WO2021082685A1 - 一种超高密度大芯数气吹微缆及其制造工艺 - Google Patents

一种超高密度大芯数气吹微缆及其制造工艺 Download PDF

Info

Publication number
WO2021082685A1
WO2021082685A1 PCT/CN2020/111634 CN2020111634W WO2021082685A1 WO 2021082685 A1 WO2021082685 A1 WO 2021082685A1 CN 2020111634 W CN2020111634 W CN 2020111634W WO 2021082685 A1 WO2021082685 A1 WO 2021082685A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical unit
optical
sub
unit
Prior art date
Application number
PCT/CN2020/111634
Other languages
English (en)
French (fr)
Inventor
李伟
周峰
吴斌华
费华青
王瑞
孙丽华
刘沛东
史惠萍
Original Assignee
江苏亨通光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通光电股份有限公司 filed Critical 江苏亨通光电股份有限公司
Publication of WO2021082685A1 publication Critical patent/WO2021082685A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44384Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4482Code or colour marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/22Cables including at least one electrical conductor together with optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/52Underground or underwater installation; Installation through tubing, conduits or ducts using fluid, e.g. air

Definitions

  • optical fiber communication is widely used as the communication method with the fastest speed and the best transmission quality.
  • the air-blown micro-tube micro-cable technology is a mature optical cable network. Laying technology has been widely promoted in the international market due to its excellent comprehensive performance and unique laying methods.
  • the increasing demand for air-blown micro-cables promotes the development of optical cables in the direction of large core numbers and small cable diameters.
  • the traditional stranded air-blown micro-cable generally uses more than 4 2-24 core sleeves to be twisted around the central reinforcement to form a cable core, and then form an optical cable through a polyethylene sheath.
  • urban pipelines are becoming increasingly tense and cannot make full use of existing pipeline resources, which will have a great impact on the competitiveness of products. Therefore, reduce the equivalent area of the same number of fibers in the sleeve and increase the fiber density of the optical cable under the same number of cores. , It is important to reduce the outer diameter of the optical cable and be compatible with the small size air blown micro cable.
  • An ultra-high-density large-core air blown micro-cable which is characterized in that it comprises a central reinforcement, and at least one layer of optical unit stranded layer is arranged on the outer periphery of the central reinforcement member, which is opposite to the outer layer of optical unit stranded layer.
  • the twisted layer of each layer of the optical unit includes several identical subunits, and the subunits in the twisted layer of the optical unit of different layers are the same Sub-units, the number of sub-units of the twisted layer of the optical unit opposite to the outer layer is greater than the number of sub-units of the twisted layer of the optical unit opposite to the inner layer, each sub-unit includes loose tubes, and each loose tube is arranged with a maximum of 48 pieces of 200 ⁇ m Small-sized optical fiber, and the loose tube is filled with grease, and the outer periphery of the stranded layer of the outermost optical unit is covered with a PE outer sheath.
  • the central reinforcement is a small-diameter central reinforcement, the diameter of which is not greater than the outer diameter of the corresponding loose tube of the subunit;
  • the material of the central reinforcement is specifically high modulus FRP with a modulus of >56 GPa, and water blocking yarns are arranged in the gap between the central reinforcement and the inner circumference of the optical unit stranded layer of the inner layer;
  • a water blocking yarn is arranged in the gap between the twisted layer of the light unit on the outer layer and the twisted layer of the light unit on the inner layer;
  • a tear cord is provided on the inner wall of the PE outer sheath, and the wall thickness of the PE outer sheath is 0.4 mm;
  • the overall number of cores is 288 cores
  • six of the sub-units are arranged around the outer circumference of the central reinforcing member, and 48 small-sized optical fibers of 200 ⁇ m are arranged in the loose tube of each sub-unit, and then the outer circumferences of the six sub-units are wrapped Cover with PE outer sheath;
  • the overall number of cores When the overall number of cores is 864, it includes a first optical unit stranded layer and a second optical unit stranded layer.
  • the first optical unit stranded layer includes 6 sub-units, and the second optical unit stranded layer includes 6 sub-units.
  • the unit stranded layer includes 12 of the subunits, each of which has 48 200 ⁇ m small-sized optical fibers arranged in the loose tube.
  • the first optical unit is twisted on the outer periphery of the central reinforcement member, and the second optical unit is twisted. On the outer circumference of the first light unit, the outer circumference of the second light unit is covered with a PE outer sheath;
  • the overall number of cores When the overall number of cores is 1728, it includes the first optical unit stranded layer, the second optical unit stranded layer, and the third unit stranded layer.
  • the first optical unit stranded layer includes 6 sub-units.
  • the second light unit stranded layer includes 12 sub-units
  • the third unit stranded layer includes 18 sub-units
  • each sub-unit’s loose tube is arranged with 48 pieces of 200 ⁇ m Sized optical fiber
