WO2021082764A1 - 一种压电式mems传感器以及相关设备 - Google Patents

一种压电式mems传感器以及相关设备 Download PDF

Info

Publication number
WO2021082764A1
WO2021082764A1 PCT/CN2020/115104 CN2020115104W WO2021082764A1 WO 2021082764 A1 WO2021082764 A1 WO 2021082764A1 CN 2020115104 W CN2020115104 W CN 2020115104W WO 2021082764 A1 WO2021082764 A1 WO 2021082764A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
cantilever beam
piezoelectric mems
mems sensor
electrode
Prior art date
Application number
PCT/CN2020/115104
Other languages
English (en)
French (fr)
Inventor
姚丹阳
徐景辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20881753.6A priority Critical patent/EP4037335A4/en
Publication of WO2021082764A1 publication Critical patent/WO2021082764A1/zh
Priority to US17/733,148 priority patent/US20220264229A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/005Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/006Interconnection of transducer parts

Definitions

  • This application relates to the field of acousto-electric technology, and in particular to a piezoelectric MEMS sensor and related equipment.
  • Piezoelectric MEMS microelectromechanical systems, MEMS sensors have advantages such as better dust and water resistance, which makes the application of piezoelectric MEMS sensors more and more widespread.
  • the piezoelectric MEMS sensor is composed of a plurality of diaphragms 101, and one end of each diaphragm 101 is connected to a substrate 102. The other end uses a cantilever beam structure. As shown in FIG. 2, after the cantilever beam structure 201 is compressed by the sound pressure, it will bend upward to form a stress difference between the upper surface and the lower surface of the cantilever beam 201, thereby generating a voltage.
  • the piezoelectric MEMS sensor due to the uneven distribution of stress generated by the diaphragm 101 under the action of sound pressure, it greatly affects the performance of the piezoelectric MEMS sensor, such as the low sensitivity of the piezoelectric MEMS sensor and the low sensitivity of the piezoelectric MEMS sensor.
  • the signal-to-noise ratio is low.
  • the invention provides a piezoelectric MEMS sensor and related equipment, which can solve the problems of low signal-to-noise ratio and low sensitivity of the existing piezoelectric MEMS sensor.
  • the first aspect of the embodiments of the present invention provides a piezoelectric MEMS sensor, including a base with a sound inlet channel and at least one cantilever beam, the cantilever beam includes a first area and a second area connected to each other, the first area The second area is suspended at the entrance of the sound inlet channel, the first area is located between the second area and the base, and the area of the second area is gradually approaching the first area.
  • the cantilever beam is used to obtain a corresponding voltage under the action of a sound signal, and the sound signal is transmitted through the sound inlet channel; the first area includes a first side surface and a first side surface connected to the first side surface.
  • the second side surface, the first side surface is the side surface of the first area facing the target surface
  • the target surface is the surface connecting the cantilever beam and the base
  • the first side surface and the first side surface The included angle between the two sides is greater than or equal to 90 degrees and less than 180 degrees.
  • the cantilever beam because the angle between the first side surface and the second side surface is any angle greater than or equal to 90 degrees and less than 180 degrees, the cantilever beam There are fewer restrictions on both sides of the first area, and the two sides of the cantilever beam will not be constrained by other structures, which effectively guarantees the free deformation of the cantilever beam, which is beneficial to improve the uniformity of the stress distribution of the cantilever beam, and effectively improves S/N ratio and sensitivity.
  • the first area has a square structure
  • the second The area has a triangular structure
  • the number of cantilever beams provided can be increased as much as possible under the limited area of the acoustic channel of the piezoelectric MEMS sensor , Improve the utilization efficiency of the sound channel to improve the sensitivity of the piezoelectric MEMS sensor.
  • the first area along the radial direction of the sound inlet channel, the first area has a trapezoidal structure, and the second The area has a triangular structure, and the included angle between the first side surface and the second side surface is greater than 90 degrees and less than 180 degrees.
  • the degree of freedom in the first region of the trapezoidal structure is further increased, so the stress distribution in the first region of the cantilever beam can be further improved, and the uniformity of the stress distribution in the first region can be effectively improved. , Improve the sensitivity and signal-to-noise ratio of the piezoelectric MEMS sensor.
  • the cantilever beam further includes a first electrode and a second electrode;
  • the first region includes a piezoelectric film unit ,
  • the piezoelectric film unit includes a first surface and a second surface opposite to each other, the first electrode is located on the first surface, and the second electrode is located on the On the second surface; the first electrode and the second electrode are used to obtain the voltage, and the piezoelectric film unit includes at least one layer of piezoelectric film.
  • the piezoelectric film unit is wrapped with a third electrode and is along the axial direction of the sound inlet channel,
  • the third electrode is located between the first electrode and the second electrode.
  • the two electrodes can obtain the voltage according to the stress difference.
  • the third electrode is wrapped in the piezoelectric film unit, the voltage acquisition is effectively guaranteed, and the stress difference formed between the first surface and the second surface is prevented from being too small. The occurrence of voltage cannot be detected.
  • the cantilever beam further includes a support layer, and the piezoelectric film unit is attached to the surface of the sound inlet channel.
  • the supporting layer is arranged together, and the end of the supporting layer is connected with the base.
  • the second surface of the cantilever beam will offset part of the deformation under the resistance of the support layer, thereby causing stress on the first surface of the cantilever beam
  • a stress difference is formed between the stress generated by the second surface and the first electrode and the second electrode can obtain a voltage according to the stress difference.
  • the piezoelectric film unit is connected to the base, and the first side of the cantilever beam is the The side surface where the piezoelectric film unit is connected to the base.
  • the piezoelectric film unit and the support layer of the cantilever beam shown in this manner are both connected to the base, thereby effectively improving the stability of the piezoelectric MEMS sensor structure.
  • the first side surface of the cantilever beam Is the side of the piezoelectric film unit facing the target surface.
  • the cantilever beam is connected to the base through the support layer, which causes the rigidity of the end connecting the cantilever beam and the base to decrease.
  • having a smaller device size is conducive to the miniaturization of piezoelectric MEMS sensors.
  • the area of the first region is less than or equal to the cantilever 50% of the area of the beam.
  • the signal-to-noise ratio and sensitivity of the cantilever beam provided by this embodiment can be effectively improved.
  • the piezoelectric MEMS sensor includes four cantilever beams, and any two adjacent cantilever beams There is a gap between the cantilever beams.
  • the proportion of the cantilever beams on the surface of the piezoelectric MEMS sensor is effectively increased, and the utilization efficiency of the piezoelectric MEMS sensor is effectively improved. Because there is a gap between any two adjacent cantilever beams, it effectively guarantees that any cantilever beam can be deformed freely under the action of sound signals, and during the deformation process, it will not be affected by other cantilever beams. Interference, thereby improving the efficiency of converting sound signals into voltage.
  • the first area has two second side surfaces.
  • the included angle between the first area and the two second side surfaces is greater than or equal to 90 degrees and less than 180 degrees, respectively. Effectively improve the signal-to-noise ratio and sensitivity of the cantilever beam.
  • a second aspect of the embodiments of the present invention provides a piezoelectric MEMS microphone, including a piezoelectric MEMS sensor and an amplifier circuit, the piezoelectric MEMS sensor is electrically connected to the amplifier circuit, and the piezoelectric MEMS sensor is used for To obtain the voltage under the action of the sound signal, the amplifying circuit is used to obtain the voltage and perform amplifying processing, and the piezoelectric MEMS sensor is as shown in any one of the above.
  • a third aspect of the embodiments of the present invention provides a piezoelectric MEMS microphone array.
  • the piezoelectric MEMS microphone array includes a plurality of piezoelectric MEMS microphones as shown in the second aspect.
  • a plurality of piezoelectric MEMS microphones are connected in series with an audio circuit, and the audio circuit is used to obtain The voltage from the piezoelectric MEMS microphone is processed and processed, which effectively reduces the difficulty for the audio circuit to process the voltage from the piezoelectric MEMS microphone.
  • a plurality of the piezoelectric MEMS microphones are connected in parallel with the audio circuit, which effectively increases the pressure.
  • the size of the output capacitance of an electric MEMS microphone is not limited to, but not limited to, but not limited to, but not limited to, but not limited to,
  • a fourth aspect of the embodiments of the present invention provides a terminal device, including an audio system.
  • the audio system includes one or more piezoelectric MEMS microphones and an audio circuit electrically connected to the piezoelectric MEMS microphone.
  • the piezoelectric MEMS microphone is shown in the above-mentioned second aspect.
  • the audio circuit is electrically connected with a speaker or a processor.
  • Fig. 1 is an example diagram of a top view structure of an existing piezoelectric MEMS sensor
  • Fig. 2 is an example diagram of a side view structure of an existing piezoelectric MEMS sensor
  • FIG. 3 is a structural example diagram of an embodiment of the audio system provided by the present invention.
  • FIG. 4 is a top view structural example of an embodiment of the piezoelectric MEMS microphone provided by the present invention.
  • FIG. 5 is an example diagram of a side cross-sectional structure of an embodiment of a piezoelectric MEMS microphone provided by the present invention.
  • FIG. 6 is an example diagram of a side cross-sectional structure of another embodiment of a piezoelectric MEMS sensor provided by the present invention.
  • FIG. 7 is an example diagram of a side cross-sectional structure of another embodiment of a piezoelectric MEMS sensor provided by the present invention.
  • Figure 8a is an example diagram of an application scenario of the cantilever provided by the present invention when there is no sound signal effect
  • 8b is an example diagram of an application scenario of the cantilever beam provided by the present invention when there is a sound signal function
  • FIG. 9 is an example diagram of a top view structure of an embodiment of a piezoelectric MEMS sensor provided by the present invention.
  • FIG. 10 is a diagram showing an example of the overall structure of an embodiment of the piezoelectric MEMS sensor provided by the present invention.
  • FIG. 11 is an example diagram of an acute angle structure formed between the first side surface and the second side surface
  • FIG. 12 is a simulation diagram of stress distribution when the included angle formed between the first side surface and the second side surface is an acute angle structure
  • FIG. 13 is a simulation diagram of the stress distribution of the first region of the cantilever beam provided by the present invention under the action of a sound signal;
  • Figure 14 is an example diagram of performance comparison between a cantilever beam with a low-stress area and a cantilever beam without a low-stress area;
  • FIG. 15 is a top view structural example diagram of another embodiment of the piezoelectric MEMS sensor provided by the present invention.
  • FIG. 16 is an example diagram of the overall structure of an embodiment of the piezoelectric MEMS sensor provided by the present invention.
  • FIG. 17 is an example diagram of a side cross-sectional structure of another embodiment of a piezoelectric MEMS sensor provided by the present invention.
  • FIG. 18 is a side view sectional structure example diagram of another embodiment of the piezoelectric MEMS sensor provided by the present invention.
  • FIG. 19 is a side view sectional structure example diagram of another embodiment of the piezoelectric MEMS sensor provided by the present invention.
  • FIG. 20 is a side view cross-sectional structure example diagram of another embodiment of the piezoelectric MEMS sensor provided by the present invention.
  • FIG. 21 is a structural block diagram of an embodiment of a terminal device provided by the present invention.
  • the audio system 300 shown in this embodiment can be applied to terminal devices, which can be cellular phones, cordless phones, session initiation protocol (SIP) phones, personal digital assistants (PDAs), and wireless phones.
  • terminal devices can be cellular phones, cordless phones, session initiation protocol (SIP) phones, personal digital assistants (PDAs), and wireless phones.
  • the terminal equipment in the network or the terminal equipment in the future evolved public land mobile network (public land mobile network, PLMN), etc., are not limited in this application.
  • the audio system 300 shown in this embodiment includes a piezoelectric MEMS microphone 301 and an audio circuit 303 that are electrically connected in sequence;
  • the piezoelectric MEMS microphone 301 is used to perceive sound signals 302, and the piezoelectric MEMS microphone 301 is used to restore human voices or environmental sounds, so that the audio system 300 can complete sound collection.
  • MEMS micro-electromechanical system
  • MEMS refers to a high-tech device with a size of a few millimeters or even smaller, and its internal structure is generally on the order of micrometers or even nanometers, which is an independent intelligent system.
  • MEMS microphones have become smaller and smaller, with higher performance.
  • MEMS microphones have many advantages, such as high signal-to-noise ratio, low power consumption, and high sensitivity.
  • the micro-packages used are compatible with the mounting process, reflow soldering has no effect on the performance of MEMS microphones, and the temperature characteristics are excellent.
  • the cantilever beam of the piezoelectric MEMS microphone 301 is used to obtain a voltage according to the sound signal 302.
  • the piezoelectric MEMS microphone 301 sends the acquired voltage to the audio circuit 303, and the audio circuit 303 can process the received voltage.
  • the manner in which the audio circuit 303 processes the received voltage may be as follows:
  • the audio circuit 303 shown in this embodiment is also connected to a speaker 304, and the audio circuit 303 can convert the received voltage into an electrical signal, and transmit the electrical signal to the speaker 304, and the speaker 304 can transfer the electrical signal to the speaker 304.
  • 304 converts electrical signals into sound signals for output.
  • the audio circuit 303 is also connected with a processor 305. The audio circuit 303 can convert the received voltage into audio data, and then transmit the audio data to the processor 305, and the processor 305 performs corresponding processing on the audio data.
  • FIG. 4 is a top view structural example of an embodiment of a piezoelectric MEMS microphone
  • FIG. 5 is a piezoelectric MEMS microphone.
  • the piezoelectric MEMS microphone 400 shown in this embodiment includes a base 401 and a housing 402.
  • the base 401 may be a printed circuit board (PCB) or a ceramic board, which is not specifically limited in this embodiment.
  • a sound chamber 403 is formed between the base 401 and the housing 402 that are engaged with each other.
  • the sound chamber 403 includes an amplifier circuit 404 and a piezoelectric MEMS sensor 405.
  • the base 401 has a sound inlet channel 406.
