超声脉冲发生接收器、示波器及高频探头。
实施例一
对某发电厂锅炉导汽管的蠕变寿命进行现场快速评估,具体实施步骤及结果如下:
1)查阅技术资料知,导汽管的材料为12Cr1MoV,规格为Φ159×14mm,额定蒸汽压力及温度分别为9.81MPa及540℃,已累计服役时间为235400h;
2)经外观检查,未见缺陷和异常;经光谱成分分析,结果符合标准要求,经多点硬度试验,实测硬度最小值为120HBHLD,已略低于标准要求下限值,硬度最小值部位经金相检验,显微组织为铁素体加碳化物,球化4级,已完全球化,金相组织照片如图3所示;
3)经磁粉检测,发现外壁存在长约20mm、深约0.5mm的线性缺陷,现场打磨消除,经超声检测,未发现超标缺陷;
4)对多点进行内壁氧化层及金属层厚度测量,实测内壁氧化层厚度最大值为0.73mm,金属层厚度最小值为11.88mm;
5)当量温度评估结果为579℃,内压应力计算结果为60.7MPa;
6)汽管的蠕变寿命评估结果为约4.8万小时。
考虑到本次检修工期不充足,电厂计划在下一年的检修期间进行该导汽管更换。
实施例二
对某发电厂汽轮机高压导汽管的蠕变寿命进行现场快速评估,具体实施步骤及结果如下:
1)查阅技术资料知,汽轮机高压导汽管的材料为12Cr1MoV,规格为Φ159×20mm,额定蒸汽压力及温度分别为13.7MPa及545℃,已累计服役时间为188600h;
2)经外观检查,未见缺陷和异常;经光谱成分分析,结果符合标准要求;经多点硬度试验,实测硬度最小值为128HBHLD,已略低于标准要求下限值;硬度最小值部位经金相检验,显微组织为铁素体加贝氏体加碳化物,球化3~4级,已中度球化~完全球化,金相组织照片如图4所示;
3)经磁粉检测,未见缺陷和异常;经超声检测,未发现超标缺陷;
4)对多点进行内壁氧化层和金属层厚度测量,实测内壁氧化层厚度最大值为0.37mm,金属层厚度最小值为17.04mm;
5)当量温度评估结果为558℃,内压应力计算结果为57.1MPa;
6)导汽管的蠕变寿命评估结果为大于10万小时。
该导汽管不用更换,可以继续正常运行两个大修期。

Claims (2)

1.一种高温导汽管的蠕变寿命现场快速无损评估方法,其特征在于,包括以下步骤:
1)获取导汽管的设计参数及服役时间;
2)通过对导汽管进行光谱成分分析、硬度试验及金相检验,确认导汽管的理化性能是否符合标准要求;
3)通过对导汽管进行外观检查、磁粉检测及超声检测,确认导汽管是否存在表面缺陷及内部缺陷;
4)当导汽管的理化性能符合标准要求且导汽管不存在表面缺陷、内部缺陷时,则转至步骤5);当导汽管的理化性能不符合标准要求或导汽管存在表面缺陷、内部缺陷时,则需更换导汽管或消缺合格后再转至5);
5)采用内壁氧化层厚度超声测量设备测量导汽管的内壁氧化层及金属层的厚度,计算高温导汽管的蠕变寿命tr,其中,
其中,x为导汽管的内壁氧化层厚度,t为导汽管的累计服役时间,a、b、C0、C1、C2、C3及C4为与导汽管材料相关的参数,δ为导汽管金属层的厚度,Dw为导汽管的外径,P为导汽管的蒸汽压力,σ为导汽管的内压应力,T为导汽管的当量温度。
2.根据权利要求1所述的高温导汽管的蠕变寿命现场快速无损评估方法,其特征在于,内壁氧化层厚度超声测量设备包括超声脉冲发生接收器、示波器及高频探头。
CN201910349926.4A 2019-04-28 2019-04-28 一种高温导汽管的蠕变寿命现场快速无损评估方法 Pending CN110082493A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910349926.4A CN110082493A (zh) 2019-04-28 2019-04-28 一种高温导汽管的蠕变寿命现场快速无损评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910349926.4A CN110082493A (zh) 2019-04-28 2019-04-28 一种高温导汽管的蠕变寿命现场快速无损评估方法

Publications (1)

Publication Number Publication Date
CN110082493A true CN110082493A (zh) 2019-08-02