  • the first optical unit is twisted on the outer periphery of the central strengthening member
  • the second optical unit is twisted on the outer periphery of the first optical unit
  • the third optical unit is twisted on the outer periphery of the second optical unit
  • the outer periphery of the third light unit is covered with a PE outer sheath.
  • An air-blown microcable preparation process which is characterized by: firstly distributing optical fibers, coloring 48 small-sized optical fibers according to the chromatogram, and coloring the color ring, in which 1-12 serial number fibers are colored, and the colors of each serial number fiber Different, the 13-24, 25-36, 37-48 serial number fibers are colored according to different numbers of color rings of different colors within a unit distance, so that the 48 fibers in each subunit can be quickly distinguished;
  • the loose tube process 48 optical fibers are fed into the loose tube by uniformly controlling the extrusion amount of the PBT. At the same time, the loose tube is filled with a small amount of ointment to ensure the stability of the outer diameter of the loose tube. At the same time, the optical fiber stranding device is used to control the optical fiber Length difference and outer diameter stability;
  • the central reinforcement is made of high modulus FRP, the modulus is greater than 56GPa, and water blocking yarns are placed around it.
  • Several layers of optical unit stranded layers are arranged along the extension direction of the central reinforcement, and each optical unit stranded layer consists of several The sub-units are combined and formed, and all the sub-units and non-metallic reinforcements undergo the SZ stranding process to form a structurally stable cable core;
  • a layer of PE material is wrapped around the cable core to form a PE outer sheath.
  • the outer diameter of the single loose tube of the subunit is 2.1 ⁇ 0.05mm, and the wall thickness is 0.15 ⁇ 0.03mm;
  • the 13-24, 25 ⁇ 36, 37-48 serial number fibers are colored rings according to different numbers of color rings of different colors within a unit distance.
  • the unit distance is 50mm
  • the width of each color ring is 2mm
  • one color is within the unit distance.
  • the ring is the first model
  • the two color rings within a unit distance are the second model
  • the three color rings within a unit distance are the third model.
  • the interval between adjacent color rings within each unit distance is 3mm
  • 13- 24, 25-36, 37-48 serial number fiber select the corresponding model for color ring.
  • the outer diameter is reduced by about 10-25% under the same number of cores, and the number of fiber cores per unit area is increased by 22% to 91%. It has high fiber density and large size.
  • the core number and the small diameter of the cable can effectively improve the utilization rate of the pipeline.
  • the 1728 core air-blown microcable is prepared by multi-layer stranding with the maximum number of cores, and the optical fiber density can reach about 89%; and the present invention adopts a semi-dry design ,
  • the loose tube is filled with grease, and the cable core uses water-blocking yarn, which reduces the use of grease and has an environmental protection effect; and the invention adopts a thin-walled tube and sheath structure design to increase the fiber density of the optical cable and the weight of the cable Further reduce, improve the convenience of optical cable laying, and reduce the construction intensity; this invention supplements and enriches the air-blown micro-cable series.
  • FIG. 1 is a schematic cross-sectional view of the first embodiment of the optical fiber cable of the present invention
  • FIG. 2 is a schematic cross-sectional view of the second embodiment of the optical fiber cable according to the present invention.
  • FIG. 3 is a schematic cross-sectional view of the third embodiment of the optical fiber cable according to the present invention.
  • Figure 4 is a schematic diagram of the optical fiber color ring of the present invention.
  • An ultra-high-density and large-core air blown micro-cable shown in Figure 1 to Figure 3: It includes a central reinforcement member 1, and at least one layer of optical unit stranded layer is arranged on the outer circumference of the central reinforcement member 1, which is opposite to the outer optical unit
  • the twisted layer is twisted on the outer periphery formed by the twisted layer of the optical unit in the inner layer.
  • the twisted layer of the optical unit of each layer includes several identical subunits 2, and the subunits in the twisted layer of the optical unit of different layers The units are the same subunit 2.
  • the number of subunits of the twisted layer of the light unit opposite to the outer layer is greater than the number of subunits of the twisted layer of the light unit opposite to the inner layer.
  • Each subunit 2 includes a loose tube 3, each loose tube A maximum of 48 200 ⁇ m small-size optical fibers 4 are arranged in the tube 3, and the loose tube 4 is filled with grease 5, and the outer periphery of the stranded layer of the outermost optical unit is covered with a PE outer sheath 6.
  • the central reinforcement 1 is a small-diameter central reinforcement, the diameter of which is not greater than the outer diameter of the corresponding loose tube 3 of the subunit 2;
  • the material of the central reinforcement 1 is specifically high modulus FRP, with a modulus> 56 GPa, and a water blocking yarn 7 is arranged in the gap between the central reinforcement 1 and the inner periphery of the light unit stranded layer of the inner layer;