  • the orthographic projection shape of the sound inlet channel 406 can be a circle, an ellipse, a direction, or a polygon.
  • the shape of the projection is a square as an example for illustration.
  • the sound signal can be transmitted through the sound inlet channel 406 to act on the piezoelectric MEMS sensor 405.
  • the piezoelectric MEMS microphone 400 It also includes an amplifier circuit 404 for amplifying the voltage from the piezoelectric MEMS sensor 405.
  • the piezoelectric MEMS sensor 405 and the amplifying circuit 404 can be electrically connected through a wire 408, and the amplifying circuit 404 is used to amplify the voltage from the piezoelectric MEMS sensor 405.
  • the amplifying circuit 404 may be an application specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • the amplifying circuit 404 sends the amplified voltage to the audio circuit, and the audio circuit can process the received amplified voltage.
  • the piezoelectric MEMS sensor shown in this embodiment further includes a cantilever beam 601, and the cantilever beam 601 includes a first area 603 and a second area 604 that are connected to each other.
  • the second area 604 of the cantilever beam 601 is suspended at the channel opening of the sound inlet channel 406.
  • the second area 604 of the cantilever beam 601 can be free Deformation.
  • the first area 603 of the cantilever beam 601 is located between the base 401 and the second area 604.
  • FIG. 7 is an example diagram of a cross-sectional structure formed after the cantilever beam shown in FIG. 6 is sectioned along the section line 700.
  • the first area 603 shown by the cantilever beam 601 has an axial direction along the sound inlet channel 406 (the direction shown by the arrow 501 shown in FIG. 5), the first surface and the opposite first surface.
  • the cantilever beam 601 further includes a first electrode 605 and a second electrode 606 for voltage collection, wherein a first electrode 605 is attached to the first surface, and a second electrode 606 is attached to the second surface. .
  • this embodiment does not limit the size relationship between the area of the first region 603 and the area between the first electrode 605 and the second electrode 606, for example, the first electrode 605 and the second electrode
  • the area of the first electrode 605 may be equal to the area of the first region 603.
  • the area of the first electrode 605 and the second electrode 606 may also be smaller than the area of the first region 603.
  • the area of the region 603, for example, the area of the first electrode 605 and the second electrode 606 may also be larger than the area of the first region 603.
  • the sound signal may cause the cantilever beam 601 to vibrate, which in turn causes the cantilever beam 601 to deform.
  • the deformed cantilever beam 601 will form a stress difference between the stress formed on the upper surface of the cantilever beam 601 and the stress formed on the lower surface.
  • a potential difference that is, a voltage
  • the cantilever beam 601 achieves voltage acquisition through the first electrode 605 and the second electrode 606 located on both surfaces of the first region 603.
  • the piezoelectric MEMS sensor shown in this embodiment may include one or more cantilever beams 601.
  • the structure of the piezoelectric MEMS sensor is described.
  • the piezoelectric MEMS sensor may include a plurality of cantilever beams 601.
  • the piezoelectric MEMS sensor includes four cantilever beams 601, each of the second The area of the area 604 gradually increases in the direction close to the first area 603, that is, the area of each second area 604 gradually decreases in the direction away from the first area 603, thereby increasing the first area of each cantilever beam 601.
  • the coverage area of the second area 604 at the channel opening of the sound inlet channel 406 effectively improves the utilization efficiency of the piezoelectric MEMS sensor chip.
  • this embodiment does not limit the specific number of cantilever beams 601 included in the piezoelectric MEMS sensor, as long as the surface of the piezoelectric MEMS sensor is occupied by the cantilever beam 601. It can be as large as possible.
  • Each cantilever beam 601 is successfully deformed according to the action of the sound signal, and any two adjacent cantilever beams 601 included in the piezoelectric MEMS sensor have a gap 602 between them.
  • any cantilever beam 601 will not be interfered by other cantilever beams 601 during the process of deformation under the action of the sound signal, thereby improving the efficiency of converting the sound signal into voltage.
  • the first area 603 of the cantilever beam 601 includes a first side surface 6011 and a second side surface 6012 connected to the first side surface 6011; specifically, the first The side surface 6011 is the side surface of the first region 603 facing the target surface.
  • the target surface may be as shown in FIG. 5, and the target surface 500 is the surface connecting the cantilever beam 601 and the base 401.
  • the first side surface 6011 is a side surface of the first area 603 facing the target surface 500. Specifically, it may mean that the gap between the first side surface 6011 and the base 401 is smaller than that of the first area 603. There is a gap between the other side surfaces and the base 401. As shown in FIG. 18, the first area 603 is connected to the base 401, and the gap between the first side surface 6011 and the base 401 is 0; optionally, as shown in FIG. 20, the first area 603 is connected to the base 401. There is a gap between an area 603 and the base 401, and the first side surface 6011 is the side surface with the gap 2005 between it and the base 401.
  • the angle between the first side surface 6011 and the second side surface connected to the first side surface 6011 is greater than or equal to 90 degrees and It is less than 180 degrees, and the included angle between the first side surface 6011 and the second side surface shown in this embodiment faces the second area 604, where the second side surface may be as shown in FIGS. 6, 9, and 10.
  • the angle between the first side 6011 and the second side 6012 and the angle between the first side 6011 and the second side 6013 are both greater than or equal to 90 degrees and less than 180 degrees .
  • This embodiment does not limit the specific size of the included angle between the first side 6011 and the second side (6012 and/or 6013), as long as the first side 6011 and the second side
  • the included angle can be a right-angle structure or an obtuse-angle structure.
  • the angle formed between the first side surface 6011 and the second side surface is a right angle.
  • the angle formed between the first side surface 6011 and the second side surface is an obtuse angle.
  • the included angle between the first side surface 6011 and the second side surface shown in this embodiment is a right-angle structure or an obtuse-angle structure, the signal-to-noise ratio of the piezoelectric MEMS sensor can be effectively improved.
  • the signal-to-noise ratio is an important acoustic parameter of the piezoelectric MEMS sensor, and the SNR is the ratio of the signal received by the piezoelectric MEMS sensor to the noise.
  • the SPL sound pressure level
  • the maximum value of the voltage that the piezoelectric MEMS sensor can convert are constant, the piezoelectric MEMS sensor with high SNR can be extracted at a farther position. The sound signal emitted by the sound source. It can be seen that the piezoelectric MEMS sensor with high SNR has better performance in converting sound signals into voltage.
  • the SNR of the piezoelectric MEMS sensor can be effectively increased, as described below:
  • Q in the formula is the amount of charge generated by the cantilever beam under the action of the sound signal.
  • C is the capacitance value of the electrode area, where the electrode area is the area including the first electrode and the second electrode.
  • is the sound source frequency
  • k b is the Boltzmann constant
  • T is the temperature
  • tan ⁇ is the dielectric loss angle of the piezoelectric material
  • the piezoelectric material is the material used to make the cantilever beam 601. among them
  • it can be considered as a constant. and It is related to the structure of the piezoelectric MEMS sensor.
  • evaluation parameters As a criterion for evaluating the influence of piezoelectric MEMS sensor structure on SNR level, it can be seen that there is a positive correlation between the SNR of piezoelectric MEMS sensor and the amount of charge Q, which can then be improved by increasing the amount of charge Q. Improve the SNR of piezoelectric MEMS sensors.
  • the angle formed between the first side surface 6011 and the second side surface (6012 or 6013) of the cantilever beam 601 is an acute angle structure, it will reduce the cantilever beam 601 generated by the sound signal.
  • the charge quantity Q the reason is explained below:
  • the cantilever beam 1100 has a first side surface 1101, a side surface 1102, and a side surface 1103 that form an acute angle structure for description:
  • the first area 1104 is divided into three sub-areas, such as a first low-stress area 0, a sub-area 1, and a second low-stress area 2 as shown in FIG. 11. It can be seen that the first low-stress area 0 and the second low-stress area 2 are located on both sides of the sub-area 1.
  • Voltage of the first low-stress zone 0 Where Q 0 is the amount of charge generated by the first low-stress area 0 under the action of the sound signal, C 0 is the capacitance value of the first low-stress area 0, and d is the first area along the sound channel 406 thickness in the axial direction.
  • the axial direction of the sound inlet channel 406 shown in the present application is the direction shown by the arrow 501 shown in FIG. 5.
  • is the dielectric constant of the piezoelectric material, and different sub-regions have the same ⁇ , that is, the first low-stress region 0, the sub-region 1 and the second low-stress region 2 all have the same ⁇ .
  • a 0 is the area of the first low-stress area 0.
  • Q 0 A 0 d 31 ⁇ 0 , where d 31 is the piezoelectric coefficient of the cantilever beam 1100 including the first low-stress area 0, and ⁇ 0 is the first low-stress area 0 subjected to the sound signal stress.
  • the voltage of the first region 1104 as shown in Fig. 11 For the specific description of the first area 1104 shown in FIG. 11, please refer to the description of the first area 603 shown above for details, and details are not repeated. Among them, Q is the amount of charge generated by the first region 1104 under the action of the sound signal, C is the capacitance value of the first region 1104, and ⁇ is the stress that the first region 1104 bears under the action of the sound signal.
  • FIG. 12 is a simulation diagram of the stress distribution of the first region 1104 of the cantilever beam under the action of the sound signal. It reflects the stress distribution of the cantilever beam, and the darker the area, the greater the stress on the area.
  • the stress of the first low-stress region 0 and the second low-stress region 2 located at the edge of the first region 1104 is less than the stress of the sub-region 1 located in the middle of the first region 1104, that is, ⁇ 0 ⁇ 1 and ⁇ 2 ⁇ 1 .
  • the voltage of the first region 1104 shown in FIG. 11 is If the stress ⁇ 0 borne by the first low-stress region 0 is replaced by the stress ⁇ 1 borne by the sub-region 1 , and the stress ⁇ 2 borne by the second low-stress region 2 is replaced by the stress ⁇ borne by the sub-region 1 1 , then find the reference voltage taken out As shown in Fig. 12, it can be seen that ⁇ 0 ⁇ 1 and ⁇ 2 ⁇ 1 , then V ⁇ V reference voltage .
  • first low-stress area 0 and the second low-stress area 1 will have an adverse effect on the process of increasing the voltage of the first area, that is, the first low-stress area 0 and the second low-stress area 2 only contribute capacitance to the cantilever beam Without contributing charge, it is equivalent to the role of parasitic capacitance.
  • the stress distribution in the first region is uneven, and the low-stress region has an adverse effect on the voltage acquisition of the cantilever beam. Specifically, if the low stress regions are added during the process of obtaining the voltage of the cantilever beam, the magnitude of the voltage obtained by the cantilever beam will be reduced, thereby reducing the SNR and sensitivity of the piezoelectric MEMS sensor.
  • the first region 603 provided in this embodiment is The first side surface 6011 and the side surface connected to the first side surface 6011 in the first region 603 form a right angle structure or an obtuse angle structure, so that the cantilever beam shown in this embodiment does not include low stress Area, so that the voltage of the low-stress area as a parasitic capacitance will not be obtained during the voltage acquisition process of the cantilever beam, thereby effectively increasing the magnitude of the voltage obtained by the cantilever beam provided by this embodiment under the action of the sound signal .
  • FIG. 13 is a simulation diagram of the stress distribution of the first region of the cantilever beam provided by the embodiment of the application under the action of the sound signal.
  • the stress distribution in the first region 603 of the cantilever beam shown in this embodiment is more uniform than the stress distribution in the first region shown in FIG. 12, thereby effectively improving the signal-to-noise of the cantilever beam provided by this embodiment. Ratio and sensitivity.
  • FIG. 14 is a performance comparison example diagram of a cantilever beam that includes a low-stress area and a cantilever beam that does not include a low-stress area provided by this embodiment.
  • the abscissa shown in FIG. 14 represents Width of electrode area. Specifically, taking the example shown in FIG. 6 as an example, the width of the electrode area may be h1 as shown in FIG. 6.
  • the normalized parameters obtained by normalizing the FOMs corresponding to the widths of all electrode regions included in the abscissa as shown in FIG. 14 constitute the ordinate as shown in FIG. 14. It can be understood that in the coordinate system shown in FIG. 14, the larger the normalization parameter corresponding to the same abscissa, the larger the corresponding FOM.
  • the area of the first region 603 is less than or equal to 50% of the area of the cantilever beam.
  • the signal-to-noise ratio and sensitivity of the cantilever beam provided in this embodiment can be effectively improved.
  • the cantilever beam structure shown in this embodiment is adopted, because the angle between the first side surface and the side surface connected to the first side surface in the first region is any angle greater than or equal to 90 degrees and less than 180 degrees.
  • One angle reduces the restriction on both sides of the first region of the cantilever beam shown in this embodiment, that is, the two sides of the first region of the cantilever beam will not be restricted by other structures, thereby effectively protecting the cantilever beam
  • the free deformation is beneficial to improve the uniformity of the stress distribution of the cantilever beam, thereby effectively improving the signal-to-noise ratio and sensitivity.
  • the second area of the cantilever beam shown in this embodiment can be freely deformed along the guidance of the sound inlet channel, so that the cantilever beam shown in this embodiment can fully release stress without stress release difficulties.
  • the cantilever beam can fully release the stress, the residual stress of the mass-produced piezoelectric MEMS sensors after the stress is released remains the same, which effectively guarantees the mass pressure.
  • the first area 603 has a square structure
  • the second area 604 has a triangular structure.
  • the square structure may be a rectangular structure or a square structure, which is not specifically limited.
  • FIG. 15 is a top view structural example of an embodiment of the piezoelectric MEMS sensor provided by this embodiment
  • FIG. 16 is provided by this embodiment.
  • the first area 603 has a rectangular structure as an example for illustration. In other examples, the first area may also have a square structure.
  • the second area 604 is triangular as an example. If the piezoelectric MEMS sensor includes a plurality of cantilever beams, the second area 604 of each cantilever beam is triangular. In this case, under the limited area of the sound inlet channel 406 of the piezoelectric MEMS sensor, the number of cantilever beams can be increased as much as possible, and the utilization efficiency of the sound inlet channel 406 can be improved to improve the sensitivity of the piezoelectric MEMS sensor. .