Family

ID=67417328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910349926.4A Pending CN110082493A (zh) 2019-04-28 2019-04-28 一种高温导汽管的蠕变寿命现场快速无损评估方法

Country Status (1)

Country Link
CN (1) CN110082493A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879226A (zh) * 2020-08-03 2020-11-03 华东理工大学 一种基于现场金相及辊面变形量的炉辊寿命评估方法
CN112326658A (zh) * 2020-10-30 2021-02-05 西安热工研究院有限公司 一种锅炉管计算当量温度时确认参数的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477383A (zh) * 2003-06-23 2004-02-25 国电热工研究院 高温部件蠕变寿命的测试方法
CN101013067A (zh) * 2007-02-06 2007-08-08 济南丰采电子科技有限公司 高温炉管剩余寿命评估方法及装置
CN109253870A (zh) * 2018-08-21 2019-01-22 嘉兴新嘉爱斯热电有限公司 生物质燃料锅炉热交换管寿命的评估装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477383A (zh) * 2003-06-23 2004-02-25 国电热工研究院 高温部件蠕变寿命的测试方法
CN101013067A (zh) * 2007-02-06 2007-08-08 济南丰采电子科技有限公司 高温炉管剩余寿命评估方法及装置
CN109253870A (zh) * 2018-08-21 2019-01-22 嘉兴新嘉爱斯热电有限公司 生物质燃料锅炉热交换管寿命的评估装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
许好好等: "高温炉管状态评估及其对部件延寿的指导意义", 《浙江电力》 *
郑坊平等: "锅炉导汽管蠕变剩余寿命评估的新方法", 《理化检验(物理分册)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879226A (zh) * 2020-08-03 2020-11-03 华东理工大学 一种基于现场金相及辊面变形量的炉辊寿命评估方法
CN112326658A (zh) * 2020-10-30 2021-02-05 西安热工研究院有限公司 一种锅炉管计算当量温度时确认参数的方法

Similar Documents

Publication Publication Date Title
US6789428B2 (en) Method and apparatus for evaluating damage of metal material
Vrana et al. Smart data analysis of the results of ultrasonic inspections for probabilistic fracture mechanics
CN110082493A (zh) 一种高温导汽管的蠕变寿命现场快速无损评估方法
CN104596472A (zh) 一种乙烯裂解炉管磁记忆检测及安全评估方法
JP3517229B2 (ja) クリープ余寿命評価方法
Smith et al. Use of non-destructive testing for engineering critical assessment: Background to the advice given in BS 7910: 2013
KR101131996B1 (ko) 증기발생기 전열관 외경축 균열에 대한 모터구동 회전 탐촉자 와전류 탐상검사방법
JP6077512B2 (ja) 渦電流検査法を用いた伝熱管腐食量予測方法
JPH0712709A (ja) ガスタービンコーティング翼の劣化診断方法及びその装置
CN108107111A (zh) 一种耐热钢部件非线性超声波检测方法
JPS6058418B2 (ja) ジルコニウム合金材の欠陥検出方法
Rao In-service inspection and structural health monitoring for safe and reliable operation of NPPs
Miloudi et al. Destructive examinations on divider plates from decommissioned steam generators affected by superficial stress corrosion cracks
CN112580202B (zh) 一种基于金属检验的高温集箱接管与管座的状态评估方法
Erhard et al. Nondestructive testing and fracture mechanics
Hartman et al. Acoustic emission surveillance of boiling water reactor piping nozzles and valves
Zhao Application of acoustic emission technology in the main primary system hydraulic proof test for EPR nuclear reactors
Erhard et al. Alloy 800 steam generator tube stress corrosion cracks–detection and root cause
Vakhguelt et al. Nondestructive Evaluation of Creep and Overheating Damage in Low-Carbon Steel Boiler Tubes
Guimarães et al. A simulation of probability of rejection as an aid to understanding the significance of sizing accuracy
Klevtsov et al. Direct measurement of mechanical properties of metal to be used in manufacture of power plant equipment
CN112580202A (zh) 一种基于金属检验的高温集箱接管与管座的状态评估方法
Bode et al. Quantitative Assessment of Crack Detection in Aerospace Engine Disks using Acoustic Thermography Inspection.
McElroy et al. Experimental study of advanced continuous acoustic emission monitoring of BWR components. Final report
Jamison et al. Studies on Section XI ultrasonic repeatability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190802

RJ01 Rejection of invention patent application after publication