  • a water blocking yarn 7 is arranged in the gap between the twisted layer of the light unit on the outer layer and the twisted layer of the light unit on the inner layer;
  • a tear cord 8 is provided on the inner wall of the PE outer sheath 6, and the wall thickness of the PE outer sheath 6 is 0.4mm;
  • FIG. 1 When the overall number of cores is 288 cores, six subunits 2 are arranged around the outer circumference of the central reinforcement 1, and the loose tube 3 of each subunit 2 is arranged with 48 200 ⁇ m small-sized optical fibers 4, Afterwards, the outer periphery of the six subunits 2 is covered with a PE outer sheath 6.
  • the overall number of cores is 864 cores, it includes a first optical unit stranded layer, a second optical unit stranded layer, and the first optical unit stranded layer includes 6 subunits 2.
  • the two-light unit stranded layer includes 12 sub-units 2, each of which has 48 200 ⁇ m small-size optical fibers 4 arranged in the loose tube 3.
  • the first optical unit is twisted on the outer periphery of the central strengthening member 1, and the second light
  • the units are twisted on the outer circumference of the first light unit, and the outer circumference of the second light unit is covered with a PE outer sheath 6.
  • the overall number of cores is 1728, it includes the first optical unit stranded layer, the second optical unit stranded layer, the third unit stranded layer, and the first optical unit stranded layer It includes 6 subunits 2, the second optical unit stranded layer includes 12 subunits 2, and the third unit stranded layer includes 18 subunits 2.
  • Each subunit 2 has 48 pieces of 200 ⁇ m in the loose tube 3 Size optical fiber 4, the first optical unit is twisted on the outer periphery of the central strengthening member 1, the second optical unit is twisted on the outer periphery of the first optical unit, the third optical unit is twisted on the outer periphery of the second optical unit, and the third optical unit is twisted on the outer periphery of the second optical unit.
  • the outer circumference of is covered with PE outer sheath 6.
  • An air-blown micro-cable preparation process First, the optical fiber is distributed, and 48 small-sized optical fibers are colored and colored ring according to the chromatogram. Among them, the 1-12 serial number fibers are colored, and the colors of each serial number optical fiber are different, 13- 24, 25 ⁇ 36, and 37-48 serial number fibers are colored according to different numbers of color rings of different colors within a unit distance, so that the 48 fibers in each subunit can be quickly distinguished;
  • the loose tube process 48 optical fibers are fed into the loose tube by uniformly controlling the extrusion amount of the PBT. At the same time, the loose tube is filled with a small amount of ointment to ensure the stability of the outer diameter of the loose tube. At the same time, the optical fiber stranding device is used to control the optical fiber Length difference and outer diameter stability;
  • the central reinforcement adopts high modulus FRP with a modulus> 56GPa, and water blocking yarn is placed around it.
  • Several layers of optical unit stranded layers are arranged along the extension direction of the central reinforcement.
  • Each optical unit stranded layer consists of several sub-units. Combined formation, all sub-units and non-metallic reinforcement go through the SZ stranding process to form a structurally stable cable core;
  • a layer of PE material is wrapped around the cable core to form a PE outer sheath.
  • the loose tube is filled with ointment
  • the cable core uses water-blocking yarn, which reduces the use of ointment and has an environmental protection effect
  • the outer diameter of the single loose tube of the subunit is 2.1 ⁇ 0.05mm, and the wall thickness is 0.15 ⁇ 0.03mm;
  • the specific color ring model is shown in Figure 4.
  • the 13-24, 25 ⁇ 36, 37-48 serial number fibers are colored rings according to different numbers of color rings of different colors within a unit distance, the unit distance is 50mm, and the width of each color ring 2mm, one color circle within a unit distance is the first model S50, two color circles within a unit distance are the second model D50, and three color circles within a unit distance are the third model T50.
  • the adjacent ones within each unit distance The space between the color rings is 3mm, and the 13-24, 25-36, and 37-48 serial number fibers are respectively selected for the corresponding model to color the color ring.
  • the outer diameter is reduced by about 10-25% under the same number of cores, and the number of fiber cores per unit area is increased by 22% to 91%. It has high fiber density, large core number and small cable diameter. It can effectively improve the utilization rate of the pipeline.
  • the 1728-core air-blown micro-cable is prepared by multi-layer stranding with the maximum number of cores, and the optical fiber density can reach about 89%; and the present invention adopts a semi-dry design, and the loose tube adopts Filled with grease, the cable core uses water-blocking yarn, which reduces the use of grease and has an environmental protection effect; and the invention adopts a thin-walled sleeve and sheath structure design to increase the fiber density of the optical cable, and the weight of the cable can be further reduced and increased
  • the convenience of optical cable laying reduces the construction intensity; this invention supplements and enriches the air-blown micro-cable series.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Communication Cables (AREA)