  • the length of the top side of the first region 603 is equal to the length of the bottom side of the second region 604, wherein the top side of the first region 603 refers to the cantilever beam In the cantilever beam, the side of the first region 603 that is connected to the second region 604, and the bottom side of the second region 604 refers to the side of the second region 604 that is connected to the side of the second region 604.
  • the top edge of the first area 603 may also be greater than the length of the bottom edge of the second area 604, or the top edge of the first area 603 may also be smaller than the second area 603.
  • the length of the bottom edge of the area 604 is not specifically limited in this embodiment.
  • the angle formed between the first side surface 6011 of the first region and the side surface connected to the first side surface 6011 in the first region is a right angle.
  • electrodes may be attached to the two surfaces of the first region 603, and the specific area and shape of the electrodes attached to the two surfaces of the first region 603 are not limited in this embodiment.
  • the first area 603 has a trapezoidal structure
  • the second area 604 has a triangular structure.
  • the included angle is greater than 90 degrees and less than 180 degrees, that is, the first side surface 6011 and the second side surface (6012 and/or 6013) connected to the first side surface 6011 in the first region in this embodiment are sandwiched between
  • the specific size of the angle is not limited, as long as it has an obtuse angle structure.
  • the length of the top side of the first region 603 and the bottom side of the second region 604 are equal, and the top side of the first region 603 and the second region 604 have the same length.
  • the bottom side of the area 6014 please refer to the above method 1 for details, and the details will not be repeated.
  • the top edge of the first area 603 may also be greater than the length of the bottom edge of the second area 604, or the top edge of the first area 603 may also be smaller than the second area 603.
  • the length of the bottom edge of the area 604 is not specifically limited in this embodiment.
  • the top side of the first region 603 and the bottom side of the second region 604 are both linear structures for illustrative description.
  • the first The top edge of the area 603 and the bottom edge of the second area 604 can also be in any shape such as a curve, a broken line, or an irregular shape, which is specifically not limited in this embodiment.
  • the degree of freedom of the first region 603 in the trapezoidal structure is further increased, so the stress distribution in the first region 603 of the cantilever beam can be further improved, and the uniformity of the stress distribution in the first region 603 can be effectively improved.
  • the sensitivity and SNR of piezoelectric MEMS sensors are discussed.
  • the first structure of the cantilever beam is the first structure of the cantilever beam
  • Figure 18 is an example view of a cross-sectional structure of the cantilever beam shown in this embodiment.
  • Figure 18 is the cantilever beam along the axial direction of the sound inlet channel (such as A diagram showing an example of a cut surface structure in the direction indicated by the arrow 501 shown in FIG. 5 ).
  • the cantilever beam 1800 shown in FIG. 18 includes a piezoelectric film unit 1803.
  • the piezoelectric film unit 1803 includes a layer of piezoelectric film or multiple layers of piezoelectric film, wherein the piezoelectric film is made of piezoelectric material, Piezoelectric materials include, but are not limited to, aluminum nitride (AlN), aluminum scandium nitride (AlScN), lead zirconate titanate piezoelectric ceramics (PZT), or zinc oxide (ZnO).
  • the number of layers of piezoelectric films included in the cantilever beam 1800 is not limited.
  • a first electrode 1801 and a second electrode 1802 are attached to both surfaces of the first area of the cantilever beam 1800.
  • the piezoelectric film unit includes a first surface and a second surface opposite to each other.
  • a first electrode 1801 is attached to the first surface.
  • a second electrode 1802 is attached to the two surfaces.
  • the first electrode 1801 and the second electrode 1802 may be made of a conductive material.
  • the conductive material is not limited in this embodiment.
  • the conductive material may be titanium.
  • an anti-oxidation layer can be provided on the surface of the first electrode 1801 and the second electrode 1802, and the anti-oxidation layer can realize the anti-oxidation layer. Protection of the first electrode 1801 and the second electrode 1802.
  • the piezoelectric film unit 1803 shown in this embodiment Wrap the third electrode 1804, and along the axial direction of the sound inlet channel, the third electrode 1804 is located between the first electrode 1801 and the second electrode 1802.
  • the cantilever beam is deformed under the action of the sound signal, so that the first electrode 1801 and the second electrode 1802 can successfully detect the voltage.
  • the piezoelectric film unit 1803 is wrapped with the third electrode 1804, and the first electrode 1801 and the third electrode 1804 can obtain a first voltage according to the detected stress difference.
  • the second electrode 1802 and the The third electrode 1804 can also obtain a second voltage according to the detected stress, and an amplifier circuit electrically connected to the first electrode 1801, the second electrode 1802, and the third electrode 1804 can obtain the first voltage. And the second voltage.
  • This embodiment does not limit the specific areas of the first electrode 1801, the second electrode 1802, and the third electrode 1804, as long as it includes the first electrode 1801, the second electrode 1802, and the The cantilever of the third electrode 1804 It can be as large as possible.
  • the first electrode 1801, the second electrode 1802, and the third electrode 1804 included in the cantilever beam shown in this embodiment are arranged in groups.
  • the cantilever beam includes a The first electrode 1801, the second electrode 1802, and the third electrode 1804 are set as examples for illustrative description.
  • the cantilever beam may also include multiple groups of the first electrode 1801, the second electrode 1802, and the third electrode 1804, as long as each group of the first electrode 1801, the second electrode 1802, and the All the third electrodes 1804 are electrically connected to the amplifying circuit.
  • the second structure of the cantilever beam is the second structure of the cantilever beam
  • Figure 19 is an example diagram of another cross-sectional structure of the cantilever beam shown in this embodiment. Specifically, Figure 19 is the cantilever beam along the axial direction of the sound inlet channel ( A diagram showing an example of a cut surface structure in the direction indicated by the arrow 501 as shown in FIG. 5.
  • the cantilever beam 1900 shown in FIG. 19 includes a piezoelectric film unit 1901.
  • a piezoelectric film unit 1901 For a specific description of the piezoelectric film unit 1901, please refer to the above description for details, and details are not repeated.
  • a first electrode 1902 and a second electrode 1903 are provided in the first area of the cantilever beam 1900.
  • the first electrode 1902 and the second electrode 1903 please refer to the above description for details, and details are not repeated.
  • This embodiment does not limit the size of the specific area of the first electrode 1902 and the second electrode 1903, as long as it includes the cantilever beams of the first electrode 1902 and the second electrode 1903. It can be as large as possible.
  • the cantilever beam 1900 shown in this embodiment further includes a support layer 1904, and the support layer 1901 is attached to the piezoelectric film The unit faces the surface of the sound inlet channel 406.
  • the end of the support layer 1904 is connected to the base 401.
  • the piezoelectric film unit 1901 attached to the support layer 1904 is connected to the base 401.
  • the first side surface of the cantilever beam 1900 is The side surface where the piezoelectric film unit 1901 and the base 401 are connected.
  • the second part of the cantilever beam 1900 when the cantilever beam 1900 is deformed, the second part of the cantilever beam 1900 The surface will offset part of the deformation under the resistance of the support layer 1901, thereby forming a stress difference between the stress generated on the first surface of the cantilever beam 1900 and the stress generated on the second surface.
  • the first electrode 1902 and the second electrode 1903 can obtain a voltage according to the stress difference.
  • the cantilever beam 1900 is connected to the base 401 through the support layer 1904, resulting in a decrease in the rigidity of the end of the cantilever beam connected to the base, so under the premise of the same frequency, it has a smaller device size , Is conducive to the miniaturization of piezoelectric MEMS sensors.
  • the third structure of the cantilever beam is the third structure of the cantilever beam
  • Figure 20 is an example diagram of another cross-sectional structure of the cantilever beam shown in this embodiment.
  • Figure 20 is the cantilever beam along the axial direction of the sound inlet channel (such as A diagram showing an example of a cut surface structure in the direction indicated by the arrow 501 shown in FIG. 5 ).
  • the cantilever beam 2000 as shown in FIG. 20 includes a piezoelectric film unit 2001.
  • the first electrode 2002 and the second electrode 2003 are attached to the first area of the cantilever beam 2000.
  • the cantilever beam 2000 shown in this manner further includes a support layer 2004.
  • a support layer 2004 For a specific description of the support layer 2004, please refer to the above description for details, and details are not repeated.
  • the piezoelectric film unit 2001 there is a gap 2005 between the piezoelectric film unit 2001 and the base 401.
  • the specific size of the gap 2005 is not limited in this embodiment.
  • One side surface is the side surface of the piezoelectric film unit 2001 facing the target surface 500.
  • the cantilever beam 2000 deforms under the action of a sound signal, and the stress generated on the first surface of the cantilever beam 2000 and the stress generated on the second surface cancel each other out. This will make the first electrode 2002 and the second electrode 2003 unable to successfully detect the voltage.
  • the second surface of the cantilever beam 2000 will offset part of the deformation under the resistance of the support layer 2001, thereby A stress difference is formed between the stress generated on the first surface of the cantilever beam 2000 and the stress generated on the second surface, and the first electrode 2002 and the second electrode 2003 can obtain a voltage according to the stress difference.
  • the piezoelectric MEMS sensor includes a layer of cantilever beams along the axial direction of the sound inlet channel as an example for exemplification. Then, multiple cantilever beams are coupled in parallel with amplification. The circuit is electrically connected, which effectively increases the capacitance value output by the piezoelectric MEMS sensor.
  • the piezoelectric MEMS sensor may also include multiple layers of cantilever beams, that is, along the axial direction of the sound inlet channel, there are two or more cantilever beams arranged in a stacked manner. The stacked cantilever beams are electrically connected with the amplifying circuit in a series coupling manner, which effectively increases the voltage output by the piezoelectric MEMS sensor.
  • FIG. 21 shows a structural block diagram of the terminal device provided by an exemplary embodiment of the present application.
  • the terminal device may be: Smart phones, tablets, smart robots, laptops, and other devices that integrate audio functions, or vehicles with voice recognition capabilities, such as vehicles.
  • the terminal devices may also be called user devices, portable terminals, and laptop terminals. , Desktop terminal, vehicle terminal and other names.
  • the terminal device further includes a processor 2101 and a memory 2102.
  • the processor 2101 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and so on.
  • the processor 2101 may be implemented in at least one hardware form of digital signal processing (DSP), FPGA, and programmable logic array (PLA).
  • the processor 2101 may also include a main processor and a coprocessor.
  • the main processor is a processor used to process data in the awake state, also called a central processing unit (CPU);
  • the coprocessor is A low-power processor used to process data in the standby state.
  • the processor 2101 may be integrated with a graphics processing unit (GPU), and the GPU is used for rendering and drawing content that needs to be displayed on the display screen.
  • the processor 2101 may also include an artificial intelligence (AI) processor, and the AI processor is used to process computing operations related to machine learning.
  • AI artificial intelligence
  • the memory 2102 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 2102 may also include high-speed random access memory and non-volatile memory, such as one or more magnetic disk storage devices and flash memory storage devices.
  • a non-transitory computer-readable storage medium in the memory 2102 is used to store at least one instruction.
  • the terminal device may optionally further include: a peripheral device interface 2103 and at least one peripheral device.
  • the processor 2101, the memory 2102, and the peripheral device interface 2103 may be connected by a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface 2103 through a bus, a signal line, or a circuit board.
  • the peripheral device includes: at least one of a camera component 2104, a radio frequency circuit 2105, a display screen 2106, an audio system 2107, a positioning component 2108, and a power supply 2109.
  • the peripheral device interface 2103 can be used to connect at least one peripheral device related to Input/Output (I/O) to the processor 2101 and the memory 2102.
  • the processor 2101, the memory 2102, and the peripheral device interface 2103 are integrated on the same chip or circuit board; in some other embodiments, any one of the processor 2101, the memory 2102, and the peripheral device interface 2103 or The two can be implemented on a separate chip or circuit board, which is not limited in this embodiment.
  • the camera component 2104 is used to collect images or videos, and send the collected images or video information to the processor 2101 for image preview processing or storage.
  • the camera assembly 2104 may also include a flash.
  • the radio frequency circuit 2105 is used to receive and transmit radio frequency (RF) signals, also called electromagnetic signals.
  • RF radio frequency
  • the radio frequency circuit 2105 communicates with a communication network and other communication devices through electromagnetic signals.
  • the radio frequency circuit 2105 converts electrical signals into electromagnetic signals for transmission, or converts received electromagnetic signals into electrical signals.
  • the display screen 2106 is used to display a user interface (UI).
  • UI user interface
  • the UI can include graphics, text, icons, videos, and any combination thereof.
  • the audio system 2107 may include the piezoelectric MEMS microphone (as shown in FIG. 4 or 5) and an audio circuit provided by the embodiments of the present application.
  • the piezoelectric MEMS microphone is used to collect the sound waves of the user and the environment, and convert the sound waves into The voltage is used to send the voltage value to the audio circuit; the audio circuit is used to convert the voltage value into an electrical signal, which can be input to the processor 2101 for processing; or input to the radio frequency circuit 2105 to implement voice communication.
  • the number of the microphones can be multiple, which are respectively set in different parts of the terminal.
  • the audio system 2107 may also include a headphone jack and speakers.
  • the positioning component 2108 is used to locate the current geographic location of the terminal device to implement navigation or location-based service (location-based service, LBS).
  • location-based service location-based service, LBS
  • the power supply 2109 is used to supply power to various components in the terminal device.
  • FIG. 21 does not constitute a limitation on the terminal device, and may include more or fewer components than shown in the figure, or combine certain components, or adopt different component arrangements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Micromachines (AREA)