Abstract

一种超高密度大芯数气吹微缆包括中心加强件(1),中心加强件(1)外周环布有至少一层光单元绞合层,相对外层的光单元绞合层绞合于相对内层的光单元绞合层所形成的外周,每层的光单元绞合层内包括有若干个相同的子单元(2),不同层的光单元绞合层内的子单元(2)为相同的子单元(2),相对外层的光单元绞合层的子单元(2)数量大于相对内层的光单元绞合层的子单元(2)数量。每个子单元(2)包括松套管(3),每根松套管(3)内布置有最多48根200μm小尺寸光纤(4)、且松套管(3)内填充有油膏(5),最外层的光单元绞合层的外周包覆有PE外护套(6)。通过对200μm小尺寸光纤进行套塑,以最多48根光纤形成的松套管(3)为子单元(2),制备超高密度大芯数气吹微缆,具有低重量、小缆径、光纤密度高的优点。

Description

一种超高密度大芯数气吹微缆及其制造工艺 技术领域
本发明涉及光电复合缆结构的技术领域,具体为一种超高密度大芯数气吹微缆,本发明还提供了该气吹微缆的制备工艺。
背景技术
随着全球通信业务对网络带宽的要求越来越高,光纤通信作为速度最快、传输质量最好的通信方式而被广泛使用。然而在网络建设上,随着管道资源的紧张,用户对管道的空间利用率、施工效率和维护的便利性等提出了更高的要求,气吹微管微缆技术作为一种成熟的光缆网络敷设技术,以其优异的综合性能和独特的敷设方式在国际市场得到广泛推广,气吹微缆的需求量日益增加促使光缆向大芯数、小缆径方向发展。
传统的层绞式气吹微缆,一般采用4个以上的2~24芯套管围绕中心加强件进行绞合,形成缆芯,再通过聚乙烯护套形成光缆。目前,城市管道日趋紧张,无法充分利用现有管道资源,对于产品的竞争力会造成很大的影响,所以,减小套管内相同光纤数的等效面积,增加同等芯数下光缆的光纤密度,降低光缆外径并兼容小尺寸气吹微缆至关重要。
发明内容
针对上述问题,本发明提供了一种超高密度大芯数气吹微缆,其通过200μm小尺寸光纤进行套塑,以最多48的光纤形成的松套管为子单元,制备超高密度大芯数气吹微缆,具有低重量、小缆径、光纤密度高的优点,满足在城市管道安装的需求。
一种超高密度大芯数气吹微缆,其特征在于:其包括中心加强件,所述中心加强件外周环布有至少一层光单元绞合层,相对外层的光单元绞合层绞合于相对内层的光单元绞合层所形成的外周,每层的光单元绞合层内包括有若干个相同的子单元,不同层的光单元绞合层内的子单元为相同的子单元,相对外层的光单元绞合层的子单元数量大于相对内层的光单元绞合层的子单元数量,每个子单元包括松套管,每根松套管内布置有最多48根200μm小尺寸光纤、且松套管内填充有油膏,最外层的光单元绞合层的外周包覆有PE外护套。
其进一步特征在于:所述中心加强件为小直径中心加强件,其直径不大于子单元的对应松套管的外径;
所述中心加强件的材质具体为高模量FRP,其模量>56GPa,所述中心加强件和内层的光单元绞合层的内周间的间隙内布置有阻水纱;
相对外层的光单元绞合层和相对内层的光单元绞合层之间的间隙内布置有阻水纱;
所述PE外护套内壁上设置有撕裂绳,所述PE外护套的壁厚为0.4mm;
当整体芯数为288芯时,六个所述子单元环布在中心加强件外周,每个子单元的松套管内布置有48根200μm小尺寸光纤,之后在六个所述子单元的外周包覆PE外护套;
当整体芯数为864芯时,其包括第一光单元绞合层、第二光单元绞合层,所述第一光单元绞合层包括有6个所述子单元,所述第二光单元绞合层包括有12个所述子单元,每个子单元的松套管内布置有48根200μm小尺寸光纤,第一光单元绞合在所述中心加强件的外周,第二光单元绞合在所述第一光单 元的外周,所述第二光单元的外周包覆有PE外护套;