Abstract

本发明实施例公开了一种压电式MEMS传感器以及相关设备,应用于终端、智能音响、无线蓝牙耳机、主动降噪耳麦及笔记本、汽车工业等场景中,压电式MEMS传感器包括具有进声通道的基座和至少一个悬臂梁,悬臂梁包括相互连接的第一区域和第二区域;第一区域包括第一侧面以及第二侧面,第一侧面为第一区域朝向目标面的侧面,目标面为悬臂梁与基座相连接的面。第一侧面和第二侧面之间所呈夹角大于或等于90度且小于180度,则使得悬臂梁靠近基座的区域两侧的限制变少,悬臂梁的两侧不会受到其他结构的约束,从而有效的保障了悬臂梁的自由形变,有利于提高悬臂梁的应力分布的均匀,有效的提高了信噪比和灵敏度。

Description

一种压电式MEMS传感器以及相关设备
本申请要求于2019年10月31日提交中国国家知识产权局、申请号为201911053981.5、发明名称为“一种压电式MEMS传感器以及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及声电技术领域,尤其涉及一种压电式MEMS传感器以及相关设备。
背景技术
压电式微机电系统(micro electro mechanical systems,MEMS)传感器因其具有比较好的防尘和防水等优势,从而使得压电式MEMS传感器的应用越来越广泛。
以下参见图1所示对已有的压电式MEMS传感器的结构进行说明,如图1所示,压电式MEMS传感器由多个膜片101组成,每个膜片101一端与基底102相连,另一端采用了悬臂梁结构。如图2所示,悬臂梁结构201受到声压压迫后,会向上弯曲以在悬臂梁201的上表面和下表面之间所形成的应力差,进而产生电压。
但是,由于膜片101在声压作用下所产生的应力分布不均,极大的影响了压电式MEMS传感器的性能表现,如导致压电式MEMS传感器的灵敏度低、压电式MEMS传感器的信噪比低等。
发明内容
本发明提供了一种压电式MEMS传感器以及相关设备,可以解决现有压电式MEMS传感器存在的信噪比低和灵敏度低的问题。
本发明实施例第一方面提供了一种压电式MEMS传感器,包括具有进声通道的基座和至少一个悬臂梁,所述悬臂梁包括相互连接的第一区域和第二区域,所述第二区域悬空于所述进声通道的通道口处,所述第一区域位于所述第二区域和所述基座之间,所述第二区域的面积沿靠近所述第一区域的方向逐渐递增,所述悬臂梁用于在声音信号的作用下获取对应的电压,所述声音信号通过所述进声通道进行传输;所述第一区域包括第一侧面以及与所述第一侧面连接的第二侧面,所述第一侧面为所述第一区域朝向目标面的侧面,所述目标面为所述悬臂梁与所述基座相连接的面,且所述第一侧面和所述第二侧面之间所呈夹角大于或等于90度且小于180度。
采用本方面所示的悬臂梁的结构,因所述第一侧面和所述第二侧面之间所呈的角度为大于或等于90度且小于180度的任一角度,则使得所述悬臂梁的第一区域两侧的限制变少,悬臂梁的两侧不会受到其他结构的约束,从而有效的保障了悬臂梁的自由形变,有利于提高悬臂梁的应力分布的均匀,有效的提高了信噪比和灵敏度。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,沿所述进声通道的径向方向,所述第一区域呈方形结构,所述第二区域呈三角形结构。
采用本方面所示的悬臂梁的结构,在第二区域呈三角形的情况下,可在压电式MEMS传 感器的所述进声通道有限的面积下,尽可能的提高所设置的悬臂梁的数量,提高了进声通道的利用效率,以提高压电式MEMS传感器的灵敏度。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,沿所述进声通道的径向方向,所述第一区域呈梯形结构,所述第二区域呈三角形结构,且所述第一侧面和所述第二侧面之间所呈夹角大于90度且小于180度。
采用本方面所示的悬臂梁的结构,呈梯形结构的第一区域的自由度进一步增加,所以能够进一步改善悬臂梁的第一区域的应力分布,有效的提高了第一区域的应力分布的均匀,提高了压电式MEMS传感器的灵敏度及信噪比。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述悬臂梁还包括第一电极和第二电极;所述第一区域包括压电薄膜单元,沿所述进声通道的轴向方向,所述压电薄膜单元包括位置相对的第一表面和第二表面,所述第一电极位于所述第一表面上,所述第二电极位于所述第二表面上;所述第一电极和所述第二电极用于获取所述电压,所述压电薄膜单元包括至少一层压电薄膜。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述压电薄膜单元包裹有第三电极,且沿所述进声通道的轴向方向,所述第三电极位于所述第一电极和所述第二电极之间。
为实现悬臂梁在声音信号的作用下所产生的电压的获取,则需要在所述悬臂梁的第一表面和所述第二表面之间形成有应力差,所述第一电极和所述第二电极即可根据应力差获取电压。在所述压电薄膜单元内包裹有所述第三电极的情况下,有效的保障了电压的获取,避免因所述第一表面和所述第二表面之间所形成的应力差过小而无法检测到电压的情况的出现。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述悬臂梁还包括支撑层,所述压电薄膜单元朝向所述进声通道的表面贴合设置有所述支撑层,所述支撑层的端部与所述基座连接。
在所述悬臂梁出现形变的情况下,所述悬臂梁的所述第二表面会在所述支撑层的抵持作用下而抵消部分形变,从而在所述悬臂梁第一表面所产生的应力和所述第二表面所产生的应力之间形成应力差,所述第一电极和第二电极即可根据应力差获取到电压。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述压电薄膜单元与所述基座连接,所述悬臂梁的第一侧面为所述压电薄膜单元与所述基座相接的侧面。
本方式所示的悬臂梁的压电薄膜单元和支撑层均与所述基座连接,从而有效的提高了压电式MEMS传感器结构的稳固。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述压电薄膜单元与所述基座之间具有间隙,所述悬臂梁的第一侧面为所述压电薄膜单元朝向所述目标面的侧面。
在所述压电薄膜单元与所述基座之间具有间隙的情况下,悬臂梁通过支撑层与基座连接,从而导致悬臂梁与基座相连的端部的刚度降低,所以在同频率的前提下,具备更小的器件尺寸,有利于压电式MEMS传感器的小型化。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,沿所述 进声通道的径向方向,所述第一区域的面积小于或等于所述悬臂梁的面积的50%。
在所述第一横截面的面积小于或等于所述第二横截面的面积的50%的情况下,可有效的提高本实施例所提供的悬臂梁的信噪比和灵敏度。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述压电式MEMS传感器包括四个所述悬臂梁,且任意相邻的两个所述悬臂梁之间具有间隙。
采用本方面所示,通过设置四个悬臂梁的结构,从而有效的提高了悬臂梁在所述压电式MEMS传感器的表面的占比,有效的提高压电式MEMS传感器的利用效率。因任意相邻的两个所述悬臂梁之间具有间隙,则有效的保障了任一悬臂梁在声音信号的作用下能够自由的进行形变,且形变的过程中,不会受到其他悬臂梁的干涉作用,从而提高了声音信号转换为电压的效率。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述第一区域具有两个所述第二侧面。
采用本方面所示,该第一区域与两个第二侧面之间的夹角分别大于或等于90度且小于180度。有效的提高了悬臂梁的信噪比和灵敏度。
本发明实施例第二方面提供了一种压电式MEMS麦克风,包括压电式MEMS传感器和放大电路,所述压电式MEMS传感器和所述放大电路电连接,所述压电式MEMS传感器用于在声音信号的作用下获取电压,所述放大电路用于获取所述电压并进行放大处理,所述压电式MEMS传感器如上述任一项所示。
本发明实施例第三方面提供了一种压电式MEMS麦克风阵列,所述压电式MEMS麦克风阵列包括多个第二方面所示的压电式MEMS麦克风。
基于本发明实施例第三方面,本发明实施例第三方面的一种可选的实现方式中,多个所述压电式MEMS麦克风以串联的方式与音频电路进行连接,音频电路用于获取来自压电式MEMS麦克风的电压并进行处理,有效的降低了音频电路对来自压电式MEMS麦克风的电压并进行处理的难度。
基于本发明实施例第三方面,本发明实施例第三方面的一种可选的实现方式中,多个所述压电式MEMS麦克风以并联的方式与音频电路进行连接,有效的提高了压电式MEMS麦克风输出的电容的大小。
本发明实施例第四方面提供了一种终端设备,包括音频系统,所述音频系统包括一个或多个压电式MEMS麦克风,以及与所述压电式MEMS麦克风电连接的音频电路,所述压电式MEMS麦克风如上述第二方面所示。
基于本发明实施例第四方面,本发明实施例第四方面的一种可选的实现方式中,所述音频电路电连接有扬声器或处理器。
附图说明
图1为已有的压电式MEMS传感器的俯视结构示例图;
图2为已有的压电式MEMS传感器的侧视结构示例图;
图3为本发明所提供的音频系统的一种实施例结构示例图;
图4为本发明所提供的压电式MEMS麦克风的一种实施例俯视结构示例图;
图5为本发明所提供的压电式MEMS麦克风的一种实施例侧视剖面结构示例图;
图6为本发明所提供的压电式MEMS传感器的另一种实施例侧视剖面结构示例图;
图7为本发明所提供的压电式MEMS传感器的另一种实施例侧视剖面结构示例图;
图8a为本发明所提供的无声音信号作用时悬臂梁的一种应用场景示例图;
图8b为本发明所提供的有声音信号作用时悬臂梁的一种应用场景示例图;
图9为本发明所提供的压电式MEMS传感器的一种实施例俯视结构示例图;
图10为本发明所提供的压电式MEMS传感器的一种实施例整体结构示例图;
图11为第一侧面和第二侧面之间所呈的夹角呈锐角结构的一种示例图;
图12为第一侧面和第二侧面之间所呈的夹角呈锐角结构时的应力分布仿真图;
图13为本发明所提供的悬臂梁的第一区域在声音信号的作用下的应力分布仿真图;
图14为设置有低应力区域的悬臂梁和不设置有低应力区域的悬臂梁的性能对比示例图;
图15为本发明所提供的压电式MEMS传感器的另一种实施例俯视结构示例图;
图16为本发明所提供的压电式MEMS传感器的一种实施例整体结构示例图;
图17为本发明所提供的压电式MEMS传感器的另一种实施例侧视剖面结构示例图;
图18为本发明所提供的压电式MEMS传感器的另一种实施例侧视剖面结构示例图;
图19为本发明所提供的压电式MEMS传感器的另一种实施例侧视剖面结构示例图;
图20为本发明所提供的压电式MEMS传感器的另一种实施例侧视剖面结构示例图;
图21为本发明所提供的终端设备的一种实施例结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下首先结合图3所示对本实施例所提供的音频系统的结构进行示例说明:
本实施例所示的音频系统300可应用至终端设备,终端设备可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、车载设备、可穿戴设备、有线或无线耳机、智能家居中的终端设备、麦克风阵列、第五代移动通信技术(5th generation mobile networks或5th generation wireless systems,5G)网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请对此并不限定。
如图3所示,本实施例所示的音频系统300包括依次电连接的压电式MEMS麦克风301以及音频电路303;
所述压电式MEMS麦克风301用于感知声音信号302,所述压电式MEMS麦克风301用来还原人声或者环境声音,使音频系统300完成对声音的采集。其中,微机电系统(MEMS)是指尺寸在几毫米乃至更小的高科技装置,其内部结构一般在微米甚至纳米量级,是一个独立的智能系统。MEMS技术的问世让麦克风变得越来越小,性能越来越高。MEMS麦克风具有诸多优势, 例如,高信噪比,低功耗,高灵敏度,所用的微型封装可以兼容贴装工艺,回流焊对MEMS麦克风的性能无任何影响,而且温度特性非常出色。
具体地,所述压电式MEMS麦克风301的悬臂梁用于根据声音信号302获取到电压。所述压电式MEMS麦克风301将所获取到的电压发送给音频电路303,所述音频电路303即可对已接收到的电压进行处理。
其中,所述音频电路303对已接收到的电压进行处理的方式可为如下所示:
例如,本实施例所示的音频电路303还连接有扬声器304,所述音频电路303可将已接收到的电压转换为电信号,并将该电信号传输到所述扬声器304,由所述扬声器304将电信号转换为声音信号进行输出。又如,所述音频电路303还连接有处理器305。所述音频电路303可将已接收到的电压转换为音频数据,再将音频数据传输到处理器305,由处理器305对音频数据进行相应的处理。
以下结合图4和图5所示对压电式MEMS麦克风的具体结构进行示例性说明,其中,图4为压电式MEMS麦克风的一种实施例俯视结构示例图,图5为压电式MEMS麦克风的一种实施例侧视剖面结构示例图。
结合图4和图5所示可知,本实施例所示的压电式MEMS麦克风400包括基座401和壳体402。所述基座401可为印刷电路板(printed circuit board,PCB),还可为陶瓷板,具体在本实施例中不做限定。相互扣合的所述基座401和所述壳体402之间形成有声音腔室403。所述声音腔室403内包括有放大电路404和压电式MEMS传感器405。
所述基座401具有进声通道406,可选的,所述进声通道406的正投影形状可以为圆形、椭圆形、方向或多边形等,本实施例以所述进声通道406的正投影的形状为方形为例进行示例性说明。声音信号可通过所述进声通道406进行传输以作用在所述压电式MEMS传感器405上。
在所述压电式MEMS传感器405根据所述声音信号对应生成电压的情况下,由于压电式MEMS传感器405所生成的电压比较微弱,无法被音频电路直接使用,所以压电式MEMS麦克风400内还包括用于对来自所述压电式MEMS传感器405的电压进行放大的放大电路404。
所述压电式MEMS传感器405与所述放大电路404可通过导线408进行电连接,所述放大电路404用于将来自所述压电式MEMS传感器405的电压进行放大处理。可选的,所述放大电路404可为专用集成电路(application specific integrated circuit,ASIC)。所述放大电路404将放大处理后的电压发送给音频电路,所述音频电路即可对已接收到的放大处理后的电压进行处理。
基于上述所示的对压电式MEMS麦克风的结构的说明,以下对本申请所提供的压电式MEMS传感器的具体结构进行示例性说明:
首先结合图5和图6所示对本实施例所提供的压电式MEMS传感器的具体结构进行说明。本实施例所示的所述压电式MEMS传感器还包括有悬臂梁601,悬臂梁601包括相互连接的第一区域603和第二区域604。其中,所述悬臂梁601的第二区域604悬空于所述进声通道406的通道口处,在声音信号作用在所述悬臂梁601上时,所述悬臂梁601的第二区域604能够自由的进 行形变。所述悬臂梁601的第一区域603位于所述基座401和所述第二区域604之间。
具体地,继续参见图7所示,其中,图7为图6所示的悬臂梁沿剖面线700进行剖面后所形成的剖面结构示例图。如图7所示,所述悬臂梁601所示的第一区域603具有沿进声通道406的轴向方向(如图5所示的箭头501所示的方向),位置相对的第一表面和第二表面。所述悬臂梁601还包括用于进行电压采集的第一电极605和第二电极606,其中,所述第一表面贴合有第一电极605,所述第二表面贴合有第二电极606。
需明确的是,本实施例对第一区域603的面积、第一电极605、第二电极606之间的面积的大小关系不做限定,例如,所述第一电极605和所述第二电极606的面积可相等,所述第一电极605的面积可等于所述第一区域603的面积,又如,所述第一电极605和所述第二电极606的面积也可小于所述第一区域603的面积,又如,所述第一电极605和所述第二电极606的面积也可大于所述第一区域603的面积。
具体地,以下对本实施例所示的悬臂梁601根据声音信号生成电压的具体过程进行示例性说明:
如图8a所示,无声音信号作用于所述悬臂梁601上,则悬臂梁601无形变产生,此时所述悬臂梁601不会生成电压;
如图8b所示,在声音信号作用于所述悬臂梁601上的场景下,该声音信号会使能所述悬臂梁601出现振动,进而使得所述悬臂梁601出现形变。出现形变的所述悬臂梁601,会在所述悬臂梁601的上表面所形成的应力和下表面所形成的应力之间形成应力差。
在所述悬臂梁601的上表面和下表面之间形成有应力差的情况下,所述第一电极605和所述第二电极606之间会产生电势差,即电压。这样,悬臂梁601通过位于所述第一区域603两表面上的第一电极605和第二电极606实现对电压的获取。
以下对如何提高压电式MEMS传感器的利用效率的进行说明:
本实施例所示的所述压电式MEMS传感器可包括有一个或多个所述悬臂梁601,为提高所述压电式MEMS传感器的利用效率,则进一步的参见图9和图10所示对所述压电式MEMS传感器的结构进行说明,所述压电式MEMS传感器可包括有多个悬臂梁601,例如,所述压电式MEMS传感器包括四个悬臂梁601,各所述第二区域604的面积沿靠近所述第一区域603的方向逐渐递增,也即各所述第二区域604的面积沿远离所述第一区域603的方向逐渐递减,从而提高了各悬臂梁601的第二区域604在所述进声通道406的通道口处的覆盖面积,进而有效的提高了所述压电式MEMS传感器的芯片的利用效率。
需明确的是,本实施例对所述压电式MEMS传感器所包括的悬臂梁601的具体数量不做限定,只要对所述压电式MEMS传感器的表面而言,所述悬臂梁601的占比尽可能的大即可。各悬臂梁601为成功地根据声音信号的作用进行形变,则所述压电式MEMS传感器所包括的任意相邻的两个所述悬臂梁601之间具有间隙602。从而使得任一悬臂梁601在声音信号的作用下进行形变的过程中,不会受到其他悬臂梁601的干涉作用,从而提高了声音信号转换为电压的效率。
继续参见图6、图9和图10所示,所述悬臂梁601的第一区域603包括第一侧面6011以及与所述第一侧面6011连接的第二侧面6012;具体地,所述第一侧面6011为所述第一区域603所具有的朝向目标面的侧面,该目标面可如图5所示,目标面500为所述悬臂梁601与所述基座 401相连接的面。
其中,所述第一侧面6011为所述第一区域603所具有的朝向目标面500的侧面,具体可指,所述第一侧面6011与基座401之间的间隙小于所述第一区域603所具有的其他侧面与所述基座401之间的间隙。如图18所示,所述第一区域603与基座401相连,所述第一侧面6011与所述基座401之间的间隙为0;可选地,如图20所示,所述第一区域603与所述基座401存在间隙,所述第一侧面6011即为与所述基座401之间具有间隙2005的那个侧面。
为提高压电式MEMS传感器的信噪比(signal-to-noise ratio,SNR),则第一侧面6011和与第一侧面6011连接的第二侧面之间所呈夹角大于或等于90度且小于180度,且本实施例所示的第一侧面6011和第二侧面之间所呈夹角朝向所述第二区域604,其中,该第二侧面可以为图6、9、10中所示的第二侧面6012或第二侧面6013;可选地,第一侧面6011与第二侧面6012的夹角以及第一侧面6011与第二侧面6013的夹角均大于或等于90度且小于180度。本实施例对所述第一侧面6011和第二侧面(6012和/或6013)之间所呈的夹角的具体大小不做限定,只要所述第一侧面6011和第二侧面之间所呈的夹角为直角结构或钝角结构即可。例如,如图6所示,所述第一侧面6011和第二侧面之间所呈的夹角为直角。又如,如图9和图10所示,所述第一侧面6011和第二侧面之间所呈的夹角为钝角。在本实施例所示的所述第一侧面6011和第二侧面之间所呈的夹角为直角结构或钝角结构的情况下,可有效的提高压电式MEMS传感器的信噪比。
以下首先对压电式MEMS传感器的信噪比重要性的原因进行说明:
信噪比作为压电式MEMS传感器的重要声学参数,其中SNR为压电式MEMS传感器接收到的信号与噪声的比值大小。在声音源头的声压级别(sound pressure level,SPL)和压电式MEMS传感器所能够转换的电压的最大值一定的情况下,高SNR的压电式MEMS传感器,可以在更远的位置提取到声源发射出的声音信号。可见,高SNR的压电式MEMS传感器将声音信号转换为电压的性能越好。
而在有效的提高了悬臂梁601在声音信号的作用下所产生的电荷量的情况下,即可有效的提高压电式MEMS传感器的SNR,以下进行具体说明:
具体地,可通过公式
Figure PCTCN2020115104-appb-000001
来评估压电式MEMS传感器的信噪比,公式中Q为悬臂梁在声音信号的作用下所生成的电荷量。C为电极区域的电容值,其中,电极区域为包括有所述第一电极和所述第二电极的区域。ω为声源频率,k b为玻尔兹曼常数,T为温度,tanδ为压电材料的介电损耗角,压电材料为用于制成所述悬臂梁601的材料。其中
Figure PCTCN2020115104-appb-000002
对于固定的压电式MEMS传感器来讲,可以认为是常数。而
Figure PCTCN2020115104-appb-000003
与压电式MEMS传感器的结构是相关的。我们定义评估参数
Figure PCTCN2020115104-appb-000004
作为评估压电式MEMS传感器结构对于SNR高低影响的判断标准,可见,压电式MEMS传感器的SNR的大小和电荷量Q的大小之间有正 相关关系,进而可通过提高电荷量Q的方式以提高压电式MEMS传感器的SNR。
但是,若悬臂梁601的所述第一侧面6011和所述第二侧面(6012或6013)之间所呈的夹角呈锐角结构,则会降低悬臂梁601在声音信号的作用下所产生的电荷量Q,以下对原因进行说明:
以下结合图11所示进行说明,其中,图11所示以悬臂梁1100所具有的第一侧面1101和侧面1102以及侧面1103之间所呈的夹角呈锐角结构进行说明:
将第一区域1104划分为三个子区域,如图11所示的第一低应力区域0、子区域1和第二低应力区域2。可见,第一低应力区域0和第二低应力区域2位于子区域1的两侧。
对第一低应力区域0、子区域1和第二低应力区域2分别求取出对应的电压,以第一低应力区域0所示为例;
第一低应力区域0的电压
Figure PCTCN2020115104-appb-000005
其中,Q 0为第一低应力区域0在受到声音信号的作用下所产生的电荷量,C 0为第一低应力区域0的电容值,d是所述第一区域沿所述进声通道406的轴向方向的厚度。本申请所示的所述进声通道406的轴向方向如图5所示的箭头501所示的方向。ε是压电材料的介电常数,且不同的子区域所具有的ε相同,即第一低应力区域0、子区域1和第二低应力区域2均具有相同的ε。A 0是第一低应力区域0的面积。
Q 0=A 0d 31δ 0,其中,d 31是包括有第一低应力区域0的悬臂梁1100的压电系数,δ 0是第一低应力区域0在声音信号的作用下所承受的应力。
可知,第一低应力区域0的电压
Figure PCTCN2020115104-appb-000006
依次类推,可知子区域1的电压
Figure PCTCN2020115104-appb-000007
第二低应力区域2的电压
Figure PCTCN2020115104-appb-000008
而如图11所示的第一区域1104的电压
Figure PCTCN2020115104-appb-000009
如图11所示的第一区域1104的具体说明,请详见上述所示的第一区域603的说明,具体不做赘述。其中,Q为第一区域1104在受到声音信号的作用下所产生的电荷量,C为第一区域1104的电容值,δ是第一区域1104在声音信号的作用下所承受的应力。
为更好的说明第一区域1104在声音信号的作用下的应力分布,参见图12所示,图12为悬臂梁的第一区域1104在声音信号的作用下的应力分布仿真图,该仿真图体现了悬臂梁的应力分布,且颜色越深的区域,则该区域承受的应力越大。
由图12所示可知,位于第一区域1104边缘的第一低应力区域0和第二低应力区域2所承受的应力小于位于第一区域1104中间位置的子区域1所承受的应力,即δ 01且δ 21
具体地,图11所示的第一区域1104的电压为
Figure PCTCN2020115104-appb-000010