当整体芯数为1728芯时,其包括第一光单元绞合层、第二光单元绞合层、第三单元绞合层,所述第一光单元绞合层包括有6个所述子单元,所述第二光单元绞合层包括有12个所述子单元,所述第三单元绞合层包括有18个所述子单元,每个子单元的松套管内布置有48根200μm小尺寸光纤,第一光单元绞合在所述中心加强件的外周,第二光单元绞合在所述第一光单元的外周,第三光单元绞合在所述第二光单元的外周,所述第三光单元的外周包覆有PE外护套。
一种气吹微缆的制备工艺,其特征在于:首先进行光纤配纤,按色谱对48根小尺寸光纤进行着色及打色环,其中1-12序号光纤进行着色、各个序号的光纤的颜色不同,13-24、25~36、37-48序号光纤分别按单位距离内不同数量不同颜色的色环进行打色环,使得每个子单元内的48根光纤可快速进行区分;
松套管工序中通过均匀控制PBT的挤塑量、将48根光纤送入松套管内,同时松套管内填充微量油膏保证松套管外径稳定,同时运用光纤绞合装置来控制光纤的纤长差及外径稳定性;
中心加强件采用高模量FRP,模量>56GPa,并在其周围放置阻水纱,沿所述中心加强件的延伸方向设置若干层光单元绞合层,每个光单元绞合层由若干个子单元组合形成,所有的子单元与非金属加强件经过SZ绞合工序形成结构稳定的缆芯;
之后在缆芯外包覆一层PE料形成PE外护套。
其进一步特征在于:其采用半干式结构,松套管采用油膏填充,缆芯使用阻水纱,减少了油膏的使用,起到环保功效;
所述子单元的单个松套管的外径为2.1±0.05mm,壁厚为0.15±0.03mm;
13-24、25~36、37-48序号光纤分别按单位距离内不同数量不同颜色的色环进行打色环,其中单位距离为50mm,每条色环的宽度为2mm,单位距离内一条色环的为第一型号,单位距离内两条色环为第二型号,单位距离内三条色环为第三型号,每个单位距离内的相邻的色环之间的间隔为3mm,13-24、25~36、37-48序号光纤分别选择对应的型号进行打色环。
采用本发明后,其与传统的层绞式气吹微缆相比,同等芯数下外径降低10~25%左右,单位面积光纤芯数增加22%~91%,具有光纤密度高,大芯数小缆径的特点,可以有效的提高管道利用率,通过多层绞合最大芯数制备出1728芯气吹微缆,光纤密度可达到89%左右;且本发明采用半干式的设计,松套管采用油膏填充,缆芯使用阻水纱,减少了油膏的使用,起到环保功效;且本发明采用薄壁套管及护套结构设计,提高光缆光纤密度,缆重可进一步减小,提高光缆敷设便捷性,降低施工强度;此发明补充和丰富了气吹微缆系列。
附图说明
图1为本发明的光缆的具体实施例一的横截面剖视结构示意图;
图2为本发明的光缆的具体实施例二的横截面剖视结构示意图;
图3为本发明的光缆的具体实施例三的横截面剖视结构示意图;
图4为本发明的光纤色环示意图;
图2中序号所对应的名称如下:
中心加强件1、子单元2、松套管3、光纤4、油膏5、PE外护套6、阻水纱7、撕裂绳8。
具体实施方式
一种超高密度大芯数气吹微缆,见图1-图3:其包括中心加强件1,中心加强件1外周环布有至少一层光单元绞合层,相对外层的光单元绞合层绞合于相对内层的光单元绞合层所形成的外周,每层的光单元绞合层内包括有若干个相同的子单元2,不同层的光单元绞合层内的子单元为相同的子单元2,相对外层的光单元绞合层的子单元数量大于相对内层的光单元绞合层的子单元数量,每个子单元2包括松套管3,每根松套管3内布置有最多48根200μm小尺寸光纤4、且松套管4内填充有油膏5,最外层的光单元绞合层的外周包覆有PE外护套6。
中心加强件1为小直径中心加强件,其直径不大于子单元2的对应松套管3的外径;