若将第一低应力区域0所承受的应力δ 0替换为子区域1所承受的应力δ 1,并将第二低应力区域2所承受的应力δ 2替换为子区域1所承受的应力δ 1,则求取出的参考电压
Figure PCTCN2020115104-appb-000011
由图12所示可知,δ 01且δ 21,则可知V<V 参考电压。可见,第一低应力区域0和第二低应力区域1,会对提高第一区域的电压的过程起到反作用,即第一低应力区域0和第二低应力区域2对悬臂梁仅贡献电容而不贡献电荷,等同于寄生电容的作用。
可见,结合图11和图12所示,因悬臂梁的第一区域1104存在低应力区域,从而使得第一区域的应力分布不均匀,而低应力区域对悬臂梁的电压的获取起到了反作用。具体地若获取悬臂梁的电压的过程中,将低应力区域进行相加,则会降低悬臂梁所获取到的电压的大小,从而降低了压电式MEMS传感器的SNR以及灵敏度。
以下对包括有低应力区域的悬臂梁和本申请所示的不包括有低应力区域的悬臂梁之间的区别进行说明:
首先,继续参见图6所示可知,对比于图11和图6所示可知,本实施例所提供的悬臂梁去除掉上述所示的低应力区域后,本实施例所提供的第一区域603的所述第一侧面6011和第一区域603中与所述第一侧面6011相连的侧面之间所呈的夹角直角结构或钝角结构,则使得本实施例所示的悬臂梁不包括低应力区域,从而在悬臂梁获取电压的过程中不会获取作为寄生电容的低应力区域的电压,从而有效的提高了本实施例所提供的悬臂梁在声音信号的作用下所获取到的电压的大小。
其次,结合图13所示可知,其中,图13为本申请实施例所提供的悬臂梁的第一区域在声音信号的作用下的应力分布仿真图。本实施例所示的悬臂梁的第一区域603内的应力分布相对于图12所示的第一区域的应力分布更为均匀,进而有效的提高了本实施例所提供的悬臂梁的信噪比和灵敏度。
再次,如图14所示,其中,图14为包括有低应力区域的悬臂梁和本实施例提供的不包括有低应力区域的悬臂梁的性能对比示例图,图14所示的横坐标表示电极区域宽度。具体地,以图6所示为例,所述电极区域宽度可为图6所示的h1。对如图14所示的横坐标所包括的所有电极区域宽度分别对应的FOM进行归一化处理所获得的归一化参数构成图14所示的纵坐标。可以理解,在图14所示的坐标系中,与同一横坐标对应的归一化参数越大,则对应的FOM越大。
由上述说明可知,已定义
Figure PCTCN2020115104-appb-000012
作为评估压电式MEMS传感器结构对于SNR高低影响的判断标准。继续参见图14所示可知,以电极区域宽度为90um为例,采用本发明方案所示的悬臂梁在电极区域宽度为90um时,对应的归一化参数相对于已有方案(上述所示的包括有低 应力区域的方案)的归一化参数提高了11.7%,可见,采用本发明方案所示的悬臂梁有效的提高了FOM的大小,进而有效的提高了悬臂梁的信噪比和灵敏度。
可选的,继续参见图6所示,沿所述进声通道406的径向方向,所述第一区域603的面积小于或等于所述悬臂梁的面积的50%。在所述第一区域603的面积小于或等于所述悬臂梁的面积的50%的情况下,可有效的提高本实施例所提供的悬臂梁的信噪比和灵敏度。
以下对本实施例所提供的悬臂梁的有益效果进行说明:
可见,采用本实施例所示的悬臂梁的结构,因所述第一侧面和第一区域中与第一侧面连接的侧面之间所呈的角度为大于或等于90度且小于180度的任一角度,则使得本实施例所示的悬臂梁的第一区域两侧的限制变少,即使得悬臂梁的第一区域的两侧不会受到其他结构的约束,从而有效的保障了悬臂梁的自由形变,有利于提高悬臂梁的应力分布的均匀,从而有效的提高了信噪比和灵敏度。
本实施例所示的悬臂梁的第二区域可沿所述进声通道的导向自由的形变,从而使得本实施例所示的悬臂梁能够充分的释放应力,不会出现应力释放困难的情况,对于批量生产的压电式MEMS传感器而言,因悬臂梁能够充分的释放应力,则有效的保障的批量的压电式MEMS传感器释放应力后的残余应力保持一致,从而有效的保障了批量的压电式MEMS传感器的一致性。
为更好的理解本实施例所提供的悬臂梁的结构,以下对悬臂梁的形状的几种可选的实现方式进行示例性说明:
方式1
沿所述进声通道406的径向方向(如图5所示的箭头502所示的方向),所述第一区域603呈方形结构,所述第二区域604呈三角形结构。其中,该方形结构可为矩形结构,也可为正方形结构,具体不做限定。
可选的,如图6、图15和图16所示,其中,图15为本实施例所提供的压电式MEMS传感器的一种实施例俯视结构示例图,图16为本实施例所提供的压电式MEMS传感器的一种实施例整体结构示例图。
本实施例以所述第一区域603呈矩形结构为例进行示例性说明,在其他示例中,所述第一区域也可呈方形结构。本实施例以所述第二区域604呈三角形为例进行示例性说明,若所述压电式MEMS传感器包括有多个所述悬臂梁,则在各悬臂梁的第二区域604均呈三角形的情况下,可在压电式MEMS传感器的所述进声通道406有限的面积下,尽可能的提高悬臂梁的数量,提高了进声通道406的利用效率,以提高压电式MEMS传感器的灵敏度。
如图6所示的所述悬臂梁中,所述第一区域603的顶边与所述第二区域604的底边的长度相等,其中,所述第一区域603的顶边是指悬臂梁中,所述第一区域603所具有的与所述第二区域604相接的边,所述第二区域604的底边是指悬臂梁中,所述第二区域604所具有的与所述第一区域603相接的边。
在其他可选的实现方式中,所述第一区域603的顶边也可大于所述第二区域604的底边的长度,或者所述第一区域603的顶边也可小于所述第二区域604的底边的长度,具体在本实施例中不做限定。
可见,采用本方式所示的悬臂梁的结构,则所述第一区域的第一侧面6011和第一区域中与第一侧面6011相连的侧面之间所呈的夹角为直角。
此外,在所述第一区域603的两表面可以贴合有电极,其中,本实施例对贴合在第一区域603两表面上的电极的具体面积的大小以及形状不做限定。
方式2
如图9、图10以及图17所示,沿所述进声通道406的径向方向,所述第一区域603呈梯形结构,所述第二区域604呈三角形结构。在所述第一区域603呈梯形结构的情况下,本方式所示的所述第一侧面6011和第一区域中与第一侧面6011相连的第二侧面(6012和/或6013)之间所呈夹角大于90度且小于180度,即本实施例对所述第一侧面6011和第一区域中与第一侧面6011相连的第二侧面(6012和/或6013)之间所呈的夹角的具体大小不做限定,只要为钝角结构即可。
如图17所示的所述悬臂梁中,所述第一区域603的顶边与所述第二区域604的底边的长度相等,对所述第一区域603的顶边和所述第二区域6014的底边的具体说明请详见上述方式1所示,具体不做赘述。
在其他可选的实现方式中,所述第一区域603的顶边也可大于所述第二区域604的底边的长度,或者所述第一区域603的顶边也可小于所述第二区域604的底边的长度,具体在本实施例中不做限定。
上述示例以在所述悬臂梁中,所述第一区域603的顶边和所述第二区域604的底边均呈直线型结构为例进行示例性说明,在其他示例中,所述第一区域603的顶边和所述第二区域604的底边也可呈曲线形、折线形或不规则形等任意形状,具体在本实施例中不做限定。
采用本方式所示,呈梯形结构的第一区域603的自由度进一步增加,所以能够进一步改善悬臂梁的第一区域603的应力分布,有效的提高了第一区域603的应力分布的均匀,提高了压电式MEMS传感器的灵敏度及SNR。
以下对本实施例所提供的悬臂梁的具体组成结构进行具体说明:
所述悬臂梁的第一种结构;
首先参见图18所示,其中,图18为本实施例所示的悬臂梁的一种切面结构示例图,具体地,图18为所述悬臂梁沿所述进声通道的轴向方向(如图5所示的箭头501所示的方向)的切面结构示例图。
如图18所示的悬臂梁1800包括压电膜单元1803,所述压电膜单元1803包括一层压电薄膜或多层压电薄膜,其中,所述压电薄膜由压电材料制成,压电材料包括但不限于氮化铝(AlN)、氮化钪铝(AlScN)、锆钛酸铅压电陶瓷(PZT)或氧化锌(ZnO)等。
本实施例对悬臂梁1800所包括的压电薄膜的层数不做限定。为实现悬臂梁1800在声音信号的作用下所生成的电压的获取,则在所述悬臂梁1800的第一区域的两表面贴合有第一电极1801和第二电极1802。
具体方式如下,沿所述进声通道的轴向方向,所述压电薄膜单元包括位置相对的第一表面和第二表面,所述第一表面上贴合有第一电极1801,所述第二表面上贴合有第二电极1802,对所述第一电极1801和所述第二电极1802的具体说明,可参见上述所示,具体不做赘述。
可选的,所述第一电极1801和所述第二电极1802可由导电材料制成,本实施例对导电材料不做限定,例如所述导电材料可为钛。为提高所述第一电极1801和所述第二电极1802的使用寿命,则可在所述第一电极1801和所述第二电极1802的表面设置抗氧化层,通过抗氧化层实现对所述第一电极1801和所述第二电极1802的保护。
本实施例所示的所述悬臂梁1800包括有所述第一电极1801和所述第二电极1802的情况下,为实现对电压的获取,则本实施例所示所述压电薄膜单元1803包裹第三电极1804,且沿所述进声通道的轴向方向,所述第三电极1804位于第一电极1801和所述第二电极1802之间。
具体地,为实现悬臂梁在声音信号的作用下所产生的电压的获取,则需要在所述悬臂梁的第一表面和所述第二表面之间形成有应力差,以下对如何在悬臂梁的第一表面和所述第二表面之间形成应力差的方式进行说明:
在图18所示的结构中,所述悬臂梁在声音信号的作用下进行形变,为使得所述第一电极1801和所述第二电极1802成功检测到电压,则本实施例可在所述压电薄膜单元1803内包裹有所述第三电极1804,则所述第一电极1801和所述第三电极1804可根据检测到的应力差获取第一电压,所述第二电极1802和所述第三电极1804也可根据检测到的应力获取第二电压,与所述第一电极1801、所述第二电极1802和所述第三电极1804电连接的放大电路即可获取所述第一电压和第二电压。
本实施例对所述第一电极1801、所述第二电极1802和所述第三电极1804的具体面积的大小不做限定,只要包括有所述第一电极1801、所述第二电极1802和所述第三电极1804的悬臂梁的
Figure PCTCN2020115104-appb-000013
尽可能的大即可。
可选的,本实施例所示的悬臂梁所包括的所述第一电极1801、所述第二电极1802以及第三电极1804是成组设置的,图18所示以所述悬臂梁包括有一组所述第一电极1801、所述第二电极1802和第三电极1804为例进行示例性说明。在其他示例中,所述悬臂梁也可包括多组所述第一电极1801、所述第二电极1802和第三电极1804,只要各组所述第一电极1801、所述第二电极1802和第三电极1804均电连接至放大电路即可。
所述悬臂梁的第二种结构;
首先参见图19所示,其中,图19为本实施例所示的悬臂梁的另一种切面结构示例图,具体地,图19为所述悬臂梁沿所述进声通道的轴向方向(如图5所示的箭头501所示的方向)的切面结构示例图。
如图19所示的悬臂梁1900包括压电膜单元1901,对所述压电膜单元1901的具体说明,请详见上述所示,具体不做赘述。在所述悬臂梁1900的第一区域设置第一电极1902和第二电极1903,其中,所述第一电极1902和第二电极1903的具体说明,请详见上述所示,具体不做赘述。
本实施例对所述第一电极1902和第二电极1903的具体面积的大小不做限定,只要包括有所述第一电极1902和第二电极1903的悬臂梁的
Figure PCTCN2020115104-appb-000014
尽可能的大即可。
具体地,为实现悬臂梁1900在声音信号的作用下所产生的电压的获取,则本实施例所示的悬臂梁1900还包括支撑层1904,所述支撑层1901贴合在所述压电薄膜单元朝向所述进声通道406的表面。为实现所述悬臂梁1900和所述基座401的连接,则本方式中,所述支撑层1904的端部与所述基座401连接。
继续参见图19所示可知,贴合在所述支撑层1904上的所述压电薄膜单元1901与所述基座401连接,则此种情况下,所述悬臂梁1900的第一侧面为所述压电薄膜单元1901与所述基座401相接的侧面。
由上述所示可知,为实现悬臂梁在声音信号的作用下所产生的电压的获取,本实施例所示在所述悬臂梁1900出现形变的情况下,所述悬臂梁1900的所述第二表面会在所述支撑层1901的抵持作用下而抵消部分形变,从而在所述悬臂梁1900第一表面所产生的应力和所述第二表面所产生的应力之间形成应力差,所述第一电极1902和第二电极1903即可根据应力差获取到电压。
采用本方式所示的结构,悬臂梁1900通过支撑层1904与基座401连接,从而导致悬臂梁与基座相连的端部的刚度降低,所以在同频率的前提下,具备更小的器件尺寸,有利于压电式MEMS传感器的小型化。
所述悬臂梁的第三种结构;
参见图20所示,其中,图20为本实施例所示的悬臂梁的另一种切面结构示例图,具体地,图20为所述悬臂梁沿所述进声通道的轴向方向(如图5所示的箭头501所示的方向)的切面结构示例图。
如图20所示的悬臂梁2000包括压电膜单元2001,对所述压电膜单元2001的具体说明,请详见上述所示,具体不做赘述。在所述悬臂梁2000的第一区域贴合第一电极2002和第二电极2003,其中,所述第一电极2002和第二电极2003的具体说明,请详见上述所示,具体不做赘述。本方式所示的所述悬臂梁2000还包括支撑层2004,对所述支撑层2004的具体说明,请详见上述所示,具体不做赘述。
本方式中,所述压电薄膜单元2001与所述基座401之间具有间隙2005,本实施例对所述间隙2005的具体大小不做限定,此种情况下,所述悬臂梁100的第一侧面为所述压电薄膜单元2001朝向所述目标面500的侧面。
由上述所示可知,为实现悬臂梁在声音信号的作用下所产生的电压的获取,则需要在所述悬臂梁的第一表面和所述第二表面之间形成有应力差,所述第一电极2002和第二电极2003即可根据应力差获取电压。在图20所示的结构中,所述悬臂梁2000在声音信号的作用下进行形变,而所述悬臂梁2000第一表面所产生的应力和所述第二表面所产生的应力出现互相抵消的作用,会使得所述第一电极2002和第二电极2003无法成功检测到电压。为此,本实施例所示在所述悬臂梁2000出现形变的情况下,所述悬臂梁2000的所述第二表面会在所述支撑层2001的抵持作用下而抵消部分形变,从而在所述悬臂梁2000第一表面所产生的应力和所述第二表面所产生的应力之间形成应力差,所述第一电极2002和第二电极2003即可根据应力差获取到电压。
可选的,上述实施例以沿所述进声通道的轴向方向,所述压电式MEMS传感器包括有一层悬臂梁为例进行示例性说明,则多个悬臂梁通过并联耦合的方式与放大电路电连接,有效的 提高了压电式MEMS传感器输出的电容值。可选的,所述压电式MEMS传感器也可包括有多个层悬臂梁,即沿所述进声通道的轴向方向,有两个或两个以上的悬臂梁呈堆叠式设置,多个堆叠设置的悬臂梁通过串联耦合的方式与放大电路电连接,有效的提高了压电式MEMS传感器输出的电压的大小。
本申请实施例提供一种终端设备,包括本申请上述实施例提供的压电式MEMS麦克风,图21示出了本申请一个示例性实施例提供的终端设备的结构框图,该终端设备可以是:智能手机、平板电脑、智能机器人、笔记本电脑等集成了音频功能的设备,也可以是具有语音识别功能的汽车等交通工具,该终端设备还可能被称为用户设备、便携式终端、膝上型终端、台式终端、车载终端等其他名称。
通常,终端设备还包括:处理器2101和存储器2102。
处理器2101可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器2101可以采用数字信号处理(digital signal processing,DSP)、FPGA、可编程逻辑阵列(programmable logic array,PLA)中的至少一种硬件形式来实现。处理器2101也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称中央处理器(central processing unit,CPU);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器2101可以集成有图像处理器(graphics processing unit,GPU),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器2101还可以包括人工智能(artificial intelligence,AI)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器2102可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器2102还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器2102中的非暂态的计算机可读存储介质用于存储至少一个指令。
在一些实施例中,终端设备还可选包括有:外围设备接口2103和至少一个外围设备。处理器2101、存储器2102和外围设备接口2103之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口2103相连。具体地,外围设备包括:摄像头组件2104、射频电路2105、显示屏2106、音频系统2107、定位组件2108和电源2109中的至少一种。
外围设备接口2103可被用于将输入/输出(Input/Output,I/O)相关的至少一个外围设备连接到处理器2101和存储器2102。在一些实施例中,处理器2101、存储器2102和外围设备接口2103被集成在同一芯片或电路板上;在一些其他实施例中,处理器2101、存储器2102和外围设备接口2103中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。
摄像头组件2104用于采集图像或视频,将采集的图像或视频信息发送给处理器2101,进行图像预览处理或者保存。在一些实施例中,摄像头组件2104还可以包括闪光灯。
射频电路2105用于接收和发射射频(radio frequency,RF)信号,也称电磁信号。射频电路2105通过电磁信号与通信网络以及其他通信设备进行通信。射频电路2105将电信号转 换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。
显示屏2106用于显示用户界面(user interface,UI)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。
音频系统2107可以包括本申请实施例提供的压电式MEMS麦克风(如图4或5所示)和音频电路,其中,压电式MEMS麦克风用于采集用户及环境的声波,并将声波转换为电压,将电压值发送给音频电路;音频电路用于将电压值转换为电信号,可以将电信号输入至处理器2101进行处理;或者输入至射频电路2105以实现语音通信。出于立体声采集或降噪的目的,该麦克风的数量可以为多个,分别设置在终端的不同部位。在一些实施例中,音频系统2107还可以包括耳机插孔和扬声器。
定位组件2108用于定位终端设备的当前地理位置,以实现导航或基于位置的服务(location based service,LBS)。
电源2109用于为终端设备中的各个组件进行供电。
本领域技术人员可以理解,图21中示出的结构并不构成对终端设备的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
需要说明的是,为使本申请实施例的说明清晰,参考附图可能未显示不相关的部件,并且为了清晰,层和区域的厚度可能被夸大。虽然本申请实施例提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在接受的误差容限或设计约束内近似于相应的值。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种压电式MEMS传感器,其特征在于,包括具有进声通道的基座和至少一个悬臂梁,所述悬臂梁包括相互连接的第一区域和第二区域,所述第二区域悬空于所述进声通道的通道口处,所述第一区域位于所述第二区域和所述基座之间,所述第二区域的面积沿靠近所述第一区域的方向逐渐递增,所述悬臂梁用于在声音信号的作用下获取对应的电压,所述声音信号通过所述进声通道进行传输;
    所述第一区域包括第一侧面以及与所述第一侧面连接的第二侧面,所述第一侧面为所述第一区域中朝向目标面的侧面,所述目标面为所述悬臂梁与所述基座相连接的面,且所述第一侧面和所述第二侧面之间所呈夹角大于或等于90度且小于180度。
  2. 根据权利要求1所述的压电式MEMS传感器,其特征在于,沿所述进声通道的径向方向,所述第一区域呈方形结构,所述第二区域呈三角形结构。
  3. 根据权利要求1所述的压电式MEMS传感器,其特征在于,沿所述进声通道的径向方向,所述第一区域呈梯形结构,所述第二区域呈三角形结构,且所述第一侧面和所述第二侧面之间所呈夹角大于90度且小于180度。
  4. 根据权利要求2或3所述的压电式MEMS传感器,其特征在于,所述悬臂梁还包括第一电极和第二电极;
    所述第一区域包括压电薄膜单元,沿所述进声通道的轴向方向,所述压电薄膜单元包括位置相对的第一表面和第二表面,所述第一电极位于所述第一表面上,所述第二电极位于所述第二表面上;所述第一电极和所述第二电极用于获取所述电压,所述压电薄膜单元包括至少一层压电薄膜。
  5. 根据权利要求4所述的压电式MEMS传感器,其特征在于,所述压电薄膜单元包裹有第三电极,且沿所述进声通道的轴向方向,所述第三电极位于所述第一电极和所述第二电极之间。
  6. 根据权利要求4所述的压电式MEMS传感器,其特征在于,所述悬臂梁还包括支撑层,所述压电薄膜单元朝向所述进声通道的表面贴合所述支撑层,所述支撑层的端部与所述基座连接。
  7. 根据权利要求6所述的压电式MEMS传感器,其特征在于,所述压电薄膜单元与所述基座连接,所述第一侧面为所述压电薄膜单元与所述基座相接的侧面。
  8. 根据权利要求6所述的压电式MEMS传感器,其特征在于,所述压电薄膜单元与所述基座之间具有间隙,所述第一侧面为所述压电薄膜单元朝向所述目标面的侧面。
  9. 根据权利要求1至8任一项所述的压电式MEMS传感器,其特征在于,沿所述进声通道的径向方向,所述第一区域的面积小于或等于所述悬臂梁的面积的50%。
  10. 根据权利要求1至9任一项所述的压电式MEMS传感器,其特征在于,所述压电式MEMS传感器包括四个所述悬臂梁,且任意相邻的两个所述悬臂梁之间具有间隙。
  11. 根据权利要求1至10任一项所述的压电式MEMS传感器,其特征在于,所述第一区域具有两个所述第二侧面。
  12. 一种压电式MEMS麦克风,其特征在于,包括压电式MEMS传感器和放大电路,所述压电式MEMS传感器和所述放大电路电连接,所述压电式MEMS传感器用于在声音信号的作用下获取电压,所述放大电路用于获取所述电压并进行放大处理,所述压电式MEMS传感器如权 利要求1至11任一项所示。
  13. 一种终端设备,其特征在于,包括音频系统,所述音频系统包括一个或多个压电式MEMS麦克风,以及与所述压电式MEMS麦克风电连接的音频电路,所述压电式MEMS麦克风如权利要求12所示。
PCT/CN2020/115104 2019-10-31 2020-09-14 一种压电式mems传感器以及相关设备 WO2021082764A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20881753.6A EP4037335A4 (en) 2019-10-31 2020-09-14 PIEZOELECTRIC MEMS SENSOR AND RELATIVE DEVICE
US17/733,148 US20220264229A1 (en) 2019-10-31 2022-04-29 Piezoelectric Mems Sensor and Related Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911053981.5 2019-10-31
CN201911053981.5A CN112752209B (zh) 2019-10-31 2019-10-31 一种压电式mems传感器以及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/733,148 Continuation US20220264229A1 (en) 2019-10-31 2022-04-29 Piezoelectric Mems Sensor and Related Device