中心加强件1的材质具体为高模量FRP,其模量>56GPa,中心加强件1和内层的光单元绞合层的内周间的间隙内布置有阻水纱7;
相对外层的光单元绞合层和相对内层的光单元绞合层之间的间隙内布置有阻水纱7;
PE外护套6内壁上设置有撕裂绳8,PE外护套6的壁厚为0.4mm;
具体实施例一、见图1:整体芯数为288芯时,六个子单元2环布在中心加强件1外周,每个子单元2的松套管3内布置有48根200μm小尺寸光纤4,之后在六个子单元2的外周包覆PE外护套6。
具体实施例二、见图2:整体芯数为864芯时,其包括第一光单元绞合层、 第二光单元绞合层,第一光单元绞合层包括有6个子单元2,第二光单元绞合层包括有12个子单元2,每个子单元2的松套管3内布置有48根200μm小尺寸光纤4,第一光单元绞合在中心加强件1的外周,第二光单元绞合在第一光单元的外周,第二光单元的外周包覆有PE外护套6。
具体实施例二、见图3:当整体芯数为1728芯时,其包括第一光单元绞合层、第二光单元绞合层、第三单元绞合层,第一光单元绞合层包括有6个子单元2,第二光单元绞合层包括有12个子单元2,第三单元绞合层包括有18个子单元2,每个子单元2的松套管3内布置有48根200μm小尺寸光纤4,第一光单元绞合在中心加强件1的外周,第二光单元绞合在第一光单元的外周,第三光单元绞合在第二光单元的外周,第三光单元的外周包覆有PE外护套6。
一种气吹微缆的制备工艺:首先进行光纤配纤,按色谱对48根小尺寸光纤进行着色及打色环,其中1-12序号光纤进行着色、各个序号的光纤的颜色不同,13-24、25~36、37-48序号光纤分别按单位距离内不同数量不同颜色的色环进行打色环,使得每个子单元内的48根光纤可快速进行区分;
松套管工序中通过均匀控制PBT的挤塑量、将48根光纤送入松套管内,同时松套管内填充微量油膏保证松套管外径稳定,同时运用光纤绞合装置来控制光纤的纤长差及外径稳定性;
中心加强件采用高模量FRP,模量>56GPa,并在其周围放置阻水纱,沿中心加强件的延伸方向设置若干层光单元绞合层,每个光单元绞合层由若干个子单元组合形成,所有的子单元与非金属加强件经过SZ绞合工序形成结构稳定的缆芯;
之后在缆芯外包覆一层PE料形成PE外护套。
其采用半干式结构,松套管采用油膏填充,缆芯使用阻水纱,减少了油膏的使用,起到环保功效;
子单元的单个松套管的外径为2.1±0.05mm,壁厚为0.15±0.03mm;
色环型号具体见图4,13-24、25~36、37-48序号光纤分别按单位距离内不同数量不同颜色的色环进行打色环,其中单位距离为50mm,每条色环的宽度为2mm,单位距离内一条色环的为第一型号S50,单位距离内两条色环为第二型号D50,单位距离内三条色环为第三型号T50,每个单位距离内的相邻的色环之间的间隔为3mm,13-24、25~36、37-48序号光纤分别选择对应的型号进行打色环。
其与传统的层绞式气吹微缆相比,同等芯数下外径降低10~25%左右,单位面积光纤芯数增加22%~91%,具有光纤密度高,大芯数小缆径的特点,可以有效的提高管道利用率,通过多层绞合最大芯数制备出1728芯气吹微缆,光纤密度可达到89%左右;且本发明采用半干式的设计,松套管采用油膏填充,缆芯使用阻水纱,减少了油膏的使用,起到环保功效;且本发明采用薄壁套管及护套结构设计,提高光缆光纤密度,缆重可进一步减小,提高光缆敷设便捷性,降低施工强度;此发明补充和丰富了气吹微缆系列。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨 在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种超高密度大芯数气吹微缆,其特征在于:其包括中心加强件,所述中心加强件外周环布有至少一层光单元绞合层,相对外层的光单元绞合层绞合于相对内层的光单元绞合层所形成的外周,每层的光单元绞合层内包括有若干个相同的子单元,不同层的光单元绞合层内的子单元为相同的子单元,相对外层的光单元绞合层的子单元数量大于相对内层的光单元绞合层的子单元数量,每个子单元包括松套管,每根松套管内布置有最多48根200μm小尺寸光纤、且松套管内填充有油膏,最外层的光单元绞合层的外周包覆有PE外护套。
  2. 如权利要求1所述的一种超高密度大芯数气吹微缆,其特征在于:所述中心加强件为小直径中心加强件,其直径不大于子单元的对应松套管的外径。
  3. 如权利要求1所述的一种超高密度大芯数气吹微缆,其特征在于:所述中心加强件的材质具体为高模量FRP,其模量>56GPa,所述中心加强件和内层的光单元绞合层的内周间的间隙内布置有阻水纱。
  4. 如权利要求1所述的一种超高密度大芯数气吹微缆,其特征在于:所述内护套外表面交叉放置至少两根阻水纱,所述阻水纱的密度为400~1000dtex。
  5. 如权利要求1所述的一种超高密度大芯数气吹微缆,其特征在于:相对外层的光单元绞合层和相对内层的光单元绞合层之间的间隙内布置有阻水纱。
  6. 如权利要求1所述的一种超高密度大芯数气吹微缆,其特征在于:所述PE外护套内壁上设置有撕裂绳,所述PE外护套的壁厚为0.4mm。
  7. 一种气吹微缆的制备工艺,其特征在于:首先进行光纤配纤,按色谱对48根小尺寸光纤进行着色及打色环,其中1-12序号光纤进行着色、各个序号的光纤的颜色不同,13-24、25~36、37-48序号光纤分别按单位距离内不同数量不同颜色的色环进行打色环,使得每个子单元内的48根光纤可快速进行区分;
    松套管工序中通过均匀控制PBT的挤塑量、将48根光纤送入松套管内,同时松套管内填充微量油膏保证松套管外径稳定,同时运用光纤绞合装置来控制光纤的纤长差及外径稳定性;
    中心加强件采用高模量FRP,模量>56GPa,并在其周围放置阻水纱,沿所述中心加强件的延伸方向设置若干层光单元绞合层,每个光单元绞合层由若干个子单元组合形成,所有的子单元与非金属加强件经过SZ绞合工序形成结构稳定的缆芯;
    之后在缆芯外包覆一层PE料形成PE外护套。
  8. 如权利要求7所述的一种气吹微缆的制备工艺,其特征在于:其采用半干式结构,松套管采用油膏填充,缆芯使用阻水纱,减少了油膏的使用,起到环保功效。
  9. 如权利要求7所述的一种气吹微缆的制备工艺,其特征在于:所述子单元的单个松套管的外径为2.1±0.05mm,壁厚为0.15±0.03mm。
  10. 如权利要求7所述的一种气吹微缆的制备工艺,其特征在于:13-24、25~36、37-48序号光纤分别按单位距离内不同数量不同颜色的色环进行打色环,其中单位距离为50mm,每条色环的宽度为2mm,单位距离内一条色环的 为第一型号,单位距离内两条色环为第二型号,单位距离内三条色环为第三型号,每个单位距离内的相邻的色环之间的间隔为3mm,13-24、25~36、37-48序号光纤分别选择对应的型号进行打色环。
PCT/CN2020/111634 2019-10-29 2020-08-27 一种超高密度大芯数气吹微缆及其制造工艺 WO2021082685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911039699.1 2019-10-29
CN201911039699.1A CN110737058A (zh) 2019-10-29 2019-10-29 一种超高密度大芯数气吹微缆及其制造工艺