Publications (1)

Publication Number Publication Date
WO2021082764A1 true WO2021082764A1 (zh) 2021-05-06

Family

ID=75644825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115104 WO2021082764A1 (zh) 2019-10-31 2020-09-14 一种压电式mems传感器以及相关设备

Country Status (4)

Country Link
US (1) US20220264229A1 (zh)
EP (1) EP4037335A4 (zh)
CN (1) CN112752209B (zh)
WO (1) WO2021082764A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217693709U (zh) * 2022-06-20 2022-10-28 瑞声开泰科技(武汉)有限公司 Mems扬声器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460721A (zh) * 2011-03-31 2013-12-18 巴克-卡琳公司 具有间隙控制几何形状的声换能器以及声换能器制造方法
WO2017049278A1 (en) * 2015-09-18 2017-03-23 Vesper Technologies Inc. Plate spring
WO2018050551A1 (en) * 2016-09-13 2018-03-22 Robert Bosch Gmbh Cantilevered shear resonance microphone
US20180186623A1 (en) * 2017-03-05 2018-07-05 Kris Vossough Fet based sensory systems

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI220155B (en) * 2003-07-25 2004-08-11 Ind Tech Res Inst Micro vibratory dual-axis sensitive gyroscope
JP4702164B2 (ja) * 2006-04-26 2011-06-15 株式会社デンソー 超音波センサ及びその製造方法
JP5545608B2 (ja) * 2006-07-18 2014-07-09 日本碍子株式会社 誘電体デバイス
JP2009302661A (ja) * 2008-06-10 2009-12-24 Toshiba Corp 圧電デバイス
IL192583A (en) * 2008-07-02 2014-01-30 Btendo Ltd A mems device that includes a means for measuring oscillations
IT1395550B1 (it) * 2008-12-23 2012-09-28 St Microelectronics Rousset Trasduttore acustico integrato in tecnologia mems e relativo processo di fabbricazione
JP5916577B2 (ja) * 2012-09-26 2016-05-11 富士フイルム株式会社 ミラー駆動装置及びその駆動方法
CN203775075U (zh) * 2014-03-27 2014-08-13 纳米新能源(唐山)有限责任公司 微振动传感器
GB2551854B (en) * 2016-07-28 2019-03-27 Cirrus Logic Int Semiconductor Ltd MEMS device and process
WO2018035486A1 (en) * 2016-08-18 2018-02-22 Vesper Technologies Inc. Plate coupling structure
IT201600109764A1 (it) * 2016-10-31 2018-05-01 St Microelectronics Srl Sensore mems di tipo piezoelettrico, quale sensore di forza, sensore di pressione, sensore di deformazione o microfono, a sensibilita' migliorata
CN109286883A (zh) * 2017-07-19 2019-01-29 上海微联传感科技有限公司 振膜及麦克风
US10609463B2 (en) * 2017-10-30 2020-03-31 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated microphone device and manufacturing method thereof
CN208987176U (zh) * 2018-10-11 2019-06-14 东莞希越电子有限公司 一种压电薄膜麦克风结构
CN109495829B (zh) * 2018-12-31 2021-12-03 瑞声声学科技(深圳)有限公司 压电式mems麦克风
CN109587612A (zh) * 2018-12-31 2019-04-05 瑞声声学科技(深圳)有限公司 压电式麦克风

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460721A (zh) * 2011-03-31 2013-12-18 巴克-卡琳公司 具有间隙控制几何形状的声换能器以及声换能器制造方法
WO2017049278A1 (en) * 2015-09-18 2017-03-23 Vesper Technologies Inc. Plate spring
WO2018050551A1 (en) * 2016-09-13 2018-03-22 Robert Bosch Gmbh Cantilevered shear resonance microphone
US20180186623A1 (en) * 2017-03-05 2018-07-05 Kris Vossough Fet based sensory systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4037335A4

Also Published As

Publication number Publication date
EP4037335A1 (en) 2022-08-03
EP4037335A4 (en) 2022-11-16
US20220264229A1 (en) 2022-08-18
CN112752209B (zh) 2022-03-25
CN112752209A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
US20220295187A1 (en) Wireless headset
EP3170318B1 (en) High aspect ratio microspeaker having a two-plane suspension
US20100124343A1 (en) Condenser microphone
US10531203B2 (en) Acoustic apparatus and associated methods
CN114513731B (zh) 一种麦克风组件及电子设备
CN114520947B (zh) 一种麦克风组件及电子设备
US20160277846A1 (en) Acoustic device with one or more trim capacitors
US20220408208A1 (en) Method of manufacturing acoustic devices with improved sensitivity
WO2021082764A1 (zh) 一种压电式mems传感器以及相关设备
US20100111335A1 (en) Electronic device with electret electro-acoustic transducer
EP2369855B1 (en) Electronic device with electret electro-acoustic transducer
US20110261979A1 (en) Diaphragm and condenser microphone using same
CN113163312A (zh) 一种压电式mems传感器以及相关设备
CN114885264B (zh) 一种麦克风组件及电子设备
CN213694053U (zh) 麦克风和电子设备
TWI790578B (zh) 矽基麥克風裝置及電子設備
TWI790574B (zh) 矽基麥克風裝置及電子設備
TWI790575B (zh) 矽基麥克風裝置及電子設備
CN115334389A (zh) 一种麦克风组件及电子设备
TWI824236B (zh) 矽基麥克風裝置及電子設備
US20230224646A1 (en) Capacitive mems microphone, microphone unit and electronic device
JP5257920B2 (ja) 携帯電話およびマイクロホンユニット
CN209748810U (zh) 一种音频装置及电子设备
CN220368806U (zh) 一种适于声纹识别的mems麦克风芯片
US20230043470A1 (en) Piezoelectric acoustic sensor and method for manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020881753

Country of ref document: EP

Effective date: 20220427

NENP Non-entry into the national phase

Ref country code: DE