Publications (1)

Publication Number Publication Date
WO2021082685A1 true WO2021082685A1 (zh) 2021-05-06

Family

ID=69270302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111634 WO2021082685A1 (zh) 2019-10-29 2020-08-27 一种超高密度大芯数气吹微缆及其制造工艺

Country Status (3)

Country Link
EP (1) EP3816690A1 (zh)
CN (1) CN110737058A (zh)
WO (1) WO2021082685A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308863A (zh) * 2022-08-10 2022-11-08 广东亨通光电科技有限公司 一种光缆制造工艺
CN117111246A (zh) * 2023-10-25 2023-11-24 江苏永鼎股份有限公司 一种加强型直埋光缆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110737058A (zh) * 2019-10-29 2020-01-31 江苏亨通光电股份有限公司 一种超高密度大芯数气吹微缆及其制造工艺
CN112363285A (zh) * 2020-11-11 2021-02-12 江苏亨通光电股份有限公司 一种管道用小型化光缆及其施工方法
CN113376776A (zh) * 2021-05-11 2021-09-10 浙江东通光网物联科技有限公司 一种5g用超大芯数光缆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202735560U (zh) * 2012-06-18 2013-02-13 南京烽火藤仓光通信有限公司 一种多重层绞式光缆
CN105980902A (zh) * 2013-12-30 2016-09-28 康宁光电通信有限责任公司 捆缚膜系统
US20160291279A1 (en) * 2015-04-01 2016-10-06 Afl Telecommunications Llc Ultra-high fiber density micro-duct cable with extreme operating performance
CN109298495A (zh) * 2018-12-03 2019-02-01 江苏中天科技股份有限公司 基于光纤束结构的大芯数气吹微缆
CN110737058A (zh) * 2019-10-29 2020-01-31 江苏亨通光电股份有限公司 一种超高密度大芯数气吹微缆及其制造工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343549A (en) * 1993-08-25 1994-08-30 Siecor Corporation Riser optical cable having filling compound
US7382955B1 (en) * 2007-01-09 2008-06-03 Nexans Optical fiber cable with system and method for mid-span access
NL2009684C2 (en) * 2012-10-23 2014-04-29 Draka Comteq Bv An optical fiber cable.
US9557503B2 (en) * 2014-08-08 2017-01-31 Corning Optical Communications LLC Optical fiber cable
CN105204133A (zh) * 2015-11-03 2015-12-30 江苏亨通光电股份有限公司 扁平形自承式引入光纤带光缆的制备方法以及光缆
CN106125234A (zh) * 2016-08-23 2016-11-16 江苏亨通光电股份有限公司 一种大芯数小缆径防蚁气吹微缆及其制作工艺
CN205942026U (zh) * 2016-08-23 2017-02-08 江苏亨通光电股份有限公司 一种大芯数小缆径防蚁气吹微缆
CN109061822A (zh) * 2018-09-26 2018-12-21 江苏亨通光电股份有限公司 一种超细防蚁气吹光缆及其制作方法
CN211014736U (zh) * 2019-10-29 2020-07-14 江苏亨通光电股份有限公司 一种超高密度大芯数气吹微缆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202735560U (zh) * 2012-06-18 2013-02-13 南京烽火藤仓光通信有限公司 一种多重层绞式光缆
CN105980902A (zh) * 2013-12-30 2016-09-28 康宁光电通信有限责任公司 捆缚膜系统
US20160291279A1 (en) * 2015-04-01 2016-10-06 Afl Telecommunications Llc Ultra-high fiber density micro-duct cable with extreme operating performance
CN109298495A (zh) * 2018-12-03 2019-02-01 江苏中天科技股份有限公司 基于光纤束结构的大芯数气吹微缆
CN110737058A (zh) * 2019-10-29 2020-01-31 江苏亨通光电股份有限公司 一种超高密度大芯数气吹微缆及其制造工艺

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308863A (zh) * 2022-08-10 2022-11-08 广东亨通光电科技有限公司 一种光缆制造工艺
CN117111246A (zh) * 2023-10-25 2023-11-24 江苏永鼎股份有限公司 一种加强型直埋光缆
CN117111246B (zh) * 2023-10-25 2023-12-29 江苏永鼎股份有限公司 一种加强型直埋光缆

Also Published As

Publication number Publication date
EP3816690A1 (en) 2021-05-05
CN110737058A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2021082685A1 (zh) 一种超高密度大芯数气吹微缆及其制造工艺
CN104024903B (zh) 多芯光纤
US20150234139A1 (en) Round and small diameter optical cables with a ribbon-like optical fiber structure
EP3786681B1 (en) Easy-to-peel high-density full-dry optical fiber cable
CN104570251A (zh) 全介质大芯数高密度微型管道布线光缆及其制作方法
CN209690576U (zh) 一种高密度光纤带层绞式光缆
CN206038975U (zh) 一种全干式束管式光缆
CN102331610B (zh) 一种新型光纤束通信用光缆
CN109283613A (zh) 一种低芯间串扰多芯光纤
CN101546019A (zh) Uv光缆
WO2021237947A1 (zh) 气吹微缆及其制备方法
CN203587863U (zh) 一种气吹微型层绞式光缆
CN109298495A (zh) 基于光纤束结构的大芯数气吹微缆
CN204009177U (zh) 一种全干式四根平行加强件无套管式光纤带光缆
CN211014736U (zh) 一种超高密度大芯数气吹微缆
CN204613461U (zh) 高密度光缆
CN104216080A (zh) 一种超高密度中心束管式光缆
CN111484259A (zh) 一种多芯着色光纤集中式色点技术
CN106772868A (zh) 非中心加强件光缆
CN204405908U (zh) 全介质大芯数高密度微型管道布线光缆
CN103587019A (zh) 一种光纤束的成型设备及其成型方法
CN104599744A (zh) 一种光纤复合架空地线
CN104749726A (zh) 一种高硬度中心管加强式防鼠光缆及其制造工艺
CN209417379U (zh) 基于光纤束结构的超大芯数光缆
WO2017177875A1 (zh) 光纤束、光缆以及光纤束制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880589

Country of ref document: EP

Kind code of ref document: A1